Allow disabling of unmapped I/O on FreeBSD
[zfs.git] / module / zfs / zfs_fm.c
blob60e631567a89796b9360a4a6cf77ec87879b7dd4
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012,2021 by Delphix. All rights reserved.
30 #include <sys/spa.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/zio.h>
35 #include <sys/zio_checksum.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
47 * EREPORT POOL VDEV IO
48 * block X X X
49 * data X X
50 * device X X
51 * pool X
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
60 * layered diagram:
62 * +---------------+
63 * | Aggregate I/O | No associated logical data or device
64 * +---------------+
65 * |
66 * V
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
70 * |
71 * V
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
86 * ENA.
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
105 #ifdef _KERNEL
107 * Duplicate ereport Detection
109 * Some ereports are retained momentarily for detecting duplicates. These
110 * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111 * tree of recent unique ereports.
113 * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114 * task is used to purge stale entries.
116 static list_t recent_events_list;
117 static avl_tree_t recent_events_tree;
118 static kmutex_t recent_events_lock;
119 static taskqid_t recent_events_cleaner_tqid;
122 * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
124 * This setting can be changed dynamically and setting it to zero
125 * disables duplicate detection.
127 unsigned int zfs_zevent_retain_max = 2000;
130 * The lifespan for a recent ereport entry. The default of 15 minutes is
131 * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132 * over a period of 10 minutes.
134 unsigned int zfs_zevent_retain_expire_secs = 900;
136 typedef enum zfs_subclass {
137 ZSC_IO,
138 ZSC_DATA,
139 ZSC_CHECKSUM
140 } zfs_subclass_t;
142 typedef struct {
143 /* common criteria */
144 uint64_t re_pool_guid;
145 uint64_t re_vdev_guid;
146 int re_io_error;
147 uint64_t re_io_size;
148 uint64_t re_io_offset;
149 zfs_subclass_t re_subclass;
150 zio_priority_t re_io_priority;
152 /* logical zio criteria (optional) */
153 zbookmark_phys_t re_io_bookmark;
155 /* internal state */
156 avl_node_t re_tree_link;
157 list_node_t re_list_link;
158 uint64_t re_timestamp;
159 } recent_events_node_t;
161 static int
162 recent_events_compare(const void *a, const void *b)
164 const recent_events_node_t *node1 = a;
165 const recent_events_node_t *node2 = b;
166 int cmp;
169 * The comparison order here is somewhat arbitrary.
170 * What's important is that if every criteria matches, then it
171 * is a duplicate (i.e. compare returns 0)
173 if ((cmp = TREE_CMP(node1->re_subclass, node2->re_subclass)) != 0)
174 return (cmp);
175 if ((cmp = TREE_CMP(node1->re_pool_guid, node2->re_pool_guid)) != 0)
176 return (cmp);
177 if ((cmp = TREE_CMP(node1->re_vdev_guid, node2->re_vdev_guid)) != 0)
178 return (cmp);
179 if ((cmp = TREE_CMP(node1->re_io_error, node2->re_io_error)) != 0)
180 return (cmp);
181 if ((cmp = TREE_CMP(node1->re_io_priority, node2->re_io_priority)) != 0)
182 return (cmp);
183 if ((cmp = TREE_CMP(node1->re_io_size, node2->re_io_size)) != 0)
184 return (cmp);
185 if ((cmp = TREE_CMP(node1->re_io_offset, node2->re_io_offset)) != 0)
186 return (cmp);
188 const zbookmark_phys_t *zb1 = &node1->re_io_bookmark;
189 const zbookmark_phys_t *zb2 = &node2->re_io_bookmark;
191 if ((cmp = TREE_CMP(zb1->zb_objset, zb2->zb_objset)) != 0)
192 return (cmp);
193 if ((cmp = TREE_CMP(zb1->zb_object, zb2->zb_object)) != 0)
194 return (cmp);
195 if ((cmp = TREE_CMP(zb1->zb_level, zb2->zb_level)) != 0)
196 return (cmp);
197 if ((cmp = TREE_CMP(zb1->zb_blkid, zb2->zb_blkid)) != 0)
198 return (cmp);
200 return (0);
203 static void zfs_ereport_schedule_cleaner(void);
206 * background task to clean stale recent event nodes.
208 /*ARGSUSED*/
209 static void
210 zfs_ereport_cleaner(void *arg)
212 recent_events_node_t *entry;
213 uint64_t now = gethrtime();
216 * purge expired entries
218 mutex_enter(&recent_events_lock);
219 while ((entry = list_tail(&recent_events_list)) != NULL) {
220 uint64_t age = NSEC2SEC(now - entry->re_timestamp);
221 if (age <= zfs_zevent_retain_expire_secs)
222 break;
224 /* remove expired node */
225 avl_remove(&recent_events_tree, entry);
226 list_remove(&recent_events_list, entry);
227 kmem_free(entry, sizeof (*entry));
230 /* Restart the cleaner if more entries remain */
231 recent_events_cleaner_tqid = 0;
232 if (!list_is_empty(&recent_events_list))
233 zfs_ereport_schedule_cleaner();
235 mutex_exit(&recent_events_lock);
238 static void
239 zfs_ereport_schedule_cleaner(void)
241 ASSERT(MUTEX_HELD(&recent_events_lock));
243 uint64_t timeout = SEC2NSEC(zfs_zevent_retain_expire_secs + 1);
245 recent_events_cleaner_tqid = taskq_dispatch_delay(
246 system_delay_taskq, zfs_ereport_cleaner, NULL, TQ_SLEEP,
247 ddi_get_lbolt() + NSEC_TO_TICK(timeout));
251 * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
253 void
254 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
256 uint64_t vdev_guid, pool_guid;
257 int cnt = 0;
259 ASSERT(vd != NULL || spa != NULL);
260 if (vd == NULL) {
261 vdev_guid = 0;
262 pool_guid = spa_guid(spa);
263 } else {
264 vdev_guid = vd->vdev_guid;
265 pool_guid = 0;
268 mutex_enter(&recent_events_lock);
270 recent_events_node_t *next = list_head(&recent_events_list);
271 while (next != NULL) {
272 recent_events_node_t *entry = next;
274 next = list_next(&recent_events_list, next);
276 if (entry->re_vdev_guid == vdev_guid ||
277 entry->re_pool_guid == pool_guid) {
278 avl_remove(&recent_events_tree, entry);
279 list_remove(&recent_events_list, entry);
280 kmem_free(entry, sizeof (*entry));
281 cnt++;
285 mutex_exit(&recent_events_lock);
289 * Check if an ereport would be a duplicate of one recently posted.
291 * An ereport is considered a duplicate if the set of criteria in
292 * recent_events_node_t all match.
294 * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
295 * are candidates for duplicate checking.
297 static boolean_t
298 zfs_ereport_is_duplicate(const char *subclass, spa_t *spa, vdev_t *vd,
299 const zbookmark_phys_t *zb, zio_t *zio, uint64_t offset, uint64_t size)
301 recent_events_node_t search = {0}, *entry;
303 if (vd == NULL || zio == NULL)
304 return (B_FALSE);
306 if (zfs_zevent_retain_max == 0)
307 return (B_FALSE);
309 if (strcmp(subclass, FM_EREPORT_ZFS_IO) == 0)
310 search.re_subclass = ZSC_IO;
311 else if (strcmp(subclass, FM_EREPORT_ZFS_DATA) == 0)
312 search.re_subclass = ZSC_DATA;
313 else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0)
314 search.re_subclass = ZSC_CHECKSUM;
315 else
316 return (B_FALSE);
318 search.re_pool_guid = spa_guid(spa);
319 search.re_vdev_guid = vd->vdev_guid;
320 search.re_io_error = zio->io_error;
321 search.re_io_priority = zio->io_priority;
322 /* if size is supplied use it over what's in zio */
323 if (size) {
324 search.re_io_size = size;
325 search.re_io_offset = offset;
326 } else {
327 search.re_io_size = zio->io_size;
328 search.re_io_offset = zio->io_offset;
331 /* grab optional logical zio criteria */
332 if (zb != NULL) {
333 search.re_io_bookmark.zb_objset = zb->zb_objset;
334 search.re_io_bookmark.zb_object = zb->zb_object;
335 search.re_io_bookmark.zb_level = zb->zb_level;
336 search.re_io_bookmark.zb_blkid = zb->zb_blkid;
339 uint64_t now = gethrtime();
341 mutex_enter(&recent_events_lock);
343 /* check if we have seen this one recently */
344 entry = avl_find(&recent_events_tree, &search, NULL);
345 if (entry != NULL) {
346 uint64_t age = NSEC2SEC(now - entry->re_timestamp);
349 * There is still an active cleaner (since we're here).
350 * Reset the last seen time for this duplicate entry
351 * so that its lifespand gets extended.
353 list_remove(&recent_events_list, entry);
354 list_insert_head(&recent_events_list, entry);
355 entry->re_timestamp = now;
357 zfs_zevent_track_duplicate();
358 mutex_exit(&recent_events_lock);
360 return (age <= zfs_zevent_retain_expire_secs);
363 if (avl_numnodes(&recent_events_tree) >= zfs_zevent_retain_max) {
364 /* recycle oldest node */
365 entry = list_tail(&recent_events_list);
366 ASSERT(entry != NULL);
367 list_remove(&recent_events_list, entry);
368 avl_remove(&recent_events_tree, entry);
369 } else {
370 entry = kmem_alloc(sizeof (recent_events_node_t), KM_SLEEP);
373 /* record this as a recent ereport */
374 *entry = search;
375 avl_add(&recent_events_tree, entry);
376 list_insert_head(&recent_events_list, entry);
377 entry->re_timestamp = now;
379 /* Start a cleaner if not already scheduled */
380 if (recent_events_cleaner_tqid == 0)
381 zfs_ereport_schedule_cleaner();
383 mutex_exit(&recent_events_lock);
384 return (B_FALSE);
387 void
388 zfs_zevent_post_cb(nvlist_t *nvl, nvlist_t *detector)
390 if (nvl)
391 fm_nvlist_destroy(nvl, FM_NVA_FREE);
393 if (detector)
394 fm_nvlist_destroy(detector, FM_NVA_FREE);
398 * We want to rate limit ZIO delay, deadman, and checksum events so as to not
399 * flood zevent consumers when a disk is acting up.
401 * Returns 1 if we're ratelimiting, 0 if not.
403 static int
404 zfs_is_ratelimiting_event(const char *subclass, vdev_t *vd)
406 int rc = 0;
408 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
409 * are. Invert it to get our return value.
411 if (strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) {
412 rc = !zfs_ratelimit(&vd->vdev_delay_rl);
413 } else if (strcmp(subclass, FM_EREPORT_ZFS_DEADMAN) == 0) {
414 rc = !zfs_ratelimit(&vd->vdev_deadman_rl);
415 } else if (strcmp(subclass, FM_EREPORT_ZFS_CHECKSUM) == 0) {
416 rc = !zfs_ratelimit(&vd->vdev_checksum_rl);
419 if (rc) {
420 /* We're rate limiting */
421 fm_erpt_dropped_increment();
424 return (rc);
428 * Return B_TRUE if the event actually posted, B_FALSE if not.
430 static boolean_t
431 zfs_ereport_start(nvlist_t **ereport_out, nvlist_t **detector_out,
432 const char *subclass, spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
433 zio_t *zio, uint64_t stateoroffset, uint64_t size)
435 nvlist_t *ereport, *detector;
437 uint64_t ena;
438 char class[64];
440 if ((ereport = fm_nvlist_create(NULL)) == NULL)
441 return (B_FALSE);
443 if ((detector = fm_nvlist_create(NULL)) == NULL) {
444 fm_nvlist_destroy(ereport, FM_NVA_FREE);
445 return (B_FALSE);
449 * Serialize ereport generation
451 mutex_enter(&spa->spa_errlist_lock);
454 * Determine the ENA to use for this event. If we are in a loading
455 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
456 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
458 if (spa_load_state(spa) != SPA_LOAD_NONE) {
459 if (spa->spa_ena == 0)
460 spa->spa_ena = fm_ena_generate(0, FM_ENA_FMT1);
461 ena = spa->spa_ena;
462 } else if (zio != NULL && zio->io_logical != NULL) {
463 if (zio->io_logical->io_ena == 0)
464 zio->io_logical->io_ena =
465 fm_ena_generate(0, FM_ENA_FMT1);
466 ena = zio->io_logical->io_ena;
467 } else {
468 ena = fm_ena_generate(0, FM_ENA_FMT1);
472 * Construct the full class, detector, and other standard FMA fields.
474 (void) snprintf(class, sizeof (class), "%s.%s",
475 ZFS_ERROR_CLASS, subclass);
477 fm_fmri_zfs_set(detector, FM_ZFS_SCHEME_VERSION, spa_guid(spa),
478 vd != NULL ? vd->vdev_guid : 0);
480 fm_ereport_set(ereport, FM_EREPORT_VERSION, class, ena, detector, NULL);
483 * Construct the per-ereport payload, depending on which parameters are
484 * passed in.
488 * Generic payload members common to all ereports.
490 fm_payload_set(ereport,
491 FM_EREPORT_PAYLOAD_ZFS_POOL, DATA_TYPE_STRING, spa_name(spa),
492 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, DATA_TYPE_UINT64, spa_guid(spa),
493 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, DATA_TYPE_UINT64,
494 (uint64_t)spa_state(spa),
495 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, DATA_TYPE_INT32,
496 (int32_t)spa_load_state(spa), NULL);
498 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE,
499 DATA_TYPE_STRING,
500 spa_get_failmode(spa) == ZIO_FAILURE_MODE_WAIT ?
501 FM_EREPORT_FAILMODE_WAIT :
502 spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE ?
503 FM_EREPORT_FAILMODE_CONTINUE : FM_EREPORT_FAILMODE_PANIC,
504 NULL);
506 if (vd != NULL) {
507 vdev_t *pvd = vd->vdev_parent;
508 vdev_queue_t *vq = &vd->vdev_queue;
509 vdev_stat_t *vs = &vd->vdev_stat;
510 vdev_t *spare_vd;
511 uint64_t *spare_guids;
512 char **spare_paths;
513 int i, spare_count;
515 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID,
516 DATA_TYPE_UINT64, vd->vdev_guid,
517 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE,
518 DATA_TYPE_STRING, vd->vdev_ops->vdev_op_type, NULL);
519 if (vd->vdev_path != NULL)
520 fm_payload_set(ereport,
521 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH,
522 DATA_TYPE_STRING, vd->vdev_path, NULL);
523 if (vd->vdev_devid != NULL)
524 fm_payload_set(ereport,
525 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID,
526 DATA_TYPE_STRING, vd->vdev_devid, NULL);
527 if (vd->vdev_fru != NULL)
528 fm_payload_set(ereport,
529 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU,
530 DATA_TYPE_STRING, vd->vdev_fru, NULL);
531 if (vd->vdev_enc_sysfs_path != NULL)
532 fm_payload_set(ereport,
533 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
534 DATA_TYPE_STRING, vd->vdev_enc_sysfs_path, NULL);
535 if (vd->vdev_ashift)
536 fm_payload_set(ereport,
537 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT,
538 DATA_TYPE_UINT64, vd->vdev_ashift, NULL);
540 if (vq != NULL) {
541 fm_payload_set(ereport,
542 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS,
543 DATA_TYPE_UINT64, vq->vq_io_complete_ts, NULL);
544 fm_payload_set(ereport,
545 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS,
546 DATA_TYPE_UINT64, vq->vq_io_delta_ts, NULL);
549 if (vs != NULL) {
550 fm_payload_set(ereport,
551 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS,
552 DATA_TYPE_UINT64, vs->vs_read_errors,
553 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS,
554 DATA_TYPE_UINT64, vs->vs_write_errors,
555 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS,
556 DATA_TYPE_UINT64, vs->vs_checksum_errors,
557 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS,
558 DATA_TYPE_UINT64, vs->vs_slow_ios,
559 NULL);
562 if (pvd != NULL) {
563 fm_payload_set(ereport,
564 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID,
565 DATA_TYPE_UINT64, pvd->vdev_guid,
566 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE,
567 DATA_TYPE_STRING, pvd->vdev_ops->vdev_op_type,
568 NULL);
569 if (pvd->vdev_path)
570 fm_payload_set(ereport,
571 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH,
572 DATA_TYPE_STRING, pvd->vdev_path, NULL);
573 if (pvd->vdev_devid)
574 fm_payload_set(ereport,
575 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID,
576 DATA_TYPE_STRING, pvd->vdev_devid, NULL);
579 spare_count = spa->spa_spares.sav_count;
580 spare_paths = kmem_zalloc(sizeof (char *) * spare_count,
581 KM_SLEEP);
582 spare_guids = kmem_zalloc(sizeof (uint64_t) * spare_count,
583 KM_SLEEP);
585 for (i = 0; i < spare_count; i++) {
586 spare_vd = spa->spa_spares.sav_vdevs[i];
587 if (spare_vd) {
588 spare_paths[i] = spare_vd->vdev_path;
589 spare_guids[i] = spare_vd->vdev_guid;
593 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS,
594 DATA_TYPE_STRING_ARRAY, spare_count, spare_paths,
595 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS,
596 DATA_TYPE_UINT64_ARRAY, spare_count, spare_guids, NULL);
598 kmem_free(spare_guids, sizeof (uint64_t) * spare_count);
599 kmem_free(spare_paths, sizeof (char *) * spare_count);
602 if (zio != NULL) {
604 * Payload common to all I/Os.
606 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR,
607 DATA_TYPE_INT32, zio->io_error, NULL);
608 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS,
609 DATA_TYPE_INT32, zio->io_flags, NULL);
610 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE,
611 DATA_TYPE_UINT32, zio->io_stage, NULL);
612 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE,
613 DATA_TYPE_UINT32, zio->io_pipeline, NULL);
614 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY,
615 DATA_TYPE_UINT64, zio->io_delay, NULL);
616 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP,
617 DATA_TYPE_UINT64, zio->io_timestamp, NULL);
618 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA,
619 DATA_TYPE_UINT64, zio->io_delta, NULL);
620 fm_payload_set(ereport, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY,
621 DATA_TYPE_UINT32, zio->io_priority, NULL);
624 * If the 'size' parameter is non-zero, it indicates this is a
625 * RAID-Z or other I/O where the physical offset and length are
626 * provided for us, instead of within the zio_t.
628 if (vd != NULL) {
629 if (size)
630 fm_payload_set(ereport,
631 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
632 DATA_TYPE_UINT64, stateoroffset,
633 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
634 DATA_TYPE_UINT64, size, NULL);
635 else
636 fm_payload_set(ereport,
637 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET,
638 DATA_TYPE_UINT64, zio->io_offset,
639 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE,
640 DATA_TYPE_UINT64, zio->io_size, NULL);
642 } else if (vd != NULL) {
644 * If we have a vdev but no zio, this is a device fault, and the
645 * 'stateoroffset' parameter indicates the previous state of the
646 * vdev.
648 fm_payload_set(ereport,
649 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE,
650 DATA_TYPE_UINT64, stateoroffset, NULL);
654 * Payload for I/Os with corresponding logical information.
656 if (zb != NULL && (zio == NULL || zio->io_logical != NULL)) {
657 fm_payload_set(ereport,
658 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET,
659 DATA_TYPE_UINT64, zb->zb_objset,
660 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT,
661 DATA_TYPE_UINT64, zb->zb_object,
662 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL,
663 DATA_TYPE_INT64, zb->zb_level,
664 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID,
665 DATA_TYPE_UINT64, zb->zb_blkid, NULL);
668 mutex_exit(&spa->spa_errlist_lock);
670 *ereport_out = ereport;
671 *detector_out = detector;
672 return (B_TRUE);
675 /* if it's <= 128 bytes, save the corruption directly */
676 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
678 #define MAX_RANGES 16
680 typedef struct zfs_ecksum_info {
681 /* histograms of set and cleared bits by bit number in a 64-bit word */
682 uint32_t zei_histogram_set[sizeof (uint64_t) * NBBY];
683 uint32_t zei_histogram_cleared[sizeof (uint64_t) * NBBY];
685 /* inline arrays of bits set and cleared. */
686 uint64_t zei_bits_set[ZFM_MAX_INLINE];
687 uint64_t zei_bits_cleared[ZFM_MAX_INLINE];
690 * for each range, the number of bits set and cleared. The Hamming
691 * distance between the good and bad buffers is the sum of them all.
693 uint32_t zei_range_sets[MAX_RANGES];
694 uint32_t zei_range_clears[MAX_RANGES];
696 struct zei_ranges {
697 uint32_t zr_start;
698 uint32_t zr_end;
699 } zei_ranges[MAX_RANGES];
701 size_t zei_range_count;
702 uint32_t zei_mingap;
703 uint32_t zei_allowed_mingap;
705 } zfs_ecksum_info_t;
707 static void
708 update_histogram(uint64_t value_arg, uint32_t *hist, uint32_t *count)
710 size_t i;
711 size_t bits = 0;
712 uint64_t value = BE_64(value_arg);
714 /* We store the bits in big-endian (largest-first) order */
715 for (i = 0; i < 64; i++) {
716 if (value & (1ull << i)) {
717 hist[63 - i]++;
718 ++bits;
721 /* update the count of bits changed */
722 *count += bits;
726 * We've now filled up the range array, and need to increase "mingap" and
727 * shrink the range list accordingly. zei_mingap is always the smallest
728 * distance between array entries, so we set the new_allowed_gap to be
729 * one greater than that. We then go through the list, joining together
730 * any ranges which are closer than the new_allowed_gap.
732 * By construction, there will be at least one. We also update zei_mingap
733 * to the new smallest gap, to prepare for our next invocation.
735 static void
736 zei_shrink_ranges(zfs_ecksum_info_t *eip)
738 uint32_t mingap = UINT32_MAX;
739 uint32_t new_allowed_gap = eip->zei_mingap + 1;
741 size_t idx, output;
742 size_t max = eip->zei_range_count;
744 struct zei_ranges *r = eip->zei_ranges;
746 ASSERT3U(eip->zei_range_count, >, 0);
747 ASSERT3U(eip->zei_range_count, <=, MAX_RANGES);
749 output = idx = 0;
750 while (idx < max - 1) {
751 uint32_t start = r[idx].zr_start;
752 uint32_t end = r[idx].zr_end;
754 while (idx < max - 1) {
755 idx++;
757 uint32_t nstart = r[idx].zr_start;
758 uint32_t nend = r[idx].zr_end;
760 uint32_t gap = nstart - end;
761 if (gap < new_allowed_gap) {
762 end = nend;
763 continue;
765 if (gap < mingap)
766 mingap = gap;
767 break;
769 r[output].zr_start = start;
770 r[output].zr_end = end;
771 output++;
773 ASSERT3U(output, <, eip->zei_range_count);
774 eip->zei_range_count = output;
775 eip->zei_mingap = mingap;
776 eip->zei_allowed_mingap = new_allowed_gap;
779 static void
780 zei_add_range(zfs_ecksum_info_t *eip, int start, int end)
782 struct zei_ranges *r = eip->zei_ranges;
783 size_t count = eip->zei_range_count;
785 if (count >= MAX_RANGES) {
786 zei_shrink_ranges(eip);
787 count = eip->zei_range_count;
789 if (count == 0) {
790 eip->zei_mingap = UINT32_MAX;
791 eip->zei_allowed_mingap = 1;
792 } else {
793 int gap = start - r[count - 1].zr_end;
795 if (gap < eip->zei_allowed_mingap) {
796 r[count - 1].zr_end = end;
797 return;
799 if (gap < eip->zei_mingap)
800 eip->zei_mingap = gap;
802 r[count].zr_start = start;
803 r[count].zr_end = end;
804 eip->zei_range_count++;
807 static size_t
808 zei_range_total_size(zfs_ecksum_info_t *eip)
810 struct zei_ranges *r = eip->zei_ranges;
811 size_t count = eip->zei_range_count;
812 size_t result = 0;
813 size_t idx;
815 for (idx = 0; idx < count; idx++)
816 result += (r[idx].zr_end - r[idx].zr_start);
818 return (result);
821 static zfs_ecksum_info_t *
822 annotate_ecksum(nvlist_t *ereport, zio_bad_cksum_t *info,
823 const abd_t *goodabd, const abd_t *badabd, size_t size,
824 boolean_t drop_if_identical)
826 const uint64_t *good;
827 const uint64_t *bad;
829 uint64_t allset = 0;
830 uint64_t allcleared = 0;
832 size_t nui64s = size / sizeof (uint64_t);
834 size_t inline_size;
835 int no_inline = 0;
836 size_t idx;
837 size_t range;
839 size_t offset = 0;
840 ssize_t start = -1;
842 zfs_ecksum_info_t *eip = kmem_zalloc(sizeof (*eip), KM_SLEEP);
844 /* don't do any annotation for injected checksum errors */
845 if (info != NULL && info->zbc_injected)
846 return (eip);
848 if (info != NULL && info->zbc_has_cksum) {
849 fm_payload_set(ereport,
850 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED,
851 DATA_TYPE_UINT64_ARRAY,
852 sizeof (info->zbc_expected) / sizeof (uint64_t),
853 (uint64_t *)&info->zbc_expected,
854 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL,
855 DATA_TYPE_UINT64_ARRAY,
856 sizeof (info->zbc_actual) / sizeof (uint64_t),
857 (uint64_t *)&info->zbc_actual,
858 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO,
859 DATA_TYPE_STRING,
860 info->zbc_checksum_name,
861 NULL);
863 if (info->zbc_byteswapped) {
864 fm_payload_set(ereport,
865 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP,
866 DATA_TYPE_BOOLEAN, 1,
867 NULL);
871 if (badabd == NULL || goodabd == NULL)
872 return (eip);
874 ASSERT3U(nui64s, <=, UINT32_MAX);
875 ASSERT3U(size, ==, nui64s * sizeof (uint64_t));
876 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE);
877 ASSERT3U(size, <=, UINT32_MAX);
879 good = (const uint64_t *) abd_borrow_buf_copy((abd_t *)goodabd, size);
880 bad = (const uint64_t *) abd_borrow_buf_copy((abd_t *)badabd, size);
882 /* build up the range list by comparing the two buffers. */
883 for (idx = 0; idx < nui64s; idx++) {
884 if (good[idx] == bad[idx]) {
885 if (start == -1)
886 continue;
888 zei_add_range(eip, start, idx);
889 start = -1;
890 } else {
891 if (start != -1)
892 continue;
894 start = idx;
897 if (start != -1)
898 zei_add_range(eip, start, idx);
900 /* See if it will fit in our inline buffers */
901 inline_size = zei_range_total_size(eip);
902 if (inline_size > ZFM_MAX_INLINE)
903 no_inline = 1;
906 * If there is no change and we want to drop if the buffers are
907 * identical, do so.
909 if (inline_size == 0 && drop_if_identical) {
910 kmem_free(eip, sizeof (*eip));
911 abd_return_buf((abd_t *)goodabd, (void *)good, size);
912 abd_return_buf((abd_t *)badabd, (void *)bad, size);
913 return (NULL);
917 * Now walk through the ranges, filling in the details of the
918 * differences. Also convert our uint64_t-array offsets to byte
919 * offsets.
921 for (range = 0; range < eip->zei_range_count; range++) {
922 size_t start = eip->zei_ranges[range].zr_start;
923 size_t end = eip->zei_ranges[range].zr_end;
925 for (idx = start; idx < end; idx++) {
926 uint64_t set, cleared;
928 // bits set in bad, but not in good
929 set = ((~good[idx]) & bad[idx]);
930 // bits set in good, but not in bad
931 cleared = (good[idx] & (~bad[idx]));
933 allset |= set;
934 allcleared |= cleared;
936 if (!no_inline) {
937 ASSERT3U(offset, <, inline_size);
938 eip->zei_bits_set[offset] = set;
939 eip->zei_bits_cleared[offset] = cleared;
940 offset++;
943 update_histogram(set, eip->zei_histogram_set,
944 &eip->zei_range_sets[range]);
945 update_histogram(cleared, eip->zei_histogram_cleared,
946 &eip->zei_range_clears[range]);
949 /* convert to byte offsets */
950 eip->zei_ranges[range].zr_start *= sizeof (uint64_t);
951 eip->zei_ranges[range].zr_end *= sizeof (uint64_t);
954 abd_return_buf((abd_t *)goodabd, (void *)good, size);
955 abd_return_buf((abd_t *)badabd, (void *)bad, size);
957 eip->zei_allowed_mingap *= sizeof (uint64_t);
958 inline_size *= sizeof (uint64_t);
960 /* fill in ereport */
961 fm_payload_set(ereport,
962 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES,
963 DATA_TYPE_UINT32_ARRAY, 2 * eip->zei_range_count,
964 (uint32_t *)eip->zei_ranges,
965 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP,
966 DATA_TYPE_UINT32, eip->zei_allowed_mingap,
967 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS,
968 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_sets,
969 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS,
970 DATA_TYPE_UINT32_ARRAY, eip->zei_range_count, eip->zei_range_clears,
971 NULL);
973 if (!no_inline) {
974 fm_payload_set(ereport,
975 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS,
976 DATA_TYPE_UINT8_ARRAY,
977 inline_size, (uint8_t *)eip->zei_bits_set,
978 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS,
979 DATA_TYPE_UINT8_ARRAY,
980 inline_size, (uint8_t *)eip->zei_bits_cleared,
981 NULL);
982 } else {
983 fm_payload_set(ereport,
984 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM,
985 DATA_TYPE_UINT32_ARRAY,
986 NBBY * sizeof (uint64_t), eip->zei_histogram_set,
987 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM,
988 DATA_TYPE_UINT32_ARRAY,
989 NBBY * sizeof (uint64_t), eip->zei_histogram_cleared,
990 NULL);
992 return (eip);
994 #else
995 /*ARGSUSED*/
996 void
997 zfs_ereport_clear(spa_t *spa, vdev_t *vd)
1000 #endif
1003 * Make sure our event is still valid for the given zio/vdev/pool. For example,
1004 * we don't want to keep logging events for a faulted or missing vdev.
1006 boolean_t
1007 zfs_ereport_is_valid(const char *subclass, spa_t *spa, vdev_t *vd, zio_t *zio)
1009 #ifdef _KERNEL
1011 * If we are doing a spa_tryimport() or in recovery mode,
1012 * ignore errors.
1014 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT ||
1015 spa_load_state(spa) == SPA_LOAD_RECOVER)
1016 return (B_FALSE);
1019 * If we are in the middle of opening a pool, and the previous attempt
1020 * failed, don't bother logging any new ereports - we're just going to
1021 * get the same diagnosis anyway.
1023 if (spa_load_state(spa) != SPA_LOAD_NONE &&
1024 spa->spa_last_open_failed)
1025 return (B_FALSE);
1027 if (zio != NULL) {
1029 * If this is not a read or write zio, ignore the error. This
1030 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
1032 if (zio->io_type != ZIO_TYPE_READ &&
1033 zio->io_type != ZIO_TYPE_WRITE)
1034 return (B_FALSE);
1036 if (vd != NULL) {
1038 * If the vdev has already been marked as failing due
1039 * to a failed probe, then ignore any subsequent I/O
1040 * errors, as the DE will automatically fault the vdev
1041 * on the first such failure. This also catches cases
1042 * where vdev_remove_wanted is set and the device has
1043 * not yet been asynchronously placed into the REMOVED
1044 * state.
1046 if (zio->io_vd == vd && !vdev_accessible(vd, zio))
1047 return (B_FALSE);
1050 * Ignore checksum errors for reads from DTL regions of
1051 * leaf vdevs.
1053 if (zio->io_type == ZIO_TYPE_READ &&
1054 zio->io_error == ECKSUM &&
1055 vd->vdev_ops->vdev_op_leaf &&
1056 vdev_dtl_contains(vd, DTL_MISSING, zio->io_txg, 1))
1057 return (B_FALSE);
1062 * For probe failure, we want to avoid posting ereports if we've
1063 * already removed the device in the meantime.
1065 if (vd != NULL &&
1066 strcmp(subclass, FM_EREPORT_ZFS_PROBE_FAILURE) == 0 &&
1067 (vd->vdev_remove_wanted || vd->vdev_state == VDEV_STATE_REMOVED))
1068 return (B_FALSE);
1070 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1071 if ((strcmp(subclass, FM_EREPORT_ZFS_DELAY) == 0) &&
1072 (zio != NULL) && (!zio->io_timestamp)) {
1073 return (B_FALSE);
1075 #endif
1076 return (B_TRUE);
1080 * Post an ereport for the given subclass
1082 * Returns
1083 * - 0 if an event was posted
1084 * - EINVAL if there was a problem posting event
1085 * - EBUSY if the event was rate limited
1086 * - EALREADY if the event was already posted (duplicate)
1089 zfs_ereport_post(const char *subclass, spa_t *spa, vdev_t *vd,
1090 const zbookmark_phys_t *zb, zio_t *zio, uint64_t state)
1092 int rc = 0;
1093 #ifdef _KERNEL
1094 nvlist_t *ereport = NULL;
1095 nvlist_t *detector = NULL;
1097 if (!zfs_ereport_is_valid(subclass, spa, vd, zio))
1098 return (EINVAL);
1100 if (zfs_ereport_is_duplicate(subclass, spa, vd, zb, zio, 0, 0))
1101 return (SET_ERROR(EALREADY));
1103 if (zfs_is_ratelimiting_event(subclass, vd))
1104 return (SET_ERROR(EBUSY));
1106 if (!zfs_ereport_start(&ereport, &detector, subclass, spa, vd,
1107 zb, zio, state, 0))
1108 return (SET_ERROR(EINVAL)); /* couldn't post event */
1110 if (ereport == NULL)
1111 return (SET_ERROR(EINVAL));
1113 /* Cleanup is handled by the callback function */
1114 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1115 #endif
1116 return (rc);
1120 * Prepare a checksum ereport
1122 * Returns
1123 * - 0 if an event was posted
1124 * - EINVAL if there was a problem posting event
1125 * - EBUSY if the event was rate limited
1126 * - EALREADY if the event was already posted (duplicate)
1129 zfs_ereport_start_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1130 struct zio *zio, uint64_t offset, uint64_t length, zio_bad_cksum_t *info)
1132 zio_cksum_report_t *report;
1134 #ifdef _KERNEL
1135 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1136 return (SET_ERROR(EINVAL));
1138 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1139 offset, length))
1140 return (SET_ERROR(EALREADY));
1142 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1143 return (SET_ERROR(EBUSY));
1144 #endif
1146 report = kmem_zalloc(sizeof (*report), KM_SLEEP);
1148 zio_vsd_default_cksum_report(zio, report);
1150 /* copy the checksum failure information if it was provided */
1151 if (info != NULL) {
1152 report->zcr_ckinfo = kmem_zalloc(sizeof (*info), KM_SLEEP);
1153 bcopy(info, report->zcr_ckinfo, sizeof (*info));
1156 report->zcr_sector = 1ULL << vd->vdev_top->vdev_ashift;
1157 report->zcr_align =
1158 vdev_psize_to_asize(vd->vdev_top, report->zcr_sector);
1159 report->zcr_length = length;
1161 #ifdef _KERNEL
1162 (void) zfs_ereport_start(&report->zcr_ereport, &report->zcr_detector,
1163 FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio, offset, length);
1165 if (report->zcr_ereport == NULL) {
1166 zfs_ereport_free_checksum(report);
1167 return (0);
1169 #endif
1171 mutex_enter(&spa->spa_errlist_lock);
1172 report->zcr_next = zio->io_logical->io_cksum_report;
1173 zio->io_logical->io_cksum_report = report;
1174 mutex_exit(&spa->spa_errlist_lock);
1175 return (0);
1178 void
1179 zfs_ereport_finish_checksum(zio_cksum_report_t *report, const abd_t *good_data,
1180 const abd_t *bad_data, boolean_t drop_if_identical)
1182 #ifdef _KERNEL
1183 zfs_ecksum_info_t *info;
1185 info = annotate_ecksum(report->zcr_ereport, report->zcr_ckinfo,
1186 good_data, bad_data, report->zcr_length, drop_if_identical);
1187 if (info != NULL)
1188 zfs_zevent_post(report->zcr_ereport,
1189 report->zcr_detector, zfs_zevent_post_cb);
1190 else
1191 zfs_zevent_post_cb(report->zcr_ereport, report->zcr_detector);
1193 report->zcr_ereport = report->zcr_detector = NULL;
1194 if (info != NULL)
1195 kmem_free(info, sizeof (*info));
1196 #endif
1199 void
1200 zfs_ereport_free_checksum(zio_cksum_report_t *rpt)
1202 #ifdef _KERNEL
1203 if (rpt->zcr_ereport != NULL) {
1204 fm_nvlist_destroy(rpt->zcr_ereport,
1205 FM_NVA_FREE);
1206 fm_nvlist_destroy(rpt->zcr_detector,
1207 FM_NVA_FREE);
1209 #endif
1210 rpt->zcr_free(rpt->zcr_cbdata, rpt->zcr_cbinfo);
1212 if (rpt->zcr_ckinfo != NULL)
1213 kmem_free(rpt->zcr_ckinfo, sizeof (*rpt->zcr_ckinfo));
1215 kmem_free(rpt, sizeof (*rpt));
1219 * Post a checksum ereport
1221 * Returns
1222 * - 0 if an event was posted
1223 * - EINVAL if there was a problem posting event
1224 * - EBUSY if the event was rate limited
1225 * - EALREADY if the event was already posted (duplicate)
1228 zfs_ereport_post_checksum(spa_t *spa, vdev_t *vd, const zbookmark_phys_t *zb,
1229 struct zio *zio, uint64_t offset, uint64_t length,
1230 const abd_t *good_data, const abd_t *bad_data, zio_bad_cksum_t *zbc)
1232 int rc = 0;
1233 #ifdef _KERNEL
1234 nvlist_t *ereport = NULL;
1235 nvlist_t *detector = NULL;
1236 zfs_ecksum_info_t *info;
1238 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zio))
1239 return (SET_ERROR(EINVAL));
1241 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM, spa, vd, zb, zio,
1242 offset, length))
1243 return (SET_ERROR(EALREADY));
1245 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM, vd))
1246 return (SET_ERROR(EBUSY));
1248 if (!zfs_ereport_start(&ereport, &detector, FM_EREPORT_ZFS_CHECKSUM,
1249 spa, vd, zb, zio, offset, length) || (ereport == NULL)) {
1250 return (SET_ERROR(EINVAL));
1253 info = annotate_ecksum(ereport, zbc, good_data, bad_data, length,
1254 B_FALSE);
1256 if (info != NULL) {
1257 rc = zfs_zevent_post(ereport, detector, zfs_zevent_post_cb);
1258 kmem_free(info, sizeof (*info));
1260 #endif
1261 return (rc);
1265 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1266 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h
1267 * and are designed to be consumed by the ZFS Event Daemon (ZED). For
1268 * additional details refer to the zed(8) man page.
1270 nvlist_t *
1271 zfs_event_create(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1272 nvlist_t *aux)
1274 nvlist_t *resource = NULL;
1275 #ifdef _KERNEL
1276 char class[64];
1278 if (spa_load_state(spa) == SPA_LOAD_TRYIMPORT)
1279 return (NULL);
1281 if ((resource = fm_nvlist_create(NULL)) == NULL)
1282 return (NULL);
1284 (void) snprintf(class, sizeof (class), "%s.%s.%s", type,
1285 ZFS_ERROR_CLASS, name);
1286 VERIFY0(nvlist_add_uint8(resource, FM_VERSION, FM_RSRC_VERSION));
1287 VERIFY0(nvlist_add_string(resource, FM_CLASS, class));
1288 VERIFY0(nvlist_add_string(resource,
1289 FM_EREPORT_PAYLOAD_ZFS_POOL, spa_name(spa)));
1290 VERIFY0(nvlist_add_uint64(resource,
1291 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID, spa_guid(spa)));
1292 VERIFY0(nvlist_add_uint64(resource,
1293 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE, spa_state(spa)));
1294 VERIFY0(nvlist_add_int32(resource,
1295 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT, spa_load_state(spa)));
1297 if (vd) {
1298 VERIFY0(nvlist_add_uint64(resource,
1299 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID, vd->vdev_guid));
1300 VERIFY0(nvlist_add_uint64(resource,
1301 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE, vd->vdev_state));
1302 if (vd->vdev_path != NULL)
1303 VERIFY0(nvlist_add_string(resource,
1304 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH, vd->vdev_path));
1305 if (vd->vdev_devid != NULL)
1306 VERIFY0(nvlist_add_string(resource,
1307 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID, vd->vdev_devid));
1308 if (vd->vdev_fru != NULL)
1309 VERIFY0(nvlist_add_string(resource,
1310 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU, vd->vdev_fru));
1311 if (vd->vdev_enc_sysfs_path != NULL)
1312 VERIFY0(nvlist_add_string(resource,
1313 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1314 vd->vdev_enc_sysfs_path));
1317 /* also copy any optional payload data */
1318 if (aux) {
1319 nvpair_t *elem = NULL;
1321 while ((elem = nvlist_next_nvpair(aux, elem)) != NULL)
1322 (void) nvlist_add_nvpair(resource, elem);
1325 #endif
1326 return (resource);
1329 static void
1330 zfs_post_common(spa_t *spa, vdev_t *vd, const char *type, const char *name,
1331 nvlist_t *aux)
1333 #ifdef _KERNEL
1334 nvlist_t *resource;
1336 resource = zfs_event_create(spa, vd, type, name, aux);
1337 if (resource)
1338 zfs_zevent_post(resource, NULL, zfs_zevent_post_cb);
1339 #endif
1343 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1344 * has been removed from the system. This will cause the DE to ignore any
1345 * recent I/O errors, inferring that they are due to the asynchronous device
1346 * removal.
1348 void
1349 zfs_post_remove(spa_t *spa, vdev_t *vd)
1351 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_REMOVED, NULL);
1355 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1356 * has the 'autoreplace' property set, and therefore any broken vdevs will be
1357 * handled by higher level logic, and no vdev fault should be generated.
1359 void
1360 zfs_post_autoreplace(spa_t *spa, vdev_t *vd)
1362 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_AUTOREPLACE, NULL);
1366 * The 'resource.fs.zfs.statechange' event is an internal signal that the
1367 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
1368 * cause the retire agent to repair any outstanding fault management cases
1369 * open because the device was not found (fault.fs.zfs.device).
1371 void
1372 zfs_post_state_change(spa_t *spa, vdev_t *vd, uint64_t laststate)
1374 #ifdef _KERNEL
1375 nvlist_t *aux;
1378 * Add optional supplemental keys to payload
1380 aux = fm_nvlist_create(NULL);
1381 if (vd && aux) {
1382 if (vd->vdev_physpath) {
1383 (void) nvlist_add_string(aux,
1384 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH,
1385 vd->vdev_physpath);
1387 if (vd->vdev_enc_sysfs_path) {
1388 (void) nvlist_add_string(aux,
1389 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH,
1390 vd->vdev_enc_sysfs_path);
1393 (void) nvlist_add_uint64(aux,
1394 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE, laststate);
1397 zfs_post_common(spa, vd, FM_RSRC_CLASS, FM_RESOURCE_STATECHANGE,
1398 aux);
1400 if (aux)
1401 fm_nvlist_destroy(aux, FM_NVA_FREE);
1402 #endif
1405 #ifdef _KERNEL
1406 void
1407 zfs_ereport_init(void)
1409 mutex_init(&recent_events_lock, NULL, MUTEX_DEFAULT, NULL);
1410 list_create(&recent_events_list, sizeof (recent_events_node_t),
1411 offsetof(recent_events_node_t, re_list_link));
1412 avl_create(&recent_events_tree, recent_events_compare,
1413 sizeof (recent_events_node_t), offsetof(recent_events_node_t,
1414 re_tree_link));
1418 * This 'early' fini needs to run before zfs_fini() which on Linux waits
1419 * for the system_delay_taskq to drain.
1421 void
1422 zfs_ereport_taskq_fini(void)
1424 mutex_enter(&recent_events_lock);
1425 if (recent_events_cleaner_tqid != 0) {
1426 taskq_cancel_id(system_delay_taskq, recent_events_cleaner_tqid);
1427 recent_events_cleaner_tqid = 0;
1429 mutex_exit(&recent_events_lock);
1432 void
1433 zfs_ereport_fini(void)
1435 recent_events_node_t *entry;
1437 while ((entry = list_head(&recent_events_list)) != NULL) {
1438 avl_remove(&recent_events_tree, entry);
1439 list_remove(&recent_events_list, entry);
1440 kmem_free(entry, sizeof (*entry));
1442 avl_destroy(&recent_events_tree);
1443 list_destroy(&recent_events_list);
1444 mutex_destroy(&recent_events_lock);
1447 EXPORT_SYMBOL(zfs_ereport_post);
1448 EXPORT_SYMBOL(zfs_ereport_is_valid);
1449 EXPORT_SYMBOL(zfs_ereport_post_checksum);
1450 EXPORT_SYMBOL(zfs_post_remove);
1451 EXPORT_SYMBOL(zfs_post_autoreplace);
1452 EXPORT_SYMBOL(zfs_post_state_change);
1454 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_max, UINT, ZMOD_RW,
1455 "Maximum recent zevents records to retain for duplicate checking");
1456 ZFS_MODULE_PARAM(zfs_zevent, zfs_zevent_, retain_expire_secs, UINT, ZMOD_RW,
1457 "Expiration time for recent zevents records");
1458 #endif /* _KERNEL */