Update META to 6.1 kernel
[zfs.git] / module / zfs / dsl_deadlist.c
blob2b33446e66af17b0fd21565a5d4f0b0d28cf3065
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 #include <sys/dmu.h>
28 #include <sys/zap.h>
29 #include <sys/zfs_context.h>
30 #include <sys/dsl_pool.h>
31 #include <sys/dsl_dataset.h>
34 * Deadlist concurrency:
36 * Deadlists can only be modified from the syncing thread.
38 * Except for dsl_deadlist_insert(), it can only be modified with the
39 * dp_config_rwlock held with RW_WRITER.
41 * The accessors (dsl_deadlist_space() and dsl_deadlist_space_range()) can
42 * be called concurrently, from open context, with the dl_config_rwlock held
43 * with RW_READER.
45 * Therefore, we only need to provide locking between dsl_deadlist_insert() and
46 * the accessors, protecting:
47 * dl_phys->dl_used,comp,uncomp
48 * and protecting the dl_tree from being loaded.
49 * The locking is provided by dl_lock. Note that locking on the bpobj_t
50 * provides its own locking, and dl_oldfmt is immutable.
54 * Livelist Overview
55 * ================
57 * Livelists use the same 'deadlist_t' struct as deadlists and are also used
58 * to track blkptrs over the lifetime of a dataset. Livelists however, belong
59 * to clones and track the blkptrs that are clone-specific (were born after
60 * the clone's creation). The exception is embedded block pointers which are
61 * not included in livelists because they do not need to be freed.
63 * When it comes time to delete the clone, the livelist provides a quick
64 * reference as to what needs to be freed. For this reason, livelists also track
65 * when clone-specific blkptrs are freed before deletion to prevent double
66 * frees. Each blkptr in a livelist is marked as a FREE or an ALLOC and the
67 * deletion algorithm iterates backwards over the livelist, matching
68 * FREE/ALLOC pairs and then freeing those ALLOCs which remain. livelists
69 * are also updated in the case when blkptrs are remapped: the old version
70 * of the blkptr is cancelled out with a FREE and the new version is tracked
71 * with an ALLOC.
73 * To bound the amount of memory required for deletion, livelists over a
74 * certain size are spread over multiple entries. Entries are grouped by
75 * birth txg so we can be sure the ALLOC/FREE pair for a given blkptr will
76 * be in the same entry. This allows us to delete livelists incrementally
77 * over multiple syncs, one entry at a time.
79 * During the lifetime of the clone, livelists can get extremely large.
80 * Their size is managed by periodic condensing (preemptively cancelling out
81 * FREE/ALLOC pairs). Livelists are disabled when a clone is promoted or when
82 * the shared space between the clone and its origin is so small that it
83 * doesn't make sense to use livelists anymore.
87 * The threshold sublist size at which we create a new sub-livelist for the
88 * next txg. However, since blkptrs of the same transaction group must be in
89 * the same sub-list, the actual sublist size may exceed this. When picking the
90 * size we had to balance the fact that larger sublists mean fewer sublists
91 * (decreasing the cost of insertion) against the consideration that sublists
92 * will be loaded into memory and shouldn't take up an inordinate amount of
93 * space. We settled on ~500000 entries, corresponding to roughly 128M.
95 uint64_t zfs_livelist_max_entries = 500000;
98 * We can approximate how much of a performance gain a livelist will give us
99 * based on the percentage of blocks shared between the clone and its origin.
100 * 0 percent shared means that the clone has completely diverged and that the
101 * old method is maximally effective: every read from the block tree will
102 * result in lots of frees. Livelists give us gains when they track blocks
103 * scattered across the tree, when one read in the old method might only
104 * result in a few frees. Once the clone has been overwritten enough,
105 * writes are no longer sparse and we'll no longer get much of a benefit from
106 * tracking them with a livelist. We chose a lower limit of 75 percent shared
107 * (25 percent overwritten). This means that 1/4 of all block pointers will be
108 * freed (e.g. each read frees 256, out of a max of 1024) so we expect livelists
109 * to make deletion 4x faster. Once the amount of shared space drops below this
110 * threshold, the clone will revert to the old deletion method.
112 int zfs_livelist_min_percent_shared = 75;
114 static int
115 dsl_deadlist_compare(const void *arg1, const void *arg2)
117 const dsl_deadlist_entry_t *dle1 = arg1;
118 const dsl_deadlist_entry_t *dle2 = arg2;
120 return (TREE_CMP(dle1->dle_mintxg, dle2->dle_mintxg));
123 static int
124 dsl_deadlist_cache_compare(const void *arg1, const void *arg2)
126 const dsl_deadlist_cache_entry_t *dlce1 = arg1;
127 const dsl_deadlist_cache_entry_t *dlce2 = arg2;
129 return (TREE_CMP(dlce1->dlce_mintxg, dlce2->dlce_mintxg));
132 static void
133 dsl_deadlist_load_tree(dsl_deadlist_t *dl)
135 zap_cursor_t zc;
136 zap_attribute_t za;
137 int error;
139 ASSERT(MUTEX_HELD(&dl->dl_lock));
141 ASSERT(!dl->dl_oldfmt);
142 if (dl->dl_havecache) {
144 * After loading the tree, the caller may modify the tree,
145 * e.g. to add or remove nodes, or to make a node no longer
146 * refer to the empty_bpobj. These changes would make the
147 * dl_cache incorrect. Therefore we discard the cache here,
148 * so that it can't become incorrect.
150 dsl_deadlist_cache_entry_t *dlce;
151 void *cookie = NULL;
152 while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
153 != NULL) {
154 kmem_free(dlce, sizeof (*dlce));
156 avl_destroy(&dl->dl_cache);
157 dl->dl_havecache = B_FALSE;
159 if (dl->dl_havetree)
160 return;
162 avl_create(&dl->dl_tree, dsl_deadlist_compare,
163 sizeof (dsl_deadlist_entry_t),
164 offsetof(dsl_deadlist_entry_t, dle_node));
165 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
166 (error = zap_cursor_retrieve(&zc, &za)) == 0;
167 zap_cursor_advance(&zc)) {
168 dsl_deadlist_entry_t *dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
169 dle->dle_mintxg = zfs_strtonum(za.za_name, NULL);
172 * Prefetch all the bpobj's so that we do that i/o
173 * in parallel. Then open them all in a second pass.
175 dle->dle_bpobj.bpo_object = za.za_first_integer;
176 dmu_prefetch(dl->dl_os, dle->dle_bpobj.bpo_object,
177 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
179 avl_add(&dl->dl_tree, dle);
181 VERIFY3U(error, ==, ENOENT);
182 zap_cursor_fini(&zc);
184 for (dsl_deadlist_entry_t *dle = avl_first(&dl->dl_tree);
185 dle != NULL; dle = AVL_NEXT(&dl->dl_tree, dle)) {
186 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os,
187 dle->dle_bpobj.bpo_object));
189 dl->dl_havetree = B_TRUE;
193 * Load only the non-empty bpobj's into the dl_cache. The cache is an analog
194 * of the dl_tree, but contains only non-empty_bpobj nodes from the ZAP. It
195 * is used only for gathering space statistics. The dl_cache has two
196 * advantages over the dl_tree:
198 * 1. Loading the dl_cache is ~5x faster than loading the dl_tree (if it's
199 * mostly empty_bpobj's), due to less CPU overhead to open the empty_bpobj
200 * many times and to inquire about its (zero) space stats many times.
202 * 2. The dl_cache uses less memory than the dl_tree. We only need to load
203 * the dl_tree of snapshots when deleting a snapshot, after which we free the
204 * dl_tree with dsl_deadlist_discard_tree
206 static void
207 dsl_deadlist_load_cache(dsl_deadlist_t *dl)
209 zap_cursor_t zc;
210 zap_attribute_t za;
211 int error;
213 ASSERT(MUTEX_HELD(&dl->dl_lock));
215 ASSERT(!dl->dl_oldfmt);
216 if (dl->dl_havecache)
217 return;
219 uint64_t empty_bpobj = dmu_objset_pool(dl->dl_os)->dp_empty_bpobj;
221 avl_create(&dl->dl_cache, dsl_deadlist_cache_compare,
222 sizeof (dsl_deadlist_cache_entry_t),
223 offsetof(dsl_deadlist_cache_entry_t, dlce_node));
224 for (zap_cursor_init(&zc, dl->dl_os, dl->dl_object);
225 (error = zap_cursor_retrieve(&zc, &za)) == 0;
226 zap_cursor_advance(&zc)) {
227 if (za.za_first_integer == empty_bpobj)
228 continue;
229 dsl_deadlist_cache_entry_t *dlce =
230 kmem_zalloc(sizeof (*dlce), KM_SLEEP);
231 dlce->dlce_mintxg = zfs_strtonum(za.za_name, NULL);
234 * Prefetch all the bpobj's so that we do that i/o
235 * in parallel. Then open them all in a second pass.
237 dlce->dlce_bpobj = za.za_first_integer;
238 dmu_prefetch(dl->dl_os, dlce->dlce_bpobj,
239 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
240 avl_add(&dl->dl_cache, dlce);
242 VERIFY3U(error, ==, ENOENT);
243 zap_cursor_fini(&zc);
245 for (dsl_deadlist_cache_entry_t *dlce = avl_first(&dl->dl_cache);
246 dlce != NULL; dlce = AVL_NEXT(&dl->dl_cache, dlce)) {
247 bpobj_t bpo;
248 VERIFY0(bpobj_open(&bpo, dl->dl_os, dlce->dlce_bpobj));
250 VERIFY0(bpobj_space(&bpo,
251 &dlce->dlce_bytes, &dlce->dlce_comp, &dlce->dlce_uncomp));
252 bpobj_close(&bpo);
254 dl->dl_havecache = B_TRUE;
258 * Discard the tree to save memory.
260 void
261 dsl_deadlist_discard_tree(dsl_deadlist_t *dl)
263 mutex_enter(&dl->dl_lock);
265 if (!dl->dl_havetree) {
266 mutex_exit(&dl->dl_lock);
267 return;
269 dsl_deadlist_entry_t *dle;
270 void *cookie = NULL;
271 while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie)) != NULL) {
272 bpobj_close(&dle->dle_bpobj);
273 kmem_free(dle, sizeof (*dle));
275 avl_destroy(&dl->dl_tree);
277 dl->dl_havetree = B_FALSE;
278 mutex_exit(&dl->dl_lock);
281 void
282 dsl_deadlist_iterate(dsl_deadlist_t *dl, deadlist_iter_t func, void *args)
284 dsl_deadlist_entry_t *dle;
286 ASSERT(dsl_deadlist_is_open(dl));
288 mutex_enter(&dl->dl_lock);
289 dsl_deadlist_load_tree(dl);
290 mutex_exit(&dl->dl_lock);
291 for (dle = avl_first(&dl->dl_tree); dle != NULL;
292 dle = AVL_NEXT(&dl->dl_tree, dle)) {
293 if (func(args, dle) != 0)
294 break;
298 void
299 dsl_deadlist_open(dsl_deadlist_t *dl, objset_t *os, uint64_t object)
301 dmu_object_info_t doi;
303 ASSERT(!dsl_deadlist_is_open(dl));
305 mutex_init(&dl->dl_lock, NULL, MUTEX_DEFAULT, NULL);
306 dl->dl_os = os;
307 dl->dl_object = object;
308 VERIFY0(dmu_bonus_hold(os, object, dl, &dl->dl_dbuf));
309 dmu_object_info_from_db(dl->dl_dbuf, &doi);
310 if (doi.doi_type == DMU_OT_BPOBJ) {
311 dmu_buf_rele(dl->dl_dbuf, dl);
312 dl->dl_dbuf = NULL;
313 dl->dl_oldfmt = B_TRUE;
314 VERIFY0(bpobj_open(&dl->dl_bpobj, os, object));
315 return;
318 dl->dl_oldfmt = B_FALSE;
319 dl->dl_phys = dl->dl_dbuf->db_data;
320 dl->dl_havetree = B_FALSE;
321 dl->dl_havecache = B_FALSE;
324 boolean_t
325 dsl_deadlist_is_open(dsl_deadlist_t *dl)
327 return (dl->dl_os != NULL);
330 void
331 dsl_deadlist_close(dsl_deadlist_t *dl)
333 ASSERT(dsl_deadlist_is_open(dl));
334 mutex_destroy(&dl->dl_lock);
336 if (dl->dl_oldfmt) {
337 dl->dl_oldfmt = B_FALSE;
338 bpobj_close(&dl->dl_bpobj);
339 dl->dl_os = NULL;
340 dl->dl_object = 0;
341 return;
344 if (dl->dl_havetree) {
345 dsl_deadlist_entry_t *dle;
346 void *cookie = NULL;
347 while ((dle = avl_destroy_nodes(&dl->dl_tree, &cookie))
348 != NULL) {
349 bpobj_close(&dle->dle_bpobj);
350 kmem_free(dle, sizeof (*dle));
352 avl_destroy(&dl->dl_tree);
354 if (dl->dl_havecache) {
355 dsl_deadlist_cache_entry_t *dlce;
356 void *cookie = NULL;
357 while ((dlce = avl_destroy_nodes(&dl->dl_cache, &cookie))
358 != NULL) {
359 kmem_free(dlce, sizeof (*dlce));
361 avl_destroy(&dl->dl_cache);
363 dmu_buf_rele(dl->dl_dbuf, dl);
364 dl->dl_dbuf = NULL;
365 dl->dl_phys = NULL;
366 dl->dl_os = NULL;
367 dl->dl_object = 0;
370 uint64_t
371 dsl_deadlist_alloc(objset_t *os, dmu_tx_t *tx)
373 if (spa_version(dmu_objset_spa(os)) < SPA_VERSION_DEADLISTS)
374 return (bpobj_alloc(os, SPA_OLD_MAXBLOCKSIZE, tx));
375 return (zap_create(os, DMU_OT_DEADLIST, DMU_OT_DEADLIST_HDR,
376 sizeof (dsl_deadlist_phys_t), tx));
379 void
380 dsl_deadlist_free(objset_t *os, uint64_t dlobj, dmu_tx_t *tx)
382 dmu_object_info_t doi;
383 zap_cursor_t zc;
384 zap_attribute_t za;
385 int error;
387 VERIFY0(dmu_object_info(os, dlobj, &doi));
388 if (doi.doi_type == DMU_OT_BPOBJ) {
389 bpobj_free(os, dlobj, tx);
390 return;
393 for (zap_cursor_init(&zc, os, dlobj);
394 (error = zap_cursor_retrieve(&zc, &za)) == 0;
395 zap_cursor_advance(&zc)) {
396 uint64_t obj = za.za_first_integer;
397 if (obj == dmu_objset_pool(os)->dp_empty_bpobj)
398 bpobj_decr_empty(os, tx);
399 else
400 bpobj_free(os, obj, tx);
402 VERIFY3U(error, ==, ENOENT);
403 zap_cursor_fini(&zc);
404 VERIFY0(dmu_object_free(os, dlobj, tx));
407 static void
408 dle_enqueue(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
409 const blkptr_t *bp, boolean_t bp_freed, dmu_tx_t *tx)
411 ASSERT(MUTEX_HELD(&dl->dl_lock));
412 if (dle->dle_bpobj.bpo_object ==
413 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
414 uint64_t obj = bpobj_alloc(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
415 bpobj_close(&dle->dle_bpobj);
416 bpobj_decr_empty(dl->dl_os, tx);
417 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
418 VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
419 dle->dle_mintxg, obj, tx));
421 bpobj_enqueue(&dle->dle_bpobj, bp, bp_freed, tx);
424 static void
425 dle_enqueue_subobj(dsl_deadlist_t *dl, dsl_deadlist_entry_t *dle,
426 uint64_t obj, dmu_tx_t *tx)
428 ASSERT(MUTEX_HELD(&dl->dl_lock));
429 if (dle->dle_bpobj.bpo_object !=
430 dmu_objset_pool(dl->dl_os)->dp_empty_bpobj) {
431 bpobj_enqueue_subobj(&dle->dle_bpobj, obj, tx);
432 } else {
433 bpobj_close(&dle->dle_bpobj);
434 bpobj_decr_empty(dl->dl_os, tx);
435 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
436 VERIFY0(zap_update_int_key(dl->dl_os, dl->dl_object,
437 dle->dle_mintxg, obj, tx));
441 void
442 dsl_deadlist_insert(dsl_deadlist_t *dl, const blkptr_t *bp, boolean_t bp_freed,
443 dmu_tx_t *tx)
445 dsl_deadlist_entry_t dle_tofind;
446 dsl_deadlist_entry_t *dle;
447 avl_index_t where;
449 if (dl->dl_oldfmt) {
450 bpobj_enqueue(&dl->dl_bpobj, bp, bp_freed, tx);
451 return;
454 mutex_enter(&dl->dl_lock);
455 dsl_deadlist_load_tree(dl);
457 dmu_buf_will_dirty(dl->dl_dbuf, tx);
459 int sign = bp_freed ? -1 : +1;
460 dl->dl_phys->dl_used +=
461 sign * bp_get_dsize_sync(dmu_objset_spa(dl->dl_os), bp);
462 dl->dl_phys->dl_comp += sign * BP_GET_PSIZE(bp);
463 dl->dl_phys->dl_uncomp += sign * BP_GET_UCSIZE(bp);
465 dle_tofind.dle_mintxg = bp->blk_birth;
466 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
467 if (dle == NULL)
468 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
469 else
470 dle = AVL_PREV(&dl->dl_tree, dle);
472 if (dle == NULL) {
473 zfs_panic_recover("blkptr at %p has invalid BLK_BIRTH %llu",
474 bp, (longlong_t)bp->blk_birth);
475 dle = avl_first(&dl->dl_tree);
478 ASSERT3P(dle, !=, NULL);
479 dle_enqueue(dl, dle, bp, bp_freed, tx);
480 mutex_exit(&dl->dl_lock);
484 dsl_deadlist_insert_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
486 dsl_deadlist_t *dl = arg;
487 dsl_deadlist_insert(dl, bp, B_FALSE, tx);
488 return (0);
492 dsl_deadlist_insert_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
494 dsl_deadlist_t *dl = arg;
495 dsl_deadlist_insert(dl, bp, B_TRUE, tx);
496 return (0);
500 * Insert new key in deadlist, which must be > all current entries.
501 * mintxg is not inclusive.
503 void
504 dsl_deadlist_add_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
506 uint64_t obj;
507 dsl_deadlist_entry_t *dle;
509 if (dl->dl_oldfmt)
510 return;
512 dle = kmem_alloc(sizeof (*dle), KM_SLEEP);
513 dle->dle_mintxg = mintxg;
515 mutex_enter(&dl->dl_lock);
516 dsl_deadlist_load_tree(dl);
518 obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
519 VERIFY0(bpobj_open(&dle->dle_bpobj, dl->dl_os, obj));
520 avl_add(&dl->dl_tree, dle);
522 VERIFY0(zap_add_int_key(dl->dl_os, dl->dl_object,
523 mintxg, obj, tx));
524 mutex_exit(&dl->dl_lock);
528 * Remove this key, merging its entries into the previous key.
530 void
531 dsl_deadlist_remove_key(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
533 dsl_deadlist_entry_t dle_tofind;
534 dsl_deadlist_entry_t *dle, *dle_prev;
536 if (dl->dl_oldfmt)
537 return;
538 mutex_enter(&dl->dl_lock);
539 dsl_deadlist_load_tree(dl);
541 dle_tofind.dle_mintxg = mintxg;
542 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
543 ASSERT3P(dle, !=, NULL);
544 dle_prev = AVL_PREV(&dl->dl_tree, dle);
545 ASSERT3P(dle_prev, !=, NULL);
547 dle_enqueue_subobj(dl, dle_prev, dle->dle_bpobj.bpo_object, tx);
549 avl_remove(&dl->dl_tree, dle);
550 bpobj_close(&dle->dle_bpobj);
551 kmem_free(dle, sizeof (*dle));
553 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object, mintxg, tx));
554 mutex_exit(&dl->dl_lock);
558 * Remove a deadlist entry and all of its contents by removing the entry from
559 * the deadlist's avl tree, freeing the entry's bpobj and adjusting the
560 * deadlist's space accounting accordingly.
562 void
563 dsl_deadlist_remove_entry(dsl_deadlist_t *dl, uint64_t mintxg, dmu_tx_t *tx)
565 uint64_t used, comp, uncomp;
566 dsl_deadlist_entry_t dle_tofind;
567 dsl_deadlist_entry_t *dle;
568 objset_t *os = dl->dl_os;
570 if (dl->dl_oldfmt)
571 return;
573 mutex_enter(&dl->dl_lock);
574 dsl_deadlist_load_tree(dl);
576 dle_tofind.dle_mintxg = mintxg;
577 dle = avl_find(&dl->dl_tree, &dle_tofind, NULL);
578 VERIFY3P(dle, !=, NULL);
580 avl_remove(&dl->dl_tree, dle);
581 VERIFY0(zap_remove_int(os, dl->dl_object, mintxg, tx));
582 VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
583 dmu_buf_will_dirty(dl->dl_dbuf, tx);
584 dl->dl_phys->dl_used -= used;
585 dl->dl_phys->dl_comp -= comp;
586 dl->dl_phys->dl_uncomp -= uncomp;
587 if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj) {
588 bpobj_decr_empty(os, tx);
589 } else {
590 bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
592 bpobj_close(&dle->dle_bpobj);
593 kmem_free(dle, sizeof (*dle));
594 mutex_exit(&dl->dl_lock);
598 * Clear out the contents of a deadlist_entry by freeing its bpobj,
599 * replacing it with an empty bpobj and adjusting the deadlist's
600 * space accounting
602 void
603 dsl_deadlist_clear_entry(dsl_deadlist_entry_t *dle, dsl_deadlist_t *dl,
604 dmu_tx_t *tx)
606 uint64_t new_obj, used, comp, uncomp;
607 objset_t *os = dl->dl_os;
609 mutex_enter(&dl->dl_lock);
610 VERIFY0(zap_remove_int(os, dl->dl_object, dle->dle_mintxg, tx));
611 VERIFY0(bpobj_space(&dle->dle_bpobj, &used, &comp, &uncomp));
612 dmu_buf_will_dirty(dl->dl_dbuf, tx);
613 dl->dl_phys->dl_used -= used;
614 dl->dl_phys->dl_comp -= comp;
615 dl->dl_phys->dl_uncomp -= uncomp;
616 if (dle->dle_bpobj.bpo_object == dmu_objset_pool(os)->dp_empty_bpobj)
617 bpobj_decr_empty(os, tx);
618 else
619 bpobj_free(os, dle->dle_bpobj.bpo_object, tx);
620 bpobj_close(&dle->dle_bpobj);
621 new_obj = bpobj_alloc_empty(os, SPA_OLD_MAXBLOCKSIZE, tx);
622 VERIFY0(bpobj_open(&dle->dle_bpobj, os, new_obj));
623 VERIFY0(zap_add_int_key(os, dl->dl_object, dle->dle_mintxg,
624 new_obj, tx));
625 ASSERT(bpobj_is_empty(&dle->dle_bpobj));
626 mutex_exit(&dl->dl_lock);
630 * Return the first entry in deadlist's avl tree
632 dsl_deadlist_entry_t *
633 dsl_deadlist_first(dsl_deadlist_t *dl)
635 dsl_deadlist_entry_t *dle;
637 mutex_enter(&dl->dl_lock);
638 dsl_deadlist_load_tree(dl);
639 dle = avl_first(&dl->dl_tree);
640 mutex_exit(&dl->dl_lock);
642 return (dle);
646 * Return the last entry in deadlist's avl tree
648 dsl_deadlist_entry_t *
649 dsl_deadlist_last(dsl_deadlist_t *dl)
651 dsl_deadlist_entry_t *dle;
653 mutex_enter(&dl->dl_lock);
654 dsl_deadlist_load_tree(dl);
655 dle = avl_last(&dl->dl_tree);
656 mutex_exit(&dl->dl_lock);
658 return (dle);
662 * Walk ds's snapshots to regenerate generate ZAP & AVL.
664 static void
665 dsl_deadlist_regenerate(objset_t *os, uint64_t dlobj,
666 uint64_t mrs_obj, dmu_tx_t *tx)
668 dsl_deadlist_t dl = { 0 };
669 dsl_pool_t *dp = dmu_objset_pool(os);
671 dsl_deadlist_open(&dl, os, dlobj);
672 if (dl.dl_oldfmt) {
673 dsl_deadlist_close(&dl);
674 return;
677 while (mrs_obj != 0) {
678 dsl_dataset_t *ds;
679 VERIFY0(dsl_dataset_hold_obj(dp, mrs_obj, FTAG, &ds));
680 dsl_deadlist_add_key(&dl,
681 dsl_dataset_phys(ds)->ds_prev_snap_txg, tx);
682 mrs_obj = dsl_dataset_phys(ds)->ds_prev_snap_obj;
683 dsl_dataset_rele(ds, FTAG);
685 dsl_deadlist_close(&dl);
688 uint64_t
689 dsl_deadlist_clone(dsl_deadlist_t *dl, uint64_t maxtxg,
690 uint64_t mrs_obj, dmu_tx_t *tx)
692 dsl_deadlist_entry_t *dle;
693 uint64_t newobj;
695 newobj = dsl_deadlist_alloc(dl->dl_os, tx);
697 if (dl->dl_oldfmt) {
698 dsl_deadlist_regenerate(dl->dl_os, newobj, mrs_obj, tx);
699 return (newobj);
702 mutex_enter(&dl->dl_lock);
703 dsl_deadlist_load_tree(dl);
705 for (dle = avl_first(&dl->dl_tree); dle;
706 dle = AVL_NEXT(&dl->dl_tree, dle)) {
707 uint64_t obj;
709 if (dle->dle_mintxg >= maxtxg)
710 break;
712 obj = bpobj_alloc_empty(dl->dl_os, SPA_OLD_MAXBLOCKSIZE, tx);
713 VERIFY0(zap_add_int_key(dl->dl_os, newobj,
714 dle->dle_mintxg, obj, tx));
716 mutex_exit(&dl->dl_lock);
717 return (newobj);
720 void
721 dsl_deadlist_space(dsl_deadlist_t *dl,
722 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
724 ASSERT(dsl_deadlist_is_open(dl));
725 if (dl->dl_oldfmt) {
726 VERIFY0(bpobj_space(&dl->dl_bpobj,
727 usedp, compp, uncompp));
728 return;
731 mutex_enter(&dl->dl_lock);
732 *usedp = dl->dl_phys->dl_used;
733 *compp = dl->dl_phys->dl_comp;
734 *uncompp = dl->dl_phys->dl_uncomp;
735 mutex_exit(&dl->dl_lock);
739 * return space used in the range (mintxg, maxtxg].
740 * Includes maxtxg, does not include mintxg.
741 * mintxg and maxtxg must both be keys in the deadlist (unless maxtxg is
742 * UINT64_MAX).
744 void
745 dsl_deadlist_space_range(dsl_deadlist_t *dl, uint64_t mintxg, uint64_t maxtxg,
746 uint64_t *usedp, uint64_t *compp, uint64_t *uncompp)
748 dsl_deadlist_cache_entry_t *dlce;
749 dsl_deadlist_cache_entry_t dlce_tofind;
750 avl_index_t where;
752 if (dl->dl_oldfmt) {
753 VERIFY0(bpobj_space_range(&dl->dl_bpobj,
754 mintxg, maxtxg, usedp, compp, uncompp));
755 return;
758 *usedp = *compp = *uncompp = 0;
760 mutex_enter(&dl->dl_lock);
761 dsl_deadlist_load_cache(dl);
762 dlce_tofind.dlce_mintxg = mintxg;
763 dlce = avl_find(&dl->dl_cache, &dlce_tofind, &where);
766 * If this mintxg doesn't exist, it may be an empty_bpobj which
767 * is omitted from the sparse tree. Start at the next non-empty
768 * entry.
770 if (dlce == NULL)
771 dlce = avl_nearest(&dl->dl_cache, where, AVL_AFTER);
773 for (; dlce && dlce->dlce_mintxg < maxtxg;
774 dlce = AVL_NEXT(&dl->dl_tree, dlce)) {
775 *usedp += dlce->dlce_bytes;
776 *compp += dlce->dlce_comp;
777 *uncompp += dlce->dlce_uncomp;
780 mutex_exit(&dl->dl_lock);
783 static void
784 dsl_deadlist_insert_bpobj(dsl_deadlist_t *dl, uint64_t obj, uint64_t birth,
785 dmu_tx_t *tx)
787 dsl_deadlist_entry_t dle_tofind;
788 dsl_deadlist_entry_t *dle;
789 avl_index_t where;
790 uint64_t used, comp, uncomp;
791 bpobj_t bpo;
793 ASSERT(MUTEX_HELD(&dl->dl_lock));
795 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
796 VERIFY0(bpobj_space(&bpo, &used, &comp, &uncomp));
797 bpobj_close(&bpo);
799 dsl_deadlist_load_tree(dl);
801 dmu_buf_will_dirty(dl->dl_dbuf, tx);
802 dl->dl_phys->dl_used += used;
803 dl->dl_phys->dl_comp += comp;
804 dl->dl_phys->dl_uncomp += uncomp;
806 dle_tofind.dle_mintxg = birth;
807 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
808 if (dle == NULL)
809 dle = avl_nearest(&dl->dl_tree, where, AVL_BEFORE);
810 dle_enqueue_subobj(dl, dle, obj, tx);
813 static int
814 dsl_deadlist_insert_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
815 dmu_tx_t *tx)
817 dsl_deadlist_t *dl = arg;
818 dsl_deadlist_insert(dl, bp, bp_freed, tx);
819 return (0);
823 * Merge the deadlist pointed to by 'obj' into dl. obj will be left as
824 * an empty deadlist.
826 void
827 dsl_deadlist_merge(dsl_deadlist_t *dl, uint64_t obj, dmu_tx_t *tx)
829 zap_cursor_t zc;
830 zap_attribute_t za;
831 dmu_buf_t *bonus;
832 dsl_deadlist_phys_t *dlp;
833 dmu_object_info_t doi;
834 int error;
836 VERIFY0(dmu_object_info(dl->dl_os, obj, &doi));
837 if (doi.doi_type == DMU_OT_BPOBJ) {
838 bpobj_t bpo;
839 VERIFY0(bpobj_open(&bpo, dl->dl_os, obj));
840 VERIFY0(bpobj_iterate(&bpo, dsl_deadlist_insert_cb, dl, tx));
841 bpobj_close(&bpo);
842 return;
845 mutex_enter(&dl->dl_lock);
846 for (zap_cursor_init(&zc, dl->dl_os, obj);
847 (error = zap_cursor_retrieve(&zc, &za)) == 0;
848 zap_cursor_advance(&zc)) {
849 uint64_t mintxg = zfs_strtonum(za.za_name, NULL);
850 dsl_deadlist_insert_bpobj(dl, za.za_first_integer, mintxg, tx);
851 VERIFY0(zap_remove_int(dl->dl_os, obj, mintxg, tx));
853 VERIFY3U(error, ==, ENOENT);
854 zap_cursor_fini(&zc);
856 VERIFY0(dmu_bonus_hold(dl->dl_os, obj, FTAG, &bonus));
857 dlp = bonus->db_data;
858 dmu_buf_will_dirty(bonus, tx);
859 memset(dlp, 0, sizeof (*dlp));
860 dmu_buf_rele(bonus, FTAG);
861 mutex_exit(&dl->dl_lock);
865 * Remove entries on dl that are born > mintxg, and put them on the bpobj.
867 void
868 dsl_deadlist_move_bpobj(dsl_deadlist_t *dl, bpobj_t *bpo, uint64_t mintxg,
869 dmu_tx_t *tx)
871 dsl_deadlist_entry_t dle_tofind;
872 dsl_deadlist_entry_t *dle;
873 avl_index_t where;
875 ASSERT(!dl->dl_oldfmt);
877 mutex_enter(&dl->dl_lock);
878 dmu_buf_will_dirty(dl->dl_dbuf, tx);
879 dsl_deadlist_load_tree(dl);
881 dle_tofind.dle_mintxg = mintxg;
882 dle = avl_find(&dl->dl_tree, &dle_tofind, &where);
883 if (dle == NULL)
884 dle = avl_nearest(&dl->dl_tree, where, AVL_AFTER);
885 while (dle) {
886 uint64_t used, comp, uncomp;
887 dsl_deadlist_entry_t *dle_next;
889 bpobj_enqueue_subobj(bpo, dle->dle_bpobj.bpo_object, tx);
891 VERIFY0(bpobj_space(&dle->dle_bpobj,
892 &used, &comp, &uncomp));
893 ASSERT3U(dl->dl_phys->dl_used, >=, used);
894 ASSERT3U(dl->dl_phys->dl_comp, >=, comp);
895 ASSERT3U(dl->dl_phys->dl_uncomp, >=, uncomp);
896 dl->dl_phys->dl_used -= used;
897 dl->dl_phys->dl_comp -= comp;
898 dl->dl_phys->dl_uncomp -= uncomp;
900 VERIFY0(zap_remove_int(dl->dl_os, dl->dl_object,
901 dle->dle_mintxg, tx));
903 dle_next = AVL_NEXT(&dl->dl_tree, dle);
904 avl_remove(&dl->dl_tree, dle);
905 bpobj_close(&dle->dle_bpobj);
906 kmem_free(dle, sizeof (*dle));
907 dle = dle_next;
909 mutex_exit(&dl->dl_lock);
912 typedef struct livelist_entry {
913 blkptr_t le_bp;
914 uint32_t le_refcnt;
915 avl_node_t le_node;
916 } livelist_entry_t;
918 static int
919 livelist_compare(const void *larg, const void *rarg)
921 const blkptr_t *l = &((livelist_entry_t *)larg)->le_bp;
922 const blkptr_t *r = &((livelist_entry_t *)rarg)->le_bp;
924 /* Sort them according to dva[0] */
925 uint64_t l_dva0_vdev = DVA_GET_VDEV(&l->blk_dva[0]);
926 uint64_t r_dva0_vdev = DVA_GET_VDEV(&r->blk_dva[0]);
928 if (l_dva0_vdev != r_dva0_vdev)
929 return (TREE_CMP(l_dva0_vdev, r_dva0_vdev));
931 /* if vdevs are equal, sort by offsets. */
932 uint64_t l_dva0_offset = DVA_GET_OFFSET(&l->blk_dva[0]);
933 uint64_t r_dva0_offset = DVA_GET_OFFSET(&r->blk_dva[0]);
934 if (l_dva0_offset == r_dva0_offset)
935 ASSERT3U(l->blk_birth, ==, r->blk_birth);
936 return (TREE_CMP(l_dva0_offset, r_dva0_offset));
939 struct livelist_iter_arg {
940 avl_tree_t *avl;
941 bplist_t *to_free;
942 zthr_t *t;
946 * Expects an AVL tree which is incrementally filled will FREE blkptrs
947 * and used to match up ALLOC/FREE pairs. ALLOC'd blkptrs without a
948 * corresponding FREE are stored in the supplied bplist.
950 * Note that multiple FREE and ALLOC entries for the same blkptr may
951 * be encountered when dedup is involved. For this reason we keep a
952 * refcount for all the FREE entries of each blkptr and ensure that
953 * each of those FREE entries has a corresponding ALLOC preceding it.
955 static int
956 dsl_livelist_iterate(void *arg, const blkptr_t *bp, boolean_t bp_freed,
957 dmu_tx_t *tx)
959 struct livelist_iter_arg *lia = arg;
960 avl_tree_t *avl = lia->avl;
961 bplist_t *to_free = lia->to_free;
962 zthr_t *t = lia->t;
963 ASSERT(tx == NULL);
965 if ((t != NULL) && (zthr_has_waiters(t) || zthr_iscancelled(t)))
966 return (SET_ERROR(EINTR));
968 livelist_entry_t node;
969 node.le_bp = *bp;
970 livelist_entry_t *found = avl_find(avl, &node, NULL);
971 if (bp_freed) {
972 if (found == NULL) {
973 /* first free entry for this blkptr */
974 livelist_entry_t *e =
975 kmem_alloc(sizeof (livelist_entry_t), KM_SLEEP);
976 e->le_bp = *bp;
977 e->le_refcnt = 1;
978 avl_add(avl, e);
979 } else {
980 /* dedup block free */
981 ASSERT(BP_GET_DEDUP(bp));
982 ASSERT3U(BP_GET_CHECKSUM(bp), ==,
983 BP_GET_CHECKSUM(&found->le_bp));
984 ASSERT3U(found->le_refcnt + 1, >, found->le_refcnt);
985 found->le_refcnt++;
987 } else {
988 if (found == NULL) {
989 /* block is currently marked as allocated */
990 bplist_append(to_free, bp);
991 } else {
992 /* alloc matches a free entry */
993 ASSERT3U(found->le_refcnt, !=, 0);
994 found->le_refcnt--;
995 if (found->le_refcnt == 0) {
996 /* all tracked free pairs have been matched */
997 avl_remove(avl, found);
998 kmem_free(found, sizeof (livelist_entry_t));
999 } else {
1001 * This is definitely a deduped blkptr so
1002 * let's validate it.
1004 ASSERT(BP_GET_DEDUP(bp));
1005 ASSERT3U(BP_GET_CHECKSUM(bp), ==,
1006 BP_GET_CHECKSUM(&found->le_bp));
1010 return (0);
1014 * Accepts a bpobj and a bplist. Will insert into the bplist the blkptrs
1015 * which have an ALLOC entry but no matching FREE
1018 dsl_process_sub_livelist(bpobj_t *bpobj, bplist_t *to_free, zthr_t *t,
1019 uint64_t *size)
1021 avl_tree_t avl;
1022 avl_create(&avl, livelist_compare, sizeof (livelist_entry_t),
1023 offsetof(livelist_entry_t, le_node));
1025 /* process the sublist */
1026 struct livelist_iter_arg arg = {
1027 .avl = &avl,
1028 .to_free = to_free,
1029 .t = t
1031 int err = bpobj_iterate_nofree(bpobj, dsl_livelist_iterate, &arg, size);
1032 VERIFY(err != 0 || avl_numnodes(&avl) == 0);
1034 void *cookie = NULL;
1035 livelist_entry_t *le = NULL;
1036 while ((le = avl_destroy_nodes(&avl, &cookie)) != NULL) {
1037 kmem_free(le, sizeof (livelist_entry_t));
1039 avl_destroy(&avl);
1040 return (err);
1043 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, max_entries, U64, ZMOD_RW,
1044 "Size to start the next sub-livelist in a livelist");
1046 ZFS_MODULE_PARAM(zfs_livelist, zfs_livelist_, min_percent_shared, INT, ZMOD_RW,
1047 "Threshold at which livelist is disabled");