Allow disabling of unmapped I/O on FreeBSD
[zfs.git] / module / zfs / zap_micro.c
blobb4611685b204c00a9c46905b5611d9f0d50c9fa8
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
29 #include <sys/zio.h>
30 #include <sys/spa.h>
31 #include <sys/dmu.h>
32 #include <sys/zfs_context.h>
33 #include <sys/zap.h>
34 #include <sys/zap_impl.h>
35 #include <sys/zap_leaf.h>
36 #include <sys/avl.h>
37 #include <sys/arc.h>
38 #include <sys/dmu_objset.h>
40 #ifdef _KERNEL
41 #include <sys/sunddi.h>
42 #endif
44 extern inline mzap_phys_t *zap_m_phys(zap_t *zap);
46 static int mzap_upgrade(zap_t **zapp,
47 void *tag, dmu_tx_t *tx, zap_flags_t flags);
49 uint64_t
50 zap_getflags(zap_t *zap)
52 if (zap->zap_ismicro)
53 return (0);
54 return (zap_f_phys(zap)->zap_flags);
57 int
58 zap_hashbits(zap_t *zap)
60 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
61 return (48);
62 else
63 return (28);
66 uint32_t
67 zap_maxcd(zap_t *zap)
69 if (zap_getflags(zap) & ZAP_FLAG_HASH64)
70 return ((1<<16)-1);
71 else
72 return (-1U);
75 static uint64_t
76 zap_hash(zap_name_t *zn)
78 zap_t *zap = zn->zn_zap;
79 uint64_t h = 0;
81 if (zap_getflags(zap) & ZAP_FLAG_PRE_HASHED_KEY) {
82 ASSERT(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY);
83 h = *(uint64_t *)zn->zn_key_orig;
84 } else {
85 h = zap->zap_salt;
86 ASSERT(h != 0);
87 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
89 if (zap_getflags(zap) & ZAP_FLAG_UINT64_KEY) {
90 const uint64_t *wp = zn->zn_key_norm;
92 ASSERT(zn->zn_key_intlen == 8);
93 for (int i = 0; i < zn->zn_key_norm_numints;
94 wp++, i++) {
95 uint64_t word = *wp;
97 for (int j = 0; j < zn->zn_key_intlen; j++) {
98 h = (h >> 8) ^
99 zfs_crc64_table[(h ^ word) & 0xFF];
100 word >>= NBBY;
103 } else {
104 const uint8_t *cp = zn->zn_key_norm;
107 * We previously stored the terminating null on
108 * disk, but didn't hash it, so we need to
109 * continue to not hash it. (The
110 * zn_key_*_numints includes the terminating
111 * null for non-binary keys.)
113 int len = zn->zn_key_norm_numints - 1;
115 ASSERT(zn->zn_key_intlen == 1);
116 for (int i = 0; i < len; cp++, i++) {
117 h = (h >> 8) ^
118 zfs_crc64_table[(h ^ *cp) & 0xFF];
123 * Don't use all 64 bits, since we need some in the cookie for
124 * the collision differentiator. We MUST use the high bits,
125 * since those are the ones that we first pay attention to when
126 * choosing the bucket.
128 h &= ~((1ULL << (64 - zap_hashbits(zap))) - 1);
130 return (h);
133 static int
134 zap_normalize(zap_t *zap, const char *name, char *namenorm, int normflags)
136 ASSERT(!(zap_getflags(zap) & ZAP_FLAG_UINT64_KEY));
138 size_t inlen = strlen(name) + 1;
139 size_t outlen = ZAP_MAXNAMELEN;
141 int err = 0;
142 (void) u8_textprep_str((char *)name, &inlen, namenorm, &outlen,
143 normflags | U8_TEXTPREP_IGNORE_NULL | U8_TEXTPREP_IGNORE_INVALID,
144 U8_UNICODE_LATEST, &err);
146 return (err);
149 boolean_t
150 zap_match(zap_name_t *zn, const char *matchname)
152 ASSERT(!(zap_getflags(zn->zn_zap) & ZAP_FLAG_UINT64_KEY));
154 if (zn->zn_matchtype & MT_NORMALIZE) {
155 char norm[ZAP_MAXNAMELEN];
157 if (zap_normalize(zn->zn_zap, matchname, norm,
158 zn->zn_normflags) != 0)
159 return (B_FALSE);
161 return (strcmp(zn->zn_key_norm, norm) == 0);
162 } else {
163 return (strcmp(zn->zn_key_orig, matchname) == 0);
167 void
168 zap_name_free(zap_name_t *zn)
170 kmem_free(zn, sizeof (zap_name_t));
173 zap_name_t *
174 zap_name_alloc(zap_t *zap, const char *key, matchtype_t mt)
176 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
178 zn->zn_zap = zap;
179 zn->zn_key_intlen = sizeof (*key);
180 zn->zn_key_orig = key;
181 zn->zn_key_orig_numints = strlen(zn->zn_key_orig) + 1;
182 zn->zn_matchtype = mt;
183 zn->zn_normflags = zap->zap_normflags;
186 * If we're dealing with a case sensitive lookup on a mixed or
187 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
188 * will fold case to all caps overriding the lookup request.
190 if (mt & MT_MATCH_CASE)
191 zn->zn_normflags &= ~U8_TEXTPREP_TOUPPER;
193 if (zap->zap_normflags) {
195 * We *must* use zap_normflags because this normalization is
196 * what the hash is computed from.
198 if (zap_normalize(zap, key, zn->zn_normbuf,
199 zap->zap_normflags) != 0) {
200 zap_name_free(zn);
201 return (NULL);
203 zn->zn_key_norm = zn->zn_normbuf;
204 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
205 } else {
206 if (mt != 0) {
207 zap_name_free(zn);
208 return (NULL);
210 zn->zn_key_norm = zn->zn_key_orig;
211 zn->zn_key_norm_numints = zn->zn_key_orig_numints;
214 zn->zn_hash = zap_hash(zn);
216 if (zap->zap_normflags != zn->zn_normflags) {
218 * We *must* use zn_normflags because this normalization is
219 * what the matching is based on. (Not the hash!)
221 if (zap_normalize(zap, key, zn->zn_normbuf,
222 zn->zn_normflags) != 0) {
223 zap_name_free(zn);
224 return (NULL);
226 zn->zn_key_norm_numints = strlen(zn->zn_key_norm) + 1;
229 return (zn);
232 static zap_name_t *
233 zap_name_alloc_uint64(zap_t *zap, const uint64_t *key, int numints)
235 zap_name_t *zn = kmem_alloc(sizeof (zap_name_t), KM_SLEEP);
237 ASSERT(zap->zap_normflags == 0);
238 zn->zn_zap = zap;
239 zn->zn_key_intlen = sizeof (*key);
240 zn->zn_key_orig = zn->zn_key_norm = key;
241 zn->zn_key_orig_numints = zn->zn_key_norm_numints = numints;
242 zn->zn_matchtype = 0;
244 zn->zn_hash = zap_hash(zn);
245 return (zn);
248 static void
249 mzap_byteswap(mzap_phys_t *buf, size_t size)
251 buf->mz_block_type = BSWAP_64(buf->mz_block_type);
252 buf->mz_salt = BSWAP_64(buf->mz_salt);
253 buf->mz_normflags = BSWAP_64(buf->mz_normflags);
254 int max = (size / MZAP_ENT_LEN) - 1;
255 for (int i = 0; i < max; i++) {
256 buf->mz_chunk[i].mze_value =
257 BSWAP_64(buf->mz_chunk[i].mze_value);
258 buf->mz_chunk[i].mze_cd =
259 BSWAP_32(buf->mz_chunk[i].mze_cd);
263 void
264 zap_byteswap(void *buf, size_t size)
266 uint64_t block_type = *(uint64_t *)buf;
268 if (block_type == ZBT_MICRO || block_type == BSWAP_64(ZBT_MICRO)) {
269 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
270 mzap_byteswap(buf, size);
271 } else {
272 fzap_byteswap(buf, size);
276 static int
277 mze_compare(const void *arg1, const void *arg2)
279 const mzap_ent_t *mze1 = arg1;
280 const mzap_ent_t *mze2 = arg2;
282 int cmp = TREE_CMP(mze1->mze_hash, mze2->mze_hash);
283 if (likely(cmp))
284 return (cmp);
286 return (TREE_CMP(mze1->mze_cd, mze2->mze_cd));
289 static void
290 mze_insert(zap_t *zap, int chunkid, uint64_t hash)
292 ASSERT(zap->zap_ismicro);
293 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
295 mzap_ent_t *mze = kmem_alloc(sizeof (mzap_ent_t), KM_SLEEP);
296 mze->mze_chunkid = chunkid;
297 mze->mze_hash = hash;
298 mze->mze_cd = MZE_PHYS(zap, mze)->mze_cd;
299 ASSERT(MZE_PHYS(zap, mze)->mze_name[0] != 0);
300 avl_add(&zap->zap_m.zap_avl, mze);
303 static mzap_ent_t *
304 mze_find(zap_name_t *zn)
306 mzap_ent_t mze_tofind;
307 mzap_ent_t *mze;
308 avl_index_t idx;
309 avl_tree_t *avl = &zn->zn_zap->zap_m.zap_avl;
311 ASSERT(zn->zn_zap->zap_ismicro);
312 ASSERT(RW_LOCK_HELD(&zn->zn_zap->zap_rwlock));
314 mze_tofind.mze_hash = zn->zn_hash;
315 mze_tofind.mze_cd = 0;
317 mze = avl_find(avl, &mze_tofind, &idx);
318 if (mze == NULL)
319 mze = avl_nearest(avl, idx, AVL_AFTER);
320 for (; mze && mze->mze_hash == zn->zn_hash; mze = AVL_NEXT(avl, mze)) {
321 ASSERT3U(mze->mze_cd, ==, MZE_PHYS(zn->zn_zap, mze)->mze_cd);
322 if (zap_match(zn, MZE_PHYS(zn->zn_zap, mze)->mze_name))
323 return (mze);
326 return (NULL);
329 static uint32_t
330 mze_find_unused_cd(zap_t *zap, uint64_t hash)
332 mzap_ent_t mze_tofind;
333 avl_index_t idx;
334 avl_tree_t *avl = &zap->zap_m.zap_avl;
336 ASSERT(zap->zap_ismicro);
337 ASSERT(RW_LOCK_HELD(&zap->zap_rwlock));
339 mze_tofind.mze_hash = hash;
340 mze_tofind.mze_cd = 0;
342 uint32_t cd = 0;
343 for (mzap_ent_t *mze = avl_find(avl, &mze_tofind, &idx);
344 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
345 if (mze->mze_cd != cd)
346 break;
347 cd++;
350 return (cd);
354 * Each mzap entry requires at max : 4 chunks
355 * 3 chunks for names + 1 chunk for value.
357 #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
358 ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
361 * Check if the current entry keeps the colliding entries under the fatzap leaf
362 * size.
364 static boolean_t
365 mze_canfit_fzap_leaf(zap_name_t *zn, uint64_t hash)
367 zap_t *zap = zn->zn_zap;
368 mzap_ent_t mze_tofind;
369 mzap_ent_t *mze;
370 avl_index_t idx;
371 avl_tree_t *avl = &zap->zap_m.zap_avl;
372 uint32_t mzap_ents = 0;
374 mze_tofind.mze_hash = hash;
375 mze_tofind.mze_cd = 0;
377 for (mze = avl_find(avl, &mze_tofind, &idx);
378 mze && mze->mze_hash == hash; mze = AVL_NEXT(avl, mze)) {
379 mzap_ents++;
382 /* Include the new entry being added */
383 mzap_ents++;
385 return (ZAP_LEAF_NUMCHUNKS_DEF > (mzap_ents * MZAP_ENT_CHUNKS));
388 static void
389 mze_remove(zap_t *zap, mzap_ent_t *mze)
391 ASSERT(zap->zap_ismicro);
392 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
394 avl_remove(&zap->zap_m.zap_avl, mze);
395 kmem_free(mze, sizeof (mzap_ent_t));
398 static void
399 mze_destroy(zap_t *zap)
401 mzap_ent_t *mze;
402 void *avlcookie = NULL;
404 while ((mze = avl_destroy_nodes(&zap->zap_m.zap_avl, &avlcookie)))
405 kmem_free(mze, sizeof (mzap_ent_t));
406 avl_destroy(&zap->zap_m.zap_avl);
409 static zap_t *
410 mzap_open(objset_t *os, uint64_t obj, dmu_buf_t *db)
412 zap_t *winner;
413 uint64_t *zap_hdr = (uint64_t *)db->db_data;
414 uint64_t zap_block_type = zap_hdr[0];
415 uint64_t zap_magic = zap_hdr[1];
417 ASSERT3U(MZAP_ENT_LEN, ==, sizeof (mzap_ent_phys_t));
419 zap_t *zap = kmem_zalloc(sizeof (zap_t), KM_SLEEP);
420 rw_init(&zap->zap_rwlock, NULL, RW_DEFAULT, NULL);
421 rw_enter(&zap->zap_rwlock, RW_WRITER);
422 zap->zap_objset = os;
423 zap->zap_object = obj;
424 zap->zap_dbuf = db;
426 if (zap_block_type != ZBT_MICRO) {
427 mutex_init(&zap->zap_f.zap_num_entries_mtx, 0, MUTEX_DEFAULT,
429 zap->zap_f.zap_block_shift = highbit64(db->db_size) - 1;
430 if (zap_block_type != ZBT_HEADER || zap_magic != ZAP_MAGIC) {
431 winner = NULL; /* No actual winner here... */
432 goto handle_winner;
434 } else {
435 zap->zap_ismicro = TRUE;
439 * Make sure that zap_ismicro is set before we let others see
440 * it, because zap_lockdir() checks zap_ismicro without the lock
441 * held.
443 dmu_buf_init_user(&zap->zap_dbu, zap_evict_sync, NULL, &zap->zap_dbuf);
444 winner = dmu_buf_set_user(db, &zap->zap_dbu);
446 if (winner != NULL)
447 goto handle_winner;
449 if (zap->zap_ismicro) {
450 zap->zap_salt = zap_m_phys(zap)->mz_salt;
451 zap->zap_normflags = zap_m_phys(zap)->mz_normflags;
452 zap->zap_m.zap_num_chunks = db->db_size / MZAP_ENT_LEN - 1;
453 avl_create(&zap->zap_m.zap_avl, mze_compare,
454 sizeof (mzap_ent_t), offsetof(mzap_ent_t, mze_node));
456 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
457 mzap_ent_phys_t *mze =
458 &zap_m_phys(zap)->mz_chunk[i];
459 if (mze->mze_name[0]) {
460 zap_name_t *zn;
462 zap->zap_m.zap_num_entries++;
463 zn = zap_name_alloc(zap, mze->mze_name, 0);
464 mze_insert(zap, i, zn->zn_hash);
465 zap_name_free(zn);
468 } else {
469 zap->zap_salt = zap_f_phys(zap)->zap_salt;
470 zap->zap_normflags = zap_f_phys(zap)->zap_normflags;
472 ASSERT3U(sizeof (struct zap_leaf_header), ==,
473 2*ZAP_LEAF_CHUNKSIZE);
476 * The embedded pointer table should not overlap the
477 * other members.
479 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap, 0), >,
480 &zap_f_phys(zap)->zap_salt);
483 * The embedded pointer table should end at the end of
484 * the block
486 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap,
487 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap)) -
488 (uintptr_t)zap_f_phys(zap), ==,
489 zap->zap_dbuf->db_size);
491 rw_exit(&zap->zap_rwlock);
492 return (zap);
494 handle_winner:
495 rw_exit(&zap->zap_rwlock);
496 rw_destroy(&zap->zap_rwlock);
497 if (!zap->zap_ismicro)
498 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
499 kmem_free(zap, sizeof (zap_t));
500 return (winner);
504 * This routine "consumes" the caller's hold on the dbuf, which must
505 * have the specified tag.
507 static int
508 zap_lockdir_impl(dmu_buf_t *db, void *tag, dmu_tx_t *tx,
509 krw_t lti, boolean_t fatreader, boolean_t adding, zap_t **zapp)
511 ASSERT0(db->db_offset);
512 objset_t *os = dmu_buf_get_objset(db);
513 uint64_t obj = db->db_object;
514 dmu_object_info_t doi;
516 *zapp = NULL;
518 dmu_object_info_from_db(db, &doi);
519 if (DMU_OT_BYTESWAP(doi.doi_type) != DMU_BSWAP_ZAP)
520 return (SET_ERROR(EINVAL));
522 zap_t *zap = dmu_buf_get_user(db);
523 if (zap == NULL) {
524 zap = mzap_open(os, obj, db);
525 if (zap == NULL) {
527 * mzap_open() didn't like what it saw on-disk.
528 * Check for corruption!
530 return (SET_ERROR(EIO));
535 * We're checking zap_ismicro without the lock held, in order to
536 * tell what type of lock we want. Once we have some sort of
537 * lock, see if it really is the right type. In practice this
538 * can only be different if it was upgraded from micro to fat,
539 * and micro wanted WRITER but fat only needs READER.
541 krw_t lt = (!zap->zap_ismicro && fatreader) ? RW_READER : lti;
542 rw_enter(&zap->zap_rwlock, lt);
543 if (lt != ((!zap->zap_ismicro && fatreader) ? RW_READER : lti)) {
544 /* it was upgraded, now we only need reader */
545 ASSERT(lt == RW_WRITER);
546 ASSERT(RW_READER ==
547 ((!zap->zap_ismicro && fatreader) ? RW_READER : lti));
548 rw_downgrade(&zap->zap_rwlock);
549 lt = RW_READER;
552 zap->zap_objset = os;
554 if (lt == RW_WRITER)
555 dmu_buf_will_dirty(db, tx);
557 ASSERT3P(zap->zap_dbuf, ==, db);
559 ASSERT(!zap->zap_ismicro ||
560 zap->zap_m.zap_num_entries <= zap->zap_m.zap_num_chunks);
561 if (zap->zap_ismicro && tx && adding &&
562 zap->zap_m.zap_num_entries == zap->zap_m.zap_num_chunks) {
563 uint64_t newsz = db->db_size + SPA_MINBLOCKSIZE;
564 if (newsz > MZAP_MAX_BLKSZ) {
565 dprintf("upgrading obj %llu: num_entries=%u\n",
566 (u_longlong_t)obj, zap->zap_m.zap_num_entries);
567 *zapp = zap;
568 int err = mzap_upgrade(zapp, tag, tx, 0);
569 if (err != 0)
570 rw_exit(&zap->zap_rwlock);
571 return (err);
573 VERIFY0(dmu_object_set_blocksize(os, obj, newsz, 0, tx));
574 zap->zap_m.zap_num_chunks =
575 db->db_size / MZAP_ENT_LEN - 1;
578 *zapp = zap;
579 return (0);
582 static int
583 zap_lockdir_by_dnode(dnode_t *dn, dmu_tx_t *tx,
584 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
586 dmu_buf_t *db;
588 int err = dmu_buf_hold_by_dnode(dn, 0, tag, &db, DMU_READ_NO_PREFETCH);
589 if (err != 0) {
590 return (err);
592 #ifdef ZFS_DEBUG
594 dmu_object_info_t doi;
595 dmu_object_info_from_db(db, &doi);
596 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
598 #endif
600 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
601 if (err != 0) {
602 dmu_buf_rele(db, tag);
604 return (err);
608 zap_lockdir(objset_t *os, uint64_t obj, dmu_tx_t *tx,
609 krw_t lti, boolean_t fatreader, boolean_t adding, void *tag, zap_t **zapp)
611 dmu_buf_t *db;
613 int err = dmu_buf_hold(os, obj, 0, tag, &db, DMU_READ_NO_PREFETCH);
614 if (err != 0)
615 return (err);
616 #ifdef ZFS_DEBUG
618 dmu_object_info_t doi;
619 dmu_object_info_from_db(db, &doi);
620 ASSERT3U(DMU_OT_BYTESWAP(doi.doi_type), ==, DMU_BSWAP_ZAP);
622 #endif
623 err = zap_lockdir_impl(db, tag, tx, lti, fatreader, adding, zapp);
624 if (err != 0)
625 dmu_buf_rele(db, tag);
626 return (err);
629 void
630 zap_unlockdir(zap_t *zap, void *tag)
632 rw_exit(&zap->zap_rwlock);
633 dmu_buf_rele(zap->zap_dbuf, tag);
636 static int
637 mzap_upgrade(zap_t **zapp, void *tag, dmu_tx_t *tx, zap_flags_t flags)
639 int err = 0;
640 zap_t *zap = *zapp;
642 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
644 int sz = zap->zap_dbuf->db_size;
645 mzap_phys_t *mzp = vmem_alloc(sz, KM_SLEEP);
646 bcopy(zap->zap_dbuf->db_data, mzp, sz);
647 int nchunks = zap->zap_m.zap_num_chunks;
649 if (!flags) {
650 err = dmu_object_set_blocksize(zap->zap_objset, zap->zap_object,
651 1ULL << fzap_default_block_shift, 0, tx);
652 if (err != 0) {
653 vmem_free(mzp, sz);
654 return (err);
658 dprintf("upgrading obj=%llu with %u chunks\n",
659 (u_longlong_t)zap->zap_object, nchunks);
660 /* XXX destroy the avl later, so we can use the stored hash value */
661 mze_destroy(zap);
663 fzap_upgrade(zap, tx, flags);
665 for (int i = 0; i < nchunks; i++) {
666 mzap_ent_phys_t *mze = &mzp->mz_chunk[i];
667 if (mze->mze_name[0] == 0)
668 continue;
669 dprintf("adding %s=%llu\n",
670 mze->mze_name, (u_longlong_t)mze->mze_value);
671 zap_name_t *zn = zap_name_alloc(zap, mze->mze_name, 0);
672 /* If we fail here, we would end up losing entries */
673 VERIFY0(fzap_add_cd(zn, 8, 1, &mze->mze_value, mze->mze_cd,
674 tag, tx));
675 zap = zn->zn_zap; /* fzap_add_cd() may change zap */
676 zap_name_free(zn);
678 vmem_free(mzp, sz);
679 *zapp = zap;
680 return (0);
684 * The "normflags" determine the behavior of the matchtype_t which is
685 * passed to zap_lookup_norm(). Names which have the same normalized
686 * version will be stored with the same hash value, and therefore we can
687 * perform normalization-insensitive lookups. We can be Unicode form-
688 * insensitive and/or case-insensitive. The following flags are valid for
689 * "normflags":
691 * U8_TEXTPREP_NFC
692 * U8_TEXTPREP_NFD
693 * U8_TEXTPREP_NFKC
694 * U8_TEXTPREP_NFKD
695 * U8_TEXTPREP_TOUPPER
697 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
698 * of them may be supplied.
700 void
701 mzap_create_impl(dnode_t *dn, int normflags, zap_flags_t flags, dmu_tx_t *tx)
703 dmu_buf_t *db;
705 VERIFY0(dmu_buf_hold_by_dnode(dn, 0, FTAG, &db, DMU_READ_NO_PREFETCH));
707 dmu_buf_will_dirty(db, tx);
708 mzap_phys_t *zp = db->db_data;
709 zp->mz_block_type = ZBT_MICRO;
710 zp->mz_salt =
711 ((uintptr_t)db ^ (uintptr_t)tx ^ (dn->dn_object << 1)) | 1ULL;
712 zp->mz_normflags = normflags;
714 if (flags != 0) {
715 zap_t *zap;
716 /* Only fat zap supports flags; upgrade immediately. */
717 VERIFY0(zap_lockdir_impl(db, FTAG, tx, RW_WRITER,
718 B_FALSE, B_FALSE, &zap));
719 VERIFY0(mzap_upgrade(&zap, FTAG, tx, flags));
720 zap_unlockdir(zap, FTAG);
721 } else {
722 dmu_buf_rele(db, FTAG);
726 static uint64_t
727 zap_create_impl(objset_t *os, int normflags, zap_flags_t flags,
728 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
729 dmu_object_type_t bonustype, int bonuslen, int dnodesize,
730 dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
732 uint64_t obj;
734 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
736 if (allocated_dnode == NULL) {
737 dnode_t *dn;
738 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
739 indirect_blockshift, bonustype, bonuslen, dnodesize,
740 &dn, FTAG, tx);
741 mzap_create_impl(dn, normflags, flags, tx);
742 dnode_rele(dn, FTAG);
743 } else {
744 obj = dmu_object_alloc_hold(os, ot, 1ULL << leaf_blockshift,
745 indirect_blockshift, bonustype, bonuslen, dnodesize,
746 allocated_dnode, tag, tx);
747 mzap_create_impl(*allocated_dnode, normflags, flags, tx);
750 return (obj);
754 zap_create_claim(objset_t *os, uint64_t obj, dmu_object_type_t ot,
755 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
757 return (zap_create_claim_dnsize(os, obj, ot, bonustype, bonuslen,
758 0, tx));
762 zap_create_claim_dnsize(objset_t *os, uint64_t obj, dmu_object_type_t ot,
763 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
765 return (zap_create_claim_norm_dnsize(os, obj,
766 0, ot, bonustype, bonuslen, dnodesize, tx));
770 zap_create_claim_norm(objset_t *os, uint64_t obj, int normflags,
771 dmu_object_type_t ot,
772 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
774 return (zap_create_claim_norm_dnsize(os, obj, normflags, ot, bonustype,
775 bonuslen, 0, tx));
779 zap_create_claim_norm_dnsize(objset_t *os, uint64_t obj, int normflags,
780 dmu_object_type_t ot, dmu_object_type_t bonustype, int bonuslen,
781 int dnodesize, dmu_tx_t *tx)
783 dnode_t *dn;
784 int error;
786 ASSERT3U(DMU_OT_BYTESWAP(ot), ==, DMU_BSWAP_ZAP);
787 error = dmu_object_claim_dnsize(os, obj, ot, 0, bonustype, bonuslen,
788 dnodesize, tx);
789 if (error != 0)
790 return (error);
792 error = dnode_hold(os, obj, FTAG, &dn);
793 if (error != 0)
794 return (error);
796 mzap_create_impl(dn, normflags, 0, tx);
798 dnode_rele(dn, FTAG);
800 return (0);
803 uint64_t
804 zap_create(objset_t *os, dmu_object_type_t ot,
805 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
807 return (zap_create_norm(os, 0, ot, bonustype, bonuslen, tx));
810 uint64_t
811 zap_create_dnsize(objset_t *os, dmu_object_type_t ot,
812 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
814 return (zap_create_norm_dnsize(os, 0, ot, bonustype, bonuslen,
815 dnodesize, tx));
818 uint64_t
819 zap_create_norm(objset_t *os, int normflags, dmu_object_type_t ot,
820 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
822 return (zap_create_norm_dnsize(os, normflags, ot, bonustype, bonuslen,
823 0, tx));
826 uint64_t
827 zap_create_norm_dnsize(objset_t *os, int normflags, dmu_object_type_t ot,
828 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
830 return (zap_create_impl(os, normflags, 0, ot, 0, 0,
831 bonustype, bonuslen, dnodesize, NULL, NULL, tx));
834 uint64_t
835 zap_create_flags(objset_t *os, int normflags, zap_flags_t flags,
836 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
837 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx)
839 return (zap_create_flags_dnsize(os, normflags, flags, ot,
840 leaf_blockshift, indirect_blockshift, bonustype, bonuslen, 0, tx));
843 uint64_t
844 zap_create_flags_dnsize(objset_t *os, int normflags, zap_flags_t flags,
845 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
846 dmu_object_type_t bonustype, int bonuslen, int dnodesize, dmu_tx_t *tx)
848 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
849 indirect_blockshift, bonustype, bonuslen, dnodesize, NULL, NULL,
850 tx));
854 * Create a zap object and return a pointer to the newly allocated dnode via
855 * the allocated_dnode argument. The returned dnode will be held and the
856 * caller is responsible for releasing the hold by calling dnode_rele().
858 uint64_t
859 zap_create_hold(objset_t *os, int normflags, zap_flags_t flags,
860 dmu_object_type_t ot, int leaf_blockshift, int indirect_blockshift,
861 dmu_object_type_t bonustype, int bonuslen, int dnodesize,
862 dnode_t **allocated_dnode, void *tag, dmu_tx_t *tx)
864 return (zap_create_impl(os, normflags, flags, ot, leaf_blockshift,
865 indirect_blockshift, bonustype, bonuslen, dnodesize,
866 allocated_dnode, tag, tx));
870 zap_destroy(objset_t *os, uint64_t zapobj, dmu_tx_t *tx)
873 * dmu_object_free will free the object number and free the
874 * data. Freeing the data will cause our pageout function to be
875 * called, which will destroy our data (zap_leaf_t's and zap_t).
878 return (dmu_object_free(os, zapobj, tx));
881 void
882 zap_evict_sync(void *dbu)
884 zap_t *zap = dbu;
886 rw_destroy(&zap->zap_rwlock);
888 if (zap->zap_ismicro)
889 mze_destroy(zap);
890 else
891 mutex_destroy(&zap->zap_f.zap_num_entries_mtx);
893 kmem_free(zap, sizeof (zap_t));
897 zap_count(objset_t *os, uint64_t zapobj, uint64_t *count)
899 zap_t *zap;
901 int err =
902 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
903 if (err != 0)
904 return (err);
905 if (!zap->zap_ismicro) {
906 err = fzap_count(zap, count);
907 } else {
908 *count = zap->zap_m.zap_num_entries;
910 zap_unlockdir(zap, FTAG);
911 return (err);
915 * zn may be NULL; if not specified, it will be computed if needed.
916 * See also the comment above zap_entry_normalization_conflict().
918 static boolean_t
919 mzap_normalization_conflict(zap_t *zap, zap_name_t *zn, mzap_ent_t *mze)
921 int direction = AVL_BEFORE;
922 boolean_t allocdzn = B_FALSE;
924 if (zap->zap_normflags == 0)
925 return (B_FALSE);
927 again:
928 for (mzap_ent_t *other = avl_walk(&zap->zap_m.zap_avl, mze, direction);
929 other && other->mze_hash == mze->mze_hash;
930 other = avl_walk(&zap->zap_m.zap_avl, other, direction)) {
932 if (zn == NULL) {
933 zn = zap_name_alloc(zap, MZE_PHYS(zap, mze)->mze_name,
934 MT_NORMALIZE);
935 allocdzn = B_TRUE;
937 if (zap_match(zn, MZE_PHYS(zap, other)->mze_name)) {
938 if (allocdzn)
939 zap_name_free(zn);
940 return (B_TRUE);
944 if (direction == AVL_BEFORE) {
945 direction = AVL_AFTER;
946 goto again;
949 if (allocdzn)
950 zap_name_free(zn);
951 return (B_FALSE);
955 * Routines for manipulating attributes.
959 zap_lookup(objset_t *os, uint64_t zapobj, const char *name,
960 uint64_t integer_size, uint64_t num_integers, void *buf)
962 return (zap_lookup_norm(os, zapobj, name, integer_size,
963 num_integers, buf, 0, NULL, 0, NULL));
966 static int
967 zap_lookup_impl(zap_t *zap, const char *name,
968 uint64_t integer_size, uint64_t num_integers, void *buf,
969 matchtype_t mt, char *realname, int rn_len,
970 boolean_t *ncp)
972 int err = 0;
974 zap_name_t *zn = zap_name_alloc(zap, name, mt);
975 if (zn == NULL)
976 return (SET_ERROR(ENOTSUP));
978 if (!zap->zap_ismicro) {
979 err = fzap_lookup(zn, integer_size, num_integers, buf,
980 realname, rn_len, ncp);
981 } else {
982 mzap_ent_t *mze = mze_find(zn);
983 if (mze == NULL) {
984 err = SET_ERROR(ENOENT);
985 } else {
986 if (num_integers < 1) {
987 err = SET_ERROR(EOVERFLOW);
988 } else if (integer_size != 8) {
989 err = SET_ERROR(EINVAL);
990 } else {
991 *(uint64_t *)buf =
992 MZE_PHYS(zap, mze)->mze_value;
993 (void) strlcpy(realname,
994 MZE_PHYS(zap, mze)->mze_name, rn_len);
995 if (ncp) {
996 *ncp = mzap_normalization_conflict(zap,
997 zn, mze);
1002 zap_name_free(zn);
1003 return (err);
1007 zap_lookup_norm(objset_t *os, uint64_t zapobj, const char *name,
1008 uint64_t integer_size, uint64_t num_integers, void *buf,
1009 matchtype_t mt, char *realname, int rn_len,
1010 boolean_t *ncp)
1012 zap_t *zap;
1014 int err =
1015 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1016 if (err != 0)
1017 return (err);
1018 err = zap_lookup_impl(zap, name, integer_size,
1019 num_integers, buf, mt, realname, rn_len, ncp);
1020 zap_unlockdir(zap, FTAG);
1021 return (err);
1025 zap_prefetch(objset_t *os, uint64_t zapobj, const char *name)
1027 zap_t *zap;
1028 int err;
1029 zap_name_t *zn;
1031 err = zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1032 if (err)
1033 return (err);
1034 zn = zap_name_alloc(zap, name, 0);
1035 if (zn == NULL) {
1036 zap_unlockdir(zap, FTAG);
1037 return (SET_ERROR(ENOTSUP));
1040 fzap_prefetch(zn);
1041 zap_name_free(zn);
1042 zap_unlockdir(zap, FTAG);
1043 return (err);
1047 zap_lookup_by_dnode(dnode_t *dn, const char *name,
1048 uint64_t integer_size, uint64_t num_integers, void *buf)
1050 return (zap_lookup_norm_by_dnode(dn, name, integer_size,
1051 num_integers, buf, 0, NULL, 0, NULL));
1055 zap_lookup_norm_by_dnode(dnode_t *dn, const char *name,
1056 uint64_t integer_size, uint64_t num_integers, void *buf,
1057 matchtype_t mt, char *realname, int rn_len,
1058 boolean_t *ncp)
1060 zap_t *zap;
1062 int err = zap_lockdir_by_dnode(dn, NULL, RW_READER, TRUE, FALSE,
1063 FTAG, &zap);
1064 if (err != 0)
1065 return (err);
1066 err = zap_lookup_impl(zap, name, integer_size,
1067 num_integers, buf, mt, realname, rn_len, ncp);
1068 zap_unlockdir(zap, FTAG);
1069 return (err);
1073 zap_prefetch_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1074 int key_numints)
1076 zap_t *zap;
1078 int err =
1079 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1080 if (err != 0)
1081 return (err);
1082 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1083 if (zn == NULL) {
1084 zap_unlockdir(zap, FTAG);
1085 return (SET_ERROR(ENOTSUP));
1088 fzap_prefetch(zn);
1089 zap_name_free(zn);
1090 zap_unlockdir(zap, FTAG);
1091 return (err);
1095 zap_lookup_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1096 int key_numints, uint64_t integer_size, uint64_t num_integers, void *buf)
1098 zap_t *zap;
1100 int err =
1101 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1102 if (err != 0)
1103 return (err);
1104 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1105 if (zn == NULL) {
1106 zap_unlockdir(zap, FTAG);
1107 return (SET_ERROR(ENOTSUP));
1110 err = fzap_lookup(zn, integer_size, num_integers, buf,
1111 NULL, 0, NULL);
1112 zap_name_free(zn);
1113 zap_unlockdir(zap, FTAG);
1114 return (err);
1118 zap_contains(objset_t *os, uint64_t zapobj, const char *name)
1120 int err = zap_lookup_norm(os, zapobj, name, 0,
1121 0, NULL, 0, NULL, 0, NULL);
1122 if (err == EOVERFLOW || err == EINVAL)
1123 err = 0; /* found, but skipped reading the value */
1124 return (err);
1128 zap_length(objset_t *os, uint64_t zapobj, const char *name,
1129 uint64_t *integer_size, uint64_t *num_integers)
1131 zap_t *zap;
1133 int err =
1134 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1135 if (err != 0)
1136 return (err);
1137 zap_name_t *zn = zap_name_alloc(zap, name, 0);
1138 if (zn == NULL) {
1139 zap_unlockdir(zap, FTAG);
1140 return (SET_ERROR(ENOTSUP));
1142 if (!zap->zap_ismicro) {
1143 err = fzap_length(zn, integer_size, num_integers);
1144 } else {
1145 mzap_ent_t *mze = mze_find(zn);
1146 if (mze == NULL) {
1147 err = SET_ERROR(ENOENT);
1148 } else {
1149 if (integer_size)
1150 *integer_size = 8;
1151 if (num_integers)
1152 *num_integers = 1;
1155 zap_name_free(zn);
1156 zap_unlockdir(zap, FTAG);
1157 return (err);
1161 zap_length_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1162 int key_numints, uint64_t *integer_size, uint64_t *num_integers)
1164 zap_t *zap;
1166 int err =
1167 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1168 if (err != 0)
1169 return (err);
1170 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1171 if (zn == NULL) {
1172 zap_unlockdir(zap, FTAG);
1173 return (SET_ERROR(ENOTSUP));
1175 err = fzap_length(zn, integer_size, num_integers);
1176 zap_name_free(zn);
1177 zap_unlockdir(zap, FTAG);
1178 return (err);
1181 static void
1182 mzap_addent(zap_name_t *zn, uint64_t value)
1184 zap_t *zap = zn->zn_zap;
1185 int start = zap->zap_m.zap_alloc_next;
1187 ASSERT(RW_WRITE_HELD(&zap->zap_rwlock));
1189 #ifdef ZFS_DEBUG
1190 for (int i = 0; i < zap->zap_m.zap_num_chunks; i++) {
1191 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1192 ASSERT(strcmp(zn->zn_key_orig, mze->mze_name) != 0);
1194 #endif
1196 uint32_t cd = mze_find_unused_cd(zap, zn->zn_hash);
1197 /* given the limited size of the microzap, this can't happen */
1198 ASSERT(cd < zap_maxcd(zap));
1200 again:
1201 for (int i = start; i < zap->zap_m.zap_num_chunks; i++) {
1202 mzap_ent_phys_t *mze = &zap_m_phys(zap)->mz_chunk[i];
1203 if (mze->mze_name[0] == 0) {
1204 mze->mze_value = value;
1205 mze->mze_cd = cd;
1206 (void) strlcpy(mze->mze_name, zn->zn_key_orig,
1207 sizeof (mze->mze_name));
1208 zap->zap_m.zap_num_entries++;
1209 zap->zap_m.zap_alloc_next = i+1;
1210 if (zap->zap_m.zap_alloc_next ==
1211 zap->zap_m.zap_num_chunks)
1212 zap->zap_m.zap_alloc_next = 0;
1213 mze_insert(zap, i, zn->zn_hash);
1214 return;
1217 if (start != 0) {
1218 start = 0;
1219 goto again;
1221 cmn_err(CE_PANIC, "out of entries!");
1224 static int
1225 zap_add_impl(zap_t *zap, const char *key,
1226 int integer_size, uint64_t num_integers,
1227 const void *val, dmu_tx_t *tx, void *tag)
1229 const uint64_t *intval = val;
1230 int err = 0;
1232 zap_name_t *zn = zap_name_alloc(zap, key, 0);
1233 if (zn == NULL) {
1234 zap_unlockdir(zap, tag);
1235 return (SET_ERROR(ENOTSUP));
1237 if (!zap->zap_ismicro) {
1238 err = fzap_add(zn, integer_size, num_integers, val, tag, tx);
1239 zap = zn->zn_zap; /* fzap_add() may change zap */
1240 } else if (integer_size != 8 || num_integers != 1 ||
1241 strlen(key) >= MZAP_NAME_LEN ||
1242 !mze_canfit_fzap_leaf(zn, zn->zn_hash)) {
1243 err = mzap_upgrade(&zn->zn_zap, tag, tx, 0);
1244 if (err == 0) {
1245 err = fzap_add(zn, integer_size, num_integers, val,
1246 tag, tx);
1248 zap = zn->zn_zap; /* fzap_add() may change zap */
1249 } else {
1250 if (mze_find(zn) != NULL) {
1251 err = SET_ERROR(EEXIST);
1252 } else {
1253 mzap_addent(zn, *intval);
1256 ASSERT(zap == zn->zn_zap);
1257 zap_name_free(zn);
1258 if (zap != NULL) /* may be NULL if fzap_add() failed */
1259 zap_unlockdir(zap, tag);
1260 return (err);
1264 zap_add(objset_t *os, uint64_t zapobj, const char *key,
1265 int integer_size, uint64_t num_integers,
1266 const void *val, dmu_tx_t *tx)
1268 zap_t *zap;
1269 int err;
1271 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1272 if (err != 0)
1273 return (err);
1274 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1275 /* zap_add_impl() calls zap_unlockdir() */
1276 return (err);
1280 zap_add_by_dnode(dnode_t *dn, const char *key,
1281 int integer_size, uint64_t num_integers,
1282 const void *val, dmu_tx_t *tx)
1284 zap_t *zap;
1285 int err;
1287 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1288 if (err != 0)
1289 return (err);
1290 err = zap_add_impl(zap, key, integer_size, num_integers, val, tx, FTAG);
1291 /* zap_add_impl() calls zap_unlockdir() */
1292 return (err);
1296 zap_add_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1297 int key_numints, int integer_size, uint64_t num_integers,
1298 const void *val, dmu_tx_t *tx)
1300 zap_t *zap;
1302 int err =
1303 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1304 if (err != 0)
1305 return (err);
1306 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1307 if (zn == NULL) {
1308 zap_unlockdir(zap, FTAG);
1309 return (SET_ERROR(ENOTSUP));
1311 err = fzap_add(zn, integer_size, num_integers, val, FTAG, tx);
1312 zap = zn->zn_zap; /* fzap_add() may change zap */
1313 zap_name_free(zn);
1314 if (zap != NULL) /* may be NULL if fzap_add() failed */
1315 zap_unlockdir(zap, FTAG);
1316 return (err);
1320 zap_update(objset_t *os, uint64_t zapobj, const char *name,
1321 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1323 zap_t *zap;
1324 const uint64_t *intval = val;
1326 int err =
1327 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1328 if (err != 0)
1329 return (err);
1330 zap_name_t *zn = zap_name_alloc(zap, name, 0);
1331 if (zn == NULL) {
1332 zap_unlockdir(zap, FTAG);
1333 return (SET_ERROR(ENOTSUP));
1335 if (!zap->zap_ismicro) {
1336 err = fzap_update(zn, integer_size, num_integers, val,
1337 FTAG, tx);
1338 zap = zn->zn_zap; /* fzap_update() may change zap */
1339 } else if (integer_size != 8 || num_integers != 1 ||
1340 strlen(name) >= MZAP_NAME_LEN) {
1341 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1342 (u_longlong_t)zapobj, integer_size,
1343 (u_longlong_t)num_integers, name);
1344 err = mzap_upgrade(&zn->zn_zap, FTAG, tx, 0);
1345 if (err == 0) {
1346 err = fzap_update(zn, integer_size, num_integers,
1347 val, FTAG, tx);
1349 zap = zn->zn_zap; /* fzap_update() may change zap */
1350 } else {
1351 mzap_ent_t *mze = mze_find(zn);
1352 if (mze != NULL) {
1353 MZE_PHYS(zap, mze)->mze_value = *intval;
1354 } else {
1355 mzap_addent(zn, *intval);
1358 ASSERT(zap == zn->zn_zap);
1359 zap_name_free(zn);
1360 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1361 zap_unlockdir(zap, FTAG);
1362 return (err);
1366 zap_update_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1367 int key_numints,
1368 int integer_size, uint64_t num_integers, const void *val, dmu_tx_t *tx)
1370 zap_t *zap;
1372 int err =
1373 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, TRUE, FTAG, &zap);
1374 if (err != 0)
1375 return (err);
1376 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1377 if (zn == NULL) {
1378 zap_unlockdir(zap, FTAG);
1379 return (SET_ERROR(ENOTSUP));
1381 err = fzap_update(zn, integer_size, num_integers, val, FTAG, tx);
1382 zap = zn->zn_zap; /* fzap_update() may change zap */
1383 zap_name_free(zn);
1384 if (zap != NULL) /* may be NULL if fzap_upgrade() failed */
1385 zap_unlockdir(zap, FTAG);
1386 return (err);
1390 zap_remove(objset_t *os, uint64_t zapobj, const char *name, dmu_tx_t *tx)
1392 return (zap_remove_norm(os, zapobj, name, 0, tx));
1395 static int
1396 zap_remove_impl(zap_t *zap, const char *name,
1397 matchtype_t mt, dmu_tx_t *tx)
1399 int err = 0;
1401 zap_name_t *zn = zap_name_alloc(zap, name, mt);
1402 if (zn == NULL)
1403 return (SET_ERROR(ENOTSUP));
1404 if (!zap->zap_ismicro) {
1405 err = fzap_remove(zn, tx);
1406 } else {
1407 mzap_ent_t *mze = mze_find(zn);
1408 if (mze == NULL) {
1409 err = SET_ERROR(ENOENT);
1410 } else {
1411 zap->zap_m.zap_num_entries--;
1412 bzero(&zap_m_phys(zap)->mz_chunk[mze->mze_chunkid],
1413 sizeof (mzap_ent_phys_t));
1414 mze_remove(zap, mze);
1417 zap_name_free(zn);
1418 return (err);
1422 zap_remove_norm(objset_t *os, uint64_t zapobj, const char *name,
1423 matchtype_t mt, dmu_tx_t *tx)
1425 zap_t *zap;
1426 int err;
1428 err = zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1429 if (err)
1430 return (err);
1431 err = zap_remove_impl(zap, name, mt, tx);
1432 zap_unlockdir(zap, FTAG);
1433 return (err);
1437 zap_remove_by_dnode(dnode_t *dn, const char *name, dmu_tx_t *tx)
1439 zap_t *zap;
1440 int err;
1442 err = zap_lockdir_by_dnode(dn, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1443 if (err)
1444 return (err);
1445 err = zap_remove_impl(zap, name, 0, tx);
1446 zap_unlockdir(zap, FTAG);
1447 return (err);
1451 zap_remove_uint64(objset_t *os, uint64_t zapobj, const uint64_t *key,
1452 int key_numints, dmu_tx_t *tx)
1454 zap_t *zap;
1456 int err =
1457 zap_lockdir(os, zapobj, tx, RW_WRITER, TRUE, FALSE, FTAG, &zap);
1458 if (err != 0)
1459 return (err);
1460 zap_name_t *zn = zap_name_alloc_uint64(zap, key, key_numints);
1461 if (zn == NULL) {
1462 zap_unlockdir(zap, FTAG);
1463 return (SET_ERROR(ENOTSUP));
1465 err = fzap_remove(zn, tx);
1466 zap_name_free(zn);
1467 zap_unlockdir(zap, FTAG);
1468 return (err);
1472 * Routines for iterating over the attributes.
1475 static void
1476 zap_cursor_init_impl(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1477 uint64_t serialized, boolean_t prefetch)
1479 zc->zc_objset = os;
1480 zc->zc_zap = NULL;
1481 zc->zc_leaf = NULL;
1482 zc->zc_zapobj = zapobj;
1483 zc->zc_serialized = serialized;
1484 zc->zc_hash = 0;
1485 zc->zc_cd = 0;
1486 zc->zc_prefetch = prefetch;
1488 void
1489 zap_cursor_init_serialized(zap_cursor_t *zc, objset_t *os, uint64_t zapobj,
1490 uint64_t serialized)
1492 zap_cursor_init_impl(zc, os, zapobj, serialized, B_TRUE);
1496 * Initialize a cursor at the beginning of the ZAP object. The entire
1497 * ZAP object will be prefetched.
1499 void
1500 zap_cursor_init(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1502 zap_cursor_init_impl(zc, os, zapobj, 0, B_TRUE);
1506 * Initialize a cursor at the beginning, but request that we not prefetch
1507 * the entire ZAP object.
1509 void
1510 zap_cursor_init_noprefetch(zap_cursor_t *zc, objset_t *os, uint64_t zapobj)
1512 zap_cursor_init_impl(zc, os, zapobj, 0, B_FALSE);
1515 void
1516 zap_cursor_fini(zap_cursor_t *zc)
1518 if (zc->zc_zap) {
1519 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1520 zap_unlockdir(zc->zc_zap, NULL);
1521 zc->zc_zap = NULL;
1523 if (zc->zc_leaf) {
1524 rw_enter(&zc->zc_leaf->l_rwlock, RW_READER);
1525 zap_put_leaf(zc->zc_leaf);
1526 zc->zc_leaf = NULL;
1528 zc->zc_objset = NULL;
1531 uint64_t
1532 zap_cursor_serialize(zap_cursor_t *zc)
1534 if (zc->zc_hash == -1ULL)
1535 return (-1ULL);
1536 if (zc->zc_zap == NULL)
1537 return (zc->zc_serialized);
1538 ASSERT((zc->zc_hash & zap_maxcd(zc->zc_zap)) == 0);
1539 ASSERT(zc->zc_cd < zap_maxcd(zc->zc_zap));
1542 * We want to keep the high 32 bits of the cursor zero if we can, so
1543 * that 32-bit programs can access this. So usually use a small
1544 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1545 * of the cursor.
1547 * [ collision differentiator | zap_hashbits()-bit hash value ]
1549 return ((zc->zc_hash >> (64 - zap_hashbits(zc->zc_zap))) |
1550 ((uint64_t)zc->zc_cd << zap_hashbits(zc->zc_zap)));
1554 zap_cursor_retrieve(zap_cursor_t *zc, zap_attribute_t *za)
1556 int err;
1558 if (zc->zc_hash == -1ULL)
1559 return (SET_ERROR(ENOENT));
1561 if (zc->zc_zap == NULL) {
1562 int hb;
1563 err = zap_lockdir(zc->zc_objset, zc->zc_zapobj, NULL,
1564 RW_READER, TRUE, FALSE, NULL, &zc->zc_zap);
1565 if (err != 0)
1566 return (err);
1569 * To support zap_cursor_init_serialized, advance, retrieve,
1570 * we must add to the existing zc_cd, which may already
1571 * be 1 due to the zap_cursor_advance.
1573 ASSERT(zc->zc_hash == 0);
1574 hb = zap_hashbits(zc->zc_zap);
1575 zc->zc_hash = zc->zc_serialized << (64 - hb);
1576 zc->zc_cd += zc->zc_serialized >> hb;
1577 if (zc->zc_cd >= zap_maxcd(zc->zc_zap)) /* corrupt serialized */
1578 zc->zc_cd = 0;
1579 } else {
1580 rw_enter(&zc->zc_zap->zap_rwlock, RW_READER);
1582 if (!zc->zc_zap->zap_ismicro) {
1583 err = fzap_cursor_retrieve(zc->zc_zap, zc, za);
1584 } else {
1585 avl_index_t idx;
1586 mzap_ent_t mze_tofind;
1588 mze_tofind.mze_hash = zc->zc_hash;
1589 mze_tofind.mze_cd = zc->zc_cd;
1591 mzap_ent_t *mze =
1592 avl_find(&zc->zc_zap->zap_m.zap_avl, &mze_tofind, &idx);
1593 if (mze == NULL) {
1594 mze = avl_nearest(&zc->zc_zap->zap_m.zap_avl,
1595 idx, AVL_AFTER);
1597 if (mze) {
1598 mzap_ent_phys_t *mzep = MZE_PHYS(zc->zc_zap, mze);
1599 ASSERT3U(mze->mze_cd, ==, mzep->mze_cd);
1600 za->za_normalization_conflict =
1601 mzap_normalization_conflict(zc->zc_zap, NULL, mze);
1602 za->za_integer_length = 8;
1603 za->za_num_integers = 1;
1604 za->za_first_integer = mzep->mze_value;
1605 (void) strlcpy(za->za_name, mzep->mze_name,
1606 sizeof (za->za_name));
1607 zc->zc_hash = mze->mze_hash;
1608 zc->zc_cd = mze->mze_cd;
1609 err = 0;
1610 } else {
1611 zc->zc_hash = -1ULL;
1612 err = SET_ERROR(ENOENT);
1615 rw_exit(&zc->zc_zap->zap_rwlock);
1616 return (err);
1619 void
1620 zap_cursor_advance(zap_cursor_t *zc)
1622 if (zc->zc_hash == -1ULL)
1623 return;
1624 zc->zc_cd++;
1628 zap_get_stats(objset_t *os, uint64_t zapobj, zap_stats_t *zs)
1630 zap_t *zap;
1632 int err =
1633 zap_lockdir(os, zapobj, NULL, RW_READER, TRUE, FALSE, FTAG, &zap);
1634 if (err != 0)
1635 return (err);
1637 bzero(zs, sizeof (zap_stats_t));
1639 if (zap->zap_ismicro) {
1640 zs->zs_blocksize = zap->zap_dbuf->db_size;
1641 zs->zs_num_entries = zap->zap_m.zap_num_entries;
1642 zs->zs_num_blocks = 1;
1643 } else {
1644 fzap_get_stats(zap, zs);
1646 zap_unlockdir(zap, FTAG);
1647 return (0);
1650 #if defined(_KERNEL)
1651 EXPORT_SYMBOL(zap_create);
1652 EXPORT_SYMBOL(zap_create_dnsize);
1653 EXPORT_SYMBOL(zap_create_norm);
1654 EXPORT_SYMBOL(zap_create_norm_dnsize);
1655 EXPORT_SYMBOL(zap_create_flags);
1656 EXPORT_SYMBOL(zap_create_flags_dnsize);
1657 EXPORT_SYMBOL(zap_create_claim);
1658 EXPORT_SYMBOL(zap_create_claim_norm);
1659 EXPORT_SYMBOL(zap_create_claim_norm_dnsize);
1660 EXPORT_SYMBOL(zap_create_hold);
1661 EXPORT_SYMBOL(zap_destroy);
1662 EXPORT_SYMBOL(zap_lookup);
1663 EXPORT_SYMBOL(zap_lookup_by_dnode);
1664 EXPORT_SYMBOL(zap_lookup_norm);
1665 EXPORT_SYMBOL(zap_lookup_uint64);
1666 EXPORT_SYMBOL(zap_contains);
1667 EXPORT_SYMBOL(zap_prefetch);
1668 EXPORT_SYMBOL(zap_prefetch_uint64);
1669 EXPORT_SYMBOL(zap_add);
1670 EXPORT_SYMBOL(zap_add_by_dnode);
1671 EXPORT_SYMBOL(zap_add_uint64);
1672 EXPORT_SYMBOL(zap_update);
1673 EXPORT_SYMBOL(zap_update_uint64);
1674 EXPORT_SYMBOL(zap_length);
1675 EXPORT_SYMBOL(zap_length_uint64);
1676 EXPORT_SYMBOL(zap_remove);
1677 EXPORT_SYMBOL(zap_remove_by_dnode);
1678 EXPORT_SYMBOL(zap_remove_norm);
1679 EXPORT_SYMBOL(zap_remove_uint64);
1680 EXPORT_SYMBOL(zap_count);
1681 EXPORT_SYMBOL(zap_value_search);
1682 EXPORT_SYMBOL(zap_join);
1683 EXPORT_SYMBOL(zap_join_increment);
1684 EXPORT_SYMBOL(zap_add_int);
1685 EXPORT_SYMBOL(zap_remove_int);
1686 EXPORT_SYMBOL(zap_lookup_int);
1687 EXPORT_SYMBOL(zap_increment_int);
1688 EXPORT_SYMBOL(zap_add_int_key);
1689 EXPORT_SYMBOL(zap_lookup_int_key);
1690 EXPORT_SYMBOL(zap_increment);
1691 EXPORT_SYMBOL(zap_cursor_init);
1692 EXPORT_SYMBOL(zap_cursor_fini);
1693 EXPORT_SYMBOL(zap_cursor_retrieve);
1694 EXPORT_SYMBOL(zap_cursor_advance);
1695 EXPORT_SYMBOL(zap_cursor_serialize);
1696 EXPORT_SYMBOL(zap_cursor_init_serialized);
1697 EXPORT_SYMBOL(zap_get_stats);
1698 #endif