4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
24 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
31 #include <sys/zio_checksum.h>
34 #include <zfs_fletcher.h>
39 * In the SPA, everything is checksummed. We support checksum vectors
40 * for three distinct reasons:
42 * 1. Different kinds of data need different levels of protection.
43 * For SPA metadata, we always want a very strong checksum.
44 * For user data, we let users make the trade-off between speed
45 * and checksum strength.
47 * 2. Cryptographic hash and MAC algorithms are an area of active research.
48 * It is likely that in future hash functions will be at least as strong
49 * as current best-of-breed, and may be substantially faster as well.
50 * We want the ability to take advantage of these new hashes as soon as
51 * they become available.
53 * 3. If someone develops hardware that can compute a strong hash quickly,
54 * we want the ability to take advantage of that hardware.
56 * Of course, we don't want a checksum upgrade to invalidate existing
57 * data, so we store the checksum *function* in eight bits of the bp.
58 * This gives us room for up to 256 different checksum functions.
60 * When writing a block, we always checksum it with the latest-and-greatest
61 * checksum function of the appropriate strength. When reading a block,
62 * we compare the expected checksum against the actual checksum, which we
63 * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
67 * To enable the use of less secure hash algorithms with dedup, we
68 * introduce the notion of salted checksums (MACs, really). A salted
69 * checksum is fed both a random 256-bit value (the salt) and the data
70 * to be checksummed. This salt is kept secret (stored on the pool, but
71 * never shown to the user). Thus even if an attacker knew of collision
72 * weaknesses in the hash algorithm, they won't be able to mount a known
73 * plaintext attack on the DDT, since the actual hash value cannot be
74 * known ahead of time. How the salt is used is algorithm-specific
75 * (some might simply prefix it to the data block, others might need to
76 * utilize a full-blown HMAC). On disk the salt is stored in a ZAP
77 * object in the MOS (DMU_POOL_CHECKSUM_SALT).
81 * Some hashing algorithms need to perform a substantial amount of
82 * initialization work (e.g. salted checksums above may need to pre-hash
83 * the salt) before being able to process data. Performing this
84 * redundant work for each block would be wasteful, so we instead allow
85 * a checksum algorithm to do the work once (the first time it's used)
86 * and then keep this pre-initialized context as a template inside the
87 * spa_t (spa_cksum_tmpls). If the zio_checksum_info_t contains
88 * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to
89 * construct and destruct the pre-initialized checksum context. The
90 * pre-initialized context is then reused during each checksum
91 * invocation and passed to the checksum function.
96 abd_checksum_off(abd_t
*abd
, uint64_t size
,
97 const void *ctx_template
, zio_cksum_t
*zcp
)
99 ZIO_SET_CHECKSUM(zcp
, 0, 0, 0, 0);
104 abd_fletcher_2_native(abd_t
*abd
, uint64_t size
,
105 const void *ctx_template
, zio_cksum_t
*zcp
)
108 (void) abd_iterate_func(abd
, 0, size
,
109 fletcher_2_incremental_native
, zcp
);
114 abd_fletcher_2_byteswap(abd_t
*abd
, uint64_t size
,
115 const void *ctx_template
, zio_cksum_t
*zcp
)
118 (void) abd_iterate_func(abd
, 0, size
,
119 fletcher_2_incremental_byteswap
, zcp
);
123 abd_fletcher_4_impl(abd_t
*abd
, uint64_t size
, zio_abd_checksum_data_t
*acdp
)
125 fletcher_4_abd_ops
.acf_init(acdp
);
126 abd_iterate_func(abd
, 0, size
, fletcher_4_abd_ops
.acf_iter
, acdp
);
127 fletcher_4_abd_ops
.acf_fini(acdp
);
132 abd_fletcher_4_native(abd_t
*abd
, uint64_t size
,
133 const void *ctx_template
, zio_cksum_t
*zcp
)
135 fletcher_4_ctx_t ctx
;
137 zio_abd_checksum_data_t acd
= {
138 .acd_byteorder
= ZIO_CHECKSUM_NATIVE
,
143 abd_fletcher_4_impl(abd
, size
, &acd
);
149 abd_fletcher_4_byteswap(abd_t
*abd
, uint64_t size
,
150 const void *ctx_template
, zio_cksum_t
*zcp
)
152 fletcher_4_ctx_t ctx
;
154 zio_abd_checksum_data_t acd
= {
155 .acd_byteorder
= ZIO_CHECKSUM_BYTESWAP
,
160 abd_fletcher_4_impl(abd
, size
, &acd
);
163 zio_checksum_info_t zio_checksum_table
[ZIO_CHECKSUM_FUNCTIONS
] = {
164 {{NULL
, NULL
}, NULL
, NULL
, 0, "inherit"},
165 {{NULL
, NULL
}, NULL
, NULL
, 0, "on"},
166 {{abd_checksum_off
, abd_checksum_off
},
167 NULL
, NULL
, 0, "off"},
168 {{abd_checksum_SHA256
, abd_checksum_SHA256
},
169 NULL
, NULL
, ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_EMBEDDED
,
171 {{abd_checksum_SHA256
, abd_checksum_SHA256
},
172 NULL
, NULL
, ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_EMBEDDED
,
174 {{abd_fletcher_2_native
, abd_fletcher_2_byteswap
},
175 NULL
, NULL
, ZCHECKSUM_FLAG_EMBEDDED
, "zilog"},
176 {{abd_fletcher_2_native
, abd_fletcher_2_byteswap
},
177 NULL
, NULL
, 0, "fletcher2"},
178 {{abd_fletcher_4_native
, abd_fletcher_4_byteswap
},
179 NULL
, NULL
, ZCHECKSUM_FLAG_METADATA
, "fletcher4"},
180 {{abd_checksum_SHA256
, abd_checksum_SHA256
},
181 NULL
, NULL
, ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_DEDUP
|
182 ZCHECKSUM_FLAG_NOPWRITE
, "sha256"},
183 {{abd_fletcher_4_native
, abd_fletcher_4_byteswap
},
184 NULL
, NULL
, ZCHECKSUM_FLAG_EMBEDDED
, "zilog2"},
185 {{abd_checksum_off
, abd_checksum_off
},
186 NULL
, NULL
, 0, "noparity"},
187 {{abd_checksum_SHA512_native
, abd_checksum_SHA512_byteswap
},
188 NULL
, NULL
, ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_DEDUP
|
189 ZCHECKSUM_FLAG_NOPWRITE
, "sha512"},
190 {{abd_checksum_skein_native
, abd_checksum_skein_byteswap
},
191 abd_checksum_skein_tmpl_init
, abd_checksum_skein_tmpl_free
,
192 ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_DEDUP
|
193 ZCHECKSUM_FLAG_SALTED
| ZCHECKSUM_FLAG_NOPWRITE
, "skein"},
194 #if !defined(__FreeBSD__)
195 {{abd_checksum_edonr_native
, abd_checksum_edonr_byteswap
},
196 abd_checksum_edonr_tmpl_init
, abd_checksum_edonr_tmpl_free
,
197 ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_SALTED
|
198 ZCHECKSUM_FLAG_NOPWRITE
, "edonr"},
203 * The flag corresponding to the "verify" in dedup=[checksum,]verify
204 * must be cleared first, so callers should use ZIO_CHECKSUM_MASK.
207 zio_checksum_to_feature(enum zio_checksum cksum
)
209 VERIFY((cksum
& ~ZIO_CHECKSUM_MASK
) == 0);
212 case ZIO_CHECKSUM_SHA512
:
213 return (SPA_FEATURE_SHA512
);
214 case ZIO_CHECKSUM_SKEIN
:
215 return (SPA_FEATURE_SKEIN
);
216 #if !defined(__FreeBSD__)
217 case ZIO_CHECKSUM_EDONR
:
218 return (SPA_FEATURE_EDONR
);
221 return (SPA_FEATURE_NONE
);
226 zio_checksum_select(enum zio_checksum child
, enum zio_checksum parent
)
228 ASSERT(child
< ZIO_CHECKSUM_FUNCTIONS
);
229 ASSERT(parent
< ZIO_CHECKSUM_FUNCTIONS
);
230 ASSERT(parent
!= ZIO_CHECKSUM_INHERIT
&& parent
!= ZIO_CHECKSUM_ON
);
232 if (child
== ZIO_CHECKSUM_INHERIT
)
235 if (child
== ZIO_CHECKSUM_ON
)
236 return (ZIO_CHECKSUM_ON_VALUE
);
242 zio_checksum_dedup_select(spa_t
*spa
, enum zio_checksum child
,
243 enum zio_checksum parent
)
245 ASSERT((child
& ZIO_CHECKSUM_MASK
) < ZIO_CHECKSUM_FUNCTIONS
);
246 ASSERT((parent
& ZIO_CHECKSUM_MASK
) < ZIO_CHECKSUM_FUNCTIONS
);
247 ASSERT(parent
!= ZIO_CHECKSUM_INHERIT
&& parent
!= ZIO_CHECKSUM_ON
);
249 if (child
== ZIO_CHECKSUM_INHERIT
)
252 if (child
== ZIO_CHECKSUM_ON
)
253 return (spa_dedup_checksum(spa
));
255 if (child
== (ZIO_CHECKSUM_ON
| ZIO_CHECKSUM_VERIFY
))
256 return (spa_dedup_checksum(spa
) | ZIO_CHECKSUM_VERIFY
);
258 ASSERT((zio_checksum_table
[child
& ZIO_CHECKSUM_MASK
].ci_flags
&
259 ZCHECKSUM_FLAG_DEDUP
) ||
260 (child
& ZIO_CHECKSUM_VERIFY
) || child
== ZIO_CHECKSUM_OFF
);
266 * Set the external verifier for a gang block based on <vdev, offset, txg>,
267 * a tuple which is guaranteed to be unique for the life of the pool.
270 zio_checksum_gang_verifier(zio_cksum_t
*zcp
, const blkptr_t
*bp
)
272 const dva_t
*dva
= BP_IDENTITY(bp
);
273 uint64_t txg
= BP_PHYSICAL_BIRTH(bp
);
275 ASSERT(BP_IS_GANG(bp
));
277 ZIO_SET_CHECKSUM(zcp
, DVA_GET_VDEV(dva
), DVA_GET_OFFSET(dva
), txg
, 0);
281 * Set the external verifier for a label block based on its offset.
282 * The vdev is implicit, and the txg is unknowable at pool open time --
283 * hence the logic in vdev_uberblock_load() to find the most recent copy.
286 zio_checksum_label_verifier(zio_cksum_t
*zcp
, uint64_t offset
)
288 ZIO_SET_CHECKSUM(zcp
, offset
, 0, 0, 0);
292 * Calls the template init function of a checksum which supports context
293 * templates and installs the template into the spa_t.
296 zio_checksum_template_init(enum zio_checksum checksum
, spa_t
*spa
)
298 zio_checksum_info_t
*ci
= &zio_checksum_table
[checksum
];
300 if (ci
->ci_tmpl_init
== NULL
)
302 if (spa
->spa_cksum_tmpls
[checksum
] != NULL
)
305 VERIFY(ci
->ci_tmpl_free
!= NULL
);
306 mutex_enter(&spa
->spa_cksum_tmpls_lock
);
307 if (spa
->spa_cksum_tmpls
[checksum
] == NULL
) {
308 spa
->spa_cksum_tmpls
[checksum
] =
309 ci
->ci_tmpl_init(&spa
->spa_cksum_salt
);
310 VERIFY(spa
->spa_cksum_tmpls
[checksum
] != NULL
);
312 mutex_exit(&spa
->spa_cksum_tmpls_lock
);
315 /* convenience function to update a checksum to accommodate an encryption MAC */
317 zio_checksum_handle_crypt(zio_cksum_t
*cksum
, zio_cksum_t
*saved
, boolean_t
xor)
320 * Weak checksums do not have their entropy spread evenly
321 * across the bits of the checksum. Therefore, when truncating
322 * a weak checksum we XOR the first 2 words with the last 2 so
323 * that we don't "lose" any entropy unnecessarily.
326 cksum
->zc_word
[0] ^= cksum
->zc_word
[2];
327 cksum
->zc_word
[1] ^= cksum
->zc_word
[3];
330 cksum
->zc_word
[2] = saved
->zc_word
[2];
331 cksum
->zc_word
[3] = saved
->zc_word
[3];
335 * Generate the checksum.
338 zio_checksum_compute(zio_t
*zio
, enum zio_checksum checksum
,
339 abd_t
*abd
, uint64_t size
)
341 static const uint64_t zec_magic
= ZEC_MAGIC
;
342 blkptr_t
*bp
= zio
->io_bp
;
343 uint64_t offset
= zio
->io_offset
;
344 zio_checksum_info_t
*ci
= &zio_checksum_table
[checksum
];
345 zio_cksum_t cksum
, saved
;
346 spa_t
*spa
= zio
->io_spa
;
347 boolean_t insecure
= (ci
->ci_flags
& ZCHECKSUM_FLAG_DEDUP
) == 0;
349 ASSERT((uint_t
)checksum
< ZIO_CHECKSUM_FUNCTIONS
);
350 ASSERT(ci
->ci_func
[0] != NULL
);
352 zio_checksum_template_init(checksum
, spa
);
354 if (ci
->ci_flags
& ZCHECKSUM_FLAG_EMBEDDED
) {
358 bzero(&saved
, sizeof (zio_cksum_t
));
360 if (checksum
== ZIO_CHECKSUM_ZILOG2
) {
362 abd_copy_to_buf(&zilc
, abd
, sizeof (zil_chain_t
));
364 size
= P2ROUNDUP_TYPED(zilc
.zc_nused
, ZIL_MIN_BLKSZ
,
367 eck_offset
= offsetof(zil_chain_t
, zc_eck
);
369 eck_offset
= size
- sizeof (zio_eck_t
);
370 abd_copy_to_buf_off(&eck
, abd
, eck_offset
,
374 if (checksum
== ZIO_CHECKSUM_GANG_HEADER
) {
375 zio_checksum_gang_verifier(&eck
.zec_cksum
, bp
);
376 } else if (checksum
== ZIO_CHECKSUM_LABEL
) {
377 zio_checksum_label_verifier(&eck
.zec_cksum
, offset
);
379 saved
= eck
.zec_cksum
;
380 eck
.zec_cksum
= bp
->blk_cksum
;
383 abd_copy_from_buf_off(abd
, &zec_magic
,
384 eck_offset
+ offsetof(zio_eck_t
, zec_magic
),
386 abd_copy_from_buf_off(abd
, &eck
.zec_cksum
,
387 eck_offset
+ offsetof(zio_eck_t
, zec_cksum
),
388 sizeof (zio_cksum_t
));
390 ci
->ci_func
[0](abd
, size
, spa
->spa_cksum_tmpls
[checksum
],
392 if (bp
!= NULL
&& BP_USES_CRYPT(bp
) &&
393 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)
394 zio_checksum_handle_crypt(&cksum
, &saved
, insecure
);
396 abd_copy_from_buf_off(abd
, &cksum
,
397 eck_offset
+ offsetof(zio_eck_t
, zec_cksum
),
398 sizeof (zio_cksum_t
));
400 saved
= bp
->blk_cksum
;
401 ci
->ci_func
[0](abd
, size
, spa
->spa_cksum_tmpls
[checksum
],
403 if (BP_USES_CRYPT(bp
) && BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)
404 zio_checksum_handle_crypt(&cksum
, &saved
, insecure
);
405 bp
->blk_cksum
= cksum
;
410 zio_checksum_error_impl(spa_t
*spa
, const blkptr_t
*bp
,
411 enum zio_checksum checksum
, abd_t
*abd
, uint64_t size
, uint64_t offset
,
412 zio_bad_cksum_t
*info
)
414 zio_checksum_info_t
*ci
= &zio_checksum_table
[checksum
];
415 zio_cksum_t actual_cksum
, expected_cksum
;
419 if (checksum
>= ZIO_CHECKSUM_FUNCTIONS
|| ci
->ci_func
[0] == NULL
)
420 return (SET_ERROR(EINVAL
));
422 zio_checksum_template_init(checksum
, spa
);
424 if (ci
->ci_flags
& ZCHECKSUM_FLAG_EMBEDDED
) {
425 zio_cksum_t verifier
;
428 if (checksum
== ZIO_CHECKSUM_ZILOG2
) {
432 abd_copy_to_buf(&zilc
, abd
, sizeof (zil_chain_t
));
435 eck_offset
= offsetof(zil_chain_t
, zc_eck
) +
436 offsetof(zio_eck_t
, zec_cksum
);
438 if (eck
.zec_magic
== ZEC_MAGIC
) {
439 nused
= zilc
.zc_nused
;
440 } else if (eck
.zec_magic
== BSWAP_64(ZEC_MAGIC
)) {
441 nused
= BSWAP_64(zilc
.zc_nused
);
443 return (SET_ERROR(ECKSUM
));
447 return (SET_ERROR(ECKSUM
));
450 size
= P2ROUNDUP_TYPED(nused
, ZIL_MIN_BLKSZ
, uint64_t);
452 eck_offset
= size
- sizeof (zio_eck_t
);
453 abd_copy_to_buf_off(&eck
, abd
, eck_offset
,
455 eck_offset
+= offsetof(zio_eck_t
, zec_cksum
);
458 if (checksum
== ZIO_CHECKSUM_GANG_HEADER
)
459 zio_checksum_gang_verifier(&verifier
, bp
);
460 else if (checksum
== ZIO_CHECKSUM_LABEL
)
461 zio_checksum_label_verifier(&verifier
, offset
);
463 verifier
= bp
->blk_cksum
;
465 byteswap
= (eck
.zec_magic
== BSWAP_64(ZEC_MAGIC
));
468 byteswap_uint64_array(&verifier
, sizeof (zio_cksum_t
));
470 expected_cksum
= eck
.zec_cksum
;
472 abd_copy_from_buf_off(abd
, &verifier
, eck_offset
,
473 sizeof (zio_cksum_t
));
475 ci
->ci_func
[byteswap
](abd
, size
,
476 spa
->spa_cksum_tmpls
[checksum
], &actual_cksum
);
478 abd_copy_from_buf_off(abd
, &expected_cksum
, eck_offset
,
479 sizeof (zio_cksum_t
));
482 byteswap_uint64_array(&expected_cksum
,
483 sizeof (zio_cksum_t
));
486 byteswap
= BP_SHOULD_BYTESWAP(bp
);
487 expected_cksum
= bp
->blk_cksum
;
488 ci
->ci_func
[byteswap
](abd
, size
,
489 spa
->spa_cksum_tmpls
[checksum
], &actual_cksum
);
493 * MAC checksums are a special case since half of this checksum will
494 * actually be the encryption MAC. This will be verified by the
495 * decryption process, so we just check the truncated checksum now.
496 * Objset blocks use embedded MACs so we don't truncate the checksum
499 if (bp
!= NULL
&& BP_USES_CRYPT(bp
) &&
500 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
) {
501 if (!(ci
->ci_flags
& ZCHECKSUM_FLAG_DEDUP
)) {
502 actual_cksum
.zc_word
[0] ^= actual_cksum
.zc_word
[2];
503 actual_cksum
.zc_word
[1] ^= actual_cksum
.zc_word
[3];
506 actual_cksum
.zc_word
[2] = 0;
507 actual_cksum
.zc_word
[3] = 0;
508 expected_cksum
.zc_word
[2] = 0;
509 expected_cksum
.zc_word
[3] = 0;
513 info
->zbc_expected
= expected_cksum
;
514 info
->zbc_actual
= actual_cksum
;
515 info
->zbc_checksum_name
= ci
->ci_name
;
516 info
->zbc_byteswapped
= byteswap
;
517 info
->zbc_injected
= 0;
518 info
->zbc_has_cksum
= 1;
521 if (!ZIO_CHECKSUM_EQUAL(actual_cksum
, expected_cksum
))
522 return (SET_ERROR(ECKSUM
));
528 zio_checksum_error(zio_t
*zio
, zio_bad_cksum_t
*info
)
530 blkptr_t
*bp
= zio
->io_bp
;
531 uint_t checksum
= (bp
== NULL
? zio
->io_prop
.zp_checksum
:
532 (BP_IS_GANG(bp
) ? ZIO_CHECKSUM_GANG_HEADER
: BP_GET_CHECKSUM(bp
)));
534 uint64_t size
= (bp
== NULL
? zio
->io_size
:
535 (BP_IS_GANG(bp
) ? SPA_GANGBLOCKSIZE
: BP_GET_PSIZE(bp
)));
536 uint64_t offset
= zio
->io_offset
;
537 abd_t
*data
= zio
->io_abd
;
538 spa_t
*spa
= zio
->io_spa
;
540 error
= zio_checksum_error_impl(spa
, bp
, checksum
, data
, size
,
543 if (zio_injection_enabled
&& error
== 0 && zio
->io_error
== 0) {
544 error
= zio_handle_fault_injection(zio
, ECKSUM
);
546 info
->zbc_injected
= 1;
553 * Called by a spa_t that's about to be deallocated. This steps through
554 * all of the checksum context templates and deallocates any that were
555 * initialized using the algorithm-specific template init function.
558 zio_checksum_templates_free(spa_t
*spa
)
560 for (enum zio_checksum checksum
= 0;
561 checksum
< ZIO_CHECKSUM_FUNCTIONS
; checksum
++) {
562 if (spa
->spa_cksum_tmpls
[checksum
] != NULL
) {
563 zio_checksum_info_t
*ci
= &zio_checksum_table
[checksum
];
565 VERIFY(ci
->ci_tmpl_free
!= NULL
);
566 ci
->ci_tmpl_free(spa
->spa_cksum_tmpls
[checksum
]);
567 spa
->spa_cksum_tmpls
[checksum
] = NULL
;