Allow disabling of unmapped I/O on FreeBSD
[zfs.git] / module / zfs / zio.c
blob76ed4fad4304c88c20e120ed690e98b924ff4071
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright (c) 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2017, Intel Corporation.
26 * Copyright (c) 2019, Klara Inc.
27 * Copyright (c) 2019, Allan Jude
28 * Copyright (c) 2021, Datto, Inc.
31 #include <sys/sysmacros.h>
32 #include <sys/zfs_context.h>
33 #include <sys/fm/fs/zfs.h>
34 #include <sys/spa.h>
35 #include <sys/txg.h>
36 #include <sys/spa_impl.h>
37 #include <sys/vdev_impl.h>
38 #include <sys/vdev_trim.h>
39 #include <sys/zio_impl.h>
40 #include <sys/zio_compress.h>
41 #include <sys/zio_checksum.h>
42 #include <sys/dmu_objset.h>
43 #include <sys/arc.h>
44 #include <sys/ddt.h>
45 #include <sys/blkptr.h>
46 #include <sys/zfeature.h>
47 #include <sys/dsl_scan.h>
48 #include <sys/metaslab_impl.h>
49 #include <sys/time.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/abd.h>
52 #include <sys/dsl_crypt.h>
53 #include <cityhash.h>
56 * ==========================================================================
57 * I/O type descriptions
58 * ==========================================================================
60 const char *zio_type_name[ZIO_TYPES] = {
62 * Note: Linux kernel thread name length is limited
63 * so these names will differ from upstream open zfs.
65 "z_null", "z_rd", "z_wr", "z_fr", "z_cl", "z_ioctl", "z_trim"
68 int zio_dva_throttle_enabled = B_TRUE;
69 int zio_deadman_log_all = B_FALSE;
72 * ==========================================================================
73 * I/O kmem caches
74 * ==========================================================================
76 kmem_cache_t *zio_cache;
77 kmem_cache_t *zio_link_cache;
78 kmem_cache_t *zio_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
79 kmem_cache_t *zio_data_buf_cache[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
80 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
81 uint64_t zio_buf_cache_allocs[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
82 uint64_t zio_buf_cache_frees[SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT];
83 #endif
85 /* Mark IOs as "slow" if they take longer than 30 seconds */
86 int zio_slow_io_ms = (30 * MILLISEC);
88 #define BP_SPANB(indblkshift, level) \
89 (((uint64_t)1) << ((level) * ((indblkshift) - SPA_BLKPTRSHIFT)))
90 #define COMPARE_META_LEVEL 0x80000000ul
92 * The following actions directly effect the spa's sync-to-convergence logic.
93 * The values below define the sync pass when we start performing the action.
94 * Care should be taken when changing these values as they directly impact
95 * spa_sync() performance. Tuning these values may introduce subtle performance
96 * pathologies and should only be done in the context of performance analysis.
97 * These tunables will eventually be removed and replaced with #defines once
98 * enough analysis has been done to determine optimal values.
100 * The 'zfs_sync_pass_deferred_free' pass must be greater than 1 to ensure that
101 * regular blocks are not deferred.
103 * Starting in sync pass 8 (zfs_sync_pass_dont_compress), we disable
104 * compression (including of metadata). In practice, we don't have this
105 * many sync passes, so this has no effect.
107 * The original intent was that disabling compression would help the sync
108 * passes to converge. However, in practice disabling compression increases
109 * the average number of sync passes, because when we turn compression off, a
110 * lot of block's size will change and thus we have to re-allocate (not
111 * overwrite) them. It also increases the number of 128KB allocations (e.g.
112 * for indirect blocks and spacemaps) because these will not be compressed.
113 * The 128K allocations are especially detrimental to performance on highly
114 * fragmented systems, which may have very few free segments of this size,
115 * and may need to load new metaslabs to satisfy 128K allocations.
117 int zfs_sync_pass_deferred_free = 2; /* defer frees starting in this pass */
118 int zfs_sync_pass_dont_compress = 8; /* don't compress starting in this pass */
119 int zfs_sync_pass_rewrite = 2; /* rewrite new bps starting in this pass */
122 * An allocating zio is one that either currently has the DVA allocate
123 * stage set or will have it later in its lifetime.
125 #define IO_IS_ALLOCATING(zio) ((zio)->io_orig_pipeline & ZIO_STAGE_DVA_ALLOCATE)
128 * Enable smaller cores by excluding metadata
129 * allocations as well.
131 int zio_exclude_metadata = 0;
132 int zio_requeue_io_start_cut_in_line = 1;
134 #ifdef ZFS_DEBUG
135 int zio_buf_debug_limit = 16384;
136 #else
137 int zio_buf_debug_limit = 0;
138 #endif
140 static inline void __zio_execute(zio_t *zio);
142 static void zio_taskq_dispatch(zio_t *, zio_taskq_type_t, boolean_t);
144 void
145 zio_init(void)
147 size_t c;
149 zio_cache = kmem_cache_create("zio_cache",
150 sizeof (zio_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
151 zio_link_cache = kmem_cache_create("zio_link_cache",
152 sizeof (zio_link_t), 0, NULL, NULL, NULL, NULL, NULL, 0);
155 * For small buffers, we want a cache for each multiple of
156 * SPA_MINBLOCKSIZE. For larger buffers, we want a cache
157 * for each quarter-power of 2.
159 for (c = 0; c < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; c++) {
160 size_t size = (c + 1) << SPA_MINBLOCKSHIFT;
161 size_t p2 = size;
162 size_t align = 0;
163 size_t data_cflags, cflags;
165 data_cflags = KMC_NODEBUG;
166 cflags = (zio_exclude_metadata || size > zio_buf_debug_limit) ?
167 KMC_NODEBUG : 0;
169 #if defined(_ILP32) && defined(_KERNEL)
171 * Cache size limited to 1M on 32-bit platforms until ARC
172 * buffers no longer require virtual address space.
174 if (size > zfs_max_recordsize)
175 break;
176 #endif
178 while (!ISP2(p2))
179 p2 &= p2 - 1;
181 #ifndef _KERNEL
183 * If we are using watchpoints, put each buffer on its own page,
184 * to eliminate the performance overhead of trapping to the
185 * kernel when modifying a non-watched buffer that shares the
186 * page with a watched buffer.
188 if (arc_watch && !IS_P2ALIGNED(size, PAGESIZE))
189 continue;
191 * Here's the problem - on 4K native devices in userland on
192 * Linux using O_DIRECT, buffers must be 4K aligned or I/O
193 * will fail with EINVAL, causing zdb (and others) to coredump.
194 * Since userland probably doesn't need optimized buffer caches,
195 * we just force 4K alignment on everything.
197 align = 8 * SPA_MINBLOCKSIZE;
198 #else
199 if (size < PAGESIZE) {
200 align = SPA_MINBLOCKSIZE;
201 } else if (IS_P2ALIGNED(size, p2 >> 2)) {
202 align = PAGESIZE;
204 #endif
206 if (align != 0) {
207 char name[36];
208 if (cflags == data_cflags) {
210 * Resulting kmem caches would be identical.
211 * Save memory by creating only one.
213 (void) snprintf(name, sizeof (name),
214 "zio_buf_comb_%lu", (ulong_t)size);
215 zio_buf_cache[c] = kmem_cache_create(name,
216 size, align, NULL, NULL, NULL, NULL, NULL,
217 cflags);
218 zio_data_buf_cache[c] = zio_buf_cache[c];
219 continue;
221 (void) snprintf(name, sizeof (name), "zio_buf_%lu",
222 (ulong_t)size);
223 zio_buf_cache[c] = kmem_cache_create(name, size,
224 align, NULL, NULL, NULL, NULL, NULL, cflags);
226 (void) snprintf(name, sizeof (name), "zio_data_buf_%lu",
227 (ulong_t)size);
228 zio_data_buf_cache[c] = kmem_cache_create(name, size,
229 align, NULL, NULL, NULL, NULL, NULL, data_cflags);
233 while (--c != 0) {
234 ASSERT(zio_buf_cache[c] != NULL);
235 if (zio_buf_cache[c - 1] == NULL)
236 zio_buf_cache[c - 1] = zio_buf_cache[c];
238 ASSERT(zio_data_buf_cache[c] != NULL);
239 if (zio_data_buf_cache[c - 1] == NULL)
240 zio_data_buf_cache[c - 1] = zio_data_buf_cache[c];
243 zio_inject_init();
245 lz4_init();
248 void
249 zio_fini(void)
251 size_t n = SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT;
253 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
254 for (size_t i = 0; i < n; i++) {
255 if (zio_buf_cache_allocs[i] != zio_buf_cache_frees[i])
256 (void) printf("zio_fini: [%d] %llu != %llu\n",
257 (int)((i + 1) << SPA_MINBLOCKSHIFT),
258 (long long unsigned)zio_buf_cache_allocs[i],
259 (long long unsigned)zio_buf_cache_frees[i]);
261 #endif
264 * The same kmem cache can show up multiple times in both zio_buf_cache
265 * and zio_data_buf_cache. Do a wasteful but trivially correct scan to
266 * sort it out.
268 for (size_t i = 0; i < n; i++) {
269 kmem_cache_t *cache = zio_buf_cache[i];
270 if (cache == NULL)
271 continue;
272 for (size_t j = i; j < n; j++) {
273 if (cache == zio_buf_cache[j])
274 zio_buf_cache[j] = NULL;
275 if (cache == zio_data_buf_cache[j])
276 zio_data_buf_cache[j] = NULL;
278 kmem_cache_destroy(cache);
281 for (size_t i = 0; i < n; i++) {
282 kmem_cache_t *cache = zio_data_buf_cache[i];
283 if (cache == NULL)
284 continue;
285 for (size_t j = i; j < n; j++) {
286 if (cache == zio_data_buf_cache[j])
287 zio_data_buf_cache[j] = NULL;
289 kmem_cache_destroy(cache);
292 for (size_t i = 0; i < n; i++) {
293 VERIFY3P(zio_buf_cache[i], ==, NULL);
294 VERIFY3P(zio_data_buf_cache[i], ==, NULL);
297 kmem_cache_destroy(zio_link_cache);
298 kmem_cache_destroy(zio_cache);
300 zio_inject_fini();
302 lz4_fini();
306 * ==========================================================================
307 * Allocate and free I/O buffers
308 * ==========================================================================
312 * Use zio_buf_alloc to allocate ZFS metadata. This data will appear in a
313 * crashdump if the kernel panics, so use it judiciously. Obviously, it's
314 * useful to inspect ZFS metadata, but if possible, we should avoid keeping
315 * excess / transient data in-core during a crashdump.
317 void *
318 zio_buf_alloc(size_t size)
320 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
322 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
323 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
324 atomic_add_64(&zio_buf_cache_allocs[c], 1);
325 #endif
327 return (kmem_cache_alloc(zio_buf_cache[c], KM_PUSHPAGE));
331 * Use zio_data_buf_alloc to allocate data. The data will not appear in a
332 * crashdump if the kernel panics. This exists so that we will limit the amount
333 * of ZFS data that shows up in a kernel crashdump. (Thus reducing the amount
334 * of kernel heap dumped to disk when the kernel panics)
336 void *
337 zio_data_buf_alloc(size_t size)
339 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
341 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
343 return (kmem_cache_alloc(zio_data_buf_cache[c], KM_PUSHPAGE));
346 void
347 zio_buf_free(void *buf, size_t size)
349 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
351 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
352 #if defined(ZFS_DEBUG) && !defined(_KERNEL)
353 atomic_add_64(&zio_buf_cache_frees[c], 1);
354 #endif
356 kmem_cache_free(zio_buf_cache[c], buf);
359 void
360 zio_data_buf_free(void *buf, size_t size)
362 size_t c = (size - 1) >> SPA_MINBLOCKSHIFT;
364 VERIFY3U(c, <, SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT);
366 kmem_cache_free(zio_data_buf_cache[c], buf);
369 static void
370 zio_abd_free(void *abd, size_t size)
372 abd_free((abd_t *)abd);
376 * ==========================================================================
377 * Push and pop I/O transform buffers
378 * ==========================================================================
380 void
381 zio_push_transform(zio_t *zio, abd_t *data, uint64_t size, uint64_t bufsize,
382 zio_transform_func_t *transform)
384 zio_transform_t *zt = kmem_alloc(sizeof (zio_transform_t), KM_SLEEP);
386 zt->zt_orig_abd = zio->io_abd;
387 zt->zt_orig_size = zio->io_size;
388 zt->zt_bufsize = bufsize;
389 zt->zt_transform = transform;
391 zt->zt_next = zio->io_transform_stack;
392 zio->io_transform_stack = zt;
394 zio->io_abd = data;
395 zio->io_size = size;
398 void
399 zio_pop_transforms(zio_t *zio)
401 zio_transform_t *zt;
403 while ((zt = zio->io_transform_stack) != NULL) {
404 if (zt->zt_transform != NULL)
405 zt->zt_transform(zio,
406 zt->zt_orig_abd, zt->zt_orig_size);
408 if (zt->zt_bufsize != 0)
409 abd_free(zio->io_abd);
411 zio->io_abd = zt->zt_orig_abd;
412 zio->io_size = zt->zt_orig_size;
413 zio->io_transform_stack = zt->zt_next;
415 kmem_free(zt, sizeof (zio_transform_t));
420 * ==========================================================================
421 * I/O transform callbacks for subblocks, decompression, and decryption
422 * ==========================================================================
424 static void
425 zio_subblock(zio_t *zio, abd_t *data, uint64_t size)
427 ASSERT(zio->io_size > size);
429 if (zio->io_type == ZIO_TYPE_READ)
430 abd_copy(data, zio->io_abd, size);
433 static void
434 zio_decompress(zio_t *zio, abd_t *data, uint64_t size)
436 if (zio->io_error == 0) {
437 void *tmp = abd_borrow_buf(data, size);
438 int ret = zio_decompress_data(BP_GET_COMPRESS(zio->io_bp),
439 zio->io_abd, tmp, zio->io_size, size,
440 &zio->io_prop.zp_complevel);
441 abd_return_buf_copy(data, tmp, size);
443 if (zio_injection_enabled && ret == 0)
444 ret = zio_handle_fault_injection(zio, EINVAL);
446 if (ret != 0)
447 zio->io_error = SET_ERROR(EIO);
451 static void
452 zio_decrypt(zio_t *zio, abd_t *data, uint64_t size)
454 int ret;
455 void *tmp;
456 blkptr_t *bp = zio->io_bp;
457 spa_t *spa = zio->io_spa;
458 uint64_t dsobj = zio->io_bookmark.zb_objset;
459 uint64_t lsize = BP_GET_LSIZE(bp);
460 dmu_object_type_t ot = BP_GET_TYPE(bp);
461 uint8_t salt[ZIO_DATA_SALT_LEN];
462 uint8_t iv[ZIO_DATA_IV_LEN];
463 uint8_t mac[ZIO_DATA_MAC_LEN];
464 boolean_t no_crypt = B_FALSE;
466 ASSERT(BP_USES_CRYPT(bp));
467 ASSERT3U(size, !=, 0);
469 if (zio->io_error != 0)
470 return;
473 * Verify the cksum of MACs stored in an indirect bp. It will always
474 * be possible to verify this since it does not require an encryption
475 * key.
477 if (BP_HAS_INDIRECT_MAC_CKSUM(bp)) {
478 zio_crypt_decode_mac_bp(bp, mac);
480 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF) {
482 * We haven't decompressed the data yet, but
483 * zio_crypt_do_indirect_mac_checksum() requires
484 * decompressed data to be able to parse out the MACs
485 * from the indirect block. We decompress it now and
486 * throw away the result after we are finished.
488 tmp = zio_buf_alloc(lsize);
489 ret = zio_decompress_data(BP_GET_COMPRESS(bp),
490 zio->io_abd, tmp, zio->io_size, lsize,
491 &zio->io_prop.zp_complevel);
492 if (ret != 0) {
493 ret = SET_ERROR(EIO);
494 goto error;
496 ret = zio_crypt_do_indirect_mac_checksum(B_FALSE,
497 tmp, lsize, BP_SHOULD_BYTESWAP(bp), mac);
498 zio_buf_free(tmp, lsize);
499 } else {
500 ret = zio_crypt_do_indirect_mac_checksum_abd(B_FALSE,
501 zio->io_abd, size, BP_SHOULD_BYTESWAP(bp), mac);
503 abd_copy(data, zio->io_abd, size);
505 if (zio_injection_enabled && ot != DMU_OT_DNODE && ret == 0) {
506 ret = zio_handle_decrypt_injection(spa,
507 &zio->io_bookmark, ot, ECKSUM);
509 if (ret != 0)
510 goto error;
512 return;
516 * If this is an authenticated block, just check the MAC. It would be
517 * nice to separate this out into its own flag, but for the moment
518 * enum zio_flag is out of bits.
520 if (BP_IS_AUTHENTICATED(bp)) {
521 if (ot == DMU_OT_OBJSET) {
522 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa,
523 dsobj, zio->io_abd, size, BP_SHOULD_BYTESWAP(bp));
524 } else {
525 zio_crypt_decode_mac_bp(bp, mac);
526 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj,
527 zio->io_abd, size, mac);
528 if (zio_injection_enabled && ret == 0) {
529 ret = zio_handle_decrypt_injection(spa,
530 &zio->io_bookmark, ot, ECKSUM);
533 abd_copy(data, zio->io_abd, size);
535 if (ret != 0)
536 goto error;
538 return;
541 zio_crypt_decode_params_bp(bp, salt, iv);
543 if (ot == DMU_OT_INTENT_LOG) {
544 tmp = abd_borrow_buf_copy(zio->io_abd, sizeof (zil_chain_t));
545 zio_crypt_decode_mac_zil(tmp, mac);
546 abd_return_buf(zio->io_abd, tmp, sizeof (zil_chain_t));
547 } else {
548 zio_crypt_decode_mac_bp(bp, mac);
551 ret = spa_do_crypt_abd(B_FALSE, spa, &zio->io_bookmark, BP_GET_TYPE(bp),
552 BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp), salt, iv, mac, size, data,
553 zio->io_abd, &no_crypt);
554 if (no_crypt)
555 abd_copy(data, zio->io_abd, size);
557 if (ret != 0)
558 goto error;
560 return;
562 error:
563 /* assert that the key was found unless this was speculative */
564 ASSERT(ret != EACCES || (zio->io_flags & ZIO_FLAG_SPECULATIVE));
567 * If there was a decryption / authentication error return EIO as
568 * the io_error. If this was not a speculative zio, create an ereport.
570 if (ret == ECKSUM) {
571 zio->io_error = SET_ERROR(EIO);
572 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
573 spa_log_error(spa, &zio->io_bookmark);
574 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
575 spa, NULL, &zio->io_bookmark, zio, 0);
577 } else {
578 zio->io_error = ret;
583 * ==========================================================================
584 * I/O parent/child relationships and pipeline interlocks
585 * ==========================================================================
587 zio_t *
588 zio_walk_parents(zio_t *cio, zio_link_t **zl)
590 list_t *pl = &cio->io_parent_list;
592 *zl = (*zl == NULL) ? list_head(pl) : list_next(pl, *zl);
593 if (*zl == NULL)
594 return (NULL);
596 ASSERT((*zl)->zl_child == cio);
597 return ((*zl)->zl_parent);
600 zio_t *
601 zio_walk_children(zio_t *pio, zio_link_t **zl)
603 list_t *cl = &pio->io_child_list;
605 ASSERT(MUTEX_HELD(&pio->io_lock));
607 *zl = (*zl == NULL) ? list_head(cl) : list_next(cl, *zl);
608 if (*zl == NULL)
609 return (NULL);
611 ASSERT((*zl)->zl_parent == pio);
612 return ((*zl)->zl_child);
615 zio_t *
616 zio_unique_parent(zio_t *cio)
618 zio_link_t *zl = NULL;
619 zio_t *pio = zio_walk_parents(cio, &zl);
621 VERIFY3P(zio_walk_parents(cio, &zl), ==, NULL);
622 return (pio);
625 void
626 zio_add_child(zio_t *pio, zio_t *cio)
628 zio_link_t *zl = kmem_cache_alloc(zio_link_cache, KM_SLEEP);
631 * Logical I/Os can have logical, gang, or vdev children.
632 * Gang I/Os can have gang or vdev children.
633 * Vdev I/Os can only have vdev children.
634 * The following ASSERT captures all of these constraints.
636 ASSERT3S(cio->io_child_type, <=, pio->io_child_type);
638 zl->zl_parent = pio;
639 zl->zl_child = cio;
641 mutex_enter(&pio->io_lock);
642 mutex_enter(&cio->io_lock);
644 ASSERT(pio->io_state[ZIO_WAIT_DONE] == 0);
646 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
647 pio->io_children[cio->io_child_type][w] += !cio->io_state[w];
649 list_insert_head(&pio->io_child_list, zl);
650 list_insert_head(&cio->io_parent_list, zl);
652 pio->io_child_count++;
653 cio->io_parent_count++;
655 mutex_exit(&cio->io_lock);
656 mutex_exit(&pio->io_lock);
659 static void
660 zio_remove_child(zio_t *pio, zio_t *cio, zio_link_t *zl)
662 ASSERT(zl->zl_parent == pio);
663 ASSERT(zl->zl_child == cio);
665 mutex_enter(&pio->io_lock);
666 mutex_enter(&cio->io_lock);
668 list_remove(&pio->io_child_list, zl);
669 list_remove(&cio->io_parent_list, zl);
671 pio->io_child_count--;
672 cio->io_parent_count--;
674 mutex_exit(&cio->io_lock);
675 mutex_exit(&pio->io_lock);
676 kmem_cache_free(zio_link_cache, zl);
679 static boolean_t
680 zio_wait_for_children(zio_t *zio, uint8_t childbits, enum zio_wait_type wait)
682 boolean_t waiting = B_FALSE;
684 mutex_enter(&zio->io_lock);
685 ASSERT(zio->io_stall == NULL);
686 for (int c = 0; c < ZIO_CHILD_TYPES; c++) {
687 if (!(ZIO_CHILD_BIT_IS_SET(childbits, c)))
688 continue;
690 uint64_t *countp = &zio->io_children[c][wait];
691 if (*countp != 0) {
692 zio->io_stage >>= 1;
693 ASSERT3U(zio->io_stage, !=, ZIO_STAGE_OPEN);
694 zio->io_stall = countp;
695 waiting = B_TRUE;
696 break;
699 mutex_exit(&zio->io_lock);
700 return (waiting);
703 __attribute__((always_inline))
704 static inline void
705 zio_notify_parent(zio_t *pio, zio_t *zio, enum zio_wait_type wait,
706 zio_t **next_to_executep)
708 uint64_t *countp = &pio->io_children[zio->io_child_type][wait];
709 int *errorp = &pio->io_child_error[zio->io_child_type];
711 mutex_enter(&pio->io_lock);
712 if (zio->io_error && !(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE))
713 *errorp = zio_worst_error(*errorp, zio->io_error);
714 pio->io_reexecute |= zio->io_reexecute;
715 ASSERT3U(*countp, >, 0);
717 (*countp)--;
719 if (*countp == 0 && pio->io_stall == countp) {
720 zio_taskq_type_t type =
721 pio->io_stage < ZIO_STAGE_VDEV_IO_START ? ZIO_TASKQ_ISSUE :
722 ZIO_TASKQ_INTERRUPT;
723 pio->io_stall = NULL;
724 mutex_exit(&pio->io_lock);
727 * If we can tell the caller to execute this parent next, do
728 * so. Otherwise dispatch the parent zio as its own task.
730 * Having the caller execute the parent when possible reduces
731 * locking on the zio taskq's, reduces context switch
732 * overhead, and has no recursion penalty. Note that one
733 * read from disk typically causes at least 3 zio's: a
734 * zio_null(), the logical zio_read(), and then a physical
735 * zio. When the physical ZIO completes, we are able to call
736 * zio_done() on all 3 of these zio's from one invocation of
737 * zio_execute() by returning the parent back to
738 * zio_execute(). Since the parent isn't executed until this
739 * thread returns back to zio_execute(), the caller should do
740 * so promptly.
742 * In other cases, dispatching the parent prevents
743 * overflowing the stack when we have deeply nested
744 * parent-child relationships, as we do with the "mega zio"
745 * of writes for spa_sync(), and the chain of ZIL blocks.
747 if (next_to_executep != NULL && *next_to_executep == NULL) {
748 *next_to_executep = pio;
749 } else {
750 zio_taskq_dispatch(pio, type, B_FALSE);
752 } else {
753 mutex_exit(&pio->io_lock);
757 static void
758 zio_inherit_child_errors(zio_t *zio, enum zio_child c)
760 if (zio->io_child_error[c] != 0 && zio->io_error == 0)
761 zio->io_error = zio->io_child_error[c];
765 zio_bookmark_compare(const void *x1, const void *x2)
767 const zio_t *z1 = x1;
768 const zio_t *z2 = x2;
770 if (z1->io_bookmark.zb_objset < z2->io_bookmark.zb_objset)
771 return (-1);
772 if (z1->io_bookmark.zb_objset > z2->io_bookmark.zb_objset)
773 return (1);
775 if (z1->io_bookmark.zb_object < z2->io_bookmark.zb_object)
776 return (-1);
777 if (z1->io_bookmark.zb_object > z2->io_bookmark.zb_object)
778 return (1);
780 if (z1->io_bookmark.zb_level < z2->io_bookmark.zb_level)
781 return (-1);
782 if (z1->io_bookmark.zb_level > z2->io_bookmark.zb_level)
783 return (1);
785 if (z1->io_bookmark.zb_blkid < z2->io_bookmark.zb_blkid)
786 return (-1);
787 if (z1->io_bookmark.zb_blkid > z2->io_bookmark.zb_blkid)
788 return (1);
790 if (z1 < z2)
791 return (-1);
792 if (z1 > z2)
793 return (1);
795 return (0);
799 * ==========================================================================
800 * Create the various types of I/O (read, write, free, etc)
801 * ==========================================================================
803 static zio_t *
804 zio_create(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
805 abd_t *data, uint64_t lsize, uint64_t psize, zio_done_func_t *done,
806 void *private, zio_type_t type, zio_priority_t priority,
807 enum zio_flag flags, vdev_t *vd, uint64_t offset,
808 const zbookmark_phys_t *zb, enum zio_stage stage,
809 enum zio_stage pipeline)
811 zio_t *zio;
813 IMPLY(type != ZIO_TYPE_TRIM, psize <= SPA_MAXBLOCKSIZE);
814 ASSERT(P2PHASE(psize, SPA_MINBLOCKSIZE) == 0);
815 ASSERT(P2PHASE(offset, SPA_MINBLOCKSIZE) == 0);
817 ASSERT(!vd || spa_config_held(spa, SCL_STATE_ALL, RW_READER));
818 ASSERT(!bp || !(flags & ZIO_FLAG_CONFIG_WRITER));
819 ASSERT(vd || stage == ZIO_STAGE_OPEN);
821 IMPLY(lsize != psize, (flags & ZIO_FLAG_RAW_COMPRESS) != 0);
823 zio = kmem_cache_alloc(zio_cache, KM_SLEEP);
824 bzero(zio, sizeof (zio_t));
826 mutex_init(&zio->io_lock, NULL, MUTEX_NOLOCKDEP, NULL);
827 cv_init(&zio->io_cv, NULL, CV_DEFAULT, NULL);
829 list_create(&zio->io_parent_list, sizeof (zio_link_t),
830 offsetof(zio_link_t, zl_parent_node));
831 list_create(&zio->io_child_list, sizeof (zio_link_t),
832 offsetof(zio_link_t, zl_child_node));
833 metaslab_trace_init(&zio->io_alloc_list);
835 if (vd != NULL)
836 zio->io_child_type = ZIO_CHILD_VDEV;
837 else if (flags & ZIO_FLAG_GANG_CHILD)
838 zio->io_child_type = ZIO_CHILD_GANG;
839 else if (flags & ZIO_FLAG_DDT_CHILD)
840 zio->io_child_type = ZIO_CHILD_DDT;
841 else
842 zio->io_child_type = ZIO_CHILD_LOGICAL;
844 if (bp != NULL) {
845 zio->io_bp = (blkptr_t *)bp;
846 zio->io_bp_copy = *bp;
847 zio->io_bp_orig = *bp;
848 if (type != ZIO_TYPE_WRITE ||
849 zio->io_child_type == ZIO_CHILD_DDT)
850 zio->io_bp = &zio->io_bp_copy; /* so caller can free */
851 if (zio->io_child_type == ZIO_CHILD_LOGICAL)
852 zio->io_logical = zio;
853 if (zio->io_child_type > ZIO_CHILD_GANG && BP_IS_GANG(bp))
854 pipeline |= ZIO_GANG_STAGES;
857 zio->io_spa = spa;
858 zio->io_txg = txg;
859 zio->io_done = done;
860 zio->io_private = private;
861 zio->io_type = type;
862 zio->io_priority = priority;
863 zio->io_vd = vd;
864 zio->io_offset = offset;
865 zio->io_orig_abd = zio->io_abd = data;
866 zio->io_orig_size = zio->io_size = psize;
867 zio->io_lsize = lsize;
868 zio->io_orig_flags = zio->io_flags = flags;
869 zio->io_orig_stage = zio->io_stage = stage;
870 zio->io_orig_pipeline = zio->io_pipeline = pipeline;
871 zio->io_pipeline_trace = ZIO_STAGE_OPEN;
873 zio->io_state[ZIO_WAIT_READY] = (stage >= ZIO_STAGE_READY);
874 zio->io_state[ZIO_WAIT_DONE] = (stage >= ZIO_STAGE_DONE);
876 if (zb != NULL)
877 zio->io_bookmark = *zb;
879 if (pio != NULL) {
880 zio->io_metaslab_class = pio->io_metaslab_class;
881 if (zio->io_logical == NULL)
882 zio->io_logical = pio->io_logical;
883 if (zio->io_child_type == ZIO_CHILD_GANG)
884 zio->io_gang_leader = pio->io_gang_leader;
885 zio_add_child(pio, zio);
888 taskq_init_ent(&zio->io_tqent);
890 return (zio);
893 static void
894 zio_destroy(zio_t *zio)
896 metaslab_trace_fini(&zio->io_alloc_list);
897 list_destroy(&zio->io_parent_list);
898 list_destroy(&zio->io_child_list);
899 mutex_destroy(&zio->io_lock);
900 cv_destroy(&zio->io_cv);
901 kmem_cache_free(zio_cache, zio);
904 zio_t *
905 zio_null(zio_t *pio, spa_t *spa, vdev_t *vd, zio_done_func_t *done,
906 void *private, enum zio_flag flags)
908 zio_t *zio;
910 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
911 ZIO_TYPE_NULL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
912 ZIO_STAGE_OPEN, ZIO_INTERLOCK_PIPELINE);
914 return (zio);
917 zio_t *
918 zio_root(spa_t *spa, zio_done_func_t *done, void *private, enum zio_flag flags)
920 return (zio_null(NULL, spa, NULL, done, private, flags));
923 static int
924 zfs_blkptr_verify_log(spa_t *spa, const blkptr_t *bp,
925 enum blk_verify_flag blk_verify, const char *fmt, ...)
927 va_list adx;
928 char buf[256];
930 va_start(adx, fmt);
931 (void) vsnprintf(buf, sizeof (buf), fmt, adx);
932 va_end(adx);
934 switch (blk_verify) {
935 case BLK_VERIFY_HALT:
936 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
937 zfs_panic_recover("%s: %s", spa_name(spa), buf);
938 break;
939 case BLK_VERIFY_LOG:
940 zfs_dbgmsg("%s: %s", spa_name(spa), buf);
941 break;
942 case BLK_VERIFY_ONLY:
943 break;
946 return (1);
950 * Verify the block pointer fields contain reasonable values. This means
951 * it only contains known object types, checksum/compression identifiers,
952 * block sizes within the maximum allowed limits, valid DVAs, etc.
954 * If everything checks out B_TRUE is returned. The zfs_blkptr_verify
955 * argument controls the behavior when an invalid field is detected.
957 * Modes for zfs_blkptr_verify:
958 * 1) BLK_VERIFY_ONLY (evaluate the block)
959 * 2) BLK_VERIFY_LOG (evaluate the block and log problems)
960 * 3) BLK_VERIFY_HALT (call zfs_panic_recover on error)
962 boolean_t
963 zfs_blkptr_verify(spa_t *spa, const blkptr_t *bp, boolean_t config_held,
964 enum blk_verify_flag blk_verify)
966 int errors = 0;
968 if (!DMU_OT_IS_VALID(BP_GET_TYPE(bp))) {
969 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
970 "blkptr at %p has invalid TYPE %llu",
971 bp, (longlong_t)BP_GET_TYPE(bp));
973 if (BP_GET_CHECKSUM(bp) >= ZIO_CHECKSUM_FUNCTIONS ||
974 BP_GET_CHECKSUM(bp) <= ZIO_CHECKSUM_ON) {
975 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
976 "blkptr at %p has invalid CHECKSUM %llu",
977 bp, (longlong_t)BP_GET_CHECKSUM(bp));
979 if (BP_GET_COMPRESS(bp) >= ZIO_COMPRESS_FUNCTIONS ||
980 BP_GET_COMPRESS(bp) <= ZIO_COMPRESS_ON) {
981 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
982 "blkptr at %p has invalid COMPRESS %llu",
983 bp, (longlong_t)BP_GET_COMPRESS(bp));
985 if (BP_GET_LSIZE(bp) > SPA_MAXBLOCKSIZE) {
986 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
987 "blkptr at %p has invalid LSIZE %llu",
988 bp, (longlong_t)BP_GET_LSIZE(bp));
990 if (BP_GET_PSIZE(bp) > SPA_MAXBLOCKSIZE) {
991 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
992 "blkptr at %p has invalid PSIZE %llu",
993 bp, (longlong_t)BP_GET_PSIZE(bp));
996 if (BP_IS_EMBEDDED(bp)) {
997 if (BPE_GET_ETYPE(bp) >= NUM_BP_EMBEDDED_TYPES) {
998 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
999 "blkptr at %p has invalid ETYPE %llu",
1000 bp, (longlong_t)BPE_GET_ETYPE(bp));
1005 * Do not verify individual DVAs if the config is not trusted. This
1006 * will be done once the zio is executed in vdev_mirror_map_alloc.
1008 if (!spa->spa_trust_config)
1009 return (B_TRUE);
1011 if (!config_held)
1012 spa_config_enter(spa, SCL_VDEV, bp, RW_READER);
1013 else
1014 ASSERT(spa_config_held(spa, SCL_VDEV, RW_WRITER));
1016 * Pool-specific checks.
1018 * Note: it would be nice to verify that the blk_birth and
1019 * BP_PHYSICAL_BIRTH() are not too large. However, spa_freeze()
1020 * allows the birth time of log blocks (and dmu_sync()-ed blocks
1021 * that are in the log) to be arbitrarily large.
1023 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
1024 const dva_t *dva = &bp->blk_dva[i];
1025 uint64_t vdevid = DVA_GET_VDEV(dva);
1027 if (vdevid >= spa->spa_root_vdev->vdev_children) {
1028 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1029 "blkptr at %p DVA %u has invalid VDEV %llu",
1030 bp, i, (longlong_t)vdevid);
1031 continue;
1033 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1034 if (vd == NULL) {
1035 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1036 "blkptr at %p DVA %u has invalid VDEV %llu",
1037 bp, i, (longlong_t)vdevid);
1038 continue;
1040 if (vd->vdev_ops == &vdev_hole_ops) {
1041 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1042 "blkptr at %p DVA %u has hole VDEV %llu",
1043 bp, i, (longlong_t)vdevid);
1044 continue;
1046 if (vd->vdev_ops == &vdev_missing_ops) {
1048 * "missing" vdevs are valid during import, but we
1049 * don't have their detailed info (e.g. asize), so
1050 * we can't perform any more checks on them.
1052 continue;
1054 uint64_t offset = DVA_GET_OFFSET(dva);
1055 uint64_t asize = DVA_GET_ASIZE(dva);
1056 if (DVA_GET_GANG(dva))
1057 asize = vdev_gang_header_asize(vd);
1058 if (offset + asize > vd->vdev_asize) {
1059 errors += zfs_blkptr_verify_log(spa, bp, blk_verify,
1060 "blkptr at %p DVA %u has invalid OFFSET %llu",
1061 bp, i, (longlong_t)offset);
1064 if (errors > 0)
1065 dprintf_bp(bp, "blkptr at %p dprintf_bp():", bp);
1066 if (!config_held)
1067 spa_config_exit(spa, SCL_VDEV, bp);
1069 return (errors == 0);
1072 boolean_t
1073 zfs_dva_valid(spa_t *spa, const dva_t *dva, const blkptr_t *bp)
1075 uint64_t vdevid = DVA_GET_VDEV(dva);
1077 if (vdevid >= spa->spa_root_vdev->vdev_children)
1078 return (B_FALSE);
1080 vdev_t *vd = spa->spa_root_vdev->vdev_child[vdevid];
1081 if (vd == NULL)
1082 return (B_FALSE);
1084 if (vd->vdev_ops == &vdev_hole_ops)
1085 return (B_FALSE);
1087 if (vd->vdev_ops == &vdev_missing_ops) {
1088 return (B_FALSE);
1091 uint64_t offset = DVA_GET_OFFSET(dva);
1092 uint64_t asize = DVA_GET_ASIZE(dva);
1094 if (DVA_GET_GANG(dva))
1095 asize = vdev_gang_header_asize(vd);
1096 if (offset + asize > vd->vdev_asize)
1097 return (B_FALSE);
1099 return (B_TRUE);
1102 zio_t *
1103 zio_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
1104 abd_t *data, uint64_t size, zio_done_func_t *done, void *private,
1105 zio_priority_t priority, enum zio_flag flags, const zbookmark_phys_t *zb)
1107 zio_t *zio;
1109 zio = zio_create(pio, spa, BP_PHYSICAL_BIRTH(bp), bp,
1110 data, size, size, done, private,
1111 ZIO_TYPE_READ, priority, flags, NULL, 0, zb,
1112 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1113 ZIO_DDT_CHILD_READ_PIPELINE : ZIO_READ_PIPELINE);
1115 return (zio);
1118 zio_t *
1119 zio_write(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp,
1120 abd_t *data, uint64_t lsize, uint64_t psize, const zio_prop_t *zp,
1121 zio_done_func_t *ready, zio_done_func_t *children_ready,
1122 zio_done_func_t *physdone, zio_done_func_t *done,
1123 void *private, zio_priority_t priority, enum zio_flag flags,
1124 const zbookmark_phys_t *zb)
1126 zio_t *zio;
1128 ASSERT(zp->zp_checksum >= ZIO_CHECKSUM_OFF &&
1129 zp->zp_checksum < ZIO_CHECKSUM_FUNCTIONS &&
1130 zp->zp_compress >= ZIO_COMPRESS_OFF &&
1131 zp->zp_compress < ZIO_COMPRESS_FUNCTIONS &&
1132 DMU_OT_IS_VALID(zp->zp_type) &&
1133 zp->zp_level < 32 &&
1134 zp->zp_copies > 0 &&
1135 zp->zp_copies <= spa_max_replication(spa));
1137 zio = zio_create(pio, spa, txg, bp, data, lsize, psize, done, private,
1138 ZIO_TYPE_WRITE, priority, flags, NULL, 0, zb,
1139 ZIO_STAGE_OPEN, (flags & ZIO_FLAG_DDT_CHILD) ?
1140 ZIO_DDT_CHILD_WRITE_PIPELINE : ZIO_WRITE_PIPELINE);
1142 zio->io_ready = ready;
1143 zio->io_children_ready = children_ready;
1144 zio->io_physdone = physdone;
1145 zio->io_prop = *zp;
1148 * Data can be NULL if we are going to call zio_write_override() to
1149 * provide the already-allocated BP. But we may need the data to
1150 * verify a dedup hit (if requested). In this case, don't try to
1151 * dedup (just take the already-allocated BP verbatim). Encrypted
1152 * dedup blocks need data as well so we also disable dedup in this
1153 * case.
1155 if (data == NULL &&
1156 (zio->io_prop.zp_dedup_verify || zio->io_prop.zp_encrypt)) {
1157 zio->io_prop.zp_dedup = zio->io_prop.zp_dedup_verify = B_FALSE;
1160 return (zio);
1163 zio_t *
1164 zio_rewrite(zio_t *pio, spa_t *spa, uint64_t txg, blkptr_t *bp, abd_t *data,
1165 uint64_t size, zio_done_func_t *done, void *private,
1166 zio_priority_t priority, enum zio_flag flags, zbookmark_phys_t *zb)
1168 zio_t *zio;
1170 zio = zio_create(pio, spa, txg, bp, data, size, size, done, private,
1171 ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_IO_REWRITE, NULL, 0, zb,
1172 ZIO_STAGE_OPEN, ZIO_REWRITE_PIPELINE);
1174 return (zio);
1177 void
1178 zio_write_override(zio_t *zio, blkptr_t *bp, int copies, boolean_t nopwrite)
1180 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
1181 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1182 ASSERT(zio->io_stage == ZIO_STAGE_OPEN);
1183 ASSERT(zio->io_txg == spa_syncing_txg(zio->io_spa));
1186 * We must reset the io_prop to match the values that existed
1187 * when the bp was first written by dmu_sync() keeping in mind
1188 * that nopwrite and dedup are mutually exclusive.
1190 zio->io_prop.zp_dedup = nopwrite ? B_FALSE : zio->io_prop.zp_dedup;
1191 zio->io_prop.zp_nopwrite = nopwrite;
1192 zio->io_prop.zp_copies = copies;
1193 zio->io_bp_override = bp;
1196 void
1197 zio_free(spa_t *spa, uint64_t txg, const blkptr_t *bp)
1200 (void) zfs_blkptr_verify(spa, bp, B_FALSE, BLK_VERIFY_HALT);
1203 * The check for EMBEDDED is a performance optimization. We
1204 * process the free here (by ignoring it) rather than
1205 * putting it on the list and then processing it in zio_free_sync().
1207 if (BP_IS_EMBEDDED(bp))
1208 return;
1209 metaslab_check_free(spa, bp);
1212 * Frees that are for the currently-syncing txg, are not going to be
1213 * deferred, and which will not need to do a read (i.e. not GANG or
1214 * DEDUP), can be processed immediately. Otherwise, put them on the
1215 * in-memory list for later processing.
1217 * Note that we only defer frees after zfs_sync_pass_deferred_free
1218 * when the log space map feature is disabled. [see relevant comment
1219 * in spa_sync_iterate_to_convergence()]
1221 if (BP_IS_GANG(bp) ||
1222 BP_GET_DEDUP(bp) ||
1223 txg != spa->spa_syncing_txg ||
1224 (spa_sync_pass(spa) >= zfs_sync_pass_deferred_free &&
1225 !spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))) {
1226 bplist_append(&spa->spa_free_bplist[txg & TXG_MASK], bp);
1227 } else {
1228 VERIFY3P(zio_free_sync(NULL, spa, txg, bp, 0), ==, NULL);
1233 * To improve performance, this function may return NULL if we were able
1234 * to do the free immediately. This avoids the cost of creating a zio
1235 * (and linking it to the parent, etc).
1237 zio_t *
1238 zio_free_sync(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1239 enum zio_flag flags)
1241 ASSERT(!BP_IS_HOLE(bp));
1242 ASSERT(spa_syncing_txg(spa) == txg);
1244 if (BP_IS_EMBEDDED(bp))
1245 return (NULL);
1247 metaslab_check_free(spa, bp);
1248 arc_freed(spa, bp);
1249 dsl_scan_freed(spa, bp);
1251 if (BP_IS_GANG(bp) || BP_GET_DEDUP(bp)) {
1253 * GANG and DEDUP blocks can induce a read (for the gang block
1254 * header, or the DDT), so issue them asynchronously so that
1255 * this thread is not tied up.
1257 enum zio_stage stage =
1258 ZIO_FREE_PIPELINE | ZIO_STAGE_ISSUE_ASYNC;
1260 return (zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1261 BP_GET_PSIZE(bp), NULL, NULL,
1262 ZIO_TYPE_FREE, ZIO_PRIORITY_NOW,
1263 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, stage));
1264 } else {
1265 metaslab_free(spa, bp, txg, B_FALSE);
1266 return (NULL);
1270 zio_t *
1271 zio_claim(zio_t *pio, spa_t *spa, uint64_t txg, const blkptr_t *bp,
1272 zio_done_func_t *done, void *private, enum zio_flag flags)
1274 zio_t *zio;
1276 (void) zfs_blkptr_verify(spa, bp, flags & ZIO_FLAG_CONFIG_WRITER,
1277 BLK_VERIFY_HALT);
1279 if (BP_IS_EMBEDDED(bp))
1280 return (zio_null(pio, spa, NULL, NULL, NULL, 0));
1283 * A claim is an allocation of a specific block. Claims are needed
1284 * to support immediate writes in the intent log. The issue is that
1285 * immediate writes contain committed data, but in a txg that was
1286 * *not* committed. Upon opening the pool after an unclean shutdown,
1287 * the intent log claims all blocks that contain immediate write data
1288 * so that the SPA knows they're in use.
1290 * All claims *must* be resolved in the first txg -- before the SPA
1291 * starts allocating blocks -- so that nothing is allocated twice.
1292 * If txg == 0 we just verify that the block is claimable.
1294 ASSERT3U(spa->spa_uberblock.ub_rootbp.blk_birth, <,
1295 spa_min_claim_txg(spa));
1296 ASSERT(txg == spa_min_claim_txg(spa) || txg == 0);
1297 ASSERT(!BP_GET_DEDUP(bp) || !spa_writeable(spa)); /* zdb(8) */
1299 zio = zio_create(pio, spa, txg, bp, NULL, BP_GET_PSIZE(bp),
1300 BP_GET_PSIZE(bp), done, private, ZIO_TYPE_CLAIM, ZIO_PRIORITY_NOW,
1301 flags, NULL, 0, NULL, ZIO_STAGE_OPEN, ZIO_CLAIM_PIPELINE);
1302 ASSERT0(zio->io_queued_timestamp);
1304 return (zio);
1307 zio_t *
1308 zio_ioctl(zio_t *pio, spa_t *spa, vdev_t *vd, int cmd,
1309 zio_done_func_t *done, void *private, enum zio_flag flags)
1311 zio_t *zio;
1312 int c;
1314 if (vd->vdev_children == 0) {
1315 zio = zio_create(pio, spa, 0, NULL, NULL, 0, 0, done, private,
1316 ZIO_TYPE_IOCTL, ZIO_PRIORITY_NOW, flags, vd, 0, NULL,
1317 ZIO_STAGE_OPEN, ZIO_IOCTL_PIPELINE);
1319 zio->io_cmd = cmd;
1320 } else {
1321 zio = zio_null(pio, spa, NULL, NULL, NULL, flags);
1323 for (c = 0; c < vd->vdev_children; c++)
1324 zio_nowait(zio_ioctl(zio, spa, vd->vdev_child[c], cmd,
1325 done, private, flags));
1328 return (zio);
1331 zio_t *
1332 zio_trim(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1333 zio_done_func_t *done, void *private, zio_priority_t priority,
1334 enum zio_flag flags, enum trim_flag trim_flags)
1336 zio_t *zio;
1338 ASSERT0(vd->vdev_children);
1339 ASSERT0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
1340 ASSERT0(P2PHASE(size, 1ULL << vd->vdev_ashift));
1341 ASSERT3U(size, !=, 0);
1343 zio = zio_create(pio, vd->vdev_spa, 0, NULL, NULL, size, size, done,
1344 private, ZIO_TYPE_TRIM, priority, flags | ZIO_FLAG_PHYSICAL,
1345 vd, offset, NULL, ZIO_STAGE_OPEN, ZIO_TRIM_PIPELINE);
1346 zio->io_trim_flags = trim_flags;
1348 return (zio);
1351 zio_t *
1352 zio_read_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1353 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1354 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1356 zio_t *zio;
1358 ASSERT(vd->vdev_children == 0);
1359 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1360 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1361 ASSERT3U(offset + size, <=, vd->vdev_psize);
1363 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1364 private, ZIO_TYPE_READ, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1365 offset, NULL, ZIO_STAGE_OPEN, ZIO_READ_PHYS_PIPELINE);
1367 zio->io_prop.zp_checksum = checksum;
1369 return (zio);
1372 zio_t *
1373 zio_write_phys(zio_t *pio, vdev_t *vd, uint64_t offset, uint64_t size,
1374 abd_t *data, int checksum, zio_done_func_t *done, void *private,
1375 zio_priority_t priority, enum zio_flag flags, boolean_t labels)
1377 zio_t *zio;
1379 ASSERT(vd->vdev_children == 0);
1380 ASSERT(!labels || offset + size <= VDEV_LABEL_START_SIZE ||
1381 offset >= vd->vdev_psize - VDEV_LABEL_END_SIZE);
1382 ASSERT3U(offset + size, <=, vd->vdev_psize);
1384 zio = zio_create(pio, vd->vdev_spa, 0, NULL, data, size, size, done,
1385 private, ZIO_TYPE_WRITE, priority, flags | ZIO_FLAG_PHYSICAL, vd,
1386 offset, NULL, ZIO_STAGE_OPEN, ZIO_WRITE_PHYS_PIPELINE);
1388 zio->io_prop.zp_checksum = checksum;
1390 if (zio_checksum_table[checksum].ci_flags & ZCHECKSUM_FLAG_EMBEDDED) {
1392 * zec checksums are necessarily destructive -- they modify
1393 * the end of the write buffer to hold the verifier/checksum.
1394 * Therefore, we must make a local copy in case the data is
1395 * being written to multiple places in parallel.
1397 abd_t *wbuf = abd_alloc_sametype(data, size);
1398 abd_copy(wbuf, data, size);
1400 zio_push_transform(zio, wbuf, size, size, NULL);
1403 return (zio);
1407 * Create a child I/O to do some work for us.
1409 zio_t *
1410 zio_vdev_child_io(zio_t *pio, blkptr_t *bp, vdev_t *vd, uint64_t offset,
1411 abd_t *data, uint64_t size, int type, zio_priority_t priority,
1412 enum zio_flag flags, zio_done_func_t *done, void *private)
1414 enum zio_stage pipeline = ZIO_VDEV_CHILD_PIPELINE;
1415 zio_t *zio;
1418 * vdev child I/Os do not propagate their error to the parent.
1419 * Therefore, for correct operation the caller *must* check for
1420 * and handle the error in the child i/o's done callback.
1421 * The only exceptions are i/os that we don't care about
1422 * (OPTIONAL or REPAIR).
1424 ASSERT((flags & ZIO_FLAG_OPTIONAL) || (flags & ZIO_FLAG_IO_REPAIR) ||
1425 done != NULL);
1427 if (type == ZIO_TYPE_READ && bp != NULL) {
1429 * If we have the bp, then the child should perform the
1430 * checksum and the parent need not. This pushes error
1431 * detection as close to the leaves as possible and
1432 * eliminates redundant checksums in the interior nodes.
1434 pipeline |= ZIO_STAGE_CHECKSUM_VERIFY;
1435 pio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
1438 if (vd->vdev_ops->vdev_op_leaf) {
1439 ASSERT0(vd->vdev_children);
1440 offset += VDEV_LABEL_START_SIZE;
1443 flags |= ZIO_VDEV_CHILD_FLAGS(pio);
1446 * If we've decided to do a repair, the write is not speculative --
1447 * even if the original read was.
1449 if (flags & ZIO_FLAG_IO_REPAIR)
1450 flags &= ~ZIO_FLAG_SPECULATIVE;
1453 * If we're creating a child I/O that is not associated with a
1454 * top-level vdev, then the child zio is not an allocating I/O.
1455 * If this is a retried I/O then we ignore it since we will
1456 * have already processed the original allocating I/O.
1458 if (flags & ZIO_FLAG_IO_ALLOCATING &&
1459 (vd != vd->vdev_top || (flags & ZIO_FLAG_IO_RETRY))) {
1460 ASSERT(pio->io_metaslab_class != NULL);
1461 ASSERT(pio->io_metaslab_class->mc_alloc_throttle_enabled);
1462 ASSERT(type == ZIO_TYPE_WRITE);
1463 ASSERT(priority == ZIO_PRIORITY_ASYNC_WRITE);
1464 ASSERT(!(flags & ZIO_FLAG_IO_REPAIR));
1465 ASSERT(!(pio->io_flags & ZIO_FLAG_IO_REWRITE) ||
1466 pio->io_child_type == ZIO_CHILD_GANG);
1468 flags &= ~ZIO_FLAG_IO_ALLOCATING;
1472 zio = zio_create(pio, pio->io_spa, pio->io_txg, bp, data, size, size,
1473 done, private, type, priority, flags, vd, offset, &pio->io_bookmark,
1474 ZIO_STAGE_VDEV_IO_START >> 1, pipeline);
1475 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
1477 zio->io_physdone = pio->io_physdone;
1478 if (vd->vdev_ops->vdev_op_leaf && zio->io_logical != NULL)
1479 zio->io_logical->io_phys_children++;
1481 return (zio);
1484 zio_t *
1485 zio_vdev_delegated_io(vdev_t *vd, uint64_t offset, abd_t *data, uint64_t size,
1486 zio_type_t type, zio_priority_t priority, enum zio_flag flags,
1487 zio_done_func_t *done, void *private)
1489 zio_t *zio;
1491 ASSERT(vd->vdev_ops->vdev_op_leaf);
1493 zio = zio_create(NULL, vd->vdev_spa, 0, NULL,
1494 data, size, size, done, private, type, priority,
1495 flags | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_RETRY | ZIO_FLAG_DELEGATED,
1496 vd, offset, NULL,
1497 ZIO_STAGE_VDEV_IO_START >> 1, ZIO_VDEV_CHILD_PIPELINE);
1499 return (zio);
1502 void
1503 zio_flush(zio_t *zio, vdev_t *vd)
1505 zio_nowait(zio_ioctl(zio, zio->io_spa, vd, DKIOCFLUSHWRITECACHE,
1506 NULL, NULL,
1507 ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY));
1510 void
1511 zio_shrink(zio_t *zio, uint64_t size)
1513 ASSERT3P(zio->io_executor, ==, NULL);
1514 ASSERT3U(zio->io_orig_size, ==, zio->io_size);
1515 ASSERT3U(size, <=, zio->io_size);
1518 * We don't shrink for raidz because of problems with the
1519 * reconstruction when reading back less than the block size.
1520 * Note, BP_IS_RAIDZ() assumes no compression.
1522 ASSERT(BP_GET_COMPRESS(zio->io_bp) == ZIO_COMPRESS_OFF);
1523 if (!BP_IS_RAIDZ(zio->io_bp)) {
1524 /* we are not doing a raw write */
1525 ASSERT3U(zio->io_size, ==, zio->io_lsize);
1526 zio->io_orig_size = zio->io_size = zio->io_lsize = size;
1531 * ==========================================================================
1532 * Prepare to read and write logical blocks
1533 * ==========================================================================
1536 static zio_t *
1537 zio_read_bp_init(zio_t *zio)
1539 blkptr_t *bp = zio->io_bp;
1540 uint64_t psize =
1541 BP_IS_EMBEDDED(bp) ? BPE_GET_PSIZE(bp) : BP_GET_PSIZE(bp);
1543 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1545 if (BP_GET_COMPRESS(bp) != ZIO_COMPRESS_OFF &&
1546 zio->io_child_type == ZIO_CHILD_LOGICAL &&
1547 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1548 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1549 psize, psize, zio_decompress);
1552 if (((BP_IS_PROTECTED(bp) && !(zio->io_flags & ZIO_FLAG_RAW_ENCRYPT)) ||
1553 BP_HAS_INDIRECT_MAC_CKSUM(bp)) &&
1554 zio->io_child_type == ZIO_CHILD_LOGICAL) {
1555 zio_push_transform(zio, abd_alloc_sametype(zio->io_abd, psize),
1556 psize, psize, zio_decrypt);
1559 if (BP_IS_EMBEDDED(bp) && BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA) {
1560 int psize = BPE_GET_PSIZE(bp);
1561 void *data = abd_borrow_buf(zio->io_abd, psize);
1563 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1564 decode_embedded_bp_compressed(bp, data);
1565 abd_return_buf_copy(zio->io_abd, data, psize);
1566 } else {
1567 ASSERT(!BP_IS_EMBEDDED(bp));
1568 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1571 if (!DMU_OT_IS_METADATA(BP_GET_TYPE(bp)) && BP_GET_LEVEL(bp) == 0)
1572 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1574 if (BP_GET_TYPE(bp) == DMU_OT_DDT_ZAP)
1575 zio->io_flags |= ZIO_FLAG_DONT_CACHE;
1577 if (BP_GET_DEDUP(bp) && zio->io_child_type == ZIO_CHILD_LOGICAL)
1578 zio->io_pipeline = ZIO_DDT_READ_PIPELINE;
1580 return (zio);
1583 static zio_t *
1584 zio_write_bp_init(zio_t *zio)
1586 if (!IO_IS_ALLOCATING(zio))
1587 return (zio);
1589 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1591 if (zio->io_bp_override) {
1592 blkptr_t *bp = zio->io_bp;
1593 zio_prop_t *zp = &zio->io_prop;
1595 ASSERT(bp->blk_birth != zio->io_txg);
1596 ASSERT(BP_GET_DEDUP(zio->io_bp_override) == 0);
1598 *bp = *zio->io_bp_override;
1599 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1601 if (BP_IS_EMBEDDED(bp))
1602 return (zio);
1605 * If we've been overridden and nopwrite is set then
1606 * set the flag accordingly to indicate that a nopwrite
1607 * has already occurred.
1609 if (!BP_IS_HOLE(bp) && zp->zp_nopwrite) {
1610 ASSERT(!zp->zp_dedup);
1611 ASSERT3U(BP_GET_CHECKSUM(bp), ==, zp->zp_checksum);
1612 zio->io_flags |= ZIO_FLAG_NOPWRITE;
1613 return (zio);
1616 ASSERT(!zp->zp_nopwrite);
1618 if (BP_IS_HOLE(bp) || !zp->zp_dedup)
1619 return (zio);
1621 ASSERT((zio_checksum_table[zp->zp_checksum].ci_flags &
1622 ZCHECKSUM_FLAG_DEDUP) || zp->zp_dedup_verify);
1624 if (BP_GET_CHECKSUM(bp) == zp->zp_checksum &&
1625 !zp->zp_encrypt) {
1626 BP_SET_DEDUP(bp, 1);
1627 zio->io_pipeline |= ZIO_STAGE_DDT_WRITE;
1628 return (zio);
1632 * We were unable to handle this as an override bp, treat
1633 * it as a regular write I/O.
1635 zio->io_bp_override = NULL;
1636 *bp = zio->io_bp_orig;
1637 zio->io_pipeline = zio->io_orig_pipeline;
1640 return (zio);
1643 static zio_t *
1644 zio_write_compress(zio_t *zio)
1646 spa_t *spa = zio->io_spa;
1647 zio_prop_t *zp = &zio->io_prop;
1648 enum zio_compress compress = zp->zp_compress;
1649 blkptr_t *bp = zio->io_bp;
1650 uint64_t lsize = zio->io_lsize;
1651 uint64_t psize = zio->io_size;
1652 int pass = 1;
1655 * If our children haven't all reached the ready stage,
1656 * wait for them and then repeat this pipeline stage.
1658 if (zio_wait_for_children(zio, ZIO_CHILD_LOGICAL_BIT |
1659 ZIO_CHILD_GANG_BIT, ZIO_WAIT_READY)) {
1660 return (NULL);
1663 if (!IO_IS_ALLOCATING(zio))
1664 return (zio);
1666 if (zio->io_children_ready != NULL) {
1668 * Now that all our children are ready, run the callback
1669 * associated with this zio in case it wants to modify the
1670 * data to be written.
1672 ASSERT3U(zp->zp_level, >, 0);
1673 zio->io_children_ready(zio);
1676 ASSERT(zio->io_child_type != ZIO_CHILD_DDT);
1677 ASSERT(zio->io_bp_override == NULL);
1679 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg) {
1681 * We're rewriting an existing block, which means we're
1682 * working on behalf of spa_sync(). For spa_sync() to
1683 * converge, it must eventually be the case that we don't
1684 * have to allocate new blocks. But compression changes
1685 * the blocksize, which forces a reallocate, and makes
1686 * convergence take longer. Therefore, after the first
1687 * few passes, stop compressing to ensure convergence.
1689 pass = spa_sync_pass(spa);
1691 ASSERT(zio->io_txg == spa_syncing_txg(spa));
1692 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1693 ASSERT(!BP_GET_DEDUP(bp));
1695 if (pass >= zfs_sync_pass_dont_compress)
1696 compress = ZIO_COMPRESS_OFF;
1698 /* Make sure someone doesn't change their mind on overwrites */
1699 ASSERT(BP_IS_EMBEDDED(bp) || MIN(zp->zp_copies + BP_IS_GANG(bp),
1700 spa_max_replication(spa)) == BP_GET_NDVAS(bp));
1703 /* If it's a compressed write that is not raw, compress the buffer. */
1704 if (compress != ZIO_COMPRESS_OFF &&
1705 !(zio->io_flags & ZIO_FLAG_RAW_COMPRESS)) {
1706 void *cbuf = zio_buf_alloc(lsize);
1707 psize = zio_compress_data(compress, zio->io_abd, cbuf, lsize,
1708 zp->zp_complevel);
1709 if (psize == 0 || psize >= lsize) {
1710 compress = ZIO_COMPRESS_OFF;
1711 zio_buf_free(cbuf, lsize);
1712 } else if (!zp->zp_dedup && !zp->zp_encrypt &&
1713 psize <= BPE_PAYLOAD_SIZE &&
1714 zp->zp_level == 0 && !DMU_OT_HAS_FILL(zp->zp_type) &&
1715 spa_feature_is_enabled(spa, SPA_FEATURE_EMBEDDED_DATA)) {
1716 encode_embedded_bp_compressed(bp,
1717 cbuf, compress, lsize, psize);
1718 BPE_SET_ETYPE(bp, BP_EMBEDDED_TYPE_DATA);
1719 BP_SET_TYPE(bp, zio->io_prop.zp_type);
1720 BP_SET_LEVEL(bp, zio->io_prop.zp_level);
1721 zio_buf_free(cbuf, lsize);
1722 bp->blk_birth = zio->io_txg;
1723 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1724 ASSERT(spa_feature_is_active(spa,
1725 SPA_FEATURE_EMBEDDED_DATA));
1726 return (zio);
1727 } else {
1729 * Round compressed size up to the minimum allocation
1730 * size of the smallest-ashift device, and zero the
1731 * tail. This ensures that the compressed size of the
1732 * BP (and thus compressratio property) are correct,
1733 * in that we charge for the padding used to fill out
1734 * the last sector.
1736 ASSERT3U(spa->spa_min_alloc, >=, SPA_MINBLOCKSHIFT);
1737 size_t rounded = (size_t)roundup(psize,
1738 spa->spa_min_alloc);
1739 if (rounded >= lsize) {
1740 compress = ZIO_COMPRESS_OFF;
1741 zio_buf_free(cbuf, lsize);
1742 psize = lsize;
1743 } else {
1744 abd_t *cdata = abd_get_from_buf(cbuf, lsize);
1745 abd_take_ownership_of_buf(cdata, B_TRUE);
1746 abd_zero_off(cdata, psize, rounded - psize);
1747 psize = rounded;
1748 zio_push_transform(zio, cdata,
1749 psize, lsize, NULL);
1754 * We were unable to handle this as an override bp, treat
1755 * it as a regular write I/O.
1757 zio->io_bp_override = NULL;
1758 *bp = zio->io_bp_orig;
1759 zio->io_pipeline = zio->io_orig_pipeline;
1761 } else if ((zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) != 0 &&
1762 zp->zp_type == DMU_OT_DNODE) {
1764 * The DMU actually relies on the zio layer's compression
1765 * to free metadnode blocks that have had all contained
1766 * dnodes freed. As a result, even when doing a raw
1767 * receive, we must check whether the block can be compressed
1768 * to a hole.
1770 psize = zio_compress_data(ZIO_COMPRESS_EMPTY,
1771 zio->io_abd, NULL, lsize, zp->zp_complevel);
1772 if (psize == 0 || psize >= lsize)
1773 compress = ZIO_COMPRESS_OFF;
1774 } else {
1775 ASSERT3U(psize, !=, 0);
1779 * The final pass of spa_sync() must be all rewrites, but the first
1780 * few passes offer a trade-off: allocating blocks defers convergence,
1781 * but newly allocated blocks are sequential, so they can be written
1782 * to disk faster. Therefore, we allow the first few passes of
1783 * spa_sync() to allocate new blocks, but force rewrites after that.
1784 * There should only be a handful of blocks after pass 1 in any case.
1786 if (!BP_IS_HOLE(bp) && bp->blk_birth == zio->io_txg &&
1787 BP_GET_PSIZE(bp) == psize &&
1788 pass >= zfs_sync_pass_rewrite) {
1789 VERIFY3U(psize, !=, 0);
1790 enum zio_stage gang_stages = zio->io_pipeline & ZIO_GANG_STAGES;
1792 zio->io_pipeline = ZIO_REWRITE_PIPELINE | gang_stages;
1793 zio->io_flags |= ZIO_FLAG_IO_REWRITE;
1794 } else {
1795 BP_ZERO(bp);
1796 zio->io_pipeline = ZIO_WRITE_PIPELINE;
1799 if (psize == 0) {
1800 if (zio->io_bp_orig.blk_birth != 0 &&
1801 spa_feature_is_active(spa, SPA_FEATURE_HOLE_BIRTH)) {
1802 BP_SET_LSIZE(bp, lsize);
1803 BP_SET_TYPE(bp, zp->zp_type);
1804 BP_SET_LEVEL(bp, zp->zp_level);
1805 BP_SET_BIRTH(bp, zio->io_txg, 0);
1807 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
1808 } else {
1809 ASSERT(zp->zp_checksum != ZIO_CHECKSUM_GANG_HEADER);
1810 BP_SET_LSIZE(bp, lsize);
1811 BP_SET_TYPE(bp, zp->zp_type);
1812 BP_SET_LEVEL(bp, zp->zp_level);
1813 BP_SET_PSIZE(bp, psize);
1814 BP_SET_COMPRESS(bp, compress);
1815 BP_SET_CHECKSUM(bp, zp->zp_checksum);
1816 BP_SET_DEDUP(bp, zp->zp_dedup);
1817 BP_SET_BYTEORDER(bp, ZFS_HOST_BYTEORDER);
1818 if (zp->zp_dedup) {
1819 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1820 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1821 ASSERT(!zp->zp_encrypt ||
1822 DMU_OT_IS_ENCRYPTED(zp->zp_type));
1823 zio->io_pipeline = ZIO_DDT_WRITE_PIPELINE;
1825 if (zp->zp_nopwrite) {
1826 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
1827 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
1828 zio->io_pipeline |= ZIO_STAGE_NOP_WRITE;
1831 return (zio);
1834 static zio_t *
1835 zio_free_bp_init(zio_t *zio)
1837 blkptr_t *bp = zio->io_bp;
1839 if (zio->io_child_type == ZIO_CHILD_LOGICAL) {
1840 if (BP_GET_DEDUP(bp))
1841 zio->io_pipeline = ZIO_DDT_FREE_PIPELINE;
1844 ASSERT3P(zio->io_bp, ==, &zio->io_bp_copy);
1846 return (zio);
1850 * ==========================================================================
1851 * Execute the I/O pipeline
1852 * ==========================================================================
1855 static void
1856 zio_taskq_dispatch(zio_t *zio, zio_taskq_type_t q, boolean_t cutinline)
1858 spa_t *spa = zio->io_spa;
1859 zio_type_t t = zio->io_type;
1860 int flags = (cutinline ? TQ_FRONT : 0);
1863 * If we're a config writer or a probe, the normal issue and
1864 * interrupt threads may all be blocked waiting for the config lock.
1865 * In this case, select the otherwise-unused taskq for ZIO_TYPE_NULL.
1867 if (zio->io_flags & (ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_PROBE))
1868 t = ZIO_TYPE_NULL;
1871 * A similar issue exists for the L2ARC write thread until L2ARC 2.0.
1873 if (t == ZIO_TYPE_WRITE && zio->io_vd && zio->io_vd->vdev_aux)
1874 t = ZIO_TYPE_NULL;
1877 * If this is a high priority I/O, then use the high priority taskq if
1878 * available.
1880 if ((zio->io_priority == ZIO_PRIORITY_NOW ||
1881 zio->io_priority == ZIO_PRIORITY_SYNC_WRITE) &&
1882 spa->spa_zio_taskq[t][q + 1].stqs_count != 0)
1883 q++;
1885 ASSERT3U(q, <, ZIO_TASKQ_TYPES);
1888 * NB: We are assuming that the zio can only be dispatched
1889 * to a single taskq at a time. It would be a grievous error
1890 * to dispatch the zio to another taskq at the same time.
1892 ASSERT(taskq_empty_ent(&zio->io_tqent));
1893 spa_taskq_dispatch_ent(spa, t, q, zio_execute, zio, flags,
1894 &zio->io_tqent);
1897 static boolean_t
1898 zio_taskq_member(zio_t *zio, zio_taskq_type_t q)
1900 spa_t *spa = zio->io_spa;
1902 taskq_t *tq = taskq_of_curthread();
1904 for (zio_type_t t = 0; t < ZIO_TYPES; t++) {
1905 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1906 uint_t i;
1907 for (i = 0; i < tqs->stqs_count; i++) {
1908 if (tqs->stqs_taskq[i] == tq)
1909 return (B_TRUE);
1913 return (B_FALSE);
1916 static zio_t *
1917 zio_issue_async(zio_t *zio)
1919 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
1921 return (NULL);
1924 void
1925 zio_interrupt(void *zio)
1927 zio_taskq_dispatch(zio, ZIO_TASKQ_INTERRUPT, B_FALSE);
1930 void
1931 zio_delay_interrupt(zio_t *zio)
1934 * The timeout_generic() function isn't defined in userspace, so
1935 * rather than trying to implement the function, the zio delay
1936 * functionality has been disabled for userspace builds.
1939 #ifdef _KERNEL
1941 * If io_target_timestamp is zero, then no delay has been registered
1942 * for this IO, thus jump to the end of this function and "skip" the
1943 * delay; issuing it directly to the zio layer.
1945 if (zio->io_target_timestamp != 0) {
1946 hrtime_t now = gethrtime();
1948 if (now >= zio->io_target_timestamp) {
1950 * This IO has already taken longer than the target
1951 * delay to complete, so we don't want to delay it
1952 * any longer; we "miss" the delay and issue it
1953 * directly to the zio layer. This is likely due to
1954 * the target latency being set to a value less than
1955 * the underlying hardware can satisfy (e.g. delay
1956 * set to 1ms, but the disks take 10ms to complete an
1957 * IO request).
1960 DTRACE_PROBE2(zio__delay__miss, zio_t *, zio,
1961 hrtime_t, now);
1963 zio_interrupt(zio);
1964 } else {
1965 taskqid_t tid;
1966 hrtime_t diff = zio->io_target_timestamp - now;
1967 clock_t expire_at_tick = ddi_get_lbolt() +
1968 NSEC_TO_TICK(diff);
1970 DTRACE_PROBE3(zio__delay__hit, zio_t *, zio,
1971 hrtime_t, now, hrtime_t, diff);
1973 if (NSEC_TO_TICK(diff) == 0) {
1974 /* Our delay is less than a jiffy - just spin */
1975 zfs_sleep_until(zio->io_target_timestamp);
1976 zio_interrupt(zio);
1977 } else {
1979 * Use taskq_dispatch_delay() in the place of
1980 * OpenZFS's timeout_generic().
1982 tid = taskq_dispatch_delay(system_taskq,
1983 zio_interrupt, zio, TQ_NOSLEEP,
1984 expire_at_tick);
1985 if (tid == TASKQID_INVALID) {
1987 * Couldn't allocate a task. Just
1988 * finish the zio without a delay.
1990 zio_interrupt(zio);
1994 return;
1996 #endif
1997 DTRACE_PROBE1(zio__delay__skip, zio_t *, zio);
1998 zio_interrupt(zio);
2001 static void
2002 zio_deadman_impl(zio_t *pio, int ziodepth)
2004 zio_t *cio, *cio_next;
2005 zio_link_t *zl = NULL;
2006 vdev_t *vd = pio->io_vd;
2008 if (zio_deadman_log_all || (vd != NULL && vd->vdev_ops->vdev_op_leaf)) {
2009 vdev_queue_t *vq = vd ? &vd->vdev_queue : NULL;
2010 zbookmark_phys_t *zb = &pio->io_bookmark;
2011 uint64_t delta = gethrtime() - pio->io_timestamp;
2012 uint64_t failmode = spa_get_deadman_failmode(pio->io_spa);
2014 zfs_dbgmsg("slow zio[%d]: zio=%px timestamp=%llu "
2015 "delta=%llu queued=%llu io=%llu "
2016 "path=%s "
2017 "last=%llu type=%d "
2018 "priority=%d flags=0x%x stage=0x%x "
2019 "pipeline=0x%x pipeline-trace=0x%x "
2020 "objset=%llu object=%llu "
2021 "level=%llu blkid=%llu "
2022 "offset=%llu size=%llu "
2023 "error=%d",
2024 ziodepth, pio, pio->io_timestamp,
2025 (u_longlong_t)delta, pio->io_delta, pio->io_delay,
2026 vd ? vd->vdev_path : "NULL",
2027 vq ? vq->vq_io_complete_ts : 0, pio->io_type,
2028 pio->io_priority, pio->io_flags, pio->io_stage,
2029 pio->io_pipeline, pio->io_pipeline_trace,
2030 (u_longlong_t)zb->zb_objset, (u_longlong_t)zb->zb_object,
2031 (u_longlong_t)zb->zb_level, (u_longlong_t)zb->zb_blkid,
2032 (u_longlong_t)pio->io_offset, (u_longlong_t)pio->io_size,
2033 pio->io_error);
2034 (void) zfs_ereport_post(FM_EREPORT_ZFS_DEADMAN,
2035 pio->io_spa, vd, zb, pio, 0);
2037 if (failmode == ZIO_FAILURE_MODE_CONTINUE &&
2038 taskq_empty_ent(&pio->io_tqent)) {
2039 zio_interrupt(pio);
2043 mutex_enter(&pio->io_lock);
2044 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2045 cio_next = zio_walk_children(pio, &zl);
2046 zio_deadman_impl(cio, ziodepth + 1);
2048 mutex_exit(&pio->io_lock);
2052 * Log the critical information describing this zio and all of its children
2053 * using the zfs_dbgmsg() interface then post deadman event for the ZED.
2055 void
2056 zio_deadman(zio_t *pio, char *tag)
2058 spa_t *spa = pio->io_spa;
2059 char *name = spa_name(spa);
2061 if (!zfs_deadman_enabled || spa_suspended(spa))
2062 return;
2064 zio_deadman_impl(pio, 0);
2066 switch (spa_get_deadman_failmode(spa)) {
2067 case ZIO_FAILURE_MODE_WAIT:
2068 zfs_dbgmsg("%s waiting for hung I/O to pool '%s'", tag, name);
2069 break;
2071 case ZIO_FAILURE_MODE_CONTINUE:
2072 zfs_dbgmsg("%s restarting hung I/O for pool '%s'", tag, name);
2073 break;
2075 case ZIO_FAILURE_MODE_PANIC:
2076 fm_panic("%s determined I/O to pool '%s' is hung.", tag, name);
2077 break;
2082 * Execute the I/O pipeline until one of the following occurs:
2083 * (1) the I/O completes; (2) the pipeline stalls waiting for
2084 * dependent child I/Os; (3) the I/O issues, so we're waiting
2085 * for an I/O completion interrupt; (4) the I/O is delegated by
2086 * vdev-level caching or aggregation; (5) the I/O is deferred
2087 * due to vdev-level queueing; (6) the I/O is handed off to
2088 * another thread. In all cases, the pipeline stops whenever
2089 * there's no CPU work; it never burns a thread in cv_wait_io().
2091 * There's no locking on io_stage because there's no legitimate way
2092 * for multiple threads to be attempting to process the same I/O.
2094 static zio_pipe_stage_t *zio_pipeline[];
2097 * zio_execute() is a wrapper around the static function
2098 * __zio_execute() so that we can force __zio_execute() to be
2099 * inlined. This reduces stack overhead which is important
2100 * because __zio_execute() is called recursively in several zio
2101 * code paths. zio_execute() itself cannot be inlined because
2102 * it is externally visible.
2104 void
2105 zio_execute(void *zio)
2107 fstrans_cookie_t cookie;
2109 cookie = spl_fstrans_mark();
2110 __zio_execute(zio);
2111 spl_fstrans_unmark(cookie);
2115 * Used to determine if in the current context the stack is sized large
2116 * enough to allow zio_execute() to be called recursively. A minimum
2117 * stack size of 16K is required to avoid needing to re-dispatch the zio.
2119 static boolean_t
2120 zio_execute_stack_check(zio_t *zio)
2122 #if !defined(HAVE_LARGE_STACKS)
2123 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
2125 /* Executing in txg_sync_thread() context. */
2126 if (dp && curthread == dp->dp_tx.tx_sync_thread)
2127 return (B_TRUE);
2129 /* Pool initialization outside of zio_taskq context. */
2130 if (dp && spa_is_initializing(dp->dp_spa) &&
2131 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE) &&
2132 !zio_taskq_member(zio, ZIO_TASKQ_ISSUE_HIGH))
2133 return (B_TRUE);
2134 #endif /* HAVE_LARGE_STACKS */
2136 return (B_FALSE);
2139 __attribute__((always_inline))
2140 static inline void
2141 __zio_execute(zio_t *zio)
2143 ASSERT3U(zio->io_queued_timestamp, >, 0);
2145 while (zio->io_stage < ZIO_STAGE_DONE) {
2146 enum zio_stage pipeline = zio->io_pipeline;
2147 enum zio_stage stage = zio->io_stage;
2149 zio->io_executor = curthread;
2151 ASSERT(!MUTEX_HELD(&zio->io_lock));
2152 ASSERT(ISP2(stage));
2153 ASSERT(zio->io_stall == NULL);
2155 do {
2156 stage <<= 1;
2157 } while ((stage & pipeline) == 0);
2159 ASSERT(stage <= ZIO_STAGE_DONE);
2162 * If we are in interrupt context and this pipeline stage
2163 * will grab a config lock that is held across I/O,
2164 * or may wait for an I/O that needs an interrupt thread
2165 * to complete, issue async to avoid deadlock.
2167 * For VDEV_IO_START, we cut in line so that the io will
2168 * be sent to disk promptly.
2170 if ((stage & ZIO_BLOCKING_STAGES) && zio->io_vd == NULL &&
2171 zio_taskq_member(zio, ZIO_TASKQ_INTERRUPT)) {
2172 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2173 zio_requeue_io_start_cut_in_line : B_FALSE;
2174 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2175 return;
2179 * If the current context doesn't have large enough stacks
2180 * the zio must be issued asynchronously to prevent overflow.
2182 if (zio_execute_stack_check(zio)) {
2183 boolean_t cut = (stage == ZIO_STAGE_VDEV_IO_START) ?
2184 zio_requeue_io_start_cut_in_line : B_FALSE;
2185 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, cut);
2186 return;
2189 zio->io_stage = stage;
2190 zio->io_pipeline_trace |= zio->io_stage;
2193 * The zio pipeline stage returns the next zio to execute
2194 * (typically the same as this one), or NULL if we should
2195 * stop.
2197 zio = zio_pipeline[highbit64(stage) - 1](zio);
2199 if (zio == NULL)
2200 return;
2206 * ==========================================================================
2207 * Initiate I/O, either sync or async
2208 * ==========================================================================
2211 zio_wait(zio_t *zio)
2214 * Some routines, like zio_free_sync(), may return a NULL zio
2215 * to avoid the performance overhead of creating and then destroying
2216 * an unneeded zio. For the callers' simplicity, we accept a NULL
2217 * zio and ignore it.
2219 if (zio == NULL)
2220 return (0);
2222 long timeout = MSEC_TO_TICK(zfs_deadman_ziotime_ms);
2223 int error;
2225 ASSERT3S(zio->io_stage, ==, ZIO_STAGE_OPEN);
2226 ASSERT3P(zio->io_executor, ==, NULL);
2228 zio->io_waiter = curthread;
2229 ASSERT0(zio->io_queued_timestamp);
2230 zio->io_queued_timestamp = gethrtime();
2232 __zio_execute(zio);
2234 mutex_enter(&zio->io_lock);
2235 while (zio->io_executor != NULL) {
2236 error = cv_timedwait_io(&zio->io_cv, &zio->io_lock,
2237 ddi_get_lbolt() + timeout);
2239 if (zfs_deadman_enabled && error == -1 &&
2240 gethrtime() - zio->io_queued_timestamp >
2241 spa_deadman_ziotime(zio->io_spa)) {
2242 mutex_exit(&zio->io_lock);
2243 timeout = MSEC_TO_TICK(zfs_deadman_checktime_ms);
2244 zio_deadman(zio, FTAG);
2245 mutex_enter(&zio->io_lock);
2248 mutex_exit(&zio->io_lock);
2250 error = zio->io_error;
2251 zio_destroy(zio);
2253 return (error);
2256 void
2257 zio_nowait(zio_t *zio)
2260 * See comment in zio_wait().
2262 if (zio == NULL)
2263 return;
2265 ASSERT3P(zio->io_executor, ==, NULL);
2267 if (zio->io_child_type == ZIO_CHILD_LOGICAL &&
2268 zio_unique_parent(zio) == NULL) {
2269 zio_t *pio;
2272 * This is a logical async I/O with no parent to wait for it.
2273 * We add it to the spa_async_root_zio "Godfather" I/O which
2274 * will ensure they complete prior to unloading the pool.
2276 spa_t *spa = zio->io_spa;
2277 pio = spa->spa_async_zio_root[CPU_SEQID_UNSTABLE];
2279 zio_add_child(pio, zio);
2282 ASSERT0(zio->io_queued_timestamp);
2283 zio->io_queued_timestamp = gethrtime();
2284 __zio_execute(zio);
2288 * ==========================================================================
2289 * Reexecute, cancel, or suspend/resume failed I/O
2290 * ==========================================================================
2293 static void
2294 zio_reexecute(void *arg)
2296 zio_t *pio = arg;
2297 zio_t *cio, *cio_next;
2299 ASSERT(pio->io_child_type == ZIO_CHILD_LOGICAL);
2300 ASSERT(pio->io_orig_stage == ZIO_STAGE_OPEN);
2301 ASSERT(pio->io_gang_leader == NULL);
2302 ASSERT(pio->io_gang_tree == NULL);
2304 pio->io_flags = pio->io_orig_flags;
2305 pio->io_stage = pio->io_orig_stage;
2306 pio->io_pipeline = pio->io_orig_pipeline;
2307 pio->io_reexecute = 0;
2308 pio->io_flags |= ZIO_FLAG_REEXECUTED;
2309 pio->io_pipeline_trace = 0;
2310 pio->io_error = 0;
2311 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2312 pio->io_state[w] = 0;
2313 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
2314 pio->io_child_error[c] = 0;
2316 if (IO_IS_ALLOCATING(pio))
2317 BP_ZERO(pio->io_bp);
2320 * As we reexecute pio's children, new children could be created.
2321 * New children go to the head of pio's io_child_list, however,
2322 * so we will (correctly) not reexecute them. The key is that
2323 * the remainder of pio's io_child_list, from 'cio_next' onward,
2324 * cannot be affected by any side effects of reexecuting 'cio'.
2326 zio_link_t *zl = NULL;
2327 mutex_enter(&pio->io_lock);
2328 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
2329 cio_next = zio_walk_children(pio, &zl);
2330 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
2331 pio->io_children[cio->io_child_type][w]++;
2332 mutex_exit(&pio->io_lock);
2333 zio_reexecute(cio);
2334 mutex_enter(&pio->io_lock);
2336 mutex_exit(&pio->io_lock);
2339 * Now that all children have been reexecuted, execute the parent.
2340 * We don't reexecute "The Godfather" I/O here as it's the
2341 * responsibility of the caller to wait on it.
2343 if (!(pio->io_flags & ZIO_FLAG_GODFATHER)) {
2344 pio->io_queued_timestamp = gethrtime();
2345 __zio_execute(pio);
2349 void
2350 zio_suspend(spa_t *spa, zio_t *zio, zio_suspend_reason_t reason)
2352 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_PANIC)
2353 fm_panic("Pool '%s' has encountered an uncorrectable I/O "
2354 "failure and the failure mode property for this pool "
2355 "is set to panic.", spa_name(spa));
2357 cmn_err(CE_WARN, "Pool '%s' has encountered an uncorrectable I/O "
2358 "failure and has been suspended.\n", spa_name(spa));
2360 (void) zfs_ereport_post(FM_EREPORT_ZFS_IO_FAILURE, spa, NULL,
2361 NULL, NULL, 0);
2363 mutex_enter(&spa->spa_suspend_lock);
2365 if (spa->spa_suspend_zio_root == NULL)
2366 spa->spa_suspend_zio_root = zio_root(spa, NULL, NULL,
2367 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
2368 ZIO_FLAG_GODFATHER);
2370 spa->spa_suspended = reason;
2372 if (zio != NULL) {
2373 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
2374 ASSERT(zio != spa->spa_suspend_zio_root);
2375 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
2376 ASSERT(zio_unique_parent(zio) == NULL);
2377 ASSERT(zio->io_stage == ZIO_STAGE_DONE);
2378 zio_add_child(spa->spa_suspend_zio_root, zio);
2381 mutex_exit(&spa->spa_suspend_lock);
2385 zio_resume(spa_t *spa)
2387 zio_t *pio;
2390 * Reexecute all previously suspended i/o.
2392 mutex_enter(&spa->spa_suspend_lock);
2393 spa->spa_suspended = ZIO_SUSPEND_NONE;
2394 cv_broadcast(&spa->spa_suspend_cv);
2395 pio = spa->spa_suspend_zio_root;
2396 spa->spa_suspend_zio_root = NULL;
2397 mutex_exit(&spa->spa_suspend_lock);
2399 if (pio == NULL)
2400 return (0);
2402 zio_reexecute(pio);
2403 return (zio_wait(pio));
2406 void
2407 zio_resume_wait(spa_t *spa)
2409 mutex_enter(&spa->spa_suspend_lock);
2410 while (spa_suspended(spa))
2411 cv_wait(&spa->spa_suspend_cv, &spa->spa_suspend_lock);
2412 mutex_exit(&spa->spa_suspend_lock);
2416 * ==========================================================================
2417 * Gang blocks.
2419 * A gang block is a collection of small blocks that looks to the DMU
2420 * like one large block. When zio_dva_allocate() cannot find a block
2421 * of the requested size, due to either severe fragmentation or the pool
2422 * being nearly full, it calls zio_write_gang_block() to construct the
2423 * block from smaller fragments.
2425 * A gang block consists of a gang header (zio_gbh_phys_t) and up to
2426 * three (SPA_GBH_NBLKPTRS) gang members. The gang header is just like
2427 * an indirect block: it's an array of block pointers. It consumes
2428 * only one sector and hence is allocatable regardless of fragmentation.
2429 * The gang header's bps point to its gang members, which hold the data.
2431 * Gang blocks are self-checksumming, using the bp's <vdev, offset, txg>
2432 * as the verifier to ensure uniqueness of the SHA256 checksum.
2433 * Critically, the gang block bp's blk_cksum is the checksum of the data,
2434 * not the gang header. This ensures that data block signatures (needed for
2435 * deduplication) are independent of how the block is physically stored.
2437 * Gang blocks can be nested: a gang member may itself be a gang block.
2438 * Thus every gang block is a tree in which root and all interior nodes are
2439 * gang headers, and the leaves are normal blocks that contain user data.
2440 * The root of the gang tree is called the gang leader.
2442 * To perform any operation (read, rewrite, free, claim) on a gang block,
2443 * zio_gang_assemble() first assembles the gang tree (minus data leaves)
2444 * in the io_gang_tree field of the original logical i/o by recursively
2445 * reading the gang leader and all gang headers below it. This yields
2446 * an in-core tree containing the contents of every gang header and the
2447 * bps for every constituent of the gang block.
2449 * With the gang tree now assembled, zio_gang_issue() just walks the gang tree
2450 * and invokes a callback on each bp. To free a gang block, zio_gang_issue()
2451 * calls zio_free_gang() -- a trivial wrapper around zio_free() -- for each bp.
2452 * zio_claim_gang() provides a similarly trivial wrapper for zio_claim().
2453 * zio_read_gang() is a wrapper around zio_read() that omits reading gang
2454 * headers, since we already have those in io_gang_tree. zio_rewrite_gang()
2455 * performs a zio_rewrite() of the data or, for gang headers, a zio_rewrite()
2456 * of the gang header plus zio_checksum_compute() of the data to update the
2457 * gang header's blk_cksum as described above.
2459 * The two-phase assemble/issue model solves the problem of partial failure --
2460 * what if you'd freed part of a gang block but then couldn't read the
2461 * gang header for another part? Assembling the entire gang tree first
2462 * ensures that all the necessary gang header I/O has succeeded before
2463 * starting the actual work of free, claim, or write. Once the gang tree
2464 * is assembled, free and claim are in-memory operations that cannot fail.
2466 * In the event that a gang write fails, zio_dva_unallocate() walks the
2467 * gang tree to immediately free (i.e. insert back into the space map)
2468 * everything we've allocated. This ensures that we don't get ENOSPC
2469 * errors during repeated suspend/resume cycles due to a flaky device.
2471 * Gang rewrites only happen during sync-to-convergence. If we can't assemble
2472 * the gang tree, we won't modify the block, so we can safely defer the free
2473 * (knowing that the block is still intact). If we *can* assemble the gang
2474 * tree, then even if some of the rewrites fail, zio_dva_unallocate() will free
2475 * each constituent bp and we can allocate a new block on the next sync pass.
2477 * In all cases, the gang tree allows complete recovery from partial failure.
2478 * ==========================================================================
2481 static void
2482 zio_gang_issue_func_done(zio_t *zio)
2484 abd_free(zio->io_abd);
2487 static zio_t *
2488 zio_read_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2489 uint64_t offset)
2491 if (gn != NULL)
2492 return (pio);
2494 return (zio_read(pio, pio->io_spa, bp, abd_get_offset(data, offset),
2495 BP_GET_PSIZE(bp), zio_gang_issue_func_done,
2496 NULL, pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2497 &pio->io_bookmark));
2500 static zio_t *
2501 zio_rewrite_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2502 uint64_t offset)
2504 zio_t *zio;
2506 if (gn != NULL) {
2507 abd_t *gbh_abd =
2508 abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2509 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2510 gbh_abd, SPA_GANGBLOCKSIZE, zio_gang_issue_func_done, NULL,
2511 pio->io_priority, ZIO_GANG_CHILD_FLAGS(pio),
2512 &pio->io_bookmark);
2514 * As we rewrite each gang header, the pipeline will compute
2515 * a new gang block header checksum for it; but no one will
2516 * compute a new data checksum, so we do that here. The one
2517 * exception is the gang leader: the pipeline already computed
2518 * its data checksum because that stage precedes gang assembly.
2519 * (Presently, nothing actually uses interior data checksums;
2520 * this is just good hygiene.)
2522 if (gn != pio->io_gang_leader->io_gang_tree) {
2523 abd_t *buf = abd_get_offset(data, offset);
2525 zio_checksum_compute(zio, BP_GET_CHECKSUM(bp),
2526 buf, BP_GET_PSIZE(bp));
2528 abd_free(buf);
2531 * If we are here to damage data for testing purposes,
2532 * leave the GBH alone so that we can detect the damage.
2534 if (pio->io_gang_leader->io_flags & ZIO_FLAG_INDUCE_DAMAGE)
2535 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
2536 } else {
2537 zio = zio_rewrite(pio, pio->io_spa, pio->io_txg, bp,
2538 abd_get_offset(data, offset), BP_GET_PSIZE(bp),
2539 zio_gang_issue_func_done, NULL, pio->io_priority,
2540 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2543 return (zio);
2546 /* ARGSUSED */
2547 static zio_t *
2548 zio_free_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2549 uint64_t offset)
2551 zio_t *zio = zio_free_sync(pio, pio->io_spa, pio->io_txg, bp,
2552 ZIO_GANG_CHILD_FLAGS(pio));
2553 if (zio == NULL) {
2554 zio = zio_null(pio, pio->io_spa,
2555 NULL, NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio));
2557 return (zio);
2560 /* ARGSUSED */
2561 static zio_t *
2562 zio_claim_gang(zio_t *pio, blkptr_t *bp, zio_gang_node_t *gn, abd_t *data,
2563 uint64_t offset)
2565 return (zio_claim(pio, pio->io_spa, pio->io_txg, bp,
2566 NULL, NULL, ZIO_GANG_CHILD_FLAGS(pio)));
2569 static zio_gang_issue_func_t *zio_gang_issue_func[ZIO_TYPES] = {
2570 NULL,
2571 zio_read_gang,
2572 zio_rewrite_gang,
2573 zio_free_gang,
2574 zio_claim_gang,
2575 NULL
2578 static void zio_gang_tree_assemble_done(zio_t *zio);
2580 static zio_gang_node_t *
2581 zio_gang_node_alloc(zio_gang_node_t **gnpp)
2583 zio_gang_node_t *gn;
2585 ASSERT(*gnpp == NULL);
2587 gn = kmem_zalloc(sizeof (*gn), KM_SLEEP);
2588 gn->gn_gbh = zio_buf_alloc(SPA_GANGBLOCKSIZE);
2589 *gnpp = gn;
2591 return (gn);
2594 static void
2595 zio_gang_node_free(zio_gang_node_t **gnpp)
2597 zio_gang_node_t *gn = *gnpp;
2599 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2600 ASSERT(gn->gn_child[g] == NULL);
2602 zio_buf_free(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2603 kmem_free(gn, sizeof (*gn));
2604 *gnpp = NULL;
2607 static void
2608 zio_gang_tree_free(zio_gang_node_t **gnpp)
2610 zio_gang_node_t *gn = *gnpp;
2612 if (gn == NULL)
2613 return;
2615 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++)
2616 zio_gang_tree_free(&gn->gn_child[g]);
2618 zio_gang_node_free(gnpp);
2621 static void
2622 zio_gang_tree_assemble(zio_t *gio, blkptr_t *bp, zio_gang_node_t **gnpp)
2624 zio_gang_node_t *gn = zio_gang_node_alloc(gnpp);
2625 abd_t *gbh_abd = abd_get_from_buf(gn->gn_gbh, SPA_GANGBLOCKSIZE);
2627 ASSERT(gio->io_gang_leader == gio);
2628 ASSERT(BP_IS_GANG(bp));
2630 zio_nowait(zio_read(gio, gio->io_spa, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2631 zio_gang_tree_assemble_done, gn, gio->io_priority,
2632 ZIO_GANG_CHILD_FLAGS(gio), &gio->io_bookmark));
2635 static void
2636 zio_gang_tree_assemble_done(zio_t *zio)
2638 zio_t *gio = zio->io_gang_leader;
2639 zio_gang_node_t *gn = zio->io_private;
2640 blkptr_t *bp = zio->io_bp;
2642 ASSERT(gio == zio_unique_parent(zio));
2643 ASSERT(zio->io_child_count == 0);
2645 if (zio->io_error)
2646 return;
2648 /* this ABD was created from a linear buf in zio_gang_tree_assemble */
2649 if (BP_SHOULD_BYTESWAP(bp))
2650 byteswap_uint64_array(abd_to_buf(zio->io_abd), zio->io_size);
2652 ASSERT3P(abd_to_buf(zio->io_abd), ==, gn->gn_gbh);
2653 ASSERT(zio->io_size == SPA_GANGBLOCKSIZE);
2654 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2656 abd_free(zio->io_abd);
2658 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2659 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2660 if (!BP_IS_GANG(gbp))
2661 continue;
2662 zio_gang_tree_assemble(gio, gbp, &gn->gn_child[g]);
2666 static void
2667 zio_gang_tree_issue(zio_t *pio, zio_gang_node_t *gn, blkptr_t *bp, abd_t *data,
2668 uint64_t offset)
2670 zio_t *gio = pio->io_gang_leader;
2671 zio_t *zio;
2673 ASSERT(BP_IS_GANG(bp) == !!gn);
2674 ASSERT(BP_GET_CHECKSUM(bp) == BP_GET_CHECKSUM(gio->io_bp));
2675 ASSERT(BP_GET_LSIZE(bp) == BP_GET_PSIZE(bp) || gn == gio->io_gang_tree);
2678 * If you're a gang header, your data is in gn->gn_gbh.
2679 * If you're a gang member, your data is in 'data' and gn == NULL.
2681 zio = zio_gang_issue_func[gio->io_type](pio, bp, gn, data, offset);
2683 if (gn != NULL) {
2684 ASSERT(gn->gn_gbh->zg_tail.zec_magic == ZEC_MAGIC);
2686 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
2687 blkptr_t *gbp = &gn->gn_gbh->zg_blkptr[g];
2688 if (BP_IS_HOLE(gbp))
2689 continue;
2690 zio_gang_tree_issue(zio, gn->gn_child[g], gbp, data,
2691 offset);
2692 offset += BP_GET_PSIZE(gbp);
2696 if (gn == gio->io_gang_tree)
2697 ASSERT3U(gio->io_size, ==, offset);
2699 if (zio != pio)
2700 zio_nowait(zio);
2703 static zio_t *
2704 zio_gang_assemble(zio_t *zio)
2706 blkptr_t *bp = zio->io_bp;
2708 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == NULL);
2709 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2711 zio->io_gang_leader = zio;
2713 zio_gang_tree_assemble(zio, bp, &zio->io_gang_tree);
2715 return (zio);
2718 static zio_t *
2719 zio_gang_issue(zio_t *zio)
2721 blkptr_t *bp = zio->io_bp;
2723 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT, ZIO_WAIT_DONE)) {
2724 return (NULL);
2727 ASSERT(BP_IS_GANG(bp) && zio->io_gang_leader == zio);
2728 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
2730 if (zio->io_child_error[ZIO_CHILD_GANG] == 0)
2731 zio_gang_tree_issue(zio, zio->io_gang_tree, bp, zio->io_abd,
2733 else
2734 zio_gang_tree_free(&zio->io_gang_tree);
2736 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2738 return (zio);
2741 static void
2742 zio_write_gang_member_ready(zio_t *zio)
2744 zio_t *pio = zio_unique_parent(zio);
2745 dva_t *cdva = zio->io_bp->blk_dva;
2746 dva_t *pdva = pio->io_bp->blk_dva;
2747 uint64_t asize;
2748 zio_t *gio __maybe_unused = zio->io_gang_leader;
2750 if (BP_IS_HOLE(zio->io_bp))
2751 return;
2753 ASSERT(BP_IS_HOLE(&zio->io_bp_orig));
2755 ASSERT(zio->io_child_type == ZIO_CHILD_GANG);
2756 ASSERT3U(zio->io_prop.zp_copies, ==, gio->io_prop.zp_copies);
2757 ASSERT3U(zio->io_prop.zp_copies, <=, BP_GET_NDVAS(zio->io_bp));
2758 ASSERT3U(pio->io_prop.zp_copies, <=, BP_GET_NDVAS(pio->io_bp));
2759 ASSERT3U(BP_GET_NDVAS(zio->io_bp), <=, BP_GET_NDVAS(pio->io_bp));
2761 mutex_enter(&pio->io_lock);
2762 for (int d = 0; d < BP_GET_NDVAS(zio->io_bp); d++) {
2763 ASSERT(DVA_GET_GANG(&pdva[d]));
2764 asize = DVA_GET_ASIZE(&pdva[d]);
2765 asize += DVA_GET_ASIZE(&cdva[d]);
2766 DVA_SET_ASIZE(&pdva[d], asize);
2768 mutex_exit(&pio->io_lock);
2771 static void
2772 zio_write_gang_done(zio_t *zio)
2775 * The io_abd field will be NULL for a zio with no data. The io_flags
2776 * will initially have the ZIO_FLAG_NODATA bit flag set, but we can't
2777 * check for it here as it is cleared in zio_ready.
2779 if (zio->io_abd != NULL)
2780 abd_free(zio->io_abd);
2783 static zio_t *
2784 zio_write_gang_block(zio_t *pio, metaslab_class_t *mc)
2786 spa_t *spa = pio->io_spa;
2787 blkptr_t *bp = pio->io_bp;
2788 zio_t *gio = pio->io_gang_leader;
2789 zio_t *zio;
2790 zio_gang_node_t *gn, **gnpp;
2791 zio_gbh_phys_t *gbh;
2792 abd_t *gbh_abd;
2793 uint64_t txg = pio->io_txg;
2794 uint64_t resid = pio->io_size;
2795 uint64_t lsize;
2796 int copies = gio->io_prop.zp_copies;
2797 int gbh_copies;
2798 zio_prop_t zp;
2799 int error;
2800 boolean_t has_data = !(pio->io_flags & ZIO_FLAG_NODATA);
2803 * encrypted blocks need DVA[2] free so encrypted gang headers can't
2804 * have a third copy.
2806 gbh_copies = MIN(copies + 1, spa_max_replication(spa));
2807 if (gio->io_prop.zp_encrypt && gbh_copies >= SPA_DVAS_PER_BP)
2808 gbh_copies = SPA_DVAS_PER_BP - 1;
2810 int flags = METASLAB_HINTBP_FAVOR | METASLAB_GANG_HEADER;
2811 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2812 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2813 ASSERT(has_data);
2815 flags |= METASLAB_ASYNC_ALLOC;
2816 VERIFY(zfs_refcount_held(&mc->mc_allocator[pio->io_allocator].
2817 mca_alloc_slots, pio));
2820 * The logical zio has already placed a reservation for
2821 * 'copies' allocation slots but gang blocks may require
2822 * additional copies. These additional copies
2823 * (i.e. gbh_copies - copies) are guaranteed to succeed
2824 * since metaslab_class_throttle_reserve() always allows
2825 * additional reservations for gang blocks.
2827 VERIFY(metaslab_class_throttle_reserve(mc, gbh_copies - copies,
2828 pio->io_allocator, pio, flags));
2831 error = metaslab_alloc(spa, mc, SPA_GANGBLOCKSIZE,
2832 bp, gbh_copies, txg, pio == gio ? NULL : gio->io_bp, flags,
2833 &pio->io_alloc_list, pio, pio->io_allocator);
2834 if (error) {
2835 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2836 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2837 ASSERT(has_data);
2840 * If we failed to allocate the gang block header then
2841 * we remove any additional allocation reservations that
2842 * we placed here. The original reservation will
2843 * be removed when the logical I/O goes to the ready
2844 * stage.
2846 metaslab_class_throttle_unreserve(mc,
2847 gbh_copies - copies, pio->io_allocator, pio);
2850 pio->io_error = error;
2851 return (pio);
2854 if (pio == gio) {
2855 gnpp = &gio->io_gang_tree;
2856 } else {
2857 gnpp = pio->io_private;
2858 ASSERT(pio->io_ready == zio_write_gang_member_ready);
2861 gn = zio_gang_node_alloc(gnpp);
2862 gbh = gn->gn_gbh;
2863 bzero(gbh, SPA_GANGBLOCKSIZE);
2864 gbh_abd = abd_get_from_buf(gbh, SPA_GANGBLOCKSIZE);
2867 * Create the gang header.
2869 zio = zio_rewrite(pio, spa, txg, bp, gbh_abd, SPA_GANGBLOCKSIZE,
2870 zio_write_gang_done, NULL, pio->io_priority,
2871 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2874 * Create and nowait the gang children.
2876 for (int g = 0; resid != 0; resid -= lsize, g++) {
2877 lsize = P2ROUNDUP(resid / (SPA_GBH_NBLKPTRS - g),
2878 SPA_MINBLOCKSIZE);
2879 ASSERT(lsize >= SPA_MINBLOCKSIZE && lsize <= resid);
2881 zp.zp_checksum = gio->io_prop.zp_checksum;
2882 zp.zp_compress = ZIO_COMPRESS_OFF;
2883 zp.zp_complevel = gio->io_prop.zp_complevel;
2884 zp.zp_type = DMU_OT_NONE;
2885 zp.zp_level = 0;
2886 zp.zp_copies = gio->io_prop.zp_copies;
2887 zp.zp_dedup = B_FALSE;
2888 zp.zp_dedup_verify = B_FALSE;
2889 zp.zp_nopwrite = B_FALSE;
2890 zp.zp_encrypt = gio->io_prop.zp_encrypt;
2891 zp.zp_byteorder = gio->io_prop.zp_byteorder;
2892 bzero(zp.zp_salt, ZIO_DATA_SALT_LEN);
2893 bzero(zp.zp_iv, ZIO_DATA_IV_LEN);
2894 bzero(zp.zp_mac, ZIO_DATA_MAC_LEN);
2896 zio_t *cio = zio_write(zio, spa, txg, &gbh->zg_blkptr[g],
2897 has_data ? abd_get_offset(pio->io_abd, pio->io_size -
2898 resid) : NULL, lsize, lsize, &zp,
2899 zio_write_gang_member_ready, NULL, NULL,
2900 zio_write_gang_done, &gn->gn_child[g], pio->io_priority,
2901 ZIO_GANG_CHILD_FLAGS(pio), &pio->io_bookmark);
2903 if (pio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
2904 ASSERT(pio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
2905 ASSERT(has_data);
2908 * Gang children won't throttle but we should
2909 * account for their work, so reserve an allocation
2910 * slot for them here.
2912 VERIFY(metaslab_class_throttle_reserve(mc,
2913 zp.zp_copies, cio->io_allocator, cio, flags));
2915 zio_nowait(cio);
2919 * Set pio's pipeline to just wait for zio to finish.
2921 pio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
2924 * We didn't allocate this bp, so make sure it doesn't get unmarked.
2926 pio->io_flags &= ~ZIO_FLAG_FASTWRITE;
2928 zio_nowait(zio);
2930 return (pio);
2934 * The zio_nop_write stage in the pipeline determines if allocating a
2935 * new bp is necessary. The nopwrite feature can handle writes in
2936 * either syncing or open context (i.e. zil writes) and as a result is
2937 * mutually exclusive with dedup.
2939 * By leveraging a cryptographically secure checksum, such as SHA256, we
2940 * can compare the checksums of the new data and the old to determine if
2941 * allocating a new block is required. Note that our requirements for
2942 * cryptographic strength are fairly weak: there can't be any accidental
2943 * hash collisions, but we don't need to be secure against intentional
2944 * (malicious) collisions. To trigger a nopwrite, you have to be able
2945 * to write the file to begin with, and triggering an incorrect (hash
2946 * collision) nopwrite is no worse than simply writing to the file.
2947 * That said, there are no known attacks against the checksum algorithms
2948 * used for nopwrite, assuming that the salt and the checksums
2949 * themselves remain secret.
2951 static zio_t *
2952 zio_nop_write(zio_t *zio)
2954 blkptr_t *bp = zio->io_bp;
2955 blkptr_t *bp_orig = &zio->io_bp_orig;
2956 zio_prop_t *zp = &zio->io_prop;
2958 ASSERT(BP_GET_LEVEL(bp) == 0);
2959 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REWRITE));
2960 ASSERT(zp->zp_nopwrite);
2961 ASSERT(!zp->zp_dedup);
2962 ASSERT(zio->io_bp_override == NULL);
2963 ASSERT(IO_IS_ALLOCATING(zio));
2966 * Check to see if the original bp and the new bp have matching
2967 * characteristics (i.e. same checksum, compression algorithms, etc).
2968 * If they don't then just continue with the pipeline which will
2969 * allocate a new bp.
2971 if (BP_IS_HOLE(bp_orig) ||
2972 !(zio_checksum_table[BP_GET_CHECKSUM(bp)].ci_flags &
2973 ZCHECKSUM_FLAG_NOPWRITE) ||
2974 BP_IS_ENCRYPTED(bp) || BP_IS_ENCRYPTED(bp_orig) ||
2975 BP_GET_CHECKSUM(bp) != BP_GET_CHECKSUM(bp_orig) ||
2976 BP_GET_COMPRESS(bp) != BP_GET_COMPRESS(bp_orig) ||
2977 BP_GET_DEDUP(bp) != BP_GET_DEDUP(bp_orig) ||
2978 zp->zp_copies != BP_GET_NDVAS(bp_orig))
2979 return (zio);
2982 * If the checksums match then reset the pipeline so that we
2983 * avoid allocating a new bp and issuing any I/O.
2985 if (ZIO_CHECKSUM_EQUAL(bp->blk_cksum, bp_orig->blk_cksum)) {
2986 ASSERT(zio_checksum_table[zp->zp_checksum].ci_flags &
2987 ZCHECKSUM_FLAG_NOPWRITE);
2988 ASSERT3U(BP_GET_PSIZE(bp), ==, BP_GET_PSIZE(bp_orig));
2989 ASSERT3U(BP_GET_LSIZE(bp), ==, BP_GET_LSIZE(bp_orig));
2990 ASSERT(zp->zp_compress != ZIO_COMPRESS_OFF);
2991 ASSERT(bcmp(&bp->blk_prop, &bp_orig->blk_prop,
2992 sizeof (uint64_t)) == 0);
2995 * If we're overwriting a block that is currently on an
2996 * indirect vdev, then ignore the nopwrite request and
2997 * allow a new block to be allocated on a concrete vdev.
2999 spa_config_enter(zio->io_spa, SCL_VDEV, FTAG, RW_READER);
3000 vdev_t *tvd = vdev_lookup_top(zio->io_spa,
3001 DVA_GET_VDEV(&bp->blk_dva[0]));
3002 if (tvd->vdev_ops == &vdev_indirect_ops) {
3003 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3004 return (zio);
3006 spa_config_exit(zio->io_spa, SCL_VDEV, FTAG);
3008 *bp = *bp_orig;
3009 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
3010 zio->io_flags |= ZIO_FLAG_NOPWRITE;
3013 return (zio);
3017 * ==========================================================================
3018 * Dedup
3019 * ==========================================================================
3021 static void
3022 zio_ddt_child_read_done(zio_t *zio)
3024 blkptr_t *bp = zio->io_bp;
3025 ddt_entry_t *dde = zio->io_private;
3026 ddt_phys_t *ddp;
3027 zio_t *pio = zio_unique_parent(zio);
3029 mutex_enter(&pio->io_lock);
3030 ddp = ddt_phys_select(dde, bp);
3031 if (zio->io_error == 0)
3032 ddt_phys_clear(ddp); /* this ddp doesn't need repair */
3034 if (zio->io_error == 0 && dde->dde_repair_abd == NULL)
3035 dde->dde_repair_abd = zio->io_abd;
3036 else
3037 abd_free(zio->io_abd);
3038 mutex_exit(&pio->io_lock);
3041 static zio_t *
3042 zio_ddt_read_start(zio_t *zio)
3044 blkptr_t *bp = zio->io_bp;
3046 ASSERT(BP_GET_DEDUP(bp));
3047 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3048 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3050 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3051 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3052 ddt_entry_t *dde = ddt_repair_start(ddt, bp);
3053 ddt_phys_t *ddp = dde->dde_phys;
3054 ddt_phys_t *ddp_self = ddt_phys_select(dde, bp);
3055 blkptr_t blk;
3057 ASSERT(zio->io_vsd == NULL);
3058 zio->io_vsd = dde;
3060 if (ddp_self == NULL)
3061 return (zio);
3063 for (int p = 0; p < DDT_PHYS_TYPES; p++, ddp++) {
3064 if (ddp->ddp_phys_birth == 0 || ddp == ddp_self)
3065 continue;
3066 ddt_bp_create(ddt->ddt_checksum, &dde->dde_key, ddp,
3067 &blk);
3068 zio_nowait(zio_read(zio, zio->io_spa, &blk,
3069 abd_alloc_for_io(zio->io_size, B_TRUE),
3070 zio->io_size, zio_ddt_child_read_done, dde,
3071 zio->io_priority, ZIO_DDT_CHILD_FLAGS(zio) |
3072 ZIO_FLAG_DONT_PROPAGATE, &zio->io_bookmark));
3074 return (zio);
3077 zio_nowait(zio_read(zio, zio->io_spa, bp,
3078 zio->io_abd, zio->io_size, NULL, NULL, zio->io_priority,
3079 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark));
3081 return (zio);
3084 static zio_t *
3085 zio_ddt_read_done(zio_t *zio)
3087 blkptr_t *bp = zio->io_bp;
3089 if (zio_wait_for_children(zio, ZIO_CHILD_DDT_BIT, ZIO_WAIT_DONE)) {
3090 return (NULL);
3093 ASSERT(BP_GET_DEDUP(bp));
3094 ASSERT(BP_GET_PSIZE(bp) == zio->io_size);
3095 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3097 if (zio->io_child_error[ZIO_CHILD_DDT]) {
3098 ddt_t *ddt = ddt_select(zio->io_spa, bp);
3099 ddt_entry_t *dde = zio->io_vsd;
3100 if (ddt == NULL) {
3101 ASSERT(spa_load_state(zio->io_spa) != SPA_LOAD_NONE);
3102 return (zio);
3104 if (dde == NULL) {
3105 zio->io_stage = ZIO_STAGE_DDT_READ_START >> 1;
3106 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_FALSE);
3107 return (NULL);
3109 if (dde->dde_repair_abd != NULL) {
3110 abd_copy(zio->io_abd, dde->dde_repair_abd,
3111 zio->io_size);
3112 zio->io_child_error[ZIO_CHILD_DDT] = 0;
3114 ddt_repair_done(ddt, dde);
3115 zio->io_vsd = NULL;
3118 ASSERT(zio->io_vsd == NULL);
3120 return (zio);
3123 static boolean_t
3124 zio_ddt_collision(zio_t *zio, ddt_t *ddt, ddt_entry_t *dde)
3126 spa_t *spa = zio->io_spa;
3127 boolean_t do_raw = !!(zio->io_flags & ZIO_FLAG_RAW);
3129 ASSERT(!(zio->io_bp_override && do_raw));
3132 * Note: we compare the original data, not the transformed data,
3133 * because when zio->io_bp is an override bp, we will not have
3134 * pushed the I/O transforms. That's an important optimization
3135 * because otherwise we'd compress/encrypt all dmu_sync() data twice.
3136 * However, we should never get a raw, override zio so in these
3137 * cases we can compare the io_abd directly. This is useful because
3138 * it allows us to do dedup verification even if we don't have access
3139 * to the original data (for instance, if the encryption keys aren't
3140 * loaded).
3143 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3144 zio_t *lio = dde->dde_lead_zio[p];
3146 if (lio != NULL && do_raw) {
3147 return (lio->io_size != zio->io_size ||
3148 abd_cmp(zio->io_abd, lio->io_abd) != 0);
3149 } else if (lio != NULL) {
3150 return (lio->io_orig_size != zio->io_orig_size ||
3151 abd_cmp(zio->io_orig_abd, lio->io_orig_abd) != 0);
3155 for (int p = DDT_PHYS_SINGLE; p <= DDT_PHYS_TRIPLE; p++) {
3156 ddt_phys_t *ddp = &dde->dde_phys[p];
3158 if (ddp->ddp_phys_birth != 0 && do_raw) {
3159 blkptr_t blk = *zio->io_bp;
3160 uint64_t psize;
3161 abd_t *tmpabd;
3162 int error;
3164 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3165 psize = BP_GET_PSIZE(&blk);
3167 if (psize != zio->io_size)
3168 return (B_TRUE);
3170 ddt_exit(ddt);
3172 tmpabd = abd_alloc_for_io(psize, B_TRUE);
3174 error = zio_wait(zio_read(NULL, spa, &blk, tmpabd,
3175 psize, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
3176 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3177 ZIO_FLAG_RAW, &zio->io_bookmark));
3179 if (error == 0) {
3180 if (abd_cmp(tmpabd, zio->io_abd) != 0)
3181 error = SET_ERROR(ENOENT);
3184 abd_free(tmpabd);
3185 ddt_enter(ddt);
3186 return (error != 0);
3187 } else if (ddp->ddp_phys_birth != 0) {
3188 arc_buf_t *abuf = NULL;
3189 arc_flags_t aflags = ARC_FLAG_WAIT;
3190 blkptr_t blk = *zio->io_bp;
3191 int error;
3193 ddt_bp_fill(ddp, &blk, ddp->ddp_phys_birth);
3195 if (BP_GET_LSIZE(&blk) != zio->io_orig_size)
3196 return (B_TRUE);
3198 ddt_exit(ddt);
3200 error = arc_read(NULL, spa, &blk,
3201 arc_getbuf_func, &abuf, ZIO_PRIORITY_SYNC_READ,
3202 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3203 &aflags, &zio->io_bookmark);
3205 if (error == 0) {
3206 if (abd_cmp_buf(zio->io_orig_abd, abuf->b_data,
3207 zio->io_orig_size) != 0)
3208 error = SET_ERROR(ENOENT);
3209 arc_buf_destroy(abuf, &abuf);
3212 ddt_enter(ddt);
3213 return (error != 0);
3217 return (B_FALSE);
3220 static void
3221 zio_ddt_child_write_ready(zio_t *zio)
3223 int p = zio->io_prop.zp_copies;
3224 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3225 ddt_entry_t *dde = zio->io_private;
3226 ddt_phys_t *ddp = &dde->dde_phys[p];
3227 zio_t *pio;
3229 if (zio->io_error)
3230 return;
3232 ddt_enter(ddt);
3234 ASSERT(dde->dde_lead_zio[p] == zio);
3236 ddt_phys_fill(ddp, zio->io_bp);
3238 zio_link_t *zl = NULL;
3239 while ((pio = zio_walk_parents(zio, &zl)) != NULL)
3240 ddt_bp_fill(ddp, pio->io_bp, zio->io_txg);
3242 ddt_exit(ddt);
3245 static void
3246 zio_ddt_child_write_done(zio_t *zio)
3248 int p = zio->io_prop.zp_copies;
3249 ddt_t *ddt = ddt_select(zio->io_spa, zio->io_bp);
3250 ddt_entry_t *dde = zio->io_private;
3251 ddt_phys_t *ddp = &dde->dde_phys[p];
3253 ddt_enter(ddt);
3255 ASSERT(ddp->ddp_refcnt == 0);
3256 ASSERT(dde->dde_lead_zio[p] == zio);
3257 dde->dde_lead_zio[p] = NULL;
3259 if (zio->io_error == 0) {
3260 zio_link_t *zl = NULL;
3261 while (zio_walk_parents(zio, &zl) != NULL)
3262 ddt_phys_addref(ddp);
3263 } else {
3264 ddt_phys_clear(ddp);
3267 ddt_exit(ddt);
3270 static zio_t *
3271 zio_ddt_write(zio_t *zio)
3273 spa_t *spa = zio->io_spa;
3274 blkptr_t *bp = zio->io_bp;
3275 uint64_t txg = zio->io_txg;
3276 zio_prop_t *zp = &zio->io_prop;
3277 int p = zp->zp_copies;
3278 zio_t *cio = NULL;
3279 ddt_t *ddt = ddt_select(spa, bp);
3280 ddt_entry_t *dde;
3281 ddt_phys_t *ddp;
3283 ASSERT(BP_GET_DEDUP(bp));
3284 ASSERT(BP_GET_CHECKSUM(bp) == zp->zp_checksum);
3285 ASSERT(BP_IS_HOLE(bp) || zio->io_bp_override);
3286 ASSERT(!(zio->io_bp_override && (zio->io_flags & ZIO_FLAG_RAW)));
3288 ddt_enter(ddt);
3289 dde = ddt_lookup(ddt, bp, B_TRUE);
3290 ddp = &dde->dde_phys[p];
3292 if (zp->zp_dedup_verify && zio_ddt_collision(zio, ddt, dde)) {
3294 * If we're using a weak checksum, upgrade to a strong checksum
3295 * and try again. If we're already using a strong checksum,
3296 * we can't resolve it, so just convert to an ordinary write.
3297 * (And automatically e-mail a paper to Nature?)
3299 if (!(zio_checksum_table[zp->zp_checksum].ci_flags &
3300 ZCHECKSUM_FLAG_DEDUP)) {
3301 zp->zp_checksum = spa_dedup_checksum(spa);
3302 zio_pop_transforms(zio);
3303 zio->io_stage = ZIO_STAGE_OPEN;
3304 BP_ZERO(bp);
3305 } else {
3306 zp->zp_dedup = B_FALSE;
3307 BP_SET_DEDUP(bp, B_FALSE);
3309 ASSERT(!BP_GET_DEDUP(bp));
3310 zio->io_pipeline = ZIO_WRITE_PIPELINE;
3311 ddt_exit(ddt);
3312 return (zio);
3315 if (ddp->ddp_phys_birth != 0 || dde->dde_lead_zio[p] != NULL) {
3316 if (ddp->ddp_phys_birth != 0)
3317 ddt_bp_fill(ddp, bp, txg);
3318 if (dde->dde_lead_zio[p] != NULL)
3319 zio_add_child(zio, dde->dde_lead_zio[p]);
3320 else
3321 ddt_phys_addref(ddp);
3322 } else if (zio->io_bp_override) {
3323 ASSERT(bp->blk_birth == txg);
3324 ASSERT(BP_EQUAL(bp, zio->io_bp_override));
3325 ddt_phys_fill(ddp, bp);
3326 ddt_phys_addref(ddp);
3327 } else {
3328 cio = zio_write(zio, spa, txg, bp, zio->io_orig_abd,
3329 zio->io_orig_size, zio->io_orig_size, zp,
3330 zio_ddt_child_write_ready, NULL, NULL,
3331 zio_ddt_child_write_done, dde, zio->io_priority,
3332 ZIO_DDT_CHILD_FLAGS(zio), &zio->io_bookmark);
3334 zio_push_transform(cio, zio->io_abd, zio->io_size, 0, NULL);
3335 dde->dde_lead_zio[p] = cio;
3338 ddt_exit(ddt);
3340 zio_nowait(cio);
3342 return (zio);
3345 ddt_entry_t *freedde; /* for debugging */
3347 static zio_t *
3348 zio_ddt_free(zio_t *zio)
3350 spa_t *spa = zio->io_spa;
3351 blkptr_t *bp = zio->io_bp;
3352 ddt_t *ddt = ddt_select(spa, bp);
3353 ddt_entry_t *dde;
3354 ddt_phys_t *ddp;
3356 ASSERT(BP_GET_DEDUP(bp));
3357 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
3359 ddt_enter(ddt);
3360 freedde = dde = ddt_lookup(ddt, bp, B_TRUE);
3361 if (dde) {
3362 ddp = ddt_phys_select(dde, bp);
3363 if (ddp)
3364 ddt_phys_decref(ddp);
3366 ddt_exit(ddt);
3368 return (zio);
3372 * ==========================================================================
3373 * Allocate and free blocks
3374 * ==========================================================================
3377 static zio_t *
3378 zio_io_to_allocate(spa_t *spa, int allocator)
3380 zio_t *zio;
3382 ASSERT(MUTEX_HELD(&spa->spa_allocs[allocator].spaa_lock));
3384 zio = avl_first(&spa->spa_allocs[allocator].spaa_tree);
3385 if (zio == NULL)
3386 return (NULL);
3388 ASSERT(IO_IS_ALLOCATING(zio));
3391 * Try to place a reservation for this zio. If we're unable to
3392 * reserve then we throttle.
3394 ASSERT3U(zio->io_allocator, ==, allocator);
3395 if (!metaslab_class_throttle_reserve(zio->io_metaslab_class,
3396 zio->io_prop.zp_copies, allocator, zio, 0)) {
3397 return (NULL);
3400 avl_remove(&spa->spa_allocs[allocator].spaa_tree, zio);
3401 ASSERT3U(zio->io_stage, <, ZIO_STAGE_DVA_ALLOCATE);
3403 return (zio);
3406 static zio_t *
3407 zio_dva_throttle(zio_t *zio)
3409 spa_t *spa = zio->io_spa;
3410 zio_t *nio;
3411 metaslab_class_t *mc;
3413 /* locate an appropriate allocation class */
3414 mc = spa_preferred_class(spa, zio->io_size, zio->io_prop.zp_type,
3415 zio->io_prop.zp_level, zio->io_prop.zp_zpl_smallblk);
3417 if (zio->io_priority == ZIO_PRIORITY_SYNC_WRITE ||
3418 !mc->mc_alloc_throttle_enabled ||
3419 zio->io_child_type == ZIO_CHILD_GANG ||
3420 zio->io_flags & ZIO_FLAG_NODATA) {
3421 return (zio);
3424 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3425 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3426 ASSERT3U(zio->io_queued_timestamp, >, 0);
3427 ASSERT(zio->io_stage == ZIO_STAGE_DVA_THROTTLE);
3429 zbookmark_phys_t *bm = &zio->io_bookmark;
3431 * We want to try to use as many allocators as possible to help improve
3432 * performance, but we also want logically adjacent IOs to be physically
3433 * adjacent to improve sequential read performance. We chunk each object
3434 * into 2^20 block regions, and then hash based on the objset, object,
3435 * level, and region to accomplish both of these goals.
3437 int allocator = (uint_t)cityhash4(bm->zb_objset, bm->zb_object,
3438 bm->zb_level, bm->zb_blkid >> 20) % spa->spa_alloc_count;
3439 zio->io_allocator = allocator;
3440 zio->io_metaslab_class = mc;
3441 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3442 avl_add(&spa->spa_allocs[allocator].spaa_tree, zio);
3443 nio = zio_io_to_allocate(spa, allocator);
3444 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3445 return (nio);
3448 static void
3449 zio_allocate_dispatch(spa_t *spa, int allocator)
3451 zio_t *zio;
3453 mutex_enter(&spa->spa_allocs[allocator].spaa_lock);
3454 zio = zio_io_to_allocate(spa, allocator);
3455 mutex_exit(&spa->spa_allocs[allocator].spaa_lock);
3456 if (zio == NULL)
3457 return;
3459 ASSERT3U(zio->io_stage, ==, ZIO_STAGE_DVA_THROTTLE);
3460 ASSERT0(zio->io_error);
3461 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE, B_TRUE);
3464 static zio_t *
3465 zio_dva_allocate(zio_t *zio)
3467 spa_t *spa = zio->io_spa;
3468 metaslab_class_t *mc;
3469 blkptr_t *bp = zio->io_bp;
3470 int error;
3471 int flags = 0;
3473 if (zio->io_gang_leader == NULL) {
3474 ASSERT(zio->io_child_type > ZIO_CHILD_GANG);
3475 zio->io_gang_leader = zio;
3478 ASSERT(BP_IS_HOLE(bp));
3479 ASSERT0(BP_GET_NDVAS(bp));
3480 ASSERT3U(zio->io_prop.zp_copies, >, 0);
3481 ASSERT3U(zio->io_prop.zp_copies, <=, spa_max_replication(spa));
3482 ASSERT3U(zio->io_size, ==, BP_GET_PSIZE(bp));
3484 flags |= (zio->io_flags & ZIO_FLAG_FASTWRITE) ? METASLAB_FASTWRITE : 0;
3485 if (zio->io_flags & ZIO_FLAG_NODATA)
3486 flags |= METASLAB_DONT_THROTTLE;
3487 if (zio->io_flags & ZIO_FLAG_GANG_CHILD)
3488 flags |= METASLAB_GANG_CHILD;
3489 if (zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE)
3490 flags |= METASLAB_ASYNC_ALLOC;
3493 * if not already chosen, locate an appropriate allocation class
3495 mc = zio->io_metaslab_class;
3496 if (mc == NULL) {
3497 mc = spa_preferred_class(spa, zio->io_size,
3498 zio->io_prop.zp_type, zio->io_prop.zp_level,
3499 zio->io_prop.zp_zpl_smallblk);
3500 zio->io_metaslab_class = mc;
3504 * Try allocating the block in the usual metaslab class.
3505 * If that's full, allocate it in the normal class.
3506 * If that's full, allocate as a gang block,
3507 * and if all are full, the allocation fails (which shouldn't happen).
3509 * Note that we do not fall back on embedded slog (ZIL) space, to
3510 * preserve unfragmented slog space, which is critical for decent
3511 * sync write performance. If a log allocation fails, we will fall
3512 * back to spa_sync() which is abysmal for performance.
3514 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3515 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3516 &zio->io_alloc_list, zio, zio->io_allocator);
3519 * Fallback to normal class when an alloc class is full
3521 if (error == ENOSPC && mc != spa_normal_class(spa)) {
3523 * If throttling, transfer reservation over to normal class.
3524 * The io_allocator slot can remain the same even though we
3525 * are switching classes.
3527 if (mc->mc_alloc_throttle_enabled &&
3528 (zio->io_flags & ZIO_FLAG_IO_ALLOCATING)) {
3529 metaslab_class_throttle_unreserve(mc,
3530 zio->io_prop.zp_copies, zio->io_allocator, zio);
3531 zio->io_flags &= ~ZIO_FLAG_IO_ALLOCATING;
3533 VERIFY(metaslab_class_throttle_reserve(
3534 spa_normal_class(spa),
3535 zio->io_prop.zp_copies, zio->io_allocator, zio,
3536 flags | METASLAB_MUST_RESERVE));
3538 zio->io_metaslab_class = mc = spa_normal_class(spa);
3539 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3540 zfs_dbgmsg("%s: metaslab allocation failure, "
3541 "trying normal class: zio %px, size %llu, error %d",
3542 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3543 error);
3546 error = metaslab_alloc(spa, mc, zio->io_size, bp,
3547 zio->io_prop.zp_copies, zio->io_txg, NULL, flags,
3548 &zio->io_alloc_list, zio, zio->io_allocator);
3551 if (error == ENOSPC && zio->io_size > SPA_MINBLOCKSIZE) {
3552 if (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC) {
3553 zfs_dbgmsg("%s: metaslab allocation failure, "
3554 "trying ganging: zio %px, size %llu, error %d",
3555 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3556 error);
3558 return (zio_write_gang_block(zio, mc));
3560 if (error != 0) {
3561 if (error != ENOSPC ||
3562 (zfs_flags & ZFS_DEBUG_METASLAB_ALLOC)) {
3563 zfs_dbgmsg("%s: metaslab allocation failure: zio %px, "
3564 "size %llu, error %d",
3565 spa_name(spa), zio, (u_longlong_t)zio->io_size,
3566 error);
3568 zio->io_error = error;
3571 return (zio);
3574 static zio_t *
3575 zio_dva_free(zio_t *zio)
3577 metaslab_free(zio->io_spa, zio->io_bp, zio->io_txg, B_FALSE);
3579 return (zio);
3582 static zio_t *
3583 zio_dva_claim(zio_t *zio)
3585 int error;
3587 error = metaslab_claim(zio->io_spa, zio->io_bp, zio->io_txg);
3588 if (error)
3589 zio->io_error = error;
3591 return (zio);
3595 * Undo an allocation. This is used by zio_done() when an I/O fails
3596 * and we want to give back the block we just allocated.
3597 * This handles both normal blocks and gang blocks.
3599 static void
3600 zio_dva_unallocate(zio_t *zio, zio_gang_node_t *gn, blkptr_t *bp)
3602 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp));
3603 ASSERT(zio->io_bp_override == NULL);
3605 if (!BP_IS_HOLE(bp))
3606 metaslab_free(zio->io_spa, bp, bp->blk_birth, B_TRUE);
3608 if (gn != NULL) {
3609 for (int g = 0; g < SPA_GBH_NBLKPTRS; g++) {
3610 zio_dva_unallocate(zio, gn->gn_child[g],
3611 &gn->gn_gbh->zg_blkptr[g]);
3617 * Try to allocate an intent log block. Return 0 on success, errno on failure.
3620 zio_alloc_zil(spa_t *spa, objset_t *os, uint64_t txg, blkptr_t *new_bp,
3621 uint64_t size, boolean_t *slog)
3623 int error = 1;
3624 zio_alloc_list_t io_alloc_list;
3626 ASSERT(txg > spa_syncing_txg(spa));
3628 metaslab_trace_init(&io_alloc_list);
3631 * Block pointer fields are useful to metaslabs for stats and debugging.
3632 * Fill in the obvious ones before calling into metaslab_alloc().
3634 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3635 BP_SET_PSIZE(new_bp, size);
3636 BP_SET_LEVEL(new_bp, 0);
3639 * When allocating a zil block, we don't have information about
3640 * the final destination of the block except the objset it's part
3641 * of, so we just hash the objset ID to pick the allocator to get
3642 * some parallelism.
3644 int flags = METASLAB_FASTWRITE | METASLAB_ZIL;
3645 int allocator = (uint_t)cityhash4(0, 0, 0,
3646 os->os_dsl_dataset->ds_object) % spa->spa_alloc_count;
3647 error = metaslab_alloc(spa, spa_log_class(spa), size, new_bp, 1,
3648 txg, NULL, flags, &io_alloc_list, NULL, allocator);
3649 *slog = (error == 0);
3650 if (error != 0) {
3651 error = metaslab_alloc(spa, spa_embedded_log_class(spa), size,
3652 new_bp, 1, txg, NULL, flags,
3653 &io_alloc_list, NULL, allocator);
3655 if (error != 0) {
3656 error = metaslab_alloc(spa, spa_normal_class(spa), size,
3657 new_bp, 1, txg, NULL, flags,
3658 &io_alloc_list, NULL, allocator);
3660 metaslab_trace_fini(&io_alloc_list);
3662 if (error == 0) {
3663 BP_SET_LSIZE(new_bp, size);
3664 BP_SET_PSIZE(new_bp, size);
3665 BP_SET_COMPRESS(new_bp, ZIO_COMPRESS_OFF);
3666 BP_SET_CHECKSUM(new_bp,
3667 spa_version(spa) >= SPA_VERSION_SLIM_ZIL
3668 ? ZIO_CHECKSUM_ZILOG2 : ZIO_CHECKSUM_ZILOG);
3669 BP_SET_TYPE(new_bp, DMU_OT_INTENT_LOG);
3670 BP_SET_LEVEL(new_bp, 0);
3671 BP_SET_DEDUP(new_bp, 0);
3672 BP_SET_BYTEORDER(new_bp, ZFS_HOST_BYTEORDER);
3675 * encrypted blocks will require an IV and salt. We generate
3676 * these now since we will not be rewriting the bp at
3677 * rewrite time.
3679 if (os->os_encrypted) {
3680 uint8_t iv[ZIO_DATA_IV_LEN];
3681 uint8_t salt[ZIO_DATA_SALT_LEN];
3683 BP_SET_CRYPT(new_bp, B_TRUE);
3684 VERIFY0(spa_crypt_get_salt(spa,
3685 dmu_objset_id(os), salt));
3686 VERIFY0(zio_crypt_generate_iv(iv));
3688 zio_crypt_encode_params_bp(new_bp, salt, iv);
3690 } else {
3691 zfs_dbgmsg("%s: zil block allocation failure: "
3692 "size %llu, error %d", spa_name(spa), (u_longlong_t)size,
3693 error);
3696 return (error);
3700 * ==========================================================================
3701 * Read and write to physical devices
3702 * ==========================================================================
3706 * Issue an I/O to the underlying vdev. Typically the issue pipeline
3707 * stops after this stage and will resume upon I/O completion.
3708 * However, there are instances where the vdev layer may need to
3709 * continue the pipeline when an I/O was not issued. Since the I/O
3710 * that was sent to the vdev layer might be different than the one
3711 * currently active in the pipeline (see vdev_queue_io()), we explicitly
3712 * force the underlying vdev layers to call either zio_execute() or
3713 * zio_interrupt() to ensure that the pipeline continues with the correct I/O.
3715 static zio_t *
3716 zio_vdev_io_start(zio_t *zio)
3718 vdev_t *vd = zio->io_vd;
3719 uint64_t align;
3720 spa_t *spa = zio->io_spa;
3722 zio->io_delay = 0;
3724 ASSERT(zio->io_error == 0);
3725 ASSERT(zio->io_child_error[ZIO_CHILD_VDEV] == 0);
3727 if (vd == NULL) {
3728 if (!(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3729 spa_config_enter(spa, SCL_ZIO, zio, RW_READER);
3732 * The mirror_ops handle multiple DVAs in a single BP.
3734 vdev_mirror_ops.vdev_op_io_start(zio);
3735 return (NULL);
3738 ASSERT3P(zio->io_logical, !=, zio);
3739 if (zio->io_type == ZIO_TYPE_WRITE) {
3740 ASSERT(spa->spa_trust_config);
3743 * Note: the code can handle other kinds of writes,
3744 * but we don't expect them.
3746 if (zio->io_vd->vdev_removing) {
3747 ASSERT(zio->io_flags &
3748 (ZIO_FLAG_PHYSICAL | ZIO_FLAG_SELF_HEAL |
3749 ZIO_FLAG_RESILVER | ZIO_FLAG_INDUCE_DAMAGE));
3753 align = 1ULL << vd->vdev_top->vdev_ashift;
3755 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL) &&
3756 P2PHASE(zio->io_size, align) != 0) {
3757 /* Transform logical writes to be a full physical block size. */
3758 uint64_t asize = P2ROUNDUP(zio->io_size, align);
3759 abd_t *abuf = abd_alloc_sametype(zio->io_abd, asize);
3760 ASSERT(vd == vd->vdev_top);
3761 if (zio->io_type == ZIO_TYPE_WRITE) {
3762 abd_copy(abuf, zio->io_abd, zio->io_size);
3763 abd_zero_off(abuf, zio->io_size, asize - zio->io_size);
3765 zio_push_transform(zio, abuf, asize, asize, zio_subblock);
3769 * If this is not a physical io, make sure that it is properly aligned
3770 * before proceeding.
3772 if (!(zio->io_flags & ZIO_FLAG_PHYSICAL)) {
3773 ASSERT0(P2PHASE(zio->io_offset, align));
3774 ASSERT0(P2PHASE(zio->io_size, align));
3775 } else {
3777 * For physical writes, we allow 512b aligned writes and assume
3778 * the device will perform a read-modify-write as necessary.
3780 ASSERT0(P2PHASE(zio->io_offset, SPA_MINBLOCKSIZE));
3781 ASSERT0(P2PHASE(zio->io_size, SPA_MINBLOCKSIZE));
3784 VERIFY(zio->io_type != ZIO_TYPE_WRITE || spa_writeable(spa));
3787 * If this is a repair I/O, and there's no self-healing involved --
3788 * that is, we're just resilvering what we expect to resilver --
3789 * then don't do the I/O unless zio's txg is actually in vd's DTL.
3790 * This prevents spurious resilvering.
3792 * There are a few ways that we can end up creating these spurious
3793 * resilver i/os:
3795 * 1. A resilver i/o will be issued if any DVA in the BP has a
3796 * dirty DTL. The mirror code will issue resilver writes to
3797 * each DVA, including the one(s) that are not on vdevs with dirty
3798 * DTLs.
3800 * 2. With nested replication, which happens when we have a
3801 * "replacing" or "spare" vdev that's a child of a mirror or raidz.
3802 * For example, given mirror(replacing(A+B), C), it's likely that
3803 * only A is out of date (it's the new device). In this case, we'll
3804 * read from C, then use the data to resilver A+B -- but we don't
3805 * actually want to resilver B, just A. The top-level mirror has no
3806 * way to know this, so instead we just discard unnecessary repairs
3807 * as we work our way down the vdev tree.
3809 * 3. ZTEST also creates mirrors of mirrors, mirrors of raidz, etc.
3810 * The same logic applies to any form of nested replication: ditto
3811 * + mirror, RAID-Z + replacing, etc.
3813 * However, indirect vdevs point off to other vdevs which may have
3814 * DTL's, so we never bypass them. The child i/os on concrete vdevs
3815 * will be properly bypassed instead.
3817 * Leaf DTL_PARTIAL can be empty when a legitimate write comes from
3818 * a dRAID spare vdev. For example, when a dRAID spare is first
3819 * used, its spare blocks need to be written to but the leaf vdev's
3820 * of such blocks can have empty DTL_PARTIAL.
3822 * There seemed no clean way to allow such writes while bypassing
3823 * spurious ones. At this point, just avoid all bypassing for dRAID
3824 * for correctness.
3826 if ((zio->io_flags & ZIO_FLAG_IO_REPAIR) &&
3827 !(zio->io_flags & ZIO_FLAG_SELF_HEAL) &&
3828 zio->io_txg != 0 && /* not a delegated i/o */
3829 vd->vdev_ops != &vdev_indirect_ops &&
3830 vd->vdev_top->vdev_ops != &vdev_draid_ops &&
3831 !vdev_dtl_contains(vd, DTL_PARTIAL, zio->io_txg, 1)) {
3832 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
3833 zio_vdev_io_bypass(zio);
3834 return (zio);
3838 * Select the next best leaf I/O to process. Distributed spares are
3839 * excluded since they dispatch the I/O directly to a leaf vdev after
3840 * applying the dRAID mapping.
3842 if (vd->vdev_ops->vdev_op_leaf &&
3843 vd->vdev_ops != &vdev_draid_spare_ops &&
3844 (zio->io_type == ZIO_TYPE_READ ||
3845 zio->io_type == ZIO_TYPE_WRITE ||
3846 zio->io_type == ZIO_TYPE_TRIM)) {
3848 if (zio->io_type == ZIO_TYPE_READ && vdev_cache_read(zio))
3849 return (zio);
3851 if ((zio = vdev_queue_io(zio)) == NULL)
3852 return (NULL);
3854 if (!vdev_accessible(vd, zio)) {
3855 zio->io_error = SET_ERROR(ENXIO);
3856 zio_interrupt(zio);
3857 return (NULL);
3859 zio->io_delay = gethrtime();
3862 vd->vdev_ops->vdev_op_io_start(zio);
3863 return (NULL);
3866 static zio_t *
3867 zio_vdev_io_done(zio_t *zio)
3869 vdev_t *vd = zio->io_vd;
3870 vdev_ops_t *ops = vd ? vd->vdev_ops : &vdev_mirror_ops;
3871 boolean_t unexpected_error = B_FALSE;
3873 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3874 return (NULL);
3877 ASSERT(zio->io_type == ZIO_TYPE_READ ||
3878 zio->io_type == ZIO_TYPE_WRITE || zio->io_type == ZIO_TYPE_TRIM);
3880 if (zio->io_delay)
3881 zio->io_delay = gethrtime() - zio->io_delay;
3883 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
3884 vd->vdev_ops != &vdev_draid_spare_ops) {
3885 vdev_queue_io_done(zio);
3887 if (zio->io_type == ZIO_TYPE_WRITE)
3888 vdev_cache_write(zio);
3890 if (zio_injection_enabled && zio->io_error == 0)
3891 zio->io_error = zio_handle_device_injections(vd, zio,
3892 EIO, EILSEQ);
3894 if (zio_injection_enabled && zio->io_error == 0)
3895 zio->io_error = zio_handle_label_injection(zio, EIO);
3897 if (zio->io_error && zio->io_type != ZIO_TYPE_TRIM) {
3898 if (!vdev_accessible(vd, zio)) {
3899 zio->io_error = SET_ERROR(ENXIO);
3900 } else {
3901 unexpected_error = B_TRUE;
3906 ops->vdev_op_io_done(zio);
3908 if (unexpected_error)
3909 VERIFY(vdev_probe(vd, zio) == NULL);
3911 return (zio);
3915 * This function is used to change the priority of an existing zio that is
3916 * currently in-flight. This is used by the arc to upgrade priority in the
3917 * event that a demand read is made for a block that is currently queued
3918 * as a scrub or async read IO. Otherwise, the high priority read request
3919 * would end up having to wait for the lower priority IO.
3921 void
3922 zio_change_priority(zio_t *pio, zio_priority_t priority)
3924 zio_t *cio, *cio_next;
3925 zio_link_t *zl = NULL;
3927 ASSERT3U(priority, <, ZIO_PRIORITY_NUM_QUEUEABLE);
3929 if (pio->io_vd != NULL && pio->io_vd->vdev_ops->vdev_op_leaf) {
3930 vdev_queue_change_io_priority(pio, priority);
3931 } else {
3932 pio->io_priority = priority;
3935 mutex_enter(&pio->io_lock);
3936 for (cio = zio_walk_children(pio, &zl); cio != NULL; cio = cio_next) {
3937 cio_next = zio_walk_children(pio, &zl);
3938 zio_change_priority(cio, priority);
3940 mutex_exit(&pio->io_lock);
3944 * For non-raidz ZIOs, we can just copy aside the bad data read from the
3945 * disk, and use that to finish the checksum ereport later.
3947 static void
3948 zio_vsd_default_cksum_finish(zio_cksum_report_t *zcr,
3949 const abd_t *good_buf)
3951 /* no processing needed */
3952 zfs_ereport_finish_checksum(zcr, good_buf, zcr->zcr_cbdata, B_FALSE);
3955 /*ARGSUSED*/
3956 void
3957 zio_vsd_default_cksum_report(zio_t *zio, zio_cksum_report_t *zcr)
3959 void *abd = abd_alloc_sametype(zio->io_abd, zio->io_size);
3961 abd_copy(abd, zio->io_abd, zio->io_size);
3963 zcr->zcr_cbinfo = zio->io_size;
3964 zcr->zcr_cbdata = abd;
3965 zcr->zcr_finish = zio_vsd_default_cksum_finish;
3966 zcr->zcr_free = zio_abd_free;
3969 static zio_t *
3970 zio_vdev_io_assess(zio_t *zio)
3972 vdev_t *vd = zio->io_vd;
3974 if (zio_wait_for_children(zio, ZIO_CHILD_VDEV_BIT, ZIO_WAIT_DONE)) {
3975 return (NULL);
3978 if (vd == NULL && !(zio->io_flags & ZIO_FLAG_CONFIG_WRITER))
3979 spa_config_exit(zio->io_spa, SCL_ZIO, zio);
3981 if (zio->io_vsd != NULL) {
3982 zio->io_vsd_ops->vsd_free(zio);
3983 zio->io_vsd = NULL;
3986 if (zio_injection_enabled && zio->io_error == 0)
3987 zio->io_error = zio_handle_fault_injection(zio, EIO);
3990 * If the I/O failed, determine whether we should attempt to retry it.
3992 * On retry, we cut in line in the issue queue, since we don't want
3993 * compression/checksumming/etc. work to prevent our (cheap) IO reissue.
3995 if (zio->io_error && vd == NULL &&
3996 !(zio->io_flags & (ZIO_FLAG_DONT_RETRY | ZIO_FLAG_IO_RETRY))) {
3997 ASSERT(!(zio->io_flags & ZIO_FLAG_DONT_QUEUE)); /* not a leaf */
3998 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_BYPASS)); /* not a leaf */
3999 zio->io_error = 0;
4000 zio->io_flags |= ZIO_FLAG_IO_RETRY |
4001 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_DONT_AGGREGATE;
4002 zio->io_stage = ZIO_STAGE_VDEV_IO_START >> 1;
4003 zio_taskq_dispatch(zio, ZIO_TASKQ_ISSUE,
4004 zio_requeue_io_start_cut_in_line);
4005 return (NULL);
4009 * If we got an error on a leaf device, convert it to ENXIO
4010 * if the device is not accessible at all.
4012 if (zio->io_error && vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4013 !vdev_accessible(vd, zio))
4014 zio->io_error = SET_ERROR(ENXIO);
4017 * If we can't write to an interior vdev (mirror or RAID-Z),
4018 * set vdev_cant_write so that we stop trying to allocate from it.
4020 if (zio->io_error == ENXIO && zio->io_type == ZIO_TYPE_WRITE &&
4021 vd != NULL && !vd->vdev_ops->vdev_op_leaf) {
4022 vdev_dbgmsg(vd, "zio_vdev_io_assess(zio=%px) setting "
4023 "cant_write=TRUE due to write failure with ENXIO",
4024 zio);
4025 vd->vdev_cant_write = B_TRUE;
4029 * If a cache flush returns ENOTSUP or ENOTTY, we know that no future
4030 * attempts will ever succeed. In this case we set a persistent
4031 * boolean flag so that we don't bother with it in the future.
4033 if ((zio->io_error == ENOTSUP || zio->io_error == ENOTTY) &&
4034 zio->io_type == ZIO_TYPE_IOCTL &&
4035 zio->io_cmd == DKIOCFLUSHWRITECACHE && vd != NULL)
4036 vd->vdev_nowritecache = B_TRUE;
4038 if (zio->io_error)
4039 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4041 if (vd != NULL && vd->vdev_ops->vdev_op_leaf &&
4042 zio->io_physdone != NULL) {
4043 ASSERT(!(zio->io_flags & ZIO_FLAG_DELEGATED));
4044 ASSERT(zio->io_child_type == ZIO_CHILD_VDEV);
4045 zio->io_physdone(zio->io_logical);
4048 return (zio);
4051 void
4052 zio_vdev_io_reissue(zio_t *zio)
4054 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4055 ASSERT(zio->io_error == 0);
4057 zio->io_stage >>= 1;
4060 void
4061 zio_vdev_io_redone(zio_t *zio)
4063 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_DONE);
4065 zio->io_stage >>= 1;
4068 void
4069 zio_vdev_io_bypass(zio_t *zio)
4071 ASSERT(zio->io_stage == ZIO_STAGE_VDEV_IO_START);
4072 ASSERT(zio->io_error == 0);
4074 zio->io_flags |= ZIO_FLAG_IO_BYPASS;
4075 zio->io_stage = ZIO_STAGE_VDEV_IO_ASSESS >> 1;
4079 * ==========================================================================
4080 * Encrypt and store encryption parameters
4081 * ==========================================================================
4086 * This function is used for ZIO_STAGE_ENCRYPT. It is responsible for
4087 * managing the storage of encryption parameters and passing them to the
4088 * lower-level encryption functions.
4090 static zio_t *
4091 zio_encrypt(zio_t *zio)
4093 zio_prop_t *zp = &zio->io_prop;
4094 spa_t *spa = zio->io_spa;
4095 blkptr_t *bp = zio->io_bp;
4096 uint64_t psize = BP_GET_PSIZE(bp);
4097 uint64_t dsobj = zio->io_bookmark.zb_objset;
4098 dmu_object_type_t ot = BP_GET_TYPE(bp);
4099 void *enc_buf = NULL;
4100 abd_t *eabd = NULL;
4101 uint8_t salt[ZIO_DATA_SALT_LEN];
4102 uint8_t iv[ZIO_DATA_IV_LEN];
4103 uint8_t mac[ZIO_DATA_MAC_LEN];
4104 boolean_t no_crypt = B_FALSE;
4106 /* the root zio already encrypted the data */
4107 if (zio->io_child_type == ZIO_CHILD_GANG)
4108 return (zio);
4110 /* only ZIL blocks are re-encrypted on rewrite */
4111 if (!IO_IS_ALLOCATING(zio) && ot != DMU_OT_INTENT_LOG)
4112 return (zio);
4114 if (!(zp->zp_encrypt || BP_IS_ENCRYPTED(bp))) {
4115 BP_SET_CRYPT(bp, B_FALSE);
4116 return (zio);
4119 /* if we are doing raw encryption set the provided encryption params */
4120 if (zio->io_flags & ZIO_FLAG_RAW_ENCRYPT) {
4121 ASSERT0(BP_GET_LEVEL(bp));
4122 BP_SET_CRYPT(bp, B_TRUE);
4123 BP_SET_BYTEORDER(bp, zp->zp_byteorder);
4124 if (ot != DMU_OT_OBJSET)
4125 zio_crypt_encode_mac_bp(bp, zp->zp_mac);
4127 /* dnode blocks must be written out in the provided byteorder */
4128 if (zp->zp_byteorder != ZFS_HOST_BYTEORDER &&
4129 ot == DMU_OT_DNODE) {
4130 void *bswap_buf = zio_buf_alloc(psize);
4131 abd_t *babd = abd_get_from_buf(bswap_buf, psize);
4133 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4134 abd_copy_to_buf(bswap_buf, zio->io_abd, psize);
4135 dmu_ot_byteswap[DMU_OT_BYTESWAP(ot)].ob_func(bswap_buf,
4136 psize);
4138 abd_take_ownership_of_buf(babd, B_TRUE);
4139 zio_push_transform(zio, babd, psize, psize, NULL);
4142 if (DMU_OT_IS_ENCRYPTED(ot))
4143 zio_crypt_encode_params_bp(bp, zp->zp_salt, zp->zp_iv);
4144 return (zio);
4147 /* indirect blocks only maintain a cksum of the lower level MACs */
4148 if (BP_GET_LEVEL(bp) > 0) {
4149 BP_SET_CRYPT(bp, B_TRUE);
4150 VERIFY0(zio_crypt_do_indirect_mac_checksum_abd(B_TRUE,
4151 zio->io_orig_abd, BP_GET_LSIZE(bp), BP_SHOULD_BYTESWAP(bp),
4152 mac));
4153 zio_crypt_encode_mac_bp(bp, mac);
4154 return (zio);
4158 * Objset blocks are a special case since they have 2 256-bit MACs
4159 * embedded within them.
4161 if (ot == DMU_OT_OBJSET) {
4162 ASSERT0(DMU_OT_IS_ENCRYPTED(ot));
4163 ASSERT3U(BP_GET_COMPRESS(bp), ==, ZIO_COMPRESS_OFF);
4164 BP_SET_CRYPT(bp, B_TRUE);
4165 VERIFY0(spa_do_crypt_objset_mac_abd(B_TRUE, spa, dsobj,
4166 zio->io_abd, psize, BP_SHOULD_BYTESWAP(bp)));
4167 return (zio);
4170 /* unencrypted object types are only authenticated with a MAC */
4171 if (!DMU_OT_IS_ENCRYPTED(ot)) {
4172 BP_SET_CRYPT(bp, B_TRUE);
4173 VERIFY0(spa_do_crypt_mac_abd(B_TRUE, spa, dsobj,
4174 zio->io_abd, psize, mac));
4175 zio_crypt_encode_mac_bp(bp, mac);
4176 return (zio);
4180 * Later passes of sync-to-convergence may decide to rewrite data
4181 * in place to avoid more disk reallocations. This presents a problem
4182 * for encryption because this constitutes rewriting the new data with
4183 * the same encryption key and IV. However, this only applies to blocks
4184 * in the MOS (particularly the spacemaps) and we do not encrypt the
4185 * MOS. We assert that the zio is allocating or an intent log write
4186 * to enforce this.
4188 ASSERT(IO_IS_ALLOCATING(zio) || ot == DMU_OT_INTENT_LOG);
4189 ASSERT(BP_GET_LEVEL(bp) == 0 || ot == DMU_OT_INTENT_LOG);
4190 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_ENCRYPTION));
4191 ASSERT3U(psize, !=, 0);
4193 enc_buf = zio_buf_alloc(psize);
4194 eabd = abd_get_from_buf(enc_buf, psize);
4195 abd_take_ownership_of_buf(eabd, B_TRUE);
4198 * For an explanation of what encryption parameters are stored
4199 * where, see the block comment in zio_crypt.c.
4201 if (ot == DMU_OT_INTENT_LOG) {
4202 zio_crypt_decode_params_bp(bp, salt, iv);
4203 } else {
4204 BP_SET_CRYPT(bp, B_TRUE);
4207 /* Perform the encryption. This should not fail */
4208 VERIFY0(spa_do_crypt_abd(B_TRUE, spa, &zio->io_bookmark,
4209 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
4210 salt, iv, mac, psize, zio->io_abd, eabd, &no_crypt));
4212 /* encode encryption metadata into the bp */
4213 if (ot == DMU_OT_INTENT_LOG) {
4215 * ZIL blocks store the MAC in the embedded checksum, so the
4216 * transform must always be applied.
4218 zio_crypt_encode_mac_zil(enc_buf, mac);
4219 zio_push_transform(zio, eabd, psize, psize, NULL);
4220 } else {
4221 BP_SET_CRYPT(bp, B_TRUE);
4222 zio_crypt_encode_params_bp(bp, salt, iv);
4223 zio_crypt_encode_mac_bp(bp, mac);
4225 if (no_crypt) {
4226 ASSERT3U(ot, ==, DMU_OT_DNODE);
4227 abd_free(eabd);
4228 } else {
4229 zio_push_transform(zio, eabd, psize, psize, NULL);
4233 return (zio);
4237 * ==========================================================================
4238 * Generate and verify checksums
4239 * ==========================================================================
4241 static zio_t *
4242 zio_checksum_generate(zio_t *zio)
4244 blkptr_t *bp = zio->io_bp;
4245 enum zio_checksum checksum;
4247 if (bp == NULL) {
4249 * This is zio_write_phys().
4250 * We're either generating a label checksum, or none at all.
4252 checksum = zio->io_prop.zp_checksum;
4254 if (checksum == ZIO_CHECKSUM_OFF)
4255 return (zio);
4257 ASSERT(checksum == ZIO_CHECKSUM_LABEL);
4258 } else {
4259 if (BP_IS_GANG(bp) && zio->io_child_type == ZIO_CHILD_GANG) {
4260 ASSERT(!IO_IS_ALLOCATING(zio));
4261 checksum = ZIO_CHECKSUM_GANG_HEADER;
4262 } else {
4263 checksum = BP_GET_CHECKSUM(bp);
4267 zio_checksum_compute(zio, checksum, zio->io_abd, zio->io_size);
4269 return (zio);
4272 static zio_t *
4273 zio_checksum_verify(zio_t *zio)
4275 zio_bad_cksum_t info;
4276 blkptr_t *bp = zio->io_bp;
4277 int error;
4279 ASSERT(zio->io_vd != NULL);
4281 if (bp == NULL) {
4283 * This is zio_read_phys().
4284 * We're either verifying a label checksum, or nothing at all.
4286 if (zio->io_prop.zp_checksum == ZIO_CHECKSUM_OFF)
4287 return (zio);
4289 ASSERT3U(zio->io_prop.zp_checksum, ==, ZIO_CHECKSUM_LABEL);
4292 if ((error = zio_checksum_error(zio, &info)) != 0) {
4293 zio->io_error = error;
4294 if (error == ECKSUM &&
4295 !(zio->io_flags & ZIO_FLAG_SPECULATIVE)) {
4296 (void) zfs_ereport_start_checksum(zio->io_spa,
4297 zio->io_vd, &zio->io_bookmark, zio,
4298 zio->io_offset, zio->io_size, &info);
4299 mutex_enter(&zio->io_vd->vdev_stat_lock);
4300 zio->io_vd->vdev_stat.vs_checksum_errors++;
4301 mutex_exit(&zio->io_vd->vdev_stat_lock);
4305 return (zio);
4309 * Called by RAID-Z to ensure we don't compute the checksum twice.
4311 void
4312 zio_checksum_verified(zio_t *zio)
4314 zio->io_pipeline &= ~ZIO_STAGE_CHECKSUM_VERIFY;
4318 * ==========================================================================
4319 * Error rank. Error are ranked in the order 0, ENXIO, ECKSUM, EIO, other.
4320 * An error of 0 indicates success. ENXIO indicates whole-device failure,
4321 * which may be transient (e.g. unplugged) or permanent. ECKSUM and EIO
4322 * indicate errors that are specific to one I/O, and most likely permanent.
4323 * Any other error is presumed to be worse because we weren't expecting it.
4324 * ==========================================================================
4327 zio_worst_error(int e1, int e2)
4329 static int zio_error_rank[] = { 0, ENXIO, ECKSUM, EIO };
4330 int r1, r2;
4332 for (r1 = 0; r1 < sizeof (zio_error_rank) / sizeof (int); r1++)
4333 if (e1 == zio_error_rank[r1])
4334 break;
4336 for (r2 = 0; r2 < sizeof (zio_error_rank) / sizeof (int); r2++)
4337 if (e2 == zio_error_rank[r2])
4338 break;
4340 return (r1 > r2 ? e1 : e2);
4344 * ==========================================================================
4345 * I/O completion
4346 * ==========================================================================
4348 static zio_t *
4349 zio_ready(zio_t *zio)
4351 blkptr_t *bp = zio->io_bp;
4352 zio_t *pio, *pio_next;
4353 zio_link_t *zl = NULL;
4355 if (zio_wait_for_children(zio, ZIO_CHILD_GANG_BIT | ZIO_CHILD_DDT_BIT,
4356 ZIO_WAIT_READY)) {
4357 return (NULL);
4360 if (zio->io_ready) {
4361 ASSERT(IO_IS_ALLOCATING(zio));
4362 ASSERT(bp->blk_birth == zio->io_txg || BP_IS_HOLE(bp) ||
4363 (zio->io_flags & ZIO_FLAG_NOPWRITE));
4364 ASSERT(zio->io_children[ZIO_CHILD_GANG][ZIO_WAIT_READY] == 0);
4366 zio->io_ready(zio);
4369 if (bp != NULL && bp != &zio->io_bp_copy)
4370 zio->io_bp_copy = *bp;
4372 if (zio->io_error != 0) {
4373 zio->io_pipeline = ZIO_INTERLOCK_PIPELINE;
4375 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4376 ASSERT(IO_IS_ALLOCATING(zio));
4377 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4378 ASSERT(zio->io_metaslab_class != NULL);
4381 * We were unable to allocate anything, unreserve and
4382 * issue the next I/O to allocate.
4384 metaslab_class_throttle_unreserve(
4385 zio->io_metaslab_class, zio->io_prop.zp_copies,
4386 zio->io_allocator, zio);
4387 zio_allocate_dispatch(zio->io_spa, zio->io_allocator);
4391 mutex_enter(&zio->io_lock);
4392 zio->io_state[ZIO_WAIT_READY] = 1;
4393 pio = zio_walk_parents(zio, &zl);
4394 mutex_exit(&zio->io_lock);
4397 * As we notify zio's parents, new parents could be added.
4398 * New parents go to the head of zio's io_parent_list, however,
4399 * so we will (correctly) not notify them. The remainder of zio's
4400 * io_parent_list, from 'pio_next' onward, cannot change because
4401 * all parents must wait for us to be done before they can be done.
4403 for (; pio != NULL; pio = pio_next) {
4404 pio_next = zio_walk_parents(zio, &zl);
4405 zio_notify_parent(pio, zio, ZIO_WAIT_READY, NULL);
4408 if (zio->io_flags & ZIO_FLAG_NODATA) {
4409 if (BP_IS_GANG(bp)) {
4410 zio->io_flags &= ~ZIO_FLAG_NODATA;
4411 } else {
4412 ASSERT((uintptr_t)zio->io_abd < SPA_MAXBLOCKSIZE);
4413 zio->io_pipeline &= ~ZIO_VDEV_IO_STAGES;
4417 if (zio_injection_enabled &&
4418 zio->io_spa->spa_syncing_txg == zio->io_txg)
4419 zio_handle_ignored_writes(zio);
4421 return (zio);
4425 * Update the allocation throttle accounting.
4427 static void
4428 zio_dva_throttle_done(zio_t *zio)
4430 zio_t *lio __maybe_unused = zio->io_logical;
4431 zio_t *pio = zio_unique_parent(zio);
4432 vdev_t *vd = zio->io_vd;
4433 int flags = METASLAB_ASYNC_ALLOC;
4435 ASSERT3P(zio->io_bp, !=, NULL);
4436 ASSERT3U(zio->io_type, ==, ZIO_TYPE_WRITE);
4437 ASSERT3U(zio->io_priority, ==, ZIO_PRIORITY_ASYNC_WRITE);
4438 ASSERT3U(zio->io_child_type, ==, ZIO_CHILD_VDEV);
4439 ASSERT(vd != NULL);
4440 ASSERT3P(vd, ==, vd->vdev_top);
4441 ASSERT(zio_injection_enabled || !(zio->io_flags & ZIO_FLAG_IO_RETRY));
4442 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4443 ASSERT(zio->io_flags & ZIO_FLAG_IO_ALLOCATING);
4444 ASSERT(!(lio->io_flags & ZIO_FLAG_IO_REWRITE));
4445 ASSERT(!(lio->io_orig_flags & ZIO_FLAG_NODATA));
4448 * Parents of gang children can have two flavors -- ones that
4449 * allocated the gang header (will have ZIO_FLAG_IO_REWRITE set)
4450 * and ones that allocated the constituent blocks. The allocation
4451 * throttle needs to know the allocating parent zio so we must find
4452 * it here.
4454 if (pio->io_child_type == ZIO_CHILD_GANG) {
4456 * If our parent is a rewrite gang child then our grandparent
4457 * would have been the one that performed the allocation.
4459 if (pio->io_flags & ZIO_FLAG_IO_REWRITE)
4460 pio = zio_unique_parent(pio);
4461 flags |= METASLAB_GANG_CHILD;
4464 ASSERT(IO_IS_ALLOCATING(pio));
4465 ASSERT3P(zio, !=, zio->io_logical);
4466 ASSERT(zio->io_logical != NULL);
4467 ASSERT(!(zio->io_flags & ZIO_FLAG_IO_REPAIR));
4468 ASSERT0(zio->io_flags & ZIO_FLAG_NOPWRITE);
4469 ASSERT(zio->io_metaslab_class != NULL);
4471 mutex_enter(&pio->io_lock);
4472 metaslab_group_alloc_decrement(zio->io_spa, vd->vdev_id, pio, flags,
4473 pio->io_allocator, B_TRUE);
4474 mutex_exit(&pio->io_lock);
4476 metaslab_class_throttle_unreserve(zio->io_metaslab_class, 1,
4477 pio->io_allocator, pio);
4480 * Call into the pipeline to see if there is more work that
4481 * needs to be done. If there is work to be done it will be
4482 * dispatched to another taskq thread.
4484 zio_allocate_dispatch(zio->io_spa, pio->io_allocator);
4487 static zio_t *
4488 zio_done(zio_t *zio)
4491 * Always attempt to keep stack usage minimal here since
4492 * we can be called recursively up to 19 levels deep.
4494 const uint64_t psize = zio->io_size;
4495 zio_t *pio, *pio_next;
4496 zio_link_t *zl = NULL;
4499 * If our children haven't all completed,
4500 * wait for them and then repeat this pipeline stage.
4502 if (zio_wait_for_children(zio, ZIO_CHILD_ALL_BITS, ZIO_WAIT_DONE)) {
4503 return (NULL);
4507 * If the allocation throttle is enabled, then update the accounting.
4508 * We only track child I/Os that are part of an allocating async
4509 * write. We must do this since the allocation is performed
4510 * by the logical I/O but the actual write is done by child I/Os.
4512 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING &&
4513 zio->io_child_type == ZIO_CHILD_VDEV) {
4514 ASSERT(zio->io_metaslab_class != NULL);
4515 ASSERT(zio->io_metaslab_class->mc_alloc_throttle_enabled);
4516 zio_dva_throttle_done(zio);
4520 * If the allocation throttle is enabled, verify that
4521 * we have decremented the refcounts for every I/O that was throttled.
4523 if (zio->io_flags & ZIO_FLAG_IO_ALLOCATING) {
4524 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
4525 ASSERT(zio->io_priority == ZIO_PRIORITY_ASYNC_WRITE);
4526 ASSERT(zio->io_bp != NULL);
4528 metaslab_group_alloc_verify(zio->io_spa, zio->io_bp, zio,
4529 zio->io_allocator);
4530 VERIFY(zfs_refcount_not_held(&zio->io_metaslab_class->
4531 mc_allocator[zio->io_allocator].mca_alloc_slots, zio));
4535 for (int c = 0; c < ZIO_CHILD_TYPES; c++)
4536 for (int w = 0; w < ZIO_WAIT_TYPES; w++)
4537 ASSERT(zio->io_children[c][w] == 0);
4539 if (zio->io_bp != NULL && !BP_IS_EMBEDDED(zio->io_bp)) {
4540 ASSERT(zio->io_bp->blk_pad[0] == 0);
4541 ASSERT(zio->io_bp->blk_pad[1] == 0);
4542 ASSERT(bcmp(zio->io_bp, &zio->io_bp_copy,
4543 sizeof (blkptr_t)) == 0 ||
4544 (zio->io_bp == zio_unique_parent(zio)->io_bp));
4545 if (zio->io_type == ZIO_TYPE_WRITE && !BP_IS_HOLE(zio->io_bp) &&
4546 zio->io_bp_override == NULL &&
4547 !(zio->io_flags & ZIO_FLAG_IO_REPAIR)) {
4548 ASSERT3U(zio->io_prop.zp_copies, <=,
4549 BP_GET_NDVAS(zio->io_bp));
4550 ASSERT(BP_COUNT_GANG(zio->io_bp) == 0 ||
4551 (BP_COUNT_GANG(zio->io_bp) ==
4552 BP_GET_NDVAS(zio->io_bp)));
4554 if (zio->io_flags & ZIO_FLAG_NOPWRITE)
4555 VERIFY(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4559 * If there were child vdev/gang/ddt errors, they apply to us now.
4561 zio_inherit_child_errors(zio, ZIO_CHILD_VDEV);
4562 zio_inherit_child_errors(zio, ZIO_CHILD_GANG);
4563 zio_inherit_child_errors(zio, ZIO_CHILD_DDT);
4566 * If the I/O on the transformed data was successful, generate any
4567 * checksum reports now while we still have the transformed data.
4569 if (zio->io_error == 0) {
4570 while (zio->io_cksum_report != NULL) {
4571 zio_cksum_report_t *zcr = zio->io_cksum_report;
4572 uint64_t align = zcr->zcr_align;
4573 uint64_t asize = P2ROUNDUP(psize, align);
4574 abd_t *adata = zio->io_abd;
4576 if (adata != NULL && asize != psize) {
4577 adata = abd_alloc(asize, B_TRUE);
4578 abd_copy(adata, zio->io_abd, psize);
4579 abd_zero_off(adata, psize, asize - psize);
4582 zio->io_cksum_report = zcr->zcr_next;
4583 zcr->zcr_next = NULL;
4584 zcr->zcr_finish(zcr, adata);
4585 zfs_ereport_free_checksum(zcr);
4587 if (adata != NULL && asize != psize)
4588 abd_free(adata);
4592 zio_pop_transforms(zio); /* note: may set zio->io_error */
4594 vdev_stat_update(zio, psize);
4597 * If this I/O is attached to a particular vdev is slow, exceeding
4598 * 30 seconds to complete, post an error described the I/O delay.
4599 * We ignore these errors if the device is currently unavailable.
4601 if (zio->io_delay >= MSEC2NSEC(zio_slow_io_ms)) {
4602 if (zio->io_vd != NULL && !vdev_is_dead(zio->io_vd)) {
4604 * We want to only increment our slow IO counters if
4605 * the IO is valid (i.e. not if the drive is removed).
4607 * zfs_ereport_post() will also do these checks, but
4608 * it can also ratelimit and have other failures, so we
4609 * need to increment the slow_io counters independent
4610 * of it.
4612 if (zfs_ereport_is_valid(FM_EREPORT_ZFS_DELAY,
4613 zio->io_spa, zio->io_vd, zio)) {
4614 mutex_enter(&zio->io_vd->vdev_stat_lock);
4615 zio->io_vd->vdev_stat.vs_slow_ios++;
4616 mutex_exit(&zio->io_vd->vdev_stat_lock);
4618 (void) zfs_ereport_post(FM_EREPORT_ZFS_DELAY,
4619 zio->io_spa, zio->io_vd, &zio->io_bookmark,
4620 zio, 0);
4625 if (zio->io_error) {
4627 * If this I/O is attached to a particular vdev,
4628 * generate an error message describing the I/O failure
4629 * at the block level. We ignore these errors if the
4630 * device is currently unavailable.
4632 if (zio->io_error != ECKSUM && zio->io_vd != NULL &&
4633 !vdev_is_dead(zio->io_vd)) {
4634 int ret = zfs_ereport_post(FM_EREPORT_ZFS_IO,
4635 zio->io_spa, zio->io_vd, &zio->io_bookmark, zio, 0);
4636 if (ret != EALREADY) {
4637 mutex_enter(&zio->io_vd->vdev_stat_lock);
4638 if (zio->io_type == ZIO_TYPE_READ)
4639 zio->io_vd->vdev_stat.vs_read_errors++;
4640 else if (zio->io_type == ZIO_TYPE_WRITE)
4641 zio->io_vd->vdev_stat.vs_write_errors++;
4642 mutex_exit(&zio->io_vd->vdev_stat_lock);
4646 if ((zio->io_error == EIO || !(zio->io_flags &
4647 (ZIO_FLAG_SPECULATIVE | ZIO_FLAG_DONT_PROPAGATE))) &&
4648 zio == zio->io_logical) {
4650 * For logical I/O requests, tell the SPA to log the
4651 * error and generate a logical data ereport.
4653 spa_log_error(zio->io_spa, &zio->io_bookmark);
4654 (void) zfs_ereport_post(FM_EREPORT_ZFS_DATA,
4655 zio->io_spa, NULL, &zio->io_bookmark, zio, 0);
4659 if (zio->io_error && zio == zio->io_logical) {
4661 * Determine whether zio should be reexecuted. This will
4662 * propagate all the way to the root via zio_notify_parent().
4664 ASSERT(zio->io_vd == NULL && zio->io_bp != NULL);
4665 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4667 if (IO_IS_ALLOCATING(zio) &&
4668 !(zio->io_flags & ZIO_FLAG_CANFAIL)) {
4669 if (zio->io_error != ENOSPC)
4670 zio->io_reexecute |= ZIO_REEXECUTE_NOW;
4671 else
4672 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4675 if ((zio->io_type == ZIO_TYPE_READ ||
4676 zio->io_type == ZIO_TYPE_FREE) &&
4677 !(zio->io_flags & ZIO_FLAG_SCAN_THREAD) &&
4678 zio->io_error == ENXIO &&
4679 spa_load_state(zio->io_spa) == SPA_LOAD_NONE &&
4680 spa_get_failmode(zio->io_spa) != ZIO_FAILURE_MODE_CONTINUE)
4681 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4683 if (!(zio->io_flags & ZIO_FLAG_CANFAIL) && !zio->io_reexecute)
4684 zio->io_reexecute |= ZIO_REEXECUTE_SUSPEND;
4687 * Here is a possibly good place to attempt to do
4688 * either combinatorial reconstruction or error correction
4689 * based on checksums. It also might be a good place
4690 * to send out preliminary ereports before we suspend
4691 * processing.
4696 * If there were logical child errors, they apply to us now.
4697 * We defer this until now to avoid conflating logical child
4698 * errors with errors that happened to the zio itself when
4699 * updating vdev stats and reporting FMA events above.
4701 zio_inherit_child_errors(zio, ZIO_CHILD_LOGICAL);
4703 if ((zio->io_error || zio->io_reexecute) &&
4704 IO_IS_ALLOCATING(zio) && zio->io_gang_leader == zio &&
4705 !(zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)))
4706 zio_dva_unallocate(zio, zio->io_gang_tree, zio->io_bp);
4708 zio_gang_tree_free(&zio->io_gang_tree);
4711 * Godfather I/Os should never suspend.
4713 if ((zio->io_flags & ZIO_FLAG_GODFATHER) &&
4714 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND))
4715 zio->io_reexecute &= ~ZIO_REEXECUTE_SUSPEND;
4717 if (zio->io_reexecute) {
4719 * This is a logical I/O that wants to reexecute.
4721 * Reexecute is top-down. When an i/o fails, if it's not
4722 * the root, it simply notifies its parent and sticks around.
4723 * The parent, seeing that it still has children in zio_done(),
4724 * does the same. This percolates all the way up to the root.
4725 * The root i/o will reexecute or suspend the entire tree.
4727 * This approach ensures that zio_reexecute() honors
4728 * all the original i/o dependency relationships, e.g.
4729 * parents not executing until children are ready.
4731 ASSERT(zio->io_child_type == ZIO_CHILD_LOGICAL);
4733 zio->io_gang_leader = NULL;
4735 mutex_enter(&zio->io_lock);
4736 zio->io_state[ZIO_WAIT_DONE] = 1;
4737 mutex_exit(&zio->io_lock);
4740 * "The Godfather" I/O monitors its children but is
4741 * not a true parent to them. It will track them through
4742 * the pipeline but severs its ties whenever they get into
4743 * trouble (e.g. suspended). This allows "The Godfather"
4744 * I/O to return status without blocking.
4746 zl = NULL;
4747 for (pio = zio_walk_parents(zio, &zl); pio != NULL;
4748 pio = pio_next) {
4749 zio_link_t *remove_zl = zl;
4750 pio_next = zio_walk_parents(zio, &zl);
4752 if ((pio->io_flags & ZIO_FLAG_GODFATHER) &&
4753 (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND)) {
4754 zio_remove_child(pio, zio, remove_zl);
4756 * This is a rare code path, so we don't
4757 * bother with "next_to_execute".
4759 zio_notify_parent(pio, zio, ZIO_WAIT_DONE,
4760 NULL);
4764 if ((pio = zio_unique_parent(zio)) != NULL) {
4766 * We're not a root i/o, so there's nothing to do
4767 * but notify our parent. Don't propagate errors
4768 * upward since we haven't permanently failed yet.
4770 ASSERT(!(zio->io_flags & ZIO_FLAG_GODFATHER));
4771 zio->io_flags |= ZIO_FLAG_DONT_PROPAGATE;
4773 * This is a rare code path, so we don't bother with
4774 * "next_to_execute".
4776 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, NULL);
4777 } else if (zio->io_reexecute & ZIO_REEXECUTE_SUSPEND) {
4779 * We'd fail again if we reexecuted now, so suspend
4780 * until conditions improve (e.g. device comes online).
4782 zio_suspend(zio->io_spa, zio, ZIO_SUSPEND_IOERR);
4783 } else {
4785 * Reexecution is potentially a huge amount of work.
4786 * Hand it off to the otherwise-unused claim taskq.
4788 ASSERT(taskq_empty_ent(&zio->io_tqent));
4789 spa_taskq_dispatch_ent(zio->io_spa,
4790 ZIO_TYPE_CLAIM, ZIO_TASKQ_ISSUE,
4791 zio_reexecute, zio, 0, &zio->io_tqent);
4793 return (NULL);
4796 ASSERT(zio->io_child_count == 0);
4797 ASSERT(zio->io_reexecute == 0);
4798 ASSERT(zio->io_error == 0 || (zio->io_flags & ZIO_FLAG_CANFAIL));
4801 * Report any checksum errors, since the I/O is complete.
4803 while (zio->io_cksum_report != NULL) {
4804 zio_cksum_report_t *zcr = zio->io_cksum_report;
4805 zio->io_cksum_report = zcr->zcr_next;
4806 zcr->zcr_next = NULL;
4807 zcr->zcr_finish(zcr, NULL);
4808 zfs_ereport_free_checksum(zcr);
4811 if (zio->io_flags & ZIO_FLAG_FASTWRITE && zio->io_bp &&
4812 !BP_IS_HOLE(zio->io_bp) && !BP_IS_EMBEDDED(zio->io_bp) &&
4813 !(zio->io_flags & ZIO_FLAG_NOPWRITE)) {
4814 metaslab_fastwrite_unmark(zio->io_spa, zio->io_bp);
4818 * It is the responsibility of the done callback to ensure that this
4819 * particular zio is no longer discoverable for adoption, and as
4820 * such, cannot acquire any new parents.
4822 if (zio->io_done)
4823 zio->io_done(zio);
4825 mutex_enter(&zio->io_lock);
4826 zio->io_state[ZIO_WAIT_DONE] = 1;
4827 mutex_exit(&zio->io_lock);
4830 * We are done executing this zio. We may want to execute a parent
4831 * next. See the comment in zio_notify_parent().
4833 zio_t *next_to_execute = NULL;
4834 zl = NULL;
4835 for (pio = zio_walk_parents(zio, &zl); pio != NULL; pio = pio_next) {
4836 zio_link_t *remove_zl = zl;
4837 pio_next = zio_walk_parents(zio, &zl);
4838 zio_remove_child(pio, zio, remove_zl);
4839 zio_notify_parent(pio, zio, ZIO_WAIT_DONE, &next_to_execute);
4842 if (zio->io_waiter != NULL) {
4843 mutex_enter(&zio->io_lock);
4844 zio->io_executor = NULL;
4845 cv_broadcast(&zio->io_cv);
4846 mutex_exit(&zio->io_lock);
4847 } else {
4848 zio_destroy(zio);
4851 return (next_to_execute);
4855 * ==========================================================================
4856 * I/O pipeline definition
4857 * ==========================================================================
4859 static zio_pipe_stage_t *zio_pipeline[] = {
4860 NULL,
4861 zio_read_bp_init,
4862 zio_write_bp_init,
4863 zio_free_bp_init,
4864 zio_issue_async,
4865 zio_write_compress,
4866 zio_encrypt,
4867 zio_checksum_generate,
4868 zio_nop_write,
4869 zio_ddt_read_start,
4870 zio_ddt_read_done,
4871 zio_ddt_write,
4872 zio_ddt_free,
4873 zio_gang_assemble,
4874 zio_gang_issue,
4875 zio_dva_throttle,
4876 zio_dva_allocate,
4877 zio_dva_free,
4878 zio_dva_claim,
4879 zio_ready,
4880 zio_vdev_io_start,
4881 zio_vdev_io_done,
4882 zio_vdev_io_assess,
4883 zio_checksum_verify,
4884 zio_done
4891 * Compare two zbookmark_phys_t's to see which we would reach first in a
4892 * pre-order traversal of the object tree.
4894 * This is simple in every case aside from the meta-dnode object. For all other
4895 * objects, we traverse them in order (object 1 before object 2, and so on).
4896 * However, all of these objects are traversed while traversing object 0, since
4897 * the data it points to is the list of objects. Thus, we need to convert to a
4898 * canonical representation so we can compare meta-dnode bookmarks to
4899 * non-meta-dnode bookmarks.
4901 * We do this by calculating "equivalents" for each field of the zbookmark.
4902 * zbookmarks outside of the meta-dnode use their own object and level, and
4903 * calculate the level 0 equivalent (the first L0 blkid that is contained in the
4904 * blocks this bookmark refers to) by multiplying their blkid by their span
4905 * (the number of L0 blocks contained within one block at their level).
4906 * zbookmarks inside the meta-dnode calculate their object equivalent
4907 * (which is L0equiv * dnodes per data block), use 0 for their L0equiv, and use
4908 * level + 1<<31 (any value larger than a level could ever be) for their level.
4909 * This causes them to always compare before a bookmark in their object
4910 * equivalent, compare appropriately to bookmarks in other objects, and to
4911 * compare appropriately to other bookmarks in the meta-dnode.
4914 zbookmark_compare(uint16_t dbss1, uint8_t ibs1, uint16_t dbss2, uint8_t ibs2,
4915 const zbookmark_phys_t *zb1, const zbookmark_phys_t *zb2)
4918 * These variables represent the "equivalent" values for the zbookmark,
4919 * after converting zbookmarks inside the meta dnode to their
4920 * normal-object equivalents.
4922 uint64_t zb1obj, zb2obj;
4923 uint64_t zb1L0, zb2L0;
4924 uint64_t zb1level, zb2level;
4926 if (zb1->zb_object == zb2->zb_object &&
4927 zb1->zb_level == zb2->zb_level &&
4928 zb1->zb_blkid == zb2->zb_blkid)
4929 return (0);
4931 IMPLY(zb1->zb_level > 0, ibs1 >= SPA_MINBLOCKSHIFT);
4932 IMPLY(zb2->zb_level > 0, ibs2 >= SPA_MINBLOCKSHIFT);
4935 * BP_SPANB calculates the span in blocks.
4937 zb1L0 = (zb1->zb_blkid) * BP_SPANB(ibs1, zb1->zb_level);
4938 zb2L0 = (zb2->zb_blkid) * BP_SPANB(ibs2, zb2->zb_level);
4940 if (zb1->zb_object == DMU_META_DNODE_OBJECT) {
4941 zb1obj = zb1L0 * (dbss1 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4942 zb1L0 = 0;
4943 zb1level = zb1->zb_level + COMPARE_META_LEVEL;
4944 } else {
4945 zb1obj = zb1->zb_object;
4946 zb1level = zb1->zb_level;
4949 if (zb2->zb_object == DMU_META_DNODE_OBJECT) {
4950 zb2obj = zb2L0 * (dbss2 << (SPA_MINBLOCKSHIFT - DNODE_SHIFT));
4951 zb2L0 = 0;
4952 zb2level = zb2->zb_level + COMPARE_META_LEVEL;
4953 } else {
4954 zb2obj = zb2->zb_object;
4955 zb2level = zb2->zb_level;
4958 /* Now that we have a canonical representation, do the comparison. */
4959 if (zb1obj != zb2obj)
4960 return (zb1obj < zb2obj ? -1 : 1);
4961 else if (zb1L0 != zb2L0)
4962 return (zb1L0 < zb2L0 ? -1 : 1);
4963 else if (zb1level != zb2level)
4964 return (zb1level > zb2level ? -1 : 1);
4966 * This can (theoretically) happen if the bookmarks have the same object
4967 * and level, but different blkids, if the block sizes are not the same.
4968 * There is presently no way to change the indirect block sizes
4970 return (0);
4974 * This function checks the following: given that last_block is the place that
4975 * our traversal stopped last time, does that guarantee that we've visited
4976 * every node under subtree_root? Therefore, we can't just use the raw output
4977 * of zbookmark_compare. We have to pass in a modified version of
4978 * subtree_root; by incrementing the block id, and then checking whether
4979 * last_block is before or equal to that, we can tell whether or not having
4980 * visited last_block implies that all of subtree_root's children have been
4981 * visited.
4983 boolean_t
4984 zbookmark_subtree_completed(const dnode_phys_t *dnp,
4985 const zbookmark_phys_t *subtree_root, const zbookmark_phys_t *last_block)
4987 zbookmark_phys_t mod_zb = *subtree_root;
4988 mod_zb.zb_blkid++;
4989 ASSERT(last_block->zb_level == 0);
4991 /* The objset_phys_t isn't before anything. */
4992 if (dnp == NULL)
4993 return (B_FALSE);
4996 * We pass in 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT) for the
4997 * data block size in sectors, because that variable is only used if
4998 * the bookmark refers to a block in the meta-dnode. Since we don't
4999 * know without examining it what object it refers to, and there's no
5000 * harm in passing in this value in other cases, we always pass it in.
5002 * We pass in 0 for the indirect block size shift because zb2 must be
5003 * level 0. The indirect block size is only used to calculate the span
5004 * of the bookmark, but since the bookmark must be level 0, the span is
5005 * always 1, so the math works out.
5007 * If you make changes to how the zbookmark_compare code works, be sure
5008 * to make sure that this code still works afterwards.
5010 return (zbookmark_compare(dnp->dn_datablkszsec, dnp->dn_indblkshift,
5011 1ULL << (DNODE_BLOCK_SHIFT - SPA_MINBLOCKSHIFT), 0, &mod_zb,
5012 last_block) <= 0);
5015 EXPORT_SYMBOL(zio_type_name);
5016 EXPORT_SYMBOL(zio_buf_alloc);
5017 EXPORT_SYMBOL(zio_data_buf_alloc);
5018 EXPORT_SYMBOL(zio_buf_free);
5019 EXPORT_SYMBOL(zio_data_buf_free);
5021 /* BEGIN CSTYLED */
5022 ZFS_MODULE_PARAM(zfs_zio, zio_, slow_io_ms, INT, ZMOD_RW,
5023 "Max I/O completion time (milliseconds) before marking it as slow");
5025 ZFS_MODULE_PARAM(zfs_zio, zio_, requeue_io_start_cut_in_line, INT, ZMOD_RW,
5026 "Prioritize requeued I/O");
5028 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_deferred_free, INT, ZMOD_RW,
5029 "Defer frees starting in this pass");
5031 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_dont_compress, INT, ZMOD_RW,
5032 "Don't compress starting in this pass");
5034 ZFS_MODULE_PARAM(zfs, zfs_, sync_pass_rewrite, INT, ZMOD_RW,
5035 "Rewrite new bps starting in this pass");
5037 ZFS_MODULE_PARAM(zfs_zio, zio_, dva_throttle_enabled, INT, ZMOD_RW,
5038 "Throttle block allocations in the ZIO pipeline");
5040 ZFS_MODULE_PARAM(zfs_zio, zio_, deadman_log_all, INT, ZMOD_RW,
5041 "Log all slow ZIOs, not just those with vdevs");
5042 /* END CSTYLED */