4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2012,2021 by Delphix. All rights reserved.
31 #include <sys/spa_impl.h>
33 #include <sys/vdev_impl.h>
35 #include <sys/zio_checksum.h>
37 #include <sys/fm/fs/zfs.h>
38 #include <sys/fm/protocol.h>
39 #include <sys/fm/util.h>
40 #include <sys/sysevent.h>
43 * This general routine is responsible for generating all the different ZFS
44 * ereports. The payload is dependent on the class, and which arguments are
45 * supplied to the function:
47 * EREPORT POOL VDEV IO
53 * If we are in a loading state, all errors are chained together by the same
54 * SPA-wide ENA (Error Numeric Association).
56 * For isolated I/O requests, we get the ENA from the zio_t. The propagation
57 * gets very complicated due to RAID-Z, gang blocks, and vdev caching. We want
58 * to chain together all ereports associated with a logical piece of data. For
59 * read I/Os, there are basically three 'types' of I/O, which form a roughly
63 * | Aggregate I/O | No associated logical data or device
67 * +---------------+ Reads associated with a piece of logical data.
68 * | Read I/O | This includes reads on behalf of RAID-Z,
69 * +---------------+ mirrors, gang blocks, retries, etc.
72 * +---------------+ Reads associated with a particular device, but
73 * | Physical I/O | no logical data. Issued as part of vdev caching
74 * +---------------+ and I/O aggregation.
76 * Note that 'physical I/O' here is not the same terminology as used in the rest
77 * of ZIO. Typically, 'physical I/O' simply means that there is no attached
78 * blockpointer. But I/O with no associated block pointer can still be related
79 * to a logical piece of data (i.e. RAID-Z requests).
81 * Purely physical I/O always have unique ENAs. They are not related to a
82 * particular piece of logical data, and therefore cannot be chained together.
83 * We still generate an ereport, but the DE doesn't correlate it with any
84 * logical piece of data. When such an I/O fails, the delegated I/O requests
85 * will issue a retry, which will trigger the 'real' ereport with the correct
88 * We keep track of the ENA for a ZIO chain through the 'io_logical' member.
89 * When a new logical I/O is issued, we set this to point to itself. Child I/Os
90 * then inherit this pointer, so that when it is first set subsequent failures
91 * will use the same ENA. For vdev cache fill and queue aggregation I/O,
92 * this pointer is set to NULL, and no ereport will be generated (since it
93 * doesn't actually correspond to any particular device or piece of data,
94 * and the caller will always retry without caching or queueing anyway).
96 * For checksum errors, we want to include more information about the actual
97 * error which occurs. Accordingly, we build an ereport when the error is
98 * noticed, but instead of sending it in immediately, we hang it off of the
99 * io_cksum_report field of the logical IO. When the logical IO completes
100 * (successfully or not), zfs_ereport_finish_checksum() is called with the
101 * good and bad versions of the buffer (if available), and we annotate the
102 * ereport with information about the differences.
107 * Duplicate ereport Detection
109 * Some ereports are retained momentarily for detecting duplicates. These
110 * are kept in a recent_events_node_t in both a time-ordered list and an AVL
111 * tree of recent unique ereports.
113 * The lifespan of these recent ereports is bounded (15 mins) and a cleaner
114 * task is used to purge stale entries.
116 static list_t recent_events_list
;
117 static avl_tree_t recent_events_tree
;
118 static kmutex_t recent_events_lock
;
119 static taskqid_t recent_events_cleaner_tqid
;
122 * Each node is about 128 bytes so 2,000 would consume 1/4 MiB.
124 * This setting can be changed dynamically and setting it to zero
125 * disables duplicate detection.
127 unsigned int zfs_zevent_retain_max
= 2000;
130 * The lifespan for a recent ereport entry. The default of 15 minutes is
131 * intended to outlive the zfs diagnosis engine's threshold of 10 errors
132 * over a period of 10 minutes.
134 unsigned int zfs_zevent_retain_expire_secs
= 900;
136 typedef enum zfs_subclass
{
143 /* common criteria */
144 uint64_t re_pool_guid
;
145 uint64_t re_vdev_guid
;
148 uint64_t re_io_offset
;
149 zfs_subclass_t re_subclass
;
150 zio_priority_t re_io_priority
;
152 /* logical zio criteria (optional) */
153 zbookmark_phys_t re_io_bookmark
;
156 avl_node_t re_tree_link
;
157 list_node_t re_list_link
;
158 uint64_t re_timestamp
;
159 } recent_events_node_t
;
162 recent_events_compare(const void *a
, const void *b
)
164 const recent_events_node_t
*node1
= a
;
165 const recent_events_node_t
*node2
= b
;
169 * The comparison order here is somewhat arbitrary.
170 * What's important is that if every criteria matches, then it
171 * is a duplicate (i.e. compare returns 0)
173 if ((cmp
= TREE_CMP(node1
->re_subclass
, node2
->re_subclass
)) != 0)
175 if ((cmp
= TREE_CMP(node1
->re_pool_guid
, node2
->re_pool_guid
)) != 0)
177 if ((cmp
= TREE_CMP(node1
->re_vdev_guid
, node2
->re_vdev_guid
)) != 0)
179 if ((cmp
= TREE_CMP(node1
->re_io_error
, node2
->re_io_error
)) != 0)
181 if ((cmp
= TREE_CMP(node1
->re_io_priority
, node2
->re_io_priority
)) != 0)
183 if ((cmp
= TREE_CMP(node1
->re_io_size
, node2
->re_io_size
)) != 0)
185 if ((cmp
= TREE_CMP(node1
->re_io_offset
, node2
->re_io_offset
)) != 0)
188 const zbookmark_phys_t
*zb1
= &node1
->re_io_bookmark
;
189 const zbookmark_phys_t
*zb2
= &node2
->re_io_bookmark
;
191 if ((cmp
= TREE_CMP(zb1
->zb_objset
, zb2
->zb_objset
)) != 0)
193 if ((cmp
= TREE_CMP(zb1
->zb_object
, zb2
->zb_object
)) != 0)
195 if ((cmp
= TREE_CMP(zb1
->zb_level
, zb2
->zb_level
)) != 0)
197 if ((cmp
= TREE_CMP(zb1
->zb_blkid
, zb2
->zb_blkid
)) != 0)
203 static void zfs_ereport_schedule_cleaner(void);
206 * background task to clean stale recent event nodes.
210 zfs_ereport_cleaner(void *arg
)
212 recent_events_node_t
*entry
;
213 uint64_t now
= gethrtime();
216 * purge expired entries
218 mutex_enter(&recent_events_lock
);
219 while ((entry
= list_tail(&recent_events_list
)) != NULL
) {
220 uint64_t age
= NSEC2SEC(now
- entry
->re_timestamp
);
221 if (age
<= zfs_zevent_retain_expire_secs
)
224 /* remove expired node */
225 avl_remove(&recent_events_tree
, entry
);
226 list_remove(&recent_events_list
, entry
);
227 kmem_free(entry
, sizeof (*entry
));
230 /* Restart the cleaner if more entries remain */
231 recent_events_cleaner_tqid
= 0;
232 if (!list_is_empty(&recent_events_list
))
233 zfs_ereport_schedule_cleaner();
235 mutex_exit(&recent_events_lock
);
239 zfs_ereport_schedule_cleaner(void)
241 ASSERT(MUTEX_HELD(&recent_events_lock
));
243 uint64_t timeout
= SEC2NSEC(zfs_zevent_retain_expire_secs
+ 1);
245 recent_events_cleaner_tqid
= taskq_dispatch_delay(
246 system_delay_taskq
, zfs_ereport_cleaner
, NULL
, TQ_SLEEP
,
247 ddi_get_lbolt() + NSEC_TO_TICK(timeout
));
251 * Clear entries for a given vdev or all vdevs in a pool when vdev == NULL
254 zfs_ereport_clear(spa_t
*spa
, vdev_t
*vd
)
256 uint64_t vdev_guid
, pool_guid
;
259 ASSERT(vd
!= NULL
|| spa
!= NULL
);
262 pool_guid
= spa_guid(spa
);
264 vdev_guid
= vd
->vdev_guid
;
268 mutex_enter(&recent_events_lock
);
270 recent_events_node_t
*next
= list_head(&recent_events_list
);
271 while (next
!= NULL
) {
272 recent_events_node_t
*entry
= next
;
274 next
= list_next(&recent_events_list
, next
);
276 if (entry
->re_vdev_guid
== vdev_guid
||
277 entry
->re_pool_guid
== pool_guid
) {
278 avl_remove(&recent_events_tree
, entry
);
279 list_remove(&recent_events_list
, entry
);
280 kmem_free(entry
, sizeof (*entry
));
285 mutex_exit(&recent_events_lock
);
289 * Check if an ereport would be a duplicate of one recently posted.
291 * An ereport is considered a duplicate if the set of criteria in
292 * recent_events_node_t all match.
294 * Only FM_EREPORT_ZFS_IO, FM_EREPORT_ZFS_DATA, and FM_EREPORT_ZFS_CHECKSUM
295 * are candidates for duplicate checking.
298 zfs_ereport_is_duplicate(const char *subclass
, spa_t
*spa
, vdev_t
*vd
,
299 const zbookmark_phys_t
*zb
, zio_t
*zio
, uint64_t offset
, uint64_t size
)
301 recent_events_node_t search
= {0}, *entry
;
303 if (vd
== NULL
|| zio
== NULL
)
306 if (zfs_zevent_retain_max
== 0)
309 if (strcmp(subclass
, FM_EREPORT_ZFS_IO
) == 0)
310 search
.re_subclass
= ZSC_IO
;
311 else if (strcmp(subclass
, FM_EREPORT_ZFS_DATA
) == 0)
312 search
.re_subclass
= ZSC_DATA
;
313 else if (strcmp(subclass
, FM_EREPORT_ZFS_CHECKSUM
) == 0)
314 search
.re_subclass
= ZSC_CHECKSUM
;
318 search
.re_pool_guid
= spa_guid(spa
);
319 search
.re_vdev_guid
= vd
->vdev_guid
;
320 search
.re_io_error
= zio
->io_error
;
321 search
.re_io_priority
= zio
->io_priority
;
322 /* if size is supplied use it over what's in zio */
324 search
.re_io_size
= size
;
325 search
.re_io_offset
= offset
;
327 search
.re_io_size
= zio
->io_size
;
328 search
.re_io_offset
= zio
->io_offset
;
331 /* grab optional logical zio criteria */
333 search
.re_io_bookmark
.zb_objset
= zb
->zb_objset
;
334 search
.re_io_bookmark
.zb_object
= zb
->zb_object
;
335 search
.re_io_bookmark
.zb_level
= zb
->zb_level
;
336 search
.re_io_bookmark
.zb_blkid
= zb
->zb_blkid
;
339 uint64_t now
= gethrtime();
341 mutex_enter(&recent_events_lock
);
343 /* check if we have seen this one recently */
344 entry
= avl_find(&recent_events_tree
, &search
, NULL
);
346 uint64_t age
= NSEC2SEC(now
- entry
->re_timestamp
);
349 * There is still an active cleaner (since we're here).
350 * Reset the last seen time for this duplicate entry
351 * so that its lifespand gets extended.
353 list_remove(&recent_events_list
, entry
);
354 list_insert_head(&recent_events_list
, entry
);
355 entry
->re_timestamp
= now
;
357 zfs_zevent_track_duplicate();
358 mutex_exit(&recent_events_lock
);
360 return (age
<= zfs_zevent_retain_expire_secs
);
363 if (avl_numnodes(&recent_events_tree
) >= zfs_zevent_retain_max
) {
364 /* recycle oldest node */
365 entry
= list_tail(&recent_events_list
);
366 ASSERT(entry
!= NULL
);
367 list_remove(&recent_events_list
, entry
);
368 avl_remove(&recent_events_tree
, entry
);
370 entry
= kmem_alloc(sizeof (recent_events_node_t
), KM_SLEEP
);
373 /* record this as a recent ereport */
375 avl_add(&recent_events_tree
, entry
);
376 list_insert_head(&recent_events_list
, entry
);
377 entry
->re_timestamp
= now
;
379 /* Start a cleaner if not already scheduled */
380 if (recent_events_cleaner_tqid
== 0)
381 zfs_ereport_schedule_cleaner();
383 mutex_exit(&recent_events_lock
);
388 zfs_zevent_post_cb(nvlist_t
*nvl
, nvlist_t
*detector
)
391 fm_nvlist_destroy(nvl
, FM_NVA_FREE
);
394 fm_nvlist_destroy(detector
, FM_NVA_FREE
);
398 * We want to rate limit ZIO delay, deadman, and checksum events so as to not
399 * flood zevent consumers when a disk is acting up.
401 * Returns 1 if we're ratelimiting, 0 if not.
404 zfs_is_ratelimiting_event(const char *subclass
, vdev_t
*vd
)
408 * zfs_ratelimit() returns 1 if we're *not* ratelimiting and 0 if we
409 * are. Invert it to get our return value.
411 if (strcmp(subclass
, FM_EREPORT_ZFS_DELAY
) == 0) {
412 rc
= !zfs_ratelimit(&vd
->vdev_delay_rl
);
413 } else if (strcmp(subclass
, FM_EREPORT_ZFS_DEADMAN
) == 0) {
414 rc
= !zfs_ratelimit(&vd
->vdev_deadman_rl
);
415 } else if (strcmp(subclass
, FM_EREPORT_ZFS_CHECKSUM
) == 0) {
416 rc
= !zfs_ratelimit(&vd
->vdev_checksum_rl
);
420 /* We're rate limiting */
421 fm_erpt_dropped_increment();
428 * Return B_TRUE if the event actually posted, B_FALSE if not.
431 zfs_ereport_start(nvlist_t
**ereport_out
, nvlist_t
**detector_out
,
432 const char *subclass
, spa_t
*spa
, vdev_t
*vd
, const zbookmark_phys_t
*zb
,
433 zio_t
*zio
, uint64_t stateoroffset
, uint64_t size
)
435 nvlist_t
*ereport
, *detector
;
440 if ((ereport
= fm_nvlist_create(NULL
)) == NULL
)
443 if ((detector
= fm_nvlist_create(NULL
)) == NULL
) {
444 fm_nvlist_destroy(ereport
, FM_NVA_FREE
);
449 * Serialize ereport generation
451 mutex_enter(&spa
->spa_errlist_lock
);
454 * Determine the ENA to use for this event. If we are in a loading
455 * state, use a SPA-wide ENA. Otherwise, if we are in an I/O state, use
456 * a root zio-wide ENA. Otherwise, simply use a unique ENA.
458 if (spa_load_state(spa
) != SPA_LOAD_NONE
) {
459 if (spa
->spa_ena
== 0)
460 spa
->spa_ena
= fm_ena_generate(0, FM_ENA_FMT1
);
462 } else if (zio
!= NULL
&& zio
->io_logical
!= NULL
) {
463 if (zio
->io_logical
->io_ena
== 0)
464 zio
->io_logical
->io_ena
=
465 fm_ena_generate(0, FM_ENA_FMT1
);
466 ena
= zio
->io_logical
->io_ena
;
468 ena
= fm_ena_generate(0, FM_ENA_FMT1
);
472 * Construct the full class, detector, and other standard FMA fields.
474 (void) snprintf(class, sizeof (class), "%s.%s",
475 ZFS_ERROR_CLASS
, subclass
);
477 fm_fmri_zfs_set(detector
, FM_ZFS_SCHEME_VERSION
, spa_guid(spa
),
478 vd
!= NULL
? vd
->vdev_guid
: 0);
480 fm_ereport_set(ereport
, FM_EREPORT_VERSION
, class, ena
, detector
, NULL
);
483 * Construct the per-ereport payload, depending on which parameters are
488 * Generic payload members common to all ereports.
490 fm_payload_set(ereport
,
491 FM_EREPORT_PAYLOAD_ZFS_POOL
, DATA_TYPE_STRING
, spa_name(spa
),
492 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID
, DATA_TYPE_UINT64
, spa_guid(spa
),
493 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE
, DATA_TYPE_UINT64
,
494 (uint64_t)spa_state(spa
),
495 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT
, DATA_TYPE_INT32
,
496 (int32_t)spa_load_state(spa
), NULL
);
498 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_POOL_FAILMODE
,
500 spa_get_failmode(spa
) == ZIO_FAILURE_MODE_WAIT
?
501 FM_EREPORT_FAILMODE_WAIT
:
502 spa_get_failmode(spa
) == ZIO_FAILURE_MODE_CONTINUE
?
503 FM_EREPORT_FAILMODE_CONTINUE
: FM_EREPORT_FAILMODE_PANIC
,
507 vdev_t
*pvd
= vd
->vdev_parent
;
508 vdev_queue_t
*vq
= &vd
->vdev_queue
;
509 vdev_stat_t
*vs
= &vd
->vdev_stat
;
511 uint64_t *spare_guids
;
515 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID
,
516 DATA_TYPE_UINT64
, vd
->vdev_guid
,
517 FM_EREPORT_PAYLOAD_ZFS_VDEV_TYPE
,
518 DATA_TYPE_STRING
, vd
->vdev_ops
->vdev_op_type
, NULL
);
519 if (vd
->vdev_path
!= NULL
)
520 fm_payload_set(ereport
,
521 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH
,
522 DATA_TYPE_STRING
, vd
->vdev_path
, NULL
);
523 if (vd
->vdev_devid
!= NULL
)
524 fm_payload_set(ereport
,
525 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID
,
526 DATA_TYPE_STRING
, vd
->vdev_devid
, NULL
);
527 if (vd
->vdev_fru
!= NULL
)
528 fm_payload_set(ereport
,
529 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU
,
530 DATA_TYPE_STRING
, vd
->vdev_fru
, NULL
);
531 if (vd
->vdev_enc_sysfs_path
!= NULL
)
532 fm_payload_set(ereport
,
533 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH
,
534 DATA_TYPE_STRING
, vd
->vdev_enc_sysfs_path
, NULL
);
536 fm_payload_set(ereport
,
537 FM_EREPORT_PAYLOAD_ZFS_VDEV_ASHIFT
,
538 DATA_TYPE_UINT64
, vd
->vdev_ashift
, NULL
);
541 fm_payload_set(ereport
,
542 FM_EREPORT_PAYLOAD_ZFS_VDEV_COMP_TS
,
543 DATA_TYPE_UINT64
, vq
->vq_io_complete_ts
, NULL
);
544 fm_payload_set(ereport
,
545 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELTA_TS
,
546 DATA_TYPE_UINT64
, vq
->vq_io_delta_ts
, NULL
);
550 fm_payload_set(ereport
,
551 FM_EREPORT_PAYLOAD_ZFS_VDEV_READ_ERRORS
,
552 DATA_TYPE_UINT64
, vs
->vs_read_errors
,
553 FM_EREPORT_PAYLOAD_ZFS_VDEV_WRITE_ERRORS
,
554 DATA_TYPE_UINT64
, vs
->vs_write_errors
,
555 FM_EREPORT_PAYLOAD_ZFS_VDEV_CKSUM_ERRORS
,
556 DATA_TYPE_UINT64
, vs
->vs_checksum_errors
,
557 FM_EREPORT_PAYLOAD_ZFS_VDEV_DELAYS
,
558 DATA_TYPE_UINT64
, vs
->vs_slow_ios
,
563 fm_payload_set(ereport
,
564 FM_EREPORT_PAYLOAD_ZFS_PARENT_GUID
,
565 DATA_TYPE_UINT64
, pvd
->vdev_guid
,
566 FM_EREPORT_PAYLOAD_ZFS_PARENT_TYPE
,
567 DATA_TYPE_STRING
, pvd
->vdev_ops
->vdev_op_type
,
570 fm_payload_set(ereport
,
571 FM_EREPORT_PAYLOAD_ZFS_PARENT_PATH
,
572 DATA_TYPE_STRING
, pvd
->vdev_path
, NULL
);
574 fm_payload_set(ereport
,
575 FM_EREPORT_PAYLOAD_ZFS_PARENT_DEVID
,
576 DATA_TYPE_STRING
, pvd
->vdev_devid
, NULL
);
579 spare_count
= spa
->spa_spares
.sav_count
;
580 spare_paths
= kmem_zalloc(sizeof (char *) * spare_count
,
582 spare_guids
= kmem_zalloc(sizeof (uint64_t) * spare_count
,
585 for (i
= 0; i
< spare_count
; i
++) {
586 spare_vd
= spa
->spa_spares
.sav_vdevs
[i
];
588 spare_paths
[i
] = spare_vd
->vdev_path
;
589 spare_guids
[i
] = spare_vd
->vdev_guid
;
593 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_PATHS
,
594 DATA_TYPE_STRING_ARRAY
, spare_count
, spare_paths
,
595 FM_EREPORT_PAYLOAD_ZFS_VDEV_SPARE_GUIDS
,
596 DATA_TYPE_UINT64_ARRAY
, spare_count
, spare_guids
, NULL
);
598 kmem_free(spare_guids
, sizeof (uint64_t) * spare_count
);
599 kmem_free(spare_paths
, sizeof (char *) * spare_count
);
604 * Payload common to all I/Os.
606 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_ERR
,
607 DATA_TYPE_INT32
, zio
->io_error
, NULL
);
608 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_FLAGS
,
609 DATA_TYPE_INT32
, zio
->io_flags
, NULL
);
610 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_STAGE
,
611 DATA_TYPE_UINT32
, zio
->io_stage
, NULL
);
612 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_PIPELINE
,
613 DATA_TYPE_UINT32
, zio
->io_pipeline
, NULL
);
614 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELAY
,
615 DATA_TYPE_UINT64
, zio
->io_delay
, NULL
);
616 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_TIMESTAMP
,
617 DATA_TYPE_UINT64
, zio
->io_timestamp
, NULL
);
618 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_DELTA
,
619 DATA_TYPE_UINT64
, zio
->io_delta
, NULL
);
620 fm_payload_set(ereport
, FM_EREPORT_PAYLOAD_ZFS_ZIO_PRIORITY
,
621 DATA_TYPE_UINT32
, zio
->io_priority
, NULL
);
624 * If the 'size' parameter is non-zero, it indicates this is a
625 * RAID-Z or other I/O where the physical offset and length are
626 * provided for us, instead of within the zio_t.
630 fm_payload_set(ereport
,
631 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET
,
632 DATA_TYPE_UINT64
, stateoroffset
,
633 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE
,
634 DATA_TYPE_UINT64
, size
, NULL
);
636 fm_payload_set(ereport
,
637 FM_EREPORT_PAYLOAD_ZFS_ZIO_OFFSET
,
638 DATA_TYPE_UINT64
, zio
->io_offset
,
639 FM_EREPORT_PAYLOAD_ZFS_ZIO_SIZE
,
640 DATA_TYPE_UINT64
, zio
->io_size
, NULL
);
642 } else if (vd
!= NULL
) {
644 * If we have a vdev but no zio, this is a device fault, and the
645 * 'stateoroffset' parameter indicates the previous state of the
648 fm_payload_set(ereport
,
649 FM_EREPORT_PAYLOAD_ZFS_PREV_STATE
,
650 DATA_TYPE_UINT64
, stateoroffset
, NULL
);
654 * Payload for I/Os with corresponding logical information.
656 if (zb
!= NULL
&& (zio
== NULL
|| zio
->io_logical
!= NULL
)) {
657 fm_payload_set(ereport
,
658 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJSET
,
659 DATA_TYPE_UINT64
, zb
->zb_objset
,
660 FM_EREPORT_PAYLOAD_ZFS_ZIO_OBJECT
,
661 DATA_TYPE_UINT64
, zb
->zb_object
,
662 FM_EREPORT_PAYLOAD_ZFS_ZIO_LEVEL
,
663 DATA_TYPE_INT64
, zb
->zb_level
,
664 FM_EREPORT_PAYLOAD_ZFS_ZIO_BLKID
,
665 DATA_TYPE_UINT64
, zb
->zb_blkid
, NULL
);
668 mutex_exit(&spa
->spa_errlist_lock
);
670 *ereport_out
= ereport
;
671 *detector_out
= detector
;
675 /* if it's <= 128 bytes, save the corruption directly */
676 #define ZFM_MAX_INLINE (128 / sizeof (uint64_t))
678 #define MAX_RANGES 16
680 typedef struct zfs_ecksum_info
{
681 /* histograms of set and cleared bits by bit number in a 64-bit word */
682 uint32_t zei_histogram_set
[sizeof (uint64_t) * NBBY
];
683 uint32_t zei_histogram_cleared
[sizeof (uint64_t) * NBBY
];
685 /* inline arrays of bits set and cleared. */
686 uint64_t zei_bits_set
[ZFM_MAX_INLINE
];
687 uint64_t zei_bits_cleared
[ZFM_MAX_INLINE
];
690 * for each range, the number of bits set and cleared. The Hamming
691 * distance between the good and bad buffers is the sum of them all.
693 uint32_t zei_range_sets
[MAX_RANGES
];
694 uint32_t zei_range_clears
[MAX_RANGES
];
699 } zei_ranges
[MAX_RANGES
];
701 size_t zei_range_count
;
703 uint32_t zei_allowed_mingap
;
708 update_histogram(uint64_t value_arg
, uint32_t *hist
, uint32_t *count
)
712 uint64_t value
= BE_64(value_arg
);
714 /* We store the bits in big-endian (largest-first) order */
715 for (i
= 0; i
< 64; i
++) {
716 if (value
& (1ull << i
)) {
721 /* update the count of bits changed */
726 * We've now filled up the range array, and need to increase "mingap" and
727 * shrink the range list accordingly. zei_mingap is always the smallest
728 * distance between array entries, so we set the new_allowed_gap to be
729 * one greater than that. We then go through the list, joining together
730 * any ranges which are closer than the new_allowed_gap.
732 * By construction, there will be at least one. We also update zei_mingap
733 * to the new smallest gap, to prepare for our next invocation.
736 zei_shrink_ranges(zfs_ecksum_info_t
*eip
)
738 uint32_t mingap
= UINT32_MAX
;
739 uint32_t new_allowed_gap
= eip
->zei_mingap
+ 1;
742 size_t max
= eip
->zei_range_count
;
744 struct zei_ranges
*r
= eip
->zei_ranges
;
746 ASSERT3U(eip
->zei_range_count
, >, 0);
747 ASSERT3U(eip
->zei_range_count
, <=, MAX_RANGES
);
750 while (idx
< max
- 1) {
751 uint32_t start
= r
[idx
].zr_start
;
752 uint32_t end
= r
[idx
].zr_end
;
754 while (idx
< max
- 1) {
757 uint32_t nstart
= r
[idx
].zr_start
;
758 uint32_t nend
= r
[idx
].zr_end
;
760 uint32_t gap
= nstart
- end
;
761 if (gap
< new_allowed_gap
) {
769 r
[output
].zr_start
= start
;
770 r
[output
].zr_end
= end
;
773 ASSERT3U(output
, <, eip
->zei_range_count
);
774 eip
->zei_range_count
= output
;
775 eip
->zei_mingap
= mingap
;
776 eip
->zei_allowed_mingap
= new_allowed_gap
;
780 zei_add_range(zfs_ecksum_info_t
*eip
, int start
, int end
)
782 struct zei_ranges
*r
= eip
->zei_ranges
;
783 size_t count
= eip
->zei_range_count
;
785 if (count
>= MAX_RANGES
) {
786 zei_shrink_ranges(eip
);
787 count
= eip
->zei_range_count
;
790 eip
->zei_mingap
= UINT32_MAX
;
791 eip
->zei_allowed_mingap
= 1;
793 int gap
= start
- r
[count
- 1].zr_end
;
795 if (gap
< eip
->zei_allowed_mingap
) {
796 r
[count
- 1].zr_end
= end
;
799 if (gap
< eip
->zei_mingap
)
800 eip
->zei_mingap
= gap
;
802 r
[count
].zr_start
= start
;
803 r
[count
].zr_end
= end
;
804 eip
->zei_range_count
++;
808 zei_range_total_size(zfs_ecksum_info_t
*eip
)
810 struct zei_ranges
*r
= eip
->zei_ranges
;
811 size_t count
= eip
->zei_range_count
;
815 for (idx
= 0; idx
< count
; idx
++)
816 result
+= (r
[idx
].zr_end
- r
[idx
].zr_start
);
821 static zfs_ecksum_info_t
*
822 annotate_ecksum(nvlist_t
*ereport
, zio_bad_cksum_t
*info
,
823 const abd_t
*goodabd
, const abd_t
*badabd
, size_t size
,
824 boolean_t drop_if_identical
)
826 const uint64_t *good
;
830 uint64_t allcleared
= 0;
832 size_t nui64s
= size
/ sizeof (uint64_t);
842 zfs_ecksum_info_t
*eip
= kmem_zalloc(sizeof (*eip
), KM_SLEEP
);
844 /* don't do any annotation for injected checksum errors */
845 if (info
!= NULL
&& info
->zbc_injected
)
848 if (info
!= NULL
&& info
->zbc_has_cksum
) {
849 fm_payload_set(ereport
,
850 FM_EREPORT_PAYLOAD_ZFS_CKSUM_EXPECTED
,
851 DATA_TYPE_UINT64_ARRAY
,
852 sizeof (info
->zbc_expected
) / sizeof (uint64_t),
853 (uint64_t *)&info
->zbc_expected
,
854 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ACTUAL
,
855 DATA_TYPE_UINT64_ARRAY
,
856 sizeof (info
->zbc_actual
) / sizeof (uint64_t),
857 (uint64_t *)&info
->zbc_actual
,
858 FM_EREPORT_PAYLOAD_ZFS_CKSUM_ALGO
,
860 info
->zbc_checksum_name
,
863 if (info
->zbc_byteswapped
) {
864 fm_payload_set(ereport
,
865 FM_EREPORT_PAYLOAD_ZFS_CKSUM_BYTESWAP
,
866 DATA_TYPE_BOOLEAN
, 1,
871 if (badabd
== NULL
|| goodabd
== NULL
)
874 ASSERT3U(nui64s
, <=, UINT32_MAX
);
875 ASSERT3U(size
, ==, nui64s
* sizeof (uint64_t));
876 ASSERT3U(size
, <=, SPA_MAXBLOCKSIZE
);
877 ASSERT3U(size
, <=, UINT32_MAX
);
879 good
= (const uint64_t *) abd_borrow_buf_copy((abd_t
*)goodabd
, size
);
880 bad
= (const uint64_t *) abd_borrow_buf_copy((abd_t
*)badabd
, size
);
882 /* build up the range list by comparing the two buffers. */
883 for (idx
= 0; idx
< nui64s
; idx
++) {
884 if (good
[idx
] == bad
[idx
]) {
888 zei_add_range(eip
, start
, idx
);
898 zei_add_range(eip
, start
, idx
);
900 /* See if it will fit in our inline buffers */
901 inline_size
= zei_range_total_size(eip
);
902 if (inline_size
> ZFM_MAX_INLINE
)
906 * If there is no change and we want to drop if the buffers are
909 if (inline_size
== 0 && drop_if_identical
) {
910 kmem_free(eip
, sizeof (*eip
));
911 abd_return_buf((abd_t
*)goodabd
, (void *)good
, size
);
912 abd_return_buf((abd_t
*)badabd
, (void *)bad
, size
);
917 * Now walk through the ranges, filling in the details of the
918 * differences. Also convert our uint64_t-array offsets to byte
921 for (range
= 0; range
< eip
->zei_range_count
; range
++) {
922 size_t start
= eip
->zei_ranges
[range
].zr_start
;
923 size_t end
= eip
->zei_ranges
[range
].zr_end
;
925 for (idx
= start
; idx
< end
; idx
++) {
926 uint64_t set
, cleared
;
928 // bits set in bad, but not in good
929 set
= ((~good
[idx
]) & bad
[idx
]);
930 // bits set in good, but not in bad
931 cleared
= (good
[idx
] & (~bad
[idx
]));
934 allcleared
|= cleared
;
937 ASSERT3U(offset
, <, inline_size
);
938 eip
->zei_bits_set
[offset
] = set
;
939 eip
->zei_bits_cleared
[offset
] = cleared
;
943 update_histogram(set
, eip
->zei_histogram_set
,
944 &eip
->zei_range_sets
[range
]);
945 update_histogram(cleared
, eip
->zei_histogram_cleared
,
946 &eip
->zei_range_clears
[range
]);
949 /* convert to byte offsets */
950 eip
->zei_ranges
[range
].zr_start
*= sizeof (uint64_t);
951 eip
->zei_ranges
[range
].zr_end
*= sizeof (uint64_t);
954 abd_return_buf((abd_t
*)goodabd
, (void *)good
, size
);
955 abd_return_buf((abd_t
*)badabd
, (void *)bad
, size
);
957 eip
->zei_allowed_mingap
*= sizeof (uint64_t);
958 inline_size
*= sizeof (uint64_t);
960 /* fill in ereport */
961 fm_payload_set(ereport
,
962 FM_EREPORT_PAYLOAD_ZFS_BAD_OFFSET_RANGES
,
963 DATA_TYPE_UINT32_ARRAY
, 2 * eip
->zei_range_count
,
964 (uint32_t *)eip
->zei_ranges
,
965 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_MIN_GAP
,
966 DATA_TYPE_UINT32
, eip
->zei_allowed_mingap
,
967 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_SETS
,
968 DATA_TYPE_UINT32_ARRAY
, eip
->zei_range_count
, eip
->zei_range_sets
,
969 FM_EREPORT_PAYLOAD_ZFS_BAD_RANGE_CLEARS
,
970 DATA_TYPE_UINT32_ARRAY
, eip
->zei_range_count
, eip
->zei_range_clears
,
974 fm_payload_set(ereport
,
975 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_BITS
,
976 DATA_TYPE_UINT8_ARRAY
,
977 inline_size
, (uint8_t *)eip
->zei_bits_set
,
978 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_BITS
,
979 DATA_TYPE_UINT8_ARRAY
,
980 inline_size
, (uint8_t *)eip
->zei_bits_cleared
,
983 fm_payload_set(ereport
,
984 FM_EREPORT_PAYLOAD_ZFS_BAD_SET_HISTOGRAM
,
985 DATA_TYPE_UINT32_ARRAY
,
986 NBBY
* sizeof (uint64_t), eip
->zei_histogram_set
,
987 FM_EREPORT_PAYLOAD_ZFS_BAD_CLEARED_HISTOGRAM
,
988 DATA_TYPE_UINT32_ARRAY
,
989 NBBY
* sizeof (uint64_t), eip
->zei_histogram_cleared
,
997 zfs_ereport_clear(spa_t
*spa
, vdev_t
*vd
)
1003 * Make sure our event is still valid for the given zio/vdev/pool. For example,
1004 * we don't want to keep logging events for a faulted or missing vdev.
1007 zfs_ereport_is_valid(const char *subclass
, spa_t
*spa
, vdev_t
*vd
, zio_t
*zio
)
1011 * If we are doing a spa_tryimport() or in recovery mode,
1014 if (spa_load_state(spa
) == SPA_LOAD_TRYIMPORT
||
1015 spa_load_state(spa
) == SPA_LOAD_RECOVER
)
1019 * If we are in the middle of opening a pool, and the previous attempt
1020 * failed, don't bother logging any new ereports - we're just going to
1021 * get the same diagnosis anyway.
1023 if (spa_load_state(spa
) != SPA_LOAD_NONE
&&
1024 spa
->spa_last_open_failed
)
1029 * If this is not a read or write zio, ignore the error. This
1030 * can occur if the DKIOCFLUSHWRITECACHE ioctl fails.
1032 if (zio
->io_type
!= ZIO_TYPE_READ
&&
1033 zio
->io_type
!= ZIO_TYPE_WRITE
)
1038 * If the vdev has already been marked as failing due
1039 * to a failed probe, then ignore any subsequent I/O
1040 * errors, as the DE will automatically fault the vdev
1041 * on the first such failure. This also catches cases
1042 * where vdev_remove_wanted is set and the device has
1043 * not yet been asynchronously placed into the REMOVED
1046 if (zio
->io_vd
== vd
&& !vdev_accessible(vd
, zio
))
1050 * Ignore checksum errors for reads from DTL regions of
1053 if (zio
->io_type
== ZIO_TYPE_READ
&&
1054 zio
->io_error
== ECKSUM
&&
1055 vd
->vdev_ops
->vdev_op_leaf
&&
1056 vdev_dtl_contains(vd
, DTL_MISSING
, zio
->io_txg
, 1))
1062 * For probe failure, we want to avoid posting ereports if we've
1063 * already removed the device in the meantime.
1066 strcmp(subclass
, FM_EREPORT_ZFS_PROBE_FAILURE
) == 0 &&
1067 (vd
->vdev_remove_wanted
|| vd
->vdev_state
== VDEV_STATE_REMOVED
))
1070 /* Ignore bogus delay events (like from ioctls or unqueued IOs) */
1071 if ((strcmp(subclass
, FM_EREPORT_ZFS_DELAY
) == 0) &&
1072 (zio
!= NULL
) && (!zio
->io_timestamp
)) {
1080 * Post an ereport for the given subclass
1083 * - 0 if an event was posted
1084 * - EINVAL if there was a problem posting event
1085 * - EBUSY if the event was rate limited
1086 * - EALREADY if the event was already posted (duplicate)
1089 zfs_ereport_post(const char *subclass
, spa_t
*spa
, vdev_t
*vd
,
1090 const zbookmark_phys_t
*zb
, zio_t
*zio
, uint64_t state
)
1094 nvlist_t
*ereport
= NULL
;
1095 nvlist_t
*detector
= NULL
;
1097 if (!zfs_ereport_is_valid(subclass
, spa
, vd
, zio
))
1100 if (zfs_ereport_is_duplicate(subclass
, spa
, vd
, zb
, zio
, 0, 0))
1101 return (SET_ERROR(EALREADY
));
1103 if (zfs_is_ratelimiting_event(subclass
, vd
))
1104 return (SET_ERROR(EBUSY
));
1106 if (!zfs_ereport_start(&ereport
, &detector
, subclass
, spa
, vd
,
1108 return (SET_ERROR(EINVAL
)); /* couldn't post event */
1110 if (ereport
== NULL
)
1111 return (SET_ERROR(EINVAL
));
1113 /* Cleanup is handled by the callback function */
1114 rc
= zfs_zevent_post(ereport
, detector
, zfs_zevent_post_cb
);
1120 * Prepare a checksum ereport
1123 * - 0 if an event was posted
1124 * - EINVAL if there was a problem posting event
1125 * - EBUSY if the event was rate limited
1126 * - EALREADY if the event was already posted (duplicate)
1129 zfs_ereport_start_checksum(spa_t
*spa
, vdev_t
*vd
, const zbookmark_phys_t
*zb
,
1130 struct zio
*zio
, uint64_t offset
, uint64_t length
, zio_bad_cksum_t
*info
)
1132 zio_cksum_report_t
*report
;
1135 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zio
))
1136 return (SET_ERROR(EINVAL
));
1138 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zb
, zio
,
1140 return (SET_ERROR(EALREADY
));
1142 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM
, vd
))
1143 return (SET_ERROR(EBUSY
));
1146 report
= kmem_zalloc(sizeof (*report
), KM_SLEEP
);
1148 zio_vsd_default_cksum_report(zio
, report
);
1150 /* copy the checksum failure information if it was provided */
1152 report
->zcr_ckinfo
= kmem_zalloc(sizeof (*info
), KM_SLEEP
);
1153 bcopy(info
, report
->zcr_ckinfo
, sizeof (*info
));
1156 report
->zcr_sector
= 1ULL << vd
->vdev_top
->vdev_ashift
;
1158 vdev_psize_to_asize(vd
->vdev_top
, report
->zcr_sector
);
1159 report
->zcr_length
= length
;
1162 (void) zfs_ereport_start(&report
->zcr_ereport
, &report
->zcr_detector
,
1163 FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zb
, zio
, offset
, length
);
1165 if (report
->zcr_ereport
== NULL
) {
1166 zfs_ereport_free_checksum(report
);
1171 mutex_enter(&spa
->spa_errlist_lock
);
1172 report
->zcr_next
= zio
->io_logical
->io_cksum_report
;
1173 zio
->io_logical
->io_cksum_report
= report
;
1174 mutex_exit(&spa
->spa_errlist_lock
);
1179 zfs_ereport_finish_checksum(zio_cksum_report_t
*report
, const abd_t
*good_data
,
1180 const abd_t
*bad_data
, boolean_t drop_if_identical
)
1183 zfs_ecksum_info_t
*info
;
1185 info
= annotate_ecksum(report
->zcr_ereport
, report
->zcr_ckinfo
,
1186 good_data
, bad_data
, report
->zcr_length
, drop_if_identical
);
1188 zfs_zevent_post(report
->zcr_ereport
,
1189 report
->zcr_detector
, zfs_zevent_post_cb
);
1191 zfs_zevent_post_cb(report
->zcr_ereport
, report
->zcr_detector
);
1193 report
->zcr_ereport
= report
->zcr_detector
= NULL
;
1195 kmem_free(info
, sizeof (*info
));
1200 zfs_ereport_free_checksum(zio_cksum_report_t
*rpt
)
1203 if (rpt
->zcr_ereport
!= NULL
) {
1204 fm_nvlist_destroy(rpt
->zcr_ereport
,
1206 fm_nvlist_destroy(rpt
->zcr_detector
,
1210 rpt
->zcr_free(rpt
->zcr_cbdata
, rpt
->zcr_cbinfo
);
1212 if (rpt
->zcr_ckinfo
!= NULL
)
1213 kmem_free(rpt
->zcr_ckinfo
, sizeof (*rpt
->zcr_ckinfo
));
1215 kmem_free(rpt
, sizeof (*rpt
));
1219 * Post a checksum ereport
1222 * - 0 if an event was posted
1223 * - EINVAL if there was a problem posting event
1224 * - EBUSY if the event was rate limited
1225 * - EALREADY if the event was already posted (duplicate)
1228 zfs_ereport_post_checksum(spa_t
*spa
, vdev_t
*vd
, const zbookmark_phys_t
*zb
,
1229 struct zio
*zio
, uint64_t offset
, uint64_t length
,
1230 const abd_t
*good_data
, const abd_t
*bad_data
, zio_bad_cksum_t
*zbc
)
1234 nvlist_t
*ereport
= NULL
;
1235 nvlist_t
*detector
= NULL
;
1236 zfs_ecksum_info_t
*info
;
1238 if (!zfs_ereport_is_valid(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zio
))
1239 return (SET_ERROR(EINVAL
));
1241 if (zfs_ereport_is_duplicate(FM_EREPORT_ZFS_CHECKSUM
, spa
, vd
, zb
, zio
,
1243 return (SET_ERROR(EALREADY
));
1245 if (zfs_is_ratelimiting_event(FM_EREPORT_ZFS_CHECKSUM
, vd
))
1246 return (SET_ERROR(EBUSY
));
1248 if (!zfs_ereport_start(&ereport
, &detector
, FM_EREPORT_ZFS_CHECKSUM
,
1249 spa
, vd
, zb
, zio
, offset
, length
) || (ereport
== NULL
)) {
1250 return (SET_ERROR(EINVAL
));
1253 info
= annotate_ecksum(ereport
, zbc
, good_data
, bad_data
, length
,
1257 rc
= zfs_zevent_post(ereport
, detector
, zfs_zevent_post_cb
);
1258 kmem_free(info
, sizeof (*info
));
1265 * The 'sysevent.fs.zfs.*' events are signals posted to notify user space of
1266 * change in the pool. All sysevents are listed in sys/sysevent/eventdefs.h
1267 * and are designed to be consumed by the ZFS Event Daemon (ZED). For
1268 * additional details refer to the zed(8) man page.
1271 zfs_event_create(spa_t
*spa
, vdev_t
*vd
, const char *type
, const char *name
,
1274 nvlist_t
*resource
= NULL
;
1278 if (spa_load_state(spa
) == SPA_LOAD_TRYIMPORT
)
1281 if ((resource
= fm_nvlist_create(NULL
)) == NULL
)
1284 (void) snprintf(class, sizeof (class), "%s.%s.%s", type
,
1285 ZFS_ERROR_CLASS
, name
);
1286 VERIFY0(nvlist_add_uint8(resource
, FM_VERSION
, FM_RSRC_VERSION
));
1287 VERIFY0(nvlist_add_string(resource
, FM_CLASS
, class));
1288 VERIFY0(nvlist_add_string(resource
,
1289 FM_EREPORT_PAYLOAD_ZFS_POOL
, spa_name(spa
)));
1290 VERIFY0(nvlist_add_uint64(resource
,
1291 FM_EREPORT_PAYLOAD_ZFS_POOL_GUID
, spa_guid(spa
)));
1292 VERIFY0(nvlist_add_uint64(resource
,
1293 FM_EREPORT_PAYLOAD_ZFS_POOL_STATE
, spa_state(spa
)));
1294 VERIFY0(nvlist_add_int32(resource
,
1295 FM_EREPORT_PAYLOAD_ZFS_POOL_CONTEXT
, spa_load_state(spa
)));
1298 VERIFY0(nvlist_add_uint64(resource
,
1299 FM_EREPORT_PAYLOAD_ZFS_VDEV_GUID
, vd
->vdev_guid
));
1300 VERIFY0(nvlist_add_uint64(resource
,
1301 FM_EREPORT_PAYLOAD_ZFS_VDEV_STATE
, vd
->vdev_state
));
1302 if (vd
->vdev_path
!= NULL
)
1303 VERIFY0(nvlist_add_string(resource
,
1304 FM_EREPORT_PAYLOAD_ZFS_VDEV_PATH
, vd
->vdev_path
));
1305 if (vd
->vdev_devid
!= NULL
)
1306 VERIFY0(nvlist_add_string(resource
,
1307 FM_EREPORT_PAYLOAD_ZFS_VDEV_DEVID
, vd
->vdev_devid
));
1308 if (vd
->vdev_fru
!= NULL
)
1309 VERIFY0(nvlist_add_string(resource
,
1310 FM_EREPORT_PAYLOAD_ZFS_VDEV_FRU
, vd
->vdev_fru
));
1311 if (vd
->vdev_enc_sysfs_path
!= NULL
)
1312 VERIFY0(nvlist_add_string(resource
,
1313 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH
,
1314 vd
->vdev_enc_sysfs_path
));
1317 /* also copy any optional payload data */
1319 nvpair_t
*elem
= NULL
;
1321 while ((elem
= nvlist_next_nvpair(aux
, elem
)) != NULL
)
1322 (void) nvlist_add_nvpair(resource
, elem
);
1330 zfs_post_common(spa_t
*spa
, vdev_t
*vd
, const char *type
, const char *name
,
1336 resource
= zfs_event_create(spa
, vd
, type
, name
, aux
);
1338 zfs_zevent_post(resource
, NULL
, zfs_zevent_post_cb
);
1343 * The 'resource.fs.zfs.removed' event is an internal signal that the given vdev
1344 * has been removed from the system. This will cause the DE to ignore any
1345 * recent I/O errors, inferring that they are due to the asynchronous device
1349 zfs_post_remove(spa_t
*spa
, vdev_t
*vd
)
1351 zfs_post_common(spa
, vd
, FM_RSRC_CLASS
, FM_RESOURCE_REMOVED
, NULL
);
1355 * The 'resource.fs.zfs.autoreplace' event is an internal signal that the pool
1356 * has the 'autoreplace' property set, and therefore any broken vdevs will be
1357 * handled by higher level logic, and no vdev fault should be generated.
1360 zfs_post_autoreplace(spa_t
*spa
, vdev_t
*vd
)
1362 zfs_post_common(spa
, vd
, FM_RSRC_CLASS
, FM_RESOURCE_AUTOREPLACE
, NULL
);
1366 * The 'resource.fs.zfs.statechange' event is an internal signal that the
1367 * given vdev has transitioned its state to DEGRADED or HEALTHY. This will
1368 * cause the retire agent to repair any outstanding fault management cases
1369 * open because the device was not found (fault.fs.zfs.device).
1372 zfs_post_state_change(spa_t
*spa
, vdev_t
*vd
, uint64_t laststate
)
1378 * Add optional supplemental keys to payload
1380 aux
= fm_nvlist_create(NULL
);
1382 if (vd
->vdev_physpath
) {
1383 (void) nvlist_add_string(aux
,
1384 FM_EREPORT_PAYLOAD_ZFS_VDEV_PHYSPATH
,
1387 if (vd
->vdev_enc_sysfs_path
) {
1388 (void) nvlist_add_string(aux
,
1389 FM_EREPORT_PAYLOAD_ZFS_VDEV_ENC_SYSFS_PATH
,
1390 vd
->vdev_enc_sysfs_path
);
1393 (void) nvlist_add_uint64(aux
,
1394 FM_EREPORT_PAYLOAD_ZFS_VDEV_LASTSTATE
, laststate
);
1397 zfs_post_common(spa
, vd
, FM_RSRC_CLASS
, FM_RESOURCE_STATECHANGE
,
1401 fm_nvlist_destroy(aux
, FM_NVA_FREE
);
1407 zfs_ereport_init(void)
1409 mutex_init(&recent_events_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1410 list_create(&recent_events_list
, sizeof (recent_events_node_t
),
1411 offsetof(recent_events_node_t
, re_list_link
));
1412 avl_create(&recent_events_tree
, recent_events_compare
,
1413 sizeof (recent_events_node_t
), offsetof(recent_events_node_t
,
1418 * This 'early' fini needs to run before zfs_fini() which on Linux waits
1419 * for the system_delay_taskq to drain.
1422 zfs_ereport_taskq_fini(void)
1424 mutex_enter(&recent_events_lock
);
1425 if (recent_events_cleaner_tqid
!= 0) {
1426 taskq_cancel_id(system_delay_taskq
, recent_events_cleaner_tqid
);
1427 recent_events_cleaner_tqid
= 0;
1429 mutex_exit(&recent_events_lock
);
1433 zfs_ereport_fini(void)
1435 recent_events_node_t
*entry
;
1437 while ((entry
= list_head(&recent_events_list
)) != NULL
) {
1438 avl_remove(&recent_events_tree
, entry
);
1439 list_remove(&recent_events_list
, entry
);
1440 kmem_free(entry
, sizeof (*entry
));
1442 avl_destroy(&recent_events_tree
);
1443 list_destroy(&recent_events_list
);
1444 mutex_destroy(&recent_events_lock
);
1447 EXPORT_SYMBOL(zfs_ereport_post
);
1448 EXPORT_SYMBOL(zfs_ereport_is_valid
);
1449 EXPORT_SYMBOL(zfs_ereport_post_checksum
);
1450 EXPORT_SYMBOL(zfs_post_remove
);
1451 EXPORT_SYMBOL(zfs_post_autoreplace
);
1452 EXPORT_SYMBOL(zfs_post_state_change
);
1454 ZFS_MODULE_PARAM(zfs_zevent
, zfs_zevent_
, retain_max
, UINT
, ZMOD_RW
,
1455 "Maximum recent zevents records to retain for duplicate checking");
1456 ZFS_MODULE_PARAM(zfs_zevent
, zfs_zevent_
, retain_expire_secs
, UINT
, ZMOD_RW
,
1457 "Expiration time for recent zevents records");
1458 #endif /* _KERNEL */