4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2008, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2021 by Delphix. All rights reserved.
24 * Copyright 2016 Gary Mills
25 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
26 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
27 * Copyright 2019 Joyent, Inc.
30 #include <sys/dsl_scan.h>
31 #include <sys/dsl_pool.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_prop.h>
34 #include <sys/dsl_dir.h>
35 #include <sys/dsl_synctask.h>
36 #include <sys/dnode.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/dmu_objset.h>
40 #include <sys/arc_impl.h>
43 #include <sys/zfs_context.h>
44 #include <sys/fs/zfs.h>
45 #include <sys/zfs_znode.h>
46 #include <sys/spa_impl.h>
47 #include <sys/vdev_impl.h>
48 #include <sys/zil_impl.h>
49 #include <sys/zio_checksum.h>
53 #include <sys/sa_impl.h>
54 #include <sys/zfeature.h>
56 #include <sys/range_tree.h>
59 #include <sys/zfs_vfsops.h>
63 * Grand theory statement on scan queue sorting
65 * Scanning is implemented by recursively traversing all indirection levels
66 * in an object and reading all blocks referenced from said objects. This
67 * results in us approximately traversing the object from lowest logical
68 * offset to the highest. For best performance, we would want the logical
69 * blocks to be physically contiguous. However, this is frequently not the
70 * case with pools given the allocation patterns of copy-on-write filesystems.
71 * So instead, we put the I/Os into a reordering queue and issue them in a
72 * way that will most benefit physical disks (LBA-order).
76 * Ideally, we would want to scan all metadata and queue up all block I/O
77 * prior to starting to issue it, because that allows us to do an optimal
78 * sorting job. This can however consume large amounts of memory. Therefore
79 * we continuously monitor the size of the queues and constrain them to 5%
80 * (zfs_scan_mem_lim_fact) of physmem. If the queues grow larger than this
81 * limit, we clear out a few of the largest extents at the head of the queues
82 * to make room for more scanning. Hopefully, these extents will be fairly
83 * large and contiguous, allowing us to approach sequential I/O throughput
84 * even without a fully sorted tree.
86 * Metadata scanning takes place in dsl_scan_visit(), which is called from
87 * dsl_scan_sync() every spa_sync(). If we have either fully scanned all
88 * metadata on the pool, or we need to make room in memory because our
89 * queues are too large, dsl_scan_visit() is postponed and
90 * scan_io_queues_run() is called from dsl_scan_sync() instead. This implies
91 * that metadata scanning and queued I/O issuing are mutually exclusive. This
92 * allows us to provide maximum sequential I/O throughput for the majority of
93 * I/O's issued since sequential I/O performance is significantly negatively
94 * impacted if it is interleaved with random I/O.
96 * Implementation Notes
98 * One side effect of the queued scanning algorithm is that the scanning code
99 * needs to be notified whenever a block is freed. This is needed to allow
100 * the scanning code to remove these I/Os from the issuing queue. Additionally,
101 * we do not attempt to queue gang blocks to be issued sequentially since this
102 * is very hard to do and would have an extremely limited performance benefit.
103 * Instead, we simply issue gang I/Os as soon as we find them using the legacy
106 * Backwards compatibility
108 * This new algorithm is backwards compatible with the legacy on-disk data
109 * structures (and therefore does not require a new feature flag).
110 * Periodically during scanning (see zfs_scan_checkpoint_intval), the scan
111 * will stop scanning metadata (in logical order) and wait for all outstanding
112 * sorted I/O to complete. Once this is done, we write out a checkpoint
113 * bookmark, indicating that we have scanned everything logically before it.
114 * If the pool is imported on a machine without the new sorting algorithm,
115 * the scan simply resumes from the last checkpoint using the legacy algorithm.
118 typedef int (scan_cb_t
)(dsl_pool_t
*, const blkptr_t
*,
119 const zbookmark_phys_t
*);
121 static scan_cb_t dsl_scan_scrub_cb
;
123 static int scan_ds_queue_compare(const void *a
, const void *b
);
124 static int scan_prefetch_queue_compare(const void *a
, const void *b
);
125 static void scan_ds_queue_clear(dsl_scan_t
*scn
);
126 static void scan_ds_prefetch_queue_clear(dsl_scan_t
*scn
);
127 static boolean_t
scan_ds_queue_contains(dsl_scan_t
*scn
, uint64_t dsobj
,
129 static void scan_ds_queue_insert(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t txg
);
130 static void scan_ds_queue_remove(dsl_scan_t
*scn
, uint64_t dsobj
);
131 static void scan_ds_queue_sync(dsl_scan_t
*scn
, dmu_tx_t
*tx
);
132 static uint64_t dsl_scan_count_data_disks(spa_t
*spa
);
133 static void read_by_block_level(dsl_scan_t
*scn
, zbookmark_phys_t zb
);
135 extern uint_t zfs_vdev_async_write_active_min_dirty_percent
;
136 static int zfs_scan_blkstats
= 0;
139 * 'zpool status' uses bytes processed per pass to report throughput and
140 * estimate time remaining. We define a pass to start when the scanning
141 * phase completes for a sequential resilver. Optionally, this value
142 * may be used to reset the pass statistics every N txgs to provide an
143 * estimated completion time based on currently observed performance.
145 static uint_t zfs_scan_report_txgs
= 0;
148 * By default zfs will check to ensure it is not over the hard memory
149 * limit before each txg. If finer-grained control of this is needed
150 * this value can be set to 1 to enable checking before scanning each
153 static int zfs_scan_strict_mem_lim
= B_FALSE
;
156 * Maximum number of parallelly executed bytes per leaf vdev. We attempt
157 * to strike a balance here between keeping the vdev queues full of I/Os
158 * at all times and not overflowing the queues to cause long latency,
159 * which would cause long txg sync times. No matter what, we will not
160 * overload the drives with I/O, since that is protected by
161 * zfs_vdev_scrub_max_active.
163 static uint64_t zfs_scan_vdev_limit
= 16 << 20;
165 static uint_t zfs_scan_issue_strategy
= 0;
167 /* don't queue & sort zios, go direct */
168 static int zfs_scan_legacy
= B_FALSE
;
169 static uint64_t zfs_scan_max_ext_gap
= 2 << 20; /* in bytes */
172 * fill_weight is non-tunable at runtime, so we copy it at module init from
173 * zfs_scan_fill_weight. Runtime adjustments to zfs_scan_fill_weight would
174 * break queue sorting.
176 static uint_t zfs_scan_fill_weight
= 3;
177 static uint64_t fill_weight
;
179 /* See dsl_scan_should_clear() for details on the memory limit tunables */
180 static const uint64_t zfs_scan_mem_lim_min
= 16 << 20; /* bytes */
181 static const uint64_t zfs_scan_mem_lim_soft_max
= 128 << 20; /* bytes */
184 /* fraction of physmem */
185 static uint_t zfs_scan_mem_lim_fact
= 20;
187 /* fraction of mem lim above */
188 static uint_t zfs_scan_mem_lim_soft_fact
= 20;
190 /* minimum milliseconds to scrub per txg */
191 static uint_t zfs_scrub_min_time_ms
= 1000;
193 /* minimum milliseconds to obsolete per txg */
194 static uint_t zfs_obsolete_min_time_ms
= 500;
196 /* minimum milliseconds to free per txg */
197 static uint_t zfs_free_min_time_ms
= 1000;
199 /* minimum milliseconds to resilver per txg */
200 static uint_t zfs_resilver_min_time_ms
= 3000;
202 static uint_t zfs_scan_checkpoint_intval
= 7200; /* in seconds */
203 int zfs_scan_suspend_progress
= 0; /* set to prevent scans from progressing */
204 static int zfs_no_scrub_io
= B_FALSE
; /* set to disable scrub i/o */
205 static int zfs_no_scrub_prefetch
= B_FALSE
; /* set to disable scrub prefetch */
206 static const ddt_class_t zfs_scrub_ddt_class_max
= DDT_CLASS_DUPLICATE
;
207 /* max number of blocks to free in a single TXG */
208 static uint64_t zfs_async_block_max_blocks
= UINT64_MAX
;
209 /* max number of dedup blocks to free in a single TXG */
210 static uint64_t zfs_max_async_dedup_frees
= 100000;
212 /* set to disable resilver deferring */
213 static int zfs_resilver_disable_defer
= B_FALSE
;
215 /* Don't defer a resilver if the one in progress only got this far: */
216 static uint_t zfs_resilver_defer_percent
= 10;
219 * We wait a few txgs after importing a pool to begin scanning so that
220 * the import / mounting code isn't held up by scrub / resilver IO.
221 * Unfortunately, it is a bit difficult to determine exactly how long
222 * this will take since userspace will trigger fs mounts asynchronously
223 * and the kernel will create zvol minors asynchronously. As a result,
224 * the value provided here is a bit arbitrary, but represents a
225 * reasonable estimate of how many txgs it will take to finish fully
228 #define SCAN_IMPORT_WAIT_TXGS 5
230 #define DSL_SCAN_IS_SCRUB_RESILVER(scn) \
231 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB || \
232 (scn)->scn_phys.scn_func == POOL_SCAN_RESILVER)
234 #define DSL_SCAN_IS_SCRUB(scn) \
235 ((scn)->scn_phys.scn_func == POOL_SCAN_SCRUB)
238 * Enable/disable the processing of the free_bpobj object.
240 static int zfs_free_bpobj_enabled
= 1;
242 /* Error blocks to be scrubbed in one txg. */
243 static uint_t zfs_scrub_error_blocks_per_txg
= 1 << 12;
245 /* the order has to match pool_scan_type */
246 static scan_cb_t
*scan_funcs
[POOL_SCAN_FUNCS
] = {
248 dsl_scan_scrub_cb
, /* POOL_SCAN_SCRUB */
249 dsl_scan_scrub_cb
, /* POOL_SCAN_RESILVER */
252 /* In core node for the scn->scn_queue. Represents a dataset to be scanned */
260 * This controls what conditions are placed on dsl_scan_sync_state():
261 * SYNC_OPTIONAL) write out scn_phys iff scn_queues_pending == 0
262 * SYNC_MANDATORY) write out scn_phys always. scn_queues_pending must be 0.
263 * SYNC_CACHED) if scn_queues_pending == 0, write out scn_phys. Otherwise
264 * write out the scn_phys_cached version.
265 * See dsl_scan_sync_state for details.
274 * This struct represents the minimum information needed to reconstruct a
275 * zio for sequential scanning. This is useful because many of these will
276 * accumulate in the sequential IO queues before being issued, so saving
277 * memory matters here.
279 typedef struct scan_io
{
280 /* fields from blkptr_t */
281 uint64_t sio_blk_prop
;
282 uint64_t sio_phys_birth
;
284 zio_cksum_t sio_cksum
;
285 uint32_t sio_nr_dvas
;
287 /* fields from zio_t */
289 zbookmark_phys_t sio_zb
;
291 /* members for queue sorting */
293 avl_node_t sio_addr_node
; /* link into issuing queue */
294 list_node_t sio_list_node
; /* link for issuing to disk */
298 * There may be up to SPA_DVAS_PER_BP DVAs here from the bp,
299 * depending on how many were in the original bp. Only the
300 * first DVA is really used for sorting and issuing purposes.
301 * The other DVAs (if provided) simply exist so that the zio
302 * layer can find additional copies to repair from in the
303 * event of an error. This array must go at the end of the
304 * struct to allow this for the variable number of elements.
309 #define SIO_SET_OFFSET(sio, x) DVA_SET_OFFSET(&(sio)->sio_dva[0], x)
310 #define SIO_SET_ASIZE(sio, x) DVA_SET_ASIZE(&(sio)->sio_dva[0], x)
311 #define SIO_GET_OFFSET(sio) DVA_GET_OFFSET(&(sio)->sio_dva[0])
312 #define SIO_GET_ASIZE(sio) DVA_GET_ASIZE(&(sio)->sio_dva[0])
313 #define SIO_GET_END_OFFSET(sio) \
314 (SIO_GET_OFFSET(sio) + SIO_GET_ASIZE(sio))
315 #define SIO_GET_MUSED(sio) \
316 (sizeof (scan_io_t) + ((sio)->sio_nr_dvas * sizeof (dva_t)))
318 struct dsl_scan_io_queue
{
319 dsl_scan_t
*q_scn
; /* associated dsl_scan_t */
320 vdev_t
*q_vd
; /* top-level vdev that this queue represents */
321 zio_t
*q_zio
; /* scn_zio_root child for waiting on IO */
323 /* trees used for sorting I/Os and extents of I/Os */
324 range_tree_t
*q_exts_by_addr
;
325 zfs_btree_t q_exts_by_size
;
326 avl_tree_t q_sios_by_addr
;
327 uint64_t q_sio_memused
;
328 uint64_t q_last_ext_addr
;
330 /* members for zio rate limiting */
331 uint64_t q_maxinflight_bytes
;
332 uint64_t q_inflight_bytes
;
333 kcondvar_t q_zio_cv
; /* used under vd->vdev_scan_io_queue_lock */
335 /* per txg statistics */
336 uint64_t q_total_seg_size_this_txg
;
337 uint64_t q_segs_this_txg
;
338 uint64_t q_total_zio_size_this_txg
;
339 uint64_t q_zios_this_txg
;
342 /* private data for dsl_scan_prefetch_cb() */
343 typedef struct scan_prefetch_ctx
{
344 zfs_refcount_t spc_refcnt
; /* refcount for memory management */
345 dsl_scan_t
*spc_scn
; /* dsl_scan_t for the pool */
346 boolean_t spc_root
; /* is this prefetch for an objset? */
347 uint8_t spc_indblkshift
; /* dn_indblkshift of current dnode */
348 uint16_t spc_datablkszsec
; /* dn_idatablkszsec of current dnode */
349 } scan_prefetch_ctx_t
;
351 /* private data for dsl_scan_prefetch() */
352 typedef struct scan_prefetch_issue_ctx
{
353 avl_node_t spic_avl_node
; /* link into scn->scn_prefetch_queue */
354 scan_prefetch_ctx_t
*spic_spc
; /* spc for the callback */
355 blkptr_t spic_bp
; /* bp to prefetch */
356 zbookmark_phys_t spic_zb
; /* bookmark to prefetch */
357 } scan_prefetch_issue_ctx_t
;
359 static void scan_exec_io(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
360 const zbookmark_phys_t
*zb
, dsl_scan_io_queue_t
*queue
);
361 static void scan_io_queue_insert_impl(dsl_scan_io_queue_t
*queue
,
364 static dsl_scan_io_queue_t
*scan_io_queue_create(vdev_t
*vd
);
365 static void scan_io_queues_destroy(dsl_scan_t
*scn
);
367 static kmem_cache_t
*sio_cache
[SPA_DVAS_PER_BP
];
369 /* sio->sio_nr_dvas must be set so we know which cache to free from */
371 sio_free(scan_io_t
*sio
)
373 ASSERT3U(sio
->sio_nr_dvas
, >, 0);
374 ASSERT3U(sio
->sio_nr_dvas
, <=, SPA_DVAS_PER_BP
);
376 kmem_cache_free(sio_cache
[sio
->sio_nr_dvas
- 1], sio
);
379 /* It is up to the caller to set sio->sio_nr_dvas for freeing */
381 sio_alloc(unsigned short nr_dvas
)
383 ASSERT3U(nr_dvas
, >, 0);
384 ASSERT3U(nr_dvas
, <=, SPA_DVAS_PER_BP
);
386 return (kmem_cache_alloc(sio_cache
[nr_dvas
- 1], KM_SLEEP
));
393 * This is used in ext_size_compare() to weight segments
394 * based on how sparse they are. This cannot be changed
395 * mid-scan and the tree comparison functions don't currently
396 * have a mechanism for passing additional context to the
397 * compare functions. Thus we store this value globally and
398 * we only allow it to be set at module initialization time
400 fill_weight
= zfs_scan_fill_weight
;
402 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
405 (void) snprintf(name
, sizeof (name
), "sio_cache_%d", i
);
406 sio_cache
[i
] = kmem_cache_create(name
,
407 (sizeof (scan_io_t
) + ((i
+ 1) * sizeof (dva_t
))),
408 0, NULL
, NULL
, NULL
, NULL
, NULL
, 0);
415 for (int i
= 0; i
< SPA_DVAS_PER_BP
; i
++) {
416 kmem_cache_destroy(sio_cache
[i
]);
420 static inline boolean_t
421 dsl_scan_is_running(const dsl_scan_t
*scn
)
423 return (scn
->scn_phys
.scn_state
== DSS_SCANNING
);
427 dsl_scan_resilvering(dsl_pool_t
*dp
)
429 return (dsl_scan_is_running(dp
->dp_scan
) &&
430 dp
->dp_scan
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
);
434 sio2bp(const scan_io_t
*sio
, blkptr_t
*bp
)
436 memset(bp
, 0, sizeof (*bp
));
437 bp
->blk_prop
= sio
->sio_blk_prop
;
438 BP_SET_PHYSICAL_BIRTH(bp
, sio
->sio_phys_birth
);
439 BP_SET_LOGICAL_BIRTH(bp
, sio
->sio_birth
);
440 bp
->blk_fill
= 1; /* we always only work with data pointers */
441 bp
->blk_cksum
= sio
->sio_cksum
;
443 ASSERT3U(sio
->sio_nr_dvas
, >, 0);
444 ASSERT3U(sio
->sio_nr_dvas
, <=, SPA_DVAS_PER_BP
);
446 memcpy(bp
->blk_dva
, sio
->sio_dva
, sio
->sio_nr_dvas
* sizeof (dva_t
));
450 bp2sio(const blkptr_t
*bp
, scan_io_t
*sio
, int dva_i
)
452 sio
->sio_blk_prop
= bp
->blk_prop
;
453 sio
->sio_phys_birth
= BP_GET_PHYSICAL_BIRTH(bp
);
454 sio
->sio_birth
= BP_GET_LOGICAL_BIRTH(bp
);
455 sio
->sio_cksum
= bp
->blk_cksum
;
456 sio
->sio_nr_dvas
= BP_GET_NDVAS(bp
);
459 * Copy the DVAs to the sio. We need all copies of the block so
460 * that the self healing code can use the alternate copies if the
461 * first is corrupted. We want the DVA at index dva_i to be first
462 * in the sio since this is the primary one that we want to issue.
464 for (int i
= 0, j
= dva_i
; i
< sio
->sio_nr_dvas
; i
++, j
++) {
465 sio
->sio_dva
[i
] = bp
->blk_dva
[j
% sio
->sio_nr_dvas
];
470 dsl_scan_init(dsl_pool_t
*dp
, uint64_t txg
)
474 spa_t
*spa
= dp
->dp_spa
;
477 scn
= dp
->dp_scan
= kmem_zalloc(sizeof (dsl_scan_t
), KM_SLEEP
);
481 * It's possible that we're resuming a scan after a reboot so
482 * make sure that the scan_async_destroying flag is initialized
485 ASSERT(!scn
->scn_async_destroying
);
486 scn
->scn_async_destroying
= spa_feature_is_active(dp
->dp_spa
,
487 SPA_FEATURE_ASYNC_DESTROY
);
490 * Calculate the max number of in-flight bytes for pool-wide
491 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
492 * Limits for the issuing phase are done per top-level vdev and
493 * are handled separately.
495 scn
->scn_maxinflight_bytes
= MIN(arc_c_max
/ 4, MAX(1ULL << 20,
496 zfs_scan_vdev_limit
* dsl_scan_count_data_disks(spa
)));
498 avl_create(&scn
->scn_queue
, scan_ds_queue_compare
, sizeof (scan_ds_t
),
499 offsetof(scan_ds_t
, sds_node
));
500 mutex_init(&scn
->scn_queue_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
501 avl_create(&scn
->scn_prefetch_queue
, scan_prefetch_queue_compare
,
502 sizeof (scan_prefetch_issue_ctx_t
),
503 offsetof(scan_prefetch_issue_ctx_t
, spic_avl_node
));
505 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
506 "scrub_func", sizeof (uint64_t), 1, &f
);
509 * There was an old-style scrub in progress. Restart a
510 * new-style scrub from the beginning.
512 scn
->scn_restart_txg
= txg
;
513 zfs_dbgmsg("old-style scrub was in progress for %s; "
514 "restarting new-style scrub in txg %llu",
516 (longlong_t
)scn
->scn_restart_txg
);
519 * Load the queue obj from the old location so that it
520 * can be freed by dsl_scan_done().
522 (void) zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
523 "scrub_queue", sizeof (uint64_t), 1,
524 &scn
->scn_phys
.scn_queue_obj
);
526 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
527 DMU_POOL_ERRORSCRUB
, sizeof (uint64_t),
528 ERRORSCRUB_PHYS_NUMINTS
, &scn
->errorscrub_phys
);
530 if (err
!= 0 && err
!= ENOENT
)
533 err
= zap_lookup(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
534 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
538 * Detect if the pool contains the signature of #2094. If it
539 * does properly update the scn->scn_phys structure and notify
540 * the administrator by setting an errata for the pool.
542 if (err
== EOVERFLOW
) {
543 uint64_t zaptmp
[SCAN_PHYS_NUMINTS
+ 1];
544 VERIFY3S(SCAN_PHYS_NUMINTS
, ==, 24);
545 VERIFY3S(offsetof(dsl_scan_phys_t
, scn_flags
), ==,
546 (23 * sizeof (uint64_t)));
548 err
= zap_lookup(dp
->dp_meta_objset
,
549 DMU_POOL_DIRECTORY_OBJECT
, DMU_POOL_SCAN
,
550 sizeof (uint64_t), SCAN_PHYS_NUMINTS
+ 1, &zaptmp
);
552 uint64_t overflow
= zaptmp
[SCAN_PHYS_NUMINTS
];
554 if (overflow
& ~DSL_SCAN_FLAGS_MASK
||
555 scn
->scn_async_destroying
) {
557 ZPOOL_ERRATA_ZOL_2094_ASYNC_DESTROY
;
561 memcpy(&scn
->scn_phys
, zaptmp
,
562 SCAN_PHYS_NUMINTS
* sizeof (uint64_t));
563 scn
->scn_phys
.scn_flags
= overflow
;
565 /* Required scrub already in progress. */
566 if (scn
->scn_phys
.scn_state
== DSS_FINISHED
||
567 scn
->scn_phys
.scn_state
== DSS_CANCELED
)
569 ZPOOL_ERRATA_ZOL_2094_SCRUB
;
579 * We might be restarting after a reboot, so jump the issued
580 * counter to how far we've scanned. We know we're consistent
583 scn
->scn_issued_before_pass
= scn
->scn_phys
.scn_examined
-
584 scn
->scn_phys
.scn_skipped
;
586 if (dsl_scan_is_running(scn
) &&
587 spa_prev_software_version(dp
->dp_spa
) < SPA_VERSION_SCAN
) {
589 * A new-type scrub was in progress on an old
590 * pool, and the pool was accessed by old
591 * software. Restart from the beginning, since
592 * the old software may have changed the pool in
595 scn
->scn_restart_txg
= txg
;
596 zfs_dbgmsg("new-style scrub for %s was modified "
597 "by old software; restarting in txg %llu",
599 (longlong_t
)scn
->scn_restart_txg
);
600 } else if (dsl_scan_resilvering(dp
)) {
602 * If a resilver is in progress and there are already
603 * errors, restart it instead of finishing this scan and
604 * then restarting it. If there haven't been any errors
605 * then remember that the incore DTL is valid.
607 if (scn
->scn_phys
.scn_errors
> 0) {
608 scn
->scn_restart_txg
= txg
;
609 zfs_dbgmsg("resilver can't excise DTL_MISSING "
610 "when finished; restarting on %s in txg "
613 (u_longlong_t
)scn
->scn_restart_txg
);
615 /* it's safe to excise DTL when finished */
616 spa
->spa_scrub_started
= B_TRUE
;
621 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
, sizeof (scn
->scn_phys
));
623 /* reload the queue into the in-core state */
624 if (scn
->scn_phys
.scn_queue_obj
!= 0) {
626 zap_attribute_t
*za
= zap_attribute_alloc();
628 for (zap_cursor_init(&zc
, dp
->dp_meta_objset
,
629 scn
->scn_phys
.scn_queue_obj
);
630 zap_cursor_retrieve(&zc
, za
) == 0;
631 (void) zap_cursor_advance(&zc
)) {
632 scan_ds_queue_insert(scn
,
633 zfs_strtonum(za
->za_name
, NULL
),
634 za
->za_first_integer
);
636 zap_cursor_fini(&zc
);
637 zap_attribute_free(za
);
640 ddt_walk_init(spa
, scn
->scn_phys
.scn_max_txg
);
642 spa_scan_stat_init(spa
);
643 vdev_scan_stat_init(spa
->spa_root_vdev
);
649 dsl_scan_fini(dsl_pool_t
*dp
)
651 if (dp
->dp_scan
!= NULL
) {
652 dsl_scan_t
*scn
= dp
->dp_scan
;
654 if (scn
->scn_taskq
!= NULL
)
655 taskq_destroy(scn
->scn_taskq
);
657 scan_ds_queue_clear(scn
);
658 avl_destroy(&scn
->scn_queue
);
659 mutex_destroy(&scn
->scn_queue_lock
);
660 scan_ds_prefetch_queue_clear(scn
);
661 avl_destroy(&scn
->scn_prefetch_queue
);
663 kmem_free(dp
->dp_scan
, sizeof (dsl_scan_t
));
669 dsl_scan_restarting(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
671 return (scn
->scn_restart_txg
!= 0 &&
672 scn
->scn_restart_txg
<= tx
->tx_txg
);
676 dsl_scan_resilver_scheduled(dsl_pool_t
*dp
)
678 return ((dp
->dp_scan
&& dp
->dp_scan
->scn_restart_txg
!= 0) ||
679 (spa_async_tasks(dp
->dp_spa
) & SPA_ASYNC_RESILVER
));
683 dsl_scan_scrubbing(const dsl_pool_t
*dp
)
685 dsl_scan_phys_t
*scn_phys
= &dp
->dp_scan
->scn_phys
;
687 return (scn_phys
->scn_state
== DSS_SCANNING
&&
688 scn_phys
->scn_func
== POOL_SCAN_SCRUB
);
692 dsl_errorscrubbing(const dsl_pool_t
*dp
)
694 dsl_errorscrub_phys_t
*errorscrub_phys
= &dp
->dp_scan
->errorscrub_phys
;
696 return (errorscrub_phys
->dep_state
== DSS_ERRORSCRUBBING
&&
697 errorscrub_phys
->dep_func
== POOL_SCAN_ERRORSCRUB
);
701 dsl_errorscrub_is_paused(const dsl_scan_t
*scn
)
703 return (dsl_errorscrubbing(scn
->scn_dp
) &&
704 scn
->errorscrub_phys
.dep_paused_flags
);
708 dsl_scan_is_paused_scrub(const dsl_scan_t
*scn
)
710 return (dsl_scan_scrubbing(scn
->scn_dp
) &&
711 scn
->scn_phys
.scn_flags
& DSF_SCRUB_PAUSED
);
715 dsl_errorscrub_sync_state(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
717 scn
->errorscrub_phys
.dep_cursor
=
718 zap_cursor_serialize(&scn
->errorscrub_cursor
);
720 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
721 DMU_POOL_DIRECTORY_OBJECT
,
722 DMU_POOL_ERRORSCRUB
, sizeof (uint64_t), ERRORSCRUB_PHYS_NUMINTS
,
723 &scn
->errorscrub_phys
, tx
));
727 dsl_errorscrub_setup_sync(void *arg
, dmu_tx_t
*tx
)
729 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
730 pool_scan_func_t
*funcp
= arg
;
731 dsl_pool_t
*dp
= scn
->scn_dp
;
732 spa_t
*spa
= dp
->dp_spa
;
734 ASSERT(!dsl_scan_is_running(scn
));
735 ASSERT(!dsl_errorscrubbing(scn
->scn_dp
));
736 ASSERT(*funcp
> POOL_SCAN_NONE
&& *funcp
< POOL_SCAN_FUNCS
);
738 memset(&scn
->errorscrub_phys
, 0, sizeof (scn
->errorscrub_phys
));
739 scn
->errorscrub_phys
.dep_func
= *funcp
;
740 scn
->errorscrub_phys
.dep_state
= DSS_ERRORSCRUBBING
;
741 scn
->errorscrub_phys
.dep_start_time
= gethrestime_sec();
742 scn
->errorscrub_phys
.dep_to_examine
= spa_get_last_errlog_size(spa
);
743 scn
->errorscrub_phys
.dep_examined
= 0;
744 scn
->errorscrub_phys
.dep_errors
= 0;
745 scn
->errorscrub_phys
.dep_cursor
= 0;
746 zap_cursor_init_serialized(&scn
->errorscrub_cursor
,
747 spa
->spa_meta_objset
, spa
->spa_errlog_last
,
748 scn
->errorscrub_phys
.dep_cursor
);
750 vdev_config_dirty(spa
->spa_root_vdev
);
751 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_ERRORSCRUB_START
);
753 dsl_errorscrub_sync_state(scn
, tx
);
755 spa_history_log_internal(spa
, "error scrub setup", tx
,
756 "func=%u mintxg=%u maxtxg=%llu",
757 *funcp
, 0, (u_longlong_t
)tx
->tx_txg
);
761 dsl_errorscrub_setup_check(void *arg
, dmu_tx_t
*tx
)
764 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
766 if (dsl_scan_is_running(scn
) || (dsl_errorscrubbing(scn
->scn_dp
))) {
767 return (SET_ERROR(EBUSY
));
770 if (spa_get_last_errlog_size(scn
->scn_dp
->dp_spa
) == 0) {
777 * Writes out a persistent dsl_scan_phys_t record to the pool directory.
778 * Because we can be running in the block sorting algorithm, we do not always
779 * want to write out the record, only when it is "safe" to do so. This safety
780 * condition is achieved by making sure that the sorting queues are empty
781 * (scn_queues_pending == 0). When this condition is not true, the sync'd state
782 * is inconsistent with how much actual scanning progress has been made. The
783 * kind of sync to be performed is specified by the sync_type argument. If the
784 * sync is optional, we only sync if the queues are empty. If the sync is
785 * mandatory, we do a hard ASSERT to make sure that the queues are empty. The
786 * third possible state is a "cached" sync. This is done in response to:
787 * 1) The dataset that was in the last sync'd dsl_scan_phys_t having been
788 * destroyed, so we wouldn't be able to restart scanning from it.
789 * 2) The snapshot that was in the last sync'd dsl_scan_phys_t having been
790 * superseded by a newer snapshot.
791 * 3) The dataset that was in the last sync'd dsl_scan_phys_t having been
792 * swapped with its clone.
793 * In all cases, a cached sync simply rewrites the last record we've written,
794 * just slightly modified. For the modifications that are performed to the
795 * last written dsl_scan_phys_t, see dsl_scan_ds_destroyed,
796 * dsl_scan_ds_snapshotted and dsl_scan_ds_clone_swapped.
799 dsl_scan_sync_state(dsl_scan_t
*scn
, dmu_tx_t
*tx
, state_sync_type_t sync_type
)
802 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
804 ASSERT(sync_type
!= SYNC_MANDATORY
|| scn
->scn_queues_pending
== 0);
805 if (scn
->scn_queues_pending
== 0) {
806 for (i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
807 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
808 dsl_scan_io_queue_t
*q
= vd
->vdev_scan_io_queue
;
813 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
814 ASSERT3P(avl_first(&q
->q_sios_by_addr
), ==, NULL
);
815 ASSERT3P(zfs_btree_first(&q
->q_exts_by_size
, NULL
), ==,
817 ASSERT3P(range_tree_first(q
->q_exts_by_addr
), ==, NULL
);
818 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
821 if (scn
->scn_phys
.scn_queue_obj
!= 0)
822 scan_ds_queue_sync(scn
, tx
);
823 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
824 DMU_POOL_DIRECTORY_OBJECT
,
825 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
826 &scn
->scn_phys
, tx
));
827 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
,
828 sizeof (scn
->scn_phys
));
830 if (scn
->scn_checkpointing
)
831 zfs_dbgmsg("finish scan checkpoint for %s",
834 scn
->scn_checkpointing
= B_FALSE
;
835 scn
->scn_last_checkpoint
= ddi_get_lbolt();
836 } else if (sync_type
== SYNC_CACHED
) {
837 VERIFY0(zap_update(scn
->scn_dp
->dp_meta_objset
,
838 DMU_POOL_DIRECTORY_OBJECT
,
839 DMU_POOL_SCAN
, sizeof (uint64_t), SCAN_PHYS_NUMINTS
,
840 &scn
->scn_phys_cached
, tx
));
845 dsl_scan_setup_check(void *arg
, dmu_tx_t
*tx
)
848 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
849 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
851 if (dsl_scan_is_running(scn
) || vdev_rebuild_active(rvd
) ||
852 dsl_errorscrubbing(scn
->scn_dp
))
853 return (SET_ERROR(EBUSY
));
859 dsl_scan_setup_sync(void *arg
, dmu_tx_t
*tx
)
861 setup_sync_arg_t
*setup_sync_arg
= (setup_sync_arg_t
*)arg
;
862 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
863 dmu_object_type_t ot
= 0;
864 dsl_pool_t
*dp
= scn
->scn_dp
;
865 spa_t
*spa
= dp
->dp_spa
;
867 ASSERT(!dsl_scan_is_running(scn
));
868 ASSERT3U(setup_sync_arg
->func
, >, POOL_SCAN_NONE
);
869 ASSERT3U(setup_sync_arg
->func
, <, POOL_SCAN_FUNCS
);
870 memset(&scn
->scn_phys
, 0, sizeof (scn
->scn_phys
));
873 * If we are starting a fresh scrub, we erase the error scrub
874 * information from disk.
876 memset(&scn
->errorscrub_phys
, 0, sizeof (scn
->errorscrub_phys
));
877 dsl_errorscrub_sync_state(scn
, tx
);
879 scn
->scn_phys
.scn_func
= setup_sync_arg
->func
;
880 scn
->scn_phys
.scn_state
= DSS_SCANNING
;
881 scn
->scn_phys
.scn_min_txg
= setup_sync_arg
->txgstart
;
882 if (setup_sync_arg
->txgend
== 0) {
883 scn
->scn_phys
.scn_max_txg
= tx
->tx_txg
;
885 scn
->scn_phys
.scn_max_txg
= setup_sync_arg
->txgend
;
887 scn
->scn_phys
.scn_ddt_class_max
= DDT_CLASSES
- 1; /* the entire DDT */
888 scn
->scn_phys
.scn_start_time
= gethrestime_sec();
889 scn
->scn_phys
.scn_errors
= 0;
890 scn
->scn_phys
.scn_to_examine
= spa
->spa_root_vdev
->vdev_stat
.vs_alloc
;
891 scn
->scn_issued_before_pass
= 0;
892 scn
->scn_restart_txg
= 0;
893 scn
->scn_done_txg
= 0;
894 scn
->scn_last_checkpoint
= 0;
895 scn
->scn_checkpointing
= B_FALSE
;
896 spa_scan_stat_init(spa
);
897 vdev_scan_stat_init(spa
->spa_root_vdev
);
899 if (DSL_SCAN_IS_SCRUB_RESILVER(scn
)) {
900 scn
->scn_phys
.scn_ddt_class_max
= zfs_scrub_ddt_class_max
;
902 /* rewrite all disk labels */
903 vdev_config_dirty(spa
->spa_root_vdev
);
905 if (vdev_resilver_needed(spa
->spa_root_vdev
,
906 &scn
->scn_phys
.scn_min_txg
, &scn
->scn_phys
.scn_max_txg
)) {
907 nvlist_t
*aux
= fnvlist_alloc();
908 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
,
910 spa_event_notify(spa
, NULL
, aux
,
911 ESC_ZFS_RESILVER_START
);
914 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_START
);
917 spa
->spa_scrub_started
= B_TRUE
;
919 * If this is an incremental scrub, limit the DDT scrub phase
920 * to just the auto-ditto class (for correctness); the rest
921 * of the scrub should go faster using top-down pruning.
923 if (scn
->scn_phys
.scn_min_txg
> TXG_INITIAL
)
924 scn
->scn_phys
.scn_ddt_class_max
= DDT_CLASS_DITTO
;
927 * When starting a resilver clear any existing rebuild state.
928 * This is required to prevent stale rebuild status from
929 * being reported when a rebuild is run, then a resilver and
930 * finally a scrub. In which case only the scrub status
931 * should be reported by 'zpool status'.
933 if (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) {
934 vdev_t
*rvd
= spa
->spa_root_vdev
;
935 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
936 vdev_t
*vd
= rvd
->vdev_child
[i
];
937 vdev_rebuild_clear_sync(
938 (void *)(uintptr_t)vd
->vdev_id
, tx
);
943 /* back to the generic stuff */
945 if (zfs_scan_blkstats
) {
946 if (dp
->dp_blkstats
== NULL
) {
948 vmem_alloc(sizeof (zfs_all_blkstats_t
), KM_SLEEP
);
950 memset(&dp
->dp_blkstats
->zab_type
, 0,
951 sizeof (dp
->dp_blkstats
->zab_type
));
953 if (dp
->dp_blkstats
) {
954 vmem_free(dp
->dp_blkstats
, sizeof (zfs_all_blkstats_t
));
955 dp
->dp_blkstats
= NULL
;
959 if (spa_version(spa
) < SPA_VERSION_DSL_SCRUB
)
960 ot
= DMU_OT_ZAP_OTHER
;
962 scn
->scn_phys
.scn_queue_obj
= zap_create(dp
->dp_meta_objset
,
963 ot
? ot
: DMU_OT_SCAN_QUEUE
, DMU_OT_NONE
, 0, tx
);
965 memcpy(&scn
->scn_phys_cached
, &scn
->scn_phys
, sizeof (scn
->scn_phys
));
967 ddt_walk_init(spa
, scn
->scn_phys
.scn_max_txg
);
969 dsl_scan_sync_state(scn
, tx
, SYNC_MANDATORY
);
971 spa_history_log_internal(spa
, "scan setup", tx
,
972 "func=%u mintxg=%llu maxtxg=%llu",
973 setup_sync_arg
->func
, (u_longlong_t
)scn
->scn_phys
.scn_min_txg
,
974 (u_longlong_t
)scn
->scn_phys
.scn_max_txg
);
978 * Called by ZFS_IOC_POOL_SCRUB and ZFS_IOC_POOL_SCAN ioctl to start a scrub,
979 * error scrub or resilver. Can also be called to resume a paused scrub or
983 dsl_scan(dsl_pool_t
*dp
, pool_scan_func_t func
, uint64_t txgstart
,
986 spa_t
*spa
= dp
->dp_spa
;
987 dsl_scan_t
*scn
= dp
->dp_scan
;
988 setup_sync_arg_t setup_sync_arg
;
990 if (func
!= POOL_SCAN_SCRUB
&& (txgstart
!= 0 || txgend
!= 0)) {
995 * Purge all vdev caches and probe all devices. We do this here
996 * rather than in sync context because this requires a writer lock
997 * on the spa_config lock, which we can't do from sync context. The
998 * spa_scrub_reopen flag indicates that vdev_open() should not
999 * attempt to start another scrub.
1001 spa_vdev_state_enter(spa
, SCL_NONE
);
1002 spa
->spa_scrub_reopen
= B_TRUE
;
1003 vdev_reopen(spa
->spa_root_vdev
);
1004 spa
->spa_scrub_reopen
= B_FALSE
;
1005 (void) spa_vdev_state_exit(spa
, NULL
, 0);
1007 if (func
== POOL_SCAN_RESILVER
) {
1008 dsl_scan_restart_resilver(spa
->spa_dsl_pool
, 0);
1012 if (func
== POOL_SCAN_ERRORSCRUB
) {
1013 if (dsl_errorscrub_is_paused(dp
->dp_scan
)) {
1015 * got error scrub start cmd, resume paused error scrub.
1017 int err
= dsl_scrub_set_pause_resume(scn
->scn_dp
,
1020 spa_event_notify(spa
, NULL
, NULL
,
1021 ESC_ZFS_ERRORSCRUB_RESUME
);
1024 return (SET_ERROR(err
));
1027 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1028 dsl_errorscrub_setup_check
, dsl_errorscrub_setup_sync
,
1029 &func
, 0, ZFS_SPACE_CHECK_RESERVED
));
1032 if (func
== POOL_SCAN_SCRUB
&& dsl_scan_is_paused_scrub(scn
)) {
1033 /* got scrub start cmd, resume paused scrub */
1034 int err
= dsl_scrub_set_pause_resume(scn
->scn_dp
,
1037 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_RESUME
);
1038 return (SET_ERROR(ECANCELED
));
1040 return (SET_ERROR(err
));
1043 setup_sync_arg
.func
= func
;
1044 setup_sync_arg
.txgstart
= txgstart
;
1045 setup_sync_arg
.txgend
= txgend
;
1047 return (dsl_sync_task(spa_name(spa
), dsl_scan_setup_check
,
1048 dsl_scan_setup_sync
, &setup_sync_arg
, 0,
1049 ZFS_SPACE_CHECK_EXTRA_RESERVED
));
1053 dsl_errorscrub_done(dsl_scan_t
*scn
, boolean_t complete
, dmu_tx_t
*tx
)
1055 dsl_pool_t
*dp
= scn
->scn_dp
;
1056 spa_t
*spa
= dp
->dp_spa
;
1059 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_ERRORSCRUB_FINISH
);
1060 spa_history_log_internal(spa
, "error scrub done", tx
,
1061 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1063 spa_history_log_internal(spa
, "error scrub canceled", tx
,
1064 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1067 scn
->errorscrub_phys
.dep_state
= complete
? DSS_FINISHED
: DSS_CANCELED
;
1068 spa
->spa_scrub_active
= B_FALSE
;
1069 spa_errlog_rotate(spa
);
1070 scn
->errorscrub_phys
.dep_end_time
= gethrestime_sec();
1071 zap_cursor_fini(&scn
->errorscrub_cursor
);
1073 if (spa
->spa_errata
== ZPOOL_ERRATA_ZOL_2094_SCRUB
)
1074 spa
->spa_errata
= 0;
1076 ASSERT(!dsl_errorscrubbing(scn
->scn_dp
));
1080 dsl_scan_done(dsl_scan_t
*scn
, boolean_t complete
, dmu_tx_t
*tx
)
1082 static const char *old_names
[] = {
1084 "scrub_ddt_bookmark",
1085 "scrub_ddt_class_max",
1094 dsl_pool_t
*dp
= scn
->scn_dp
;
1095 spa_t
*spa
= dp
->dp_spa
;
1098 /* Remove any remnants of an old-style scrub. */
1099 for (i
= 0; old_names
[i
]; i
++) {
1100 (void) zap_remove(dp
->dp_meta_objset
,
1101 DMU_POOL_DIRECTORY_OBJECT
, old_names
[i
], tx
);
1104 if (scn
->scn_phys
.scn_queue_obj
!= 0) {
1105 VERIFY0(dmu_object_free(dp
->dp_meta_objset
,
1106 scn
->scn_phys
.scn_queue_obj
, tx
));
1107 scn
->scn_phys
.scn_queue_obj
= 0;
1109 scan_ds_queue_clear(scn
);
1110 scan_ds_prefetch_queue_clear(scn
);
1112 scn
->scn_phys
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1115 * If we were "restarted" from a stopped state, don't bother
1116 * with anything else.
1118 if (!dsl_scan_is_running(scn
)) {
1119 ASSERT(!scn
->scn_is_sorted
);
1123 if (scn
->scn_is_sorted
) {
1124 scan_io_queues_destroy(scn
);
1125 scn
->scn_is_sorted
= B_FALSE
;
1127 if (scn
->scn_taskq
!= NULL
) {
1128 taskq_destroy(scn
->scn_taskq
);
1129 scn
->scn_taskq
= NULL
;
1133 scn
->scn_phys
.scn_state
= complete
? DSS_FINISHED
: DSS_CANCELED
;
1135 spa_notify_waiters(spa
);
1137 if (dsl_scan_restarting(scn
, tx
)) {
1138 spa_history_log_internal(spa
, "scan aborted, restarting", tx
,
1139 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1140 } else if (!complete
) {
1141 spa_history_log_internal(spa
, "scan cancelled", tx
,
1142 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1144 spa_history_log_internal(spa
, "scan done", tx
,
1145 "errors=%llu", (u_longlong_t
)spa_approx_errlog_size(spa
));
1146 if (DSL_SCAN_IS_SCRUB(scn
)) {
1147 VERIFY0(zap_update(dp
->dp_meta_objset
,
1148 DMU_POOL_DIRECTORY_OBJECT
,
1149 DMU_POOL_LAST_SCRUBBED_TXG
,
1150 sizeof (uint64_t), 1,
1151 &scn
->scn_phys
.scn_max_txg
, tx
));
1152 spa
->spa_scrubbed_last_txg
= scn
->scn_phys
.scn_max_txg
;
1156 if (DSL_SCAN_IS_SCRUB_RESILVER(scn
)) {
1157 spa
->spa_scrub_active
= B_FALSE
;
1160 * If the scrub/resilver completed, update all DTLs to
1161 * reflect this. Whether it succeeded or not, vacate
1162 * all temporary scrub DTLs.
1164 * As the scrub does not currently support traversing
1165 * data that have been freed but are part of a checkpoint,
1166 * we don't mark the scrub as done in the DTLs as faults
1167 * may still exist in those vdevs.
1170 !spa_feature_is_active(spa
, SPA_FEATURE_POOL_CHECKPOINT
)) {
1171 vdev_dtl_reassess(spa
->spa_root_vdev
, tx
->tx_txg
,
1172 scn
->scn_phys
.scn_max_txg
, B_TRUE
, B_FALSE
);
1174 if (scn
->scn_phys
.scn_min_txg
) {
1175 nvlist_t
*aux
= fnvlist_alloc();
1176 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
,
1178 spa_event_notify(spa
, NULL
, aux
,
1179 ESC_ZFS_RESILVER_FINISH
);
1182 spa_event_notify(spa
, NULL
, NULL
,
1183 ESC_ZFS_SCRUB_FINISH
);
1186 vdev_dtl_reassess(spa
->spa_root_vdev
, tx
->tx_txg
,
1187 0, B_TRUE
, B_FALSE
);
1189 spa_errlog_rotate(spa
);
1192 * Don't clear flag until after vdev_dtl_reassess to ensure that
1193 * DTL_MISSING will get updated when possible.
1195 spa
->spa_scrub_started
= B_FALSE
;
1198 * We may have finished replacing a device.
1199 * Let the async thread assess this and handle the detach.
1201 spa_async_request(spa
, SPA_ASYNC_RESILVER_DONE
);
1204 * Clear any resilver_deferred flags in the config.
1205 * If there are drives that need resilvering, kick
1206 * off an asynchronous request to start resilver.
1207 * vdev_clear_resilver_deferred() may update the config
1208 * before the resilver can restart. In the event of
1209 * a crash during this period, the spa loading code
1210 * will find the drives that need to be resilvered
1211 * and start the resilver then.
1213 if (spa_feature_is_enabled(spa
, SPA_FEATURE_RESILVER_DEFER
) &&
1214 vdev_clear_resilver_deferred(spa
->spa_root_vdev
, tx
)) {
1215 spa_history_log_internal(spa
,
1216 "starting deferred resilver", tx
, "errors=%llu",
1217 (u_longlong_t
)spa_approx_errlog_size(spa
));
1218 spa_async_request(spa
, SPA_ASYNC_RESILVER
);
1221 /* Clear recent error events (i.e. duplicate events tracking) */
1223 zfs_ereport_clear(spa
, NULL
);
1226 scn
->scn_phys
.scn_end_time
= gethrestime_sec();
1228 if (spa
->spa_errata
== ZPOOL_ERRATA_ZOL_2094_SCRUB
)
1229 spa
->spa_errata
= 0;
1231 ASSERT(!dsl_scan_is_running(scn
));
1235 dsl_errorscrub_pause_resume_check(void *arg
, dmu_tx_t
*tx
)
1237 pool_scrub_cmd_t
*cmd
= arg
;
1238 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1239 dsl_scan_t
*scn
= dp
->dp_scan
;
1241 if (*cmd
== POOL_SCRUB_PAUSE
) {
1243 * can't pause a error scrub when there is no in-progress
1246 if (!dsl_errorscrubbing(dp
))
1247 return (SET_ERROR(ENOENT
));
1249 /* can't pause a paused error scrub */
1250 if (dsl_errorscrub_is_paused(scn
))
1251 return (SET_ERROR(EBUSY
));
1252 } else if (*cmd
!= POOL_SCRUB_NORMAL
) {
1253 return (SET_ERROR(ENOTSUP
));
1260 dsl_errorscrub_pause_resume_sync(void *arg
, dmu_tx_t
*tx
)
1262 pool_scrub_cmd_t
*cmd
= arg
;
1263 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1264 spa_t
*spa
= dp
->dp_spa
;
1265 dsl_scan_t
*scn
= dp
->dp_scan
;
1267 if (*cmd
== POOL_SCRUB_PAUSE
) {
1268 spa
->spa_scan_pass_errorscrub_pause
= gethrestime_sec();
1269 scn
->errorscrub_phys
.dep_paused_flags
= B_TRUE
;
1270 dsl_errorscrub_sync_state(scn
, tx
);
1271 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_ERRORSCRUB_PAUSED
);
1273 ASSERT3U(*cmd
, ==, POOL_SCRUB_NORMAL
);
1274 if (dsl_errorscrub_is_paused(scn
)) {
1276 * We need to keep track of how much time we spend
1277 * paused per pass so that we can adjust the error scrub
1278 * rate shown in the output of 'zpool status'.
1280 spa
->spa_scan_pass_errorscrub_spent_paused
+=
1282 spa
->spa_scan_pass_errorscrub_pause
;
1284 spa
->spa_scan_pass_errorscrub_pause
= 0;
1285 scn
->errorscrub_phys
.dep_paused_flags
= B_FALSE
;
1287 zap_cursor_init_serialized(
1288 &scn
->errorscrub_cursor
,
1289 spa
->spa_meta_objset
, spa
->spa_errlog_last
,
1290 scn
->errorscrub_phys
.dep_cursor
);
1292 dsl_errorscrub_sync_state(scn
, tx
);
1298 dsl_errorscrub_cancel_check(void *arg
, dmu_tx_t
*tx
)
1301 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1302 /* can't cancel a error scrub when there is no one in-progress */
1303 if (!dsl_errorscrubbing(scn
->scn_dp
))
1304 return (SET_ERROR(ENOENT
));
1309 dsl_errorscrub_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1312 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1314 dsl_errorscrub_done(scn
, B_FALSE
, tx
);
1315 dsl_errorscrub_sync_state(scn
, tx
);
1316 spa_event_notify(scn
->scn_dp
->dp_spa
, NULL
, NULL
,
1317 ESC_ZFS_ERRORSCRUB_ABORT
);
1321 dsl_scan_cancel_check(void *arg
, dmu_tx_t
*tx
)
1324 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1326 if (!dsl_scan_is_running(scn
))
1327 return (SET_ERROR(ENOENT
));
1332 dsl_scan_cancel_sync(void *arg
, dmu_tx_t
*tx
)
1335 dsl_scan_t
*scn
= dmu_tx_pool(tx
)->dp_scan
;
1337 dsl_scan_done(scn
, B_FALSE
, tx
);
1338 dsl_scan_sync_state(scn
, tx
, SYNC_MANDATORY
);
1339 spa_event_notify(scn
->scn_dp
->dp_spa
, NULL
, NULL
, ESC_ZFS_SCRUB_ABORT
);
1343 dsl_scan_cancel(dsl_pool_t
*dp
)
1345 if (dsl_errorscrubbing(dp
)) {
1346 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1347 dsl_errorscrub_cancel_check
, dsl_errorscrub_cancel_sync
,
1348 NULL
, 3, ZFS_SPACE_CHECK_RESERVED
));
1350 return (dsl_sync_task(spa_name(dp
->dp_spa
), dsl_scan_cancel_check
,
1351 dsl_scan_cancel_sync
, NULL
, 3, ZFS_SPACE_CHECK_RESERVED
));
1355 dsl_scrub_pause_resume_check(void *arg
, dmu_tx_t
*tx
)
1357 pool_scrub_cmd_t
*cmd
= arg
;
1358 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1359 dsl_scan_t
*scn
= dp
->dp_scan
;
1361 if (*cmd
== POOL_SCRUB_PAUSE
) {
1362 /* can't pause a scrub when there is no in-progress scrub */
1363 if (!dsl_scan_scrubbing(dp
))
1364 return (SET_ERROR(ENOENT
));
1366 /* can't pause a paused scrub */
1367 if (dsl_scan_is_paused_scrub(scn
))
1368 return (SET_ERROR(EBUSY
));
1369 } else if (*cmd
!= POOL_SCRUB_NORMAL
) {
1370 return (SET_ERROR(ENOTSUP
));
1377 dsl_scrub_pause_resume_sync(void *arg
, dmu_tx_t
*tx
)
1379 pool_scrub_cmd_t
*cmd
= arg
;
1380 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1381 spa_t
*spa
= dp
->dp_spa
;
1382 dsl_scan_t
*scn
= dp
->dp_scan
;
1384 if (*cmd
== POOL_SCRUB_PAUSE
) {
1385 /* can't pause a scrub when there is no in-progress scrub */
1386 spa
->spa_scan_pass_scrub_pause
= gethrestime_sec();
1387 scn
->scn_phys
.scn_flags
|= DSF_SCRUB_PAUSED
;
1388 scn
->scn_phys_cached
.scn_flags
|= DSF_SCRUB_PAUSED
;
1389 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
1390 spa_event_notify(spa
, NULL
, NULL
, ESC_ZFS_SCRUB_PAUSED
);
1391 spa_notify_waiters(spa
);
1393 ASSERT3U(*cmd
, ==, POOL_SCRUB_NORMAL
);
1394 if (dsl_scan_is_paused_scrub(scn
)) {
1396 * We need to keep track of how much time we spend
1397 * paused per pass so that we can adjust the scrub rate
1398 * shown in the output of 'zpool status'
1400 spa
->spa_scan_pass_scrub_spent_paused
+=
1401 gethrestime_sec() - spa
->spa_scan_pass_scrub_pause
;
1402 spa
->spa_scan_pass_scrub_pause
= 0;
1403 scn
->scn_phys
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1404 scn
->scn_phys_cached
.scn_flags
&= ~DSF_SCRUB_PAUSED
;
1405 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
1411 * Set scrub pause/resume state if it makes sense to do so
1414 dsl_scrub_set_pause_resume(const dsl_pool_t
*dp
, pool_scrub_cmd_t cmd
)
1416 if (dsl_errorscrubbing(dp
)) {
1417 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1418 dsl_errorscrub_pause_resume_check
,
1419 dsl_errorscrub_pause_resume_sync
, &cmd
, 3,
1420 ZFS_SPACE_CHECK_RESERVED
));
1422 return (dsl_sync_task(spa_name(dp
->dp_spa
),
1423 dsl_scrub_pause_resume_check
, dsl_scrub_pause_resume_sync
, &cmd
, 3,
1424 ZFS_SPACE_CHECK_RESERVED
));
1428 /* start a new scan, or restart an existing one. */
1430 dsl_scan_restart_resilver(dsl_pool_t
*dp
, uint64_t txg
)
1434 tx
= dmu_tx_create_dd(dp
->dp_mos_dir
);
1435 VERIFY(0 == dmu_tx_assign(tx
, TXG_WAIT
));
1437 txg
= dmu_tx_get_txg(tx
);
1438 dp
->dp_scan
->scn_restart_txg
= txg
;
1441 dp
->dp_scan
->scn_restart_txg
= txg
;
1443 zfs_dbgmsg("restarting resilver for %s at txg=%llu",
1444 dp
->dp_spa
->spa_name
, (longlong_t
)txg
);
1448 dsl_free(dsl_pool_t
*dp
, uint64_t txg
, const blkptr_t
*bp
)
1450 zio_free(dp
->dp_spa
, txg
, bp
);
1454 dsl_free_sync(zio_t
*pio
, dsl_pool_t
*dp
, uint64_t txg
, const blkptr_t
*bpp
)
1456 ASSERT(dsl_pool_sync_context(dp
));
1457 zio_nowait(zio_free_sync(pio
, dp
->dp_spa
, txg
, bpp
, pio
->io_flags
));
1461 scan_ds_queue_compare(const void *a
, const void *b
)
1463 const scan_ds_t
*sds_a
= a
, *sds_b
= b
;
1465 if (sds_a
->sds_dsobj
< sds_b
->sds_dsobj
)
1467 if (sds_a
->sds_dsobj
== sds_b
->sds_dsobj
)
1473 scan_ds_queue_clear(dsl_scan_t
*scn
)
1475 void *cookie
= NULL
;
1477 while ((sds
= avl_destroy_nodes(&scn
->scn_queue
, &cookie
)) != NULL
) {
1478 kmem_free(sds
, sizeof (*sds
));
1483 scan_ds_queue_contains(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t *txg
)
1485 scan_ds_t srch
, *sds
;
1487 srch
.sds_dsobj
= dsobj
;
1488 sds
= avl_find(&scn
->scn_queue
, &srch
, NULL
);
1489 if (sds
!= NULL
&& txg
!= NULL
)
1490 *txg
= sds
->sds_txg
;
1491 return (sds
!= NULL
);
1495 scan_ds_queue_insert(dsl_scan_t
*scn
, uint64_t dsobj
, uint64_t txg
)
1500 sds
= kmem_zalloc(sizeof (*sds
), KM_SLEEP
);
1501 sds
->sds_dsobj
= dsobj
;
1504 VERIFY3P(avl_find(&scn
->scn_queue
, sds
, &where
), ==, NULL
);
1505 avl_insert(&scn
->scn_queue
, sds
, where
);
1509 scan_ds_queue_remove(dsl_scan_t
*scn
, uint64_t dsobj
)
1511 scan_ds_t srch
, *sds
;
1513 srch
.sds_dsobj
= dsobj
;
1515 sds
= avl_find(&scn
->scn_queue
, &srch
, NULL
);
1516 VERIFY(sds
!= NULL
);
1517 avl_remove(&scn
->scn_queue
, sds
);
1518 kmem_free(sds
, sizeof (*sds
));
1522 scan_ds_queue_sync(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
1524 dsl_pool_t
*dp
= scn
->scn_dp
;
1525 spa_t
*spa
= dp
->dp_spa
;
1526 dmu_object_type_t ot
= (spa_version(spa
) >= SPA_VERSION_DSL_SCRUB
) ?
1527 DMU_OT_SCAN_QUEUE
: DMU_OT_ZAP_OTHER
;
1529 ASSERT0(scn
->scn_queues_pending
);
1530 ASSERT(scn
->scn_phys
.scn_queue_obj
!= 0);
1532 VERIFY0(dmu_object_free(dp
->dp_meta_objset
,
1533 scn
->scn_phys
.scn_queue_obj
, tx
));
1534 scn
->scn_phys
.scn_queue_obj
= zap_create(dp
->dp_meta_objset
, ot
,
1535 DMU_OT_NONE
, 0, tx
);
1536 for (scan_ds_t
*sds
= avl_first(&scn
->scn_queue
);
1537 sds
!= NULL
; sds
= AVL_NEXT(&scn
->scn_queue
, sds
)) {
1538 VERIFY0(zap_add_int_key(dp
->dp_meta_objset
,
1539 scn
->scn_phys
.scn_queue_obj
, sds
->sds_dsobj
,
1545 * Computes the memory limit state that we're currently in. A sorted scan
1546 * needs quite a bit of memory to hold the sorting queue, so we need to
1547 * reasonably constrain the size so it doesn't impact overall system
1548 * performance. We compute two limits:
1549 * 1) Hard memory limit: if the amount of memory used by the sorting
1550 * queues on a pool gets above this value, we stop the metadata
1551 * scanning portion and start issuing the queued up and sorted
1552 * I/Os to reduce memory usage.
1553 * This limit is calculated as a fraction of physmem (by default 5%).
1554 * We constrain the lower bound of the hard limit to an absolute
1555 * minimum of zfs_scan_mem_lim_min (default: 16 MiB). We also constrain
1556 * the upper bound to 5% of the total pool size - no chance we'll
1557 * ever need that much memory, but just to keep the value in check.
1558 * 2) Soft memory limit: once we hit the hard memory limit, we start
1559 * issuing I/O to reduce queue memory usage, but we don't want to
1560 * completely empty out the queues, since we might be able to find I/Os
1561 * that will fill in the gaps of our non-sequential IOs at some point
1562 * in the future. So we stop the issuing of I/Os once the amount of
1563 * memory used drops below the soft limit (at which point we stop issuing
1564 * I/O and start scanning metadata again).
1566 * This limit is calculated by subtracting a fraction of the hard
1567 * limit from the hard limit. By default this fraction is 5%, so
1568 * the soft limit is 95% of the hard limit. We cap the size of the
1569 * difference between the hard and soft limits at an absolute
1570 * maximum of zfs_scan_mem_lim_soft_max (default: 128 MiB) - this is
1571 * sufficient to not cause too frequent switching between the
1572 * metadata scan and I/O issue (even at 2k recordsize, 128 MiB's
1573 * worth of queues is about 1.2 GiB of on-pool data, so scanning
1574 * that should take at least a decent fraction of a second).
1577 dsl_scan_should_clear(dsl_scan_t
*scn
)
1579 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1580 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
1581 uint64_t alloc
, mlim_hard
, mlim_soft
, mused
;
1583 alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
1584 alloc
+= metaslab_class_get_alloc(spa_special_class(spa
));
1585 alloc
+= metaslab_class_get_alloc(spa_dedup_class(spa
));
1587 mlim_hard
= MAX((physmem
/ zfs_scan_mem_lim_fact
) * PAGESIZE
,
1588 zfs_scan_mem_lim_min
);
1589 mlim_hard
= MIN(mlim_hard
, alloc
/ 20);
1590 mlim_soft
= mlim_hard
- MIN(mlim_hard
/ zfs_scan_mem_lim_soft_fact
,
1591 zfs_scan_mem_lim_soft_max
);
1593 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
1594 vdev_t
*tvd
= rvd
->vdev_child
[i
];
1595 dsl_scan_io_queue_t
*queue
;
1597 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
1598 queue
= tvd
->vdev_scan_io_queue
;
1599 if (queue
!= NULL
) {
1601 * # of extents in exts_by_addr = # in exts_by_size.
1602 * B-tree efficiency is ~75%, but can be as low as 50%.
1604 mused
+= zfs_btree_numnodes(&queue
->q_exts_by_size
) *
1605 ((sizeof (range_seg_gap_t
) + sizeof (uint64_t)) *
1606 3 / 2) + queue
->q_sio_memused
;
1608 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
1611 dprintf("current scan memory usage: %llu bytes\n", (longlong_t
)mused
);
1614 ASSERT0(scn
->scn_queues_pending
);
1617 * If we are above our hard limit, we need to clear out memory.
1618 * If we are below our soft limit, we need to accumulate sequential IOs.
1619 * Otherwise, we should keep doing whatever we are currently doing.
1621 if (mused
>= mlim_hard
)
1623 else if (mused
< mlim_soft
)
1626 return (scn
->scn_clearing
);
1630 dsl_scan_check_suspend(dsl_scan_t
*scn
, const zbookmark_phys_t
*zb
)
1632 /* we never skip user/group accounting objects */
1633 if (zb
&& (int64_t)zb
->zb_object
< 0)
1636 if (scn
->scn_suspending
)
1637 return (B_TRUE
); /* we're already suspending */
1639 if (!ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
))
1640 return (B_FALSE
); /* we're resuming */
1642 /* We only know how to resume from level-0 and objset blocks. */
1643 if (zb
&& (zb
->zb_level
!= 0 && zb
->zb_level
!= ZB_ROOT_LEVEL
))
1648 * - we have scanned for at least the minimum time (default 1 sec
1649 * for scrub, 3 sec for resilver), and either we have sufficient
1650 * dirty data that we are starting to write more quickly
1651 * (default 30%), someone is explicitly waiting for this txg
1652 * to complete, or we have used up all of the time in the txg
1653 * timeout (default 5 sec).
1655 * - the spa is shutting down because this pool is being exported
1656 * or the machine is rebooting.
1658 * - the scan queue has reached its memory use limit
1660 uint64_t curr_time_ns
= gethrtime();
1661 uint64_t scan_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
1662 uint64_t sync_time_ns
= curr_time_ns
-
1663 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
1664 uint64_t dirty_min_bytes
= zfs_dirty_data_max
*
1665 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
1666 uint_t mintime
= (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) ?
1667 zfs_resilver_min_time_ms
: zfs_scrub_min_time_ms
;
1669 if ((NSEC2MSEC(scan_time_ns
) > mintime
&&
1670 (scn
->scn_dp
->dp_dirty_total
>= dirty_min_bytes
||
1671 txg_sync_waiting(scn
->scn_dp
) ||
1672 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
1673 spa_shutting_down(scn
->scn_dp
->dp_spa
) ||
1674 (zfs_scan_strict_mem_lim
&& dsl_scan_should_clear(scn
)) ||
1675 !ddt_walk_ready(scn
->scn_dp
->dp_spa
)) {
1676 if (zb
&& zb
->zb_level
== ZB_ROOT_LEVEL
) {
1677 dprintf("suspending at first available bookmark "
1678 "%llx/%llx/%llx/%llx\n",
1679 (longlong_t
)zb
->zb_objset
,
1680 (longlong_t
)zb
->zb_object
,
1681 (longlong_t
)zb
->zb_level
,
1682 (longlong_t
)zb
->zb_blkid
);
1683 SET_BOOKMARK(&scn
->scn_phys
.scn_bookmark
,
1684 zb
->zb_objset
, 0, 0, 0);
1685 } else if (zb
!= NULL
) {
1686 dprintf("suspending at bookmark %llx/%llx/%llx/%llx\n",
1687 (longlong_t
)zb
->zb_objset
,
1688 (longlong_t
)zb
->zb_object
,
1689 (longlong_t
)zb
->zb_level
,
1690 (longlong_t
)zb
->zb_blkid
);
1691 scn
->scn_phys
.scn_bookmark
= *zb
;
1694 dsl_scan_phys_t
*scnp
= &scn
->scn_phys
;
1695 dprintf("suspending at at DDT bookmark "
1696 "%llx/%llx/%llx/%llx\n",
1697 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_class
,
1698 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_type
,
1699 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_checksum
,
1700 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_cursor
);
1703 scn
->scn_suspending
= B_TRUE
;
1710 dsl_error_scrub_check_suspend(dsl_scan_t
*scn
, const zbookmark_phys_t
*zb
)
1714 * - we have scrubbed for at least the minimum time (default 1 sec
1715 * for error scrub), someone is explicitly waiting for this txg
1716 * to complete, or we have used up all of the time in the txg
1717 * timeout (default 5 sec).
1719 * - the spa is shutting down because this pool is being exported
1720 * or the machine is rebooting.
1722 uint64_t curr_time_ns
= gethrtime();
1723 uint64_t error_scrub_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
1724 uint64_t sync_time_ns
= curr_time_ns
-
1725 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
1726 int mintime
= zfs_scrub_min_time_ms
;
1728 if ((NSEC2MSEC(error_scrub_time_ns
) > mintime
&&
1729 (txg_sync_waiting(scn
->scn_dp
) ||
1730 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
1731 spa_shutting_down(scn
->scn_dp
->dp_spa
)) {
1733 dprintf("error scrub suspending at bookmark "
1734 "%llx/%llx/%llx/%llx\n",
1735 (longlong_t
)zb
->zb_objset
,
1736 (longlong_t
)zb
->zb_object
,
1737 (longlong_t
)zb
->zb_level
,
1738 (longlong_t
)zb
->zb_blkid
);
1745 typedef struct zil_scan_arg
{
1747 zil_header_t
*zsa_zh
;
1751 dsl_scan_zil_block(zilog_t
*zilog
, const blkptr_t
*bp
, void *arg
,
1755 zil_scan_arg_t
*zsa
= arg
;
1756 dsl_pool_t
*dp
= zsa
->zsa_dp
;
1757 dsl_scan_t
*scn
= dp
->dp_scan
;
1758 zil_header_t
*zh
= zsa
->zsa_zh
;
1759 zbookmark_phys_t zb
;
1761 ASSERT(!BP_IS_REDACTED(bp
));
1762 if (BP_IS_HOLE(bp
) ||
1763 BP_GET_LOGICAL_BIRTH(bp
) <= scn
->scn_phys
.scn_cur_min_txg
)
1767 * One block ("stubby") can be allocated a long time ago; we
1768 * want to visit that one because it has been allocated
1769 * (on-disk) even if it hasn't been claimed (even though for
1770 * scrub there's nothing to do to it).
1772 if (claim_txg
== 0 &&
1773 BP_GET_LOGICAL_BIRTH(bp
) >= spa_min_claim_txg(dp
->dp_spa
))
1776 SET_BOOKMARK(&zb
, zh
->zh_log
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1777 ZB_ZIL_OBJECT
, ZB_ZIL_LEVEL
, bp
->blk_cksum
.zc_word
[ZIL_ZC_SEQ
]);
1779 VERIFY(0 == scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, &zb
));
1784 dsl_scan_zil_record(zilog_t
*zilog
, const lr_t
*lrc
, void *arg
,
1788 if (lrc
->lrc_txtype
== TX_WRITE
) {
1789 zil_scan_arg_t
*zsa
= arg
;
1790 dsl_pool_t
*dp
= zsa
->zsa_dp
;
1791 dsl_scan_t
*scn
= dp
->dp_scan
;
1792 zil_header_t
*zh
= zsa
->zsa_zh
;
1793 const lr_write_t
*lr
= (const lr_write_t
*)lrc
;
1794 const blkptr_t
*bp
= &lr
->lr_blkptr
;
1795 zbookmark_phys_t zb
;
1797 ASSERT(!BP_IS_REDACTED(bp
));
1798 if (BP_IS_HOLE(bp
) ||
1799 BP_GET_LOGICAL_BIRTH(bp
) <= scn
->scn_phys
.scn_cur_min_txg
)
1803 * birth can be < claim_txg if this record's txg is
1804 * already txg sync'ed (but this log block contains
1805 * other records that are not synced)
1807 if (claim_txg
== 0 || BP_GET_LOGICAL_BIRTH(bp
) < claim_txg
)
1810 ASSERT3U(BP_GET_LSIZE(bp
), !=, 0);
1811 SET_BOOKMARK(&zb
, zh
->zh_log
.blk_cksum
.zc_word
[ZIL_ZC_OBJSET
],
1812 lr
->lr_foid
, ZB_ZIL_LEVEL
,
1813 lr
->lr_offset
/ BP_GET_LSIZE(bp
));
1815 VERIFY(0 == scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, &zb
));
1821 dsl_scan_zil(dsl_pool_t
*dp
, zil_header_t
*zh
)
1823 uint64_t claim_txg
= zh
->zh_claim_txg
;
1824 zil_scan_arg_t zsa
= { dp
, zh
};
1827 ASSERT(spa_writeable(dp
->dp_spa
));
1830 * We only want to visit blocks that have been claimed but not yet
1831 * replayed (or, in read-only mode, blocks that *would* be claimed).
1836 zilog
= zil_alloc(dp
->dp_meta_objset
, zh
);
1838 (void) zil_parse(zilog
, dsl_scan_zil_block
, dsl_scan_zil_record
, &zsa
,
1839 claim_txg
, B_FALSE
);
1845 * We compare scan_prefetch_issue_ctx_t's based on their bookmarks. The idea
1846 * here is to sort the AVL tree by the order each block will be needed.
1849 scan_prefetch_queue_compare(const void *a
, const void *b
)
1851 const scan_prefetch_issue_ctx_t
*spic_a
= a
, *spic_b
= b
;
1852 const scan_prefetch_ctx_t
*spc_a
= spic_a
->spic_spc
;
1853 const scan_prefetch_ctx_t
*spc_b
= spic_b
->spic_spc
;
1855 return (zbookmark_compare(spc_a
->spc_datablkszsec
,
1856 spc_a
->spc_indblkshift
, spc_b
->spc_datablkszsec
,
1857 spc_b
->spc_indblkshift
, &spic_a
->spic_zb
, &spic_b
->spic_zb
));
1861 scan_prefetch_ctx_rele(scan_prefetch_ctx_t
*spc
, const void *tag
)
1863 if (zfs_refcount_remove(&spc
->spc_refcnt
, tag
) == 0) {
1864 zfs_refcount_destroy(&spc
->spc_refcnt
);
1865 kmem_free(spc
, sizeof (scan_prefetch_ctx_t
));
1869 static scan_prefetch_ctx_t
*
1870 scan_prefetch_ctx_create(dsl_scan_t
*scn
, dnode_phys_t
*dnp
, const void *tag
)
1872 scan_prefetch_ctx_t
*spc
;
1874 spc
= kmem_alloc(sizeof (scan_prefetch_ctx_t
), KM_SLEEP
);
1875 zfs_refcount_create(&spc
->spc_refcnt
);
1876 zfs_refcount_add(&spc
->spc_refcnt
, tag
);
1879 spc
->spc_datablkszsec
= dnp
->dn_datablkszsec
;
1880 spc
->spc_indblkshift
= dnp
->dn_indblkshift
;
1881 spc
->spc_root
= B_FALSE
;
1883 spc
->spc_datablkszsec
= 0;
1884 spc
->spc_indblkshift
= 0;
1885 spc
->spc_root
= B_TRUE
;
1892 scan_prefetch_ctx_add_ref(scan_prefetch_ctx_t
*spc
, const void *tag
)
1894 zfs_refcount_add(&spc
->spc_refcnt
, tag
);
1898 scan_ds_prefetch_queue_clear(dsl_scan_t
*scn
)
1900 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1901 void *cookie
= NULL
;
1902 scan_prefetch_issue_ctx_t
*spic
= NULL
;
1904 mutex_enter(&spa
->spa_scrub_lock
);
1905 while ((spic
= avl_destroy_nodes(&scn
->scn_prefetch_queue
,
1906 &cookie
)) != NULL
) {
1907 scan_prefetch_ctx_rele(spic
->spic_spc
, scn
);
1908 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1910 mutex_exit(&spa
->spa_scrub_lock
);
1914 dsl_scan_check_prefetch_resume(scan_prefetch_ctx_t
*spc
,
1915 const zbookmark_phys_t
*zb
)
1917 zbookmark_phys_t
*last_zb
= &spc
->spc_scn
->scn_prefetch_bookmark
;
1918 dnode_phys_t tmp_dnp
;
1919 dnode_phys_t
*dnp
= (spc
->spc_root
) ? NULL
: &tmp_dnp
;
1921 if (zb
->zb_objset
!= last_zb
->zb_objset
)
1923 if ((int64_t)zb
->zb_object
< 0)
1926 tmp_dnp
.dn_datablkszsec
= spc
->spc_datablkszsec
;
1927 tmp_dnp
.dn_indblkshift
= spc
->spc_indblkshift
;
1929 if (zbookmark_subtree_completed(dnp
, zb
, last_zb
))
1936 dsl_scan_prefetch(scan_prefetch_ctx_t
*spc
, blkptr_t
*bp
, zbookmark_phys_t
*zb
)
1939 dsl_scan_t
*scn
= spc
->spc_scn
;
1940 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
1941 scan_prefetch_issue_ctx_t
*spic
;
1943 if (zfs_no_scrub_prefetch
|| BP_IS_REDACTED(bp
))
1946 if (BP_IS_HOLE(bp
) ||
1947 BP_GET_LOGICAL_BIRTH(bp
) <= scn
->scn_phys
.scn_cur_min_txg
||
1948 (BP_GET_LEVEL(bp
) == 0 && BP_GET_TYPE(bp
) != DMU_OT_DNODE
&&
1949 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
))
1952 if (dsl_scan_check_prefetch_resume(spc
, zb
))
1955 scan_prefetch_ctx_add_ref(spc
, scn
);
1956 spic
= kmem_alloc(sizeof (scan_prefetch_issue_ctx_t
), KM_SLEEP
);
1957 spic
->spic_spc
= spc
;
1958 spic
->spic_bp
= *bp
;
1959 spic
->spic_zb
= *zb
;
1962 * Add the IO to the queue of blocks to prefetch. This allows us to
1963 * prioritize blocks that we will need first for the main traversal
1966 mutex_enter(&spa
->spa_scrub_lock
);
1967 if (avl_find(&scn
->scn_prefetch_queue
, spic
, &idx
) != NULL
) {
1968 /* this block is already queued for prefetch */
1969 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
1970 scan_prefetch_ctx_rele(spc
, scn
);
1971 mutex_exit(&spa
->spa_scrub_lock
);
1975 avl_insert(&scn
->scn_prefetch_queue
, spic
, idx
);
1976 cv_broadcast(&spa
->spa_scrub_io_cv
);
1977 mutex_exit(&spa
->spa_scrub_lock
);
1981 dsl_scan_prefetch_dnode(dsl_scan_t
*scn
, dnode_phys_t
*dnp
,
1982 uint64_t objset
, uint64_t object
)
1985 zbookmark_phys_t zb
;
1986 scan_prefetch_ctx_t
*spc
;
1988 if (dnp
->dn_nblkptr
== 0 && !(dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
))
1991 SET_BOOKMARK(&zb
, objset
, object
, 0, 0);
1993 spc
= scan_prefetch_ctx_create(scn
, dnp
, FTAG
);
1995 for (i
= 0; i
< dnp
->dn_nblkptr
; i
++) {
1996 zb
.zb_level
= BP_GET_LEVEL(&dnp
->dn_blkptr
[i
]);
1998 dsl_scan_prefetch(spc
, &dnp
->dn_blkptr
[i
], &zb
);
2001 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
2003 zb
.zb_blkid
= DMU_SPILL_BLKID
;
2004 dsl_scan_prefetch(spc
, DN_SPILL_BLKPTR(dnp
), &zb
);
2007 scan_prefetch_ctx_rele(spc
, FTAG
);
2011 dsl_scan_prefetch_cb(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
2012 arc_buf_t
*buf
, void *private)
2015 scan_prefetch_ctx_t
*spc
= private;
2016 dsl_scan_t
*scn
= spc
->spc_scn
;
2017 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
2019 /* broadcast that the IO has completed for rate limiting purposes */
2020 mutex_enter(&spa
->spa_scrub_lock
);
2021 ASSERT3U(spa
->spa_scrub_inflight
, >=, BP_GET_PSIZE(bp
));
2022 spa
->spa_scrub_inflight
-= BP_GET_PSIZE(bp
);
2023 cv_broadcast(&spa
->spa_scrub_io_cv
);
2024 mutex_exit(&spa
->spa_scrub_lock
);
2026 /* if there was an error or we are done prefetching, just cleanup */
2027 if (buf
== NULL
|| scn
->scn_prefetch_stop
)
2030 if (BP_GET_LEVEL(bp
) > 0) {
2033 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
2034 zbookmark_phys_t czb
;
2036 for (i
= 0, cbp
= buf
->b_data
; i
< epb
; i
++, cbp
++) {
2037 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
2038 zb
->zb_level
- 1, zb
->zb_blkid
* epb
+ i
);
2039 dsl_scan_prefetch(spc
, cbp
, &czb
);
2041 } else if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
) {
2044 int epb
= BP_GET_LSIZE(bp
) >> DNODE_SHIFT
;
2046 for (i
= 0, cdnp
= buf
->b_data
; i
< epb
;
2047 i
+= cdnp
->dn_extra_slots
+ 1,
2048 cdnp
+= cdnp
->dn_extra_slots
+ 1) {
2049 dsl_scan_prefetch_dnode(scn
, cdnp
,
2050 zb
->zb_objset
, zb
->zb_blkid
* epb
+ i
);
2052 } else if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
2053 objset_phys_t
*osp
= buf
->b_data
;
2055 dsl_scan_prefetch_dnode(scn
, &osp
->os_meta_dnode
,
2056 zb
->zb_objset
, DMU_META_DNODE_OBJECT
);
2058 if (OBJSET_BUF_HAS_USERUSED(buf
)) {
2059 if (OBJSET_BUF_HAS_PROJECTUSED(buf
)) {
2060 dsl_scan_prefetch_dnode(scn
,
2061 &osp
->os_projectused_dnode
, zb
->zb_objset
,
2062 DMU_PROJECTUSED_OBJECT
);
2064 dsl_scan_prefetch_dnode(scn
,
2065 &osp
->os_groupused_dnode
, zb
->zb_objset
,
2066 DMU_GROUPUSED_OBJECT
);
2067 dsl_scan_prefetch_dnode(scn
,
2068 &osp
->os_userused_dnode
, zb
->zb_objset
,
2069 DMU_USERUSED_OBJECT
);
2075 arc_buf_destroy(buf
, private);
2076 scan_prefetch_ctx_rele(spc
, scn
);
2080 dsl_scan_prefetch_thread(void *arg
)
2082 dsl_scan_t
*scn
= arg
;
2083 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
2084 scan_prefetch_issue_ctx_t
*spic
;
2086 /* loop until we are told to stop */
2087 while (!scn
->scn_prefetch_stop
) {
2088 arc_flags_t flags
= ARC_FLAG_NOWAIT
|
2089 ARC_FLAG_PRESCIENT_PREFETCH
| ARC_FLAG_PREFETCH
;
2090 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCAN_THREAD
;
2092 mutex_enter(&spa
->spa_scrub_lock
);
2095 * Wait until we have an IO to issue and are not above our
2096 * maximum in flight limit.
2098 while (!scn
->scn_prefetch_stop
&&
2099 (avl_numnodes(&scn
->scn_prefetch_queue
) == 0 ||
2100 spa
->spa_scrub_inflight
>= scn
->scn_maxinflight_bytes
)) {
2101 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
2104 /* recheck if we should stop since we waited for the cv */
2105 if (scn
->scn_prefetch_stop
) {
2106 mutex_exit(&spa
->spa_scrub_lock
);
2110 /* remove the prefetch IO from the tree */
2111 spic
= avl_first(&scn
->scn_prefetch_queue
);
2112 spa
->spa_scrub_inflight
+= BP_GET_PSIZE(&spic
->spic_bp
);
2113 avl_remove(&scn
->scn_prefetch_queue
, spic
);
2115 mutex_exit(&spa
->spa_scrub_lock
);
2117 if (BP_IS_PROTECTED(&spic
->spic_bp
)) {
2118 ASSERT(BP_GET_TYPE(&spic
->spic_bp
) == DMU_OT_DNODE
||
2119 BP_GET_TYPE(&spic
->spic_bp
) == DMU_OT_OBJSET
);
2120 ASSERT3U(BP_GET_LEVEL(&spic
->spic_bp
), ==, 0);
2121 zio_flags
|= ZIO_FLAG_RAW
;
2124 /* We don't need data L1 buffer since we do not prefetch L0. */
2125 blkptr_t
*bp
= &spic
->spic_bp
;
2126 if (BP_GET_LEVEL(bp
) == 1 && BP_GET_TYPE(bp
) != DMU_OT_DNODE
&&
2127 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)
2128 flags
|= ARC_FLAG_NO_BUF
;
2130 /* issue the prefetch asynchronously */
2131 (void) arc_read(scn
->scn_zio_root
, spa
, bp
,
2132 dsl_scan_prefetch_cb
, spic
->spic_spc
, ZIO_PRIORITY_SCRUB
,
2133 zio_flags
, &flags
, &spic
->spic_zb
);
2135 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
2138 ASSERT(scn
->scn_prefetch_stop
);
2140 /* free any prefetches we didn't get to complete */
2141 mutex_enter(&spa
->spa_scrub_lock
);
2142 while ((spic
= avl_first(&scn
->scn_prefetch_queue
)) != NULL
) {
2143 avl_remove(&scn
->scn_prefetch_queue
, spic
);
2144 scan_prefetch_ctx_rele(spic
->spic_spc
, scn
);
2145 kmem_free(spic
, sizeof (scan_prefetch_issue_ctx_t
));
2147 ASSERT0(avl_numnodes(&scn
->scn_prefetch_queue
));
2148 mutex_exit(&spa
->spa_scrub_lock
);
2152 dsl_scan_check_resume(dsl_scan_t
*scn
, const dnode_phys_t
*dnp
,
2153 const zbookmark_phys_t
*zb
)
2156 * We never skip over user/group accounting objects (obj<0)
2158 if (!ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
) &&
2159 (int64_t)zb
->zb_object
>= 0) {
2161 * If we already visited this bp & everything below (in
2162 * a prior txg sync), don't bother doing it again.
2164 if (zbookmark_subtree_completed(dnp
, zb
,
2165 &scn
->scn_phys
.scn_bookmark
))
2169 * If we found the block we're trying to resume from, or
2170 * we went past it, zero it out to indicate that it's OK
2171 * to start checking for suspending again.
2173 if (zbookmark_subtree_tbd(dnp
, zb
,
2174 &scn
->scn_phys
.scn_bookmark
)) {
2175 dprintf("resuming at %llx/%llx/%llx/%llx\n",
2176 (longlong_t
)zb
->zb_objset
,
2177 (longlong_t
)zb
->zb_object
,
2178 (longlong_t
)zb
->zb_level
,
2179 (longlong_t
)zb
->zb_blkid
);
2180 memset(&scn
->scn_phys
.scn_bookmark
, 0, sizeof (*zb
));
2186 static void dsl_scan_visitbp(const blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2187 dnode_phys_t
*dnp
, dsl_dataset_t
*ds
, dsl_scan_t
*scn
,
2188 dmu_objset_type_t ostype
, dmu_tx_t
*tx
);
2189 inline __attribute__((always_inline
)) static void dsl_scan_visitdnode(
2190 dsl_scan_t
*, dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
2191 dnode_phys_t
*dnp
, uint64_t object
, dmu_tx_t
*tx
);
2194 * Return nonzero on i/o error.
2195 * Return new buf to write out in *bufp.
2197 inline __attribute__((always_inline
)) static int
2198 dsl_scan_recurse(dsl_scan_t
*scn
, dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
2199 dnode_phys_t
*dnp
, const blkptr_t
*bp
,
2200 const zbookmark_phys_t
*zb
, dmu_tx_t
*tx
)
2202 dsl_pool_t
*dp
= scn
->scn_dp
;
2203 spa_t
*spa
= dp
->dp_spa
;
2204 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCAN_THREAD
;
2207 ASSERT(!BP_IS_REDACTED(bp
));
2210 * There is an unlikely case of encountering dnodes with contradicting
2211 * dn_bonuslen and DNODE_FLAG_SPILL_BLKPTR flag before in files created
2212 * or modified before commit 4254acb was merged. As it is not possible
2213 * to know which of the two is correct, report an error.
2216 dnp
->dn_bonuslen
> DN_MAX_BONUS_LEN(dnp
)) {
2217 scn
->scn_phys
.scn_errors
++;
2218 spa_log_error(spa
, zb
, BP_GET_LOGICAL_BIRTH(bp
));
2219 return (SET_ERROR(EINVAL
));
2222 if (BP_GET_LEVEL(bp
) > 0) {
2223 arc_flags_t flags
= ARC_FLAG_WAIT
;
2226 int epb
= BP_GET_LSIZE(bp
) >> SPA_BLKPTRSHIFT
;
2229 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2230 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
2232 scn
->scn_phys
.scn_errors
++;
2235 for (i
= 0, cbp
= buf
->b_data
; i
< epb
; i
++, cbp
++) {
2236 zbookmark_phys_t czb
;
2238 SET_BOOKMARK(&czb
, zb
->zb_objset
, zb
->zb_object
,
2240 zb
->zb_blkid
* epb
+ i
);
2241 dsl_scan_visitbp(cbp
, &czb
, dnp
,
2242 ds
, scn
, ostype
, tx
);
2244 arc_buf_destroy(buf
, &buf
);
2245 } else if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
) {
2246 arc_flags_t flags
= ARC_FLAG_WAIT
;
2249 int epb
= BP_GET_LSIZE(bp
) >> DNODE_SHIFT
;
2252 if (BP_IS_PROTECTED(bp
)) {
2253 ASSERT3U(BP_GET_COMPRESS(bp
), ==, ZIO_COMPRESS_OFF
);
2254 zio_flags
|= ZIO_FLAG_RAW
;
2257 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2258 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
2260 scn
->scn_phys
.scn_errors
++;
2263 for (i
= 0, cdnp
= buf
->b_data
; i
< epb
;
2264 i
+= cdnp
->dn_extra_slots
+ 1,
2265 cdnp
+= cdnp
->dn_extra_slots
+ 1) {
2266 dsl_scan_visitdnode(scn
, ds
, ostype
,
2267 cdnp
, zb
->zb_blkid
* epb
+ i
, tx
);
2270 arc_buf_destroy(buf
, &buf
);
2271 } else if (BP_GET_TYPE(bp
) == DMU_OT_OBJSET
) {
2272 arc_flags_t flags
= ARC_FLAG_WAIT
;
2276 err
= arc_read(NULL
, spa
, bp
, arc_getbuf_func
, &buf
,
2277 ZIO_PRIORITY_SCRUB
, zio_flags
, &flags
, zb
);
2279 scn
->scn_phys
.scn_errors
++;
2285 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2286 &osp
->os_meta_dnode
, DMU_META_DNODE_OBJECT
, tx
);
2288 if (OBJSET_BUF_HAS_USERUSED(buf
)) {
2290 * We also always visit user/group/project accounting
2291 * objects, and never skip them, even if we are
2292 * suspending. This is necessary so that the
2293 * space deltas from this txg get integrated.
2295 if (OBJSET_BUF_HAS_PROJECTUSED(buf
))
2296 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2297 &osp
->os_projectused_dnode
,
2298 DMU_PROJECTUSED_OBJECT
, tx
);
2299 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2300 &osp
->os_groupused_dnode
,
2301 DMU_GROUPUSED_OBJECT
, tx
);
2302 dsl_scan_visitdnode(scn
, ds
, osp
->os_type
,
2303 &osp
->os_userused_dnode
,
2304 DMU_USERUSED_OBJECT
, tx
);
2306 arc_buf_destroy(buf
, &buf
);
2307 } else if (!zfs_blkptr_verify(spa
, bp
,
2308 BLK_CONFIG_NEEDED
, BLK_VERIFY_LOG
)) {
2310 * Sanity check the block pointer contents, this is handled
2311 * by arc_read() for the cases above.
2313 scn
->scn_phys
.scn_errors
++;
2314 spa_log_error(spa
, zb
, BP_GET_LOGICAL_BIRTH(bp
));
2315 return (SET_ERROR(EINVAL
));
2321 inline __attribute__((always_inline
)) static void
2322 dsl_scan_visitdnode(dsl_scan_t
*scn
, dsl_dataset_t
*ds
,
2323 dmu_objset_type_t ostype
, dnode_phys_t
*dnp
,
2324 uint64_t object
, dmu_tx_t
*tx
)
2328 for (j
= 0; j
< dnp
->dn_nblkptr
; j
++) {
2329 zbookmark_phys_t czb
;
2331 SET_BOOKMARK(&czb
, ds
? ds
->ds_object
: 0, object
,
2332 dnp
->dn_nlevels
- 1, j
);
2333 dsl_scan_visitbp(&dnp
->dn_blkptr
[j
],
2334 &czb
, dnp
, ds
, scn
, ostype
, tx
);
2337 if (dnp
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
) {
2338 zbookmark_phys_t czb
;
2339 SET_BOOKMARK(&czb
, ds
? ds
->ds_object
: 0, object
,
2340 0, DMU_SPILL_BLKID
);
2341 dsl_scan_visitbp(DN_SPILL_BLKPTR(dnp
),
2342 &czb
, dnp
, ds
, scn
, ostype
, tx
);
2347 * The arguments are in this order because mdb can only print the
2348 * first 5; we want them to be useful.
2351 dsl_scan_visitbp(const blkptr_t
*bp
, const zbookmark_phys_t
*zb
,
2352 dnode_phys_t
*dnp
, dsl_dataset_t
*ds
, dsl_scan_t
*scn
,
2353 dmu_objset_type_t ostype
, dmu_tx_t
*tx
)
2355 dsl_pool_t
*dp
= scn
->scn_dp
;
2357 if (dsl_scan_check_suspend(scn
, zb
))
2360 if (dsl_scan_check_resume(scn
, dnp
, zb
))
2363 scn
->scn_visited_this_txg
++;
2365 if (BP_IS_HOLE(bp
)) {
2366 scn
->scn_holes_this_txg
++;
2370 if (BP_IS_REDACTED(bp
)) {
2371 ASSERT(dsl_dataset_feature_is_active(ds
,
2372 SPA_FEATURE_REDACTED_DATASETS
));
2377 * Check if this block contradicts any filesystem flags.
2379 spa_feature_t f
= SPA_FEATURE_LARGE_BLOCKS
;
2380 if (BP_GET_LSIZE(bp
) > SPA_OLD_MAXBLOCKSIZE
)
2381 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2383 f
= zio_checksum_to_feature(BP_GET_CHECKSUM(bp
));
2384 if (f
!= SPA_FEATURE_NONE
)
2385 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2387 f
= zio_compress_to_feature(BP_GET_COMPRESS(bp
));
2388 if (f
!= SPA_FEATURE_NONE
)
2389 ASSERT(dsl_dataset_feature_is_active(ds
, f
));
2391 if (BP_GET_LOGICAL_BIRTH(bp
) <= scn
->scn_phys
.scn_cur_min_txg
) {
2392 scn
->scn_lt_min_this_txg
++;
2396 if (dsl_scan_recurse(scn
, ds
, ostype
, dnp
, bp
, zb
, tx
) != 0)
2400 * If dsl_scan_ddt() has already visited this block, it will have
2401 * already done any translations or scrubbing, so don't call the
2404 if (ddt_class_contains(dp
->dp_spa
,
2405 scn
->scn_phys
.scn_ddt_class_max
, bp
)) {
2406 scn
->scn_ddt_contained_this_txg
++;
2411 * If this block is from the future (after cur_max_txg), then we
2412 * are doing this on behalf of a deleted snapshot, and we will
2413 * revisit the future block on the next pass of this dataset.
2414 * Don't scan it now unless we need to because something
2415 * under it was modified.
2417 if (BP_GET_BIRTH(bp
) > scn
->scn_phys
.scn_cur_max_txg
) {
2418 scn
->scn_gt_max_this_txg
++;
2422 scan_funcs
[scn
->scn_phys
.scn_func
](dp
, bp
, zb
);
2426 dsl_scan_visit_rootbp(dsl_scan_t
*scn
, dsl_dataset_t
*ds
, blkptr_t
*bp
,
2429 zbookmark_phys_t zb
;
2430 scan_prefetch_ctx_t
*spc
;
2432 SET_BOOKMARK(&zb
, ds
? ds
->ds_object
: DMU_META_OBJSET
,
2433 ZB_ROOT_OBJECT
, ZB_ROOT_LEVEL
, ZB_ROOT_BLKID
);
2435 if (ZB_IS_ZERO(&scn
->scn_phys
.scn_bookmark
)) {
2436 SET_BOOKMARK(&scn
->scn_prefetch_bookmark
,
2437 zb
.zb_objset
, 0, 0, 0);
2439 scn
->scn_prefetch_bookmark
= scn
->scn_phys
.scn_bookmark
;
2442 scn
->scn_objsets_visited_this_txg
++;
2444 spc
= scan_prefetch_ctx_create(scn
, NULL
, FTAG
);
2445 dsl_scan_prefetch(spc
, bp
, &zb
);
2446 scan_prefetch_ctx_rele(spc
, FTAG
);
2448 dsl_scan_visitbp(bp
, &zb
, NULL
, ds
, scn
, DMU_OST_NONE
, tx
);
2450 dprintf_ds(ds
, "finished scan%s", "");
2454 ds_destroyed_scn_phys(dsl_dataset_t
*ds
, dsl_scan_phys_t
*scn_phys
)
2456 if (scn_phys
->scn_bookmark
.zb_objset
== ds
->ds_object
) {
2457 if (ds
->ds_is_snapshot
) {
2460 * - scn_cur_{min,max}_txg stays the same.
2461 * - Setting the flag is not really necessary if
2462 * scn_cur_max_txg == scn_max_txg, because there
2463 * is nothing after this snapshot that we care
2464 * about. However, we set it anyway and then
2465 * ignore it when we retraverse it in
2466 * dsl_scan_visitds().
2468 scn_phys
->scn_bookmark
.zb_objset
=
2469 dsl_dataset_phys(ds
)->ds_next_snap_obj
;
2470 zfs_dbgmsg("destroying ds %llu on %s; currently "
2471 "traversing; reset zb_objset to %llu",
2472 (u_longlong_t
)ds
->ds_object
,
2473 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2474 (u_longlong_t
)dsl_dataset_phys(ds
)->
2476 scn_phys
->scn_flags
|= DSF_VISIT_DS_AGAIN
;
2478 SET_BOOKMARK(&scn_phys
->scn_bookmark
,
2479 ZB_DESTROYED_OBJSET
, 0, 0, 0);
2480 zfs_dbgmsg("destroying ds %llu on %s; currently "
2481 "traversing; reset bookmark to -1,0,0,0",
2482 (u_longlong_t
)ds
->ds_object
,
2483 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
);
2489 * Invoked when a dataset is destroyed. We need to make sure that:
2491 * 1) If it is the dataset that was currently being scanned, we write
2492 * a new dsl_scan_phys_t and marking the objset reference in it
2494 * 2) Remove it from the work queue, if it was present.
2496 * If the dataset was actually a snapshot, instead of marking the dataset
2497 * as destroyed, we instead substitute the next snapshot in line.
2500 dsl_scan_ds_destroyed(dsl_dataset_t
*ds
, dmu_tx_t
*tx
)
2502 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2503 dsl_scan_t
*scn
= dp
->dp_scan
;
2506 if (!dsl_scan_is_running(scn
))
2509 ds_destroyed_scn_phys(ds
, &scn
->scn_phys
);
2510 ds_destroyed_scn_phys(ds
, &scn
->scn_phys_cached
);
2512 if (scan_ds_queue_contains(scn
, ds
->ds_object
, &mintxg
)) {
2513 scan_ds_queue_remove(scn
, ds
->ds_object
);
2514 if (ds
->ds_is_snapshot
)
2515 scan_ds_queue_insert(scn
,
2516 dsl_dataset_phys(ds
)->ds_next_snap_obj
, mintxg
);
2519 if (zap_lookup_int_key(dp
->dp_meta_objset
, scn
->scn_phys
.scn_queue_obj
,
2520 ds
->ds_object
, &mintxg
) == 0) {
2521 ASSERT3U(dsl_dataset_phys(ds
)->ds_num_children
, <=, 1);
2522 VERIFY3U(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2523 scn
->scn_phys
.scn_queue_obj
, ds
->ds_object
, tx
));
2524 if (ds
->ds_is_snapshot
) {
2526 * We keep the same mintxg; it could be >
2527 * ds_creation_txg if the previous snapshot was
2530 VERIFY(zap_add_int_key(dp
->dp_meta_objset
,
2531 scn
->scn_phys
.scn_queue_obj
,
2532 dsl_dataset_phys(ds
)->ds_next_snap_obj
,
2534 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2535 "replacing with %llu",
2536 (u_longlong_t
)ds
->ds_object
,
2537 dp
->dp_spa
->spa_name
,
2538 (u_longlong_t
)dsl_dataset_phys(ds
)->
2541 zfs_dbgmsg("destroying ds %llu on %s; in queue; "
2543 (u_longlong_t
)ds
->ds_object
,
2544 dp
->dp_spa
->spa_name
);
2549 * dsl_scan_sync() should be called after this, and should sync
2550 * out our changed state, but just to be safe, do it here.
2552 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2556 ds_snapshotted_bookmark(dsl_dataset_t
*ds
, zbookmark_phys_t
*scn_bookmark
)
2558 if (scn_bookmark
->zb_objset
== ds
->ds_object
) {
2559 scn_bookmark
->zb_objset
=
2560 dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
2561 zfs_dbgmsg("snapshotting ds %llu on %s; currently traversing; "
2562 "reset zb_objset to %llu",
2563 (u_longlong_t
)ds
->ds_object
,
2564 ds
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2565 (u_longlong_t
)dsl_dataset_phys(ds
)->ds_prev_snap_obj
);
2570 * Called when a dataset is snapshotted. If we were currently traversing
2571 * this snapshot, we reset our bookmark to point at the newly created
2572 * snapshot. We also modify our work queue to remove the old snapshot and
2573 * replace with the new one.
2576 dsl_scan_ds_snapshotted(dsl_dataset_t
*ds
, dmu_tx_t
*tx
)
2578 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2579 dsl_scan_t
*scn
= dp
->dp_scan
;
2582 if (!dsl_scan_is_running(scn
))
2585 ASSERT(dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= 0);
2587 ds_snapshotted_bookmark(ds
, &scn
->scn_phys
.scn_bookmark
);
2588 ds_snapshotted_bookmark(ds
, &scn
->scn_phys_cached
.scn_bookmark
);
2590 if (scan_ds_queue_contains(scn
, ds
->ds_object
, &mintxg
)) {
2591 scan_ds_queue_remove(scn
, ds
->ds_object
);
2592 scan_ds_queue_insert(scn
,
2593 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, mintxg
);
2596 if (zap_lookup_int_key(dp
->dp_meta_objset
, scn
->scn_phys
.scn_queue_obj
,
2597 ds
->ds_object
, &mintxg
) == 0) {
2598 VERIFY3U(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2599 scn
->scn_phys
.scn_queue_obj
, ds
->ds_object
, tx
));
2600 VERIFY(zap_add_int_key(dp
->dp_meta_objset
,
2601 scn
->scn_phys
.scn_queue_obj
,
2602 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, mintxg
, tx
) == 0);
2603 zfs_dbgmsg("snapshotting ds %llu on %s; in queue; "
2604 "replacing with %llu",
2605 (u_longlong_t
)ds
->ds_object
,
2606 dp
->dp_spa
->spa_name
,
2607 (u_longlong_t
)dsl_dataset_phys(ds
)->ds_prev_snap_obj
);
2610 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2614 ds_clone_swapped_bookmark(dsl_dataset_t
*ds1
, dsl_dataset_t
*ds2
,
2615 zbookmark_phys_t
*scn_bookmark
)
2617 if (scn_bookmark
->zb_objset
== ds1
->ds_object
) {
2618 scn_bookmark
->zb_objset
= ds2
->ds_object
;
2619 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2620 "reset zb_objset to %llu",
2621 (u_longlong_t
)ds1
->ds_object
,
2622 ds1
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2623 (u_longlong_t
)ds2
->ds_object
);
2624 } else if (scn_bookmark
->zb_objset
== ds2
->ds_object
) {
2625 scn_bookmark
->zb_objset
= ds1
->ds_object
;
2626 zfs_dbgmsg("clone_swap ds %llu on %s; currently traversing; "
2627 "reset zb_objset to %llu",
2628 (u_longlong_t
)ds2
->ds_object
,
2629 ds2
->ds_dir
->dd_pool
->dp_spa
->spa_name
,
2630 (u_longlong_t
)ds1
->ds_object
);
2635 * Called when an origin dataset and its clone are swapped. If we were
2636 * currently traversing the dataset, we need to switch to traversing the
2637 * newly promoted clone.
2640 dsl_scan_ds_clone_swapped(dsl_dataset_t
*ds1
, dsl_dataset_t
*ds2
, dmu_tx_t
*tx
)
2642 dsl_pool_t
*dp
= ds1
->ds_dir
->dd_pool
;
2643 dsl_scan_t
*scn
= dp
->dp_scan
;
2644 uint64_t mintxg1
, mintxg2
;
2645 boolean_t ds1_queued
, ds2_queued
;
2647 if (!dsl_scan_is_running(scn
))
2650 ds_clone_swapped_bookmark(ds1
, ds2
, &scn
->scn_phys
.scn_bookmark
);
2651 ds_clone_swapped_bookmark(ds1
, ds2
, &scn
->scn_phys_cached
.scn_bookmark
);
2654 * Handle the in-memory scan queue.
2656 ds1_queued
= scan_ds_queue_contains(scn
, ds1
->ds_object
, &mintxg1
);
2657 ds2_queued
= scan_ds_queue_contains(scn
, ds2
->ds_object
, &mintxg2
);
2659 /* Sanity checking. */
2661 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2662 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2665 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2666 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2669 if (ds1_queued
&& ds2_queued
) {
2671 * If both are queued, we don't need to do anything.
2672 * The swapping code below would not handle this case correctly,
2673 * since we can't insert ds2 if it is already there. That's
2674 * because scan_ds_queue_insert() prohibits a duplicate insert
2677 } else if (ds1_queued
) {
2678 scan_ds_queue_remove(scn
, ds1
->ds_object
);
2679 scan_ds_queue_insert(scn
, ds2
->ds_object
, mintxg1
);
2680 } else if (ds2_queued
) {
2681 scan_ds_queue_remove(scn
, ds2
->ds_object
);
2682 scan_ds_queue_insert(scn
, ds1
->ds_object
, mintxg2
);
2686 * Handle the on-disk scan queue.
2687 * The on-disk state is an out-of-date version of the in-memory state,
2688 * so the in-memory and on-disk values for ds1_queued and ds2_queued may
2689 * be different. Therefore we need to apply the swap logic to the
2690 * on-disk state independently of the in-memory state.
2692 ds1_queued
= zap_lookup_int_key(dp
->dp_meta_objset
,
2693 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, &mintxg1
) == 0;
2694 ds2_queued
= zap_lookup_int_key(dp
->dp_meta_objset
,
2695 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, &mintxg2
) == 0;
2697 /* Sanity checking. */
2699 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2700 ASSERT3U(mintxg1
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2703 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds1
)->ds_prev_snap_txg
);
2704 ASSERT3U(mintxg2
, ==, dsl_dataset_phys(ds2
)->ds_prev_snap_txg
);
2707 if (ds1_queued
&& ds2_queued
) {
2709 * If both are queued, we don't need to do anything.
2710 * Alternatively, we could check for EEXIST from
2711 * zap_add_int_key() and back out to the original state, but
2712 * that would be more work than checking for this case upfront.
2714 } else if (ds1_queued
) {
2715 VERIFY3S(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2716 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, tx
));
2717 VERIFY3S(0, ==, zap_add_int_key(dp
->dp_meta_objset
,
2718 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, mintxg1
, tx
));
2719 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2720 "replacing with %llu",
2721 (u_longlong_t
)ds1
->ds_object
,
2722 dp
->dp_spa
->spa_name
,
2723 (u_longlong_t
)ds2
->ds_object
);
2724 } else if (ds2_queued
) {
2725 VERIFY3S(0, ==, zap_remove_int(dp
->dp_meta_objset
,
2726 scn
->scn_phys
.scn_queue_obj
, ds2
->ds_object
, tx
));
2727 VERIFY3S(0, ==, zap_add_int_key(dp
->dp_meta_objset
,
2728 scn
->scn_phys
.scn_queue_obj
, ds1
->ds_object
, mintxg2
, tx
));
2729 zfs_dbgmsg("clone_swap ds %llu on %s; in queue; "
2730 "replacing with %llu",
2731 (u_longlong_t
)ds2
->ds_object
,
2732 dp
->dp_spa
->spa_name
,
2733 (u_longlong_t
)ds1
->ds_object
);
2736 dsl_scan_sync_state(scn
, tx
, SYNC_CACHED
);
2740 enqueue_clones_cb(dsl_pool_t
*dp
, dsl_dataset_t
*hds
, void *arg
)
2742 uint64_t originobj
= *(uint64_t *)arg
;
2745 dsl_scan_t
*scn
= dp
->dp_scan
;
2747 if (dsl_dir_phys(hds
->ds_dir
)->dd_origin_obj
!= originobj
)
2750 err
= dsl_dataset_hold_obj(dp
, hds
->ds_object
, FTAG
, &ds
);
2754 while (dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= originobj
) {
2755 dsl_dataset_t
*prev
;
2756 err
= dsl_dataset_hold_obj(dp
,
2757 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, FTAG
, &prev
);
2759 dsl_dataset_rele(ds
, FTAG
);
2764 mutex_enter(&scn
->scn_queue_lock
);
2765 scan_ds_queue_insert(scn
, ds
->ds_object
,
2766 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2767 mutex_exit(&scn
->scn_queue_lock
);
2768 dsl_dataset_rele(ds
, FTAG
);
2773 dsl_scan_visitds(dsl_scan_t
*scn
, uint64_t dsobj
, dmu_tx_t
*tx
)
2775 dsl_pool_t
*dp
= scn
->scn_dp
;
2778 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp
, dsobj
, FTAG
, &ds
));
2780 if (scn
->scn_phys
.scn_cur_min_txg
>=
2781 scn
->scn_phys
.scn_max_txg
) {
2783 * This can happen if this snapshot was created after the
2784 * scan started, and we already completed a previous snapshot
2785 * that was created after the scan started. This snapshot
2786 * only references blocks with:
2788 * birth < our ds_creation_txg
2789 * cur_min_txg is no less than ds_creation_txg.
2790 * We have already visited these blocks.
2792 * birth > scn_max_txg
2793 * The scan requested not to visit these blocks.
2795 * Subsequent snapshots (and clones) can reference our
2796 * blocks, or blocks with even higher birth times.
2797 * Therefore we do not need to visit them either,
2798 * so we do not add them to the work queue.
2800 * Note that checking for cur_min_txg >= cur_max_txg
2801 * is not sufficient, because in that case we may need to
2802 * visit subsequent snapshots. This happens when min_txg > 0,
2803 * which raises cur_min_txg. In this case we will visit
2804 * this dataset but skip all of its blocks, because the
2805 * rootbp's birth time is < cur_min_txg. Then we will
2806 * add the next snapshots/clones to the work queue.
2808 char *dsname
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
2809 dsl_dataset_name(ds
, dsname
);
2810 zfs_dbgmsg("scanning dataset %llu (%s) is unnecessary because "
2811 "cur_min_txg (%llu) >= max_txg (%llu)",
2812 (longlong_t
)dsobj
, dsname
,
2813 (longlong_t
)scn
->scn_phys
.scn_cur_min_txg
,
2814 (longlong_t
)scn
->scn_phys
.scn_max_txg
);
2815 kmem_free(dsname
, MAXNAMELEN
);
2821 * Only the ZIL in the head (non-snapshot) is valid. Even though
2822 * snapshots can have ZIL block pointers (which may be the same
2823 * BP as in the head), they must be ignored. In addition, $ORIGIN
2824 * doesn't have a objset (i.e. its ds_bp is a hole) so we don't
2825 * need to look for a ZIL in it either. So we traverse the ZIL here,
2826 * rather than in scan_recurse(), because the regular snapshot
2827 * block-sharing rules don't apply to it.
2829 if (!dsl_dataset_is_snapshot(ds
) &&
2830 (dp
->dp_origin_snap
== NULL
||
2831 ds
->ds_dir
!= dp
->dp_origin_snap
->ds_dir
)) {
2833 if (dmu_objset_from_ds(ds
, &os
) != 0) {
2836 dsl_scan_zil(dp
, &os
->os_zil_header
);
2840 * Iterate over the bps in this ds.
2842 dmu_buf_will_dirty(ds
->ds_dbuf
, tx
);
2843 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2844 dsl_scan_visit_rootbp(scn
, ds
, &dsl_dataset_phys(ds
)->ds_bp
, tx
);
2845 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2847 char *dsname
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
2848 dsl_dataset_name(ds
, dsname
);
2849 zfs_dbgmsg("scanned dataset %llu (%s) with min=%llu max=%llu; "
2851 (longlong_t
)dsobj
, dsname
,
2852 (longlong_t
)scn
->scn_phys
.scn_cur_min_txg
,
2853 (longlong_t
)scn
->scn_phys
.scn_cur_max_txg
,
2854 (int)scn
->scn_suspending
);
2855 kmem_free(dsname
, ZFS_MAX_DATASET_NAME_LEN
);
2857 if (scn
->scn_suspending
)
2861 * We've finished this pass over this dataset.
2865 * If we did not completely visit this dataset, do another pass.
2867 if (scn
->scn_phys
.scn_flags
& DSF_VISIT_DS_AGAIN
) {
2868 zfs_dbgmsg("incomplete pass on %s; visiting again",
2869 dp
->dp_spa
->spa_name
);
2870 scn
->scn_phys
.scn_flags
&= ~DSF_VISIT_DS_AGAIN
;
2871 scan_ds_queue_insert(scn
, ds
->ds_object
,
2872 scn
->scn_phys
.scn_cur_max_txg
);
2877 * Add descendant datasets to work queue.
2879 if (dsl_dataset_phys(ds
)->ds_next_snap_obj
!= 0) {
2880 scan_ds_queue_insert(scn
,
2881 dsl_dataset_phys(ds
)->ds_next_snap_obj
,
2882 dsl_dataset_phys(ds
)->ds_creation_txg
);
2884 if (dsl_dataset_phys(ds
)->ds_num_children
> 1) {
2885 boolean_t usenext
= B_FALSE
;
2886 if (dsl_dataset_phys(ds
)->ds_next_clones_obj
!= 0) {
2889 * A bug in a previous version of the code could
2890 * cause upgrade_clones_cb() to not set
2891 * ds_next_snap_obj when it should, leading to a
2892 * missing entry. Therefore we can only use the
2893 * next_clones_obj when its count is correct.
2895 int err
= zap_count(dp
->dp_meta_objset
,
2896 dsl_dataset_phys(ds
)->ds_next_clones_obj
, &count
);
2898 count
== dsl_dataset_phys(ds
)->ds_num_children
- 1)
2904 zap_attribute_t
*za
= zap_attribute_alloc();
2905 for (zap_cursor_init(&zc
, dp
->dp_meta_objset
,
2906 dsl_dataset_phys(ds
)->ds_next_clones_obj
);
2907 zap_cursor_retrieve(&zc
, za
) == 0;
2908 (void) zap_cursor_advance(&zc
)) {
2909 scan_ds_queue_insert(scn
,
2910 zfs_strtonum(za
->za_name
, NULL
),
2911 dsl_dataset_phys(ds
)->ds_creation_txg
);
2913 zap_cursor_fini(&zc
);
2914 zap_attribute_free(za
);
2916 VERIFY0(dmu_objset_find_dp(dp
, dp
->dp_root_dir_obj
,
2917 enqueue_clones_cb
, &ds
->ds_object
,
2923 dsl_dataset_rele(ds
, FTAG
);
2927 enqueue_cb(dsl_pool_t
*dp
, dsl_dataset_t
*hds
, void *arg
)
2932 dsl_scan_t
*scn
= dp
->dp_scan
;
2934 err
= dsl_dataset_hold_obj(dp
, hds
->ds_object
, FTAG
, &ds
);
2938 while (dsl_dataset_phys(ds
)->ds_prev_snap_obj
!= 0) {
2939 dsl_dataset_t
*prev
;
2940 err
= dsl_dataset_hold_obj(dp
,
2941 dsl_dataset_phys(ds
)->ds_prev_snap_obj
, FTAG
, &prev
);
2943 dsl_dataset_rele(ds
, FTAG
);
2948 * If this is a clone, we don't need to worry about it for now.
2950 if (dsl_dataset_phys(prev
)->ds_next_snap_obj
!= ds
->ds_object
) {
2951 dsl_dataset_rele(ds
, FTAG
);
2952 dsl_dataset_rele(prev
, FTAG
);
2955 dsl_dataset_rele(ds
, FTAG
);
2959 mutex_enter(&scn
->scn_queue_lock
);
2960 scan_ds_queue_insert(scn
, ds
->ds_object
,
2961 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
2962 mutex_exit(&scn
->scn_queue_lock
);
2963 dsl_dataset_rele(ds
, FTAG
);
2968 dsl_scan_ddt_entry(dsl_scan_t
*scn
, enum zio_checksum checksum
,
2969 ddt_t
*ddt
, ddt_lightweight_entry_t
*ddlwe
, dmu_tx_t
*tx
)
2972 const ddt_key_t
*ddk
= &ddlwe
->ddlwe_key
;
2974 zbookmark_phys_t zb
= { 0 };
2976 if (!dsl_scan_is_running(scn
))
2980 * This function is special because it is the only thing
2981 * that can add scan_io_t's to the vdev scan queues from
2982 * outside dsl_scan_sync(). For the most part this is ok
2983 * as long as it is called from within syncing context.
2984 * However, dsl_scan_sync() expects that no new sio's will
2985 * be added between when all the work for a scan is done
2986 * and the next txg when the scan is actually marked as
2987 * completed. This check ensures we do not issue new sio's
2988 * during this period.
2990 if (scn
->scn_done_txg
!= 0)
2993 for (int p
= 0; p
< DDT_NPHYS(ddt
); p
++) {
2994 ddt_phys_variant_t v
= DDT_PHYS_VARIANT(ddt
, p
);
2995 uint64_t phys_birth
= ddt_phys_birth(&ddlwe
->ddlwe_phys
, v
);
2997 if (phys_birth
== 0 || phys_birth
> scn
->scn_phys
.scn_max_txg
)
2999 ddt_bp_create(checksum
, ddk
, &ddlwe
->ddlwe_phys
, v
, &bp
);
3001 scn
->scn_visited_this_txg
++;
3002 scan_funcs
[scn
->scn_phys
.scn_func
](scn
->scn_dp
, &bp
, &zb
);
3007 * Scrub/dedup interaction.
3009 * If there are N references to a deduped block, we don't want to scrub it
3010 * N times -- ideally, we should scrub it exactly once.
3012 * We leverage the fact that the dde's replication class (ddt_class_t)
3013 * is ordered from highest replication class (DDT_CLASS_DITTO) to lowest
3014 * (DDT_CLASS_UNIQUE) so that we may walk the DDT in that order.
3016 * To prevent excess scrubbing, the scrub begins by walking the DDT
3017 * to find all blocks with refcnt > 1, and scrubs each of these once.
3018 * Since there are two replication classes which contain blocks with
3019 * refcnt > 1, we scrub the highest replication class (DDT_CLASS_DITTO) first.
3020 * Finally the top-down scrub begins, only visiting blocks with refcnt == 1.
3022 * There would be nothing more to say if a block's refcnt couldn't change
3023 * during a scrub, but of course it can so we must account for changes
3024 * in a block's replication class.
3026 * Here's an example of what can occur:
3028 * If a block has refcnt > 1 during the DDT scrub phase, but has refcnt == 1
3029 * when visited during the top-down scrub phase, it will be scrubbed twice.
3030 * This negates our scrub optimization, but is otherwise harmless.
3032 * If a block has refcnt == 1 during the DDT scrub phase, but has refcnt > 1
3033 * on each visit during the top-down scrub phase, it will never be scrubbed.
3034 * To catch this, ddt_sync_entry() notifies the scrub code whenever a block's
3035 * reference class transitions to a higher level (i.e DDT_CLASS_UNIQUE to
3036 * DDT_CLASS_DUPLICATE); if it transitions from refcnt == 1 to refcnt > 1
3037 * while a scrub is in progress, it scrubs the block right then.
3040 dsl_scan_ddt(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
3042 ddt_bookmark_t
*ddb
= &scn
->scn_phys
.scn_ddt_bookmark
;
3043 ddt_lightweight_entry_t ddlwe
= {0};
3047 while ((error
= ddt_walk(scn
->scn_dp
->dp_spa
, ddb
, &ddlwe
)) == 0) {
3050 if (ddb
->ddb_class
> scn
->scn_phys
.scn_ddt_class_max
)
3052 dprintf("visiting ddb=%llu/%llu/%llu/%llx\n",
3053 (longlong_t
)ddb
->ddb_class
,
3054 (longlong_t
)ddb
->ddb_type
,
3055 (longlong_t
)ddb
->ddb_checksum
,
3056 (longlong_t
)ddb
->ddb_cursor
);
3058 /* There should be no pending changes to the dedup table */
3059 ddt
= scn
->scn_dp
->dp_spa
->spa_ddt
[ddb
->ddb_checksum
];
3060 ASSERT(avl_first(&ddt
->ddt_tree
) == NULL
);
3062 dsl_scan_ddt_entry(scn
, ddb
->ddb_checksum
, ddt
, &ddlwe
, tx
);
3065 if (dsl_scan_check_suspend(scn
, NULL
))
3069 if (error
== EAGAIN
) {
3070 dsl_scan_check_suspend(scn
, NULL
);
3073 zfs_dbgmsg("waiting for ddt to become ready for scan "
3074 "on %s with class_max = %u; suspending=%u",
3075 scn
->scn_dp
->dp_spa
->spa_name
,
3076 (int)scn
->scn_phys
.scn_ddt_class_max
,
3077 (int)scn
->scn_suspending
);
3079 zfs_dbgmsg("scanned %llu ddt entries on %s with "
3080 "class_max = %u; suspending=%u", (longlong_t
)n
,
3081 scn
->scn_dp
->dp_spa
->spa_name
,
3082 (int)scn
->scn_phys
.scn_ddt_class_max
,
3083 (int)scn
->scn_suspending
);
3085 ASSERT(error
== 0 || error
== ENOENT
);
3086 ASSERT(error
!= ENOENT
||
3087 ddb
->ddb_class
> scn
->scn_phys
.scn_ddt_class_max
);
3091 dsl_scan_ds_maxtxg(dsl_dataset_t
*ds
)
3093 uint64_t smt
= ds
->ds_dir
->dd_pool
->dp_scan
->scn_phys
.scn_max_txg
;
3094 if (ds
->ds_is_snapshot
)
3095 return (MIN(smt
, dsl_dataset_phys(ds
)->ds_creation_txg
));
3100 dsl_scan_visit(dsl_scan_t
*scn
, dmu_tx_t
*tx
)
3103 dsl_pool_t
*dp
= scn
->scn_dp
;
3105 if (scn
->scn_phys
.scn_ddt_bookmark
.ddb_class
<=
3106 scn
->scn_phys
.scn_ddt_class_max
) {
3107 scn
->scn_phys
.scn_cur_min_txg
= scn
->scn_phys
.scn_min_txg
;
3108 scn
->scn_phys
.scn_cur_max_txg
= scn
->scn_phys
.scn_max_txg
;
3109 dsl_scan_ddt(scn
, tx
);
3110 if (scn
->scn_suspending
)
3114 if (scn
->scn_phys
.scn_bookmark
.zb_objset
== DMU_META_OBJSET
) {
3115 /* First do the MOS & ORIGIN */
3117 scn
->scn_phys
.scn_cur_min_txg
= scn
->scn_phys
.scn_min_txg
;
3118 scn
->scn_phys
.scn_cur_max_txg
= scn
->scn_phys
.scn_max_txg
;
3119 dsl_scan_visit_rootbp(scn
, NULL
,
3120 &dp
->dp_meta_rootbp
, tx
);
3121 if (scn
->scn_suspending
)
3124 if (spa_version(dp
->dp_spa
) < SPA_VERSION_DSL_SCRUB
) {
3125 VERIFY0(dmu_objset_find_dp(dp
, dp
->dp_root_dir_obj
,
3126 enqueue_cb
, NULL
, DS_FIND_CHILDREN
));
3128 dsl_scan_visitds(scn
,
3129 dp
->dp_origin_snap
->ds_object
, tx
);
3131 ASSERT(!scn
->scn_suspending
);
3132 } else if (scn
->scn_phys
.scn_bookmark
.zb_objset
!=
3133 ZB_DESTROYED_OBJSET
) {
3134 uint64_t dsobj
= scn
->scn_phys
.scn_bookmark
.zb_objset
;
3136 * If we were suspended, continue from here. Note if the
3137 * ds we were suspended on was deleted, the zb_objset may
3138 * be -1, so we will skip this and find a new objset
3141 dsl_scan_visitds(scn
, dsobj
, tx
);
3142 if (scn
->scn_suspending
)
3147 * In case we suspended right at the end of the ds, zero the
3148 * bookmark so we don't think that we're still trying to resume.
3150 memset(&scn
->scn_phys
.scn_bookmark
, 0, sizeof (zbookmark_phys_t
));
3153 * Keep pulling things out of the dataset avl queue. Updates to the
3154 * persistent zap-object-as-queue happen only at checkpoints.
3156 while ((sds
= avl_first(&scn
->scn_queue
)) != NULL
) {
3158 uint64_t dsobj
= sds
->sds_dsobj
;
3159 uint64_t txg
= sds
->sds_txg
;
3161 /* dequeue and free the ds from the queue */
3162 scan_ds_queue_remove(scn
, dsobj
);
3165 /* set up min / max txg */
3166 VERIFY3U(0, ==, dsl_dataset_hold_obj(dp
, dsobj
, FTAG
, &ds
));
3168 scn
->scn_phys
.scn_cur_min_txg
=
3169 MAX(scn
->scn_phys
.scn_min_txg
, txg
);
3171 scn
->scn_phys
.scn_cur_min_txg
=
3172 MAX(scn
->scn_phys
.scn_min_txg
,
3173 dsl_dataset_phys(ds
)->ds_prev_snap_txg
);
3175 scn
->scn_phys
.scn_cur_max_txg
= dsl_scan_ds_maxtxg(ds
);
3176 dsl_dataset_rele(ds
, FTAG
);
3178 dsl_scan_visitds(scn
, dsobj
, tx
);
3179 if (scn
->scn_suspending
)
3183 /* No more objsets to fetch, we're done */
3184 scn
->scn_phys
.scn_bookmark
.zb_objset
= ZB_DESTROYED_OBJSET
;
3185 ASSERT0(scn
->scn_suspending
);
3189 dsl_scan_count_data_disks(spa_t
*spa
)
3191 vdev_t
*rvd
= spa
->spa_root_vdev
;
3192 uint64_t i
, leaves
= 0;
3194 for (i
= 0; i
< rvd
->vdev_children
; i
++) {
3195 vdev_t
*vd
= rvd
->vdev_child
[i
];
3196 if (vd
->vdev_islog
|| vd
->vdev_isspare
|| vd
->vdev_isl2cache
)
3198 leaves
+= vdev_get_ndisks(vd
) - vdev_get_nparity(vd
);
3204 scan_io_queues_update_zio_stats(dsl_scan_io_queue_t
*q
, const blkptr_t
*bp
)
3207 uint64_t cur_size
= 0;
3209 for (i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
3210 cur_size
+= DVA_GET_ASIZE(&bp
->blk_dva
[i
]);
3213 q
->q_total_zio_size_this_txg
+= cur_size
;
3214 q
->q_zios_this_txg
++;
3218 scan_io_queues_update_seg_stats(dsl_scan_io_queue_t
*q
, uint64_t start
,
3221 q
->q_total_seg_size_this_txg
+= end
- start
;
3222 q
->q_segs_this_txg
++;
3226 scan_io_queue_check_suspend(dsl_scan_t
*scn
)
3228 /* See comment in dsl_scan_check_suspend() */
3229 uint64_t curr_time_ns
= gethrtime();
3230 uint64_t scan_time_ns
= curr_time_ns
- scn
->scn_sync_start_time
;
3231 uint64_t sync_time_ns
= curr_time_ns
-
3232 scn
->scn_dp
->dp_spa
->spa_sync_starttime
;
3233 uint64_t dirty_min_bytes
= zfs_dirty_data_max
*
3234 zfs_vdev_async_write_active_min_dirty_percent
/ 100;
3235 uint_t mintime
= (scn
->scn_phys
.scn_func
== POOL_SCAN_RESILVER
) ?
3236 zfs_resilver_min_time_ms
: zfs_scrub_min_time_ms
;
3238 return ((NSEC2MSEC(scan_time_ns
) > mintime
&&
3239 (scn
->scn_dp
->dp_dirty_total
>= dirty_min_bytes
||
3240 txg_sync_waiting(scn
->scn_dp
) ||
3241 NSEC2SEC(sync_time_ns
) >= zfs_txg_timeout
)) ||
3242 spa_shutting_down(scn
->scn_dp
->dp_spa
));
3246 * Given a list of scan_io_t's in io_list, this issues the I/Os out to
3247 * disk. This consumes the io_list and frees the scan_io_t's. This is
3248 * called when emptying queues, either when we're up against the memory
3249 * limit or when we have finished scanning. Returns B_TRUE if we stopped
3250 * processing the list before we finished. Any sios that were not issued
3251 * will remain in the io_list.
3254 scan_io_queue_issue(dsl_scan_io_queue_t
*queue
, list_t
*io_list
)
3256 dsl_scan_t
*scn
= queue
->q_scn
;
3258 boolean_t suspended
= B_FALSE
;
3260 while ((sio
= list_head(io_list
)) != NULL
) {
3263 if (scan_io_queue_check_suspend(scn
)) {
3269 scan_exec_io(scn
->scn_dp
, &bp
, sio
->sio_flags
,
3270 &sio
->sio_zb
, queue
);
3271 (void) list_remove_head(io_list
);
3272 scan_io_queues_update_zio_stats(queue
, &bp
);
3279 * This function removes sios from an IO queue which reside within a given
3280 * range_seg_t and inserts them (in offset order) into a list. Note that
3281 * we only ever return a maximum of 32 sios at once. If there are more sios
3282 * to process within this segment that did not make it onto the list we
3283 * return B_TRUE and otherwise B_FALSE.
3286 scan_io_queue_gather(dsl_scan_io_queue_t
*queue
, range_seg_t
*rs
, list_t
*list
)
3288 scan_io_t
*srch_sio
, *sio
, *next_sio
;
3290 uint_t num_sios
= 0;
3291 int64_t bytes_issued
= 0;
3294 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3296 srch_sio
= sio_alloc(1);
3297 srch_sio
->sio_nr_dvas
= 1;
3298 SIO_SET_OFFSET(srch_sio
, rs_get_start(rs
, queue
->q_exts_by_addr
));
3301 * The exact start of the extent might not contain any matching zios,
3302 * so if that's the case, examine the next one in the tree.
3304 sio
= avl_find(&queue
->q_sios_by_addr
, srch_sio
, &idx
);
3308 sio
= avl_nearest(&queue
->q_sios_by_addr
, idx
, AVL_AFTER
);
3310 while (sio
!= NULL
&& SIO_GET_OFFSET(sio
) < rs_get_end(rs
,
3311 queue
->q_exts_by_addr
) && num_sios
<= 32) {
3312 ASSERT3U(SIO_GET_OFFSET(sio
), >=, rs_get_start(rs
,
3313 queue
->q_exts_by_addr
));
3314 ASSERT3U(SIO_GET_END_OFFSET(sio
), <=, rs_get_end(rs
,
3315 queue
->q_exts_by_addr
));
3317 next_sio
= AVL_NEXT(&queue
->q_sios_by_addr
, sio
);
3318 avl_remove(&queue
->q_sios_by_addr
, sio
);
3319 if (avl_is_empty(&queue
->q_sios_by_addr
))
3320 atomic_add_64(&queue
->q_scn
->scn_queues_pending
, -1);
3321 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
3323 bytes_issued
+= SIO_GET_ASIZE(sio
);
3325 list_insert_tail(list
, sio
);
3330 * We limit the number of sios we process at once to 32 to avoid
3331 * biting off more than we can chew. If we didn't take everything
3332 * in the segment we update it to reflect the work we were able to
3333 * complete. Otherwise, we remove it from the range tree entirely.
3335 if (sio
!= NULL
&& SIO_GET_OFFSET(sio
) < rs_get_end(rs
,
3336 queue
->q_exts_by_addr
)) {
3337 range_tree_adjust_fill(queue
->q_exts_by_addr
, rs
,
3339 range_tree_resize_segment(queue
->q_exts_by_addr
, rs
,
3340 SIO_GET_OFFSET(sio
), rs_get_end(rs
,
3341 queue
->q_exts_by_addr
) - SIO_GET_OFFSET(sio
));
3342 queue
->q_last_ext_addr
= SIO_GET_OFFSET(sio
);
3345 uint64_t rstart
= rs_get_start(rs
, queue
->q_exts_by_addr
);
3346 uint64_t rend
= rs_get_end(rs
, queue
->q_exts_by_addr
);
3347 range_tree_remove(queue
->q_exts_by_addr
, rstart
, rend
- rstart
);
3348 queue
->q_last_ext_addr
= -1;
3354 * This is called from the queue emptying thread and selects the next
3355 * extent from which we are to issue I/Os. The behavior of this function
3356 * depends on the state of the scan, the current memory consumption and
3357 * whether or not we are performing a scan shutdown.
3358 * 1) We select extents in an elevator algorithm (LBA-order) if the scan
3359 * needs to perform a checkpoint
3360 * 2) We select the largest available extent if we are up against the
3362 * 3) Otherwise we don't select any extents.
3364 static range_seg_t
*
3365 scan_io_queue_fetch_ext(dsl_scan_io_queue_t
*queue
)
3367 dsl_scan_t
*scn
= queue
->q_scn
;
3368 range_tree_t
*rt
= queue
->q_exts_by_addr
;
3370 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
3371 ASSERT(scn
->scn_is_sorted
);
3373 if (!scn
->scn_checkpointing
&& !scn
->scn_clearing
)
3377 * During normal clearing, we want to issue our largest segments
3378 * first, keeping IO as sequential as possible, and leaving the
3379 * smaller extents for later with the hope that they might eventually
3380 * grow to larger sequential segments. However, when the scan is
3381 * checkpointing, no new extents will be added to the sorting queue,
3382 * so the way we are sorted now is as good as it will ever get.
3383 * In this case, we instead switch to issuing extents in LBA order.
3385 if ((zfs_scan_issue_strategy
< 1 && scn
->scn_checkpointing
) ||
3386 zfs_scan_issue_strategy
== 1)
3387 return (range_tree_first(rt
));
3390 * Try to continue previous extent if it is not completed yet. After
3391 * shrink in scan_io_queue_gather() it may no longer be the best, but
3392 * otherwise we leave shorter remnant every txg.
3395 uint64_t size
= 1ULL << rt
->rt_shift
;
3396 range_seg_t
*addr_rs
;
3397 if (queue
->q_last_ext_addr
!= -1) {
3398 start
= queue
->q_last_ext_addr
;
3399 addr_rs
= range_tree_find(rt
, start
, size
);
3400 if (addr_rs
!= NULL
)
3405 * Nothing to continue, so find new best extent.
3407 uint64_t *v
= zfs_btree_first(&queue
->q_exts_by_size
, NULL
);
3410 queue
->q_last_ext_addr
= start
= *v
<< rt
->rt_shift
;
3413 * We need to get the original entry in the by_addr tree so we can
3416 addr_rs
= range_tree_find(rt
, start
, size
);
3417 ASSERT3P(addr_rs
, !=, NULL
);
3418 ASSERT3U(rs_get_start(addr_rs
, rt
), ==, start
);
3419 ASSERT3U(rs_get_end(addr_rs
, rt
), >, start
);
3424 scan_io_queues_run_one(void *arg
)
3426 dsl_scan_io_queue_t
*queue
= arg
;
3427 kmutex_t
*q_lock
= &queue
->q_vd
->vdev_scan_io_queue_lock
;
3428 boolean_t suspended
= B_FALSE
;
3434 ASSERT(queue
->q_scn
->scn_is_sorted
);
3436 list_create(&sio_list
, sizeof (scan_io_t
),
3437 offsetof(scan_io_t
, sio_nodes
.sio_list_node
));
3438 zio
= zio_null(queue
->q_scn
->scn_zio_root
, queue
->q_scn
->scn_dp
->dp_spa
,
3439 NULL
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
3440 mutex_enter(q_lock
);
3443 /* Calculate maximum in-flight bytes for this vdev. */
3444 queue
->q_maxinflight_bytes
= MAX(1, zfs_scan_vdev_limit
*
3445 (vdev_get_ndisks(queue
->q_vd
) - vdev_get_nparity(queue
->q_vd
)));
3447 /* reset per-queue scan statistics for this txg */
3448 queue
->q_total_seg_size_this_txg
= 0;
3449 queue
->q_segs_this_txg
= 0;
3450 queue
->q_total_zio_size_this_txg
= 0;
3451 queue
->q_zios_this_txg
= 0;
3453 /* loop until we run out of time or sios */
3454 while ((rs
= scan_io_queue_fetch_ext(queue
)) != NULL
) {
3455 uint64_t seg_start
= 0, seg_end
= 0;
3456 boolean_t more_left
;
3458 ASSERT(list_is_empty(&sio_list
));
3460 /* loop while we still have sios left to process in this rs */
3462 scan_io_t
*first_sio
, *last_sio
;
3465 * We have selected which extent needs to be
3466 * processed next. Gather up the corresponding sios.
3468 more_left
= scan_io_queue_gather(queue
, rs
, &sio_list
);
3469 ASSERT(!list_is_empty(&sio_list
));
3470 first_sio
= list_head(&sio_list
);
3471 last_sio
= list_tail(&sio_list
);
3473 seg_end
= SIO_GET_END_OFFSET(last_sio
);
3475 seg_start
= SIO_GET_OFFSET(first_sio
);
3478 * Issuing sios can take a long time so drop the
3479 * queue lock. The sio queue won't be updated by
3480 * other threads since we're in syncing context so
3481 * we can be sure that our trees will remain exactly
3485 suspended
= scan_io_queue_issue(queue
, &sio_list
);
3486 mutex_enter(q_lock
);
3490 } while (more_left
);
3492 /* update statistics for debugging purposes */
3493 scan_io_queues_update_seg_stats(queue
, seg_start
, seg_end
);
3500 * If we were suspended in the middle of processing,
3501 * requeue any unfinished sios and exit.
3503 while ((sio
= list_remove_head(&sio_list
)) != NULL
)
3504 scan_io_queue_insert_impl(queue
, sio
);
3506 queue
->q_zio
= NULL
;
3509 list_destroy(&sio_list
);
3513 * Performs an emptying run on all scan queues in the pool. This just
3514 * punches out one thread per top-level vdev, each of which processes
3515 * only that vdev's scan queue. We can parallelize the I/O here because
3516 * we know that each queue's I/Os only affect its own top-level vdev.
3518 * This function waits for the queue runs to complete, and must be
3519 * called from dsl_scan_sync (or in general, syncing context).
3522 scan_io_queues_run(dsl_scan_t
*scn
)
3524 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3526 ASSERT(scn
->scn_is_sorted
);
3527 ASSERT(spa_config_held(spa
, SCL_CONFIG
, RW_READER
));
3529 if (scn
->scn_queues_pending
== 0)
3532 if (scn
->scn_taskq
== NULL
) {
3533 int nthreads
= spa
->spa_root_vdev
->vdev_children
;
3536 * We need to make this taskq *always* execute as many
3537 * threads in parallel as we have top-level vdevs and no
3538 * less, otherwise strange serialization of the calls to
3539 * scan_io_queues_run_one can occur during spa_sync runs
3540 * and that significantly impacts performance.
3542 scn
->scn_taskq
= taskq_create("dsl_scan_iss", nthreads
,
3543 minclsyspri
, nthreads
, nthreads
, TASKQ_PREPOPULATE
);
3546 for (uint64_t i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
3547 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
3549 mutex_enter(&vd
->vdev_scan_io_queue_lock
);
3550 if (vd
->vdev_scan_io_queue
!= NULL
) {
3551 VERIFY(taskq_dispatch(scn
->scn_taskq
,
3552 scan_io_queues_run_one
, vd
->vdev_scan_io_queue
,
3553 TQ_SLEEP
) != TASKQID_INVALID
);
3555 mutex_exit(&vd
->vdev_scan_io_queue_lock
);
3559 * Wait for the queues to finish issuing their IOs for this run
3560 * before we return. There may still be IOs in flight at this
3563 taskq_wait(scn
->scn_taskq
);
3567 dsl_scan_async_block_should_pause(dsl_scan_t
*scn
)
3569 uint64_t elapsed_nanosecs
;
3574 if (zfs_async_block_max_blocks
!= 0 &&
3575 scn
->scn_visited_this_txg
>= zfs_async_block_max_blocks
) {
3579 if (zfs_max_async_dedup_frees
!= 0 &&
3580 scn
->scn_dedup_frees_this_txg
>= zfs_max_async_dedup_frees
) {
3584 elapsed_nanosecs
= gethrtime() - scn
->scn_sync_start_time
;
3585 return (elapsed_nanosecs
/ NANOSEC
> zfs_txg_timeout
||
3586 (NSEC2MSEC(elapsed_nanosecs
) > scn
->scn_async_block_min_time_ms
&&
3587 txg_sync_waiting(scn
->scn_dp
)) ||
3588 spa_shutting_down(scn
->scn_dp
->dp_spa
));
3592 dsl_scan_free_block_cb(void *arg
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
3594 dsl_scan_t
*scn
= arg
;
3596 if (!scn
->scn_is_bptree
||
3597 (BP_GET_LEVEL(bp
) == 0 && BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)) {
3598 if (dsl_scan_async_block_should_pause(scn
))
3599 return (SET_ERROR(ERESTART
));
3602 zio_nowait(zio_free_sync(scn
->scn_zio_root
, scn
->scn_dp
->dp_spa
,
3603 dmu_tx_get_txg(tx
), bp
, 0));
3604 dsl_dir_diduse_space(tx
->tx_pool
->dp_free_dir
, DD_USED_HEAD
,
3605 -bp_get_dsize_sync(scn
->scn_dp
->dp_spa
, bp
),
3606 -BP_GET_PSIZE(bp
), -BP_GET_UCSIZE(bp
), tx
);
3607 scn
->scn_visited_this_txg
++;
3608 if (BP_GET_DEDUP(bp
))
3609 scn
->scn_dedup_frees_this_txg
++;
3614 dsl_scan_update_stats(dsl_scan_t
*scn
)
3616 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3618 uint64_t seg_size_total
= 0, zio_size_total
= 0;
3619 uint64_t seg_count_total
= 0, zio_count_total
= 0;
3621 for (i
= 0; i
< spa
->spa_root_vdev
->vdev_children
; i
++) {
3622 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[i
];
3623 dsl_scan_io_queue_t
*queue
= vd
->vdev_scan_io_queue
;
3628 seg_size_total
+= queue
->q_total_seg_size_this_txg
;
3629 zio_size_total
+= queue
->q_total_zio_size_this_txg
;
3630 seg_count_total
+= queue
->q_segs_this_txg
;
3631 zio_count_total
+= queue
->q_zios_this_txg
;
3634 if (seg_count_total
== 0 || zio_count_total
== 0) {
3635 scn
->scn_avg_seg_size_this_txg
= 0;
3636 scn
->scn_avg_zio_size_this_txg
= 0;
3637 scn
->scn_segs_this_txg
= 0;
3638 scn
->scn_zios_this_txg
= 0;
3642 scn
->scn_avg_seg_size_this_txg
= seg_size_total
/ seg_count_total
;
3643 scn
->scn_avg_zio_size_this_txg
= zio_size_total
/ zio_count_total
;
3644 scn
->scn_segs_this_txg
= seg_count_total
;
3645 scn
->scn_zios_this_txg
= zio_count_total
;
3649 bpobj_dsl_scan_free_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
3653 return (dsl_scan_free_block_cb(arg
, bp
, tx
));
3657 dsl_scan_obsolete_block_cb(void *arg
, const blkptr_t
*bp
, boolean_t bp_freed
,
3661 dsl_scan_t
*scn
= arg
;
3662 const dva_t
*dva
= &bp
->blk_dva
[0];
3664 if (dsl_scan_async_block_should_pause(scn
))
3665 return (SET_ERROR(ERESTART
));
3667 spa_vdev_indirect_mark_obsolete(scn
->scn_dp
->dp_spa
,
3668 DVA_GET_VDEV(dva
), DVA_GET_OFFSET(dva
),
3669 DVA_GET_ASIZE(dva
), tx
);
3670 scn
->scn_visited_this_txg
++;
3675 dsl_scan_active(dsl_scan_t
*scn
)
3677 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3678 uint64_t used
= 0, comp
, uncomp
;
3679 boolean_t clones_left
;
3681 if (spa
->spa_load_state
!= SPA_LOAD_NONE
)
3683 if (spa_shutting_down(spa
))
3685 if ((dsl_scan_is_running(scn
) && !dsl_scan_is_paused_scrub(scn
)) ||
3686 (scn
->scn_async_destroying
&& !scn
->scn_async_stalled
))
3689 if (spa_version(scn
->scn_dp
->dp_spa
) >= SPA_VERSION_DEADLISTS
) {
3690 (void) bpobj_space(&scn
->scn_dp
->dp_free_bpobj
,
3691 &used
, &comp
, &uncomp
);
3693 clones_left
= spa_livelist_delete_check(spa
);
3694 return ((used
!= 0) || (clones_left
));
3698 dsl_errorscrub_active(dsl_scan_t
*scn
)
3700 spa_t
*spa
= scn
->scn_dp
->dp_spa
;
3701 if (spa
->spa_load_state
!= SPA_LOAD_NONE
)
3703 if (spa_shutting_down(spa
))
3705 if (dsl_errorscrubbing(scn
->scn_dp
))
3711 dsl_scan_check_deferred(vdev_t
*vd
)
3713 boolean_t need_resilver
= B_FALSE
;
3715 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
3717 dsl_scan_check_deferred(vd
->vdev_child
[c
]);
3720 if (!vdev_is_concrete(vd
) || vd
->vdev_aux
||
3721 !vd
->vdev_ops
->vdev_op_leaf
)
3722 return (need_resilver
);
3724 if (!vd
->vdev_resilver_deferred
)
3725 need_resilver
= B_TRUE
;
3727 return (need_resilver
);
3731 dsl_scan_need_resilver(spa_t
*spa
, const dva_t
*dva
, size_t psize
,
3732 uint64_t phys_birth
)
3736 vd
= vdev_lookup_top(spa
, DVA_GET_VDEV(dva
));
3738 if (vd
->vdev_ops
== &vdev_indirect_ops
) {
3740 * The indirect vdev can point to multiple
3741 * vdevs. For simplicity, always create
3742 * the resilver zio_t. zio_vdev_io_start()
3743 * will bypass the child resilver i/o's if
3744 * they are on vdevs that don't have DTL's.
3749 if (DVA_GET_GANG(dva
)) {
3751 * Gang members may be spread across multiple
3752 * vdevs, so the best estimate we have is the
3753 * scrub range, which has already been checked.
3754 * XXX -- it would be better to change our
3755 * allocation policy to ensure that all
3756 * gang members reside on the same vdev.
3762 * Check if the top-level vdev must resilver this offset.
3763 * When the offset does not intersect with a dirty leaf DTL
3764 * then it may be possible to skip the resilver IO. The psize
3765 * is provided instead of asize to simplify the check for RAIDZ.
3767 if (!vdev_dtl_need_resilver(vd
, dva
, psize
, phys_birth
))
3771 * Check that this top-level vdev has a device under it which
3772 * is resilvering and is not deferred.
3774 if (!dsl_scan_check_deferred(vd
))
3781 dsl_process_async_destroys(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
3783 dsl_scan_t
*scn
= dp
->dp_scan
;
3784 spa_t
*spa
= dp
->dp_spa
;
3787 if (spa_suspend_async_destroy(spa
))
3790 if (zfs_free_bpobj_enabled
&&
3791 spa_version(spa
) >= SPA_VERSION_DEADLISTS
) {
3792 scn
->scn_is_bptree
= B_FALSE
;
3793 scn
->scn_async_block_min_time_ms
= zfs_free_min_time_ms
;
3794 scn
->scn_zio_root
= zio_root(spa
, NULL
,
3795 NULL
, ZIO_FLAG_MUSTSUCCEED
);
3796 err
= bpobj_iterate(&dp
->dp_free_bpobj
,
3797 bpobj_dsl_scan_free_block_cb
, scn
, tx
);
3798 VERIFY0(zio_wait(scn
->scn_zio_root
));
3799 scn
->scn_zio_root
= NULL
;
3801 if (err
!= 0 && err
!= ERESTART
)
3802 zfs_panic_recover("error %u from bpobj_iterate()", err
);
3805 if (err
== 0 && spa_feature_is_active(spa
, SPA_FEATURE_ASYNC_DESTROY
)) {
3806 ASSERT(scn
->scn_async_destroying
);
3807 scn
->scn_is_bptree
= B_TRUE
;
3808 scn
->scn_zio_root
= zio_root(spa
, NULL
,
3809 NULL
, ZIO_FLAG_MUSTSUCCEED
);
3810 err
= bptree_iterate(dp
->dp_meta_objset
,
3811 dp
->dp_bptree_obj
, B_TRUE
, dsl_scan_free_block_cb
, scn
, tx
);
3812 VERIFY0(zio_wait(scn
->scn_zio_root
));
3813 scn
->scn_zio_root
= NULL
;
3815 if (err
== EIO
|| err
== ECKSUM
) {
3817 } else if (err
!= 0 && err
!= ERESTART
) {
3818 zfs_panic_recover("error %u from "
3819 "traverse_dataset_destroyed()", err
);
3822 if (bptree_is_empty(dp
->dp_meta_objset
, dp
->dp_bptree_obj
)) {
3823 /* finished; deactivate async destroy feature */
3824 spa_feature_decr(spa
, SPA_FEATURE_ASYNC_DESTROY
, tx
);
3825 ASSERT(!spa_feature_is_active(spa
,
3826 SPA_FEATURE_ASYNC_DESTROY
));
3827 VERIFY0(zap_remove(dp
->dp_meta_objset
,
3828 DMU_POOL_DIRECTORY_OBJECT
,
3829 DMU_POOL_BPTREE_OBJ
, tx
));
3830 VERIFY0(bptree_free(dp
->dp_meta_objset
,
3831 dp
->dp_bptree_obj
, tx
));
3832 dp
->dp_bptree_obj
= 0;
3833 scn
->scn_async_destroying
= B_FALSE
;
3834 scn
->scn_async_stalled
= B_FALSE
;
3837 * If we didn't make progress, mark the async
3838 * destroy as stalled, so that we will not initiate
3839 * a spa_sync() on its behalf. Note that we only
3840 * check this if we are not finished, because if the
3841 * bptree had no blocks for us to visit, we can
3842 * finish without "making progress".
3844 scn
->scn_async_stalled
=
3845 (scn
->scn_visited_this_txg
== 0);
3848 if (scn
->scn_visited_this_txg
) {
3849 zfs_dbgmsg("freed %llu blocks in %llums from "
3850 "free_bpobj/bptree on %s in txg %llu; err=%u",
3851 (longlong_t
)scn
->scn_visited_this_txg
,
3853 NSEC2MSEC(gethrtime() - scn
->scn_sync_start_time
),
3854 spa
->spa_name
, (longlong_t
)tx
->tx_txg
, err
);
3855 scn
->scn_visited_this_txg
= 0;
3856 scn
->scn_dedup_frees_this_txg
= 0;
3859 * Write out changes to the DDT and the BRT that may be required
3860 * as a result of the blocks freed. This ensures that the DDT
3861 * and the BRT are clean when a scrub/resilver runs.
3863 ddt_sync(spa
, tx
->tx_txg
);
3864 brt_sync(spa
, tx
->tx_txg
);
3868 if (dp
->dp_free_dir
!= NULL
&& !scn
->scn_async_destroying
&&
3869 zfs_free_leak_on_eio
&&
3870 (dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
!= 0 ||
3871 dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
!= 0 ||
3872 dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
!= 0)) {
3874 * We have finished background destroying, but there is still
3875 * some space left in the dp_free_dir. Transfer this leaked
3876 * space to the dp_leak_dir.
3878 if (dp
->dp_leak_dir
== NULL
) {
3879 rrw_enter(&dp
->dp_config_rwlock
, RW_WRITER
, FTAG
);
3880 (void) dsl_dir_create_sync(dp
, dp
->dp_root_dir
,
3882 VERIFY0(dsl_pool_open_special_dir(dp
,
3883 LEAK_DIR_NAME
, &dp
->dp_leak_dir
));
3884 rrw_exit(&dp
->dp_config_rwlock
, FTAG
);
3886 dsl_dir_diduse_space(dp
->dp_leak_dir
, DD_USED_HEAD
,
3887 dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
,
3888 dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
,
3889 dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
, tx
);
3890 dsl_dir_diduse_space(dp
->dp_free_dir
, DD_USED_HEAD
,
3891 -dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
,
3892 -dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
,
3893 -dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
, tx
);
3896 if (dp
->dp_free_dir
!= NULL
&& !scn
->scn_async_destroying
&&
3897 !spa_livelist_delete_check(spa
)) {
3898 /* finished; verify that space accounting went to zero */
3899 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_used_bytes
);
3900 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_compressed_bytes
);
3901 ASSERT0(dsl_dir_phys(dp
->dp_free_dir
)->dd_uncompressed_bytes
);
3904 spa_notify_waiters(spa
);
3906 EQUIV(bpobj_is_open(&dp
->dp_obsolete_bpobj
),
3907 0 == zap_contains(dp
->dp_meta_objset
, DMU_POOL_DIRECTORY_OBJECT
,
3908 DMU_POOL_OBSOLETE_BPOBJ
));
3909 if (err
== 0 && bpobj_is_open(&dp
->dp_obsolete_bpobj
)) {
3910 ASSERT(spa_feature_is_active(dp
->dp_spa
,
3911 SPA_FEATURE_OBSOLETE_COUNTS
));
3913 scn
->scn_is_bptree
= B_FALSE
;
3914 scn
->scn_async_block_min_time_ms
= zfs_obsolete_min_time_ms
;
3915 err
= bpobj_iterate(&dp
->dp_obsolete_bpobj
,
3916 dsl_scan_obsolete_block_cb
, scn
, tx
);
3917 if (err
!= 0 && err
!= ERESTART
)
3918 zfs_panic_recover("error %u from bpobj_iterate()", err
);
3920 if (bpobj_is_empty(&dp
->dp_obsolete_bpobj
))
3921 dsl_pool_destroy_obsolete_bpobj(dp
, tx
);
3927 name_to_bookmark(char *buf
, zbookmark_phys_t
*zb
)
3929 zb
->zb_objset
= zfs_strtonum(buf
, &buf
);
3930 ASSERT(*buf
== ':');
3931 zb
->zb_object
= zfs_strtonum(buf
+ 1, &buf
);
3932 ASSERT(*buf
== ':');
3933 zb
->zb_level
= (int)zfs_strtonum(buf
+ 1, &buf
);
3934 ASSERT(*buf
== ':');
3935 zb
->zb_blkid
= zfs_strtonum(buf
+ 1, &buf
);
3936 ASSERT(*buf
== '\0');
3940 name_to_object(char *buf
, uint64_t *obj
)
3942 *obj
= zfs_strtonum(buf
, &buf
);
3943 ASSERT(*buf
== '\0');
3947 read_by_block_level(dsl_scan_t
*scn
, zbookmark_phys_t zb
)
3949 dsl_pool_t
*dp
= scn
->scn_dp
;
3952 if (dsl_dataset_hold_obj(dp
, zb
.zb_objset
, FTAG
, &ds
) != 0)
3955 if (dmu_objset_from_ds(ds
, &os
) != 0) {
3956 dsl_dataset_rele(ds
, FTAG
);
3961 * If the key is not loaded dbuf_dnode_findbp() will error out with
3962 * EACCES. However in that case dnode_hold() will eventually call
3963 * dbuf_read()->zio_wait() which may call spa_log_error(). This will
3964 * lead to a deadlock due to us holding the mutex spa_errlist_lock.
3965 * Avoid this by checking here if the keys are loaded, if not return.
3966 * If the keys are not loaded the head_errlog feature is meaningless
3967 * as we cannot figure out the birth txg of the block pointer.
3969 if (dsl_dataset_get_keystatus(ds
->ds_dir
) ==
3970 ZFS_KEYSTATUS_UNAVAILABLE
) {
3971 dsl_dataset_rele(ds
, FTAG
);
3978 if (dnode_hold(os
, zb
.zb_object
, FTAG
, &dn
) != 0) {
3979 dsl_dataset_rele(ds
, FTAG
);
3983 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
3984 int error
= dbuf_dnode_findbp(dn
, zb
.zb_level
, zb
.zb_blkid
, &bp
, NULL
,
3988 rw_exit(&dn
->dn_struct_rwlock
);
3989 dnode_rele(dn
, FTAG
);
3990 dsl_dataset_rele(ds
, FTAG
);
3994 if (!error
&& BP_IS_HOLE(&bp
)) {
3995 rw_exit(&dn
->dn_struct_rwlock
);
3996 dnode_rele(dn
, FTAG
);
3997 dsl_dataset_rele(ds
, FTAG
);
4001 int zio_flags
= ZIO_FLAG_SCAN_THREAD
| ZIO_FLAG_RAW
|
4002 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SCRUB
;
4004 /* If it's an intent log block, failure is expected. */
4005 if (zb
.zb_level
== ZB_ZIL_LEVEL
)
4006 zio_flags
|= ZIO_FLAG_SPECULATIVE
;
4008 ASSERT(!BP_IS_EMBEDDED(&bp
));
4009 scan_exec_io(dp
, &bp
, zio_flags
, &zb
, NULL
);
4010 rw_exit(&dn
->dn_struct_rwlock
);
4011 dnode_rele(dn
, FTAG
);
4012 dsl_dataset_rele(ds
, FTAG
);
4016 * We keep track of the scrubbed error blocks in "count". This will be used
4017 * when deciding whether we exceeded zfs_scrub_error_blocks_per_txg. This
4018 * function is modelled after check_filesystem().
4021 scrub_filesystem(spa_t
*spa
, uint64_t fs
, zbookmark_err_phys_t
*zep
,
4025 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
4026 dsl_scan_t
*scn
= dp
->dp_scan
;
4028 int error
= dsl_dataset_hold_obj(dp
, fs
, FTAG
, &ds
);
4032 uint64_t latest_txg
;
4033 uint64_t txg_to_consider
= spa
->spa_syncing_txg
;
4034 boolean_t check_snapshot
= B_TRUE
;
4036 error
= find_birth_txg(ds
, zep
, &latest_txg
);
4039 * If find_birth_txg() errors out, then err on the side of caution and
4040 * proceed. In worst case scenario scrub all objects. If zep->zb_birth
4041 * is 0 (e.g. in case of encryption with unloaded keys) also proceed to
4042 * scrub all objects.
4044 if (error
== 0 && zep
->zb_birth
== latest_txg
) {
4045 /* Block neither free nor re written. */
4046 zbookmark_phys_t zb
;
4047 zep_to_zb(fs
, zep
, &zb
);
4048 scn
->scn_zio_root
= zio_root(spa
, NULL
, NULL
,
4050 /* We have already acquired the config lock for spa */
4051 read_by_block_level(scn
, zb
);
4053 (void) zio_wait(scn
->scn_zio_root
);
4054 scn
->scn_zio_root
= NULL
;
4056 scn
->errorscrub_phys
.dep_examined
++;
4057 scn
->errorscrub_phys
.dep_to_examine
--;
4059 if ((*count
) == zfs_scrub_error_blocks_per_txg
||
4060 dsl_error_scrub_check_suspend(scn
, &zb
)) {
4061 dsl_dataset_rele(ds
, FTAG
);
4062 return (SET_ERROR(EFAULT
));
4065 check_snapshot
= B_FALSE
;
4066 } else if (error
== 0) {
4067 txg_to_consider
= latest_txg
;
4071 * Retrieve the number of snapshots if the dataset is not a snapshot.
4073 uint64_t snap_count
= 0;
4074 if (dsl_dataset_phys(ds
)->ds_snapnames_zapobj
!= 0) {
4076 error
= zap_count(spa
->spa_meta_objset
,
4077 dsl_dataset_phys(ds
)->ds_snapnames_zapobj
, &snap_count
);
4080 dsl_dataset_rele(ds
, FTAG
);
4085 if (snap_count
== 0) {
4086 /* Filesystem without snapshots. */
4087 dsl_dataset_rele(ds
, FTAG
);
4091 uint64_t snap_obj
= dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
4092 uint64_t snap_obj_txg
= dsl_dataset_phys(ds
)->ds_prev_snap_txg
;
4094 dsl_dataset_rele(ds
, FTAG
);
4096 /* Check only snapshots created from this file system. */
4097 while (snap_obj
!= 0 && zep
->zb_birth
< snap_obj_txg
&&
4098 snap_obj_txg
<= txg_to_consider
) {
4100 error
= dsl_dataset_hold_obj(dp
, snap_obj
, FTAG
, &ds
);
4104 if (dsl_dir_phys(ds
->ds_dir
)->dd_head_dataset_obj
!= fs
) {
4105 snap_obj
= dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
4106 snap_obj_txg
= dsl_dataset_phys(ds
)->ds_prev_snap_txg
;
4107 dsl_dataset_rele(ds
, FTAG
);
4111 boolean_t affected
= B_TRUE
;
4112 if (check_snapshot
) {
4114 error
= find_birth_txg(ds
, zep
, &blk_txg
);
4117 * Scrub the snapshot also when zb_birth == 0 or when
4118 * find_birth_txg() returns an error.
4120 affected
= (error
== 0 && zep
->zb_birth
== blk_txg
) ||
4121 (error
!= 0) || (zep
->zb_birth
== 0);
4124 /* Scrub snapshots. */
4126 zbookmark_phys_t zb
;
4127 zep_to_zb(snap_obj
, zep
, &zb
);
4128 scn
->scn_zio_root
= zio_root(spa
, NULL
, NULL
,
4130 /* We have already acquired the config lock for spa */
4131 read_by_block_level(scn
, zb
);
4133 (void) zio_wait(scn
->scn_zio_root
);
4134 scn
->scn_zio_root
= NULL
;
4136 scn
->errorscrub_phys
.dep_examined
++;
4137 scn
->errorscrub_phys
.dep_to_examine
--;
4139 if ((*count
) == zfs_scrub_error_blocks_per_txg
||
4140 dsl_error_scrub_check_suspend(scn
, &zb
)) {
4141 dsl_dataset_rele(ds
, FTAG
);
4145 snap_obj_txg
= dsl_dataset_phys(ds
)->ds_prev_snap_txg
;
4146 snap_obj
= dsl_dataset_phys(ds
)->ds_prev_snap_obj
;
4147 dsl_dataset_rele(ds
, FTAG
);
4153 dsl_errorscrub_sync(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
4155 spa_t
*spa
= dp
->dp_spa
;
4156 dsl_scan_t
*scn
= dp
->dp_scan
;
4159 * Only process scans in sync pass 1.
4162 if (spa_sync_pass(spa
) > 1)
4166 * If the spa is shutting down, then stop scanning. This will
4167 * ensure that the scan does not dirty any new data during the
4170 if (spa_shutting_down(spa
))
4173 if (!dsl_errorscrub_active(scn
) || dsl_errorscrub_is_paused(scn
)) {
4177 if (dsl_scan_resilvering(scn
->scn_dp
)) {
4178 /* cancel the error scrub if resilver started */
4179 dsl_scan_cancel(scn
->scn_dp
);
4183 spa
->spa_scrub_active
= B_TRUE
;
4184 scn
->scn_sync_start_time
= gethrtime();
4187 * zfs_scan_suspend_progress can be set to disable scrub progress.
4188 * See more detailed comment in dsl_scan_sync().
4190 if (zfs_scan_suspend_progress
) {
4191 uint64_t scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4192 int mintime
= zfs_scrub_min_time_ms
;
4194 while (zfs_scan_suspend_progress
&&
4195 !txg_sync_waiting(scn
->scn_dp
) &&
4196 !spa_shutting_down(scn
->scn_dp
->dp_spa
) &&
4197 NSEC2MSEC(scan_time_ns
) < mintime
) {
4199 scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4205 zap_attribute_t
*za
;
4206 zbookmark_phys_t
*zb
;
4207 boolean_t limit_exceeded
= B_FALSE
;
4209 za
= zap_attribute_alloc();
4210 zb
= kmem_zalloc(sizeof (zbookmark_phys_t
), KM_SLEEP
);
4212 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_HEAD_ERRLOG
)) {
4213 for (; zap_cursor_retrieve(&scn
->errorscrub_cursor
, za
) == 0;
4214 zap_cursor_advance(&scn
->errorscrub_cursor
)) {
4215 name_to_bookmark(za
->za_name
, zb
);
4217 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
4218 NULL
, ZIO_FLAG_CANFAIL
);
4219 dsl_pool_config_enter(dp
, FTAG
);
4220 read_by_block_level(scn
, *zb
);
4221 dsl_pool_config_exit(dp
, FTAG
);
4223 (void) zio_wait(scn
->scn_zio_root
);
4224 scn
->scn_zio_root
= NULL
;
4226 scn
->errorscrub_phys
.dep_examined
+= 1;
4227 scn
->errorscrub_phys
.dep_to_examine
-= 1;
4229 if (i
== zfs_scrub_error_blocks_per_txg
||
4230 dsl_error_scrub_check_suspend(scn
, zb
)) {
4231 limit_exceeded
= B_TRUE
;
4236 if (!limit_exceeded
)
4237 dsl_errorscrub_done(scn
, B_TRUE
, tx
);
4239 dsl_errorscrub_sync_state(scn
, tx
);
4240 zap_attribute_free(za
);
4241 kmem_free(zb
, sizeof (*zb
));
4246 for (; zap_cursor_retrieve(&scn
->errorscrub_cursor
, za
) == 0;
4247 zap_cursor_advance(&scn
->errorscrub_cursor
)) {
4249 zap_cursor_t
*head_ds_cursor
;
4250 zap_attribute_t
*head_ds_attr
;
4251 zbookmark_err_phys_t head_ds_block
;
4253 head_ds_cursor
= kmem_zalloc(sizeof (zap_cursor_t
), KM_SLEEP
);
4254 head_ds_attr
= zap_attribute_alloc();
4256 uint64_t head_ds_err_obj
= za
->za_first_integer
;
4258 name_to_object(za
->za_name
, &head_ds
);
4259 boolean_t config_held
= B_FALSE
;
4260 uint64_t top_affected_fs
;
4262 for (zap_cursor_init(head_ds_cursor
, spa
->spa_meta_objset
,
4263 head_ds_err_obj
); zap_cursor_retrieve(head_ds_cursor
,
4264 head_ds_attr
) == 0; zap_cursor_advance(head_ds_cursor
)) {
4266 name_to_errphys(head_ds_attr
->za_name
, &head_ds_block
);
4269 * In case we are called from spa_sync the pool
4270 * config is already held.
4272 if (!dsl_pool_config_held(dp
)) {
4273 dsl_pool_config_enter(dp
, FTAG
);
4274 config_held
= B_TRUE
;
4277 error
= find_top_affected_fs(spa
,
4278 head_ds
, &head_ds_block
, &top_affected_fs
);
4282 error
= scrub_filesystem(spa
, top_affected_fs
,
4283 &head_ds_block
, &i
);
4285 if (error
== SET_ERROR(EFAULT
)) {
4286 limit_exceeded
= B_TRUE
;
4291 zap_cursor_fini(head_ds_cursor
);
4292 kmem_free(head_ds_cursor
, sizeof (*head_ds_cursor
));
4293 zap_attribute_free(head_ds_attr
);
4296 dsl_pool_config_exit(dp
, FTAG
);
4299 zap_attribute_free(za
);
4300 kmem_free(zb
, sizeof (*zb
));
4301 if (!limit_exceeded
)
4302 dsl_errorscrub_done(scn
, B_TRUE
, tx
);
4304 dsl_errorscrub_sync_state(scn
, tx
);
4308 * This is the primary entry point for scans that is called from syncing
4309 * context. Scans must happen entirely during syncing context so that we
4310 * can guarantee that blocks we are currently scanning will not change out
4311 * from under us. While a scan is active, this function controls how quickly
4312 * transaction groups proceed, instead of the normal handling provided by
4313 * txg_sync_thread().
4316 dsl_scan_sync(dsl_pool_t
*dp
, dmu_tx_t
*tx
)
4319 dsl_scan_t
*scn
= dp
->dp_scan
;
4320 spa_t
*spa
= dp
->dp_spa
;
4321 state_sync_type_t sync_type
= SYNC_OPTIONAL
;
4322 int restart_early
= 0;
4324 if (spa
->spa_resilver_deferred
) {
4325 uint64_t to_issue
, issued
;
4327 if (!spa_feature_is_active(dp
->dp_spa
,
4328 SPA_FEATURE_RESILVER_DEFER
))
4329 spa_feature_incr(spa
, SPA_FEATURE_RESILVER_DEFER
, tx
);
4332 * See print_scan_scrub_resilver_status() issued/total_i
4333 * @ cmd/zpool/zpool_main.c
4336 scn
->scn_phys
.scn_to_examine
- scn
->scn_phys
.scn_skipped
;
4338 scn
->scn_issued_before_pass
+ spa
->spa_scan_pass_issued
;
4340 zfs_resilver_disable_defer
||
4341 (issued
< (to_issue
* zfs_resilver_defer_percent
/ 100));
4345 * Only process scans in sync pass 1.
4347 if (spa_sync_pass(spa
) > 1)
4352 * Check for scn_restart_txg before checking spa_load_state, so
4353 * that we can restart an old-style scan while the pool is being
4354 * imported (see dsl_scan_init). We also restart scans if there
4355 * is a deferred resilver and the user has manually disabled
4356 * deferred resilvers via zfs_resilver_disable_defer, or if the
4357 * current scan progress is below zfs_resilver_defer_percent.
4359 if (dsl_scan_restarting(scn
, tx
) || restart_early
) {
4360 setup_sync_arg_t setup_sync_arg
= {
4361 .func
= POOL_SCAN_SCRUB
,
4365 dsl_scan_done(scn
, B_FALSE
, tx
);
4366 if (vdev_resilver_needed(spa
->spa_root_vdev
, NULL
, NULL
))
4367 setup_sync_arg
.func
= POOL_SCAN_RESILVER
;
4368 zfs_dbgmsg("restarting scan func=%u on %s txg=%llu early=%d",
4369 setup_sync_arg
.func
, dp
->dp_spa
->spa_name
,
4370 (longlong_t
)tx
->tx_txg
, restart_early
);
4371 dsl_scan_setup_sync(&setup_sync_arg
, tx
);
4375 * If the spa is shutting down, then stop scanning. This will
4376 * ensure that the scan does not dirty any new data during the
4379 if (spa_shutting_down(spa
))
4383 * If the scan is inactive due to a stalled async destroy, try again.
4385 if (!scn
->scn_async_stalled
&& !dsl_scan_active(scn
))
4388 /* reset scan statistics */
4389 scn
->scn_visited_this_txg
= 0;
4390 scn
->scn_dedup_frees_this_txg
= 0;
4391 scn
->scn_holes_this_txg
= 0;
4392 scn
->scn_lt_min_this_txg
= 0;
4393 scn
->scn_gt_max_this_txg
= 0;
4394 scn
->scn_ddt_contained_this_txg
= 0;
4395 scn
->scn_objsets_visited_this_txg
= 0;
4396 scn
->scn_avg_seg_size_this_txg
= 0;
4397 scn
->scn_segs_this_txg
= 0;
4398 scn
->scn_avg_zio_size_this_txg
= 0;
4399 scn
->scn_zios_this_txg
= 0;
4400 scn
->scn_suspending
= B_FALSE
;
4401 scn
->scn_sync_start_time
= gethrtime();
4402 spa
->spa_scrub_active
= B_TRUE
;
4405 * First process the async destroys. If we suspend, don't do
4406 * any scrubbing or resilvering. This ensures that there are no
4407 * async destroys while we are scanning, so the scan code doesn't
4408 * have to worry about traversing it. It is also faster to free the
4409 * blocks than to scrub them.
4411 err
= dsl_process_async_destroys(dp
, tx
);
4415 if (!dsl_scan_is_running(scn
) || dsl_scan_is_paused_scrub(scn
))
4419 * Wait a few txgs after importing to begin scanning so that
4420 * we can get the pool imported quickly.
4422 if (spa
->spa_syncing_txg
< spa
->spa_first_txg
+ SCAN_IMPORT_WAIT_TXGS
)
4426 * zfs_scan_suspend_progress can be set to disable scan progress.
4427 * We don't want to spin the txg_sync thread, so we add a delay
4428 * here to simulate the time spent doing a scan. This is mostly
4429 * useful for testing and debugging.
4431 if (zfs_scan_suspend_progress
) {
4432 uint64_t scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4433 uint_t mintime
= (scn
->scn_phys
.scn_func
==
4434 POOL_SCAN_RESILVER
) ? zfs_resilver_min_time_ms
:
4435 zfs_scrub_min_time_ms
;
4437 while (zfs_scan_suspend_progress
&&
4438 !txg_sync_waiting(scn
->scn_dp
) &&
4439 !spa_shutting_down(scn
->scn_dp
->dp_spa
) &&
4440 NSEC2MSEC(scan_time_ns
) < mintime
) {
4442 scan_time_ns
= gethrtime() - scn
->scn_sync_start_time
;
4448 * Disabled by default, set zfs_scan_report_txgs to report
4449 * average performance over the last zfs_scan_report_txgs TXGs.
4451 if (zfs_scan_report_txgs
!= 0 &&
4452 tx
->tx_txg
% zfs_scan_report_txgs
== 0) {
4453 scn
->scn_issued_before_pass
+= spa
->spa_scan_pass_issued
;
4454 spa_scan_stat_init(spa
);
4458 * It is possible to switch from unsorted to sorted at any time,
4459 * but afterwards the scan will remain sorted unless reloaded from
4460 * a checkpoint after a reboot.
4462 if (!zfs_scan_legacy
) {
4463 scn
->scn_is_sorted
= B_TRUE
;
4464 if (scn
->scn_last_checkpoint
== 0)
4465 scn
->scn_last_checkpoint
= ddi_get_lbolt();
4469 * For sorted scans, determine what kind of work we will be doing
4470 * this txg based on our memory limitations and whether or not we
4471 * need to perform a checkpoint.
4473 if (scn
->scn_is_sorted
) {
4475 * If we are over our checkpoint interval, set scn_clearing
4476 * so that we can begin checkpointing immediately. The
4477 * checkpoint allows us to save a consistent bookmark
4478 * representing how much data we have scrubbed so far.
4479 * Otherwise, use the memory limit to determine if we should
4480 * scan for metadata or start issue scrub IOs. We accumulate
4481 * metadata until we hit our hard memory limit at which point
4482 * we issue scrub IOs until we are at our soft memory limit.
4484 if (scn
->scn_checkpointing
||
4485 ddi_get_lbolt() - scn
->scn_last_checkpoint
>
4486 SEC_TO_TICK(zfs_scan_checkpoint_intval
)) {
4487 if (!scn
->scn_checkpointing
)
4488 zfs_dbgmsg("begin scan checkpoint for %s",
4491 scn
->scn_checkpointing
= B_TRUE
;
4492 scn
->scn_clearing
= B_TRUE
;
4494 boolean_t should_clear
= dsl_scan_should_clear(scn
);
4495 if (should_clear
&& !scn
->scn_clearing
) {
4496 zfs_dbgmsg("begin scan clearing for %s",
4498 scn
->scn_clearing
= B_TRUE
;
4499 } else if (!should_clear
&& scn
->scn_clearing
) {
4500 zfs_dbgmsg("finish scan clearing for %s",
4502 scn
->scn_clearing
= B_FALSE
;
4506 ASSERT0(scn
->scn_checkpointing
);
4507 ASSERT0(scn
->scn_clearing
);
4510 if (!scn
->scn_clearing
&& scn
->scn_done_txg
== 0) {
4511 /* Need to scan metadata for more blocks to scrub */
4512 dsl_scan_phys_t
*scnp
= &scn
->scn_phys
;
4513 taskqid_t prefetch_tqid
;
4516 * Calculate the max number of in-flight bytes for pool-wide
4517 * scanning operations (minimum 1MB, maximum 1/4 of arc_c_max).
4518 * Limits for the issuing phase are done per top-level vdev and
4519 * are handled separately.
4521 scn
->scn_maxinflight_bytes
= MIN(arc_c_max
/ 4, MAX(1ULL << 20,
4522 zfs_scan_vdev_limit
* dsl_scan_count_data_disks(spa
)));
4524 if (scnp
->scn_ddt_bookmark
.ddb_class
<=
4525 scnp
->scn_ddt_class_max
) {
4526 ASSERT(ZB_IS_ZERO(&scnp
->scn_bookmark
));
4527 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4528 "ddt bm=%llu/%llu/%llu/%llx",
4530 (longlong_t
)tx
->tx_txg
,
4531 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_class
,
4532 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_type
,
4533 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_checksum
,
4534 (longlong_t
)scnp
->scn_ddt_bookmark
.ddb_cursor
);
4536 zfs_dbgmsg("doing scan sync for %s txg %llu; "
4537 "bm=%llu/%llu/%llu/%llu",
4539 (longlong_t
)tx
->tx_txg
,
4540 (longlong_t
)scnp
->scn_bookmark
.zb_objset
,
4541 (longlong_t
)scnp
->scn_bookmark
.zb_object
,
4542 (longlong_t
)scnp
->scn_bookmark
.zb_level
,
4543 (longlong_t
)scnp
->scn_bookmark
.zb_blkid
);
4546 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
4547 NULL
, ZIO_FLAG_CANFAIL
);
4549 scn
->scn_prefetch_stop
= B_FALSE
;
4550 prefetch_tqid
= taskq_dispatch(dp
->dp_sync_taskq
,
4551 dsl_scan_prefetch_thread
, scn
, TQ_SLEEP
);
4552 ASSERT(prefetch_tqid
!= TASKQID_INVALID
);
4554 dsl_pool_config_enter(dp
, FTAG
);
4555 dsl_scan_visit(scn
, tx
);
4556 dsl_pool_config_exit(dp
, FTAG
);
4558 mutex_enter(&dp
->dp_spa
->spa_scrub_lock
);
4559 scn
->scn_prefetch_stop
= B_TRUE
;
4560 cv_broadcast(&spa
->spa_scrub_io_cv
);
4561 mutex_exit(&dp
->dp_spa
->spa_scrub_lock
);
4563 taskq_wait_id(dp
->dp_sync_taskq
, prefetch_tqid
);
4564 (void) zio_wait(scn
->scn_zio_root
);
4565 scn
->scn_zio_root
= NULL
;
4567 zfs_dbgmsg("scan visited %llu blocks of %s in %llums "
4568 "(%llu os's, %llu holes, %llu < mintxg, "
4569 "%llu in ddt, %llu > maxtxg)",
4570 (longlong_t
)scn
->scn_visited_this_txg
,
4572 (longlong_t
)NSEC2MSEC(gethrtime() -
4573 scn
->scn_sync_start_time
),
4574 (longlong_t
)scn
->scn_objsets_visited_this_txg
,
4575 (longlong_t
)scn
->scn_holes_this_txg
,
4576 (longlong_t
)scn
->scn_lt_min_this_txg
,
4577 (longlong_t
)scn
->scn_ddt_contained_this_txg
,
4578 (longlong_t
)scn
->scn_gt_max_this_txg
);
4580 if (!scn
->scn_suspending
) {
4581 ASSERT0(avl_numnodes(&scn
->scn_queue
));
4582 scn
->scn_done_txg
= tx
->tx_txg
+ 1;
4583 if (scn
->scn_is_sorted
) {
4584 scn
->scn_checkpointing
= B_TRUE
;
4585 scn
->scn_clearing
= B_TRUE
;
4586 scn
->scn_issued_before_pass
+=
4587 spa
->spa_scan_pass_issued
;
4588 spa_scan_stat_init(spa
);
4590 zfs_dbgmsg("scan complete for %s txg %llu",
4592 (longlong_t
)tx
->tx_txg
);
4594 } else if (scn
->scn_is_sorted
&& scn
->scn_queues_pending
!= 0) {
4595 ASSERT(scn
->scn_clearing
);
4597 /* need to issue scrubbing IOs from per-vdev queues */
4598 scn
->scn_zio_root
= zio_root(dp
->dp_spa
, NULL
,
4599 NULL
, ZIO_FLAG_CANFAIL
);
4600 scan_io_queues_run(scn
);
4601 (void) zio_wait(scn
->scn_zio_root
);
4602 scn
->scn_zio_root
= NULL
;
4604 /* calculate and dprintf the current memory usage */
4605 (void) dsl_scan_should_clear(scn
);
4606 dsl_scan_update_stats(scn
);
4608 zfs_dbgmsg("scan issued %llu blocks for %s (%llu segs) "
4609 "in %llums (avg_block_size = %llu, avg_seg_size = %llu)",
4610 (longlong_t
)scn
->scn_zios_this_txg
,
4612 (longlong_t
)scn
->scn_segs_this_txg
,
4613 (longlong_t
)NSEC2MSEC(gethrtime() -
4614 scn
->scn_sync_start_time
),
4615 (longlong_t
)scn
->scn_avg_zio_size_this_txg
,
4616 (longlong_t
)scn
->scn_avg_seg_size_this_txg
);
4617 } else if (scn
->scn_done_txg
!= 0 && scn
->scn_done_txg
<= tx
->tx_txg
) {
4618 /* Finished with everything. Mark the scrub as complete */
4619 zfs_dbgmsg("scan issuing complete txg %llu for %s",
4620 (longlong_t
)tx
->tx_txg
,
4622 ASSERT3U(scn
->scn_done_txg
, !=, 0);
4623 ASSERT0(spa
->spa_scrub_inflight
);
4624 ASSERT0(scn
->scn_queues_pending
);
4625 dsl_scan_done(scn
, B_TRUE
, tx
);
4626 sync_type
= SYNC_MANDATORY
;
4629 dsl_scan_sync_state(scn
, tx
, sync_type
);
4633 count_block_issued(spa_t
*spa
, const blkptr_t
*bp
, boolean_t all
)
4636 * Don't count embedded bp's, since we already did the work of
4637 * scanning these when we scanned the containing block.
4639 if (BP_IS_EMBEDDED(bp
))
4643 * Update the spa's stats on how many bytes we have issued.
4644 * Sequential scrubs create a zio for each DVA of the bp. Each
4645 * of these will include all DVAs for repair purposes, but the
4646 * zio code will only try the first one unless there is an issue.
4647 * Therefore, we should only count the first DVA for these IOs.
4649 atomic_add_64(&spa
->spa_scan_pass_issued
,
4650 all
? BP_GET_ASIZE(bp
) : DVA_GET_ASIZE(&bp
->blk_dva
[0]));
4654 count_block_skipped(dsl_scan_t
*scn
, const blkptr_t
*bp
, boolean_t all
)
4656 if (BP_IS_EMBEDDED(bp
))
4658 atomic_add_64(&scn
->scn_phys
.scn_skipped
,
4659 all
? BP_GET_ASIZE(bp
) : DVA_GET_ASIZE(&bp
->blk_dva
[0]));
4663 count_block(zfs_all_blkstats_t
*zab
, const blkptr_t
*bp
)
4666 * If we resume after a reboot, zab will be NULL; don't record
4667 * incomplete stats in that case.
4672 for (int i
= 0; i
< 4; i
++) {
4673 int l
= (i
< 2) ? BP_GET_LEVEL(bp
) : DN_MAX_LEVELS
;
4674 int t
= (i
& 1) ? BP_GET_TYPE(bp
) : DMU_OT_TOTAL
;
4676 if (t
& DMU_OT_NEWTYPE
)
4678 zfs_blkstat_t
*zb
= &zab
->zab_type
[l
][t
];
4682 zb
->zb_asize
+= BP_GET_ASIZE(bp
);
4683 zb
->zb_lsize
+= BP_GET_LSIZE(bp
);
4684 zb
->zb_psize
+= BP_GET_PSIZE(bp
);
4685 zb
->zb_gangs
+= BP_COUNT_GANG(bp
);
4687 switch (BP_GET_NDVAS(bp
)) {
4689 if (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
4690 DVA_GET_VDEV(&bp
->blk_dva
[1]))
4691 zb
->zb_ditto_2_of_2_samevdev
++;
4694 equal
= (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
4695 DVA_GET_VDEV(&bp
->blk_dva
[1])) +
4696 (DVA_GET_VDEV(&bp
->blk_dva
[0]) ==
4697 DVA_GET_VDEV(&bp
->blk_dva
[2])) +
4698 (DVA_GET_VDEV(&bp
->blk_dva
[1]) ==
4699 DVA_GET_VDEV(&bp
->blk_dva
[2]));
4701 zb
->zb_ditto_2_of_3_samevdev
++;
4702 else if (equal
== 3)
4703 zb
->zb_ditto_3_of_3_samevdev
++;
4710 scan_io_queue_insert_impl(dsl_scan_io_queue_t
*queue
, scan_io_t
*sio
)
4713 dsl_scan_t
*scn
= queue
->q_scn
;
4715 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
4717 if (unlikely(avl_is_empty(&queue
->q_sios_by_addr
)))
4718 atomic_add_64(&scn
->scn_queues_pending
, 1);
4719 if (avl_find(&queue
->q_sios_by_addr
, sio
, &idx
) != NULL
) {
4720 /* block is already scheduled for reading */
4724 avl_insert(&queue
->q_sios_by_addr
, sio
, idx
);
4725 queue
->q_sio_memused
+= SIO_GET_MUSED(sio
);
4726 range_tree_add(queue
->q_exts_by_addr
, SIO_GET_OFFSET(sio
),
4727 SIO_GET_ASIZE(sio
));
4731 * Given all the info we got from our metadata scanning process, we
4732 * construct a scan_io_t and insert it into the scan sorting queue. The
4733 * I/O must already be suitable for us to process. This is controlled
4734 * by dsl_scan_enqueue().
4737 scan_io_queue_insert(dsl_scan_io_queue_t
*queue
, const blkptr_t
*bp
, int dva_i
,
4738 int zio_flags
, const zbookmark_phys_t
*zb
)
4740 scan_io_t
*sio
= sio_alloc(BP_GET_NDVAS(bp
));
4742 ASSERT0(BP_IS_GANG(bp
));
4743 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
4745 bp2sio(bp
, sio
, dva_i
);
4746 sio
->sio_flags
= zio_flags
;
4749 queue
->q_last_ext_addr
= -1;
4750 scan_io_queue_insert_impl(queue
, sio
);
4754 * Given a set of I/O parameters as discovered by the metadata traversal
4755 * process, attempts to place the I/O into the sorted queues (if allowed),
4756 * or immediately executes the I/O.
4759 dsl_scan_enqueue(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
4760 const zbookmark_phys_t
*zb
)
4762 spa_t
*spa
= dp
->dp_spa
;
4764 ASSERT(!BP_IS_EMBEDDED(bp
));
4767 * Gang blocks are hard to issue sequentially, so we just issue them
4768 * here immediately instead of queuing them.
4770 if (!dp
->dp_scan
->scn_is_sorted
|| BP_IS_GANG(bp
)) {
4771 scan_exec_io(dp
, bp
, zio_flags
, zb
, NULL
);
4775 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++) {
4779 dva
= bp
->blk_dva
[i
];
4780 vdev
= vdev_lookup_top(spa
, DVA_GET_VDEV(&dva
));
4781 ASSERT(vdev
!= NULL
);
4783 mutex_enter(&vdev
->vdev_scan_io_queue_lock
);
4784 if (vdev
->vdev_scan_io_queue
== NULL
)
4785 vdev
->vdev_scan_io_queue
= scan_io_queue_create(vdev
);
4786 ASSERT(dp
->dp_scan
!= NULL
);
4787 scan_io_queue_insert(vdev
->vdev_scan_io_queue
, bp
,
4789 mutex_exit(&vdev
->vdev_scan_io_queue_lock
);
4794 dsl_scan_scrub_cb(dsl_pool_t
*dp
,
4795 const blkptr_t
*bp
, const zbookmark_phys_t
*zb
)
4797 dsl_scan_t
*scn
= dp
->dp_scan
;
4798 spa_t
*spa
= dp
->dp_spa
;
4799 uint64_t phys_birth
= BP_GET_BIRTH(bp
);
4800 size_t psize
= BP_GET_PSIZE(bp
);
4801 boolean_t needs_io
= B_FALSE
;
4802 int zio_flags
= ZIO_FLAG_SCAN_THREAD
| ZIO_FLAG_RAW
| ZIO_FLAG_CANFAIL
;
4804 count_block(dp
->dp_blkstats
, bp
);
4805 if (phys_birth
<= scn
->scn_phys
.scn_min_txg
||
4806 phys_birth
>= scn
->scn_phys
.scn_max_txg
) {
4807 count_block_skipped(scn
, bp
, B_TRUE
);
4811 /* Embedded BP's have phys_birth==0, so we reject them above. */
4812 ASSERT(!BP_IS_EMBEDDED(bp
));
4814 ASSERT(DSL_SCAN_IS_SCRUB_RESILVER(scn
));
4815 if (scn
->scn_phys
.scn_func
== POOL_SCAN_SCRUB
) {
4816 zio_flags
|= ZIO_FLAG_SCRUB
;
4819 ASSERT3U(scn
->scn_phys
.scn_func
, ==, POOL_SCAN_RESILVER
);
4820 zio_flags
|= ZIO_FLAG_RESILVER
;
4824 /* If it's an intent log block, failure is expected. */
4825 if (zb
->zb_level
== ZB_ZIL_LEVEL
)
4826 zio_flags
|= ZIO_FLAG_SPECULATIVE
;
4828 for (int d
= 0; d
< BP_GET_NDVAS(bp
); d
++) {
4829 const dva_t
*dva
= &bp
->blk_dva
[d
];
4832 * Keep track of how much data we've examined so that
4833 * zpool(8) status can make useful progress reports.
4835 uint64_t asize
= DVA_GET_ASIZE(dva
);
4836 scn
->scn_phys
.scn_examined
+= asize
;
4837 spa
->spa_scan_pass_exam
+= asize
;
4839 /* if it's a resilver, this may not be in the target range */
4841 needs_io
= dsl_scan_need_resilver(spa
, dva
, psize
,
4845 if (needs_io
&& !zfs_no_scrub_io
) {
4846 dsl_scan_enqueue(dp
, bp
, zio_flags
, zb
);
4848 count_block_skipped(scn
, bp
, B_TRUE
);
4851 /* do not relocate this block */
4856 dsl_scan_scrub_done(zio_t
*zio
)
4858 spa_t
*spa
= zio
->io_spa
;
4859 blkptr_t
*bp
= zio
->io_bp
;
4860 dsl_scan_io_queue_t
*queue
= zio
->io_private
;
4862 abd_free(zio
->io_abd
);
4864 if (queue
== NULL
) {
4865 mutex_enter(&spa
->spa_scrub_lock
);
4866 ASSERT3U(spa
->spa_scrub_inflight
, >=, BP_GET_PSIZE(bp
));
4867 spa
->spa_scrub_inflight
-= BP_GET_PSIZE(bp
);
4868 cv_broadcast(&spa
->spa_scrub_io_cv
);
4869 mutex_exit(&spa
->spa_scrub_lock
);
4871 mutex_enter(&queue
->q_vd
->vdev_scan_io_queue_lock
);
4872 ASSERT3U(queue
->q_inflight_bytes
, >=, BP_GET_PSIZE(bp
));
4873 queue
->q_inflight_bytes
-= BP_GET_PSIZE(bp
);
4874 cv_broadcast(&queue
->q_zio_cv
);
4875 mutex_exit(&queue
->q_vd
->vdev_scan_io_queue_lock
);
4878 if (zio
->io_error
&& (zio
->io_error
!= ECKSUM
||
4879 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
))) {
4880 if (dsl_errorscrubbing(spa
->spa_dsl_pool
) &&
4881 !dsl_errorscrub_is_paused(spa
->spa_dsl_pool
->dp_scan
)) {
4882 atomic_inc_64(&spa
->spa_dsl_pool
->dp_scan
4883 ->errorscrub_phys
.dep_errors
);
4885 atomic_inc_64(&spa
->spa_dsl_pool
->dp_scan
->scn_phys
4892 * Given a scanning zio's information, executes the zio. The zio need
4893 * not necessarily be only sortable, this function simply executes the
4894 * zio, no matter what it is. The optional queue argument allows the
4895 * caller to specify that they want per top level vdev IO rate limiting
4896 * instead of the legacy global limiting.
4899 scan_exec_io(dsl_pool_t
*dp
, const blkptr_t
*bp
, int zio_flags
,
4900 const zbookmark_phys_t
*zb
, dsl_scan_io_queue_t
*queue
)
4902 spa_t
*spa
= dp
->dp_spa
;
4903 dsl_scan_t
*scn
= dp
->dp_scan
;
4904 size_t size
= BP_GET_PSIZE(bp
);
4905 abd_t
*data
= abd_alloc_for_io(size
, B_FALSE
);
4908 if (queue
== NULL
) {
4909 ASSERT3U(scn
->scn_maxinflight_bytes
, >, 0);
4910 mutex_enter(&spa
->spa_scrub_lock
);
4911 while (spa
->spa_scrub_inflight
>= scn
->scn_maxinflight_bytes
)
4912 cv_wait(&spa
->spa_scrub_io_cv
, &spa
->spa_scrub_lock
);
4913 spa
->spa_scrub_inflight
+= BP_GET_PSIZE(bp
);
4914 mutex_exit(&spa
->spa_scrub_lock
);
4915 pio
= scn
->scn_zio_root
;
4917 kmutex_t
*q_lock
= &queue
->q_vd
->vdev_scan_io_queue_lock
;
4919 ASSERT3U(queue
->q_maxinflight_bytes
, >, 0);
4920 mutex_enter(q_lock
);
4921 while (queue
->q_inflight_bytes
>= queue
->q_maxinflight_bytes
)
4922 cv_wait(&queue
->q_zio_cv
, q_lock
);
4923 queue
->q_inflight_bytes
+= BP_GET_PSIZE(bp
);
4928 ASSERT(pio
!= NULL
);
4929 count_block_issued(spa
, bp
, queue
== NULL
);
4930 zio_nowait(zio_read(pio
, spa
, bp
, data
, size
, dsl_scan_scrub_done
,
4931 queue
, ZIO_PRIORITY_SCRUB
, zio_flags
, zb
));
4935 * This is the primary extent sorting algorithm. We balance two parameters:
4936 * 1) how many bytes of I/O are in an extent
4937 * 2) how well the extent is filled with I/O (as a fraction of its total size)
4938 * Since we allow extents to have gaps between their constituent I/Os, it's
4939 * possible to have a fairly large extent that contains the same amount of
4940 * I/O bytes than a much smaller extent, which just packs the I/O more tightly.
4941 * The algorithm sorts based on a score calculated from the extent's size,
4942 * the relative fill volume (in %) and a "fill weight" parameter that controls
4943 * the split between whether we prefer larger extents or more well populated
4946 * SCORE = FILL_IN_BYTES + (FILL_IN_PERCENT * FILL_IN_BYTES * FILL_WEIGHT)
4949 * 1) assume extsz = 64 MiB
4950 * 2) assume fill = 32 MiB (extent is half full)
4951 * 3) assume fill_weight = 3
4952 * 4) SCORE = 32M + (((32M * 100) / 64M) * 3 * 32M) / 100
4953 * SCORE = 32M + (50 * 3 * 32M) / 100
4954 * SCORE = 32M + (4800M / 100)
4957 * | +--- final total relative fill-based score
4958 * +--------- final total fill-based score
4961 * As can be seen, at fill_ratio=3, the algorithm is slightly biased towards
4962 * extents that are more completely filled (in a 3:2 ratio) vs just larger.
4963 * Note that as an optimization, we replace multiplication and division by
4964 * 100 with bitshifting by 7 (which effectively multiplies and divides by 128).
4966 * Since we do not care if one extent is only few percent better than another,
4967 * compress the score into 6 bits via binary logarithm AKA highbit64() and
4968 * put into otherwise unused due to ashift high bits of offset. This allows
4969 * to reduce q_exts_by_size B-tree elements to only 64 bits and compare them
4970 * with single operation. Plus it makes scrubs more sequential and reduces
4971 * chances that minor extent change move it within the B-tree.
4973 __attribute__((always_inline
)) inline
4975 ext_size_compare(const void *x
, const void *y
)
4977 const uint64_t *a
= x
, *b
= y
;
4979 return (TREE_CMP(*a
, *b
));
4982 ZFS_BTREE_FIND_IN_BUF_FUNC(ext_size_find_in_buf
, uint64_t,
4986 ext_size_create(range_tree_t
*rt
, void *arg
)
4989 zfs_btree_t
*size_tree
= arg
;
4991 zfs_btree_create(size_tree
, ext_size_compare
, ext_size_find_in_buf
,
4996 ext_size_destroy(range_tree_t
*rt
, void *arg
)
4999 zfs_btree_t
*size_tree
= arg
;
5000 ASSERT0(zfs_btree_numnodes(size_tree
));
5002 zfs_btree_destroy(size_tree
);
5006 ext_size_value(range_tree_t
*rt
, range_seg_gap_t
*rsg
)
5009 uint64_t size
= rsg
->rs_end
- rsg
->rs_start
;
5010 uint64_t score
= rsg
->rs_fill
+ ((((rsg
->rs_fill
<< 7) / size
) *
5011 fill_weight
* rsg
->rs_fill
) >> 7);
5012 ASSERT3U(rt
->rt_shift
, >=, 8);
5013 return (((uint64_t)(64 - highbit64(score
)) << 56) | rsg
->rs_start
);
5017 ext_size_add(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
5019 zfs_btree_t
*size_tree
= arg
;
5020 ASSERT3U(rt
->rt_type
, ==, RANGE_SEG_GAP
);
5021 uint64_t v
= ext_size_value(rt
, (range_seg_gap_t
*)rs
);
5022 zfs_btree_add(size_tree
, &v
);
5026 ext_size_remove(range_tree_t
*rt
, range_seg_t
*rs
, void *arg
)
5028 zfs_btree_t
*size_tree
= arg
;
5029 ASSERT3U(rt
->rt_type
, ==, RANGE_SEG_GAP
);
5030 uint64_t v
= ext_size_value(rt
, (range_seg_gap_t
*)rs
);
5031 zfs_btree_remove(size_tree
, &v
);
5035 ext_size_vacate(range_tree_t
*rt
, void *arg
)
5037 zfs_btree_t
*size_tree
= arg
;
5038 zfs_btree_clear(size_tree
);
5039 zfs_btree_destroy(size_tree
);
5041 ext_size_create(rt
, arg
);
5044 static const range_tree_ops_t ext_size_ops
= {
5045 .rtop_create
= ext_size_create
,
5046 .rtop_destroy
= ext_size_destroy
,
5047 .rtop_add
= ext_size_add
,
5048 .rtop_remove
= ext_size_remove
,
5049 .rtop_vacate
= ext_size_vacate
5053 * Comparator for the q_sios_by_addr tree. Sorting is simply performed
5054 * based on LBA-order (from lowest to highest).
5057 sio_addr_compare(const void *x
, const void *y
)
5059 const scan_io_t
*a
= x
, *b
= y
;
5061 return (TREE_CMP(SIO_GET_OFFSET(a
), SIO_GET_OFFSET(b
)));
5064 /* IO queues are created on demand when they are needed. */
5065 static dsl_scan_io_queue_t
*
5066 scan_io_queue_create(vdev_t
*vd
)
5068 dsl_scan_t
*scn
= vd
->vdev_spa
->spa_dsl_pool
->dp_scan
;
5069 dsl_scan_io_queue_t
*q
= kmem_zalloc(sizeof (*q
), KM_SLEEP
);
5073 q
->q_sio_memused
= 0;
5074 q
->q_last_ext_addr
= -1;
5075 cv_init(&q
->q_zio_cv
, NULL
, CV_DEFAULT
, NULL
);
5076 q
->q_exts_by_addr
= range_tree_create_gap(&ext_size_ops
, RANGE_SEG_GAP
,
5077 &q
->q_exts_by_size
, 0, vd
->vdev_ashift
, zfs_scan_max_ext_gap
);
5078 avl_create(&q
->q_sios_by_addr
, sio_addr_compare
,
5079 sizeof (scan_io_t
), offsetof(scan_io_t
, sio_nodes
.sio_addr_node
));
5085 * Destroys a scan queue and all segments and scan_io_t's contained in it.
5086 * No further execution of I/O occurs, anything pending in the queue is
5087 * simply freed without being executed.
5090 dsl_scan_io_queue_destroy(dsl_scan_io_queue_t
*queue
)
5092 dsl_scan_t
*scn
= queue
->q_scn
;
5094 void *cookie
= NULL
;
5096 ASSERT(MUTEX_HELD(&queue
->q_vd
->vdev_scan_io_queue_lock
));
5098 if (!avl_is_empty(&queue
->q_sios_by_addr
))
5099 atomic_add_64(&scn
->scn_queues_pending
, -1);
5100 while ((sio
= avl_destroy_nodes(&queue
->q_sios_by_addr
, &cookie
)) !=
5102 ASSERT(range_tree_contains(queue
->q_exts_by_addr
,
5103 SIO_GET_OFFSET(sio
), SIO_GET_ASIZE(sio
)));
5104 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
5108 ASSERT0(queue
->q_sio_memused
);
5109 range_tree_vacate(queue
->q_exts_by_addr
, NULL
, queue
);
5110 range_tree_destroy(queue
->q_exts_by_addr
);
5111 avl_destroy(&queue
->q_sios_by_addr
);
5112 cv_destroy(&queue
->q_zio_cv
);
5114 kmem_free(queue
, sizeof (*queue
));
5118 * Properly transfers a dsl_scan_queue_t from `svd' to `tvd'. This is
5119 * called on behalf of vdev_top_transfer when creating or destroying
5120 * a mirror vdev due to zpool attach/detach.
5123 dsl_scan_io_queue_vdev_xfer(vdev_t
*svd
, vdev_t
*tvd
)
5125 mutex_enter(&svd
->vdev_scan_io_queue_lock
);
5126 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
5128 VERIFY3P(tvd
->vdev_scan_io_queue
, ==, NULL
);
5129 tvd
->vdev_scan_io_queue
= svd
->vdev_scan_io_queue
;
5130 svd
->vdev_scan_io_queue
= NULL
;
5131 if (tvd
->vdev_scan_io_queue
!= NULL
)
5132 tvd
->vdev_scan_io_queue
->q_vd
= tvd
;
5134 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
5135 mutex_exit(&svd
->vdev_scan_io_queue_lock
);
5139 scan_io_queues_destroy(dsl_scan_t
*scn
)
5141 vdev_t
*rvd
= scn
->scn_dp
->dp_spa
->spa_root_vdev
;
5143 for (uint64_t i
= 0; i
< rvd
->vdev_children
; i
++) {
5144 vdev_t
*tvd
= rvd
->vdev_child
[i
];
5146 mutex_enter(&tvd
->vdev_scan_io_queue_lock
);
5147 if (tvd
->vdev_scan_io_queue
!= NULL
)
5148 dsl_scan_io_queue_destroy(tvd
->vdev_scan_io_queue
);
5149 tvd
->vdev_scan_io_queue
= NULL
;
5150 mutex_exit(&tvd
->vdev_scan_io_queue_lock
);
5155 dsl_scan_freed_dva(spa_t
*spa
, const blkptr_t
*bp
, int dva_i
)
5157 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
5158 dsl_scan_t
*scn
= dp
->dp_scan
;
5161 dsl_scan_io_queue_t
*queue
;
5162 scan_io_t
*srch_sio
, *sio
;
5164 uint64_t start
, size
;
5166 vdev
= vdev_lookup_top(spa
, DVA_GET_VDEV(&bp
->blk_dva
[dva_i
]));
5167 ASSERT(vdev
!= NULL
);
5168 q_lock
= &vdev
->vdev_scan_io_queue_lock
;
5169 queue
= vdev
->vdev_scan_io_queue
;
5171 mutex_enter(q_lock
);
5172 if (queue
== NULL
) {
5177 srch_sio
= sio_alloc(BP_GET_NDVAS(bp
));
5178 bp2sio(bp
, srch_sio
, dva_i
);
5179 start
= SIO_GET_OFFSET(srch_sio
);
5180 size
= SIO_GET_ASIZE(srch_sio
);
5183 * We can find the zio in two states:
5184 * 1) Cold, just sitting in the queue of zio's to be issued at
5185 * some point in the future. In this case, all we do is
5186 * remove the zio from the q_sios_by_addr tree, decrement
5187 * its data volume from the containing range_seg_t and
5188 * resort the q_exts_by_size tree to reflect that the
5189 * range_seg_t has lost some of its 'fill'. We don't shorten
5190 * the range_seg_t - this is usually rare enough not to be
5191 * worth the extra hassle of trying keep track of precise
5192 * extent boundaries.
5193 * 2) Hot, where the zio is currently in-flight in
5194 * dsl_scan_issue_ios. In this case, we can't simply
5195 * reach in and stop the in-flight zio's, so we instead
5196 * block the caller. Eventually, dsl_scan_issue_ios will
5197 * be done with issuing the zio's it gathered and will
5200 sio
= avl_find(&queue
->q_sios_by_addr
, srch_sio
, &idx
);
5206 /* Got it while it was cold in the queue */
5207 ASSERT3U(start
, ==, SIO_GET_OFFSET(sio
));
5208 ASSERT3U(size
, ==, SIO_GET_ASIZE(sio
));
5209 avl_remove(&queue
->q_sios_by_addr
, sio
);
5210 if (avl_is_empty(&queue
->q_sios_by_addr
))
5211 atomic_add_64(&scn
->scn_queues_pending
, -1);
5212 queue
->q_sio_memused
-= SIO_GET_MUSED(sio
);
5214 ASSERT(range_tree_contains(queue
->q_exts_by_addr
, start
, size
));
5215 range_tree_remove_fill(queue
->q_exts_by_addr
, start
, size
);
5217 /* count the block as though we skipped it */
5218 sio2bp(sio
, &tmpbp
);
5219 count_block_skipped(scn
, &tmpbp
, B_FALSE
);
5227 * Callback invoked when a zio_free() zio is executing. This needs to be
5228 * intercepted to prevent the zio from deallocating a particular portion
5229 * of disk space and it then getting reallocated and written to, while we
5230 * still have it queued up for processing.
5233 dsl_scan_freed(spa_t
*spa
, const blkptr_t
*bp
)
5235 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
5236 dsl_scan_t
*scn
= dp
->dp_scan
;
5238 ASSERT(!BP_IS_EMBEDDED(bp
));
5239 ASSERT(scn
!= NULL
);
5240 if (!dsl_scan_is_running(scn
))
5243 for (int i
= 0; i
< BP_GET_NDVAS(bp
); i
++)
5244 dsl_scan_freed_dva(spa
, bp
, i
);
5248 * Check if a vdev needs resilvering (non-empty DTL), if so, and resilver has
5249 * not started, start it. Otherwise, only restart if max txg in DTL range is
5250 * greater than the max txg in the current scan. If the DTL max is less than
5251 * the scan max, then the vdev has not missed any new data since the resilver
5252 * started, so a restart is not needed.
5255 dsl_scan_assess_vdev(dsl_pool_t
*dp
, vdev_t
*vd
)
5259 if (!vdev_resilver_needed(vd
, &min
, &max
))
5262 if (!dsl_scan_resilvering(dp
)) {
5263 spa_async_request(dp
->dp_spa
, SPA_ASYNC_RESILVER
);
5267 if (max
<= dp
->dp_scan
->scn_phys
.scn_max_txg
)
5270 /* restart is needed, check if it can be deferred */
5271 if (spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_RESILVER_DEFER
))
5272 vdev_defer_resilver(vd
);
5274 spa_async_request(dp
->dp_spa
, SPA_ASYNC_RESILVER
);
5277 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_vdev_limit
, U64
, ZMOD_RW
,
5278 "Max bytes in flight per leaf vdev for scrubs and resilvers");
5280 ZFS_MODULE_PARAM(zfs
, zfs_
, scrub_min_time_ms
, UINT
, ZMOD_RW
,
5281 "Min millisecs to scrub per txg");
5283 ZFS_MODULE_PARAM(zfs
, zfs_
, obsolete_min_time_ms
, UINT
, ZMOD_RW
,
5284 "Min millisecs to obsolete per txg");
5286 ZFS_MODULE_PARAM(zfs
, zfs_
, free_min_time_ms
, UINT
, ZMOD_RW
,
5287 "Min millisecs to free per txg");
5289 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_min_time_ms
, UINT
, ZMOD_RW
,
5290 "Min millisecs to resilver per txg");
5292 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_suspend_progress
, INT
, ZMOD_RW
,
5293 "Set to prevent scans from progressing");
5295 ZFS_MODULE_PARAM(zfs
, zfs_
, no_scrub_io
, INT
, ZMOD_RW
,
5296 "Set to disable scrub I/O");
5298 ZFS_MODULE_PARAM(zfs
, zfs_
, no_scrub_prefetch
, INT
, ZMOD_RW
,
5299 "Set to disable scrub prefetching");
5301 ZFS_MODULE_PARAM(zfs
, zfs_
, async_block_max_blocks
, U64
, ZMOD_RW
,
5302 "Max number of blocks freed in one txg");
5304 ZFS_MODULE_PARAM(zfs
, zfs_
, max_async_dedup_frees
, U64
, ZMOD_RW
,
5305 "Max number of dedup blocks freed in one txg");
5307 ZFS_MODULE_PARAM(zfs
, zfs_
, free_bpobj_enabled
, INT
, ZMOD_RW
,
5308 "Enable processing of the free_bpobj");
5310 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_blkstats
, INT
, ZMOD_RW
,
5311 "Enable block statistics calculation during scrub");
5313 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_mem_lim_fact
, UINT
, ZMOD_RW
,
5314 "Fraction of RAM for scan hard limit");
5316 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_issue_strategy
, UINT
, ZMOD_RW
,
5317 "IO issuing strategy during scrubbing. 0 = default, 1 = LBA, 2 = size");
5319 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_legacy
, INT
, ZMOD_RW
,
5320 "Scrub using legacy non-sequential method");
5322 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_checkpoint_intval
, UINT
, ZMOD_RW
,
5323 "Scan progress on-disk checkpointing interval");
5325 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_max_ext_gap
, U64
, ZMOD_RW
,
5326 "Max gap in bytes between sequential scrub / resilver I/Os");
5328 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_mem_lim_soft_fact
, UINT
, ZMOD_RW
,
5329 "Fraction of hard limit used as soft limit");
5331 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_strict_mem_lim
, INT
, ZMOD_RW
,
5332 "Tunable to attempt to reduce lock contention");
5334 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_fill_weight
, UINT
, ZMOD_RW
,
5335 "Tunable to adjust bias towards more filled segments during scans");
5337 ZFS_MODULE_PARAM(zfs
, zfs_
, scan_report_txgs
, UINT
, ZMOD_RW
,
5338 "Tunable to report resilver performance over the last N txgs");
5340 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_disable_defer
, INT
, ZMOD_RW
,
5341 "Process all resilvers immediately");
5343 ZFS_MODULE_PARAM(zfs
, zfs_
, resilver_defer_percent
, UINT
, ZMOD_RW
,
5344 "Issued IO percent complete after which resilvers are deferred");
5346 ZFS_MODULE_PARAM(zfs
, zfs_
, scrub_error_blocks_per_txg
, UINT
, ZMOD_RW
,
5347 "Error blocks to be scrubbed in one txg");