4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
26 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
27 * Copyright (c) 2023, 2024, Klara Inc.
30 #include <sys/zfs_context.h>
31 #include <sys/spa_impl.h>
32 #include <sys/vdev_disk.h>
33 #include <sys/vdev_impl.h>
34 #include <sys/vdev_trim.h>
36 #include <sys/fs/zfs.h>
38 #include <linux/blkpg.h>
39 #include <linux/msdos_fs.h>
40 #include <linux/vfs_compat.h>
41 #include <linux/blk-cgroup.h>
44 * Linux 6.8.x uses a bdev_handle as an instance/refcount for an underlying
45 * block_device. Since it carries the block_device inside, its convenient to
46 * just use the handle as a proxy.
48 * Linux 6.9.x uses a file for the same purpose.
50 * For pre-6.8, we just emulate this with a cast, since we don't need any of
51 * the other fields inside the handle.
53 #if defined(HAVE_BDEV_OPEN_BY_PATH)
54 typedef struct bdev_handle zfs_bdev_handle_t
;
55 #define BDH_BDEV(bdh) ((bdh)->bdev)
56 #define BDH_IS_ERR(bdh) (IS_ERR(bdh))
57 #define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
58 #define BDH_ERR_PTR(err) (ERR_PTR(err))
59 #elif defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
60 typedef struct file zfs_bdev_handle_t
;
61 #define BDH_BDEV(bdh) (file_bdev(bdh))
62 #define BDH_IS_ERR(bdh) (IS_ERR(bdh))
63 #define BDH_PTR_ERR(bdh) (PTR_ERR(bdh))
64 #define BDH_ERR_PTR(err) (ERR_PTR(err))
66 typedef void zfs_bdev_handle_t
;
67 #define BDH_BDEV(bdh) ((struct block_device *)bdh)
68 #define BDH_IS_ERR(bdh) (IS_ERR(BDH_BDEV(bdh)))
69 #define BDH_PTR_ERR(bdh) (PTR_ERR(BDH_BDEV(bdh)))
70 #define BDH_ERR_PTR(err) (ERR_PTR(err))
73 typedef struct vdev_disk
{
74 zfs_bdev_handle_t
*vd_bdh
;
79 * Maximum number of segments to add to a bio (min 4). If this is higher than
80 * the maximum allowed by the device queue or the kernel itself, it will be
81 * clamped. Setting it to zero will cause the kernel's ideal size to be used.
83 uint_t zfs_vdev_disk_max_segs
= 0;
86 * Unique identifier for the exclusive vdev holder.
88 static void *zfs_vdev_holder
= VDEV_HOLDER
;
91 * Wait up to zfs_vdev_open_timeout_ms milliseconds before determining the
92 * device is missing. The missing path may be transient since the links
93 * can be briefly removed and recreated in response to udev events.
95 static uint_t zfs_vdev_open_timeout_ms
= 1000;
98 * Size of the "reserved" partition, in blocks.
100 #define EFI_MIN_RESV_SIZE (16 * 1024)
103 * BIO request failfast mask.
106 static unsigned int zfs_vdev_failfast_mask
= 1;
109 * Convert SPA mode flags into bdev open mode flags.
111 #ifdef HAVE_BLK_MODE_T
112 typedef blk_mode_t vdev_bdev_mode_t
;
113 #define VDEV_BDEV_MODE_READ BLK_OPEN_READ
114 #define VDEV_BDEV_MODE_WRITE BLK_OPEN_WRITE
115 #define VDEV_BDEV_MODE_EXCL BLK_OPEN_EXCL
116 #define VDEV_BDEV_MODE_MASK (BLK_OPEN_READ|BLK_OPEN_WRITE|BLK_OPEN_EXCL)
118 typedef fmode_t vdev_bdev_mode_t
;
119 #define VDEV_BDEV_MODE_READ FMODE_READ
120 #define VDEV_BDEV_MODE_WRITE FMODE_WRITE
121 #define VDEV_BDEV_MODE_EXCL FMODE_EXCL
122 #define VDEV_BDEV_MODE_MASK (FMODE_READ|FMODE_WRITE|FMODE_EXCL)
125 static vdev_bdev_mode_t
126 vdev_bdev_mode(spa_mode_t smode
)
128 ASSERT3U(smode
, !=, SPA_MODE_UNINIT
);
129 ASSERT0(smode
& ~(SPA_MODE_READ
|SPA_MODE_WRITE
));
131 vdev_bdev_mode_t bmode
= VDEV_BDEV_MODE_EXCL
;
133 if (smode
& SPA_MODE_READ
)
134 bmode
|= VDEV_BDEV_MODE_READ
;
136 if (smode
& SPA_MODE_WRITE
)
137 bmode
|= VDEV_BDEV_MODE_WRITE
;
139 ASSERT(bmode
& VDEV_BDEV_MODE_MASK
);
140 ASSERT0(bmode
& ~VDEV_BDEV_MODE_MASK
);
146 * Returns the usable capacity (in bytes) for the partition or disk.
149 bdev_capacity(struct block_device
*bdev
)
151 #ifdef HAVE_BDEV_NR_BYTES
152 return (bdev_nr_bytes(bdev
));
154 return (i_size_read(bdev
->bd_inode
));
158 #if !defined(HAVE_BDEV_WHOLE)
159 static inline struct block_device
*
160 bdev_whole(struct block_device
*bdev
)
162 return (bdev
->bd_contains
);
166 #if defined(HAVE_BDEVNAME)
167 #define vdev_bdevname(bdev, name) bdevname(bdev, name)
170 vdev_bdevname(struct block_device
*bdev
, char *name
)
172 snprintf(name
, BDEVNAME_SIZE
, "%pg", bdev
);
177 * Returns the maximum expansion capacity of the block device (in bytes).
179 * It is possible to expand a vdev when it has been created as a wholedisk
180 * and the containing block device has increased in capacity. Or when the
181 * partition containing the pool has been manually increased in size.
183 * This function is only responsible for calculating the potential expansion
184 * size so it can be reported by 'zpool list'. The efi_use_whole_disk() is
185 * responsible for verifying the expected partition layout in the wholedisk
186 * case, and updating the partition table if appropriate. Once the partition
187 * size has been increased the additional capacity will be visible using
190 * The returned maximum expansion capacity is always expected to be larger, or
191 * at the very least equal, to its usable capacity to prevent overestimating
192 * the pool expandsize.
195 bdev_max_capacity(struct block_device
*bdev
, uint64_t wholedisk
)
200 if (wholedisk
&& bdev
!= bdev_whole(bdev
)) {
202 * When reporting maximum expansion capacity for a wholedisk
203 * deduct any capacity which is expected to be lost due to
204 * alignment restrictions. Over reporting this value isn't
205 * harmful and would only result in slightly less capacity
206 * than expected post expansion.
207 * The estimated available space may be slightly smaller than
208 * bdev_capacity() for devices where the number of sectors is
209 * not a multiple of the alignment size and the partition layout
210 * is keeping less than PARTITION_END_ALIGNMENT bytes after the
211 * "reserved" EFI partition: in such cases return the device
214 available
= bdev_capacity(bdev_whole(bdev
)) -
215 ((EFI_MIN_RESV_SIZE
+ NEW_START_BLOCK
+
216 PARTITION_END_ALIGNMENT
) << SECTOR_BITS
);
217 psize
= MAX(available
, bdev_capacity(bdev
));
219 psize
= bdev_capacity(bdev
);
226 vdev_disk_error(zio_t
*zio
)
229 * This function can be called in interrupt context, for instance while
230 * handling IRQs coming from a misbehaving disk device; use printk()
231 * which is safe from any context.
233 printk(KERN_WARNING
"zio pool=%s vdev=%s error=%d type=%d "
234 "offset=%llu size=%llu flags=%llu\n", spa_name(zio
->io_spa
),
235 zio
->io_vd
->vdev_path
, zio
->io_error
, zio
->io_type
,
236 (u_longlong_t
)zio
->io_offset
, (u_longlong_t
)zio
->io_size
,
241 vdev_disk_kobj_evt_post(vdev_t
*v
)
243 vdev_disk_t
*vd
= v
->vdev_tsd
;
244 if (vd
&& vd
->vd_bdh
) {
245 spl_signal_kobj_evt(BDH_BDEV(vd
->vd_bdh
));
247 vdev_dbgmsg(v
, "vdev_disk_t is NULL for VDEV:%s\n",
252 static zfs_bdev_handle_t
*
253 vdev_blkdev_get_by_path(const char *path
, spa_mode_t smode
, void *holder
)
255 vdev_bdev_mode_t bmode
= vdev_bdev_mode(smode
);
257 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
258 return (bdev_file_open_by_path(path
, bmode
, holder
, NULL
));
259 #elif defined(HAVE_BDEV_OPEN_BY_PATH)
260 return (bdev_open_by_path(path
, bmode
, holder
, NULL
));
261 #elif defined(HAVE_BLKDEV_GET_BY_PATH_4ARG)
262 return (blkdev_get_by_path(path
, bmode
, holder
, NULL
));
264 return (blkdev_get_by_path(path
, bmode
, holder
));
269 vdev_blkdev_put(zfs_bdev_handle_t
*bdh
, spa_mode_t smode
, void *holder
)
271 #if defined(HAVE_BDEV_RELEASE)
272 return (bdev_release(bdh
));
273 #elif defined(HAVE_BLKDEV_PUT_HOLDER)
274 return (blkdev_put(BDH_BDEV(bdh
), holder
));
275 #elif defined(HAVE_BLKDEV_PUT)
276 return (blkdev_put(BDH_BDEV(bdh
), vdev_bdev_mode(smode
)));
283 vdev_disk_open(vdev_t
*v
, uint64_t *psize
, uint64_t *max_psize
,
284 uint64_t *logical_ashift
, uint64_t *physical_ashift
)
286 zfs_bdev_handle_t
*bdh
;
287 spa_mode_t smode
= spa_mode(v
->vdev_spa
);
288 hrtime_t timeout
= MSEC2NSEC(zfs_vdev_open_timeout_ms
);
291 /* Must have a pathname and it must be absolute. */
292 if (v
->vdev_path
== NULL
|| v
->vdev_path
[0] != '/') {
293 v
->vdev_stat
.vs_aux
= VDEV_AUX_BAD_LABEL
;
294 vdev_dbgmsg(v
, "invalid vdev_path");
295 return (SET_ERROR(EINVAL
));
299 * Reopen the device if it is currently open. When expanding a
300 * partition force re-scanning the partition table if userland
301 * did not take care of this already. We need to do this while closed
302 * in order to get an accurate updated block device size. Then
303 * since udev may need to recreate the device links increase the
304 * open retry timeout before reporting the device as unavailable.
308 char disk_name
[BDEVNAME_SIZE
+ 6] = "/dev/";
309 boolean_t reread_part
= B_FALSE
;
311 rw_enter(&vd
->vd_lock
, RW_WRITER
);
316 struct block_device
*bdev
= BDH_BDEV(bdh
);
317 if (v
->vdev_expanding
&& bdev
!= bdev_whole(bdev
)) {
318 vdev_bdevname(bdev_whole(bdev
), disk_name
+ 5);
320 * If userland has BLKPG_RESIZE_PARTITION,
321 * then it should have updated the partition
322 * table already. We can detect this by
323 * comparing our current physical size
324 * with that of the device. If they are
325 * the same, then we must not have
326 * BLKPG_RESIZE_PARTITION or it failed to
327 * update the partition table online. We
328 * fallback to rescanning the partition
329 * table from the kernel below. However,
330 * if the capacity already reflects the
331 * updated partition, then we skip
332 * rescanning the partition table here.
334 if (v
->vdev_psize
== bdev_capacity(bdev
))
335 reread_part
= B_TRUE
;
338 vdev_blkdev_put(bdh
, smode
, zfs_vdev_holder
);
342 bdh
= vdev_blkdev_get_by_path(disk_name
, smode
,
344 if (!BDH_IS_ERR(bdh
)) {
346 vdev_bdev_reread_part(BDH_BDEV(bdh
));
347 vdev_blkdev_put(bdh
, smode
, zfs_vdev_holder
);
350 zfs_vdev_open_timeout_ms
* 2);
355 vd
= kmem_zalloc(sizeof (vdev_disk_t
), KM_SLEEP
);
357 rw_init(&vd
->vd_lock
, NULL
, RW_DEFAULT
, NULL
);
358 rw_enter(&vd
->vd_lock
, RW_WRITER
);
362 * Devices are always opened by the path provided at configuration
363 * time. This means that if the provided path is a udev by-id path
364 * then drives may be re-cabled without an issue. If the provided
365 * path is a udev by-path path, then the physical location information
366 * will be preserved. This can be critical for more complicated
367 * configurations where drives are located in specific physical
368 * locations to maximize the systems tolerance to component failure.
370 * Alternatively, you can provide your own udev rule to flexibly map
371 * the drives as you see fit. It is not advised that you use the
372 * /dev/[hd]d devices which may be reordered due to probing order.
373 * Devices in the wrong locations will be detected by the higher
374 * level vdev validation.
376 * The specified paths may be briefly removed and recreated in
377 * response to udev events. This should be exceptionally unlikely
378 * because the zpool command makes every effort to verify these paths
379 * have already settled prior to reaching this point. Therefore,
380 * a ENOENT failure at this point is highly likely to be transient
381 * and it is reasonable to sleep and retry before giving up. In
382 * practice delays have been observed to be on the order of 100ms.
384 * When ERESTARTSYS is returned it indicates the block device is
385 * a zvol which could not be opened due to the deadlock detection
386 * logic in zvol_open(). Extend the timeout and retry the open
387 * subsequent attempts are expected to eventually succeed.
389 hrtime_t start
= gethrtime();
390 bdh
= BDH_ERR_PTR(-ENXIO
);
391 while (BDH_IS_ERR(bdh
) && ((gethrtime() - start
) < timeout
)) {
392 bdh
= vdev_blkdev_get_by_path(v
->vdev_path
, smode
,
394 if (unlikely(BDH_PTR_ERR(bdh
) == -ENOENT
)) {
396 * There is no point of waiting since device is removed
402 schedule_timeout_interruptible(MSEC_TO_TICK(10));
403 } else if (unlikely(BDH_PTR_ERR(bdh
) == -ERESTARTSYS
)) {
404 timeout
= MSEC2NSEC(zfs_vdev_open_timeout_ms
* 10);
406 } else if (BDH_IS_ERR(bdh
)) {
411 if (BDH_IS_ERR(bdh
)) {
412 int error
= -BDH_PTR_ERR(bdh
);
413 vdev_dbgmsg(v
, "open error=%d timeout=%llu/%llu", error
,
414 (u_longlong_t
)(gethrtime() - start
),
415 (u_longlong_t
)timeout
);
418 rw_exit(&vd
->vd_lock
);
419 return (SET_ERROR(error
));
423 rw_exit(&vd
->vd_lock
);
426 struct block_device
*bdev
= BDH_BDEV(vd
->vd_bdh
);
428 /* Determine the physical block size */
429 int physical_block_size
= bdev_physical_block_size(bdev
);
431 /* Determine the logical block size */
432 int logical_block_size
= bdev_logical_block_size(bdev
);
435 * If the device has a write cache, clear the nowritecache flag,
436 * so that we start issuing flush requests again.
438 v
->vdev_nowritecache
= !zfs_bdev_has_write_cache(bdev
);
440 /* Set when device reports it supports TRIM. */
441 v
->vdev_has_trim
= bdev_discard_supported(bdev
);
443 /* Set when device reports it supports secure TRIM. */
444 v
->vdev_has_securetrim
= bdev_secure_discard_supported(bdev
);
446 /* Inform the ZIO pipeline that we are non-rotational */
447 v
->vdev_nonrot
= blk_queue_nonrot(bdev_get_queue(bdev
));
449 /* Physical volume size in bytes for the partition */
450 *psize
= bdev_capacity(bdev
);
452 /* Physical volume size in bytes including possible expansion space */
453 *max_psize
= bdev_max_capacity(bdev
, v
->vdev_wholedisk
);
455 /* Based on the minimum sector size set the block size */
456 *physical_ashift
= highbit64(MAX(physical_block_size
,
457 SPA_MINBLOCKSIZE
)) - 1;
459 *logical_ashift
= highbit64(MAX(logical_block_size
,
460 SPA_MINBLOCKSIZE
)) - 1;
466 vdev_disk_close(vdev_t
*v
)
468 vdev_disk_t
*vd
= v
->vdev_tsd
;
470 if (v
->vdev_reopening
|| vd
== NULL
)
473 if (vd
->vd_bdh
!= NULL
)
474 vdev_blkdev_put(vd
->vd_bdh
, spa_mode(v
->vdev_spa
),
477 rw_destroy(&vd
->vd_lock
);
478 kmem_free(vd
, sizeof (vdev_disk_t
));
483 * preempt_schedule_notrace is GPL-only which breaks the ZFS build, so
484 * replace it with preempt_schedule under the following condition:
486 #if defined(CONFIG_ARM64) && \
487 defined(CONFIG_PREEMPTION) && \
488 defined(CONFIG_BLK_CGROUP)
489 #define preempt_schedule_notrace(x) preempt_schedule(x)
493 * As for the Linux 5.18 kernel bio_alloc() expects a block_device struct
494 * as an argument removing the need to set it with bio_set_dev(). This
495 * removes the need for all of the following compatibility code.
497 #if !defined(HAVE_BIO_ALLOC_4ARG)
499 #if defined(CONFIG_BLK_CGROUP) && defined(HAVE_BIO_SET_DEV_GPL_ONLY)
501 * The Linux 5.5 kernel updated percpu_ref_tryget() which is inlined by
502 * blkg_tryget() to use rcu_read_lock() instead of rcu_read_lock_sched().
503 * As a side effect the function was converted to GPL-only. Define our
504 * own version when needed which uses rcu_read_lock_sched().
506 * The Linux 5.17 kernel split linux/blk-cgroup.h into a private and a public
507 * part, moving blkg_tryget into the private one. Define our own version.
509 #if defined(HAVE_BLKG_TRYGET_GPL_ONLY) || !defined(HAVE_BLKG_TRYGET)
511 vdev_blkg_tryget(struct blkcg_gq
*blkg
)
513 struct percpu_ref
*ref
= &blkg
->refcnt
;
514 unsigned long __percpu
*count
;
517 rcu_read_lock_sched();
519 if (__ref_is_percpu(ref
, &count
)) {
520 this_cpu_inc(*count
);
523 #ifdef ZFS_PERCPU_REF_COUNT_IN_DATA
524 rc
= atomic_long_inc_not_zero(&ref
->data
->count
);
526 rc
= atomic_long_inc_not_zero(&ref
->count
);
530 rcu_read_unlock_sched();
535 #define vdev_blkg_tryget(bg) blkg_tryget(bg)
537 #ifdef HAVE_BIO_SET_DEV_MACRO
539 * The Linux 5.0 kernel updated the bio_set_dev() macro so it calls the
540 * GPL-only bio_associate_blkg() symbol thus inadvertently converting
541 * the entire macro. Provide a minimal version which always assigns the
542 * request queue's root_blkg to the bio.
545 vdev_bio_associate_blkg(struct bio
*bio
)
547 #if defined(HAVE_BIO_BDEV_DISK)
548 struct request_queue
*q
= bio
->bi_bdev
->bd_disk
->queue
;
550 struct request_queue
*q
= bio
->bi_disk
->queue
;
553 ASSERT3P(q
, !=, NULL
);
554 ASSERT3P(bio
->bi_blkg
, ==, NULL
);
556 if (q
->root_blkg
&& vdev_blkg_tryget(q
->root_blkg
))
557 bio
->bi_blkg
= q
->root_blkg
;
560 #define bio_associate_blkg vdev_bio_associate_blkg
563 vdev_bio_set_dev(struct bio
*bio
, struct block_device
*bdev
)
565 #if defined(HAVE_BIO_BDEV_DISK)
566 struct request_queue
*q
= bdev
->bd_disk
->queue
;
568 struct request_queue
*q
= bio
->bi_disk
->queue
;
570 bio_clear_flag(bio
, BIO_REMAPPED
);
571 if (bio
->bi_bdev
!= bdev
)
572 bio_clear_flag(bio
, BIO_THROTTLED
);
575 ASSERT3P(q
, !=, NULL
);
576 ASSERT3P(bio
->bi_blkg
, ==, NULL
);
578 if (q
->root_blkg
&& vdev_blkg_tryget(q
->root_blkg
))
579 bio
->bi_blkg
= q
->root_blkg
;
581 #define bio_set_dev vdev_bio_set_dev
584 #endif /* !HAVE_BIO_ALLOC_4ARG */
587 vdev_submit_bio(struct bio
*bio
)
589 struct bio_list
*bio_list
= current
->bio_list
;
590 current
->bio_list
= NULL
;
591 (void) submit_bio(bio
);
592 current
->bio_list
= bio_list
;
595 static inline struct bio
*
596 vdev_bio_alloc(struct block_device
*bdev
, gfp_t gfp_mask
,
597 unsigned short nr_vecs
)
601 #ifdef HAVE_BIO_ALLOC_4ARG
602 bio
= bio_alloc(bdev
, nr_vecs
, 0, gfp_mask
);
604 bio
= bio_alloc(gfp_mask
, nr_vecs
);
605 if (likely(bio
!= NULL
))
606 bio_set_dev(bio
, bdev
);
613 vdev_bio_max_segs(struct block_device
*bdev
)
616 * Smallest of the device max segs and the tuneable max segs. Minimum
617 * 4, so there's room to finish split pages if they come up.
619 const uint_t dev_max_segs
= queue_max_segments(bdev_get_queue(bdev
));
620 const uint_t tune_max_segs
= (zfs_vdev_disk_max_segs
> 0) ?
621 MAX(4, zfs_vdev_disk_max_segs
) : dev_max_segs
;
622 const uint_t max_segs
= MIN(tune_max_segs
, dev_max_segs
);
624 #ifdef HAVE_BIO_MAX_SEGS
625 return (bio_max_segs(max_segs
));
627 return (MIN(max_segs
, BIO_MAX_PAGES
));
632 vdev_bio_max_bytes(struct block_device
*bdev
)
634 return (queue_max_sectors(bdev_get_queue(bdev
)) << 9);
639 * Virtual block IO object (VBIO)
641 * Linux block IO (BIO) objects have a limit on how many data segments (pages)
642 * they can hold. Depending on how they're allocated and structured, a large
643 * ZIO can require more than one BIO to be submitted to the kernel, which then
644 * all have to complete before we can return the completed ZIO back to ZFS.
646 * A VBIO is a wrapper around multiple BIOs, carrying everything needed to
647 * translate a ZIO down into the kernel block layer and back again.
649 * Note that these are only used for data ZIOs (read/write). Meta-operations
650 * (flush/trim) don't need multiple BIOs and so can just make the call
654 zio_t
*vbio_zio
; /* parent zio */
656 struct block_device
*vbio_bdev
; /* blockdev to submit bios to */
658 abd_t
*vbio_abd
; /* abd carrying borrowed linear buf */
660 uint_t vbio_max_segs
; /* max segs per bio */
662 uint_t vbio_max_bytes
; /* max bytes per bio */
663 uint_t vbio_lbs_mask
; /* logical block size mask */
665 uint64_t vbio_offset
; /* start offset of next bio */
667 struct bio
*vbio_bio
; /* pointer to the current bio */
668 int vbio_flags
; /* bio flags */
672 vbio_alloc(zio_t
*zio
, struct block_device
*bdev
, int flags
)
674 vbio_t
*vbio
= kmem_zalloc(sizeof (vbio_t
), KM_SLEEP
);
676 vbio
->vbio_zio
= zio
;
677 vbio
->vbio_bdev
= bdev
;
678 vbio
->vbio_abd
= NULL
;
679 vbio
->vbio_max_segs
= vdev_bio_max_segs(bdev
);
680 vbio
->vbio_max_bytes
= vdev_bio_max_bytes(bdev
);
681 vbio
->vbio_lbs_mask
= ~(bdev_logical_block_size(bdev
)-1);
682 vbio
->vbio_offset
= zio
->io_offset
;
683 vbio
->vbio_bio
= NULL
;
684 vbio
->vbio_flags
= flags
;
689 static void vbio_completion(struct bio
*bio
);
692 vbio_add_page(vbio_t
*vbio
, struct page
*page
, uint_t size
, uint_t offset
)
694 struct bio
*bio
= vbio
->vbio_bio
;
699 /* New BIO, allocate and set up */
700 bio
= vdev_bio_alloc(vbio
->vbio_bdev
, GFP_NOIO
,
701 vbio
->vbio_max_segs
);
704 BIO_BI_SECTOR(bio
) = vbio
->vbio_offset
>> 9;
705 bio_set_op_attrs(bio
,
706 vbio
->vbio_zio
->io_type
== ZIO_TYPE_WRITE
?
707 WRITE
: READ
, vbio
->vbio_flags
);
709 if (vbio
->vbio_bio
) {
710 bio_chain(vbio
->vbio_bio
, bio
);
711 vdev_submit_bio(vbio
->vbio_bio
);
713 vbio
->vbio_bio
= bio
;
717 * Only load as much of the current page data as will fit in
718 * the space left in the BIO, respecting lbs alignment. Older
719 * kernels will error if we try to overfill the BIO, while
720 * newer ones will accept it and split the BIO. This ensures
721 * everything works on older kernels, and avoids an additional
722 * overhead on the new.
724 ssize
= MIN(size
, (vbio
->vbio_max_bytes
- BIO_BI_SIZE(bio
)) &
725 vbio
->vbio_lbs_mask
);
727 bio_add_page(bio
, page
, ssize
, offset
) == ssize
) {
728 /* Accepted, adjust and load any remaining. */
734 /* No room, set up for a new BIO and loop */
735 vbio
->vbio_offset
+= BIO_BI_SIZE(bio
);
737 /* Signal new BIO allocation wanted */
744 /* Iterator callback to submit ABD pages to the vbio. */
746 vbio_fill_cb(struct page
*page
, size_t off
, size_t len
, void *priv
)
749 return (vbio_add_page(vbio
, page
, len
, off
));
752 /* Create some BIOs, fill them with data and submit them */
754 vbio_submit(vbio_t
*vbio
, abd_t
*abd
, uint64_t size
)
757 * We plug so we can submit the BIOs as we go and only unplug them when
758 * they are fully created and submitted. This is important; if we don't
759 * plug, then the kernel may start executing earlier BIOs while we're
760 * still creating and executing later ones, and if the device goes
761 * away while that's happening, older kernels can get confused and
764 struct blk_plug plug
;
765 blk_start_plug(&plug
);
767 (void) abd_iterate_page_func(abd
, 0, size
, vbio_fill_cb
, vbio
);
768 ASSERT(vbio
->vbio_bio
);
770 vbio
->vbio_bio
->bi_end_io
= vbio_completion
;
771 vbio
->vbio_bio
->bi_private
= vbio
;
774 * Once submitted, vbio_bio now owns vbio (through bi_private) and we
775 * can't touch it again. The bio may complete and vbio_completion() be
776 * called and free the vbio before this task is run again, so we must
777 * consider it invalid from this point.
779 vdev_submit_bio(vbio
->vbio_bio
);
781 blk_finish_plug(&plug
);
784 /* IO completion callback */
786 vbio_completion(struct bio
*bio
)
788 vbio_t
*vbio
= bio
->bi_private
;
789 zio_t
*zio
= vbio
->vbio_zio
;
793 /* Capture and log any errors */
794 zio
->io_error
= bi_status_to_errno(bio
->bi_status
);
795 ASSERT3U(zio
->io_error
, >=, 0);
798 vdev_disk_error(zio
);
800 /* Return the BIO to the kernel */
804 * We're likely in an interrupt context so we can't do ABD/memory work
805 * here; instead we stash vbio on the zio and take care of it in the
808 ASSERT3P(zio
->io_bio
, ==, NULL
);
811 zio_delay_interrupt(zio
);
815 * Iterator callback to count ABD pages and check their size & alignment.
817 * On Linux, each BIO segment can take a page pointer, and an offset+length of
818 * the data within that page. A page can be arbitrarily large ("compound"
819 * pages) but we still have to ensure the data portion is correctly sized and
820 * aligned to the logical block size, to ensure that if the kernel wants to
821 * split the BIO, the two halves will still be properly aligned.
823 * NOTE: if you change this function, change the copy in
824 * tests/zfs-tests/tests/functional/vdev_disk/page_alignment.c, and add test
825 * data there to validate the change you're making.
831 } vdev_disk_check_alignment_t
;
834 vdev_disk_check_alignment_cb(struct page
*page
, size_t off
, size_t len
,
838 vdev_disk_check_alignment_t
*s
= priv
;
841 * The cardinal rule: a single on-disk block must never cross an
842 * physical (order-0) page boundary, as the kernel expects to be able
843 * to split at both LBS and page boundaries.
845 * This implies various alignment rules for the blocks in this
846 * (possibly compound) page, which we can check for.
850 * If the previous page did not end on a page boundary, then we
851 * can't proceed without creating a hole.
856 /* This page must contain only whole LBS-sized blocks. */
857 if (!IS_P2ALIGNED(len
, s
->blocksize
))
861 * If this is not the first page in the ABD, then the data must start
862 * on a page-aligned boundary (so the kernel can split on page
863 * boundaries without having to deal with a hole). If it is, then
864 * it can start on LBS-alignment.
867 if (!IS_P2ALIGNED(off
, PAGESIZE
))
870 if (!IS_P2ALIGNED(off
, s
->blocksize
))
876 * If this data does not end on a page-aligned boundary, then this
877 * must be the last page in the ABD, for the same reason.
879 s
->seen_last
= !IS_P2ALIGNED(off
+len
, PAGESIZE
);
885 * Check if we can submit the pages in this ABD to the kernel as-is. Returns
886 * the number of pages, or 0 if it can't be submitted like this.
889 vdev_disk_check_alignment(abd_t
*abd
, uint64_t size
, struct block_device
*bdev
)
891 vdev_disk_check_alignment_t s
= {
892 .blocksize
= bdev_logical_block_size(bdev
),
895 if (abd_iterate_page_func(abd
, 0, size
,
896 vdev_disk_check_alignment_cb
, &s
))
903 vdev_disk_io_rw(zio_t
*zio
)
905 vdev_t
*v
= zio
->io_vd
;
906 vdev_disk_t
*vd
= v
->vdev_tsd
;
907 struct block_device
*bdev
= BDH_BDEV(vd
->vd_bdh
);
911 * Accessing outside the block device is never allowed.
913 if (zio
->io_offset
+ zio
->io_size
> bdev_capacity(bdev
)) {
914 vdev_dbgmsg(zio
->io_vd
,
915 "Illegal access %llu size %llu, device size %llu",
916 (u_longlong_t
)zio
->io_offset
,
917 (u_longlong_t
)zio
->io_size
,
918 (u_longlong_t
)bdev_capacity(bdev
));
919 return (SET_ERROR(EIO
));
922 if (!(zio
->io_flags
& (ZIO_FLAG_IO_RETRY
| ZIO_FLAG_TRYHARD
)) &&
923 v
->vdev_failfast
== B_TRUE
) {
924 bio_set_flags_failfast(bdev
, &flags
, zfs_vdev_failfast_mask
& 1,
925 zfs_vdev_failfast_mask
& 2, zfs_vdev_failfast_mask
& 4);
929 * Check alignment of the incoming ABD. If any part of it would require
930 * submitting a page that is not aligned to both the logical block size
931 * and the page size, then we take a copy into a new memory region with
932 * correct alignment. This should be impossible on a 512b LBS. On
933 * larger blocks, this can happen at least when a small number of
934 * blocks (usually 1) are allocated from a shared slab, or when
935 * abnormally-small data regions (eg gang headers) are mixed into the
936 * same ABD as larger allocations (eg aggregations).
938 abd_t
*abd
= zio
->io_abd
;
939 if (!vdev_disk_check_alignment(abd
, zio
->io_size
, bdev
)) {
940 /* Allocate a new memory region with guaranteed alignment */
941 abd
= abd_alloc_for_io(zio
->io_size
,
942 zio
->io_abd
->abd_flags
& ABD_FLAG_META
);
944 /* If we're writing copy our data into it */
945 if (zio
->io_type
== ZIO_TYPE_WRITE
)
946 abd_copy(abd
, zio
->io_abd
, zio
->io_size
);
949 * False here would mean the new allocation has an invalid
950 * alignment too, which would mean that abd_alloc() is not
951 * guaranteeing this, or our logic in
952 * vdev_disk_check_alignment() is wrong. In either case,
953 * something in seriously wrong and its not safe to continue.
955 VERIFY(vdev_disk_check_alignment(abd
, zio
->io_size
, bdev
));
958 /* Allocate vbio, with a pointer to the borrowed ABD if necessary */
959 vbio_t
*vbio
= vbio_alloc(zio
, bdev
, flags
);
960 if (abd
!= zio
->io_abd
)
961 vbio
->vbio_abd
= abd
;
963 /* Fill it with data pages and submit it to the kernel */
964 vbio_submit(vbio
, abd
, zio
->io_size
);
971 * This is the classic, battle-tested BIO submission code. Until we're totally
972 * sure that the new code is safe and correct in all cases, this will remain
973 * available and can be enabled by setting zfs_vdev_disk_classic=1 at module
976 * These functions have been renamed to vdev_classic_* to make it clear what
977 * they belong to, but their implementations are unchanged.
981 * Virtual device vector for disks.
983 typedef struct dio_request
{
984 zio_t
*dr_zio
; /* Parent ZIO */
985 atomic_t dr_ref
; /* References */
986 int dr_error
; /* Bio error */
987 int dr_bio_count
; /* Count of bio's */
988 struct bio
*dr_bio
[]; /* Attached bio's */
991 static dio_request_t
*
992 vdev_classic_dio_alloc(int bio_count
)
994 dio_request_t
*dr
= kmem_zalloc(sizeof (dio_request_t
) +
995 sizeof (struct bio
*) * bio_count
, KM_SLEEP
);
996 atomic_set(&dr
->dr_ref
, 0);
997 dr
->dr_bio_count
= bio_count
;
1000 for (int i
= 0; i
< dr
->dr_bio_count
; i
++)
1001 dr
->dr_bio
[i
] = NULL
;
1007 vdev_classic_dio_free(dio_request_t
*dr
)
1011 for (i
= 0; i
< dr
->dr_bio_count
; i
++)
1013 bio_put(dr
->dr_bio
[i
]);
1015 kmem_free(dr
, sizeof (dio_request_t
) +
1016 sizeof (struct bio
*) * dr
->dr_bio_count
);
1020 vdev_classic_dio_get(dio_request_t
*dr
)
1022 atomic_inc(&dr
->dr_ref
);
1026 vdev_classic_dio_put(dio_request_t
*dr
)
1028 int rc
= atomic_dec_return(&dr
->dr_ref
);
1031 * Free the dio_request when the last reference is dropped and
1032 * ensure zio_interpret is called only once with the correct zio
1035 zio_t
*zio
= dr
->dr_zio
;
1036 int error
= dr
->dr_error
;
1038 vdev_classic_dio_free(dr
);
1041 zio
->io_error
= error
;
1042 ASSERT3S(zio
->io_error
, >=, 0);
1044 vdev_disk_error(zio
);
1046 zio_delay_interrupt(zio
);
1052 vdev_classic_physio_completion(struct bio
*bio
)
1054 dio_request_t
*dr
= bio
->bi_private
;
1056 if (dr
->dr_error
== 0) {
1057 dr
->dr_error
= bi_status_to_errno(bio
->bi_status
);
1060 /* Drop reference acquired by vdev_classic_physio */
1061 vdev_classic_dio_put(dr
);
1064 static inline unsigned int
1065 vdev_classic_bio_max_segs(zio_t
*zio
, int bio_size
, uint64_t abd_offset
)
1067 unsigned long nr_segs
= abd_nr_pages_off(zio
->io_abd
,
1068 bio_size
, abd_offset
);
1070 #ifdef HAVE_BIO_MAX_SEGS
1071 return (bio_max_segs(nr_segs
));
1073 return (MIN(nr_segs
, BIO_MAX_PAGES
));
1078 vdev_classic_physio(zio_t
*zio
)
1080 vdev_t
*v
= zio
->io_vd
;
1081 vdev_disk_t
*vd
= v
->vdev_tsd
;
1082 struct block_device
*bdev
= BDH_BDEV(vd
->vd_bdh
);
1083 size_t io_size
= zio
->io_size
;
1084 uint64_t io_offset
= zio
->io_offset
;
1085 int rw
= zio
->io_type
== ZIO_TYPE_READ
? READ
: WRITE
;
1089 uint64_t abd_offset
;
1090 uint64_t bio_offset
;
1094 struct blk_plug plug
;
1095 unsigned short nr_vecs
;
1098 * Accessing outside the block device is never allowed.
1100 if (io_offset
+ io_size
> bdev_capacity(bdev
)) {
1101 vdev_dbgmsg(zio
->io_vd
,
1102 "Illegal access %llu size %llu, device size %llu",
1103 (u_longlong_t
)io_offset
,
1104 (u_longlong_t
)io_size
,
1105 (u_longlong_t
)bdev_capacity(bdev
));
1106 return (SET_ERROR(EIO
));
1110 dr
= vdev_classic_dio_alloc(bio_count
);
1112 if (!(zio
->io_flags
& (ZIO_FLAG_IO_RETRY
| ZIO_FLAG_TRYHARD
)) &&
1113 zio
->io_vd
->vdev_failfast
== B_TRUE
) {
1114 bio_set_flags_failfast(bdev
, &flags
, zfs_vdev_failfast_mask
& 1,
1115 zfs_vdev_failfast_mask
& 2, zfs_vdev_failfast_mask
& 4);
1121 * Since bio's can have up to BIO_MAX_PAGES=256 iovec's, each of which
1122 * is at least 512 bytes and at most PAGESIZE (typically 4K), one bio
1123 * can cover at least 128KB and at most 1MB. When the required number
1124 * of iovec's exceeds this, we are forced to break the IO in multiple
1125 * bio's and wait for them all to complete. This is likely if the
1126 * recordsize property is increased beyond 1MB. The default
1127 * bio_count=16 should typically accommodate the maximum-size zio of
1132 bio_offset
= io_offset
;
1134 for (int i
= 0; i
<= dr
->dr_bio_count
; i
++) {
1136 /* Finished constructing bio's for given buffer */
1141 * If additional bio's are required, we have to retry, but
1142 * this should be rare - see the comment above.
1144 if (dr
->dr_bio_count
== i
) {
1145 vdev_classic_dio_free(dr
);
1150 nr_vecs
= vdev_classic_bio_max_segs(zio
, bio_size
, abd_offset
);
1151 dr
->dr_bio
[i
] = vdev_bio_alloc(bdev
, GFP_NOIO
, nr_vecs
);
1152 if (unlikely(dr
->dr_bio
[i
] == NULL
)) {
1153 vdev_classic_dio_free(dr
);
1154 return (SET_ERROR(ENOMEM
));
1157 /* Matching put called by vdev_classic_physio_completion */
1158 vdev_classic_dio_get(dr
);
1160 BIO_BI_SECTOR(dr
->dr_bio
[i
]) = bio_offset
>> 9;
1161 dr
->dr_bio
[i
]->bi_end_io
= vdev_classic_physio_completion
;
1162 dr
->dr_bio
[i
]->bi_private
= dr
;
1163 bio_set_op_attrs(dr
->dr_bio
[i
], rw
, flags
);
1165 /* Remaining size is returned to become the new size */
1166 bio_size
= abd_bio_map_off(dr
->dr_bio
[i
], zio
->io_abd
,
1167 bio_size
, abd_offset
);
1169 /* Advance in buffer and construct another bio if needed */
1170 abd_offset
+= BIO_BI_SIZE(dr
->dr_bio
[i
]);
1171 bio_offset
+= BIO_BI_SIZE(dr
->dr_bio
[i
]);
1174 /* Extra reference to protect dio_request during vdev_submit_bio */
1175 vdev_classic_dio_get(dr
);
1177 if (dr
->dr_bio_count
> 1)
1178 blk_start_plug(&plug
);
1180 /* Submit all bio's associated with this dio */
1181 for (int i
= 0; i
< dr
->dr_bio_count
; i
++) {
1183 vdev_submit_bio(dr
->dr_bio
[i
]);
1186 if (dr
->dr_bio_count
> 1)
1187 blk_finish_plug(&plug
);
1189 vdev_classic_dio_put(dr
);
1197 vdev_disk_io_flush_completion(struct bio
*bio
)
1199 zio_t
*zio
= bio
->bi_private
;
1200 zio
->io_error
= bi_status_to_errno(bio
->bi_status
);
1201 if (zio
->io_error
== EOPNOTSUPP
|| zio
->io_error
== ENOTTY
)
1202 zio
->io_error
= SET_ERROR(ENOTSUP
);
1205 ASSERT3S(zio
->io_error
, >=, 0);
1207 vdev_disk_error(zio
);
1212 vdev_disk_io_flush(struct block_device
*bdev
, zio_t
*zio
)
1214 struct request_queue
*q
;
1217 q
= bdev_get_queue(bdev
);
1219 return (SET_ERROR(ENXIO
));
1221 bio
= vdev_bio_alloc(bdev
, GFP_NOIO
, 0);
1222 if (unlikely(bio
== NULL
))
1223 return (SET_ERROR(ENOMEM
));
1225 bio
->bi_end_io
= vdev_disk_io_flush_completion
;
1226 bio
->bi_private
= zio
;
1228 vdev_submit_bio(bio
);
1229 invalidate_bdev(bdev
);
1235 vdev_disk_discard_end_io(struct bio
*bio
)
1237 zio_t
*zio
= bio
->bi_private
;
1238 zio
->io_error
= bi_status_to_errno(bio
->bi_status
);
1242 vdev_disk_error(zio
);
1247 * Wrappers for the different secure erase and discard APIs. We use async
1248 * when available; in this case, *biop is set to the last bio in the chain.
1251 vdev_bdev_issue_secure_erase(zfs_bdev_handle_t
*bdh
, sector_t sector
,
1252 sector_t nsect
, struct bio
**biop
)
1257 #if defined(HAVE_BLKDEV_ISSUE_SECURE_ERASE)
1258 error
= blkdev_issue_secure_erase(BDH_BDEV(bdh
),
1259 sector
, nsect
, GFP_NOFS
);
1260 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1261 error
= __blkdev_issue_discard(BDH_BDEV(bdh
),
1262 sector
, nsect
, GFP_NOFS
, BLKDEV_DISCARD_SECURE
, biop
);
1263 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1264 error
= blkdev_issue_discard(BDH_BDEV(bdh
),
1265 sector
, nsect
, GFP_NOFS
, BLKDEV_DISCARD_SECURE
);
1267 #error "unsupported kernel"
1274 vdev_bdev_issue_discard(zfs_bdev_handle_t
*bdh
, sector_t sector
,
1275 sector_t nsect
, struct bio
**biop
)
1280 #if defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_FLAGS)
1281 error
= __blkdev_issue_discard(BDH_BDEV(bdh
),
1282 sector
, nsect
, GFP_NOFS
, 0, biop
);
1283 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_ASYNC_NOFLAGS)
1284 error
= __blkdev_issue_discard(BDH_BDEV(bdh
),
1285 sector
, nsect
, GFP_NOFS
, biop
);
1286 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_FLAGS)
1287 error
= blkdev_issue_discard(BDH_BDEV(bdh
),
1288 sector
, nsect
, GFP_NOFS
, 0);
1289 #elif defined(HAVE_BLKDEV_ISSUE_DISCARD_NOFLAGS)
1290 error
= blkdev_issue_discard(BDH_BDEV(bdh
),
1291 sector
, nsect
, GFP_NOFS
);
1293 #error "unsupported kernel"
1300 * Entry point for TRIM ops. This calls the right wrapper for secure erase or
1301 * discard, and then does the appropriate finishing work for error vs success
1302 * and async vs sync.
1305 vdev_disk_io_trim(zio_t
*zio
)
1310 zfs_bdev_handle_t
*bdh
= ((vdev_disk_t
*)zio
->io_vd
->vdev_tsd
)->vd_bdh
;
1311 sector_t sector
= zio
->io_offset
>> 9;
1312 sector_t nsects
= zio
->io_size
>> 9;
1314 if (zio
->io_trim_flags
& ZIO_TRIM_SECURE
)
1315 error
= vdev_bdev_issue_secure_erase(bdh
, sector
, nsects
, &bio
);
1317 error
= vdev_bdev_issue_discard(bdh
, sector
, nsects
, &bio
);
1320 return (SET_ERROR(-error
));
1324 * This was a synchronous op that completed successfully, so
1325 * return it to ZFS immediately.
1330 * This was an asynchronous op; set up completion callback and
1333 bio
->bi_private
= zio
;
1334 bio
->bi_end_io
= vdev_disk_discard_end_io
;
1335 vdev_submit_bio(bio
);
1341 int (*vdev_disk_io_rw_fn
)(zio_t
*zio
) = NULL
;
1344 vdev_disk_io_start(zio_t
*zio
)
1346 vdev_t
*v
= zio
->io_vd
;
1347 vdev_disk_t
*vd
= v
->vdev_tsd
;
1351 * If the vdev is closed, it's likely in the REMOVED or FAULTED state.
1352 * Nothing to be done here but return failure.
1355 zio
->io_error
= ENXIO
;
1360 rw_enter(&vd
->vd_lock
, RW_READER
);
1363 * If the vdev is closed, it's likely due to a failed reopen and is
1364 * in the UNAVAIL state. Nothing to be done here but return failure.
1366 if (vd
->vd_bdh
== NULL
) {
1367 rw_exit(&vd
->vd_lock
);
1368 zio
->io_error
= ENXIO
;
1373 switch (zio
->io_type
) {
1374 case ZIO_TYPE_FLUSH
:
1376 if (!vdev_readable(v
)) {
1377 /* Drive not there, can't flush */
1378 error
= SET_ERROR(ENXIO
);
1379 } else if (zfs_nocacheflush
) {
1380 /* Flushing disabled by operator, declare success */
1382 } else if (v
->vdev_nowritecache
) {
1383 /* This vdev not capable of flushing */
1384 error
= SET_ERROR(ENOTSUP
);
1387 * Issue the flush. If successful, the response will
1388 * be handled in the completion callback, so we're done.
1390 error
= vdev_disk_io_flush(BDH_BDEV(vd
->vd_bdh
), zio
);
1392 rw_exit(&vd
->vd_lock
);
1397 /* Couldn't issue the flush, so set the error and return it */
1398 rw_exit(&vd
->vd_lock
);
1399 zio
->io_error
= error
;
1404 error
= vdev_disk_io_trim(zio
);
1405 rw_exit(&vd
->vd_lock
);
1407 zio
->io_error
= error
;
1413 case ZIO_TYPE_WRITE
:
1414 zio
->io_target_timestamp
= zio_handle_io_delay(zio
);
1415 error
= vdev_disk_io_rw_fn(zio
);
1416 rw_exit(&vd
->vd_lock
);
1418 zio
->io_error
= error
;
1425 * Getting here means our parent vdev has made a very strange
1426 * request of us, and shouldn't happen. Assert here to force a
1427 * crash in dev builds, but in production return the IO
1428 * unhandled. The pool will likely suspend anyway but that's
1429 * nicer than crashing the kernel.
1431 ASSERT3S(zio
->io_type
, ==, -1);
1433 rw_exit(&vd
->vd_lock
);
1434 zio
->io_error
= SET_ERROR(ENOTSUP
);
1439 __builtin_unreachable();
1443 vdev_disk_io_done(zio_t
*zio
)
1445 /* If this was a read or write, we need to clean up the vbio */
1446 if (zio
->io_bio
!= NULL
) {
1447 vbio_t
*vbio
= zio
->io_bio
;
1451 * If we copied the ABD before issuing it, clean up and return
1452 * the copy to the ADB, with changes if appropriate.
1454 if (vbio
->vbio_abd
!= NULL
) {
1455 if (zio
->io_type
== ZIO_TYPE_READ
)
1456 abd_copy(zio
->io_abd
, vbio
->vbio_abd
,
1459 abd_free(vbio
->vbio_abd
);
1460 vbio
->vbio_abd
= NULL
;
1464 kmem_free(vbio
, sizeof (vbio_t
));
1468 * If the device returned EIO, we revalidate the media. If it is
1469 * determined the media has changed this triggers the asynchronous
1470 * removal of the device from the configuration.
1472 if (zio
->io_error
== EIO
) {
1473 vdev_t
*v
= zio
->io_vd
;
1474 vdev_disk_t
*vd
= v
->vdev_tsd
;
1476 if (!zfs_check_disk_status(BDH_BDEV(vd
->vd_bdh
))) {
1477 invalidate_bdev(BDH_BDEV(vd
->vd_bdh
));
1478 v
->vdev_remove_wanted
= B_TRUE
;
1479 spa_async_request(zio
->io_spa
, SPA_ASYNC_REMOVE
);
1485 vdev_disk_hold(vdev_t
*vd
)
1487 ASSERT(spa_config_held(vd
->vdev_spa
, SCL_STATE
, RW_WRITER
));
1489 /* We must have a pathname, and it must be absolute. */
1490 if (vd
->vdev_path
== NULL
|| vd
->vdev_path
[0] != '/')
1494 * Only prefetch path and devid info if the device has
1495 * never been opened.
1497 if (vd
->vdev_tsd
!= NULL
)
1503 vdev_disk_rele(vdev_t
*vd
)
1505 ASSERT(spa_config_held(vd
->vdev_spa
, SCL_STATE
, RW_WRITER
));
1507 /* XXX: Implement me as a vnode rele for the device */
1511 * BIO submission method. See comment above about vdev_classic.
1512 * Set zfs_vdev_disk_classic=0 for new, =1 for classic
1514 static uint_t zfs_vdev_disk_classic
= 0; /* default new */
1516 /* Set submission function from module parameter */
1518 vdev_disk_param_set_classic(const char *buf
, zfs_kernel_param_t
*kp
)
1520 int err
= param_set_uint(buf
, kp
);
1522 return (SET_ERROR(err
));
1524 vdev_disk_io_rw_fn
=
1525 zfs_vdev_disk_classic
? vdev_classic_physio
: vdev_disk_io_rw
;
1527 printk(KERN_INFO
"ZFS: forcing %s BIO submission\n",
1528 zfs_vdev_disk_classic
? "classic" : "new");
1534 * At first use vdev use, set the submission function from the default value if
1535 * it hasn't been set already.
1538 vdev_disk_init(spa_t
*spa
, nvlist_t
*nv
, void **tsd
)
1544 if (vdev_disk_io_rw_fn
== NULL
)
1545 vdev_disk_io_rw_fn
= zfs_vdev_disk_classic
?
1546 vdev_classic_physio
: vdev_disk_io_rw
;
1551 vdev_ops_t vdev_disk_ops
= {
1552 .vdev_op_init
= vdev_disk_init
,
1553 .vdev_op_fini
= NULL
,
1554 .vdev_op_open
= vdev_disk_open
,
1555 .vdev_op_close
= vdev_disk_close
,
1556 .vdev_op_asize
= vdev_default_asize
,
1557 .vdev_op_min_asize
= vdev_default_min_asize
,
1558 .vdev_op_min_alloc
= NULL
,
1559 .vdev_op_io_start
= vdev_disk_io_start
,
1560 .vdev_op_io_done
= vdev_disk_io_done
,
1561 .vdev_op_state_change
= NULL
,
1562 .vdev_op_need_resilver
= NULL
,
1563 .vdev_op_hold
= vdev_disk_hold
,
1564 .vdev_op_rele
= vdev_disk_rele
,
1565 .vdev_op_remap
= NULL
,
1566 .vdev_op_xlate
= vdev_default_xlate
,
1567 .vdev_op_rebuild_asize
= NULL
,
1568 .vdev_op_metaslab_init
= NULL
,
1569 .vdev_op_config_generate
= NULL
,
1570 .vdev_op_nparity
= NULL
,
1571 .vdev_op_ndisks
= NULL
,
1572 .vdev_op_type
= VDEV_TYPE_DISK
, /* name of this vdev type */
1573 .vdev_op_leaf
= B_TRUE
, /* leaf vdev */
1574 .vdev_op_kobj_evt_post
= vdev_disk_kobj_evt_post
1578 * The zfs_vdev_scheduler module option has been deprecated. Setting this
1579 * value no longer has any effect. It has not yet been entirely removed
1580 * to allow the module to be loaded if this option is specified in the
1581 * /etc/modprobe.d/zfs.conf file. The following warning will be logged.
1584 param_set_vdev_scheduler(const char *val
, zfs_kernel_param_t
*kp
)
1586 int error
= param_set_charp(val
, kp
);
1588 printk(KERN_INFO
"The 'zfs_vdev_scheduler' module option "
1589 "is not supported.\n");
1595 static const char *zfs_vdev_scheduler
= "unused";
1596 module_param_call(zfs_vdev_scheduler
, param_set_vdev_scheduler
,
1597 param_get_charp
, &zfs_vdev_scheduler
, 0644);
1598 MODULE_PARM_DESC(zfs_vdev_scheduler
, "I/O scheduler");
1601 param_set_min_auto_ashift(const char *buf
, zfs_kernel_param_t
*kp
)
1606 error
= kstrtouint(buf
, 0, &val
);
1608 return (SET_ERROR(error
));
1610 if (val
< ASHIFT_MIN
|| val
> zfs_vdev_max_auto_ashift
)
1611 return (SET_ERROR(-EINVAL
));
1613 error
= param_set_uint(buf
, kp
);
1615 return (SET_ERROR(error
));
1621 param_set_max_auto_ashift(const char *buf
, zfs_kernel_param_t
*kp
)
1626 error
= kstrtouint(buf
, 0, &val
);
1628 return (SET_ERROR(error
));
1630 if (val
> ASHIFT_MAX
|| val
< zfs_vdev_min_auto_ashift
)
1631 return (SET_ERROR(-EINVAL
));
1633 error
= param_set_uint(buf
, kp
);
1635 return (SET_ERROR(error
));
1640 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, open_timeout_ms
, UINT
, ZMOD_RW
,
1641 "Timeout before determining that a device is missing");
1643 ZFS_MODULE_PARAM(zfs_vdev
, zfs_vdev_
, failfast_mask
, UINT
, ZMOD_RW
,
1644 "Defines failfast mask: 1 - device, 2 - transport, 4 - driver");
1646 ZFS_MODULE_PARAM(zfs_vdev_disk
, zfs_vdev_disk_
, max_segs
, UINT
, ZMOD_RW
,
1647 "Maximum number of data segments to add to an IO request (min 4)");
1649 ZFS_MODULE_PARAM_CALL(zfs_vdev_disk
, zfs_vdev_disk_
, classic
,
1650 vdev_disk_param_set_classic
, param_get_uint
, ZMOD_RD
,
1651 "Use classic BIO submission method");