4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
50 #include <sys/trace_zfs.h>
52 #include <sys/dsl_crypt.h>
56 * ==========================================================================
57 * I/O type descriptions
58 * ==========================================================================
60 const char *zio_type_name
[ZIO_TYPES
] = {
62 * Note: Linux kernel thread name length is limited
63 * so these names will differ from upstream open zfs.
65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
68 int zio_dva_throttle_enabled
= B_TRUE
;
69 int zio_deadman_log_all
= B_FALSE
;
72 * ==========================================================================
74 * ==========================================================================
76 kmem_cache_t
*zio_cache
;
77 kmem_cache_t
*zio_link_cache
;
78 kmem_cache_t
*zio_buf_cache
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
79 kmem_cache_t
*zio_data_buf_cache
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 uint64_t zio_buf_cache_allocs
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
82 uint64_t zio_buf_cache_frees
[SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
];
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 int zio_slow_io_ms
= (30 * MILLISEC
);
88 #define BP_SPANB(indblkshift, level) \
89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define COMPARE_META_LEVEL 0x80000000ul
92 * The following actions directly effect the spa's sync-to-convergence logic.
93 * The values below define the sync pass when we start performing the action.
94 * Care should be taken when changing these values as they directly impact
95 * spa_sync() performance. Tuning these values may introduce subtle performance
96 * pathologies and should only be done in the context of performance analysis.
97 * These tunables will eventually be removed and replaced with #defines once
98 * enough analysis has been done to determine optimal values.
100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101 * regular blocks are not deferred.
103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104 * compression (including of metadata). In practice, we don't have this
105 * many sync passes, so this has no effect.
107 * The original intent was that disabling compression would help the sync
108 * passes to converge. However, in practice disabling compression increases
109 * the average number of sync passes, because when we turn compression off, a
110 * lot of block's size will change and thus we have to re-allocate (not
111 * overwrite) them. It also increases the number of 128KB allocations (e.g.
112 * for indirect blocks and spacemaps) because these will not be compressed.
113 * The 128K allocations are especially detrimental to performance on highly
114 * fragmented systems, which may have very few free segments of this size,
115 * and may need to load new metaslabs to satisfy 128K allocations.
117 int zfs_sync_pass_deferred_free
= 2; /* defer frees starting in this pass */
118 int zfs_sync_pass_dont_compress
= 8; /* don't compress starting in this pass */
119 int zfs_sync_pass_rewrite
= 2; /* rewrite new bps starting in this pass */
122 * An allocating zio is one that either currently has the DVA allocate
123 * stage set or will have it later in its lifetime.
125 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
128 * Enable smaller cores by excluding metadata
129 * allocations as well.
131 int zio_exclude_metadata
= 0;
132 int zio_requeue_io_start_cut_in_line
= 1;
135 int zio_buf_debug_limit
= 16384;
137 int zio_buf_debug_limit
= 0;
140 static inline void __zio_execute(zio_t
*zio
);
142 static void zio_taskq_dispatch(zio_t
*, zio_taskq_type_t
, boolean_t
);
149 zio_cache
= kmem_cache_create("zio_cache",
150 sizeof (zio_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
151 zio_link_cache
= kmem_cache_create("zio_link_cache",
152 sizeof (zio_link_t
), 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
155 * For small buffers, we want a cache for each multiple of
156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
157 * for each quarter-power of 2.
159 for (c
= 0; c
< SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
; c
++) {
160 size_t size
= (c
+ 1) << SPA_MINBLOCKSHIFT
;
163 size_t data_cflags
, cflags
;
165 data_cflags
= KMC_NODEBUG
;
166 cflags
= (zio_exclude_metadata
|| size
> zio_buf_debug_limit
) ?
169 #if defined(_ILP32) && defined(_KERNEL)
171 * Cache size limited to 1M on 32-bit platforms until ARC
172 * buffers no longer require virtual address space.
174 if (size
> zfs_max_recordsize
)
183 * If we are using watchpoints, put each buffer on its own page,
184 * to eliminate the performance overhead of trapping to the
185 * kernel when modifying a non-watched buffer that shares the
186 * page with a watched buffer.
188 if (arc_watch
&& !IS_P2ALIGNED(size
, PAGESIZE
))
191 * Here's the problem - on 4K native devices in userland on
192 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
193 * will fail with EINVAL, causing zdb (and others) to coredump.
194 * Since userland probably doesn't need optimized buffer caches,
195 * we just force 4K alignment on everything.
197 align
= 8 * SPA_MINBLOCKSIZE
;
199 if (size
< PAGESIZE
) {
200 align
= SPA_MINBLOCKSIZE
;
201 } else if (IS_P2ALIGNED(size
, p2
>> 2)) {
208 if (cflags
== data_cflags
) {
210 * Resulting kmem caches would be identical.
211 * Save memory by creating only one.
213 (void) snprintf(name
, sizeof (name
),
214 "zio_buf_comb_%lu", (ulong_t
)size
);
215 zio_buf_cache
[c
] = kmem_cache_create(name
,
216 size
, align
, NULL
, NULL
, NULL
, NULL
, NULL
,
218 zio_data_buf_cache
[c
] = zio_buf_cache
[c
];
221 (void) snprintf(name
, sizeof (name
), "zio_buf_%lu",
223 zio_buf_cache
[c
] = kmem_cache_create(name
, size
,
224 align
, NULL
, NULL
, NULL
, NULL
, NULL
, cflags
);
226 (void) snprintf(name
, sizeof (name
), "zio_data_buf_%lu",
228 zio_data_buf_cache
[c
] = kmem_cache_create(name
, size
,
229 align
, NULL
, NULL
, NULL
, NULL
, NULL
, data_cflags
);
234 ASSERT(zio_buf_cache
[c
] != NULL
);
235 if (zio_buf_cache
[c
- 1] == NULL
)
236 zio_buf_cache
[c
- 1] = zio_buf_cache
[c
];
238 ASSERT(zio_data_buf_cache
[c
] != NULL
);
239 if (zio_data_buf_cache
[c
- 1] == NULL
)
240 zio_data_buf_cache
[c
- 1] = zio_data_buf_cache
[c
];
251 size_t n
= SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
;
253 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
254 for (size_t i
= 0; i
< n
; i
++) {
255 if (zio_buf_cache_allocs
[i
] != zio_buf_cache_frees
[i
])
256 (void) printf("zio_fini: [%d] %llu != %llu\n",
257 (int)((i
+ 1) << SPA_MINBLOCKSHIFT
),
258 (long long unsigned)zio_buf_cache_allocs
[i
],
259 (long long unsigned)zio_buf_cache_frees
[i
]);
264 * The same kmem cache can show up multiple times in both zio_buf_cache
265 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
268 for (size_t i
= 0; i
< n
; i
++) {
269 kmem_cache_t
*cache
= zio_buf_cache
[i
];
272 for (size_t j
= i
; j
< n
; j
++) {
273 if (cache
== zio_buf_cache
[j
])
274 zio_buf_cache
[j
] = NULL
;
275 if (cache
== zio_data_buf_cache
[j
])
276 zio_data_buf_cache
[j
] = NULL
;
278 kmem_cache_destroy(cache
);
281 for (size_t i
= 0; i
< n
; i
++) {
282 kmem_cache_t
*cache
= zio_data_buf_cache
[i
];
285 for (size_t j
= i
; j
< n
; j
++) {
286 if (cache
== zio_data_buf_cache
[j
])
287 zio_data_buf_cache
[j
] = NULL
;
289 kmem_cache_destroy(cache
);
292 for (size_t i
= 0; i
< n
; i
++) {
293 VERIFY3P(zio_buf_cache
[i
], ==, NULL
);
294 VERIFY3P(zio_data_buf_cache
[i
], ==, NULL
);
297 kmem_cache_destroy(zio_link_cache
);
298 kmem_cache_destroy(zio_cache
);
306 * ==========================================================================
307 * Allocate and free I/O buffers
308 * ==========================================================================
312 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
313 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
314 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
315 * excess / transient data in-core during a crashdump.
318 zio_buf_alloc(size_t size
)
320 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
322 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
323 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
324 atomic_add_64(&zio_buf_cache_allocs
[c
], 1);
327 return (kmem_cache_alloc(zio_buf_cache
[c
], KM_PUSHPAGE
));
331 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
332 * crashdump if the kernel panics. This exists so that we will limit the amount
333 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
334 * of kernel heap dumped to disk when the kernel panics)
337 zio_data_buf_alloc(size_t size
)
339 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
341 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
343 return (kmem_cache_alloc(zio_data_buf_cache
[c
], KM_PUSHPAGE
));
347 zio_buf_free(void *buf
, size_t size
)
349 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
351 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
352 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
353 atomic_add_64(&zio_buf_cache_frees
[c
], 1);
356 kmem_cache_free(zio_buf_cache
[c
], buf
);
360 zio_data_buf_free(void *buf
, size_t size
)
362 size_t c
= (size
- 1) >> SPA_MINBLOCKSHIFT
;
364 VERIFY3U(c
, <, SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
);
366 kmem_cache_free(zio_data_buf_cache
[c
], buf
);
370 zio_abd_free(void *abd
, size_t size
)
372 abd_free((abd_t
*)abd
);
376 * ==========================================================================
377 * Push and pop I/O transform buffers
378 * ==========================================================================
381 zio_push_transform(zio_t
*zio
, abd_t
*data
, uint64_t size
, uint64_t bufsize
,
382 zio_transform_func_t
*transform
)
384 zio_transform_t
*zt
= kmem_alloc(sizeof (zio_transform_t
), KM_SLEEP
);
386 zt
->zt_orig_abd
= zio
->io_abd
;
387 zt
->zt_orig_size
= zio
->io_size
;
388 zt
->zt_bufsize
= bufsize
;
389 zt
->zt_transform
= transform
;
391 zt
->zt_next
= zio
->io_transform_stack
;
392 zio
->io_transform_stack
= zt
;
399 zio_pop_transforms(zio_t
*zio
)
403 while ((zt
= zio
->io_transform_stack
) != NULL
) {
404 if (zt
->zt_transform
!= NULL
)
405 zt
->zt_transform(zio
,
406 zt
->zt_orig_abd
, zt
->zt_orig_size
);
408 if (zt
->zt_bufsize
!= 0)
409 abd_free(zio
->io_abd
);
411 zio
->io_abd
= zt
->zt_orig_abd
;
412 zio
->io_size
= zt
->zt_orig_size
;
413 zio
->io_transform_stack
= zt
->zt_next
;
415 kmem_free(zt
, sizeof (zio_transform_t
));
420 * ==========================================================================
421 * I/O transform callbacks for subblocks, decompression, and decryption
422 * ==========================================================================
425 zio_subblock(zio_t
*zio
, abd_t
*data
, uint64_t size
)
427 ASSERT(zio
->io_size
> size
);
429 if (zio
->io_type
== ZIO_TYPE_READ
)
430 abd_copy(data
, zio
->io_abd
, size
);
434 zio_decompress(zio_t
*zio
, abd_t
*data
, uint64_t size
)
436 if (zio
->io_error
== 0) {
437 void *tmp
= abd_borrow_buf(data
, size
);
438 int ret
= zio_decompress_data(BP_GET_COMPRESS(zio
->io_bp
),
439 zio
->io_abd
, tmp
, zio
->io_size
, size
,
440 &zio
->io_prop
.zp_complevel
);
441 abd_return_buf_copy(data
, tmp
, size
);
443 if (zio_injection_enabled
&& ret
== 0)
444 ret
= zio_handle_fault_injection(zio
, EINVAL
);
447 zio
->io_error
= SET_ERROR(EIO
);
452 zio_decrypt(zio_t
*zio
, abd_t
*data
, uint64_t size
)
456 blkptr_t
*bp
= zio
->io_bp
;
457 spa_t
*spa
= zio
->io_spa
;
458 uint64_t dsobj
= zio
->io_bookmark
.zb_objset
;
459 uint64_t lsize
= BP_GET_LSIZE(bp
);
460 dmu_object_type_t ot
= BP_GET_TYPE(bp
);
461 uint8_t salt
[ZIO_DATA_SALT_LEN
];
462 uint8_t iv
[ZIO_DATA_IV_LEN
];
463 uint8_t mac
[ZIO_DATA_MAC_LEN
];
464 boolean_t no_crypt
= B_FALSE
;
466 ASSERT(BP_USES_CRYPT(bp
));
467 ASSERT3U(size
, !=, 0);
469 if (zio
->io_error
!= 0)
473 * Verify the cksum of MACs stored in an indirect bp. It will always
474 * be possible to verify this since it does not require an encryption
477 if (BP_HAS_INDIRECT_MAC_CKSUM(bp
)) {
478 zio_crypt_decode_mac_bp(bp
, mac
);
480 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_OFF
) {
482 * We haven't decompressed the data yet, but
483 * zio_crypt_do_indirect_mac_checksum() requires
484 * decompressed data to be able to parse out the MACs
485 * from the indirect block. We decompress it now and
486 * throw away the result after we are finished.
488 tmp
= zio_buf_alloc(lsize
);
489 ret
= zio_decompress_data(BP_GET_COMPRESS(bp
),
490 zio
->io_abd
, tmp
, zio
->io_size
, lsize
,
491 &zio
->io_prop
.zp_complevel
);
493 ret
= SET_ERROR(EIO
);
496 ret
= zio_crypt_do_indirect_mac_checksum(B_FALSE
,
497 tmp
, lsize
, BP_SHOULD_BYTESWAP(bp
), mac
);
498 zio_buf_free(tmp
, lsize
);
500 ret
= zio_crypt_do_indirect_mac_checksum_abd(B_FALSE
,
501 zio
->io_abd
, size
, BP_SHOULD_BYTESWAP(bp
), mac
);
503 abd_copy(data
, zio
->io_abd
, size
);
505 if (zio_injection_enabled
&& ot
!= DMU_OT_DNODE
&& ret
== 0) {
506 ret
= zio_handle_decrypt_injection(spa
,
507 &zio
->io_bookmark
, ot
, ECKSUM
);
516 * If this is an authenticated block, just check the MAC. It would be
517 * nice to separate this out into its own flag, but for the moment
518 * enum zio_flag is out of bits.
520 if (BP_IS_AUTHENTICATED(bp
)) {
521 if (ot
== DMU_OT_OBJSET
) {
522 ret
= spa_do_crypt_objset_mac_abd(B_FALSE
, spa
,
523 dsobj
, zio
->io_abd
, size
, BP_SHOULD_BYTESWAP(bp
));
525 zio_crypt_decode_mac_bp(bp
, mac
);
526 ret
= spa_do_crypt_mac_abd(B_FALSE
, spa
, dsobj
,
527 zio
->io_abd
, size
, mac
);
528 if (zio_injection_enabled
&& ret
== 0) {
529 ret
= zio_handle_decrypt_injection(spa
,
530 &zio
->io_bookmark
, ot
, ECKSUM
);
533 abd_copy(data
, zio
->io_abd
, size
);
541 zio_crypt_decode_params_bp(bp
, salt
, iv
);
543 if (ot
== DMU_OT_INTENT_LOG
) {
544 tmp
= abd_borrow_buf_copy(zio
->io_abd
, sizeof (zil_chain_t
));
545 zio_crypt_decode_mac_zil(tmp
, mac
);
546 abd_return_buf(zio
->io_abd
, tmp
, sizeof (zil_chain_t
));
548 zio_crypt_decode_mac_bp(bp
, mac
);
551 ret
= spa_do_crypt_abd(B_FALSE
, spa
, &zio
->io_bookmark
, BP_GET_TYPE(bp
),
552 BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
), salt
, iv
, mac
, size
, data
,
553 zio
->io_abd
, &no_crypt
);
555 abd_copy(data
, zio
->io_abd
, size
);
563 /* assert that the key was found unless this was speculative */
564 ASSERT(ret
!= EACCES
|| (zio
->io_flags
& ZIO_FLAG_SPECULATIVE
));
567 * If there was a decryption / authentication error return EIO as
568 * the io_error. If this was not a speculative zio, create an ereport.
571 zio
->io_error
= SET_ERROR(EIO
);
572 if ((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
573 spa_log_error(spa
, &zio
->io_bookmark
);
574 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION
,
575 spa
, NULL
, &zio
->io_bookmark
, zio
, 0);
583 * ==========================================================================
584 * I/O parent/child relationships and pipeline interlocks
585 * ==========================================================================
588 zio_walk_parents(zio_t
*cio
, zio_link_t
**zl
)
590 list_t
*pl
= &cio
->io_parent_list
;
592 *zl
= (*zl
== NULL
) ? list_head(pl
) : list_next(pl
, *zl
);
596 ASSERT((*zl
)->zl_child
== cio
);
597 return ((*zl
)->zl_parent
);
601 zio_walk_children(zio_t
*pio
, zio_link_t
**zl
)
603 list_t
*cl
= &pio
->io_child_list
;
605 ASSERT(MUTEX_HELD(&pio
->io_lock
));
607 *zl
= (*zl
== NULL
) ? list_head(cl
) : list_next(cl
, *zl
);
611 ASSERT((*zl
)->zl_parent
== pio
);
612 return ((*zl
)->zl_child
);
616 zio_unique_parent(zio_t
*cio
)
618 zio_link_t
*zl
= NULL
;
619 zio_t
*pio
= zio_walk_parents(cio
, &zl
);
621 VERIFY3P(zio_walk_parents(cio
, &zl
), ==, NULL
);
626 zio_add_child(zio_t
*pio
, zio_t
*cio
)
628 zio_link_t
*zl
= kmem_cache_alloc(zio_link_cache
, KM_SLEEP
);
631 * Logical I/Os can have logical, gang, or vdev children.
632 * Gang I/Os can have gang or vdev children.
633 * Vdev I/Os can only have vdev children.
634 * The following ASSERT captures all of these constraints.
636 ASSERT3S(cio
->io_child_type
, <=, pio
->io_child_type
);
641 mutex_enter(&pio
->io_lock
);
642 mutex_enter(&cio
->io_lock
);
644 ASSERT(pio
->io_state
[ZIO_WAIT_DONE
] == 0);
646 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
647 pio
->io_children
[cio
->io_child_type
][w
] += !cio
->io_state
[w
];
649 list_insert_head(&pio
->io_child_list
, zl
);
650 list_insert_head(&cio
->io_parent_list
, zl
);
652 pio
->io_child_count
++;
653 cio
->io_parent_count
++;
655 mutex_exit(&cio
->io_lock
);
656 mutex_exit(&pio
->io_lock
);
660 zio_remove_child(zio_t
*pio
, zio_t
*cio
, zio_link_t
*zl
)
662 ASSERT(zl
->zl_parent
== pio
);
663 ASSERT(zl
->zl_child
== cio
);
665 mutex_enter(&pio
->io_lock
);
666 mutex_enter(&cio
->io_lock
);
668 list_remove(&pio
->io_child_list
, zl
);
669 list_remove(&cio
->io_parent_list
, zl
);
671 pio
->io_child_count
--;
672 cio
->io_parent_count
--;
674 mutex_exit(&cio
->io_lock
);
675 mutex_exit(&pio
->io_lock
);
676 kmem_cache_free(zio_link_cache
, zl
);
680 zio_wait_for_children(zio_t
*zio
, uint8_t childbits
, enum zio_wait_type wait
)
682 boolean_t waiting
= B_FALSE
;
684 mutex_enter(&zio
->io_lock
);
685 ASSERT(zio
->io_stall
== NULL
);
686 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++) {
687 if (!(ZIO_CHILD_BIT_IS_SET(childbits
, c
)))
690 uint64_t *countp
= &zio
->io_children
[c
][wait
];
693 ASSERT3U(zio
->io_stage
, !=, ZIO_STAGE_OPEN
);
694 zio
->io_stall
= countp
;
699 mutex_exit(&zio
->io_lock
);
703 __attribute__((always_inline
))
705 zio_notify_parent(zio_t
*pio
, zio_t
*zio
, enum zio_wait_type wait
,
706 zio_t
**next_to_executep
)
708 uint64_t *countp
= &pio
->io_children
[zio
->io_child_type
][wait
];
709 int *errorp
= &pio
->io_child_error
[zio
->io_child_type
];
711 mutex_enter(&pio
->io_lock
);
712 if (zio
->io_error
&& !(zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
))
713 *errorp
= zio_worst_error(*errorp
, zio
->io_error
);
714 pio
->io_reexecute
|= zio
->io_reexecute
;
715 ASSERT3U(*countp
, >, 0);
719 if (*countp
== 0 && pio
->io_stall
== countp
) {
720 zio_taskq_type_t type
=
721 pio
->io_stage
< ZIO_STAGE_VDEV_IO_START
? ZIO_TASKQ_ISSUE
:
723 pio
->io_stall
= NULL
;
724 mutex_exit(&pio
->io_lock
);
727 * If we can tell the caller to execute this parent next, do
728 * so. Otherwise dispatch the parent zio as its own task.
730 * Having the caller execute the parent when possible reduces
731 * locking on the zio taskq's, reduces context switch
732 * overhead, and has no recursion penalty. Note that one
733 * read from disk typically causes at least 3 zio's: a
734 * zio_null(), the logical zio_read(), and then a physical
735 * zio. When the physical ZIO completes, we are able to call
736 * zio_done() on all 3 of these zio's from one invocation of
737 * zio_execute() by returning the parent back to
738 * zio_execute(). Since the parent isn't executed until this
739 * thread returns back to zio_execute(), the caller should do
742 * In other cases, dispatching the parent prevents
743 * overflowing the stack when we have deeply nested
744 * parent-child relationships, as we do with the "mega zio"
745 * of writes for spa_sync(), and the chain of ZIL blocks.
747 if (next_to_executep
!= NULL
&& *next_to_executep
== NULL
) {
748 *next_to_executep
= pio
;
750 zio_taskq_dispatch(pio
, type
, B_FALSE
);
753 mutex_exit(&pio
->io_lock
);
758 zio_inherit_child_errors(zio_t
*zio
, enum zio_child c
)
760 if (zio
->io_child_error
[c
] != 0 && zio
->io_error
== 0)
761 zio
->io_error
= zio
->io_child_error
[c
];
765 zio_bookmark_compare(const void *x1
, const void *x2
)
767 const zio_t
*z1
= x1
;
768 const zio_t
*z2
= x2
;
770 if (z1
->io_bookmark
.zb_objset
< z2
->io_bookmark
.zb_objset
)
772 if (z1
->io_bookmark
.zb_objset
> z2
->io_bookmark
.zb_objset
)
775 if (z1
->io_bookmark
.zb_object
< z2
->io_bookmark
.zb_object
)
777 if (z1
->io_bookmark
.zb_object
> z2
->io_bookmark
.zb_object
)
780 if (z1
->io_bookmark
.zb_level
< z2
->io_bookmark
.zb_level
)
782 if (z1
->io_bookmark
.zb_level
> z2
->io_bookmark
.zb_level
)
785 if (z1
->io_bookmark
.zb_blkid
< z2
->io_bookmark
.zb_blkid
)
787 if (z1
->io_bookmark
.zb_blkid
> z2
->io_bookmark
.zb_blkid
)
799 * ==========================================================================
800 * Create the various types of I/O (read, write, free, etc)
801 * ==========================================================================
804 zio_create(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
805 abd_t
*data
, uint64_t lsize
, uint64_t psize
, zio_done_func_t
*done
,
806 void *private, zio_type_t type
, zio_priority_t priority
,
807 enum zio_flag flags
, vdev_t
*vd
, uint64_t offset
,
808 const zbookmark_phys_t
*zb
, enum zio_stage stage
,
809 enum zio_stage pipeline
)
813 IMPLY(type
!= ZIO_TYPE_TRIM
, psize
<= SPA_MAXBLOCKSIZE
);
814 ASSERT(P2PHASE(psize
, SPA_MINBLOCKSIZE
) == 0);
815 ASSERT(P2PHASE(offset
, SPA_MINBLOCKSIZE
) == 0);
817 ASSERT(!vd
|| spa_config_held(spa
, SCL_STATE_ALL
, RW_READER
));
818 ASSERT(!bp
|| !(flags
& ZIO_FLAG_CONFIG_WRITER
));
819 ASSERT(vd
|| stage
== ZIO_STAGE_OPEN
);
821 IMPLY(lsize
!= psize
, (flags
& ZIO_FLAG_RAW_COMPRESS
) != 0);
823 zio
= kmem_cache_alloc(zio_cache
, KM_SLEEP
);
824 bzero(zio
, sizeof (zio_t
));
826 mutex_init(&zio
->io_lock
, NULL
, MUTEX_NOLOCKDEP
, NULL
);
827 cv_init(&zio
->io_cv
, NULL
, CV_DEFAULT
, NULL
);
829 list_create(&zio
->io_parent_list
, sizeof (zio_link_t
),
830 offsetof(zio_link_t
, zl_parent_node
));
831 list_create(&zio
->io_child_list
, sizeof (zio_link_t
),
832 offsetof(zio_link_t
, zl_child_node
));
833 metaslab_trace_init(&zio
->io_alloc_list
);
836 zio
->io_child_type
= ZIO_CHILD_VDEV
;
837 else if (flags
& ZIO_FLAG_GANG_CHILD
)
838 zio
->io_child_type
= ZIO_CHILD_GANG
;
839 else if (flags
& ZIO_FLAG_DDT_CHILD
)
840 zio
->io_child_type
= ZIO_CHILD_DDT
;
842 zio
->io_child_type
= ZIO_CHILD_LOGICAL
;
845 zio
->io_bp
= (blkptr_t
*)bp
;
846 zio
->io_bp_copy
= *bp
;
847 zio
->io_bp_orig
= *bp
;
848 if (type
!= ZIO_TYPE_WRITE
||
849 zio
->io_child_type
== ZIO_CHILD_DDT
)
850 zio
->io_bp
= &zio
->io_bp_copy
; /* so caller can free */
851 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
)
852 zio
->io_logical
= zio
;
853 if (zio
->io_child_type
> ZIO_CHILD_GANG
&& BP_IS_GANG(bp
))
854 pipeline
|= ZIO_GANG_STAGES
;
860 zio
->io_private
= private;
862 zio
->io_priority
= priority
;
864 zio
->io_offset
= offset
;
865 zio
->io_orig_abd
= zio
->io_abd
= data
;
866 zio
->io_orig_size
= zio
->io_size
= psize
;
867 zio
->io_lsize
= lsize
;
868 zio
->io_orig_flags
= zio
->io_flags
= flags
;
869 zio
->io_orig_stage
= zio
->io_stage
= stage
;
870 zio
->io_orig_pipeline
= zio
->io_pipeline
= pipeline
;
871 zio
->io_pipeline_trace
= ZIO_STAGE_OPEN
;
873 zio
->io_state
[ZIO_WAIT_READY
] = (stage
>= ZIO_STAGE_READY
);
874 zio
->io_state
[ZIO_WAIT_DONE
] = (stage
>= ZIO_STAGE_DONE
);
877 zio
->io_bookmark
= *zb
;
880 zio
->io_metaslab_class
= pio
->io_metaslab_class
;
881 if (zio
->io_logical
== NULL
)
882 zio
->io_logical
= pio
->io_logical
;
883 if (zio
->io_child_type
== ZIO_CHILD_GANG
)
884 zio
->io_gang_leader
= pio
->io_gang_leader
;
885 zio_add_child(pio
, zio
);
888 taskq_init_ent(&zio
->io_tqent
);
894 zio_destroy(zio_t
*zio
)
896 metaslab_trace_fini(&zio
->io_alloc_list
);
897 list_destroy(&zio
->io_parent_list
);
898 list_destroy(&zio
->io_child_list
);
899 mutex_destroy(&zio
->io_lock
);
900 cv_destroy(&zio
->io_cv
);
901 kmem_cache_free(zio_cache
, zio
);
905 zio_null(zio_t
*pio
, spa_t
*spa
, vdev_t
*vd
, zio_done_func_t
*done
,
906 void *private, enum zio_flag flags
)
910 zio
= zio_create(pio
, spa
, 0, NULL
, NULL
, 0, 0, done
, private,
911 ZIO_TYPE_NULL
, ZIO_PRIORITY_NOW
, flags
, vd
, 0, NULL
,
912 ZIO_STAGE_OPEN
, ZIO_INTERLOCK_PIPELINE
);
918 zio_root(spa_t
*spa
, zio_done_func_t
*done
, void *private, enum zio_flag flags
)
920 return (zio_null(NULL
, spa
, NULL
, done
, private, flags
));
924 zfs_blkptr_verify_log(spa_t
*spa
, const blkptr_t
*bp
,
925 enum blk_verify_flag blk_verify
, const char *fmt
, ...)
931 (void) vsnprintf(buf
, sizeof (buf
), fmt
, adx
);
934 switch (blk_verify
) {
935 case BLK_VERIFY_HALT
:
936 dprintf_bp(bp
, "blkptr at %p dprintf_bp():", bp
);
937 zfs_panic_recover("%s: %s", spa_name(spa
), buf
);
940 zfs_dbgmsg("%s: %s", spa_name(spa
), buf
);
942 case BLK_VERIFY_ONLY
:
950 * Verify the block pointer fields contain reasonable values. This means
951 * it only contains known object types, checksum/compression identifiers,
952 * block sizes within the maximum allowed limits, valid DVAs, etc.
954 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
955 * argument controls the behavior when an invalid field is detected.
957 * Modes for zfs_blkptr_verify:
958 * 1) BLK_VERIFY_ONLY (evaluate the block)
959 * 2) BLK_VERIFY_LOG (evaluate the block and log problems)
960 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
963 zfs_blkptr_verify(spa_t
*spa
, const blkptr_t
*bp
, boolean_t config_held
,
964 enum blk_verify_flag blk_verify
)
968 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp
))) {
969 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
970 "blkptr at %p has invalid TYPE %llu",
971 bp
, (longlong_t
)BP_GET_TYPE(bp
));
973 if (BP_GET_CHECKSUM(bp
) >= ZIO_CHECKSUM_FUNCTIONS
||
974 BP_GET_CHECKSUM(bp
) <= ZIO_CHECKSUM_ON
) {
975 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
976 "blkptr at %p has invalid CHECKSUM %llu",
977 bp
, (longlong_t
)BP_GET_CHECKSUM(bp
));
979 if (BP_GET_COMPRESS(bp
) >= ZIO_COMPRESS_FUNCTIONS
||
980 BP_GET_COMPRESS(bp
) <= ZIO_COMPRESS_ON
) {
981 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
982 "blkptr at %p has invalid COMPRESS %llu",
983 bp
, (longlong_t
)BP_GET_COMPRESS(bp
));
985 if (BP_GET_LSIZE(bp
) > SPA_MAXBLOCKSIZE
) {
986 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
987 "blkptr at %p has invalid LSIZE %llu",
988 bp
, (longlong_t
)BP_GET_LSIZE(bp
));
990 if (BP_GET_PSIZE(bp
) > SPA_MAXBLOCKSIZE
) {
991 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
992 "blkptr at %p has invalid PSIZE %llu",
993 bp
, (longlong_t
)BP_GET_PSIZE(bp
));
996 if (BP_IS_EMBEDDED(bp
)) {
997 if (BPE_GET_ETYPE(bp
) >= NUM_BP_EMBEDDED_TYPES
) {
998 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
999 "blkptr at %p has invalid ETYPE %llu",
1000 bp
, (longlong_t
)BPE_GET_ETYPE(bp
));
1005 * Do not verify individual DVAs if the config is not trusted. This
1006 * will be done once the zio is executed in vdev_mirror_map_alloc.
1008 if (!spa
->spa_trust_config
)
1012 spa_config_enter(spa
, SCL_VDEV
, bp
, RW_READER
);
1014 ASSERT(spa_config_held(spa
, SCL_VDEV
, RW_WRITER
));
1016 * Pool-specific checks.
1018 * Note: it would be nice to verify that the blk_birth and
1019 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1020 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1021 * that are in the log) to be arbitrarily large.
1023 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
1024 const dva_t
*dva
= &bp
->blk_dva
[i
];
1025 uint64_t vdevid
= DVA_GET_VDEV(dva
);
1027 if (vdevid
>= spa
->spa_root_vdev
->vdev_children
) {
1028 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1029 "blkptr at %p DVA %u has invalid VDEV %llu",
1030 bp
, i
, (longlong_t
)vdevid
);
1033 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[vdevid
];
1035 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1036 "blkptr at %p DVA %u has invalid VDEV %llu",
1037 bp
, i
, (longlong_t
)vdevid
);
1040 if (vd
->vdev_ops
== &vdev_hole_ops
) {
1041 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1042 "blkptr at %p DVA %u has hole VDEV %llu",
1043 bp
, i
, (longlong_t
)vdevid
);
1046 if (vd
->vdev_ops
== &vdev_missing_ops
) {
1048 * "missing" vdevs are valid during import, but we
1049 * don't have their detailed info (e.g. asize), so
1050 * we can't perform any more checks on them.
1054 uint64_t offset
= DVA_GET_OFFSET(dva
);
1055 uint64_t asize
= DVA_GET_ASIZE(dva
);
1056 if (DVA_GET_GANG(dva
))
1057 asize
= vdev_gang_header_asize(vd
);
1058 if (offset
+ asize
> vd
->vdev_asize
) {
1059 errors
+= zfs_blkptr_verify_log(spa
, bp
, blk_verify
,
1060 "blkptr at %p DVA %u has invalid OFFSET %llu",
1061 bp
, i
, (longlong_t
)offset
);
1065 dprintf_bp(bp
, "blkptr at %p dprintf_bp():", bp
);
1067 spa_config_exit(spa
, SCL_VDEV
, bp
);
1069 return (errors
== 0);
1073 zfs_dva_valid(spa_t
*spa
, const dva_t
*dva
, const blkptr_t
*bp
)
1075 uint64_t vdevid
= DVA_GET_VDEV(dva
);
1077 if (vdevid
>= spa
->spa_root_vdev
->vdev_children
)
1080 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[vdevid
];
1084 if (vd
->vdev_ops
== &vdev_hole_ops
)
1087 if (vd
->vdev_ops
== &vdev_missing_ops
) {
1091 uint64_t offset
= DVA_GET_OFFSET(dva
);
1092 uint64_t asize
= DVA_GET_ASIZE(dva
);
1094 if (DVA_GET_GANG(dva
))
1095 asize
= vdev_gang_header_asize(vd
);
1096 if (offset
+ asize
> vd
->vdev_asize
)
1103 zio_read(zio_t
*pio
, spa_t
*spa
, const blkptr_t
*bp
,
1104 abd_t
*data
, uint64_t size
, zio_done_func_t
*done
, void *private,
1105 zio_priority_t priority
, enum zio_flag flags
, const zbookmark_phys_t
*zb
)
1109 zio
= zio_create(pio
, spa
, BP_PHYSICAL_BIRTH(bp
), bp
,
1110 data
, size
, size
, done
, private,
1111 ZIO_TYPE_READ
, priority
, flags
, NULL
, 0, zb
,
1112 ZIO_STAGE_OPEN
, (flags
& ZIO_FLAG_DDT_CHILD
) ?
1113 ZIO_DDT_CHILD_READ_PIPELINE
: ZIO_READ_PIPELINE
);
1119 zio_write(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, blkptr_t
*bp
,
1120 abd_t
*data
, uint64_t lsize
, uint64_t psize
, const zio_prop_t
*zp
,
1121 zio_done_func_t
*ready
, zio_done_func_t
*children_ready
,
1122 zio_done_func_t
*physdone
, zio_done_func_t
*done
,
1123 void *private, zio_priority_t priority
, enum zio_flag flags
,
1124 const zbookmark_phys_t
*zb
)
1128 ASSERT(zp
->zp_checksum
>= ZIO_CHECKSUM_OFF
&&
1129 zp
->zp_checksum
< ZIO_CHECKSUM_FUNCTIONS
&&
1130 zp
->zp_compress
>= ZIO_COMPRESS_OFF
&&
1131 zp
->zp_compress
< ZIO_COMPRESS_FUNCTIONS
&&
1132 DMU_OT_IS_VALID(zp
->zp_type
) &&
1133 zp
->zp_level
< 32 &&
1134 zp
->zp_copies
> 0 &&
1135 zp
->zp_copies
<= spa_max_replication(spa
));
1137 zio
= zio_create(pio
, spa
, txg
, bp
, data
, lsize
, psize
, done
, private,
1138 ZIO_TYPE_WRITE
, priority
, flags
, NULL
, 0, zb
,
1139 ZIO_STAGE_OPEN
, (flags
& ZIO_FLAG_DDT_CHILD
) ?
1140 ZIO_DDT_CHILD_WRITE_PIPELINE
: ZIO_WRITE_PIPELINE
);
1142 zio
->io_ready
= ready
;
1143 zio
->io_children_ready
= children_ready
;
1144 zio
->io_physdone
= physdone
;
1148 * Data can be NULL if we are going to call zio_write_override() to
1149 * provide the already-allocated BP. But we may need the data to
1150 * verify a dedup hit (if requested). In this case, don't try to
1151 * dedup (just take the already-allocated BP verbatim). Encrypted
1152 * dedup blocks need data as well so we also disable dedup in this
1156 (zio
->io_prop
.zp_dedup_verify
|| zio
->io_prop
.zp_encrypt
)) {
1157 zio
->io_prop
.zp_dedup
= zio
->io_prop
.zp_dedup_verify
= B_FALSE
;
1164 zio_rewrite(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, blkptr_t
*bp
, abd_t
*data
,
1165 uint64_t size
, zio_done_func_t
*done
, void *private,
1166 zio_priority_t priority
, enum zio_flag flags
, zbookmark_phys_t
*zb
)
1170 zio
= zio_create(pio
, spa
, txg
, bp
, data
, size
, size
, done
, private,
1171 ZIO_TYPE_WRITE
, priority
, flags
| ZIO_FLAG_IO_REWRITE
, NULL
, 0, zb
,
1172 ZIO_STAGE_OPEN
, ZIO_REWRITE_PIPELINE
);
1178 zio_write_override(zio_t
*zio
, blkptr_t
*bp
, int copies
, boolean_t nopwrite
)
1180 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
1181 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1182 ASSERT(zio
->io_stage
== ZIO_STAGE_OPEN
);
1183 ASSERT(zio
->io_txg
== spa_syncing_txg(zio
->io_spa
));
1186 * We must reset the io_prop to match the values that existed
1187 * when the bp was first written by dmu_sync() keeping in mind
1188 * that nopwrite and dedup are mutually exclusive.
1190 zio
->io_prop
.zp_dedup
= nopwrite
? B_FALSE
: zio
->io_prop
.zp_dedup
;
1191 zio
->io_prop
.zp_nopwrite
= nopwrite
;
1192 zio
->io_prop
.zp_copies
= copies
;
1193 zio
->io_bp_override
= bp
;
1197 zio_free(spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
)
1200 (void) zfs_blkptr_verify(spa
, bp
, B_FALSE
, BLK_VERIFY_HALT
);
1203 * The check for EMBEDDED is a performance optimization. We
1204 * process the free here (by ignoring it) rather than
1205 * putting it on the list and then processing it in zio_free_sync().
1207 if (BP_IS_EMBEDDED(bp
))
1209 metaslab_check_free(spa
, bp
);
1212 * Frees that are for the currently-syncing txg, are not going to be
1213 * deferred, and which will not need to do a read (i.e. not GANG or
1214 * DEDUP), can be processed immediately. Otherwise, put them on the
1215 * in-memory list for later processing.
1217 * Note that we only defer frees after zfs_sync_pass_deferred_free
1218 * when the log space map feature is disabled. [see relevant comment
1219 * in spa_sync_iterate_to_convergence()]
1221 if (BP_IS_GANG(bp
) ||
1223 txg
!= spa
->spa_syncing_txg
||
1224 (spa_sync_pass(spa
) >= zfs_sync_pass_deferred_free
&&
1225 !spa_feature_is_active(spa
, SPA_FEATURE_LOG_SPACEMAP
))) {
1226 bplist_append(&spa
->spa_free_bplist
[txg
& TXG_MASK
], bp
);
1228 VERIFY3P(zio_free_sync(NULL
, spa
, txg
, bp
, 0), ==, NULL
);
1233 * To improve performance, this function may return NULL if we were able
1234 * to do the free immediately. This avoids the cost of creating a zio
1235 * (and linking it to the parent, etc).
1238 zio_free_sync(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
1239 enum zio_flag flags
)
1241 ASSERT(!BP_IS_HOLE(bp
));
1242 ASSERT(spa_syncing_txg(spa
) == txg
);
1244 if (BP_IS_EMBEDDED(bp
))
1247 metaslab_check_free(spa
, bp
);
1249 dsl_scan_freed(spa
, bp
);
1251 if (BP_IS_GANG(bp
) || BP_GET_DEDUP(bp
)) {
1253 * GANG and DEDUP blocks can induce a read (for the gang block
1254 * header, or the DDT), so issue them asynchronously so that
1255 * this thread is not tied up.
1257 enum zio_stage stage
=
1258 ZIO_FREE_PIPELINE
| ZIO_STAGE_ISSUE_ASYNC
;
1260 return (zio_create(pio
, spa
, txg
, bp
, NULL
, BP_GET_PSIZE(bp
),
1261 BP_GET_PSIZE(bp
), NULL
, NULL
,
1262 ZIO_TYPE_FREE
, ZIO_PRIORITY_NOW
,
1263 flags
, NULL
, 0, NULL
, ZIO_STAGE_OPEN
, stage
));
1265 metaslab_free(spa
, bp
, txg
, B_FALSE
);
1271 zio_claim(zio_t
*pio
, spa_t
*spa
, uint64_t txg
, const blkptr_t
*bp
,
1272 zio_done_func_t
*done
, void *private, enum zio_flag flags
)
1276 (void) zfs_blkptr_verify(spa
, bp
, flags
& ZIO_FLAG_CONFIG_WRITER
,
1279 if (BP_IS_EMBEDDED(bp
))
1280 return (zio_null(pio
, spa
, NULL
, NULL
, NULL
, 0));
1283 * A claim is an allocation of a specific block. Claims are needed
1284 * to support immediate writes in the intent log. The issue is that
1285 * immediate writes contain committed data, but in a txg that was
1286 * *not* committed. Upon opening the pool after an unclean shutdown,
1287 * the intent log claims all blocks that contain immediate write data
1288 * so that the SPA knows they're in use.
1290 * All claims *must* be resolved in the first txg -- before the SPA
1291 * starts allocating blocks -- so that nothing is allocated twice.
1292 * If txg == 0 we just verify that the block is claimable.
1294 ASSERT3U(spa
->spa_uberblock
.ub_rootbp
.blk_birth
, <,
1295 spa_min_claim_txg(spa
));
1296 ASSERT(txg
== spa_min_claim_txg(spa
) || txg
== 0);
1297 ASSERT(!BP_GET_DEDUP(bp
) || !spa_writeable(spa
)); /* zdb(8) */
1299 zio
= zio_create(pio
, spa
, txg
, bp
, NULL
, BP_GET_PSIZE(bp
),
1300 BP_GET_PSIZE(bp
), done
, private, ZIO_TYPE_CLAIM
, ZIO_PRIORITY_NOW
,
1301 flags
, NULL
, 0, NULL
, ZIO_STAGE_OPEN
, ZIO_CLAIM_PIPELINE
);
1302 ASSERT0(zio
->io_queued_timestamp
);
1308 zio_ioctl(zio_t
*pio
, spa_t
*spa
, vdev_t
*vd
, int cmd
,
1309 zio_done_func_t
*done
, void *private, enum zio_flag flags
)
1314 if (vd
->vdev_children
== 0) {
1315 zio
= zio_create(pio
, spa
, 0, NULL
, NULL
, 0, 0, done
, private,
1316 ZIO_TYPE_IOCTL
, ZIO_PRIORITY_NOW
, flags
, vd
, 0, NULL
,
1317 ZIO_STAGE_OPEN
, ZIO_IOCTL_PIPELINE
);
1321 zio
= zio_null(pio
, spa
, NULL
, NULL
, NULL
, flags
);
1323 for (c
= 0; c
< vd
->vdev_children
; c
++)
1324 zio_nowait(zio_ioctl(zio
, spa
, vd
->vdev_child
[c
], cmd
,
1325 done
, private, flags
));
1332 zio_trim(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1333 zio_done_func_t
*done
, void *private, zio_priority_t priority
,
1334 enum zio_flag flags
, enum trim_flag trim_flags
)
1338 ASSERT0(vd
->vdev_children
);
1339 ASSERT0(P2PHASE(offset
, 1ULL << vd
->vdev_ashift
));
1340 ASSERT0(P2PHASE(size
, 1ULL << vd
->vdev_ashift
));
1341 ASSERT3U(size
, !=, 0);
1343 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, NULL
, size
, size
, done
,
1344 private, ZIO_TYPE_TRIM
, priority
, flags
| ZIO_FLAG_PHYSICAL
,
1345 vd
, offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_TRIM_PIPELINE
);
1346 zio
->io_trim_flags
= trim_flags
;
1352 zio_read_phys(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1353 abd_t
*data
, int checksum
, zio_done_func_t
*done
, void *private,
1354 zio_priority_t priority
, enum zio_flag flags
, boolean_t labels
)
1358 ASSERT(vd
->vdev_children
== 0);
1359 ASSERT(!labels
|| offset
+ size
<= VDEV_LABEL_START_SIZE
||
1360 offset
>= vd
->vdev_psize
- VDEV_LABEL_END_SIZE
);
1361 ASSERT3U(offset
+ size
, <=, vd
->vdev_psize
);
1363 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, data
, size
, size
, done
,
1364 private, ZIO_TYPE_READ
, priority
, flags
| ZIO_FLAG_PHYSICAL
, vd
,
1365 offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_READ_PHYS_PIPELINE
);
1367 zio
->io_prop
.zp_checksum
= checksum
;
1373 zio_write_phys(zio_t
*pio
, vdev_t
*vd
, uint64_t offset
, uint64_t size
,
1374 abd_t
*data
, int checksum
, zio_done_func_t
*done
, void *private,
1375 zio_priority_t priority
, enum zio_flag flags
, boolean_t labels
)
1379 ASSERT(vd
->vdev_children
== 0);
1380 ASSERT(!labels
|| offset
+ size
<= VDEV_LABEL_START_SIZE
||
1381 offset
>= vd
->vdev_psize
- VDEV_LABEL_END_SIZE
);
1382 ASSERT3U(offset
+ size
, <=, vd
->vdev_psize
);
1384 zio
= zio_create(pio
, vd
->vdev_spa
, 0, NULL
, data
, size
, size
, done
,
1385 private, ZIO_TYPE_WRITE
, priority
, flags
| ZIO_FLAG_PHYSICAL
, vd
,
1386 offset
, NULL
, ZIO_STAGE_OPEN
, ZIO_WRITE_PHYS_PIPELINE
);
1388 zio
->io_prop
.zp_checksum
= checksum
;
1390 if (zio_checksum_table
[checksum
].ci_flags
& ZCHECKSUM_FLAG_EMBEDDED
) {
1392 * zec checksums are necessarily destructive -- they modify
1393 * the end of the write buffer to hold the verifier/checksum.
1394 * Therefore, we must make a local copy in case the data is
1395 * being written to multiple places in parallel.
1397 abd_t
*wbuf
= abd_alloc_sametype(data
, size
);
1398 abd_copy(wbuf
, data
, size
);
1400 zio_push_transform(zio
, wbuf
, size
, size
, NULL
);
1407 * Create a child I/O to do some work for us.
1410 zio_vdev_child_io(zio_t
*pio
, blkptr_t
*bp
, vdev_t
*vd
, uint64_t offset
,
1411 abd_t
*data
, uint64_t size
, int type
, zio_priority_t priority
,
1412 enum zio_flag flags
, zio_done_func_t
*done
, void *private)
1414 enum zio_stage pipeline
= ZIO_VDEV_CHILD_PIPELINE
;
1418 * vdev child I/Os do not propagate their error to the parent.
1419 * Therefore, for correct operation the caller *must* check for
1420 * and handle the error in the child i/o's done callback.
1421 * The only exceptions are i/os that we don't care about
1422 * (OPTIONAL or REPAIR).
1424 ASSERT((flags
& ZIO_FLAG_OPTIONAL
) || (flags
& ZIO_FLAG_IO_REPAIR
) ||
1427 if (type
== ZIO_TYPE_READ
&& bp
!= NULL
) {
1429 * If we have the bp, then the child should perform the
1430 * checksum and the parent need not. This pushes error
1431 * detection as close to the leaves as possible and
1432 * eliminates redundant checksums in the interior nodes.
1434 pipeline
|= ZIO_STAGE_CHECKSUM_VERIFY
;
1435 pio
->io_pipeline
&= ~ZIO_STAGE_CHECKSUM_VERIFY
;
1438 if (vd
->vdev_ops
->vdev_op_leaf
) {
1439 ASSERT0(vd
->vdev_children
);
1440 offset
+= VDEV_LABEL_START_SIZE
;
1443 flags
|= ZIO_VDEV_CHILD_FLAGS(pio
);
1446 * If we've decided to do a repair, the write is not speculative --
1447 * even if the original read was.
1449 if (flags
& ZIO_FLAG_IO_REPAIR
)
1450 flags
&= ~ZIO_FLAG_SPECULATIVE
;
1453 * If we're creating a child I/O that is not associated with a
1454 * top-level vdev, then the child zio is not an allocating I/O.
1455 * If this is a retried I/O then we ignore it since we will
1456 * have already processed the original allocating I/O.
1458 if (flags
& ZIO_FLAG_IO_ALLOCATING
&&
1459 (vd
!= vd
->vdev_top
|| (flags
& ZIO_FLAG_IO_RETRY
))) {
1460 ASSERT(pio
->io_metaslab_class
!= NULL
);
1461 ASSERT(pio
->io_metaslab_class
->mc_alloc_throttle_enabled
);
1462 ASSERT(type
== ZIO_TYPE_WRITE
);
1463 ASSERT(priority
== ZIO_PRIORITY_ASYNC_WRITE
);
1464 ASSERT(!(flags
& ZIO_FLAG_IO_REPAIR
));
1465 ASSERT(!(pio
->io_flags
& ZIO_FLAG_IO_REWRITE
) ||
1466 pio
->io_child_type
== ZIO_CHILD_GANG
);
1468 flags
&= ~ZIO_FLAG_IO_ALLOCATING
;
1472 zio
= zio_create(pio
, pio
->io_spa
, pio
->io_txg
, bp
, data
, size
, size
,
1473 done
, private, type
, priority
, flags
, vd
, offset
, &pio
->io_bookmark
,
1474 ZIO_STAGE_VDEV_IO_START
>> 1, pipeline
);
1475 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_VDEV
);
1477 zio
->io_physdone
= pio
->io_physdone
;
1478 if (vd
->vdev_ops
->vdev_op_leaf
&& zio
->io_logical
!= NULL
)
1479 zio
->io_logical
->io_phys_children
++;
1485 zio_vdev_delegated_io(vdev_t
*vd
, uint64_t offset
, abd_t
*data
, uint64_t size
,
1486 zio_type_t type
, zio_priority_t priority
, enum zio_flag flags
,
1487 zio_done_func_t
*done
, void *private)
1491 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1493 zio
= zio_create(NULL
, vd
->vdev_spa
, 0, NULL
,
1494 data
, size
, size
, done
, private, type
, priority
,
1495 flags
| ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_RETRY
| ZIO_FLAG_DELEGATED
,
1497 ZIO_STAGE_VDEV_IO_START
>> 1, ZIO_VDEV_CHILD_PIPELINE
);
1503 zio_flush(zio_t
*zio
, vdev_t
*vd
)
1505 zio_nowait(zio_ioctl(zio
, zio
->io_spa
, vd
, DKIOCFLUSHWRITECACHE
,
1507 ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
));
1511 zio_shrink(zio_t
*zio
, uint64_t size
)
1513 ASSERT3P(zio
->io_executor
, ==, NULL
);
1514 ASSERT3U(zio
->io_orig_size
, ==, zio
->io_size
);
1515 ASSERT3U(size
, <=, zio
->io_size
);
1518 * We don't shrink for raidz because of problems with the
1519 * reconstruction when reading back less than the block size.
1520 * Note, BP_IS_RAIDZ() assumes no compression.
1522 ASSERT(BP_GET_COMPRESS(zio
->io_bp
) == ZIO_COMPRESS_OFF
);
1523 if (!BP_IS_RAIDZ(zio
->io_bp
)) {
1524 /* we are not doing a raw write */
1525 ASSERT3U(zio
->io_size
, ==, zio
->io_lsize
);
1526 zio
->io_orig_size
= zio
->io_size
= zio
->io_lsize
= size
;
1531 * ==========================================================================
1532 * Prepare to read and write logical blocks
1533 * ==========================================================================
1537 zio_read_bp_init(zio_t
*zio
)
1539 blkptr_t
*bp
= zio
->io_bp
;
1541 BP_IS_EMBEDDED(bp
) ? BPE_GET_PSIZE(bp
) : BP_GET_PSIZE(bp
);
1543 ASSERT3P(zio
->io_bp
, ==, &zio
->io_bp_copy
);
1545 if (BP_GET_COMPRESS(bp
) != ZIO_COMPRESS_OFF
&&
1546 zio
->io_child_type
== ZIO_CHILD_LOGICAL
&&
1547 !(zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
)) {
1548 zio_push_transform(zio
, abd_alloc_sametype(zio
->io_abd
, psize
),
1549 psize
, psize
, zio_decompress
);
1552 if (((BP_IS_PROTECTED(bp
) && !(zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
)) ||
1553 BP_HAS_INDIRECT_MAC_CKSUM(bp
)) &&
1554 zio
->io_child_type
== ZIO_CHILD_LOGICAL
) {
1555 zio_push_transform(zio
, abd_alloc_sametype(zio
->io_abd
, psize
),
1556 psize
, psize
, zio_decrypt
);
1559 if (BP_IS_EMBEDDED(bp
) && BPE_GET_ETYPE(bp
) == BP_EMBEDDED_TYPE_DATA
) {
1560 int psize
= BPE_GET_PSIZE(bp
);
1561 void *data
= abd_borrow_buf(zio
->io_abd
, psize
);
1563 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1564 decode_embedded_bp_compressed(bp
, data
);
1565 abd_return_buf_copy(zio
->io_abd
, data
, psize
);
1567 ASSERT(!BP_IS_EMBEDDED(bp
));
1568 ASSERT3P(zio
->io_bp
, ==, &zio
->io_bp_copy
);
1571 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp
)) && BP_GET_LEVEL(bp
) == 0)
1572 zio
->io_flags
|= ZIO_FLAG_DONT_CACHE
;
1574 if (BP_GET_TYPE(bp
) == DMU_OT_DDT_ZAP
)
1575 zio
->io_flags
|= ZIO_FLAG_DONT_CACHE
;
1577 if (BP_GET_DEDUP(bp
) && zio
->io_child_type
== ZIO_CHILD_LOGICAL
)
1578 zio
->io_pipeline
= ZIO_DDT_READ_PIPELINE
;
1584 zio_write_bp_init(zio_t
*zio
)
1586 if (!IO_IS_ALLOCATING(zio
))
1589 ASSERT(zio
->io_child_type
!= ZIO_CHILD_DDT
);
1591 if (zio
->io_bp_override
) {
1592 blkptr_t
*bp
= zio
->io_bp
;
1593 zio_prop_t
*zp
= &zio
->io_prop
;
1595 ASSERT(bp
->blk_birth
!= zio
->io_txg
);
1596 ASSERT(BP_GET_DEDUP(zio
->io_bp_override
) == 0);
1598 *bp
= *zio
->io_bp_override
;
1599 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1601 if (BP_IS_EMBEDDED(bp
))
1605 * If we've been overridden and nopwrite is set then
1606 * set the flag accordingly to indicate that a nopwrite
1607 * has already occurred.
1609 if (!BP_IS_HOLE(bp
) && zp
->zp_nopwrite
) {
1610 ASSERT(!zp
->zp_dedup
);
1611 ASSERT3U(BP_GET_CHECKSUM(bp
), ==, zp
->zp_checksum
);
1612 zio
->io_flags
|= ZIO_FLAG_NOPWRITE
;
1616 ASSERT(!zp
->zp_nopwrite
);
1618 if (BP_IS_HOLE(bp
) || !zp
->zp_dedup
)
1621 ASSERT((zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
1622 ZCHECKSUM_FLAG_DEDUP
) || zp
->zp_dedup_verify
);
1624 if (BP_GET_CHECKSUM(bp
) == zp
->zp_checksum
&&
1626 BP_SET_DEDUP(bp
, 1);
1627 zio
->io_pipeline
|= ZIO_STAGE_DDT_WRITE
;
1632 * We were unable to handle this as an override bp, treat
1633 * it as a regular write I/O.
1635 zio
->io_bp_override
= NULL
;
1636 *bp
= zio
->io_bp_orig
;
1637 zio
->io_pipeline
= zio
->io_orig_pipeline
;
1644 zio_write_compress(zio_t
*zio
)
1646 spa_t
*spa
= zio
->io_spa
;
1647 zio_prop_t
*zp
= &zio
->io_prop
;
1648 enum zio_compress compress
= zp
->zp_compress
;
1649 blkptr_t
*bp
= zio
->io_bp
;
1650 uint64_t lsize
= zio
->io_lsize
;
1651 uint64_t psize
= zio
->io_size
;
1655 * If our children haven't all reached the ready stage,
1656 * wait for them and then repeat this pipeline stage.
1658 if (zio_wait_for_children(zio
, ZIO_CHILD_LOGICAL_BIT
|
1659 ZIO_CHILD_GANG_BIT
, ZIO_WAIT_READY
)) {
1663 if (!IO_IS_ALLOCATING(zio
))
1666 if (zio
->io_children_ready
!= NULL
) {
1668 * Now that all our children are ready, run the callback
1669 * associated with this zio in case it wants to modify the
1670 * data to be written.
1672 ASSERT3U(zp
->zp_level
, >, 0);
1673 zio
->io_children_ready(zio
);
1676 ASSERT(zio
->io_child_type
!= ZIO_CHILD_DDT
);
1677 ASSERT(zio
->io_bp_override
== NULL
);
1679 if (!BP_IS_HOLE(bp
) && bp
->blk_birth
== zio
->io_txg
) {
1681 * We're rewriting an existing block, which means we're
1682 * working on behalf of spa_sync(). For spa_sync() to
1683 * converge, it must eventually be the case that we don't
1684 * have to allocate new blocks. But compression changes
1685 * the blocksize, which forces a reallocate, and makes
1686 * convergence take longer. Therefore, after the first
1687 * few passes, stop compressing to ensure convergence.
1689 pass
= spa_sync_pass(spa
);
1691 ASSERT(zio
->io_txg
== spa_syncing_txg(spa
));
1692 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1693 ASSERT(!BP_GET_DEDUP(bp
));
1695 if (pass
>= zfs_sync_pass_dont_compress
)
1696 compress
= ZIO_COMPRESS_OFF
;
1698 /* Make sure someone doesn't change their mind on overwrites */
1699 ASSERT(BP_IS_EMBEDDED(bp
) || MIN(zp
->zp_copies
+ BP_IS_GANG(bp
),
1700 spa_max_replication(spa
)) == BP_GET_NDVAS(bp
));
1703 /* If it's a compressed write that is not raw, compress the buffer. */
1704 if (compress
!= ZIO_COMPRESS_OFF
&&
1705 !(zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
)) {
1706 void *cbuf
= zio_buf_alloc(lsize
);
1707 psize
= zio_compress_data(compress
, zio
->io_abd
, cbuf
, lsize
,
1709 if (psize
== 0 || psize
>= lsize
) {
1710 compress
= ZIO_COMPRESS_OFF
;
1711 zio_buf_free(cbuf
, lsize
);
1712 } else if (!zp
->zp_dedup
&& !zp
->zp_encrypt
&&
1713 psize
<= BPE_PAYLOAD_SIZE
&&
1714 zp
->zp_level
== 0 && !DMU_OT_HAS_FILL(zp
->zp_type
) &&
1715 spa_feature_is_enabled(spa
, SPA_FEATURE_EMBEDDED_DATA
)) {
1716 encode_embedded_bp_compressed(bp
,
1717 cbuf
, compress
, lsize
, psize
);
1718 BPE_SET_ETYPE(bp
, BP_EMBEDDED_TYPE_DATA
);
1719 BP_SET_TYPE(bp
, zio
->io_prop
.zp_type
);
1720 BP_SET_LEVEL(bp
, zio
->io_prop
.zp_level
);
1721 zio_buf_free(cbuf
, lsize
);
1722 bp
->blk_birth
= zio
->io_txg
;
1723 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1724 ASSERT(spa_feature_is_active(spa
,
1725 SPA_FEATURE_EMBEDDED_DATA
));
1729 * Round compressed size up to the minimum allocation
1730 * size of the smallest-ashift device, and zero the
1731 * tail. This ensures that the compressed size of the
1732 * BP (and thus compressratio property) are correct,
1733 * in that we charge for the padding used to fill out
1736 ASSERT3U(spa
->spa_min_alloc
, >=, SPA_MINBLOCKSHIFT
);
1737 size_t rounded
= (size_t)roundup(psize
,
1738 spa
->spa_min_alloc
);
1739 if (rounded
>= lsize
) {
1740 compress
= ZIO_COMPRESS_OFF
;
1741 zio_buf_free(cbuf
, lsize
);
1744 abd_t
*cdata
= abd_get_from_buf(cbuf
, lsize
);
1745 abd_take_ownership_of_buf(cdata
, B_TRUE
);
1746 abd_zero_off(cdata
, psize
, rounded
- psize
);
1748 zio_push_transform(zio
, cdata
,
1749 psize
, lsize
, NULL
);
1754 * We were unable to handle this as an override bp, treat
1755 * it as a regular write I/O.
1757 zio
->io_bp_override
= NULL
;
1758 *bp
= zio
->io_bp_orig
;
1759 zio
->io_pipeline
= zio
->io_orig_pipeline
;
1761 } else if ((zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0 &&
1762 zp
->zp_type
== DMU_OT_DNODE
) {
1764 * The DMU actually relies on the zio layer's compression
1765 * to free metadnode blocks that have had all contained
1766 * dnodes freed. As a result, even when doing a raw
1767 * receive, we must check whether the block can be compressed
1770 psize
= zio_compress_data(ZIO_COMPRESS_EMPTY
,
1771 zio
->io_abd
, NULL
, lsize
, zp
->zp_complevel
);
1772 if (psize
== 0 || psize
>= lsize
)
1773 compress
= ZIO_COMPRESS_OFF
;
1775 ASSERT3U(psize
, !=, 0);
1779 * The final pass of spa_sync() must be all rewrites, but the first
1780 * few passes offer a trade-off: allocating blocks defers convergence,
1781 * but newly allocated blocks are sequential, so they can be written
1782 * to disk faster. Therefore, we allow the first few passes of
1783 * spa_sync() to allocate new blocks, but force rewrites after that.
1784 * There should only be a handful of blocks after pass 1 in any case.
1786 if (!BP_IS_HOLE(bp
) && bp
->blk_birth
== zio
->io_txg
&&
1787 BP_GET_PSIZE(bp
) == psize
&&
1788 pass
>= zfs_sync_pass_rewrite
) {
1789 VERIFY3U(psize
, !=, 0);
1790 enum zio_stage gang_stages
= zio
->io_pipeline
& ZIO_GANG_STAGES
;
1792 zio
->io_pipeline
= ZIO_REWRITE_PIPELINE
| gang_stages
;
1793 zio
->io_flags
|= ZIO_FLAG_IO_REWRITE
;
1796 zio
->io_pipeline
= ZIO_WRITE_PIPELINE
;
1800 if (zio
->io_bp_orig
.blk_birth
!= 0 &&
1801 spa_feature_is_active(spa
, SPA_FEATURE_HOLE_BIRTH
)) {
1802 BP_SET_LSIZE(bp
, lsize
);
1803 BP_SET_TYPE(bp
, zp
->zp_type
);
1804 BP_SET_LEVEL(bp
, zp
->zp_level
);
1805 BP_SET_BIRTH(bp
, zio
->io_txg
, 0);
1807 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
1809 ASSERT(zp
->zp_checksum
!= ZIO_CHECKSUM_GANG_HEADER
);
1810 BP_SET_LSIZE(bp
, lsize
);
1811 BP_SET_TYPE(bp
, zp
->zp_type
);
1812 BP_SET_LEVEL(bp
, zp
->zp_level
);
1813 BP_SET_PSIZE(bp
, psize
);
1814 BP_SET_COMPRESS(bp
, compress
);
1815 BP_SET_CHECKSUM(bp
, zp
->zp_checksum
);
1816 BP_SET_DEDUP(bp
, zp
->zp_dedup
);
1817 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
1819 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1820 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
1821 ASSERT(!zp
->zp_encrypt
||
1822 DMU_OT_IS_ENCRYPTED(zp
->zp_type
));
1823 zio
->io_pipeline
= ZIO_DDT_WRITE_PIPELINE
;
1825 if (zp
->zp_nopwrite
) {
1826 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
1827 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
1828 zio
->io_pipeline
|= ZIO_STAGE_NOP_WRITE
;
1835 zio_free_bp_init(zio_t
*zio
)
1837 blkptr_t
*bp
= zio
->io_bp
;
1839 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
) {
1840 if (BP_GET_DEDUP(bp
))
1841 zio
->io_pipeline
= ZIO_DDT_FREE_PIPELINE
;
1844 ASSERT3P(zio
->io_bp
, ==, &zio
->io_bp_copy
);
1850 * ==========================================================================
1851 * Execute the I/O pipeline
1852 * ==========================================================================
1856 zio_taskq_dispatch(zio_t
*zio
, zio_taskq_type_t q
, boolean_t cutinline
)
1858 spa_t
*spa
= zio
->io_spa
;
1859 zio_type_t t
= zio
->io_type
;
1860 int flags
= (cutinline
? TQ_FRONT
: 0);
1863 * If we're a config writer or a probe, the normal issue and
1864 * interrupt threads may all be blocked waiting for the config lock.
1865 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1867 if (zio
->io_flags
& (ZIO_FLAG_CONFIG_WRITER
| ZIO_FLAG_PROBE
))
1871 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1873 if (t
== ZIO_TYPE_WRITE
&& zio
->io_vd
&& zio
->io_vd
->vdev_aux
)
1877 * If this is a high priority I/O, then use the high priority taskq if
1880 if ((zio
->io_priority
== ZIO_PRIORITY_NOW
||
1881 zio
->io_priority
== ZIO_PRIORITY_SYNC_WRITE
) &&
1882 spa
->spa_zio_taskq
[t
][q
+ 1].stqs_count
!= 0)
1885 ASSERT3U(q
, <, ZIO_TASKQ_TYPES
);
1888 * NB: We are assuming that the zio can only be dispatched
1889 * to a single taskq at a time. It would be a grievous error
1890 * to dispatch the zio to another taskq at the same time.
1892 ASSERT(taskq_empty_ent(&zio
->io_tqent
));
1893 spa_taskq_dispatch_ent(spa
, t
, q
, zio_execute
, zio
, flags
,
1898 zio_taskq_member(zio_t
*zio
, zio_taskq_type_t q
)
1900 spa_t
*spa
= zio
->io_spa
;
1902 taskq_t
*tq
= taskq_of_curthread();
1904 for (zio_type_t t
= 0; t
< ZIO_TYPES
; t
++) {
1905 spa_taskqs_t
*tqs
= &spa
->spa_zio_taskq
[t
][q
];
1907 for (i
= 0; i
< tqs
->stqs_count
; i
++) {
1908 if (tqs
->stqs_taskq
[i
] == tq
)
1917 zio_issue_async(zio_t
*zio
)
1919 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_FALSE
);
1925 zio_interrupt(void *zio
)
1927 zio_taskq_dispatch(zio
, ZIO_TASKQ_INTERRUPT
, B_FALSE
);
1931 zio_delay_interrupt(zio_t
*zio
)
1934 * The timeout_generic() function isn't defined in userspace, so
1935 * rather than trying to implement the function, the zio delay
1936 * functionality has been disabled for userspace builds.
1941 * If io_target_timestamp is zero, then no delay has been registered
1942 * for this IO, thus jump to the end of this function and "skip" the
1943 * delay; issuing it directly to the zio layer.
1945 if (zio
->io_target_timestamp
!= 0) {
1946 hrtime_t now
= gethrtime();
1948 if (now
>= zio
->io_target_timestamp
) {
1950 * This IO has already taken longer than the target
1951 * delay to complete, so we don't want to delay it
1952 * any longer; we "miss" the delay and issue it
1953 * directly to the zio layer. This is likely due to
1954 * the target latency being set to a value less than
1955 * the underlying hardware can satisfy (e.g. delay
1956 * set to 1ms, but the disks take 10ms to complete an
1960 DTRACE_PROBE2(zio__delay__miss
, zio_t
*, zio
,
1966 hrtime_t diff
= zio
->io_target_timestamp
- now
;
1967 clock_t expire_at_tick
= ddi_get_lbolt() +
1970 DTRACE_PROBE3(zio__delay__hit
, zio_t
*, zio
,
1971 hrtime_t
, now
, hrtime_t
, diff
);
1973 if (NSEC_TO_TICK(diff
) == 0) {
1974 /* Our delay is less than a jiffy - just spin */
1975 zfs_sleep_until(zio
->io_target_timestamp
);
1979 * Use taskq_dispatch_delay() in the place of
1980 * OpenZFS's timeout_generic().
1982 tid
= taskq_dispatch_delay(system_taskq
,
1983 zio_interrupt
, zio
, TQ_NOSLEEP
,
1985 if (tid
== TASKQID_INVALID
) {
1987 * Couldn't allocate a task. Just
1988 * finish the zio without a delay.
1997 DTRACE_PROBE1(zio__delay__skip
, zio_t
*, zio
);
2002 zio_deadman_impl(zio_t
*pio
, int ziodepth
)
2004 zio_t
*cio
, *cio_next
;
2005 zio_link_t
*zl
= NULL
;
2006 vdev_t
*vd
= pio
->io_vd
;
2008 if (zio_deadman_log_all
|| (vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
)) {
2009 vdev_queue_t
*vq
= vd
? &vd
->vdev_queue
: NULL
;
2010 zbookmark_phys_t
*zb
= &pio
->io_bookmark
;
2011 uint64_t delta
= gethrtime() - pio
->io_timestamp
;
2012 uint64_t failmode
= spa_get_deadman_failmode(pio
->io_spa
);
2014 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2015 "delta=%llu queued=%llu io=%llu "
2017 "last=%llu type=%d "
2018 "priority=%d flags=0x%x stage=0x%x "
2019 "pipeline=0x%x pipeline-trace=0x%x "
2020 "objset=%llu object=%llu "
2021 "level=%llu blkid=%llu "
2022 "offset=%llu size=%llu "
2024 ziodepth
, pio
, pio
->io_timestamp
,
2025 (u_longlong_t
)delta
, pio
->io_delta
, pio
->io_delay
,
2026 vd
? vd
->vdev_path
: "NULL",
2027 vq
? vq
->vq_io_complete_ts
: 0, pio
->io_type
,
2028 pio
->io_priority
, pio
->io_flags
, pio
->io_stage
,
2029 pio
->io_pipeline
, pio
->io_pipeline_trace
,
2030 (u_longlong_t
)zb
->zb_objset
, (u_longlong_t
)zb
->zb_object
,
2031 (u_longlong_t
)zb
->zb_level
, (u_longlong_t
)zb
->zb_blkid
,
2032 (u_longlong_t
)pio
->io_offset
, (u_longlong_t
)pio
->io_size
,
2034 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN
,
2035 pio
->io_spa
, vd
, zb
, pio
, 0);
2037 if (failmode
== ZIO_FAILURE_MODE_CONTINUE
&&
2038 taskq_empty_ent(&pio
->io_tqent
)) {
2043 mutex_enter(&pio
->io_lock
);
2044 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
2045 cio_next
= zio_walk_children(pio
, &zl
);
2046 zio_deadman_impl(cio
, ziodepth
+ 1);
2048 mutex_exit(&pio
->io_lock
);
2052 * Log the critical information describing this zio and all of its children
2053 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2056 zio_deadman(zio_t
*pio
, char *tag
)
2058 spa_t
*spa
= pio
->io_spa
;
2059 char *name
= spa_name(spa
);
2061 if (!zfs_deadman_enabled
|| spa_suspended(spa
))
2064 zio_deadman_impl(pio
, 0);
2066 switch (spa_get_deadman_failmode(spa
)) {
2067 case ZIO_FAILURE_MODE_WAIT
:
2068 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag
, name
);
2071 case ZIO_FAILURE_MODE_CONTINUE
:
2072 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag
, name
);
2075 case ZIO_FAILURE_MODE_PANIC
:
2076 fm_panic("%s determined I/O to pool '%s' is hung.", tag
, name
);
2082 * Execute the I/O pipeline until one of the following occurs:
2083 * (1) the I/O completes; (2) the pipeline stalls waiting for
2084 * dependent child I/Os; (3) the I/O issues, so we're waiting
2085 * for an I/O completion interrupt; (4) the I/O is delegated by
2086 * vdev-level caching or aggregation; (5) the I/O is deferred
2087 * due to vdev-level queueing; (6) the I/O is handed off to
2088 * another thread. In all cases, the pipeline stops whenever
2089 * there's no CPU work; it never burns a thread in cv_wait_io().
2091 * There's no locking on io_stage because there's no legitimate way
2092 * for multiple threads to be attempting to process the same I/O.
2094 static zio_pipe_stage_t
*zio_pipeline
[];
2097 * zio_execute() is a wrapper around the static function
2098 * __zio_execute() so that we can force __zio_execute() to be
2099 * inlined. This reduces stack overhead which is important
2100 * because __zio_execute() is called recursively in several zio
2101 * code paths. zio_execute() itself cannot be inlined because
2102 * it is externally visible.
2105 zio_execute(void *zio
)
2107 fstrans_cookie_t cookie
;
2109 cookie
= spl_fstrans_mark();
2111 spl_fstrans_unmark(cookie
);
2115 * Used to determine if in the current context the stack is sized large
2116 * enough to allow zio_execute() to be called recursively. A minimum
2117 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2120 zio_execute_stack_check(zio_t
*zio
)
2122 #if !defined(HAVE_LARGE_STACKS)
2123 dsl_pool_t
*dp
= spa_get_dsl(zio
->io_spa
);
2125 /* Executing in txg_sync_thread() context. */
2126 if (dp
&& curthread
== dp
->dp_tx
.tx_sync_thread
)
2129 /* Pool initialization outside of zio_taskq context. */
2130 if (dp
&& spa_is_initializing(dp
->dp_spa
) &&
2131 !zio_taskq_member(zio
, ZIO_TASKQ_ISSUE
) &&
2132 !zio_taskq_member(zio
, ZIO_TASKQ_ISSUE_HIGH
))
2134 #endif /* HAVE_LARGE_STACKS */
2139 __attribute__((always_inline
))
2141 __zio_execute(zio_t
*zio
)
2143 ASSERT3U(zio
->io_queued_timestamp
, >, 0);
2145 while (zio
->io_stage
< ZIO_STAGE_DONE
) {
2146 enum zio_stage pipeline
= zio
->io_pipeline
;
2147 enum zio_stage stage
= zio
->io_stage
;
2149 zio
->io_executor
= curthread
;
2151 ASSERT(!MUTEX_HELD(&zio
->io_lock
));
2152 ASSERT(ISP2(stage
));
2153 ASSERT(zio
->io_stall
== NULL
);
2157 } while ((stage
& pipeline
) == 0);
2159 ASSERT(stage
<= ZIO_STAGE_DONE
);
2162 * If we are in interrupt context and this pipeline stage
2163 * will grab a config lock that is held across I/O,
2164 * or may wait for an I/O that needs an interrupt thread
2165 * to complete, issue async to avoid deadlock.
2167 * For VDEV_IO_START, we cut in line so that the io will
2168 * be sent to disk promptly.
2170 if ((stage
& ZIO_BLOCKING_STAGES
) && zio
->io_vd
== NULL
&&
2171 zio_taskq_member(zio
, ZIO_TASKQ_INTERRUPT
)) {
2172 boolean_t cut
= (stage
== ZIO_STAGE_VDEV_IO_START
) ?
2173 zio_requeue_io_start_cut_in_line
: B_FALSE
;
2174 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, cut
);
2179 * If the current context doesn't have large enough stacks
2180 * the zio must be issued asynchronously to prevent overflow.
2182 if (zio_execute_stack_check(zio
)) {
2183 boolean_t cut
= (stage
== ZIO_STAGE_VDEV_IO_START
) ?
2184 zio_requeue_io_start_cut_in_line
: B_FALSE
;
2185 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, cut
);
2189 zio
->io_stage
= stage
;
2190 zio
->io_pipeline_trace
|= zio
->io_stage
;
2193 * The zio pipeline stage returns the next zio to execute
2194 * (typically the same as this one), or NULL if we should
2197 zio
= zio_pipeline
[highbit64(stage
) - 1](zio
);
2206 * ==========================================================================
2207 * Initiate I/O, either sync or async
2208 * ==========================================================================
2211 zio_wait(zio_t
*zio
)
2214 * Some routines, like zio_free_sync(), may return a NULL zio
2215 * to avoid the performance overhead of creating and then destroying
2216 * an unneeded zio. For the callers' simplicity, we accept a NULL
2217 * zio and ignore it.
2222 long timeout
= MSEC_TO_TICK(zfs_deadman_ziotime_ms
);
2225 ASSERT3S(zio
->io_stage
, ==, ZIO_STAGE_OPEN
);
2226 ASSERT3P(zio
->io_executor
, ==, NULL
);
2228 zio
->io_waiter
= curthread
;
2229 ASSERT0(zio
->io_queued_timestamp
);
2230 zio
->io_queued_timestamp
= gethrtime();
2234 mutex_enter(&zio
->io_lock
);
2235 while (zio
->io_executor
!= NULL
) {
2236 error
= cv_timedwait_io(&zio
->io_cv
, &zio
->io_lock
,
2237 ddi_get_lbolt() + timeout
);
2239 if (zfs_deadman_enabled
&& error
== -1 &&
2240 gethrtime() - zio
->io_queued_timestamp
>
2241 spa_deadman_ziotime(zio
->io_spa
)) {
2242 mutex_exit(&zio
->io_lock
);
2243 timeout
= MSEC_TO_TICK(zfs_deadman_checktime_ms
);
2244 zio_deadman(zio
, FTAG
);
2245 mutex_enter(&zio
->io_lock
);
2248 mutex_exit(&zio
->io_lock
);
2250 error
= zio
->io_error
;
2257 zio_nowait(zio_t
*zio
)
2260 * See comment in zio_wait().
2265 ASSERT3P(zio
->io_executor
, ==, NULL
);
2267 if (zio
->io_child_type
== ZIO_CHILD_LOGICAL
&&
2268 zio_unique_parent(zio
) == NULL
) {
2272 * This is a logical async I/O with no parent to wait for it.
2273 * We add it to the spa_async_root_zio "Godfather" I/O which
2274 * will ensure they complete prior to unloading the pool.
2276 spa_t
*spa
= zio
->io_spa
;
2277 pio
= spa
->spa_async_zio_root
[CPU_SEQID_UNSTABLE
];
2279 zio_add_child(pio
, zio
);
2282 ASSERT0(zio
->io_queued_timestamp
);
2283 zio
->io_queued_timestamp
= gethrtime();
2288 * ==========================================================================
2289 * Reexecute, cancel, or suspend/resume failed I/O
2290 * ==========================================================================
2294 zio_reexecute(void *arg
)
2297 zio_t
*cio
, *cio_next
;
2299 ASSERT(pio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2300 ASSERT(pio
->io_orig_stage
== ZIO_STAGE_OPEN
);
2301 ASSERT(pio
->io_gang_leader
== NULL
);
2302 ASSERT(pio
->io_gang_tree
== NULL
);
2304 pio
->io_flags
= pio
->io_orig_flags
;
2305 pio
->io_stage
= pio
->io_orig_stage
;
2306 pio
->io_pipeline
= pio
->io_orig_pipeline
;
2307 pio
->io_reexecute
= 0;
2308 pio
->io_flags
|= ZIO_FLAG_REEXECUTED
;
2309 pio
->io_pipeline_trace
= 0;
2311 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
2312 pio
->io_state
[w
] = 0;
2313 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++)
2314 pio
->io_child_error
[c
] = 0;
2316 if (IO_IS_ALLOCATING(pio
))
2317 BP_ZERO(pio
->io_bp
);
2320 * As we reexecute pio's children, new children could be created.
2321 * New children go to the head of pio's io_child_list, however,
2322 * so we will (correctly) not reexecute them. The key is that
2323 * the remainder of pio's io_child_list, from 'cio_next' onward,
2324 * cannot be affected by any side effects of reexecuting 'cio'.
2326 zio_link_t
*zl
= NULL
;
2327 mutex_enter(&pio
->io_lock
);
2328 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
2329 cio_next
= zio_walk_children(pio
, &zl
);
2330 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
2331 pio
->io_children
[cio
->io_child_type
][w
]++;
2332 mutex_exit(&pio
->io_lock
);
2334 mutex_enter(&pio
->io_lock
);
2336 mutex_exit(&pio
->io_lock
);
2339 * Now that all children have been reexecuted, execute the parent.
2340 * We don't reexecute "The Godfather" I/O here as it's the
2341 * responsibility of the caller to wait on it.
2343 if (!(pio
->io_flags
& ZIO_FLAG_GODFATHER
)) {
2344 pio
->io_queued_timestamp
= gethrtime();
2350 zio_suspend(spa_t
*spa
, zio_t
*zio
, zio_suspend_reason_t reason
)
2352 if (spa_get_failmode(spa
) == ZIO_FAILURE_MODE_PANIC
)
2353 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2354 "failure and the failure mode property for this pool "
2355 "is set to panic.", spa_name(spa
));
2357 cmn_err(CE_WARN
, "Pool '%s' has encountered an uncorrectable I/O "
2358 "failure and has been suspended.\n", spa_name(spa
));
2360 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE
, spa
, NULL
,
2363 mutex_enter(&spa
->spa_suspend_lock
);
2365 if (spa
->spa_suspend_zio_root
== NULL
)
2366 spa
->spa_suspend_zio_root
= zio_root(spa
, NULL
, NULL
,
2367 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
2368 ZIO_FLAG_GODFATHER
);
2370 spa
->spa_suspended
= reason
;
2373 ASSERT(!(zio
->io_flags
& ZIO_FLAG_GODFATHER
));
2374 ASSERT(zio
!= spa
->spa_suspend_zio_root
);
2375 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
2376 ASSERT(zio_unique_parent(zio
) == NULL
);
2377 ASSERT(zio
->io_stage
== ZIO_STAGE_DONE
);
2378 zio_add_child(spa
->spa_suspend_zio_root
, zio
);
2381 mutex_exit(&spa
->spa_suspend_lock
);
2385 zio_resume(spa_t
*spa
)
2390 * Reexecute all previously suspended i/o.
2392 mutex_enter(&spa
->spa_suspend_lock
);
2393 spa
->spa_suspended
= ZIO_SUSPEND_NONE
;
2394 cv_broadcast(&spa
->spa_suspend_cv
);
2395 pio
= spa
->spa_suspend_zio_root
;
2396 spa
->spa_suspend_zio_root
= NULL
;
2397 mutex_exit(&spa
->spa_suspend_lock
);
2403 return (zio_wait(pio
));
2407 zio_resume_wait(spa_t
*spa
)
2409 mutex_enter(&spa
->spa_suspend_lock
);
2410 while (spa_suspended(spa
))
2411 cv_wait(&spa
->spa_suspend_cv
, &spa
->spa_suspend_lock
);
2412 mutex_exit(&spa
->spa_suspend_lock
);
2416 * ==========================================================================
2419 * A gang block is a collection of small blocks that looks to the DMU
2420 * like one large block. When zio_dva_allocate() cannot find a block
2421 * of the requested size, due to either severe fragmentation or the pool
2422 * being nearly full, it calls zio_write_gang_block() to construct the
2423 * block from smaller fragments.
2425 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2426 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2427 * an indirect block: it's an array of block pointers. It consumes
2428 * only one sector and hence is allocatable regardless of fragmentation.
2429 * The gang header's bps point to its gang members, which hold the data.
2431 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2432 * as the verifier to ensure uniqueness of the SHA256 checksum.
2433 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2434 * not the gang header. This ensures that data block signatures (needed for
2435 * deduplication) are independent of how the block is physically stored.
2437 * Gang blocks can be nested: a gang member may itself be a gang block.
2438 * Thus every gang block is a tree in which root and all interior nodes are
2439 * gang headers, and the leaves are normal blocks that contain user data.
2440 * The root of the gang tree is called the gang leader.
2442 * To perform any operation (read, rewrite, free, claim) on a gang block,
2443 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2444 * in the io_gang_tree field of the original logical i/o by recursively
2445 * reading the gang leader and all gang headers below it. This yields
2446 * an in-core tree containing the contents of every gang header and the
2447 * bps for every constituent of the gang block.
2449 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2450 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2451 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2452 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2453 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2454 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2455 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2456 * of the gang header plus zio_checksum_compute() of the data to update the
2457 * gang header's blk_cksum as described above.
2459 * The two-phase assemble/issue model solves the problem of partial failure --
2460 * what if you'd freed part of a gang block but then couldn't read the
2461 * gang header for another part? Assembling the entire gang tree first
2462 * ensures that all the necessary gang header I/O has succeeded before
2463 * starting the actual work of free, claim, or write. Once the gang tree
2464 * is assembled, free and claim are in-memory operations that cannot fail.
2466 * In the event that a gang write fails, zio_dva_unallocate() walks the
2467 * gang tree to immediately free (i.e. insert back into the space map)
2468 * everything we've allocated. This ensures that we don't get ENOSPC
2469 * errors during repeated suspend/resume cycles due to a flaky device.
2471 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2472 * the gang tree, we won't modify the block, so we can safely defer the free
2473 * (knowing that the block is still intact). If we *can* assemble the gang
2474 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2475 * each constituent bp and we can allocate a new block on the next sync pass.
2477 * In all cases, the gang tree allows complete recovery from partial failure.
2478 * ==========================================================================
2482 zio_gang_issue_func_done(zio_t
*zio
)
2484 abd_free(zio
->io_abd
);
2488 zio_read_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2494 return (zio_read(pio
, pio
->io_spa
, bp
, abd_get_offset(data
, offset
),
2495 BP_GET_PSIZE(bp
), zio_gang_issue_func_done
,
2496 NULL
, pio
->io_priority
, ZIO_GANG_CHILD_FLAGS(pio
),
2497 &pio
->io_bookmark
));
2501 zio_rewrite_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2508 abd_get_from_buf(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2509 zio
= zio_rewrite(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2510 gbh_abd
, SPA_GANGBLOCKSIZE
, zio_gang_issue_func_done
, NULL
,
2511 pio
->io_priority
, ZIO_GANG_CHILD_FLAGS(pio
),
2514 * As we rewrite each gang header, the pipeline will compute
2515 * a new gang block header checksum for it; but no one will
2516 * compute a new data checksum, so we do that here. The one
2517 * exception is the gang leader: the pipeline already computed
2518 * its data checksum because that stage precedes gang assembly.
2519 * (Presently, nothing actually uses interior data checksums;
2520 * this is just good hygiene.)
2522 if (gn
!= pio
->io_gang_leader
->io_gang_tree
) {
2523 abd_t
*buf
= abd_get_offset(data
, offset
);
2525 zio_checksum_compute(zio
, BP_GET_CHECKSUM(bp
),
2526 buf
, BP_GET_PSIZE(bp
));
2531 * If we are here to damage data for testing purposes,
2532 * leave the GBH alone so that we can detect the damage.
2534 if (pio
->io_gang_leader
->io_flags
& ZIO_FLAG_INDUCE_DAMAGE
)
2535 zio
->io_pipeline
&= ~ZIO_VDEV_IO_STAGES
;
2537 zio
= zio_rewrite(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2538 abd_get_offset(data
, offset
), BP_GET_PSIZE(bp
),
2539 zio_gang_issue_func_done
, NULL
, pio
->io_priority
,
2540 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
2548 zio_free_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2551 zio_t
*zio
= zio_free_sync(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2552 ZIO_GANG_CHILD_FLAGS(pio
));
2554 zio
= zio_null(pio
, pio
->io_spa
,
2555 NULL
, NULL
, NULL
, ZIO_GANG_CHILD_FLAGS(pio
));
2562 zio_claim_gang(zio_t
*pio
, blkptr_t
*bp
, zio_gang_node_t
*gn
, abd_t
*data
,
2565 return (zio_claim(pio
, pio
->io_spa
, pio
->io_txg
, bp
,
2566 NULL
, NULL
, ZIO_GANG_CHILD_FLAGS(pio
)));
2569 static zio_gang_issue_func_t
*zio_gang_issue_func
[ZIO_TYPES
] = {
2578 static void zio_gang_tree_assemble_done(zio_t
*zio
);
2580 static zio_gang_node_t
*
2581 zio_gang_node_alloc(zio_gang_node_t
**gnpp
)
2583 zio_gang_node_t
*gn
;
2585 ASSERT(*gnpp
== NULL
);
2587 gn
= kmem_zalloc(sizeof (*gn
), KM_SLEEP
);
2588 gn
->gn_gbh
= zio_buf_alloc(SPA_GANGBLOCKSIZE
);
2595 zio_gang_node_free(zio_gang_node_t
**gnpp
)
2597 zio_gang_node_t
*gn
= *gnpp
;
2599 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++)
2600 ASSERT(gn
->gn_child
[g
] == NULL
);
2602 zio_buf_free(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2603 kmem_free(gn
, sizeof (*gn
));
2608 zio_gang_tree_free(zio_gang_node_t
**gnpp
)
2610 zio_gang_node_t
*gn
= *gnpp
;
2615 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++)
2616 zio_gang_tree_free(&gn
->gn_child
[g
]);
2618 zio_gang_node_free(gnpp
);
2622 zio_gang_tree_assemble(zio_t
*gio
, blkptr_t
*bp
, zio_gang_node_t
**gnpp
)
2624 zio_gang_node_t
*gn
= zio_gang_node_alloc(gnpp
);
2625 abd_t
*gbh_abd
= abd_get_from_buf(gn
->gn_gbh
, SPA_GANGBLOCKSIZE
);
2627 ASSERT(gio
->io_gang_leader
== gio
);
2628 ASSERT(BP_IS_GANG(bp
));
2630 zio_nowait(zio_read(gio
, gio
->io_spa
, bp
, gbh_abd
, SPA_GANGBLOCKSIZE
,
2631 zio_gang_tree_assemble_done
, gn
, gio
->io_priority
,
2632 ZIO_GANG_CHILD_FLAGS(gio
), &gio
->io_bookmark
));
2636 zio_gang_tree_assemble_done(zio_t
*zio
)
2638 zio_t
*gio
= zio
->io_gang_leader
;
2639 zio_gang_node_t
*gn
= zio
->io_private
;
2640 blkptr_t
*bp
= zio
->io_bp
;
2642 ASSERT(gio
== zio_unique_parent(zio
));
2643 ASSERT(zio
->io_child_count
== 0);
2648 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2649 if (BP_SHOULD_BYTESWAP(bp
))
2650 byteswap_uint64_array(abd_to_buf(zio
->io_abd
), zio
->io_size
);
2652 ASSERT3P(abd_to_buf(zio
->io_abd
), ==, gn
->gn_gbh
);
2653 ASSERT(zio
->io_size
== SPA_GANGBLOCKSIZE
);
2654 ASSERT(gn
->gn_gbh
->zg_tail
.zec_magic
== ZEC_MAGIC
);
2656 abd_free(zio
->io_abd
);
2658 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
2659 blkptr_t
*gbp
= &gn
->gn_gbh
->zg_blkptr
[g
];
2660 if (!BP_IS_GANG(gbp
))
2662 zio_gang_tree_assemble(gio
, gbp
, &gn
->gn_child
[g
]);
2667 zio_gang_tree_issue(zio_t
*pio
, zio_gang_node_t
*gn
, blkptr_t
*bp
, abd_t
*data
,
2670 zio_t
*gio
= pio
->io_gang_leader
;
2673 ASSERT(BP_IS_GANG(bp
) == !!gn
);
2674 ASSERT(BP_GET_CHECKSUM(bp
) == BP_GET_CHECKSUM(gio
->io_bp
));
2675 ASSERT(BP_GET_LSIZE(bp
) == BP_GET_PSIZE(bp
) || gn
== gio
->io_gang_tree
);
2678 * If you're a gang header, your data is in gn->gn_gbh.
2679 * If you're a gang member, your data is in 'data' and gn == NULL.
2681 zio
= zio_gang_issue_func
[gio
->io_type
](pio
, bp
, gn
, data
, offset
);
2684 ASSERT(gn
->gn_gbh
->zg_tail
.zec_magic
== ZEC_MAGIC
);
2686 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
2687 blkptr_t
*gbp
= &gn
->gn_gbh
->zg_blkptr
[g
];
2688 if (BP_IS_HOLE(gbp
))
2690 zio_gang_tree_issue(zio
, gn
->gn_child
[g
], gbp
, data
,
2692 offset
+= BP_GET_PSIZE(gbp
);
2696 if (gn
== gio
->io_gang_tree
)
2697 ASSERT3U(gio
->io_size
, ==, offset
);
2704 zio_gang_assemble(zio_t
*zio
)
2706 blkptr_t
*bp
= zio
->io_bp
;
2708 ASSERT(BP_IS_GANG(bp
) && zio
->io_gang_leader
== NULL
);
2709 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
2711 zio
->io_gang_leader
= zio
;
2713 zio_gang_tree_assemble(zio
, bp
, &zio
->io_gang_tree
);
2719 zio_gang_issue(zio_t
*zio
)
2721 blkptr_t
*bp
= zio
->io_bp
;
2723 if (zio_wait_for_children(zio
, ZIO_CHILD_GANG_BIT
, ZIO_WAIT_DONE
)) {
2727 ASSERT(BP_IS_GANG(bp
) && zio
->io_gang_leader
== zio
);
2728 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
2730 if (zio
->io_child_error
[ZIO_CHILD_GANG
] == 0)
2731 zio_gang_tree_issue(zio
, zio
->io_gang_tree
, bp
, zio
->io_abd
,
2734 zio_gang_tree_free(&zio
->io_gang_tree
);
2736 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
2742 zio_write_gang_member_ready(zio_t
*zio
)
2744 zio_t
*pio
= zio_unique_parent(zio
);
2745 dva_t
*cdva
= zio
->io_bp
->blk_dva
;
2746 dva_t
*pdva
= pio
->io_bp
->blk_dva
;
2748 zio_t
*gio __maybe_unused
= zio
->io_gang_leader
;
2750 if (BP_IS_HOLE(zio
->io_bp
))
2753 ASSERT(BP_IS_HOLE(&zio
->io_bp_orig
));
2755 ASSERT(zio
->io_child_type
== ZIO_CHILD_GANG
);
2756 ASSERT3U(zio
->io_prop
.zp_copies
, ==, gio
->io_prop
.zp_copies
);
2757 ASSERT3U(zio
->io_prop
.zp_copies
, <=, BP_GET_NDVAS(zio
->io_bp
));
2758 ASSERT3U(pio
->io_prop
.zp_copies
, <=, BP_GET_NDVAS(pio
->io_bp
));
2759 ASSERT3U(BP_GET_NDVAS(zio
->io_bp
), <=, BP_GET_NDVAS(pio
->io_bp
));
2761 mutex_enter(&pio
->io_lock
);
2762 for (int d
= 0; d
< BP_GET_NDVAS(zio
->io_bp
); d
++) {
2763 ASSERT(DVA_GET_GANG(&pdva
[d
]));
2764 asize
= DVA_GET_ASIZE(&pdva
[d
]);
2765 asize
+= DVA_GET_ASIZE(&cdva
[d
]);
2766 DVA_SET_ASIZE(&pdva
[d
], asize
);
2768 mutex_exit(&pio
->io_lock
);
2772 zio_write_gang_done(zio_t
*zio
)
2775 * The io_abd field will be NULL for a zio with no data. The io_flags
2776 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2777 * check for it here as it is cleared in zio_ready.
2779 if (zio
->io_abd
!= NULL
)
2780 abd_free(zio
->io_abd
);
2784 zio_write_gang_block(zio_t
*pio
, metaslab_class_t
*mc
)
2786 spa_t
*spa
= pio
->io_spa
;
2787 blkptr_t
*bp
= pio
->io_bp
;
2788 zio_t
*gio
= pio
->io_gang_leader
;
2790 zio_gang_node_t
*gn
, **gnpp
;
2791 zio_gbh_phys_t
*gbh
;
2793 uint64_t txg
= pio
->io_txg
;
2794 uint64_t resid
= pio
->io_size
;
2796 int copies
= gio
->io_prop
.zp_copies
;
2800 boolean_t has_data
= !(pio
->io_flags
& ZIO_FLAG_NODATA
);
2803 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2804 * have a third copy.
2806 gbh_copies
= MIN(copies
+ 1, spa_max_replication(spa
));
2807 if (gio
->io_prop
.zp_encrypt
&& gbh_copies
>= SPA_DVAS_PER_BP
)
2808 gbh_copies
= SPA_DVAS_PER_BP
- 1;
2810 int flags
= METASLAB_HINTBP_FAVOR
| METASLAB_GANG_HEADER
;
2811 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
2812 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
2815 flags
|= METASLAB_ASYNC_ALLOC
;
2816 VERIFY(zfs_refcount_held(&mc
->mc_allocator
[pio
->io_allocator
].
2817 mca_alloc_slots
, pio
));
2820 * The logical zio has already placed a reservation for
2821 * 'copies' allocation slots but gang blocks may require
2822 * additional copies. These additional copies
2823 * (i.e. gbh_copies - copies) are guaranteed to succeed
2824 * since metaslab_class_throttle_reserve() always allows
2825 * additional reservations for gang blocks.
2827 VERIFY(metaslab_class_throttle_reserve(mc
, gbh_copies
- copies
,
2828 pio
->io_allocator
, pio
, flags
));
2831 error
= metaslab_alloc(spa
, mc
, SPA_GANGBLOCKSIZE
,
2832 bp
, gbh_copies
, txg
, pio
== gio
? NULL
: gio
->io_bp
, flags
,
2833 &pio
->io_alloc_list
, pio
, pio
->io_allocator
);
2835 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
2836 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
2840 * If we failed to allocate the gang block header then
2841 * we remove any additional allocation reservations that
2842 * we placed here. The original reservation will
2843 * be removed when the logical I/O goes to the ready
2846 metaslab_class_throttle_unreserve(mc
,
2847 gbh_copies
- copies
, pio
->io_allocator
, pio
);
2850 pio
->io_error
= error
;
2855 gnpp
= &gio
->io_gang_tree
;
2857 gnpp
= pio
->io_private
;
2858 ASSERT(pio
->io_ready
== zio_write_gang_member_ready
);
2861 gn
= zio_gang_node_alloc(gnpp
);
2863 bzero(gbh
, SPA_GANGBLOCKSIZE
);
2864 gbh_abd
= abd_get_from_buf(gbh
, SPA_GANGBLOCKSIZE
);
2867 * Create the gang header.
2869 zio
= zio_rewrite(pio
, spa
, txg
, bp
, gbh_abd
, SPA_GANGBLOCKSIZE
,
2870 zio_write_gang_done
, NULL
, pio
->io_priority
,
2871 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
2874 * Create and nowait the gang children.
2876 for (int g
= 0; resid
!= 0; resid
-= lsize
, g
++) {
2877 lsize
= P2ROUNDUP(resid
/ (SPA_GBH_NBLKPTRS
- g
),
2879 ASSERT(lsize
>= SPA_MINBLOCKSIZE
&& lsize
<= resid
);
2881 zp
.zp_checksum
= gio
->io_prop
.zp_checksum
;
2882 zp
.zp_compress
= ZIO_COMPRESS_OFF
;
2883 zp
.zp_complevel
= gio
->io_prop
.zp_complevel
;
2884 zp
.zp_type
= DMU_OT_NONE
;
2886 zp
.zp_copies
= gio
->io_prop
.zp_copies
;
2887 zp
.zp_dedup
= B_FALSE
;
2888 zp
.zp_dedup_verify
= B_FALSE
;
2889 zp
.zp_nopwrite
= B_FALSE
;
2890 zp
.zp_encrypt
= gio
->io_prop
.zp_encrypt
;
2891 zp
.zp_byteorder
= gio
->io_prop
.zp_byteorder
;
2892 bzero(zp
.zp_salt
, ZIO_DATA_SALT_LEN
);
2893 bzero(zp
.zp_iv
, ZIO_DATA_IV_LEN
);
2894 bzero(zp
.zp_mac
, ZIO_DATA_MAC_LEN
);
2896 zio_t
*cio
= zio_write(zio
, spa
, txg
, &gbh
->zg_blkptr
[g
],
2897 has_data
? abd_get_offset(pio
->io_abd
, pio
->io_size
-
2898 resid
) : NULL
, lsize
, lsize
, &zp
,
2899 zio_write_gang_member_ready
, NULL
, NULL
,
2900 zio_write_gang_done
, &gn
->gn_child
[g
], pio
->io_priority
,
2901 ZIO_GANG_CHILD_FLAGS(pio
), &pio
->io_bookmark
);
2903 if (pio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
2904 ASSERT(pio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
2908 * Gang children won't throttle but we should
2909 * account for their work, so reserve an allocation
2910 * slot for them here.
2912 VERIFY(metaslab_class_throttle_reserve(mc
,
2913 zp
.zp_copies
, cio
->io_allocator
, cio
, flags
));
2919 * Set pio's pipeline to just wait for zio to finish.
2921 pio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
2924 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2926 pio
->io_flags
&= ~ZIO_FLAG_FASTWRITE
;
2934 * The zio_nop_write stage in the pipeline determines if allocating a
2935 * new bp is necessary. The nopwrite feature can handle writes in
2936 * either syncing or open context (i.e. zil writes) and as a result is
2937 * mutually exclusive with dedup.
2939 * By leveraging a cryptographically secure checksum, such as SHA256, we
2940 * can compare the checksums of the new data and the old to determine if
2941 * allocating a new block is required. Note that our requirements for
2942 * cryptographic strength are fairly weak: there can't be any accidental
2943 * hash collisions, but we don't need to be secure against intentional
2944 * (malicious) collisions. To trigger a nopwrite, you have to be able
2945 * to write the file to begin with, and triggering an incorrect (hash
2946 * collision) nopwrite is no worse than simply writing to the file.
2947 * That said, there are no known attacks against the checksum algorithms
2948 * used for nopwrite, assuming that the salt and the checksums
2949 * themselves remain secret.
2952 zio_nop_write(zio_t
*zio
)
2954 blkptr_t
*bp
= zio
->io_bp
;
2955 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
2956 zio_prop_t
*zp
= &zio
->io_prop
;
2958 ASSERT(BP_GET_LEVEL(bp
) == 0);
2959 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
2960 ASSERT(zp
->zp_nopwrite
);
2961 ASSERT(!zp
->zp_dedup
);
2962 ASSERT(zio
->io_bp_override
== NULL
);
2963 ASSERT(IO_IS_ALLOCATING(zio
));
2966 * Check to see if the original bp and the new bp have matching
2967 * characteristics (i.e. same checksum, compression algorithms, etc).
2968 * If they don't then just continue with the pipeline which will
2969 * allocate a new bp.
2971 if (BP_IS_HOLE(bp_orig
) ||
2972 !(zio_checksum_table
[BP_GET_CHECKSUM(bp
)].ci_flags
&
2973 ZCHECKSUM_FLAG_NOPWRITE
) ||
2974 BP_IS_ENCRYPTED(bp
) || BP_IS_ENCRYPTED(bp_orig
) ||
2975 BP_GET_CHECKSUM(bp
) != BP_GET_CHECKSUM(bp_orig
) ||
2976 BP_GET_COMPRESS(bp
) != BP_GET_COMPRESS(bp_orig
) ||
2977 BP_GET_DEDUP(bp
) != BP_GET_DEDUP(bp_orig
) ||
2978 zp
->zp_copies
!= BP_GET_NDVAS(bp_orig
))
2982 * If the checksums match then reset the pipeline so that we
2983 * avoid allocating a new bp and issuing any I/O.
2985 if (ZIO_CHECKSUM_EQUAL(bp
->blk_cksum
, bp_orig
->blk_cksum
)) {
2986 ASSERT(zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
2987 ZCHECKSUM_FLAG_NOPWRITE
);
2988 ASSERT3U(BP_GET_PSIZE(bp
), ==, BP_GET_PSIZE(bp_orig
));
2989 ASSERT3U(BP_GET_LSIZE(bp
), ==, BP_GET_LSIZE(bp_orig
));
2990 ASSERT(zp
->zp_compress
!= ZIO_COMPRESS_OFF
);
2991 ASSERT(bcmp(&bp
->blk_prop
, &bp_orig
->blk_prop
,
2992 sizeof (uint64_t)) == 0);
2995 * If we're overwriting a block that is currently on an
2996 * indirect vdev, then ignore the nopwrite request and
2997 * allow a new block to be allocated on a concrete vdev.
2999 spa_config_enter(zio
->io_spa
, SCL_VDEV
, FTAG
, RW_READER
);
3000 vdev_t
*tvd
= vdev_lookup_top(zio
->io_spa
,
3001 DVA_GET_VDEV(&bp
->blk_dva
[0]));
3002 if (tvd
->vdev_ops
== &vdev_indirect_ops
) {
3003 spa_config_exit(zio
->io_spa
, SCL_VDEV
, FTAG
);
3006 spa_config_exit(zio
->io_spa
, SCL_VDEV
, FTAG
);
3009 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
3010 zio
->io_flags
|= ZIO_FLAG_NOPWRITE
;
3017 * ==========================================================================
3019 * ==========================================================================
3022 zio_ddt_child_read_done(zio_t
*zio
)
3024 blkptr_t
*bp
= zio
->io_bp
;
3025 ddt_entry_t
*dde
= zio
->io_private
;
3027 zio_t
*pio
= zio_unique_parent(zio
);
3029 mutex_enter(&pio
->io_lock
);
3030 ddp
= ddt_phys_select(dde
, bp
);
3031 if (zio
->io_error
== 0)
3032 ddt_phys_clear(ddp
); /* this ddp doesn't need repair */
3034 if (zio
->io_error
== 0 && dde
->dde_repair_abd
== NULL
)
3035 dde
->dde_repair_abd
= zio
->io_abd
;
3037 abd_free(zio
->io_abd
);
3038 mutex_exit(&pio
->io_lock
);
3042 zio_ddt_read_start(zio_t
*zio
)
3044 blkptr_t
*bp
= zio
->io_bp
;
3046 ASSERT(BP_GET_DEDUP(bp
));
3047 ASSERT(BP_GET_PSIZE(bp
) == zio
->io_size
);
3048 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3050 if (zio
->io_child_error
[ZIO_CHILD_DDT
]) {
3051 ddt_t
*ddt
= ddt_select(zio
->io_spa
, bp
);
3052 ddt_entry_t
*dde
= ddt_repair_start(ddt
, bp
);
3053 ddt_phys_t
*ddp
= dde
->dde_phys
;
3054 ddt_phys_t
*ddp_self
= ddt_phys_select(dde
, bp
);
3057 ASSERT(zio
->io_vsd
== NULL
);
3060 if (ddp_self
== NULL
)
3063 for (int p
= 0; p
< DDT_PHYS_TYPES
; p
++, ddp
++) {
3064 if (ddp
->ddp_phys_birth
== 0 || ddp
== ddp_self
)
3066 ddt_bp_create(ddt
->ddt_checksum
, &dde
->dde_key
, ddp
,
3068 zio_nowait(zio_read(zio
, zio
->io_spa
, &blk
,
3069 abd_alloc_for_io(zio
->io_size
, B_TRUE
),
3070 zio
->io_size
, zio_ddt_child_read_done
, dde
,
3071 zio
->io_priority
, ZIO_DDT_CHILD_FLAGS(zio
) |
3072 ZIO_FLAG_DONT_PROPAGATE
, &zio
->io_bookmark
));
3077 zio_nowait(zio_read(zio
, zio
->io_spa
, bp
,
3078 zio
->io_abd
, zio
->io_size
, NULL
, NULL
, zio
->io_priority
,
3079 ZIO_DDT_CHILD_FLAGS(zio
), &zio
->io_bookmark
));
3085 zio_ddt_read_done(zio_t
*zio
)
3087 blkptr_t
*bp
= zio
->io_bp
;
3089 if (zio_wait_for_children(zio
, ZIO_CHILD_DDT_BIT
, ZIO_WAIT_DONE
)) {
3093 ASSERT(BP_GET_DEDUP(bp
));
3094 ASSERT(BP_GET_PSIZE(bp
) == zio
->io_size
);
3095 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3097 if (zio
->io_child_error
[ZIO_CHILD_DDT
]) {
3098 ddt_t
*ddt
= ddt_select(zio
->io_spa
, bp
);
3099 ddt_entry_t
*dde
= zio
->io_vsd
;
3101 ASSERT(spa_load_state(zio
->io_spa
) != SPA_LOAD_NONE
);
3105 zio
->io_stage
= ZIO_STAGE_DDT_READ_START
>> 1;
3106 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_FALSE
);
3109 if (dde
->dde_repair_abd
!= NULL
) {
3110 abd_copy(zio
->io_abd
, dde
->dde_repair_abd
,
3112 zio
->io_child_error
[ZIO_CHILD_DDT
] = 0;
3114 ddt_repair_done(ddt
, dde
);
3118 ASSERT(zio
->io_vsd
== NULL
);
3124 zio_ddt_collision(zio_t
*zio
, ddt_t
*ddt
, ddt_entry_t
*dde
)
3126 spa_t
*spa
= zio
->io_spa
;
3127 boolean_t do_raw
= !!(zio
->io_flags
& ZIO_FLAG_RAW
);
3129 ASSERT(!(zio
->io_bp_override
&& do_raw
));
3132 * Note: we compare the original data, not the transformed data,
3133 * because when zio->io_bp is an override bp, we will not have
3134 * pushed the I/O transforms. That's an important optimization
3135 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3136 * However, we should never get a raw, override zio so in these
3137 * cases we can compare the io_abd directly. This is useful because
3138 * it allows us to do dedup verification even if we don't have access
3139 * to the original data (for instance, if the encryption keys aren't
3143 for (int p
= DDT_PHYS_SINGLE
; p
<= DDT_PHYS_TRIPLE
; p
++) {
3144 zio_t
*lio
= dde
->dde_lead_zio
[p
];
3146 if (lio
!= NULL
&& do_raw
) {
3147 return (lio
->io_size
!= zio
->io_size
||
3148 abd_cmp(zio
->io_abd
, lio
->io_abd
) != 0);
3149 } else if (lio
!= NULL
) {
3150 return (lio
->io_orig_size
!= zio
->io_orig_size
||
3151 abd_cmp(zio
->io_orig_abd
, lio
->io_orig_abd
) != 0);
3155 for (int p
= DDT_PHYS_SINGLE
; p
<= DDT_PHYS_TRIPLE
; p
++) {
3156 ddt_phys_t
*ddp
= &dde
->dde_phys
[p
];
3158 if (ddp
->ddp_phys_birth
!= 0 && do_raw
) {
3159 blkptr_t blk
= *zio
->io_bp
;
3164 ddt_bp_fill(ddp
, &blk
, ddp
->ddp_phys_birth
);
3165 psize
= BP_GET_PSIZE(&blk
);
3167 if (psize
!= zio
->io_size
)
3172 tmpabd
= abd_alloc_for_io(psize
, B_TRUE
);
3174 error
= zio_wait(zio_read(NULL
, spa
, &blk
, tmpabd
,
3175 psize
, NULL
, NULL
, ZIO_PRIORITY_SYNC_READ
,
3176 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
|
3177 ZIO_FLAG_RAW
, &zio
->io_bookmark
));
3180 if (abd_cmp(tmpabd
, zio
->io_abd
) != 0)
3181 error
= SET_ERROR(ENOENT
);
3186 return (error
!= 0);
3187 } else if (ddp
->ddp_phys_birth
!= 0) {
3188 arc_buf_t
*abuf
= NULL
;
3189 arc_flags_t aflags
= ARC_FLAG_WAIT
;
3190 blkptr_t blk
= *zio
->io_bp
;
3193 ddt_bp_fill(ddp
, &blk
, ddp
->ddp_phys_birth
);
3195 if (BP_GET_LSIZE(&blk
) != zio
->io_orig_size
)
3200 error
= arc_read(NULL
, spa
, &blk
,
3201 arc_getbuf_func
, &abuf
, ZIO_PRIORITY_SYNC_READ
,
3202 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
3203 &aflags
, &zio
->io_bookmark
);
3206 if (abd_cmp_buf(zio
->io_orig_abd
, abuf
->b_data
,
3207 zio
->io_orig_size
) != 0)
3208 error
= SET_ERROR(ENOENT
);
3209 arc_buf_destroy(abuf
, &abuf
);
3213 return (error
!= 0);
3221 zio_ddt_child_write_ready(zio_t
*zio
)
3223 int p
= zio
->io_prop
.zp_copies
;
3224 ddt_t
*ddt
= ddt_select(zio
->io_spa
, zio
->io_bp
);
3225 ddt_entry_t
*dde
= zio
->io_private
;
3226 ddt_phys_t
*ddp
= &dde
->dde_phys
[p
];
3234 ASSERT(dde
->dde_lead_zio
[p
] == zio
);
3236 ddt_phys_fill(ddp
, zio
->io_bp
);
3238 zio_link_t
*zl
= NULL
;
3239 while ((pio
= zio_walk_parents(zio
, &zl
)) != NULL
)
3240 ddt_bp_fill(ddp
, pio
->io_bp
, zio
->io_txg
);
3246 zio_ddt_child_write_done(zio_t
*zio
)
3248 int p
= zio
->io_prop
.zp_copies
;
3249 ddt_t
*ddt
= ddt_select(zio
->io_spa
, zio
->io_bp
);
3250 ddt_entry_t
*dde
= zio
->io_private
;
3251 ddt_phys_t
*ddp
= &dde
->dde_phys
[p
];
3255 ASSERT(ddp
->ddp_refcnt
== 0);
3256 ASSERT(dde
->dde_lead_zio
[p
] == zio
);
3257 dde
->dde_lead_zio
[p
] = NULL
;
3259 if (zio
->io_error
== 0) {
3260 zio_link_t
*zl
= NULL
;
3261 while (zio_walk_parents(zio
, &zl
) != NULL
)
3262 ddt_phys_addref(ddp
);
3264 ddt_phys_clear(ddp
);
3271 zio_ddt_write(zio_t
*zio
)
3273 spa_t
*spa
= zio
->io_spa
;
3274 blkptr_t
*bp
= zio
->io_bp
;
3275 uint64_t txg
= zio
->io_txg
;
3276 zio_prop_t
*zp
= &zio
->io_prop
;
3277 int p
= zp
->zp_copies
;
3279 ddt_t
*ddt
= ddt_select(spa
, bp
);
3283 ASSERT(BP_GET_DEDUP(bp
));
3284 ASSERT(BP_GET_CHECKSUM(bp
) == zp
->zp_checksum
);
3285 ASSERT(BP_IS_HOLE(bp
) || zio
->io_bp_override
);
3286 ASSERT(!(zio
->io_bp_override
&& (zio
->io_flags
& ZIO_FLAG_RAW
)));
3289 dde
= ddt_lookup(ddt
, bp
, B_TRUE
);
3290 ddp
= &dde
->dde_phys
[p
];
3292 if (zp
->zp_dedup_verify
&& zio_ddt_collision(zio
, ddt
, dde
)) {
3294 * If we're using a weak checksum, upgrade to a strong checksum
3295 * and try again. If we're already using a strong checksum,
3296 * we can't resolve it, so just convert to an ordinary write.
3297 * (And automatically e-mail a paper to Nature?)
3299 if (!(zio_checksum_table
[zp
->zp_checksum
].ci_flags
&
3300 ZCHECKSUM_FLAG_DEDUP
)) {
3301 zp
->zp_checksum
= spa_dedup_checksum(spa
);
3302 zio_pop_transforms(zio
);
3303 zio
->io_stage
= ZIO_STAGE_OPEN
;
3306 zp
->zp_dedup
= B_FALSE
;
3307 BP_SET_DEDUP(bp
, B_FALSE
);
3309 ASSERT(!BP_GET_DEDUP(bp
));
3310 zio
->io_pipeline
= ZIO_WRITE_PIPELINE
;
3315 if (ddp
->ddp_phys_birth
!= 0 || dde
->dde_lead_zio
[p
] != NULL
) {
3316 if (ddp
->ddp_phys_birth
!= 0)
3317 ddt_bp_fill(ddp
, bp
, txg
);
3318 if (dde
->dde_lead_zio
[p
] != NULL
)
3319 zio_add_child(zio
, dde
->dde_lead_zio
[p
]);
3321 ddt_phys_addref(ddp
);
3322 } else if (zio
->io_bp_override
) {
3323 ASSERT(bp
->blk_birth
== txg
);
3324 ASSERT(BP_EQUAL(bp
, zio
->io_bp_override
));
3325 ddt_phys_fill(ddp
, bp
);
3326 ddt_phys_addref(ddp
);
3328 cio
= zio_write(zio
, spa
, txg
, bp
, zio
->io_orig_abd
,
3329 zio
->io_orig_size
, zio
->io_orig_size
, zp
,
3330 zio_ddt_child_write_ready
, NULL
, NULL
,
3331 zio_ddt_child_write_done
, dde
, zio
->io_priority
,
3332 ZIO_DDT_CHILD_FLAGS(zio
), &zio
->io_bookmark
);
3334 zio_push_transform(cio
, zio
->io_abd
, zio
->io_size
, 0, NULL
);
3335 dde
->dde_lead_zio
[p
] = cio
;
3345 ddt_entry_t
*freedde
; /* for debugging */
3348 zio_ddt_free(zio_t
*zio
)
3350 spa_t
*spa
= zio
->io_spa
;
3351 blkptr_t
*bp
= zio
->io_bp
;
3352 ddt_t
*ddt
= ddt_select(spa
, bp
);
3356 ASSERT(BP_GET_DEDUP(bp
));
3357 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
3360 freedde
= dde
= ddt_lookup(ddt
, bp
, B_TRUE
);
3362 ddp
= ddt_phys_select(dde
, bp
);
3364 ddt_phys_decref(ddp
);
3372 * ==========================================================================
3373 * Allocate and free blocks
3374 * ==========================================================================
3378 zio_io_to_allocate(spa_t
*spa
, int allocator
)
3382 ASSERT(MUTEX_HELD(&spa
->spa_allocs
[allocator
].spaa_lock
));
3384 zio
= avl_first(&spa
->spa_allocs
[allocator
].spaa_tree
);
3388 ASSERT(IO_IS_ALLOCATING(zio
));
3391 * Try to place a reservation for this zio. If we're unable to
3392 * reserve then we throttle.
3394 ASSERT3U(zio
->io_allocator
, ==, allocator
);
3395 if (!metaslab_class_throttle_reserve(zio
->io_metaslab_class
,
3396 zio
->io_prop
.zp_copies
, allocator
, zio
, 0)) {
3400 avl_remove(&spa
->spa_allocs
[allocator
].spaa_tree
, zio
);
3401 ASSERT3U(zio
->io_stage
, <, ZIO_STAGE_DVA_ALLOCATE
);
3407 zio_dva_throttle(zio_t
*zio
)
3409 spa_t
*spa
= zio
->io_spa
;
3411 metaslab_class_t
*mc
;
3413 /* locate an appropriate allocation class */
3414 mc
= spa_preferred_class(spa
, zio
->io_size
, zio
->io_prop
.zp_type
,
3415 zio
->io_prop
.zp_level
, zio
->io_prop
.zp_zpl_smallblk
);
3417 if (zio
->io_priority
== ZIO_PRIORITY_SYNC_WRITE
||
3418 !mc
->mc_alloc_throttle_enabled
||
3419 zio
->io_child_type
== ZIO_CHILD_GANG
||
3420 zio
->io_flags
& ZIO_FLAG_NODATA
) {
3424 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
3425 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
3426 ASSERT3U(zio
->io_queued_timestamp
, >, 0);
3427 ASSERT(zio
->io_stage
== ZIO_STAGE_DVA_THROTTLE
);
3429 zbookmark_phys_t
*bm
= &zio
->io_bookmark
;
3431 * We want to try to use as many allocators as possible to help improve
3432 * performance, but we also want logically adjacent IOs to be physically
3433 * adjacent to improve sequential read performance. We chunk each object
3434 * into 2^20 block regions, and then hash based on the objset, object,
3435 * level, and region to accomplish both of these goals.
3437 int allocator
= (uint_t
)cityhash4(bm
->zb_objset
, bm
->zb_object
,
3438 bm
->zb_level
, bm
->zb_blkid
>> 20) % spa
->spa_alloc_count
;
3439 zio
->io_allocator
= allocator
;
3440 zio
->io_metaslab_class
= mc
;
3441 mutex_enter(&spa
->spa_allocs
[allocator
].spaa_lock
);
3442 avl_add(&spa
->spa_allocs
[allocator
].spaa_tree
, zio
);
3443 nio
= zio_io_to_allocate(spa
, allocator
);
3444 mutex_exit(&spa
->spa_allocs
[allocator
].spaa_lock
);
3449 zio_allocate_dispatch(spa_t
*spa
, int allocator
)
3453 mutex_enter(&spa
->spa_allocs
[allocator
].spaa_lock
);
3454 zio
= zio_io_to_allocate(spa
, allocator
);
3455 mutex_exit(&spa
->spa_allocs
[allocator
].spaa_lock
);
3459 ASSERT3U(zio
->io_stage
, ==, ZIO_STAGE_DVA_THROTTLE
);
3460 ASSERT0(zio
->io_error
);
3461 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
, B_TRUE
);
3465 zio_dva_allocate(zio_t
*zio
)
3467 spa_t
*spa
= zio
->io_spa
;
3468 metaslab_class_t
*mc
;
3469 blkptr_t
*bp
= zio
->io_bp
;
3473 if (zio
->io_gang_leader
== NULL
) {
3474 ASSERT(zio
->io_child_type
> ZIO_CHILD_GANG
);
3475 zio
->io_gang_leader
= zio
;
3478 ASSERT(BP_IS_HOLE(bp
));
3479 ASSERT0(BP_GET_NDVAS(bp
));
3480 ASSERT3U(zio
->io_prop
.zp_copies
, >, 0);
3481 ASSERT3U(zio
->io_prop
.zp_copies
, <=, spa_max_replication(spa
));
3482 ASSERT3U(zio
->io_size
, ==, BP_GET_PSIZE(bp
));
3484 flags
|= (zio
->io_flags
& ZIO_FLAG_FASTWRITE
) ? METASLAB_FASTWRITE
: 0;
3485 if (zio
->io_flags
& ZIO_FLAG_NODATA
)
3486 flags
|= METASLAB_DONT_THROTTLE
;
3487 if (zio
->io_flags
& ZIO_FLAG_GANG_CHILD
)
3488 flags
|= METASLAB_GANG_CHILD
;
3489 if (zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
)
3490 flags
|= METASLAB_ASYNC_ALLOC
;
3493 * if not already chosen, locate an appropriate allocation class
3495 mc
= zio
->io_metaslab_class
;
3497 mc
= spa_preferred_class(spa
, zio
->io_size
,
3498 zio
->io_prop
.zp_type
, zio
->io_prop
.zp_level
,
3499 zio
->io_prop
.zp_zpl_smallblk
);
3500 zio
->io_metaslab_class
= mc
;
3504 * Try allocating the block in the usual metaslab class.
3505 * If that's full, allocate it in the normal class.
3506 * If that's full, allocate as a gang block,
3507 * and if all are full, the allocation fails (which shouldn't happen).
3509 * Note that we do not fall back on embedded slog (ZIL) space, to
3510 * preserve unfragmented slog space, which is critical for decent
3511 * sync write performance. If a log allocation fails, we will fall
3512 * back to spa_sync() which is abysmal for performance.
3514 error
= metaslab_alloc(spa
, mc
, zio
->io_size
, bp
,
3515 zio
->io_prop
.zp_copies
, zio
->io_txg
, NULL
, flags
,
3516 &zio
->io_alloc_list
, zio
, zio
->io_allocator
);
3519 * Fallback to normal class when an alloc class is full
3521 if (error
== ENOSPC
&& mc
!= spa_normal_class(spa
)) {
3523 * If throttling, transfer reservation over to normal class.
3524 * The io_allocator slot can remain the same even though we
3525 * are switching classes.
3527 if (mc
->mc_alloc_throttle_enabled
&&
3528 (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
)) {
3529 metaslab_class_throttle_unreserve(mc
,
3530 zio
->io_prop
.zp_copies
, zio
->io_allocator
, zio
);
3531 zio
->io_flags
&= ~ZIO_FLAG_IO_ALLOCATING
;
3533 VERIFY(metaslab_class_throttle_reserve(
3534 spa_normal_class(spa
),
3535 zio
->io_prop
.zp_copies
, zio
->io_allocator
, zio
,
3536 flags
| METASLAB_MUST_RESERVE
));
3538 zio
->io_metaslab_class
= mc
= spa_normal_class(spa
);
3539 if (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
) {
3540 zfs_dbgmsg("%s: metaslab allocation failure, "
3541 "trying normal class: zio %px, size %llu, error %d",
3542 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
3546 error
= metaslab_alloc(spa
, mc
, zio
->io_size
, bp
,
3547 zio
->io_prop
.zp_copies
, zio
->io_txg
, NULL
, flags
,
3548 &zio
->io_alloc_list
, zio
, zio
->io_allocator
);
3551 if (error
== ENOSPC
&& zio
->io_size
> SPA_MINBLOCKSIZE
) {
3552 if (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
) {
3553 zfs_dbgmsg("%s: metaslab allocation failure, "
3554 "trying ganging: zio %px, size %llu, error %d",
3555 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
3558 return (zio_write_gang_block(zio
, mc
));
3561 if (error
!= ENOSPC
||
3562 (zfs_flags
& ZFS_DEBUG_METASLAB_ALLOC
)) {
3563 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3564 "size %llu, error %d",
3565 spa_name(spa
), zio
, (u_longlong_t
)zio
->io_size
,
3568 zio
->io_error
= error
;
3575 zio_dva_free(zio_t
*zio
)
3577 metaslab_free(zio
->io_spa
, zio
->io_bp
, zio
->io_txg
, B_FALSE
);
3583 zio_dva_claim(zio_t
*zio
)
3587 error
= metaslab_claim(zio
->io_spa
, zio
->io_bp
, zio
->io_txg
);
3589 zio
->io_error
= error
;
3595 * Undo an allocation. This is used by zio_done() when an I/O fails
3596 * and we want to give back the block we just allocated.
3597 * This handles both normal blocks and gang blocks.
3600 zio_dva_unallocate(zio_t
*zio
, zio_gang_node_t
*gn
, blkptr_t
*bp
)
3602 ASSERT(bp
->blk_birth
== zio
->io_txg
|| BP_IS_HOLE(bp
));
3603 ASSERT(zio
->io_bp_override
== NULL
);
3605 if (!BP_IS_HOLE(bp
))
3606 metaslab_free(zio
->io_spa
, bp
, bp
->blk_birth
, B_TRUE
);
3609 for (int g
= 0; g
< SPA_GBH_NBLKPTRS
; g
++) {
3610 zio_dva_unallocate(zio
, gn
->gn_child
[g
],
3611 &gn
->gn_gbh
->zg_blkptr
[g
]);
3617 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3620 zio_alloc_zil(spa_t
*spa
, objset_t
*os
, uint64_t txg
, blkptr_t
*new_bp
,
3621 uint64_t size
, boolean_t
*slog
)
3624 zio_alloc_list_t io_alloc_list
;
3626 ASSERT(txg
> spa_syncing_txg(spa
));
3628 metaslab_trace_init(&io_alloc_list
);
3631 * Block pointer fields are useful to metaslabs for stats and debugging.
3632 * Fill in the obvious ones before calling into metaslab_alloc().
3634 BP_SET_TYPE(new_bp
, DMU_OT_INTENT_LOG
);
3635 BP_SET_PSIZE(new_bp
, size
);
3636 BP_SET_LEVEL(new_bp
, 0);
3639 * When allocating a zil block, we don't have information about
3640 * the final destination of the block except the objset it's part
3641 * of, so we just hash the objset ID to pick the allocator to get
3644 int flags
= METASLAB_FASTWRITE
| METASLAB_ZIL
;
3645 int allocator
= (uint_t
)cityhash4(0, 0, 0,
3646 os
->os_dsl_dataset
->ds_object
) % spa
->spa_alloc_count
;
3647 error
= metaslab_alloc(spa
, spa_log_class(spa
), size
, new_bp
, 1,
3648 txg
, NULL
, flags
, &io_alloc_list
, NULL
, allocator
);
3649 *slog
= (error
== 0);
3651 error
= metaslab_alloc(spa
, spa_embedded_log_class(spa
), size
,
3652 new_bp
, 1, txg
, NULL
, flags
,
3653 &io_alloc_list
, NULL
, allocator
);
3656 error
= metaslab_alloc(spa
, spa_normal_class(spa
), size
,
3657 new_bp
, 1, txg
, NULL
, flags
,
3658 &io_alloc_list
, NULL
, allocator
);
3660 metaslab_trace_fini(&io_alloc_list
);
3663 BP_SET_LSIZE(new_bp
, size
);
3664 BP_SET_PSIZE(new_bp
, size
);
3665 BP_SET_COMPRESS(new_bp
, ZIO_COMPRESS_OFF
);
3666 BP_SET_CHECKSUM(new_bp
,
3667 spa_version(spa
) >= SPA_VERSION_SLIM_ZIL
3668 ? ZIO_CHECKSUM_ZILOG2
: ZIO_CHECKSUM_ZILOG
);
3669 BP_SET_TYPE(new_bp
, DMU_OT_INTENT_LOG
);
3670 BP_SET_LEVEL(new_bp
, 0);
3671 BP_SET_DEDUP(new_bp
, 0);
3672 BP_SET_BYTEORDER(new_bp
, ZFS_HOST_BYTEORDER
);
3675 * encrypted blocks will require an IV and salt. We generate
3676 * these now since we will not be rewriting the bp at
3679 if (os
->os_encrypted
) {
3680 uint8_t iv
[ZIO_DATA_IV_LEN
];
3681 uint8_t salt
[ZIO_DATA_SALT_LEN
];
3683 BP_SET_CRYPT(new_bp
, B_TRUE
);
3684 VERIFY0(spa_crypt_get_salt(spa
,
3685 dmu_objset_id(os
), salt
));
3686 VERIFY0(zio_crypt_generate_iv(iv
));
3688 zio_crypt_encode_params_bp(new_bp
, salt
, iv
);
3691 zfs_dbgmsg("%s: zil block allocation failure: "
3692 "size %llu, error %d", spa_name(spa
), (u_longlong_t
)size
,
3700 * ==========================================================================
3701 * Read and write to physical devices
3702 * ==========================================================================
3706 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3707 * stops after this stage and will resume upon I/O completion.
3708 * However, there are instances where the vdev layer may need to
3709 * continue the pipeline when an I/O was not issued. Since the I/O
3710 * that was sent to the vdev layer might be different than the one
3711 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3712 * force the underlying vdev layers to call either zio_execute() or
3713 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3716 zio_vdev_io_start(zio_t
*zio
)
3718 vdev_t
*vd
= zio
->io_vd
;
3720 spa_t
*spa
= zio
->io_spa
;
3724 ASSERT(zio
->io_error
== 0);
3725 ASSERT(zio
->io_child_error
[ZIO_CHILD_VDEV
] == 0);
3728 if (!(zio
->io_flags
& ZIO_FLAG_CONFIG_WRITER
))
3729 spa_config_enter(spa
, SCL_ZIO
, zio
, RW_READER
);
3732 * The mirror_ops handle multiple DVAs in a single BP.
3734 vdev_mirror_ops
.vdev_op_io_start(zio
);
3738 ASSERT3P(zio
->io_logical
, !=, zio
);
3739 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
3740 ASSERT(spa
->spa_trust_config
);
3743 * Note: the code can handle other kinds of writes,
3744 * but we don't expect them.
3746 if (zio
->io_vd
->vdev_removing
) {
3747 ASSERT(zio
->io_flags
&
3748 (ZIO_FLAG_PHYSICAL
| ZIO_FLAG_SELF_HEAL
|
3749 ZIO_FLAG_RESILVER
| ZIO_FLAG_INDUCE_DAMAGE
));
3753 align
= 1ULL << vd
->vdev_top
->vdev_ashift
;
3755 if (!(zio
->io_flags
& ZIO_FLAG_PHYSICAL
) &&
3756 P2PHASE(zio
->io_size
, align
) != 0) {
3757 /* Transform logical writes to be a full physical block size. */
3758 uint64_t asize
= P2ROUNDUP(zio
->io_size
, align
);
3759 abd_t
*abuf
= abd_alloc_sametype(zio
->io_abd
, asize
);
3760 ASSERT(vd
== vd
->vdev_top
);
3761 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
3762 abd_copy(abuf
, zio
->io_abd
, zio
->io_size
);
3763 abd_zero_off(abuf
, zio
->io_size
, asize
- zio
->io_size
);
3765 zio_push_transform(zio
, abuf
, asize
, asize
, zio_subblock
);
3769 * If this is not a physical io, make sure that it is properly aligned
3770 * before proceeding.
3772 if (!(zio
->io_flags
& ZIO_FLAG_PHYSICAL
)) {
3773 ASSERT0(P2PHASE(zio
->io_offset
, align
));
3774 ASSERT0(P2PHASE(zio
->io_size
, align
));
3777 * For physical writes, we allow 512b aligned writes and assume
3778 * the device will perform a read-modify-write as necessary.
3780 ASSERT0(P2PHASE(zio
->io_offset
, SPA_MINBLOCKSIZE
));
3781 ASSERT0(P2PHASE(zio
->io_size
, SPA_MINBLOCKSIZE
));
3784 VERIFY(zio
->io_type
!= ZIO_TYPE_WRITE
|| spa_writeable(spa
));
3787 * If this is a repair I/O, and there's no self-healing involved --
3788 * that is, we're just resilvering what we expect to resilver --
3789 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3790 * This prevents spurious resilvering.
3792 * There are a few ways that we can end up creating these spurious
3795 * 1. A resilver i/o will be issued if any DVA in the BP has a
3796 * dirty DTL. The mirror code will issue resilver writes to
3797 * each DVA, including the one(s) that are not on vdevs with dirty
3800 * 2. With nested replication, which happens when we have a
3801 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3802 * For example, given mirror(replacing(A+B), C), it's likely that
3803 * only A is out of date (it's the new device). In this case, we'll
3804 * read from C, then use the data to resilver A+B -- but we don't
3805 * actually want to resilver B, just A. The top-level mirror has no
3806 * way to know this, so instead we just discard unnecessary repairs
3807 * as we work our way down the vdev tree.
3809 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3810 * The same logic applies to any form of nested replication: ditto
3811 * + mirror, RAID-Z + replacing, etc.
3813 * However, indirect vdevs point off to other vdevs which may have
3814 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3815 * will be properly bypassed instead.
3817 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3818 * a dRAID spare vdev. For example, when a dRAID spare is first
3819 * used, its spare blocks need to be written to but the leaf vdev's
3820 * of such blocks can have empty DTL_PARTIAL.
3822 * There seemed no clean way to allow such writes while bypassing
3823 * spurious ones. At this point, just avoid all bypassing for dRAID
3826 if ((zio
->io_flags
& ZIO_FLAG_IO_REPAIR
) &&
3827 !(zio
->io_flags
& ZIO_FLAG_SELF_HEAL
) &&
3828 zio
->io_txg
!= 0 && /* not a delegated i/o */
3829 vd
->vdev_ops
!= &vdev_indirect_ops
&&
3830 vd
->vdev_top
->vdev_ops
!= &vdev_draid_ops
&&
3831 !vdev_dtl_contains(vd
, DTL_PARTIAL
, zio
->io_txg
, 1)) {
3832 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
3833 zio_vdev_io_bypass(zio
);
3838 * Select the next best leaf I/O to process. Distributed spares are
3839 * excluded since they dispatch the I/O directly to a leaf vdev after
3840 * applying the dRAID mapping.
3842 if (vd
->vdev_ops
->vdev_op_leaf
&&
3843 vd
->vdev_ops
!= &vdev_draid_spare_ops
&&
3844 (zio
->io_type
== ZIO_TYPE_READ
||
3845 zio
->io_type
== ZIO_TYPE_WRITE
||
3846 zio
->io_type
== ZIO_TYPE_TRIM
)) {
3848 if (zio
->io_type
== ZIO_TYPE_READ
&& vdev_cache_read(zio
))
3851 if ((zio
= vdev_queue_io(zio
)) == NULL
)
3854 if (!vdev_accessible(vd
, zio
)) {
3855 zio
->io_error
= SET_ERROR(ENXIO
);
3859 zio
->io_delay
= gethrtime();
3862 vd
->vdev_ops
->vdev_op_io_start(zio
);
3867 zio_vdev_io_done(zio_t
*zio
)
3869 vdev_t
*vd
= zio
->io_vd
;
3870 vdev_ops_t
*ops
= vd
? vd
->vdev_ops
: &vdev_mirror_ops
;
3871 boolean_t unexpected_error
= B_FALSE
;
3873 if (zio_wait_for_children(zio
, ZIO_CHILD_VDEV_BIT
, ZIO_WAIT_DONE
)) {
3877 ASSERT(zio
->io_type
== ZIO_TYPE_READ
||
3878 zio
->io_type
== ZIO_TYPE_WRITE
|| zio
->io_type
== ZIO_TYPE_TRIM
);
3881 zio
->io_delay
= gethrtime() - zio
->io_delay
;
3883 if (vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
&&
3884 vd
->vdev_ops
!= &vdev_draid_spare_ops
) {
3885 vdev_queue_io_done(zio
);
3887 if (zio
->io_type
== ZIO_TYPE_WRITE
)
3888 vdev_cache_write(zio
);
3890 if (zio_injection_enabled
&& zio
->io_error
== 0)
3891 zio
->io_error
= zio_handle_device_injections(vd
, zio
,
3894 if (zio_injection_enabled
&& zio
->io_error
== 0)
3895 zio
->io_error
= zio_handle_label_injection(zio
, EIO
);
3897 if (zio
->io_error
&& zio
->io_type
!= ZIO_TYPE_TRIM
) {
3898 if (!vdev_accessible(vd
, zio
)) {
3899 zio
->io_error
= SET_ERROR(ENXIO
);
3901 unexpected_error
= B_TRUE
;
3906 ops
->vdev_op_io_done(zio
);
3908 if (unexpected_error
)
3909 VERIFY(vdev_probe(vd
, zio
) == NULL
);
3915 * This function is used to change the priority of an existing zio that is
3916 * currently in-flight. This is used by the arc to upgrade priority in the
3917 * event that a demand read is made for a block that is currently queued
3918 * as a scrub or async read IO. Otherwise, the high priority read request
3919 * would end up having to wait for the lower priority IO.
3922 zio_change_priority(zio_t
*pio
, zio_priority_t priority
)
3924 zio_t
*cio
, *cio_next
;
3925 zio_link_t
*zl
= NULL
;
3927 ASSERT3U(priority
, <, ZIO_PRIORITY_NUM_QUEUEABLE
);
3929 if (pio
->io_vd
!= NULL
&& pio
->io_vd
->vdev_ops
->vdev_op_leaf
) {
3930 vdev_queue_change_io_priority(pio
, priority
);
3932 pio
->io_priority
= priority
;
3935 mutex_enter(&pio
->io_lock
);
3936 for (cio
= zio_walk_children(pio
, &zl
); cio
!= NULL
; cio
= cio_next
) {
3937 cio_next
= zio_walk_children(pio
, &zl
);
3938 zio_change_priority(cio
, priority
);
3940 mutex_exit(&pio
->io_lock
);
3944 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3945 * disk, and use that to finish the checksum ereport later.
3948 zio_vsd_default_cksum_finish(zio_cksum_report_t
*zcr
,
3949 const abd_t
*good_buf
)
3951 /* no processing needed */
3952 zfs_ereport_finish_checksum(zcr
, good_buf
, zcr
->zcr_cbdata
, B_FALSE
);
3957 zio_vsd_default_cksum_report(zio_t
*zio
, zio_cksum_report_t
*zcr
)
3959 void *abd
= abd_alloc_sametype(zio
->io_abd
, zio
->io_size
);
3961 abd_copy(abd
, zio
->io_abd
, zio
->io_size
);
3963 zcr
->zcr_cbinfo
= zio
->io_size
;
3964 zcr
->zcr_cbdata
= abd
;
3965 zcr
->zcr_finish
= zio_vsd_default_cksum_finish
;
3966 zcr
->zcr_free
= zio_abd_free
;
3970 zio_vdev_io_assess(zio_t
*zio
)
3972 vdev_t
*vd
= zio
->io_vd
;
3974 if (zio_wait_for_children(zio
, ZIO_CHILD_VDEV_BIT
, ZIO_WAIT_DONE
)) {
3978 if (vd
== NULL
&& !(zio
->io_flags
& ZIO_FLAG_CONFIG_WRITER
))
3979 spa_config_exit(zio
->io_spa
, SCL_ZIO
, zio
);
3981 if (zio
->io_vsd
!= NULL
) {
3982 zio
->io_vsd_ops
->vsd_free(zio
);
3986 if (zio_injection_enabled
&& zio
->io_error
== 0)
3987 zio
->io_error
= zio_handle_fault_injection(zio
, EIO
);
3990 * If the I/O failed, determine whether we should attempt to retry it.
3992 * On retry, we cut in line in the issue queue, since we don't want
3993 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3995 if (zio
->io_error
&& vd
== NULL
&&
3996 !(zio
->io_flags
& (ZIO_FLAG_DONT_RETRY
| ZIO_FLAG_IO_RETRY
))) {
3997 ASSERT(!(zio
->io_flags
& ZIO_FLAG_DONT_QUEUE
)); /* not a leaf */
3998 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_BYPASS
)); /* not a leaf */
4000 zio
->io_flags
|= ZIO_FLAG_IO_RETRY
|
4001 ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_DONT_AGGREGATE
;
4002 zio
->io_stage
= ZIO_STAGE_VDEV_IO_START
>> 1;
4003 zio_taskq_dispatch(zio
, ZIO_TASKQ_ISSUE
,
4004 zio_requeue_io_start_cut_in_line
);
4009 * If we got an error on a leaf device, convert it to ENXIO
4010 * if the device is not accessible at all.
4012 if (zio
->io_error
&& vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
&&
4013 !vdev_accessible(vd
, zio
))
4014 zio
->io_error
= SET_ERROR(ENXIO
);
4017 * If we can't write to an interior vdev (mirror or RAID-Z),
4018 * set vdev_cant_write so that we stop trying to allocate from it.
4020 if (zio
->io_error
== ENXIO
&& zio
->io_type
== ZIO_TYPE_WRITE
&&
4021 vd
!= NULL
&& !vd
->vdev_ops
->vdev_op_leaf
) {
4022 vdev_dbgmsg(vd
, "zio_vdev_io_assess(zio=%px) setting "
4023 "cant_write=TRUE due to write failure with ENXIO",
4025 vd
->vdev_cant_write
= B_TRUE
;
4029 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4030 * attempts will ever succeed. In this case we set a persistent
4031 * boolean flag so that we don't bother with it in the future.
4033 if ((zio
->io_error
== ENOTSUP
|| zio
->io_error
== ENOTTY
) &&
4034 zio
->io_type
== ZIO_TYPE_IOCTL
&&
4035 zio
->io_cmd
== DKIOCFLUSHWRITECACHE
&& vd
!= NULL
)
4036 vd
->vdev_nowritecache
= B_TRUE
;
4039 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
4041 if (vd
!= NULL
&& vd
->vdev_ops
->vdev_op_leaf
&&
4042 zio
->io_physdone
!= NULL
) {
4043 ASSERT(!(zio
->io_flags
& ZIO_FLAG_DELEGATED
));
4044 ASSERT(zio
->io_child_type
== ZIO_CHILD_VDEV
);
4045 zio
->io_physdone(zio
->io_logical
);
4052 zio_vdev_io_reissue(zio_t
*zio
)
4054 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_START
);
4055 ASSERT(zio
->io_error
== 0);
4057 zio
->io_stage
>>= 1;
4061 zio_vdev_io_redone(zio_t
*zio
)
4063 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_DONE
);
4065 zio
->io_stage
>>= 1;
4069 zio_vdev_io_bypass(zio_t
*zio
)
4071 ASSERT(zio
->io_stage
== ZIO_STAGE_VDEV_IO_START
);
4072 ASSERT(zio
->io_error
== 0);
4074 zio
->io_flags
|= ZIO_FLAG_IO_BYPASS
;
4075 zio
->io_stage
= ZIO_STAGE_VDEV_IO_ASSESS
>> 1;
4079 * ==========================================================================
4080 * Encrypt and store encryption parameters
4081 * ==========================================================================
4086 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4087 * managing the storage of encryption parameters and passing them to the
4088 * lower-level encryption functions.
4091 zio_encrypt(zio_t
*zio
)
4093 zio_prop_t
*zp
= &zio
->io_prop
;
4094 spa_t
*spa
= zio
->io_spa
;
4095 blkptr_t
*bp
= zio
->io_bp
;
4096 uint64_t psize
= BP_GET_PSIZE(bp
);
4097 uint64_t dsobj
= zio
->io_bookmark
.zb_objset
;
4098 dmu_object_type_t ot
= BP_GET_TYPE(bp
);
4099 void *enc_buf
= NULL
;
4101 uint8_t salt
[ZIO_DATA_SALT_LEN
];
4102 uint8_t iv
[ZIO_DATA_IV_LEN
];
4103 uint8_t mac
[ZIO_DATA_MAC_LEN
];
4104 boolean_t no_crypt
= B_FALSE
;
4106 /* the root zio already encrypted the data */
4107 if (zio
->io_child_type
== ZIO_CHILD_GANG
)
4110 /* only ZIL blocks are re-encrypted on rewrite */
4111 if (!IO_IS_ALLOCATING(zio
) && ot
!= DMU_OT_INTENT_LOG
)
4114 if (!(zp
->zp_encrypt
|| BP_IS_ENCRYPTED(bp
))) {
4115 BP_SET_CRYPT(bp
, B_FALSE
);
4119 /* if we are doing raw encryption set the provided encryption params */
4120 if (zio
->io_flags
& ZIO_FLAG_RAW_ENCRYPT
) {
4121 ASSERT0(BP_GET_LEVEL(bp
));
4122 BP_SET_CRYPT(bp
, B_TRUE
);
4123 BP_SET_BYTEORDER(bp
, zp
->zp_byteorder
);
4124 if (ot
!= DMU_OT_OBJSET
)
4125 zio_crypt_encode_mac_bp(bp
, zp
->zp_mac
);
4127 /* dnode blocks must be written out in the provided byteorder */
4128 if (zp
->zp_byteorder
!= ZFS_HOST_BYTEORDER
&&
4129 ot
== DMU_OT_DNODE
) {
4130 void *bswap_buf
= zio_buf_alloc(psize
);
4131 abd_t
*babd
= abd_get_from_buf(bswap_buf
, psize
);
4133 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
4134 abd_copy_to_buf(bswap_buf
, zio
->io_abd
, psize
);
4135 dmu_ot_byteswap
[DMU_OT_BYTESWAP(ot
)].ob_func(bswap_buf
,
4138 abd_take_ownership_of_buf(babd
, B_TRUE
);
4139 zio_push_transform(zio
, babd
, psize
, psize
, NULL
);
4142 if (DMU_OT_IS_ENCRYPTED(ot
))
4143 zio_crypt_encode_params_bp(bp
, zp
->zp_salt
, zp
->zp_iv
);
4147 /* indirect blocks only maintain a cksum of the lower level MACs */
4148 if (BP_GET_LEVEL(bp
) > 0) {
4149 BP_SET_CRYPT(bp
, B_TRUE
);
4150 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE
,
4151 zio
->io_orig_abd
, BP_GET_LSIZE(bp
), BP_SHOULD_BYTESWAP(bp
),
4153 zio_crypt_encode_mac_bp(bp
, mac
);
4158 * Objset blocks are a special case since they have 2 256-bit MACs
4159 * embedded within them.
4161 if (ot
== DMU_OT_OBJSET
) {
4162 ASSERT0(DMU_OT_IS_ENCRYPTED(ot
));
4163 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
4164 BP_SET_CRYPT(bp
, B_TRUE
);
4165 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE
, spa
, dsobj
,
4166 zio
->io_abd
, psize
, BP_SHOULD_BYTESWAP(bp
)));
4170 /* unencrypted object types are only authenticated with a MAC */
4171 if (!DMU_OT_IS_ENCRYPTED(ot
)) {
4172 BP_SET_CRYPT(bp
, B_TRUE
);
4173 VERIFY0(spa_do_crypt_mac_abd(B_TRUE
, spa
, dsobj
,
4174 zio
->io_abd
, psize
, mac
));
4175 zio_crypt_encode_mac_bp(bp
, mac
);
4180 * Later passes of sync-to-convergence may decide to rewrite data
4181 * in place to avoid more disk reallocations. This presents a problem
4182 * for encryption because this constitutes rewriting the new data with
4183 * the same encryption key and IV. However, this only applies to blocks
4184 * in the MOS (particularly the spacemaps) and we do not encrypt the
4185 * MOS. We assert that the zio is allocating or an intent log write
4188 ASSERT(IO_IS_ALLOCATING(zio
) || ot
== DMU_OT_INTENT_LOG
);
4189 ASSERT(BP_GET_LEVEL(bp
) == 0 || ot
== DMU_OT_INTENT_LOG
);
4190 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_ENCRYPTION
));
4191 ASSERT3U(psize
, !=, 0);
4193 enc_buf
= zio_buf_alloc(psize
);
4194 eabd
= abd_get_from_buf(enc_buf
, psize
);
4195 abd_take_ownership_of_buf(eabd
, B_TRUE
);
4198 * For an explanation of what encryption parameters are stored
4199 * where, see the block comment in zio_crypt.c.
4201 if (ot
== DMU_OT_INTENT_LOG
) {
4202 zio_crypt_decode_params_bp(bp
, salt
, iv
);
4204 BP_SET_CRYPT(bp
, B_TRUE
);
4207 /* Perform the encryption. This should not fail */
4208 VERIFY0(spa_do_crypt_abd(B_TRUE
, spa
, &zio
->io_bookmark
,
4209 BP_GET_TYPE(bp
), BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
),
4210 salt
, iv
, mac
, psize
, zio
->io_abd
, eabd
, &no_crypt
));
4212 /* encode encryption metadata into the bp */
4213 if (ot
== DMU_OT_INTENT_LOG
) {
4215 * ZIL blocks store the MAC in the embedded checksum, so the
4216 * transform must always be applied.
4218 zio_crypt_encode_mac_zil(enc_buf
, mac
);
4219 zio_push_transform(zio
, eabd
, psize
, psize
, NULL
);
4221 BP_SET_CRYPT(bp
, B_TRUE
);
4222 zio_crypt_encode_params_bp(bp
, salt
, iv
);
4223 zio_crypt_encode_mac_bp(bp
, mac
);
4226 ASSERT3U(ot
, ==, DMU_OT_DNODE
);
4229 zio_push_transform(zio
, eabd
, psize
, psize
, NULL
);
4237 * ==========================================================================
4238 * Generate and verify checksums
4239 * ==========================================================================
4242 zio_checksum_generate(zio_t
*zio
)
4244 blkptr_t
*bp
= zio
->io_bp
;
4245 enum zio_checksum checksum
;
4249 * This is zio_write_phys().
4250 * We're either generating a label checksum, or none at all.
4252 checksum
= zio
->io_prop
.zp_checksum
;
4254 if (checksum
== ZIO_CHECKSUM_OFF
)
4257 ASSERT(checksum
== ZIO_CHECKSUM_LABEL
);
4259 if (BP_IS_GANG(bp
) && zio
->io_child_type
== ZIO_CHILD_GANG
) {
4260 ASSERT(!IO_IS_ALLOCATING(zio
));
4261 checksum
= ZIO_CHECKSUM_GANG_HEADER
;
4263 checksum
= BP_GET_CHECKSUM(bp
);
4267 zio_checksum_compute(zio
, checksum
, zio
->io_abd
, zio
->io_size
);
4273 zio_checksum_verify(zio_t
*zio
)
4275 zio_bad_cksum_t info
;
4276 blkptr_t
*bp
= zio
->io_bp
;
4279 ASSERT(zio
->io_vd
!= NULL
);
4283 * This is zio_read_phys().
4284 * We're either verifying a label checksum, or nothing at all.
4286 if (zio
->io_prop
.zp_checksum
== ZIO_CHECKSUM_OFF
)
4289 ASSERT3U(zio
->io_prop
.zp_checksum
, ==, ZIO_CHECKSUM_LABEL
);
4292 if ((error
= zio_checksum_error(zio
, &info
)) != 0) {
4293 zio
->io_error
= error
;
4294 if (error
== ECKSUM
&&
4295 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)) {
4296 (void) zfs_ereport_start_checksum(zio
->io_spa
,
4297 zio
->io_vd
, &zio
->io_bookmark
, zio
,
4298 zio
->io_offset
, zio
->io_size
, &info
);
4299 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
4300 zio
->io_vd
->vdev_stat
.vs_checksum_errors
++;
4301 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
4309 * Called by RAID-Z to ensure we don't compute the checksum twice.
4312 zio_checksum_verified(zio_t
*zio
)
4314 zio
->io_pipeline
&= ~ZIO_STAGE_CHECKSUM_VERIFY
;
4318 * ==========================================================================
4319 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4320 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4321 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4322 * indicate errors that are specific to one I/O, and most likely permanent.
4323 * Any other error is presumed to be worse because we weren't expecting it.
4324 * ==========================================================================
4327 zio_worst_error(int e1
, int e2
)
4329 static int zio_error_rank
[] = { 0, ENXIO
, ECKSUM
, EIO
};
4332 for (r1
= 0; r1
< sizeof (zio_error_rank
) / sizeof (int); r1
++)
4333 if (e1
== zio_error_rank
[r1
])
4336 for (r2
= 0; r2
< sizeof (zio_error_rank
) / sizeof (int); r2
++)
4337 if (e2
== zio_error_rank
[r2
])
4340 return (r1
> r2
? e1
: e2
);
4344 * ==========================================================================
4346 * ==========================================================================
4349 zio_ready(zio_t
*zio
)
4351 blkptr_t
*bp
= zio
->io_bp
;
4352 zio_t
*pio
, *pio_next
;
4353 zio_link_t
*zl
= NULL
;
4355 if (zio_wait_for_children(zio
, ZIO_CHILD_GANG_BIT
| ZIO_CHILD_DDT_BIT
,
4360 if (zio
->io_ready
) {
4361 ASSERT(IO_IS_ALLOCATING(zio
));
4362 ASSERT(bp
->blk_birth
== zio
->io_txg
|| BP_IS_HOLE(bp
) ||
4363 (zio
->io_flags
& ZIO_FLAG_NOPWRITE
));
4364 ASSERT(zio
->io_children
[ZIO_CHILD_GANG
][ZIO_WAIT_READY
] == 0);
4369 if (bp
!= NULL
&& bp
!= &zio
->io_bp_copy
)
4370 zio
->io_bp_copy
= *bp
;
4372 if (zio
->io_error
!= 0) {
4373 zio
->io_pipeline
= ZIO_INTERLOCK_PIPELINE
;
4375 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
4376 ASSERT(IO_IS_ALLOCATING(zio
));
4377 ASSERT(zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
4378 ASSERT(zio
->io_metaslab_class
!= NULL
);
4381 * We were unable to allocate anything, unreserve and
4382 * issue the next I/O to allocate.
4384 metaslab_class_throttle_unreserve(
4385 zio
->io_metaslab_class
, zio
->io_prop
.zp_copies
,
4386 zio
->io_allocator
, zio
);
4387 zio_allocate_dispatch(zio
->io_spa
, zio
->io_allocator
);
4391 mutex_enter(&zio
->io_lock
);
4392 zio
->io_state
[ZIO_WAIT_READY
] = 1;
4393 pio
= zio_walk_parents(zio
, &zl
);
4394 mutex_exit(&zio
->io_lock
);
4397 * As we notify zio's parents, new parents could be added.
4398 * New parents go to the head of zio's io_parent_list, however,
4399 * so we will (correctly) not notify them. The remainder of zio's
4400 * io_parent_list, from 'pio_next' onward, cannot change because
4401 * all parents must wait for us to be done before they can be done.
4403 for (; pio
!= NULL
; pio
= pio_next
) {
4404 pio_next
= zio_walk_parents(zio
, &zl
);
4405 zio_notify_parent(pio
, zio
, ZIO_WAIT_READY
, NULL
);
4408 if (zio
->io_flags
& ZIO_FLAG_NODATA
) {
4409 if (BP_IS_GANG(bp
)) {
4410 zio
->io_flags
&= ~ZIO_FLAG_NODATA
;
4412 ASSERT((uintptr_t)zio
->io_abd
< SPA_MAXBLOCKSIZE
);
4413 zio
->io_pipeline
&= ~ZIO_VDEV_IO_STAGES
;
4417 if (zio_injection_enabled
&&
4418 zio
->io_spa
->spa_syncing_txg
== zio
->io_txg
)
4419 zio_handle_ignored_writes(zio
);
4425 * Update the allocation throttle accounting.
4428 zio_dva_throttle_done(zio_t
*zio
)
4430 zio_t
*lio __maybe_unused
= zio
->io_logical
;
4431 zio_t
*pio
= zio_unique_parent(zio
);
4432 vdev_t
*vd
= zio
->io_vd
;
4433 int flags
= METASLAB_ASYNC_ALLOC
;
4435 ASSERT3P(zio
->io_bp
, !=, NULL
);
4436 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
4437 ASSERT3U(zio
->io_priority
, ==, ZIO_PRIORITY_ASYNC_WRITE
);
4438 ASSERT3U(zio
->io_child_type
, ==, ZIO_CHILD_VDEV
);
4440 ASSERT3P(vd
, ==, vd
->vdev_top
);
4441 ASSERT(zio_injection_enabled
|| !(zio
->io_flags
& ZIO_FLAG_IO_RETRY
));
4442 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
));
4443 ASSERT(zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
);
4444 ASSERT(!(lio
->io_flags
& ZIO_FLAG_IO_REWRITE
));
4445 ASSERT(!(lio
->io_orig_flags
& ZIO_FLAG_NODATA
));
4448 * Parents of gang children can have two flavors -- ones that
4449 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4450 * and ones that allocated the constituent blocks. The allocation
4451 * throttle needs to know the allocating parent zio so we must find
4454 if (pio
->io_child_type
== ZIO_CHILD_GANG
) {
4456 * If our parent is a rewrite gang child then our grandparent
4457 * would have been the one that performed the allocation.
4459 if (pio
->io_flags
& ZIO_FLAG_IO_REWRITE
)
4460 pio
= zio_unique_parent(pio
);
4461 flags
|= METASLAB_GANG_CHILD
;
4464 ASSERT(IO_IS_ALLOCATING(pio
));
4465 ASSERT3P(zio
, !=, zio
->io_logical
);
4466 ASSERT(zio
->io_logical
!= NULL
);
4467 ASSERT(!(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
));
4468 ASSERT0(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
4469 ASSERT(zio
->io_metaslab_class
!= NULL
);
4471 mutex_enter(&pio
->io_lock
);
4472 metaslab_group_alloc_decrement(zio
->io_spa
, vd
->vdev_id
, pio
, flags
,
4473 pio
->io_allocator
, B_TRUE
);
4474 mutex_exit(&pio
->io_lock
);
4476 metaslab_class_throttle_unreserve(zio
->io_metaslab_class
, 1,
4477 pio
->io_allocator
, pio
);
4480 * Call into the pipeline to see if there is more work that
4481 * needs to be done. If there is work to be done it will be
4482 * dispatched to another taskq thread.
4484 zio_allocate_dispatch(zio
->io_spa
, pio
->io_allocator
);
4488 zio_done(zio_t
*zio
)
4491 * Always attempt to keep stack usage minimal here since
4492 * we can be called recursively up to 19 levels deep.
4494 const uint64_t psize
= zio
->io_size
;
4495 zio_t
*pio
, *pio_next
;
4496 zio_link_t
*zl
= NULL
;
4499 * If our children haven't all completed,
4500 * wait for them and then repeat this pipeline stage.
4502 if (zio_wait_for_children(zio
, ZIO_CHILD_ALL_BITS
, ZIO_WAIT_DONE
)) {
4507 * If the allocation throttle is enabled, then update the accounting.
4508 * We only track child I/Os that are part of an allocating async
4509 * write. We must do this since the allocation is performed
4510 * by the logical I/O but the actual write is done by child I/Os.
4512 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
&&
4513 zio
->io_child_type
== ZIO_CHILD_VDEV
) {
4514 ASSERT(zio
->io_metaslab_class
!= NULL
);
4515 ASSERT(zio
->io_metaslab_class
->mc_alloc_throttle_enabled
);
4516 zio_dva_throttle_done(zio
);
4520 * If the allocation throttle is enabled, verify that
4521 * we have decremented the refcounts for every I/O that was throttled.
4523 if (zio
->io_flags
& ZIO_FLAG_IO_ALLOCATING
) {
4524 ASSERT(zio
->io_type
== ZIO_TYPE_WRITE
);
4525 ASSERT(zio
->io_priority
== ZIO_PRIORITY_ASYNC_WRITE
);
4526 ASSERT(zio
->io_bp
!= NULL
);
4528 metaslab_group_alloc_verify(zio
->io_spa
, zio
->io_bp
, zio
,
4530 VERIFY(zfs_refcount_not_held(&zio
->io_metaslab_class
->
4531 mc_allocator
[zio
->io_allocator
].mca_alloc_slots
, zio
));
4535 for (int c
= 0; c
< ZIO_CHILD_TYPES
; c
++)
4536 for (int w
= 0; w
< ZIO_WAIT_TYPES
; w
++)
4537 ASSERT(zio
->io_children
[c
][w
] == 0);
4539 if (zio
->io_bp
!= NULL
&& !BP_IS_EMBEDDED(zio
->io_bp
)) {
4540 ASSERT(zio
->io_bp
->blk_pad
[0] == 0);
4541 ASSERT(zio
->io_bp
->blk_pad
[1] == 0);
4542 ASSERT(bcmp(zio
->io_bp
, &zio
->io_bp_copy
,
4543 sizeof (blkptr_t
)) == 0 ||
4544 (zio
->io_bp
== zio_unique_parent(zio
)->io_bp
));
4545 if (zio
->io_type
== ZIO_TYPE_WRITE
&& !BP_IS_HOLE(zio
->io_bp
) &&
4546 zio
->io_bp_override
== NULL
&&
4547 !(zio
->io_flags
& ZIO_FLAG_IO_REPAIR
)) {
4548 ASSERT3U(zio
->io_prop
.zp_copies
, <=,
4549 BP_GET_NDVAS(zio
->io_bp
));
4550 ASSERT(BP_COUNT_GANG(zio
->io_bp
) == 0 ||
4551 (BP_COUNT_GANG(zio
->io_bp
) ==
4552 BP_GET_NDVAS(zio
->io_bp
)));
4554 if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
)
4555 VERIFY(BP_EQUAL(zio
->io_bp
, &zio
->io_bp_orig
));
4559 * If there were child vdev/gang/ddt errors, they apply to us now.
4561 zio_inherit_child_errors(zio
, ZIO_CHILD_VDEV
);
4562 zio_inherit_child_errors(zio
, ZIO_CHILD_GANG
);
4563 zio_inherit_child_errors(zio
, ZIO_CHILD_DDT
);
4566 * If the I/O on the transformed data was successful, generate any
4567 * checksum reports now while we still have the transformed data.
4569 if (zio
->io_error
== 0) {
4570 while (zio
->io_cksum_report
!= NULL
) {
4571 zio_cksum_report_t
*zcr
= zio
->io_cksum_report
;
4572 uint64_t align
= zcr
->zcr_align
;
4573 uint64_t asize
= P2ROUNDUP(psize
, align
);
4574 abd_t
*adata
= zio
->io_abd
;
4576 if (adata
!= NULL
&& asize
!= psize
) {
4577 adata
= abd_alloc(asize
, B_TRUE
);
4578 abd_copy(adata
, zio
->io_abd
, psize
);
4579 abd_zero_off(adata
, psize
, asize
- psize
);
4582 zio
->io_cksum_report
= zcr
->zcr_next
;
4583 zcr
->zcr_next
= NULL
;
4584 zcr
->zcr_finish(zcr
, adata
);
4585 zfs_ereport_free_checksum(zcr
);
4587 if (adata
!= NULL
&& asize
!= psize
)
4592 zio_pop_transforms(zio
); /* note: may set zio->io_error */
4594 vdev_stat_update(zio
, psize
);
4597 * If this I/O is attached to a particular vdev is slow, exceeding
4598 * 30 seconds to complete, post an error described the I/O delay.
4599 * We ignore these errors if the device is currently unavailable.
4601 if (zio
->io_delay
>= MSEC2NSEC(zio_slow_io_ms
)) {
4602 if (zio
->io_vd
!= NULL
&& !vdev_is_dead(zio
->io_vd
)) {
4604 * We want to only increment our slow IO counters if
4605 * the IO is valid (i.e. not if the drive is removed).
4607 * zfs_ereport_post() will also do these checks, but
4608 * it can also ratelimit and have other failures, so we
4609 * need to increment the slow_io counters independent
4612 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY
,
4613 zio
->io_spa
, zio
->io_vd
, zio
)) {
4614 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
4615 zio
->io_vd
->vdev_stat
.vs_slow_ios
++;
4616 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
4618 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY
,
4619 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
,
4625 if (zio
->io_error
) {
4627 * If this I/O is attached to a particular vdev,
4628 * generate an error message describing the I/O failure
4629 * at the block level. We ignore these errors if the
4630 * device is currently unavailable.
4632 if (zio
->io_error
!= ECKSUM
&& zio
->io_vd
!= NULL
&&
4633 !vdev_is_dead(zio
->io_vd
)) {
4634 int ret
= zfs_ereport_post(FM_EREPORT_ZFS_IO
,
4635 zio
->io_spa
, zio
->io_vd
, &zio
->io_bookmark
, zio
, 0);
4636 if (ret
!= EALREADY
) {
4637 mutex_enter(&zio
->io_vd
->vdev_stat_lock
);
4638 if (zio
->io_type
== ZIO_TYPE_READ
)
4639 zio
->io_vd
->vdev_stat
.vs_read_errors
++;
4640 else if (zio
->io_type
== ZIO_TYPE_WRITE
)
4641 zio
->io_vd
->vdev_stat
.vs_write_errors
++;
4642 mutex_exit(&zio
->io_vd
->vdev_stat_lock
);
4646 if ((zio
->io_error
== EIO
|| !(zio
->io_flags
&
4647 (ZIO_FLAG_SPECULATIVE
| ZIO_FLAG_DONT_PROPAGATE
))) &&
4648 zio
== zio
->io_logical
) {
4650 * For logical I/O requests, tell the SPA to log the
4651 * error and generate a logical data ereport.
4653 spa_log_error(zio
->io_spa
, &zio
->io_bookmark
);
4654 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA
,
4655 zio
->io_spa
, NULL
, &zio
->io_bookmark
, zio
, 0);
4659 if (zio
->io_error
&& zio
== zio
->io_logical
) {
4661 * Determine whether zio should be reexecuted. This will
4662 * propagate all the way to the root via zio_notify_parent().
4664 ASSERT(zio
->io_vd
== NULL
&& zio
->io_bp
!= NULL
);
4665 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
4667 if (IO_IS_ALLOCATING(zio
) &&
4668 !(zio
->io_flags
& ZIO_FLAG_CANFAIL
)) {
4669 if (zio
->io_error
!= ENOSPC
)
4670 zio
->io_reexecute
|= ZIO_REEXECUTE_NOW
;
4672 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
4675 if ((zio
->io_type
== ZIO_TYPE_READ
||
4676 zio
->io_type
== ZIO_TYPE_FREE
) &&
4677 !(zio
->io_flags
& ZIO_FLAG_SCAN_THREAD
) &&
4678 zio
->io_error
== ENXIO
&&
4679 spa_load_state(zio
->io_spa
) == SPA_LOAD_NONE
&&
4680 spa_get_failmode(zio
->io_spa
) != ZIO_FAILURE_MODE_CONTINUE
)
4681 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
4683 if (!(zio
->io_flags
& ZIO_FLAG_CANFAIL
) && !zio
->io_reexecute
)
4684 zio
->io_reexecute
|= ZIO_REEXECUTE_SUSPEND
;
4687 * Here is a possibly good place to attempt to do
4688 * either combinatorial reconstruction or error correction
4689 * based on checksums. It also might be a good place
4690 * to send out preliminary ereports before we suspend
4696 * If there were logical child errors, they apply to us now.
4697 * We defer this until now to avoid conflating logical child
4698 * errors with errors that happened to the zio itself when
4699 * updating vdev stats and reporting FMA events above.
4701 zio_inherit_child_errors(zio
, ZIO_CHILD_LOGICAL
);
4703 if ((zio
->io_error
|| zio
->io_reexecute
) &&
4704 IO_IS_ALLOCATING(zio
) && zio
->io_gang_leader
== zio
&&
4705 !(zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)))
4706 zio_dva_unallocate(zio
, zio
->io_gang_tree
, zio
->io_bp
);
4708 zio_gang_tree_free(&zio
->io_gang_tree
);
4711 * Godfather I/Os should never suspend.
4713 if ((zio
->io_flags
& ZIO_FLAG_GODFATHER
) &&
4714 (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
))
4715 zio
->io_reexecute
&= ~ZIO_REEXECUTE_SUSPEND
;
4717 if (zio
->io_reexecute
) {
4719 * This is a logical I/O that wants to reexecute.
4721 * Reexecute is top-down. When an i/o fails, if it's not
4722 * the root, it simply notifies its parent and sticks around.
4723 * The parent, seeing that it still has children in zio_done(),
4724 * does the same. This percolates all the way up to the root.
4725 * The root i/o will reexecute or suspend the entire tree.
4727 * This approach ensures that zio_reexecute() honors
4728 * all the original i/o dependency relationships, e.g.
4729 * parents not executing until children are ready.
4731 ASSERT(zio
->io_child_type
== ZIO_CHILD_LOGICAL
);
4733 zio
->io_gang_leader
= NULL
;
4735 mutex_enter(&zio
->io_lock
);
4736 zio
->io_state
[ZIO_WAIT_DONE
] = 1;
4737 mutex_exit(&zio
->io_lock
);
4740 * "The Godfather" I/O monitors its children but is
4741 * not a true parent to them. It will track them through
4742 * the pipeline but severs its ties whenever they get into
4743 * trouble (e.g. suspended). This allows "The Godfather"
4744 * I/O to return status without blocking.
4747 for (pio
= zio_walk_parents(zio
, &zl
); pio
!= NULL
;
4749 zio_link_t
*remove_zl
= zl
;
4750 pio_next
= zio_walk_parents(zio
, &zl
);
4752 if ((pio
->io_flags
& ZIO_FLAG_GODFATHER
) &&
4753 (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
)) {
4754 zio_remove_child(pio
, zio
, remove_zl
);
4756 * This is a rare code path, so we don't
4757 * bother with "next_to_execute".
4759 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
,
4764 if ((pio
= zio_unique_parent(zio
)) != NULL
) {
4766 * We're not a root i/o, so there's nothing to do
4767 * but notify our parent. Don't propagate errors
4768 * upward since we haven't permanently failed yet.
4770 ASSERT(!(zio
->io_flags
& ZIO_FLAG_GODFATHER
));
4771 zio
->io_flags
|= ZIO_FLAG_DONT_PROPAGATE
;
4773 * This is a rare code path, so we don't bother with
4774 * "next_to_execute".
4776 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
, NULL
);
4777 } else if (zio
->io_reexecute
& ZIO_REEXECUTE_SUSPEND
) {
4779 * We'd fail again if we reexecuted now, so suspend
4780 * until conditions improve (e.g. device comes online).
4782 zio_suspend(zio
->io_spa
, zio
, ZIO_SUSPEND_IOERR
);
4785 * Reexecution is potentially a huge amount of work.
4786 * Hand it off to the otherwise-unused claim taskq.
4788 ASSERT(taskq_empty_ent(&zio
->io_tqent
));
4789 spa_taskq_dispatch_ent(zio
->io_spa
,
4790 ZIO_TYPE_CLAIM
, ZIO_TASKQ_ISSUE
,
4791 zio_reexecute
, zio
, 0, &zio
->io_tqent
);
4796 ASSERT(zio
->io_child_count
== 0);
4797 ASSERT(zio
->io_reexecute
== 0);
4798 ASSERT(zio
->io_error
== 0 || (zio
->io_flags
& ZIO_FLAG_CANFAIL
));
4801 * Report any checksum errors, since the I/O is complete.
4803 while (zio
->io_cksum_report
!= NULL
) {
4804 zio_cksum_report_t
*zcr
= zio
->io_cksum_report
;
4805 zio
->io_cksum_report
= zcr
->zcr_next
;
4806 zcr
->zcr_next
= NULL
;
4807 zcr
->zcr_finish(zcr
, NULL
);
4808 zfs_ereport_free_checksum(zcr
);
4811 if (zio
->io_flags
& ZIO_FLAG_FASTWRITE
&& zio
->io_bp
&&
4812 !BP_IS_HOLE(zio
->io_bp
) && !BP_IS_EMBEDDED(zio
->io_bp
) &&
4813 !(zio
->io_flags
& ZIO_FLAG_NOPWRITE
)) {
4814 metaslab_fastwrite_unmark(zio
->io_spa
, zio
->io_bp
);
4818 * It is the responsibility of the done callback to ensure that this
4819 * particular zio is no longer discoverable for adoption, and as
4820 * such, cannot acquire any new parents.
4825 mutex_enter(&zio
->io_lock
);
4826 zio
->io_state
[ZIO_WAIT_DONE
] = 1;
4827 mutex_exit(&zio
->io_lock
);
4830 * We are done executing this zio. We may want to execute a parent
4831 * next. See the comment in zio_notify_parent().
4833 zio_t
*next_to_execute
= NULL
;
4835 for (pio
= zio_walk_parents(zio
, &zl
); pio
!= NULL
; pio
= pio_next
) {
4836 zio_link_t
*remove_zl
= zl
;
4837 pio_next
= zio_walk_parents(zio
, &zl
);
4838 zio_remove_child(pio
, zio
, remove_zl
);
4839 zio_notify_parent(pio
, zio
, ZIO_WAIT_DONE
, &next_to_execute
);
4842 if (zio
->io_waiter
!= NULL
) {
4843 mutex_enter(&zio
->io_lock
);
4844 zio
->io_executor
= NULL
;
4845 cv_broadcast(&zio
->io_cv
);
4846 mutex_exit(&zio
->io_lock
);
4851 return (next_to_execute
);
4855 * ==========================================================================
4856 * I/O pipeline definition
4857 * ==========================================================================
4859 static zio_pipe_stage_t
*zio_pipeline
[] = {
4867 zio_checksum_generate
,
4883 zio_checksum_verify
,
4891 * Compare two zbookmark_phys_t's to see which we would reach first in a
4892 * pre-order traversal of the object tree.
4894 * This is simple in every case aside from the meta-dnode object. For all other
4895 * objects, we traverse them in order (object 1 before object 2, and so on).
4896 * However, all of these objects are traversed while traversing object 0, since
4897 * the data it points to is the list of objects. Thus, we need to convert to a
4898 * canonical representation so we can compare meta-dnode bookmarks to
4899 * non-meta-dnode bookmarks.
4901 * We do this by calculating "equivalents" for each field of the zbookmark.
4902 * zbookmarks outside of the meta-dnode use their own object and level, and
4903 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4904 * blocks this bookmark refers to) by multiplying their blkid by their span
4905 * (the number of L0 blocks contained within one block at their level).
4906 * zbookmarks inside the meta-dnode calculate their object equivalent
4907 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4908 * level + 1<<31 (any value larger than a level could ever be) for their level.
4909 * This causes them to always compare before a bookmark in their object
4910 * equivalent, compare appropriately to bookmarks in other objects, and to
4911 * compare appropriately to other bookmarks in the meta-dnode.
4914 zbookmark_compare(uint16_t dbss1
, uint8_t ibs1
, uint16_t dbss2
, uint8_t ibs2
,
4915 const zbookmark_phys_t
*zb1
, const zbookmark_phys_t
*zb2
)
4918 * These variables represent the "equivalent" values for the zbookmark,
4919 * after converting zbookmarks inside the meta dnode to their
4920 * normal-object equivalents.
4922 uint64_t zb1obj
, zb2obj
;
4923 uint64_t zb1L0
, zb2L0
;
4924 uint64_t zb1level
, zb2level
;
4926 if (zb1
->zb_object
== zb2
->zb_object
&&
4927 zb1
->zb_level
== zb2
->zb_level
&&
4928 zb1
->zb_blkid
== zb2
->zb_blkid
)
4931 IMPLY(zb1
->zb_level
> 0, ibs1
>= SPA_MINBLOCKSHIFT
);
4932 IMPLY(zb2
->zb_level
> 0, ibs2
>= SPA_MINBLOCKSHIFT
);
4935 * BP_SPANB calculates the span in blocks.
4937 zb1L0
= (zb1
->zb_blkid
) * BP_SPANB(ibs1
, zb1
->zb_level
);
4938 zb2L0
= (zb2
->zb_blkid
) * BP_SPANB(ibs2
, zb2
->zb_level
);
4940 if (zb1
->zb_object
== DMU_META_DNODE_OBJECT
) {
4941 zb1obj
= zb1L0
* (dbss1
<< (SPA_MINBLOCKSHIFT
- DNODE_SHIFT
));
4943 zb1level
= zb1
->zb_level
+ COMPARE_META_LEVEL
;
4945 zb1obj
= zb1
->zb_object
;
4946 zb1level
= zb1
->zb_level
;
4949 if (zb2
->zb_object
== DMU_META_DNODE_OBJECT
) {
4950 zb2obj
= zb2L0
* (dbss2
<< (SPA_MINBLOCKSHIFT
- DNODE_SHIFT
));
4952 zb2level
= zb2
->zb_level
+ COMPARE_META_LEVEL
;
4954 zb2obj
= zb2
->zb_object
;
4955 zb2level
= zb2
->zb_level
;
4958 /* Now that we have a canonical representation, do the comparison. */
4959 if (zb1obj
!= zb2obj
)
4960 return (zb1obj
< zb2obj
? -1 : 1);
4961 else if (zb1L0
!= zb2L0
)
4962 return (zb1L0
< zb2L0
? -1 : 1);
4963 else if (zb1level
!= zb2level
)
4964 return (zb1level
> zb2level
? -1 : 1);
4966 * This can (theoretically) happen if the bookmarks have the same object
4967 * and level, but different blkids, if the block sizes are not the same.
4968 * There is presently no way to change the indirect block sizes
4974 * This function checks the following: given that last_block is the place that
4975 * our traversal stopped last time, does that guarantee that we've visited
4976 * every node under subtree_root? Therefore, we can't just use the raw output
4977 * of zbookmark_compare. We have to pass in a modified version of
4978 * subtree_root; by incrementing the block id, and then checking whether
4979 * last_block is before or equal to that, we can tell whether or not having
4980 * visited last_block implies that all of subtree_root's children have been
4984 zbookmark_subtree_completed(const dnode_phys_t
*dnp
,
4985 const zbookmark_phys_t
*subtree_root
, const zbookmark_phys_t
*last_block
)
4987 zbookmark_phys_t mod_zb
= *subtree_root
;
4989 ASSERT(last_block
->zb_level
== 0);
4991 /* The objset_phys_t isn't before anything. */
4996 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4997 * data block size in sectors, because that variable is only used if
4998 * the bookmark refers to a block in the meta-dnode. Since we don't
4999 * know without examining it what object it refers to, and there's no
5000 * harm in passing in this value in other cases, we always pass it in.
5002 * We pass in 0 for the indirect block size shift because zb2 must be
5003 * level 0. The indirect block size is only used to calculate the span
5004 * of the bookmark, but since the bookmark must be level 0, the span is
5005 * always 1, so the math works out.
5007 * If you make changes to how the zbookmark_compare code works, be sure
5008 * to make sure that this code still works afterwards.
5010 return (zbookmark_compare(dnp
->dn_datablkszsec
, dnp
->dn_indblkshift
,
5011 1ULL << (DNODE_BLOCK_SHIFT
- SPA_MINBLOCKSHIFT
), 0, &mod_zb
,
5015 EXPORT_SYMBOL(zio_type_name
);
5016 EXPORT_SYMBOL(zio_buf_alloc
);
5017 EXPORT_SYMBOL(zio_data_buf_alloc
);
5018 EXPORT_SYMBOL(zio_buf_free
);
5019 EXPORT_SYMBOL(zio_data_buf_free
);
5022 ZFS_MODULE_PARAM(zfs_zio
, zio_
, slow_io_ms
, INT
, ZMOD_RW
,
5023 "Max I/O completion time (milliseconds) before marking it as slow");
5025 ZFS_MODULE_PARAM(zfs_zio
, zio_
, requeue_io_start_cut_in_line
, INT
, ZMOD_RW
,
5026 "Prioritize requeued I/O");
5028 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_deferred_free
, INT
, ZMOD_RW
,
5029 "Defer frees starting in this pass");
5031 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_dont_compress
, INT
, ZMOD_RW
,
5032 "Don't compress starting in this pass");
5034 ZFS_MODULE_PARAM(zfs
, zfs_
, sync_pass_rewrite
, INT
, ZMOD_RW
,
5035 "Rewrite new bps starting in this pass");
5037 ZFS_MODULE_PARAM(zfs_zio
, zio_
, dva_throttle_enabled
, INT
, ZMOD_RW
,
5038 "Throttle block allocations in the ZIO pipeline");
5040 ZFS_MODULE_PARAM(zfs_zio
, zio_
, deadman_log_all
, INT
, ZMOD_RW
,
5041 "Log all slow ZIOs, not just those with vdevs");