4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
32 #include <sys/zfs_context.h>
34 #include <sys/zap_impl.h>
35 #include <sys/zap_leaf.h>
38 #include <sys/dmu_objset.h>
41 #include <sys/sunddi.h>
44 extern inline mzap_phys_t
*zap_m_phys(zap_t
*zap
);
46 static int mzap_upgrade(zap_t
**zapp
,
47 void *tag
, dmu_tx_t
*tx
, zap_flags_t flags
);
50 zap_getflags(zap_t
*zap
)
54 return (zap_f_phys(zap
)->zap_flags
);
58 zap_hashbits(zap_t
*zap
)
60 if (zap_getflags(zap
) & ZAP_FLAG_HASH64
)
69 if (zap_getflags(zap
) & ZAP_FLAG_HASH64
)
76 zap_hash(zap_name_t
*zn
)
78 zap_t
*zap
= zn
->zn_zap
;
81 if (zap_getflags(zap
) & ZAP_FLAG_PRE_HASHED_KEY
) {
82 ASSERT(zap_getflags(zap
) & ZAP_FLAG_UINT64_KEY
);
83 h
= *(uint64_t *)zn
->zn_key_orig
;
87 ASSERT(zfs_crc64_table
[128] == ZFS_CRC64_POLY
);
89 if (zap_getflags(zap
) & ZAP_FLAG_UINT64_KEY
) {
90 const uint64_t *wp
= zn
->zn_key_norm
;
92 ASSERT(zn
->zn_key_intlen
== 8);
93 for (int i
= 0; i
< zn
->zn_key_norm_numints
;
97 for (int j
= 0; j
< zn
->zn_key_intlen
; j
++) {
99 zfs_crc64_table
[(h
^ word
) & 0xFF];
104 const uint8_t *cp
= zn
->zn_key_norm
;
107 * We previously stored the terminating null on
108 * disk, but didn't hash it, so we need to
109 * continue to not hash it. (The
110 * zn_key_*_numints includes the terminating
111 * null for non-binary keys.)
113 int len
= zn
->zn_key_norm_numints
- 1;
115 ASSERT(zn
->zn_key_intlen
== 1);
116 for (int i
= 0; i
< len
; cp
++, i
++) {
118 zfs_crc64_table
[(h
^ *cp
) & 0xFF];
123 * Don't use all 64 bits, since we need some in the cookie for
124 * the collision differentiator. We MUST use the high bits,
125 * since those are the ones that we first pay attention to when
126 * choosing the bucket.
128 h
&= ~((1ULL << (64 - zap_hashbits(zap
))) - 1);
134 zap_normalize(zap_t
*zap
, const char *name
, char *namenorm
, int normflags
)
136 ASSERT(!(zap_getflags(zap
) & ZAP_FLAG_UINT64_KEY
));
138 size_t inlen
= strlen(name
) + 1;
139 size_t outlen
= ZAP_MAXNAMELEN
;
142 (void) u8_textprep_str((char *)name
, &inlen
, namenorm
, &outlen
,
143 normflags
| U8_TEXTPREP_IGNORE_NULL
| U8_TEXTPREP_IGNORE_INVALID
,
144 U8_UNICODE_LATEST
, &err
);
150 zap_match(zap_name_t
*zn
, const char *matchname
)
152 ASSERT(!(zap_getflags(zn
->zn_zap
) & ZAP_FLAG_UINT64_KEY
));
154 if (zn
->zn_matchtype
& MT_NORMALIZE
) {
155 char norm
[ZAP_MAXNAMELEN
];
157 if (zap_normalize(zn
->zn_zap
, matchname
, norm
,
158 zn
->zn_normflags
) != 0)
161 return (strcmp(zn
->zn_key_norm
, norm
) == 0);
163 return (strcmp(zn
->zn_key_orig
, matchname
) == 0);
168 zap_name_free(zap_name_t
*zn
)
170 kmem_free(zn
, sizeof (zap_name_t
));
174 zap_name_alloc(zap_t
*zap
, const char *key
, matchtype_t mt
)
176 zap_name_t
*zn
= kmem_alloc(sizeof (zap_name_t
), KM_SLEEP
);
179 zn
->zn_key_intlen
= sizeof (*key
);
180 zn
->zn_key_orig
= key
;
181 zn
->zn_key_orig_numints
= strlen(zn
->zn_key_orig
) + 1;
182 zn
->zn_matchtype
= mt
;
183 zn
->zn_normflags
= zap
->zap_normflags
;
186 * If we're dealing with a case sensitive lookup on a mixed or
187 * insensitive fs, remove U8_TEXTPREP_TOUPPER or the lookup
188 * will fold case to all caps overriding the lookup request.
190 if (mt
& MT_MATCH_CASE
)
191 zn
->zn_normflags
&= ~U8_TEXTPREP_TOUPPER
;
193 if (zap
->zap_normflags
) {
195 * We *must* use zap_normflags because this normalization is
196 * what the hash is computed from.
198 if (zap_normalize(zap
, key
, zn
->zn_normbuf
,
199 zap
->zap_normflags
) != 0) {
203 zn
->zn_key_norm
= zn
->zn_normbuf
;
204 zn
->zn_key_norm_numints
= strlen(zn
->zn_key_norm
) + 1;
210 zn
->zn_key_norm
= zn
->zn_key_orig
;
211 zn
->zn_key_norm_numints
= zn
->zn_key_orig_numints
;
214 zn
->zn_hash
= zap_hash(zn
);
216 if (zap
->zap_normflags
!= zn
->zn_normflags
) {
218 * We *must* use zn_normflags because this normalization is
219 * what the matching is based on. (Not the hash!)
221 if (zap_normalize(zap
, key
, zn
->zn_normbuf
,
222 zn
->zn_normflags
) != 0) {
226 zn
->zn_key_norm_numints
= strlen(zn
->zn_key_norm
) + 1;
233 zap_name_alloc_uint64(zap_t
*zap
, const uint64_t *key
, int numints
)
235 zap_name_t
*zn
= kmem_alloc(sizeof (zap_name_t
), KM_SLEEP
);
237 ASSERT(zap
->zap_normflags
== 0);
239 zn
->zn_key_intlen
= sizeof (*key
);
240 zn
->zn_key_orig
= zn
->zn_key_norm
= key
;
241 zn
->zn_key_orig_numints
= zn
->zn_key_norm_numints
= numints
;
242 zn
->zn_matchtype
= 0;
244 zn
->zn_hash
= zap_hash(zn
);
249 mzap_byteswap(mzap_phys_t
*buf
, size_t size
)
251 buf
->mz_block_type
= BSWAP_64(buf
->mz_block_type
);
252 buf
->mz_salt
= BSWAP_64(buf
->mz_salt
);
253 buf
->mz_normflags
= BSWAP_64(buf
->mz_normflags
);
254 int max
= (size
/ MZAP_ENT_LEN
) - 1;
255 for (int i
= 0; i
< max
; i
++) {
256 buf
->mz_chunk
[i
].mze_value
=
257 BSWAP_64(buf
->mz_chunk
[i
].mze_value
);
258 buf
->mz_chunk
[i
].mze_cd
=
259 BSWAP_32(buf
->mz_chunk
[i
].mze_cd
);
264 zap_byteswap(void *buf
, size_t size
)
266 uint64_t block_type
= *(uint64_t *)buf
;
268 if (block_type
== ZBT_MICRO
|| block_type
== BSWAP_64(ZBT_MICRO
)) {
269 /* ASSERT(magic == ZAP_LEAF_MAGIC); */
270 mzap_byteswap(buf
, size
);
272 fzap_byteswap(buf
, size
);
277 mze_compare(const void *arg1
, const void *arg2
)
279 const mzap_ent_t
*mze1
= arg1
;
280 const mzap_ent_t
*mze2
= arg2
;
282 int cmp
= TREE_CMP(mze1
->mze_hash
, mze2
->mze_hash
);
286 return (TREE_CMP(mze1
->mze_cd
, mze2
->mze_cd
));
290 mze_insert(zap_t
*zap
, int chunkid
, uint64_t hash
)
292 ASSERT(zap
->zap_ismicro
);
293 ASSERT(RW_WRITE_HELD(&zap
->zap_rwlock
));
295 mzap_ent_t
*mze
= kmem_alloc(sizeof (mzap_ent_t
), KM_SLEEP
);
296 mze
->mze_chunkid
= chunkid
;
297 mze
->mze_hash
= hash
;
298 mze
->mze_cd
= MZE_PHYS(zap
, mze
)->mze_cd
;
299 ASSERT(MZE_PHYS(zap
, mze
)->mze_name
[0] != 0);
300 avl_add(&zap
->zap_m
.zap_avl
, mze
);
304 mze_find(zap_name_t
*zn
)
306 mzap_ent_t mze_tofind
;
309 avl_tree_t
*avl
= &zn
->zn_zap
->zap_m
.zap_avl
;
311 ASSERT(zn
->zn_zap
->zap_ismicro
);
312 ASSERT(RW_LOCK_HELD(&zn
->zn_zap
->zap_rwlock
));
314 mze_tofind
.mze_hash
= zn
->zn_hash
;
315 mze_tofind
.mze_cd
= 0;
317 mze
= avl_find(avl
, &mze_tofind
, &idx
);
319 mze
= avl_nearest(avl
, idx
, AVL_AFTER
);
320 for (; mze
&& mze
->mze_hash
== zn
->zn_hash
; mze
= AVL_NEXT(avl
, mze
)) {
321 ASSERT3U(mze
->mze_cd
, ==, MZE_PHYS(zn
->zn_zap
, mze
)->mze_cd
);
322 if (zap_match(zn
, MZE_PHYS(zn
->zn_zap
, mze
)->mze_name
))
330 mze_find_unused_cd(zap_t
*zap
, uint64_t hash
)
332 mzap_ent_t mze_tofind
;
334 avl_tree_t
*avl
= &zap
->zap_m
.zap_avl
;
336 ASSERT(zap
->zap_ismicro
);
337 ASSERT(RW_LOCK_HELD(&zap
->zap_rwlock
));
339 mze_tofind
.mze_hash
= hash
;
340 mze_tofind
.mze_cd
= 0;
343 for (mzap_ent_t
*mze
= avl_find(avl
, &mze_tofind
, &idx
);
344 mze
&& mze
->mze_hash
== hash
; mze
= AVL_NEXT(avl
, mze
)) {
345 if (mze
->mze_cd
!= cd
)
354 * Each mzap entry requires at max : 4 chunks
355 * 3 chunks for names + 1 chunk for value.
357 #define MZAP_ENT_CHUNKS (1 + ZAP_LEAF_ARRAY_NCHUNKS(MZAP_NAME_LEN) + \
358 ZAP_LEAF_ARRAY_NCHUNKS(sizeof (uint64_t)))
361 * Check if the current entry keeps the colliding entries under the fatzap leaf
365 mze_canfit_fzap_leaf(zap_name_t
*zn
, uint64_t hash
)
367 zap_t
*zap
= zn
->zn_zap
;
368 mzap_ent_t mze_tofind
;
371 avl_tree_t
*avl
= &zap
->zap_m
.zap_avl
;
372 uint32_t mzap_ents
= 0;
374 mze_tofind
.mze_hash
= hash
;
375 mze_tofind
.mze_cd
= 0;
377 for (mze
= avl_find(avl
, &mze_tofind
, &idx
);
378 mze
&& mze
->mze_hash
== hash
; mze
= AVL_NEXT(avl
, mze
)) {
382 /* Include the new entry being added */
385 return (ZAP_LEAF_NUMCHUNKS_DEF
> (mzap_ents
* MZAP_ENT_CHUNKS
));
389 mze_remove(zap_t
*zap
, mzap_ent_t
*mze
)
391 ASSERT(zap
->zap_ismicro
);
392 ASSERT(RW_WRITE_HELD(&zap
->zap_rwlock
));
394 avl_remove(&zap
->zap_m
.zap_avl
, mze
);
395 kmem_free(mze
, sizeof (mzap_ent_t
));
399 mze_destroy(zap_t
*zap
)
402 void *avlcookie
= NULL
;
404 while ((mze
= avl_destroy_nodes(&zap
->zap_m
.zap_avl
, &avlcookie
)))
405 kmem_free(mze
, sizeof (mzap_ent_t
));
406 avl_destroy(&zap
->zap_m
.zap_avl
);
410 mzap_open(objset_t
*os
, uint64_t obj
, dmu_buf_t
*db
)
413 uint64_t *zap_hdr
= (uint64_t *)db
->db_data
;
414 uint64_t zap_block_type
= zap_hdr
[0];
415 uint64_t zap_magic
= zap_hdr
[1];
417 ASSERT3U(MZAP_ENT_LEN
, ==, sizeof (mzap_ent_phys_t
));
419 zap_t
*zap
= kmem_zalloc(sizeof (zap_t
), KM_SLEEP
);
420 rw_init(&zap
->zap_rwlock
, NULL
, RW_DEFAULT
, NULL
);
421 rw_enter(&zap
->zap_rwlock
, RW_WRITER
);
422 zap
->zap_objset
= os
;
423 zap
->zap_object
= obj
;
426 if (zap_block_type
!= ZBT_MICRO
) {
427 mutex_init(&zap
->zap_f
.zap_num_entries_mtx
, 0, MUTEX_DEFAULT
,
429 zap
->zap_f
.zap_block_shift
= highbit64(db
->db_size
) - 1;
430 if (zap_block_type
!= ZBT_HEADER
|| zap_magic
!= ZAP_MAGIC
) {
431 winner
= NULL
; /* No actual winner here... */
435 zap
->zap_ismicro
= TRUE
;
439 * Make sure that zap_ismicro is set before we let others see
440 * it, because zap_lockdir() checks zap_ismicro without the lock
443 dmu_buf_init_user(&zap
->zap_dbu
, zap_evict_sync
, NULL
, &zap
->zap_dbuf
);
444 winner
= dmu_buf_set_user(db
, &zap
->zap_dbu
);
449 if (zap
->zap_ismicro
) {
450 zap
->zap_salt
= zap_m_phys(zap
)->mz_salt
;
451 zap
->zap_normflags
= zap_m_phys(zap
)->mz_normflags
;
452 zap
->zap_m
.zap_num_chunks
= db
->db_size
/ MZAP_ENT_LEN
- 1;
453 avl_create(&zap
->zap_m
.zap_avl
, mze_compare
,
454 sizeof (mzap_ent_t
), offsetof(mzap_ent_t
, mze_node
));
456 for (int i
= 0; i
< zap
->zap_m
.zap_num_chunks
; i
++) {
457 mzap_ent_phys_t
*mze
=
458 &zap_m_phys(zap
)->mz_chunk
[i
];
459 if (mze
->mze_name
[0]) {
462 zap
->zap_m
.zap_num_entries
++;
463 zn
= zap_name_alloc(zap
, mze
->mze_name
, 0);
464 mze_insert(zap
, i
, zn
->zn_hash
);
469 zap
->zap_salt
= zap_f_phys(zap
)->zap_salt
;
470 zap
->zap_normflags
= zap_f_phys(zap
)->zap_normflags
;
472 ASSERT3U(sizeof (struct zap_leaf_header
), ==,
473 2*ZAP_LEAF_CHUNKSIZE
);
476 * The embedded pointer table should not overlap the
479 ASSERT3P(&ZAP_EMBEDDED_PTRTBL_ENT(zap
, 0), >,
480 &zap_f_phys(zap
)->zap_salt
);
483 * The embedded pointer table should end at the end of
486 ASSERT3U((uintptr_t)&ZAP_EMBEDDED_PTRTBL_ENT(zap
,
487 1<<ZAP_EMBEDDED_PTRTBL_SHIFT(zap
)) -
488 (uintptr_t)zap_f_phys(zap
), ==,
489 zap
->zap_dbuf
->db_size
);
491 rw_exit(&zap
->zap_rwlock
);
495 rw_exit(&zap
->zap_rwlock
);
496 rw_destroy(&zap
->zap_rwlock
);
497 if (!zap
->zap_ismicro
)
498 mutex_destroy(&zap
->zap_f
.zap_num_entries_mtx
);
499 kmem_free(zap
, sizeof (zap_t
));
504 * This routine "consumes" the caller's hold on the dbuf, which must
505 * have the specified tag.
508 zap_lockdir_impl(dmu_buf_t
*db
, void *tag
, dmu_tx_t
*tx
,
509 krw_t lti
, boolean_t fatreader
, boolean_t adding
, zap_t
**zapp
)
511 ASSERT0(db
->db_offset
);
512 objset_t
*os
= dmu_buf_get_objset(db
);
513 uint64_t obj
= db
->db_object
;
514 dmu_object_info_t doi
;
518 dmu_object_info_from_db(db
, &doi
);
519 if (DMU_OT_BYTESWAP(doi
.doi_type
) != DMU_BSWAP_ZAP
)
520 return (SET_ERROR(EINVAL
));
522 zap_t
*zap
= dmu_buf_get_user(db
);
524 zap
= mzap_open(os
, obj
, db
);
527 * mzap_open() didn't like what it saw on-disk.
528 * Check for corruption!
530 return (SET_ERROR(EIO
));
535 * We're checking zap_ismicro without the lock held, in order to
536 * tell what type of lock we want. Once we have some sort of
537 * lock, see if it really is the right type. In practice this
538 * can only be different if it was upgraded from micro to fat,
539 * and micro wanted WRITER but fat only needs READER.
541 krw_t lt
= (!zap
->zap_ismicro
&& fatreader
) ? RW_READER
: lti
;
542 rw_enter(&zap
->zap_rwlock
, lt
);
543 if (lt
!= ((!zap
->zap_ismicro
&& fatreader
) ? RW_READER
: lti
)) {
544 /* it was upgraded, now we only need reader */
545 ASSERT(lt
== RW_WRITER
);
547 ((!zap
->zap_ismicro
&& fatreader
) ? RW_READER
: lti
));
548 rw_downgrade(&zap
->zap_rwlock
);
552 zap
->zap_objset
= os
;
555 dmu_buf_will_dirty(db
, tx
);
557 ASSERT3P(zap
->zap_dbuf
, ==, db
);
559 ASSERT(!zap
->zap_ismicro
||
560 zap
->zap_m
.zap_num_entries
<= zap
->zap_m
.zap_num_chunks
);
561 if (zap
->zap_ismicro
&& tx
&& adding
&&
562 zap
->zap_m
.zap_num_entries
== zap
->zap_m
.zap_num_chunks
) {
563 uint64_t newsz
= db
->db_size
+ SPA_MINBLOCKSIZE
;
564 if (newsz
> MZAP_MAX_BLKSZ
) {
565 dprintf("upgrading obj %llu: num_entries=%u\n",
566 (u_longlong_t
)obj
, zap
->zap_m
.zap_num_entries
);
568 int err
= mzap_upgrade(zapp
, tag
, tx
, 0);
570 rw_exit(&zap
->zap_rwlock
);
573 VERIFY0(dmu_object_set_blocksize(os
, obj
, newsz
, 0, tx
));
574 zap
->zap_m
.zap_num_chunks
=
575 db
->db_size
/ MZAP_ENT_LEN
- 1;
583 zap_lockdir_by_dnode(dnode_t
*dn
, dmu_tx_t
*tx
,
584 krw_t lti
, boolean_t fatreader
, boolean_t adding
, void *tag
, zap_t
**zapp
)
588 int err
= dmu_buf_hold_by_dnode(dn
, 0, tag
, &db
, DMU_READ_NO_PREFETCH
);
594 dmu_object_info_t doi
;
595 dmu_object_info_from_db(db
, &doi
);
596 ASSERT3U(DMU_OT_BYTESWAP(doi
.doi_type
), ==, DMU_BSWAP_ZAP
);
600 err
= zap_lockdir_impl(db
, tag
, tx
, lti
, fatreader
, adding
, zapp
);
602 dmu_buf_rele(db
, tag
);
608 zap_lockdir(objset_t
*os
, uint64_t obj
, dmu_tx_t
*tx
,
609 krw_t lti
, boolean_t fatreader
, boolean_t adding
, void *tag
, zap_t
**zapp
)
613 int err
= dmu_buf_hold(os
, obj
, 0, tag
, &db
, DMU_READ_NO_PREFETCH
);
618 dmu_object_info_t doi
;
619 dmu_object_info_from_db(db
, &doi
);
620 ASSERT3U(DMU_OT_BYTESWAP(doi
.doi_type
), ==, DMU_BSWAP_ZAP
);
623 err
= zap_lockdir_impl(db
, tag
, tx
, lti
, fatreader
, adding
, zapp
);
625 dmu_buf_rele(db
, tag
);
630 zap_unlockdir(zap_t
*zap
, void *tag
)
632 rw_exit(&zap
->zap_rwlock
);
633 dmu_buf_rele(zap
->zap_dbuf
, tag
);
637 mzap_upgrade(zap_t
**zapp
, void *tag
, dmu_tx_t
*tx
, zap_flags_t flags
)
642 ASSERT(RW_WRITE_HELD(&zap
->zap_rwlock
));
644 int sz
= zap
->zap_dbuf
->db_size
;
645 mzap_phys_t
*mzp
= vmem_alloc(sz
, KM_SLEEP
);
646 bcopy(zap
->zap_dbuf
->db_data
, mzp
, sz
);
647 int nchunks
= zap
->zap_m
.zap_num_chunks
;
650 err
= dmu_object_set_blocksize(zap
->zap_objset
, zap
->zap_object
,
651 1ULL << fzap_default_block_shift
, 0, tx
);
658 dprintf("upgrading obj=%llu with %u chunks\n",
659 (u_longlong_t
)zap
->zap_object
, nchunks
);
660 /* XXX destroy the avl later, so we can use the stored hash value */
663 fzap_upgrade(zap
, tx
, flags
);
665 for (int i
= 0; i
< nchunks
; i
++) {
666 mzap_ent_phys_t
*mze
= &mzp
->mz_chunk
[i
];
667 if (mze
->mze_name
[0] == 0)
669 dprintf("adding %s=%llu\n",
670 mze
->mze_name
, (u_longlong_t
)mze
->mze_value
);
671 zap_name_t
*zn
= zap_name_alloc(zap
, mze
->mze_name
, 0);
672 /* If we fail here, we would end up losing entries */
673 VERIFY0(fzap_add_cd(zn
, 8, 1, &mze
->mze_value
, mze
->mze_cd
,
675 zap
= zn
->zn_zap
; /* fzap_add_cd() may change zap */
684 * The "normflags" determine the behavior of the matchtype_t which is
685 * passed to zap_lookup_norm(). Names which have the same normalized
686 * version will be stored with the same hash value, and therefore we can
687 * perform normalization-insensitive lookups. We can be Unicode form-
688 * insensitive and/or case-insensitive. The following flags are valid for
695 * U8_TEXTPREP_TOUPPER
697 * The *_NF* (Normalization Form) flags are mutually exclusive; at most one
698 * of them may be supplied.
701 mzap_create_impl(dnode_t
*dn
, int normflags
, zap_flags_t flags
, dmu_tx_t
*tx
)
705 VERIFY0(dmu_buf_hold_by_dnode(dn
, 0, FTAG
, &db
, DMU_READ_NO_PREFETCH
));
707 dmu_buf_will_dirty(db
, tx
);
708 mzap_phys_t
*zp
= db
->db_data
;
709 zp
->mz_block_type
= ZBT_MICRO
;
711 ((uintptr_t)db
^ (uintptr_t)tx
^ (dn
->dn_object
<< 1)) | 1ULL;
712 zp
->mz_normflags
= normflags
;
716 /* Only fat zap supports flags; upgrade immediately. */
717 VERIFY0(zap_lockdir_impl(db
, FTAG
, tx
, RW_WRITER
,
718 B_FALSE
, B_FALSE
, &zap
));
719 VERIFY0(mzap_upgrade(&zap
, FTAG
, tx
, flags
));
720 zap_unlockdir(zap
, FTAG
);
722 dmu_buf_rele(db
, FTAG
);
727 zap_create_impl(objset_t
*os
, int normflags
, zap_flags_t flags
,
728 dmu_object_type_t ot
, int leaf_blockshift
, int indirect_blockshift
,
729 dmu_object_type_t bonustype
, int bonuslen
, int dnodesize
,
730 dnode_t
**allocated_dnode
, void *tag
, dmu_tx_t
*tx
)
734 ASSERT3U(DMU_OT_BYTESWAP(ot
), ==, DMU_BSWAP_ZAP
);
736 if (allocated_dnode
== NULL
) {
738 obj
= dmu_object_alloc_hold(os
, ot
, 1ULL << leaf_blockshift
,
739 indirect_blockshift
, bonustype
, bonuslen
, dnodesize
,
741 mzap_create_impl(dn
, normflags
, flags
, tx
);
742 dnode_rele(dn
, FTAG
);
744 obj
= dmu_object_alloc_hold(os
, ot
, 1ULL << leaf_blockshift
,
745 indirect_blockshift
, bonustype
, bonuslen
, dnodesize
,
746 allocated_dnode
, tag
, tx
);
747 mzap_create_impl(*allocated_dnode
, normflags
, flags
, tx
);
754 zap_create_claim(objset_t
*os
, uint64_t obj
, dmu_object_type_t ot
,
755 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
)
757 return (zap_create_claim_dnsize(os
, obj
, ot
, bonustype
, bonuslen
,
762 zap_create_claim_dnsize(objset_t
*os
, uint64_t obj
, dmu_object_type_t ot
,
763 dmu_object_type_t bonustype
, int bonuslen
, int dnodesize
, dmu_tx_t
*tx
)
765 return (zap_create_claim_norm_dnsize(os
, obj
,
766 0, ot
, bonustype
, bonuslen
, dnodesize
, tx
));
770 zap_create_claim_norm(objset_t
*os
, uint64_t obj
, int normflags
,
771 dmu_object_type_t ot
,
772 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
)
774 return (zap_create_claim_norm_dnsize(os
, obj
, normflags
, ot
, bonustype
,
779 zap_create_claim_norm_dnsize(objset_t
*os
, uint64_t obj
, int normflags
,
780 dmu_object_type_t ot
, dmu_object_type_t bonustype
, int bonuslen
,
781 int dnodesize
, dmu_tx_t
*tx
)
786 ASSERT3U(DMU_OT_BYTESWAP(ot
), ==, DMU_BSWAP_ZAP
);
787 error
= dmu_object_claim_dnsize(os
, obj
, ot
, 0, bonustype
, bonuslen
,
792 error
= dnode_hold(os
, obj
, FTAG
, &dn
);
796 mzap_create_impl(dn
, normflags
, 0, tx
);
798 dnode_rele(dn
, FTAG
);
804 zap_create(objset_t
*os
, dmu_object_type_t ot
,
805 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
)
807 return (zap_create_norm(os
, 0, ot
, bonustype
, bonuslen
, tx
));
811 zap_create_dnsize(objset_t
*os
, dmu_object_type_t ot
,
812 dmu_object_type_t bonustype
, int bonuslen
, int dnodesize
, dmu_tx_t
*tx
)
814 return (zap_create_norm_dnsize(os
, 0, ot
, bonustype
, bonuslen
,
819 zap_create_norm(objset_t
*os
, int normflags
, dmu_object_type_t ot
,
820 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
)
822 return (zap_create_norm_dnsize(os
, normflags
, ot
, bonustype
, bonuslen
,
827 zap_create_norm_dnsize(objset_t
*os
, int normflags
, dmu_object_type_t ot
,
828 dmu_object_type_t bonustype
, int bonuslen
, int dnodesize
, dmu_tx_t
*tx
)
830 return (zap_create_impl(os
, normflags
, 0, ot
, 0, 0,
831 bonustype
, bonuslen
, dnodesize
, NULL
, NULL
, tx
));
835 zap_create_flags(objset_t
*os
, int normflags
, zap_flags_t flags
,
836 dmu_object_type_t ot
, int leaf_blockshift
, int indirect_blockshift
,
837 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
)
839 return (zap_create_flags_dnsize(os
, normflags
, flags
, ot
,
840 leaf_blockshift
, indirect_blockshift
, bonustype
, bonuslen
, 0, tx
));
844 zap_create_flags_dnsize(objset_t
*os
, int normflags
, zap_flags_t flags
,
845 dmu_object_type_t ot
, int leaf_blockshift
, int indirect_blockshift
,
846 dmu_object_type_t bonustype
, int bonuslen
, int dnodesize
, dmu_tx_t
*tx
)
848 return (zap_create_impl(os
, normflags
, flags
, ot
, leaf_blockshift
,
849 indirect_blockshift
, bonustype
, bonuslen
, dnodesize
, NULL
, NULL
,
854 * Create a zap object and return a pointer to the newly allocated dnode via
855 * the allocated_dnode argument. The returned dnode will be held and the
856 * caller is responsible for releasing the hold by calling dnode_rele().
859 zap_create_hold(objset_t
*os
, int normflags
, zap_flags_t flags
,
860 dmu_object_type_t ot
, int leaf_blockshift
, int indirect_blockshift
,
861 dmu_object_type_t bonustype
, int bonuslen
, int dnodesize
,
862 dnode_t
**allocated_dnode
, void *tag
, dmu_tx_t
*tx
)
864 return (zap_create_impl(os
, normflags
, flags
, ot
, leaf_blockshift
,
865 indirect_blockshift
, bonustype
, bonuslen
, dnodesize
,
866 allocated_dnode
, tag
, tx
));
870 zap_destroy(objset_t
*os
, uint64_t zapobj
, dmu_tx_t
*tx
)
873 * dmu_object_free will free the object number and free the
874 * data. Freeing the data will cause our pageout function to be
875 * called, which will destroy our data (zap_leaf_t's and zap_t).
878 return (dmu_object_free(os
, zapobj
, tx
));
882 zap_evict_sync(void *dbu
)
886 rw_destroy(&zap
->zap_rwlock
);
888 if (zap
->zap_ismicro
)
891 mutex_destroy(&zap
->zap_f
.zap_num_entries_mtx
);
893 kmem_free(zap
, sizeof (zap_t
));
897 zap_count(objset_t
*os
, uint64_t zapobj
, uint64_t *count
)
902 zap_lockdir(os
, zapobj
, NULL
, RW_READER
, TRUE
, FALSE
, FTAG
, &zap
);
905 if (!zap
->zap_ismicro
) {
906 err
= fzap_count(zap
, count
);
908 *count
= zap
->zap_m
.zap_num_entries
;
910 zap_unlockdir(zap
, FTAG
);
915 * zn may be NULL; if not specified, it will be computed if needed.
916 * See also the comment above zap_entry_normalization_conflict().
919 mzap_normalization_conflict(zap_t
*zap
, zap_name_t
*zn
, mzap_ent_t
*mze
)
921 int direction
= AVL_BEFORE
;
922 boolean_t allocdzn
= B_FALSE
;
924 if (zap
->zap_normflags
== 0)
928 for (mzap_ent_t
*other
= avl_walk(&zap
->zap_m
.zap_avl
, mze
, direction
);
929 other
&& other
->mze_hash
== mze
->mze_hash
;
930 other
= avl_walk(&zap
->zap_m
.zap_avl
, other
, direction
)) {
933 zn
= zap_name_alloc(zap
, MZE_PHYS(zap
, mze
)->mze_name
,
937 if (zap_match(zn
, MZE_PHYS(zap
, other
)->mze_name
)) {
944 if (direction
== AVL_BEFORE
) {
945 direction
= AVL_AFTER
;
955 * Routines for manipulating attributes.
959 zap_lookup(objset_t
*os
, uint64_t zapobj
, const char *name
,
960 uint64_t integer_size
, uint64_t num_integers
, void *buf
)
962 return (zap_lookup_norm(os
, zapobj
, name
, integer_size
,
963 num_integers
, buf
, 0, NULL
, 0, NULL
));
967 zap_lookup_impl(zap_t
*zap
, const char *name
,
968 uint64_t integer_size
, uint64_t num_integers
, void *buf
,
969 matchtype_t mt
, char *realname
, int rn_len
,
974 zap_name_t
*zn
= zap_name_alloc(zap
, name
, mt
);
976 return (SET_ERROR(ENOTSUP
));
978 if (!zap
->zap_ismicro
) {
979 err
= fzap_lookup(zn
, integer_size
, num_integers
, buf
,
980 realname
, rn_len
, ncp
);
982 mzap_ent_t
*mze
= mze_find(zn
);
984 err
= SET_ERROR(ENOENT
);
986 if (num_integers
< 1) {
987 err
= SET_ERROR(EOVERFLOW
);
988 } else if (integer_size
!= 8) {
989 err
= SET_ERROR(EINVAL
);
992 MZE_PHYS(zap
, mze
)->mze_value
;
993 (void) strlcpy(realname
,
994 MZE_PHYS(zap
, mze
)->mze_name
, rn_len
);
996 *ncp
= mzap_normalization_conflict(zap
,
1007 zap_lookup_norm(objset_t
*os
, uint64_t zapobj
, const char *name
,
1008 uint64_t integer_size
, uint64_t num_integers
, void *buf
,
1009 matchtype_t mt
, char *realname
, int rn_len
,
1015 zap_lockdir(os
, zapobj
, NULL
, RW_READER
, TRUE
, FALSE
, FTAG
, &zap
);
1018 err
= zap_lookup_impl(zap
, name
, integer_size
,
1019 num_integers
, buf
, mt
, realname
, rn_len
, ncp
);
1020 zap_unlockdir(zap
, FTAG
);
1025 zap_prefetch(objset_t
*os
, uint64_t zapobj
, const char *name
)
1031 err
= zap_lockdir(os
, zapobj
, NULL
, RW_READER
, TRUE
, FALSE
, FTAG
, &zap
);
1034 zn
= zap_name_alloc(zap
, name
, 0);
1036 zap_unlockdir(zap
, FTAG
);
1037 return (SET_ERROR(ENOTSUP
));
1042 zap_unlockdir(zap
, FTAG
);
1047 zap_lookup_by_dnode(dnode_t
*dn
, const char *name
,
1048 uint64_t integer_size
, uint64_t num_integers
, void *buf
)
1050 return (zap_lookup_norm_by_dnode(dn
, name
, integer_size
,
1051 num_integers
, buf
, 0, NULL
, 0, NULL
));
1055 zap_lookup_norm_by_dnode(dnode_t
*dn
, const char *name
,
1056 uint64_t integer_size
, uint64_t num_integers
, void *buf
,
1057 matchtype_t mt
, char *realname
, int rn_len
,
1062 int err
= zap_lockdir_by_dnode(dn
, NULL
, RW_READER
, TRUE
, FALSE
,
1066 err
= zap_lookup_impl(zap
, name
, integer_size
,
1067 num_integers
, buf
, mt
, realname
, rn_len
, ncp
);
1068 zap_unlockdir(zap
, FTAG
);
1073 zap_prefetch_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
1079 zap_lockdir(os
, zapobj
, NULL
, RW_READER
, TRUE
, FALSE
, FTAG
, &zap
);
1082 zap_name_t
*zn
= zap_name_alloc_uint64(zap
, key
, key_numints
);
1084 zap_unlockdir(zap
, FTAG
);
1085 return (SET_ERROR(ENOTSUP
));
1090 zap_unlockdir(zap
, FTAG
);
1095 zap_lookup_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
1096 int key_numints
, uint64_t integer_size
, uint64_t num_integers
, void *buf
)
1101 zap_lockdir(os
, zapobj
, NULL
, RW_READER
, TRUE
, FALSE
, FTAG
, &zap
);
1104 zap_name_t
*zn
= zap_name_alloc_uint64(zap
, key
, key_numints
);
1106 zap_unlockdir(zap
, FTAG
);
1107 return (SET_ERROR(ENOTSUP
));
1110 err
= fzap_lookup(zn
, integer_size
, num_integers
, buf
,
1113 zap_unlockdir(zap
, FTAG
);
1118 zap_contains(objset_t
*os
, uint64_t zapobj
, const char *name
)
1120 int err
= zap_lookup_norm(os
, zapobj
, name
, 0,
1121 0, NULL
, 0, NULL
, 0, NULL
);
1122 if (err
== EOVERFLOW
|| err
== EINVAL
)
1123 err
= 0; /* found, but skipped reading the value */
1128 zap_length(objset_t
*os
, uint64_t zapobj
, const char *name
,
1129 uint64_t *integer_size
, uint64_t *num_integers
)
1134 zap_lockdir(os
, zapobj
, NULL
, RW_READER
, TRUE
, FALSE
, FTAG
, &zap
);
1137 zap_name_t
*zn
= zap_name_alloc(zap
, name
, 0);
1139 zap_unlockdir(zap
, FTAG
);
1140 return (SET_ERROR(ENOTSUP
));
1142 if (!zap
->zap_ismicro
) {
1143 err
= fzap_length(zn
, integer_size
, num_integers
);
1145 mzap_ent_t
*mze
= mze_find(zn
);
1147 err
= SET_ERROR(ENOENT
);
1156 zap_unlockdir(zap
, FTAG
);
1161 zap_length_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
1162 int key_numints
, uint64_t *integer_size
, uint64_t *num_integers
)
1167 zap_lockdir(os
, zapobj
, NULL
, RW_READER
, TRUE
, FALSE
, FTAG
, &zap
);
1170 zap_name_t
*zn
= zap_name_alloc_uint64(zap
, key
, key_numints
);
1172 zap_unlockdir(zap
, FTAG
);
1173 return (SET_ERROR(ENOTSUP
));
1175 err
= fzap_length(zn
, integer_size
, num_integers
);
1177 zap_unlockdir(zap
, FTAG
);
1182 mzap_addent(zap_name_t
*zn
, uint64_t value
)
1184 zap_t
*zap
= zn
->zn_zap
;
1185 int start
= zap
->zap_m
.zap_alloc_next
;
1187 ASSERT(RW_WRITE_HELD(&zap
->zap_rwlock
));
1190 for (int i
= 0; i
< zap
->zap_m
.zap_num_chunks
; i
++) {
1191 mzap_ent_phys_t
*mze
= &zap_m_phys(zap
)->mz_chunk
[i
];
1192 ASSERT(strcmp(zn
->zn_key_orig
, mze
->mze_name
) != 0);
1196 uint32_t cd
= mze_find_unused_cd(zap
, zn
->zn_hash
);
1197 /* given the limited size of the microzap, this can't happen */
1198 ASSERT(cd
< zap_maxcd(zap
));
1201 for (int i
= start
; i
< zap
->zap_m
.zap_num_chunks
; i
++) {
1202 mzap_ent_phys_t
*mze
= &zap_m_phys(zap
)->mz_chunk
[i
];
1203 if (mze
->mze_name
[0] == 0) {
1204 mze
->mze_value
= value
;
1206 (void) strlcpy(mze
->mze_name
, zn
->zn_key_orig
,
1207 sizeof (mze
->mze_name
));
1208 zap
->zap_m
.zap_num_entries
++;
1209 zap
->zap_m
.zap_alloc_next
= i
+1;
1210 if (zap
->zap_m
.zap_alloc_next
==
1211 zap
->zap_m
.zap_num_chunks
)
1212 zap
->zap_m
.zap_alloc_next
= 0;
1213 mze_insert(zap
, i
, zn
->zn_hash
);
1221 cmn_err(CE_PANIC
, "out of entries!");
1225 zap_add_impl(zap_t
*zap
, const char *key
,
1226 int integer_size
, uint64_t num_integers
,
1227 const void *val
, dmu_tx_t
*tx
, void *tag
)
1229 const uint64_t *intval
= val
;
1232 zap_name_t
*zn
= zap_name_alloc(zap
, key
, 0);
1234 zap_unlockdir(zap
, tag
);
1235 return (SET_ERROR(ENOTSUP
));
1237 if (!zap
->zap_ismicro
) {
1238 err
= fzap_add(zn
, integer_size
, num_integers
, val
, tag
, tx
);
1239 zap
= zn
->zn_zap
; /* fzap_add() may change zap */
1240 } else if (integer_size
!= 8 || num_integers
!= 1 ||
1241 strlen(key
) >= MZAP_NAME_LEN
||
1242 !mze_canfit_fzap_leaf(zn
, zn
->zn_hash
)) {
1243 err
= mzap_upgrade(&zn
->zn_zap
, tag
, tx
, 0);
1245 err
= fzap_add(zn
, integer_size
, num_integers
, val
,
1248 zap
= zn
->zn_zap
; /* fzap_add() may change zap */
1250 if (mze_find(zn
) != NULL
) {
1251 err
= SET_ERROR(EEXIST
);
1253 mzap_addent(zn
, *intval
);
1256 ASSERT(zap
== zn
->zn_zap
);
1258 if (zap
!= NULL
) /* may be NULL if fzap_add() failed */
1259 zap_unlockdir(zap
, tag
);
1264 zap_add(objset_t
*os
, uint64_t zapobj
, const char *key
,
1265 int integer_size
, uint64_t num_integers
,
1266 const void *val
, dmu_tx_t
*tx
)
1271 err
= zap_lockdir(os
, zapobj
, tx
, RW_WRITER
, TRUE
, TRUE
, FTAG
, &zap
);
1274 err
= zap_add_impl(zap
, key
, integer_size
, num_integers
, val
, tx
, FTAG
);
1275 /* zap_add_impl() calls zap_unlockdir() */
1280 zap_add_by_dnode(dnode_t
*dn
, const char *key
,
1281 int integer_size
, uint64_t num_integers
,
1282 const void *val
, dmu_tx_t
*tx
)
1287 err
= zap_lockdir_by_dnode(dn
, tx
, RW_WRITER
, TRUE
, TRUE
, FTAG
, &zap
);
1290 err
= zap_add_impl(zap
, key
, integer_size
, num_integers
, val
, tx
, FTAG
);
1291 /* zap_add_impl() calls zap_unlockdir() */
1296 zap_add_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
1297 int key_numints
, int integer_size
, uint64_t num_integers
,
1298 const void *val
, dmu_tx_t
*tx
)
1303 zap_lockdir(os
, zapobj
, tx
, RW_WRITER
, TRUE
, TRUE
, FTAG
, &zap
);
1306 zap_name_t
*zn
= zap_name_alloc_uint64(zap
, key
, key_numints
);
1308 zap_unlockdir(zap
, FTAG
);
1309 return (SET_ERROR(ENOTSUP
));
1311 err
= fzap_add(zn
, integer_size
, num_integers
, val
, FTAG
, tx
);
1312 zap
= zn
->zn_zap
; /* fzap_add() may change zap */
1314 if (zap
!= NULL
) /* may be NULL if fzap_add() failed */
1315 zap_unlockdir(zap
, FTAG
);
1320 zap_update(objset_t
*os
, uint64_t zapobj
, const char *name
,
1321 int integer_size
, uint64_t num_integers
, const void *val
, dmu_tx_t
*tx
)
1324 const uint64_t *intval
= val
;
1327 zap_lockdir(os
, zapobj
, tx
, RW_WRITER
, TRUE
, TRUE
, FTAG
, &zap
);
1330 zap_name_t
*zn
= zap_name_alloc(zap
, name
, 0);
1332 zap_unlockdir(zap
, FTAG
);
1333 return (SET_ERROR(ENOTSUP
));
1335 if (!zap
->zap_ismicro
) {
1336 err
= fzap_update(zn
, integer_size
, num_integers
, val
,
1338 zap
= zn
->zn_zap
; /* fzap_update() may change zap */
1339 } else if (integer_size
!= 8 || num_integers
!= 1 ||
1340 strlen(name
) >= MZAP_NAME_LEN
) {
1341 dprintf("upgrading obj %llu: intsz=%u numint=%llu name=%s\n",
1342 (u_longlong_t
)zapobj
, integer_size
,
1343 (u_longlong_t
)num_integers
, name
);
1344 err
= mzap_upgrade(&zn
->zn_zap
, FTAG
, tx
, 0);
1346 err
= fzap_update(zn
, integer_size
, num_integers
,
1349 zap
= zn
->zn_zap
; /* fzap_update() may change zap */
1351 mzap_ent_t
*mze
= mze_find(zn
);
1353 MZE_PHYS(zap
, mze
)->mze_value
= *intval
;
1355 mzap_addent(zn
, *intval
);
1358 ASSERT(zap
== zn
->zn_zap
);
1360 if (zap
!= NULL
) /* may be NULL if fzap_upgrade() failed */
1361 zap_unlockdir(zap
, FTAG
);
1366 zap_update_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
1368 int integer_size
, uint64_t num_integers
, const void *val
, dmu_tx_t
*tx
)
1373 zap_lockdir(os
, zapobj
, tx
, RW_WRITER
, TRUE
, TRUE
, FTAG
, &zap
);
1376 zap_name_t
*zn
= zap_name_alloc_uint64(zap
, key
, key_numints
);
1378 zap_unlockdir(zap
, FTAG
);
1379 return (SET_ERROR(ENOTSUP
));
1381 err
= fzap_update(zn
, integer_size
, num_integers
, val
, FTAG
, tx
);
1382 zap
= zn
->zn_zap
; /* fzap_update() may change zap */
1384 if (zap
!= NULL
) /* may be NULL if fzap_upgrade() failed */
1385 zap_unlockdir(zap
, FTAG
);
1390 zap_remove(objset_t
*os
, uint64_t zapobj
, const char *name
, dmu_tx_t
*tx
)
1392 return (zap_remove_norm(os
, zapobj
, name
, 0, tx
));
1396 zap_remove_impl(zap_t
*zap
, const char *name
,
1397 matchtype_t mt
, dmu_tx_t
*tx
)
1401 zap_name_t
*zn
= zap_name_alloc(zap
, name
, mt
);
1403 return (SET_ERROR(ENOTSUP
));
1404 if (!zap
->zap_ismicro
) {
1405 err
= fzap_remove(zn
, tx
);
1407 mzap_ent_t
*mze
= mze_find(zn
);
1409 err
= SET_ERROR(ENOENT
);
1411 zap
->zap_m
.zap_num_entries
--;
1412 bzero(&zap_m_phys(zap
)->mz_chunk
[mze
->mze_chunkid
],
1413 sizeof (mzap_ent_phys_t
));
1414 mze_remove(zap
, mze
);
1422 zap_remove_norm(objset_t
*os
, uint64_t zapobj
, const char *name
,
1423 matchtype_t mt
, dmu_tx_t
*tx
)
1428 err
= zap_lockdir(os
, zapobj
, tx
, RW_WRITER
, TRUE
, FALSE
, FTAG
, &zap
);
1431 err
= zap_remove_impl(zap
, name
, mt
, tx
);
1432 zap_unlockdir(zap
, FTAG
);
1437 zap_remove_by_dnode(dnode_t
*dn
, const char *name
, dmu_tx_t
*tx
)
1442 err
= zap_lockdir_by_dnode(dn
, tx
, RW_WRITER
, TRUE
, FALSE
, FTAG
, &zap
);
1445 err
= zap_remove_impl(zap
, name
, 0, tx
);
1446 zap_unlockdir(zap
, FTAG
);
1451 zap_remove_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
1452 int key_numints
, dmu_tx_t
*tx
)
1457 zap_lockdir(os
, zapobj
, tx
, RW_WRITER
, TRUE
, FALSE
, FTAG
, &zap
);
1460 zap_name_t
*zn
= zap_name_alloc_uint64(zap
, key
, key_numints
);
1462 zap_unlockdir(zap
, FTAG
);
1463 return (SET_ERROR(ENOTSUP
));
1465 err
= fzap_remove(zn
, tx
);
1467 zap_unlockdir(zap
, FTAG
);
1472 * Routines for iterating over the attributes.
1476 zap_cursor_init_impl(zap_cursor_t
*zc
, objset_t
*os
, uint64_t zapobj
,
1477 uint64_t serialized
, boolean_t prefetch
)
1482 zc
->zc_zapobj
= zapobj
;
1483 zc
->zc_serialized
= serialized
;
1486 zc
->zc_prefetch
= prefetch
;
1489 zap_cursor_init_serialized(zap_cursor_t
*zc
, objset_t
*os
, uint64_t zapobj
,
1490 uint64_t serialized
)
1492 zap_cursor_init_impl(zc
, os
, zapobj
, serialized
, B_TRUE
);
1496 * Initialize a cursor at the beginning of the ZAP object. The entire
1497 * ZAP object will be prefetched.
1500 zap_cursor_init(zap_cursor_t
*zc
, objset_t
*os
, uint64_t zapobj
)
1502 zap_cursor_init_impl(zc
, os
, zapobj
, 0, B_TRUE
);
1506 * Initialize a cursor at the beginning, but request that we not prefetch
1507 * the entire ZAP object.
1510 zap_cursor_init_noprefetch(zap_cursor_t
*zc
, objset_t
*os
, uint64_t zapobj
)
1512 zap_cursor_init_impl(zc
, os
, zapobj
, 0, B_FALSE
);
1516 zap_cursor_fini(zap_cursor_t
*zc
)
1519 rw_enter(&zc
->zc_zap
->zap_rwlock
, RW_READER
);
1520 zap_unlockdir(zc
->zc_zap
, NULL
);
1524 rw_enter(&zc
->zc_leaf
->l_rwlock
, RW_READER
);
1525 zap_put_leaf(zc
->zc_leaf
);
1528 zc
->zc_objset
= NULL
;
1532 zap_cursor_serialize(zap_cursor_t
*zc
)
1534 if (zc
->zc_hash
== -1ULL)
1536 if (zc
->zc_zap
== NULL
)
1537 return (zc
->zc_serialized
);
1538 ASSERT((zc
->zc_hash
& zap_maxcd(zc
->zc_zap
)) == 0);
1539 ASSERT(zc
->zc_cd
< zap_maxcd(zc
->zc_zap
));
1542 * We want to keep the high 32 bits of the cursor zero if we can, so
1543 * that 32-bit programs can access this. So usually use a small
1544 * (28-bit) hash value so we can fit 4 bits of cd into the low 32-bits
1547 * [ collision differentiator | zap_hashbits()-bit hash value ]
1549 return ((zc
->zc_hash
>> (64 - zap_hashbits(zc
->zc_zap
))) |
1550 ((uint64_t)zc
->zc_cd
<< zap_hashbits(zc
->zc_zap
)));
1554 zap_cursor_retrieve(zap_cursor_t
*zc
, zap_attribute_t
*za
)
1558 if (zc
->zc_hash
== -1ULL)
1559 return (SET_ERROR(ENOENT
));
1561 if (zc
->zc_zap
== NULL
) {
1563 err
= zap_lockdir(zc
->zc_objset
, zc
->zc_zapobj
, NULL
,
1564 RW_READER
, TRUE
, FALSE
, NULL
, &zc
->zc_zap
);
1569 * To support zap_cursor_init_serialized, advance, retrieve,
1570 * we must add to the existing zc_cd, which may already
1571 * be 1 due to the zap_cursor_advance.
1573 ASSERT(zc
->zc_hash
== 0);
1574 hb
= zap_hashbits(zc
->zc_zap
);
1575 zc
->zc_hash
= zc
->zc_serialized
<< (64 - hb
);
1576 zc
->zc_cd
+= zc
->zc_serialized
>> hb
;
1577 if (zc
->zc_cd
>= zap_maxcd(zc
->zc_zap
)) /* corrupt serialized */
1580 rw_enter(&zc
->zc_zap
->zap_rwlock
, RW_READER
);
1582 if (!zc
->zc_zap
->zap_ismicro
) {
1583 err
= fzap_cursor_retrieve(zc
->zc_zap
, zc
, za
);
1586 mzap_ent_t mze_tofind
;
1588 mze_tofind
.mze_hash
= zc
->zc_hash
;
1589 mze_tofind
.mze_cd
= zc
->zc_cd
;
1592 avl_find(&zc
->zc_zap
->zap_m
.zap_avl
, &mze_tofind
, &idx
);
1594 mze
= avl_nearest(&zc
->zc_zap
->zap_m
.zap_avl
,
1598 mzap_ent_phys_t
*mzep
= MZE_PHYS(zc
->zc_zap
, mze
);
1599 ASSERT3U(mze
->mze_cd
, ==, mzep
->mze_cd
);
1600 za
->za_normalization_conflict
=
1601 mzap_normalization_conflict(zc
->zc_zap
, NULL
, mze
);
1602 za
->za_integer_length
= 8;
1603 za
->za_num_integers
= 1;
1604 za
->za_first_integer
= mzep
->mze_value
;
1605 (void) strlcpy(za
->za_name
, mzep
->mze_name
,
1606 sizeof (za
->za_name
));
1607 zc
->zc_hash
= mze
->mze_hash
;
1608 zc
->zc_cd
= mze
->mze_cd
;
1611 zc
->zc_hash
= -1ULL;
1612 err
= SET_ERROR(ENOENT
);
1615 rw_exit(&zc
->zc_zap
->zap_rwlock
);
1620 zap_cursor_advance(zap_cursor_t
*zc
)
1622 if (zc
->zc_hash
== -1ULL)
1628 zap_get_stats(objset_t
*os
, uint64_t zapobj
, zap_stats_t
*zs
)
1633 zap_lockdir(os
, zapobj
, NULL
, RW_READER
, TRUE
, FALSE
, FTAG
, &zap
);
1637 bzero(zs
, sizeof (zap_stats_t
));
1639 if (zap
->zap_ismicro
) {
1640 zs
->zs_blocksize
= zap
->zap_dbuf
->db_size
;
1641 zs
->zs_num_entries
= zap
->zap_m
.zap_num_entries
;
1642 zs
->zs_num_blocks
= 1;
1644 fzap_get_stats(zap
, zs
);
1646 zap_unlockdir(zap
, FTAG
);
1650 #if defined(_KERNEL)
1651 EXPORT_SYMBOL(zap_create
);
1652 EXPORT_SYMBOL(zap_create_dnsize
);
1653 EXPORT_SYMBOL(zap_create_norm
);
1654 EXPORT_SYMBOL(zap_create_norm_dnsize
);
1655 EXPORT_SYMBOL(zap_create_flags
);
1656 EXPORT_SYMBOL(zap_create_flags_dnsize
);
1657 EXPORT_SYMBOL(zap_create_claim
);
1658 EXPORT_SYMBOL(zap_create_claim_norm
);
1659 EXPORT_SYMBOL(zap_create_claim_norm_dnsize
);
1660 EXPORT_SYMBOL(zap_create_hold
);
1661 EXPORT_SYMBOL(zap_destroy
);
1662 EXPORT_SYMBOL(zap_lookup
);
1663 EXPORT_SYMBOL(zap_lookup_by_dnode
);
1664 EXPORT_SYMBOL(zap_lookup_norm
);
1665 EXPORT_SYMBOL(zap_lookup_uint64
);
1666 EXPORT_SYMBOL(zap_contains
);
1667 EXPORT_SYMBOL(zap_prefetch
);
1668 EXPORT_SYMBOL(zap_prefetch_uint64
);
1669 EXPORT_SYMBOL(zap_add
);
1670 EXPORT_SYMBOL(zap_add_by_dnode
);
1671 EXPORT_SYMBOL(zap_add_uint64
);
1672 EXPORT_SYMBOL(zap_update
);
1673 EXPORT_SYMBOL(zap_update_uint64
);
1674 EXPORT_SYMBOL(zap_length
);
1675 EXPORT_SYMBOL(zap_length_uint64
);
1676 EXPORT_SYMBOL(zap_remove
);
1677 EXPORT_SYMBOL(zap_remove_by_dnode
);
1678 EXPORT_SYMBOL(zap_remove_norm
);
1679 EXPORT_SYMBOL(zap_remove_uint64
);
1680 EXPORT_SYMBOL(zap_count
);
1681 EXPORT_SYMBOL(zap_value_search
);
1682 EXPORT_SYMBOL(zap_join
);
1683 EXPORT_SYMBOL(zap_join_increment
);
1684 EXPORT_SYMBOL(zap_add_int
);
1685 EXPORT_SYMBOL(zap_remove_int
);
1686 EXPORT_SYMBOL(zap_lookup_int
);
1687 EXPORT_SYMBOL(zap_increment_int
);
1688 EXPORT_SYMBOL(zap_add_int_key
);
1689 EXPORT_SYMBOL(zap_lookup_int_key
);
1690 EXPORT_SYMBOL(zap_increment
);
1691 EXPORT_SYMBOL(zap_cursor_init
);
1692 EXPORT_SYMBOL(zap_cursor_fini
);
1693 EXPORT_SYMBOL(zap_cursor_retrieve
);
1694 EXPORT_SYMBOL(zap_cursor_advance
);
1695 EXPORT_SYMBOL(zap_cursor_serialize
);
1696 EXPORT_SYMBOL(zap_cursor_init_serialized
);
1697 EXPORT_SYMBOL(zap_get_stats
);