Update META to 6.1 kernel
[zfs.git] / module / zfs / zfs_vnops.c
blob45ecb07732604d4c6171003fa2d33e794e7efde1
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
32 #include <sys/types.h>
33 #include <sys/param.h>
34 #include <sys/time.h>
35 #include <sys/sysmacros.h>
36 #include <sys/vfs.h>
37 #include <sys/uio_impl.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/cmn_err.h>
42 #include <sys/errno.h>
43 #include <sys/zfs_dir.h>
44 #include <sys/zfs_acl.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/fs/zfs.h>
47 #include <sys/dmu.h>
48 #include <sys/dmu_objset.h>
49 #include <sys/spa.h>
50 #include <sys/txg.h>
51 #include <sys/dbuf.h>
52 #include <sys/policy.h>
53 #include <sys/zfs_vnops.h>
54 #include <sys/zfs_quota.h>
55 #include <sys/zfs_vfsops.h>
56 #include <sys/zfs_znode.h>
59 static ulong_t zfs_fsync_sync_cnt = 4;
61 int
62 zfs_fsync(znode_t *zp, int syncflag, cred_t *cr)
64 int error = 0;
65 zfsvfs_t *zfsvfs = ZTOZSB(zp);
67 (void) tsd_set(zfs_fsyncer_key, (void *)(uintptr_t)zfs_fsync_sync_cnt);
69 if (zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED) {
70 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
71 goto out;
72 atomic_inc_32(&zp->z_sync_writes_cnt);
73 zil_commit(zfsvfs->z_log, zp->z_id);
74 atomic_dec_32(&zp->z_sync_writes_cnt);
75 zfs_exit(zfsvfs, FTAG);
77 out:
78 tsd_set(zfs_fsyncer_key, NULL);
80 return (error);
84 #if defined(SEEK_HOLE) && defined(SEEK_DATA)
86 * Lseek support for finding holes (cmd == SEEK_HOLE) and
87 * data (cmd == SEEK_DATA). "off" is an in/out parameter.
89 static int
90 zfs_holey_common(znode_t *zp, ulong_t cmd, loff_t *off)
92 zfs_locked_range_t *lr;
93 uint64_t noff = (uint64_t)*off; /* new offset */
94 uint64_t file_sz;
95 int error;
96 boolean_t hole;
98 file_sz = zp->z_size;
99 if (noff >= file_sz) {
100 return (SET_ERROR(ENXIO));
103 if (cmd == F_SEEK_HOLE)
104 hole = B_TRUE;
105 else
106 hole = B_FALSE;
108 /* Flush any mmap()'d data to disk */
109 if (zn_has_cached_data(zp))
110 zn_flush_cached_data(zp, B_FALSE);
112 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, file_sz, RL_READER);
113 error = dmu_offset_next(ZTOZSB(zp)->z_os, zp->z_id, hole, &noff);
114 zfs_rangelock_exit(lr);
116 if (error == ESRCH)
117 return (SET_ERROR(ENXIO));
119 /* File was dirty, so fall back to using generic logic */
120 if (error == EBUSY) {
121 if (hole)
122 *off = file_sz;
124 return (0);
128 * We could find a hole that begins after the logical end-of-file,
129 * because dmu_offset_next() only works on whole blocks. If the
130 * EOF falls mid-block, then indicate that the "virtual hole"
131 * at the end of the file begins at the logical EOF, rather than
132 * at the end of the last block.
134 if (noff > file_sz) {
135 ASSERT(hole);
136 noff = file_sz;
139 if (noff < *off)
140 return (error);
141 *off = noff;
142 return (error);
146 zfs_holey(znode_t *zp, ulong_t cmd, loff_t *off)
148 zfsvfs_t *zfsvfs = ZTOZSB(zp);
149 int error;
151 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
152 return (error);
154 error = zfs_holey_common(zp, cmd, off);
156 zfs_exit(zfsvfs, FTAG);
157 return (error);
159 #endif /* SEEK_HOLE && SEEK_DATA */
162 zfs_access(znode_t *zp, int mode, int flag, cred_t *cr)
164 zfsvfs_t *zfsvfs = ZTOZSB(zp);
165 int error;
167 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
168 return (error);
170 if (flag & V_ACE_MASK)
171 #if defined(__linux__)
172 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
173 kcred->user_ns);
174 #else
175 error = zfs_zaccess(zp, mode, flag, B_FALSE, cr,
176 NULL);
177 #endif
178 else
179 #if defined(__linux__)
180 error = zfs_zaccess_rwx(zp, mode, flag, cr, kcred->user_ns);
181 #else
182 error = zfs_zaccess_rwx(zp, mode, flag, cr, NULL);
183 #endif
185 zfs_exit(zfsvfs, FTAG);
186 return (error);
189 static uint64_t zfs_vnops_read_chunk_size = 1024 * 1024; /* Tunable */
192 * Read bytes from specified file into supplied buffer.
194 * IN: zp - inode of file to be read from.
195 * uio - structure supplying read location, range info,
196 * and return buffer.
197 * ioflag - O_SYNC flags; used to provide FRSYNC semantics.
198 * O_DIRECT flag; used to bypass page cache.
199 * cr - credentials of caller.
201 * OUT: uio - updated offset and range, buffer filled.
203 * RETURN: 0 on success, error code on failure.
205 * Side Effects:
206 * inode - atime updated if byte count > 0
209 zfs_read(struct znode *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
211 (void) cr;
212 int error = 0;
213 boolean_t frsync = B_FALSE;
215 zfsvfs_t *zfsvfs = ZTOZSB(zp);
216 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
217 return (error);
219 if (zp->z_pflags & ZFS_AV_QUARANTINED) {
220 zfs_exit(zfsvfs, FTAG);
221 return (SET_ERROR(EACCES));
224 /* We don't copy out anything useful for directories. */
225 if (Z_ISDIR(ZTOTYPE(zp))) {
226 zfs_exit(zfsvfs, FTAG);
227 return (SET_ERROR(EISDIR));
231 * Validate file offset
233 if (zfs_uio_offset(uio) < (offset_t)0) {
234 zfs_exit(zfsvfs, FTAG);
235 return (SET_ERROR(EINVAL));
239 * Fasttrack empty reads
241 if (zfs_uio_resid(uio) == 0) {
242 zfs_exit(zfsvfs, FTAG);
243 return (0);
246 #ifdef FRSYNC
248 * If we're in FRSYNC mode, sync out this znode before reading it.
249 * Only do this for non-snapshots.
251 * Some platforms do not support FRSYNC and instead map it
252 * to O_SYNC, which results in unnecessary calls to zil_commit. We
253 * only honor FRSYNC requests on platforms which support it.
255 frsync = !!(ioflag & FRSYNC);
256 #endif
257 if (zfsvfs->z_log &&
258 (frsync || zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS))
259 zil_commit(zfsvfs->z_log, zp->z_id);
262 * Lock the range against changes.
264 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
265 zfs_uio_offset(uio), zfs_uio_resid(uio), RL_READER);
268 * If we are reading past end-of-file we can skip
269 * to the end; but we might still need to set atime.
271 if (zfs_uio_offset(uio) >= zp->z_size) {
272 error = 0;
273 goto out;
276 ASSERT(zfs_uio_offset(uio) < zp->z_size);
277 #if defined(__linux__)
278 ssize_t start_offset = zfs_uio_offset(uio);
279 #endif
280 ssize_t n = MIN(zfs_uio_resid(uio), zp->z_size - zfs_uio_offset(uio));
281 ssize_t start_resid = n;
283 while (n > 0) {
284 ssize_t nbytes = MIN(n, zfs_vnops_read_chunk_size -
285 P2PHASE(zfs_uio_offset(uio), zfs_vnops_read_chunk_size));
286 #ifdef UIO_NOCOPY
287 if (zfs_uio_segflg(uio) == UIO_NOCOPY)
288 error = mappedread_sf(zp, nbytes, uio);
289 else
290 #endif
291 if (zn_has_cached_data(zp) && !(ioflag & O_DIRECT)) {
292 error = mappedread(zp, nbytes, uio);
293 } else {
294 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
295 uio, nbytes);
298 if (error) {
299 /* convert checksum errors into IO errors */
300 if (error == ECKSUM)
301 error = SET_ERROR(EIO);
303 #if defined(__linux__)
305 * if we actually read some bytes, bubbling EFAULT
306 * up to become EAGAIN isn't what we want here...
308 * ...on Linux, at least. On FBSD, doing this breaks.
310 if (error == EFAULT &&
311 (zfs_uio_offset(uio) - start_offset) != 0)
312 error = 0;
313 #endif
314 break;
317 n -= nbytes;
320 int64_t nread = start_resid - n;
321 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nread);
322 task_io_account_read(nread);
323 out:
324 zfs_rangelock_exit(lr);
326 ZFS_ACCESSTIME_STAMP(zfsvfs, zp);
327 zfs_exit(zfsvfs, FTAG);
328 return (error);
331 static void
332 zfs_clear_setid_bits_if_necessary(zfsvfs_t *zfsvfs, znode_t *zp, cred_t *cr,
333 uint64_t *clear_setid_bits_txgp, dmu_tx_t *tx)
335 zilog_t *zilog = zfsvfs->z_log;
336 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
338 ASSERT(clear_setid_bits_txgp != NULL);
339 ASSERT(tx != NULL);
342 * Clear Set-UID/Set-GID bits on successful write if not
343 * privileged and at least one of the execute bits is set.
345 * It would be nice to do this after all writes have
346 * been done, but that would still expose the ISUID/ISGID
347 * to another app after the partial write is committed.
349 * Note: we don't call zfs_fuid_map_id() here because
350 * user 0 is not an ephemeral uid.
352 mutex_enter(&zp->z_acl_lock);
353 if ((zp->z_mode & (S_IXUSR | (S_IXUSR >> 3) | (S_IXUSR >> 6))) != 0 &&
354 (zp->z_mode & (S_ISUID | S_ISGID)) != 0 &&
355 secpolicy_vnode_setid_retain(zp, cr,
356 ((zp->z_mode & S_ISUID) != 0 && uid == 0)) != 0) {
357 uint64_t newmode;
359 zp->z_mode &= ~(S_ISUID | S_ISGID);
360 newmode = zp->z_mode;
361 (void) sa_update(zp->z_sa_hdl, SA_ZPL_MODE(zfsvfs),
362 (void *)&newmode, sizeof (uint64_t), tx);
364 mutex_exit(&zp->z_acl_lock);
367 * Make sure SUID/SGID bits will be removed when we replay the
368 * log. If the setid bits are keep coming back, don't log more
369 * than one TX_SETATTR per transaction group.
371 if (*clear_setid_bits_txgp != dmu_tx_get_txg(tx)) {
372 vattr_t va = {0};
374 va.va_mask = ATTR_MODE;
375 va.va_nodeid = zp->z_id;
376 va.va_mode = newmode;
377 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, &va,
378 ATTR_MODE, NULL);
379 *clear_setid_bits_txgp = dmu_tx_get_txg(tx);
381 } else {
382 mutex_exit(&zp->z_acl_lock);
387 * Write the bytes to a file.
389 * IN: zp - znode of file to be written to.
390 * uio - structure supplying write location, range info,
391 * and data buffer.
392 * ioflag - O_APPEND flag set if in append mode.
393 * O_DIRECT flag; used to bypass page cache.
394 * cr - credentials of caller.
396 * OUT: uio - updated offset and range.
398 * RETURN: 0 if success
399 * error code if failure
401 * Timestamps:
402 * ip - ctime|mtime updated if byte count > 0
405 zfs_write(znode_t *zp, zfs_uio_t *uio, int ioflag, cred_t *cr)
407 int error = 0, error1;
408 ssize_t start_resid = zfs_uio_resid(uio);
409 uint64_t clear_setid_bits_txg = 0;
412 * Fasttrack empty write
414 ssize_t n = start_resid;
415 if (n == 0)
416 return (0);
418 zfsvfs_t *zfsvfs = ZTOZSB(zp);
419 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
420 return (error);
422 sa_bulk_attr_t bulk[4];
423 int count = 0;
424 uint64_t mtime[2], ctime[2];
425 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
426 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
427 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_SIZE(zfsvfs), NULL,
428 &zp->z_size, 8);
429 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
430 &zp->z_pflags, 8);
433 * Callers might not be able to detect properly that we are read-only,
434 * so check it explicitly here.
436 if (zfs_is_readonly(zfsvfs)) {
437 zfs_exit(zfsvfs, FTAG);
438 return (SET_ERROR(EROFS));
442 * If immutable or not appending then return EPERM.
443 * Intentionally allow ZFS_READONLY through here.
444 * See zfs_zaccess_common()
446 if ((zp->z_pflags & ZFS_IMMUTABLE) ||
447 ((zp->z_pflags & ZFS_APPENDONLY) && !(ioflag & O_APPEND) &&
448 (zfs_uio_offset(uio) < zp->z_size))) {
449 zfs_exit(zfsvfs, FTAG);
450 return (SET_ERROR(EPERM));
454 * Validate file offset
456 offset_t woff = ioflag & O_APPEND ? zp->z_size : zfs_uio_offset(uio);
457 if (woff < 0) {
458 zfs_exit(zfsvfs, FTAG);
459 return (SET_ERROR(EINVAL));
462 const uint64_t max_blksz = zfsvfs->z_max_blksz;
465 * Pre-fault the pages to ensure slow (eg NFS) pages
466 * don't hold up txg.
467 * Skip this if uio contains loaned arc_buf.
469 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
470 zfs_exit(zfsvfs, FTAG);
471 return (SET_ERROR(EFAULT));
475 * If in append mode, set the io offset pointer to eof.
477 zfs_locked_range_t *lr;
478 if (ioflag & O_APPEND) {
480 * Obtain an appending range lock to guarantee file append
481 * semantics. We reset the write offset once we have the lock.
483 lr = zfs_rangelock_enter(&zp->z_rangelock, 0, n, RL_APPEND);
484 woff = lr->lr_offset;
485 if (lr->lr_length == UINT64_MAX) {
487 * We overlocked the file because this write will cause
488 * the file block size to increase.
489 * Note that zp_size cannot change with this lock held.
491 woff = zp->z_size;
493 zfs_uio_setoffset(uio, woff);
494 } else {
496 * Note that if the file block size will change as a result of
497 * this write, then this range lock will lock the entire file
498 * so that we can re-write the block safely.
500 lr = zfs_rangelock_enter(&zp->z_rangelock, woff, n, RL_WRITER);
503 if (zn_rlimit_fsize(zp, uio)) {
504 zfs_rangelock_exit(lr);
505 zfs_exit(zfsvfs, FTAG);
506 return (SET_ERROR(EFBIG));
509 const rlim64_t limit = MAXOFFSET_T;
511 if (woff >= limit) {
512 zfs_rangelock_exit(lr);
513 zfs_exit(zfsvfs, FTAG);
514 return (SET_ERROR(EFBIG));
517 if (n > limit - woff)
518 n = limit - woff;
520 uint64_t end_size = MAX(zp->z_size, woff + n);
521 zilog_t *zilog = zfsvfs->z_log;
523 const uint64_t uid = KUID_TO_SUID(ZTOUID(zp));
524 const uint64_t gid = KGID_TO_SGID(ZTOGID(zp));
525 const uint64_t projid = zp->z_projid;
528 * Write the file in reasonable size chunks. Each chunk is written
529 * in a separate transaction; this keeps the intent log records small
530 * and allows us to do more fine-grained space accounting.
532 while (n > 0) {
533 woff = zfs_uio_offset(uio);
535 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT, uid) ||
536 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT, gid) ||
537 (projid != ZFS_DEFAULT_PROJID &&
538 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
539 projid))) {
540 error = SET_ERROR(EDQUOT);
541 break;
544 arc_buf_t *abuf = NULL;
545 if (n >= max_blksz && woff >= zp->z_size &&
546 P2PHASE(woff, max_blksz) == 0 &&
547 zp->z_blksz == max_blksz) {
549 * This write covers a full block. "Borrow" a buffer
550 * from the dmu so that we can fill it before we enter
551 * a transaction. This avoids the possibility of
552 * holding up the transaction if the data copy hangs
553 * up on a pagefault (e.g., from an NFS server mapping).
555 size_t cbytes;
557 abuf = dmu_request_arcbuf(sa_get_db(zp->z_sa_hdl),
558 max_blksz);
559 ASSERT(abuf != NULL);
560 ASSERT(arc_buf_size(abuf) == max_blksz);
561 if ((error = zfs_uiocopy(abuf->b_data, max_blksz,
562 UIO_WRITE, uio, &cbytes))) {
563 dmu_return_arcbuf(abuf);
564 break;
566 ASSERT3S(cbytes, ==, max_blksz);
570 * Start a transaction.
572 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
573 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
574 dmu_buf_impl_t *db = (dmu_buf_impl_t *)sa_get_db(zp->z_sa_hdl);
575 DB_DNODE_ENTER(db);
576 dmu_tx_hold_write_by_dnode(tx, DB_DNODE(db), woff,
577 MIN(n, max_blksz));
578 DB_DNODE_EXIT(db);
579 zfs_sa_upgrade_txholds(tx, zp);
580 error = dmu_tx_assign(tx, TXG_WAIT);
581 if (error) {
582 dmu_tx_abort(tx);
583 if (abuf != NULL)
584 dmu_return_arcbuf(abuf);
585 break;
589 * NB: We must call zfs_clear_setid_bits_if_necessary before
590 * committing the transaction!
594 * If rangelock_enter() over-locked we grow the blocksize
595 * and then reduce the lock range. This will only happen
596 * on the first iteration since rangelock_reduce() will
597 * shrink down lr_length to the appropriate size.
599 if (lr->lr_length == UINT64_MAX) {
600 uint64_t new_blksz;
602 if (zp->z_blksz > max_blksz) {
604 * File's blocksize is already larger than the
605 * "recordsize" property. Only let it grow to
606 * the next power of 2.
608 ASSERT(!ISP2(zp->z_blksz));
609 new_blksz = MIN(end_size,
610 1 << highbit64(zp->z_blksz));
611 } else {
612 new_blksz = MIN(end_size, max_blksz);
614 zfs_grow_blocksize(zp, new_blksz, tx);
615 zfs_rangelock_reduce(lr, woff, n);
619 * XXX - should we really limit each write to z_max_blksz?
620 * Perhaps we should use SPA_MAXBLOCKSIZE chunks?
622 const ssize_t nbytes =
623 MIN(n, max_blksz - P2PHASE(woff, max_blksz));
625 ssize_t tx_bytes;
626 if (abuf == NULL) {
627 tx_bytes = zfs_uio_resid(uio);
628 zfs_uio_fault_disable(uio, B_TRUE);
629 error = dmu_write_uio_dbuf(sa_get_db(zp->z_sa_hdl),
630 uio, nbytes, tx);
631 zfs_uio_fault_disable(uio, B_FALSE);
632 #ifdef __linux__
633 if (error == EFAULT) {
634 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
635 cr, &clear_setid_bits_txg, tx);
636 dmu_tx_commit(tx);
638 * Account for partial writes before
639 * continuing the loop.
640 * Update needs to occur before the next
641 * zfs_uio_prefaultpages, or prefaultpages may
642 * error, and we may break the loop early.
644 if (tx_bytes != zfs_uio_resid(uio))
645 n -= tx_bytes - zfs_uio_resid(uio);
646 if (zfs_uio_prefaultpages(MIN(n, max_blksz),
647 uio)) {
648 break;
650 continue;
652 #endif
654 * On FreeBSD, EFAULT should be propagated back to the
655 * VFS, which will handle faulting and will retry.
657 if (error != 0 && error != EFAULT) {
658 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
659 cr, &clear_setid_bits_txg, tx);
660 dmu_tx_commit(tx);
661 break;
663 tx_bytes -= zfs_uio_resid(uio);
664 } else {
665 /* Implied by abuf != NULL: */
666 ASSERT3S(n, >=, max_blksz);
667 ASSERT0(P2PHASE(woff, max_blksz));
669 * We can simplify nbytes to MIN(n, max_blksz) since
670 * P2PHASE(woff, max_blksz) is 0, and knowing
671 * n >= max_blksz lets us simplify further:
673 ASSERT3S(nbytes, ==, max_blksz);
675 * Thus, we're writing a full block at a block-aligned
676 * offset and extending the file past EOF.
678 * dmu_assign_arcbuf_by_dbuf() will directly assign the
679 * arc buffer to a dbuf.
681 error = dmu_assign_arcbuf_by_dbuf(
682 sa_get_db(zp->z_sa_hdl), woff, abuf, tx);
683 if (error != 0) {
685 * XXX This might not be necessary if
686 * dmu_assign_arcbuf_by_dbuf is guaranteed
687 * to be atomic.
689 zfs_clear_setid_bits_if_necessary(zfsvfs, zp,
690 cr, &clear_setid_bits_txg, tx);
691 dmu_return_arcbuf(abuf);
692 dmu_tx_commit(tx);
693 break;
695 ASSERT3S(nbytes, <=, zfs_uio_resid(uio));
696 zfs_uioskip(uio, nbytes);
697 tx_bytes = nbytes;
699 if (tx_bytes && zn_has_cached_data(zp) &&
700 !(ioflag & O_DIRECT)) {
701 update_pages(zp, woff, tx_bytes, zfsvfs->z_os);
705 * If we made no progress, we're done. If we made even
706 * partial progress, update the znode and ZIL accordingly.
708 if (tx_bytes == 0) {
709 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
710 (void *)&zp->z_size, sizeof (uint64_t), tx);
711 dmu_tx_commit(tx);
712 ASSERT(error != 0);
713 break;
716 zfs_clear_setid_bits_if_necessary(zfsvfs, zp, cr,
717 &clear_setid_bits_txg, tx);
719 zfs_tstamp_update_setup(zp, CONTENT_MODIFIED, mtime, ctime);
722 * Update the file size (zp_size) if it has changed;
723 * account for possible concurrent updates.
725 while ((end_size = zp->z_size) < zfs_uio_offset(uio)) {
726 (void) atomic_cas_64(&zp->z_size, end_size,
727 zfs_uio_offset(uio));
728 ASSERT(error == 0 || error == EFAULT);
731 * If we are replaying and eof is non zero then force
732 * the file size to the specified eof. Note, there's no
733 * concurrency during replay.
735 if (zfsvfs->z_replay && zfsvfs->z_replay_eof != 0)
736 zp->z_size = zfsvfs->z_replay_eof;
738 error1 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
739 if (error1 != 0)
740 /* Avoid clobbering EFAULT. */
741 error = error1;
744 * NB: During replay, the TX_SETATTR record logged by
745 * zfs_clear_setid_bits_if_necessary must precede any of
746 * the TX_WRITE records logged here.
748 zfs_log_write(zilog, tx, TX_WRITE, zp, woff, tx_bytes, ioflag,
749 NULL, NULL);
751 dmu_tx_commit(tx);
753 if (error != 0)
754 break;
755 ASSERT3S(tx_bytes, ==, nbytes);
756 n -= nbytes;
758 if (n > 0) {
759 if (zfs_uio_prefaultpages(MIN(n, max_blksz), uio)) {
760 error = SET_ERROR(EFAULT);
761 break;
766 zfs_znode_update_vfs(zp);
767 zfs_rangelock_exit(lr);
770 * If we're in replay mode, or we made no progress, or the
771 * uio data is inaccessible return an error. Otherwise, it's
772 * at least a partial write, so it's successful.
774 if (zfsvfs->z_replay || zfs_uio_resid(uio) == start_resid ||
775 error == EFAULT) {
776 zfs_exit(zfsvfs, FTAG);
777 return (error);
780 if (ioflag & (O_SYNC | O_DSYNC) ||
781 zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
782 zil_commit(zilog, zp->z_id);
784 const int64_t nwritten = start_resid - zfs_uio_resid(uio);
785 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, nwritten);
786 task_io_account_write(nwritten);
788 zfs_exit(zfsvfs, FTAG);
789 return (0);
793 zfs_getsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
795 zfsvfs_t *zfsvfs = ZTOZSB(zp);
796 int error;
797 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
799 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
800 return (error);
801 error = zfs_getacl(zp, vsecp, skipaclchk, cr);
802 zfs_exit(zfsvfs, FTAG);
804 return (error);
808 zfs_setsecattr(znode_t *zp, vsecattr_t *vsecp, int flag, cred_t *cr)
810 zfsvfs_t *zfsvfs = ZTOZSB(zp);
811 int error;
812 boolean_t skipaclchk = (flag & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
813 zilog_t *zilog = zfsvfs->z_log;
815 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
816 return (error);
818 error = zfs_setacl(zp, vsecp, skipaclchk, cr);
820 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
821 zil_commit(zilog, 0);
823 zfs_exit(zfsvfs, FTAG);
824 return (error);
827 #ifdef ZFS_DEBUG
828 static int zil_fault_io = 0;
829 #endif
831 static void zfs_get_done(zgd_t *zgd, int error);
834 * Get data to generate a TX_WRITE intent log record.
837 zfs_get_data(void *arg, uint64_t gen, lr_write_t *lr, char *buf,
838 struct lwb *lwb, zio_t *zio)
840 zfsvfs_t *zfsvfs = arg;
841 objset_t *os = zfsvfs->z_os;
842 znode_t *zp;
843 uint64_t object = lr->lr_foid;
844 uint64_t offset = lr->lr_offset;
845 uint64_t size = lr->lr_length;
846 dmu_buf_t *db;
847 zgd_t *zgd;
848 int error = 0;
849 uint64_t zp_gen;
851 ASSERT3P(lwb, !=, NULL);
852 ASSERT3P(zio, !=, NULL);
853 ASSERT3U(size, !=, 0);
856 * Nothing to do if the file has been removed
858 if (zfs_zget(zfsvfs, object, &zp) != 0)
859 return (SET_ERROR(ENOENT));
860 if (zp->z_unlinked) {
862 * Release the vnode asynchronously as we currently have the
863 * txg stopped from syncing.
865 zfs_zrele_async(zp);
866 return (SET_ERROR(ENOENT));
868 /* check if generation number matches */
869 if (sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
870 sizeof (zp_gen)) != 0) {
871 zfs_zrele_async(zp);
872 return (SET_ERROR(EIO));
874 if (zp_gen != gen) {
875 zfs_zrele_async(zp);
876 return (SET_ERROR(ENOENT));
879 zgd = (zgd_t *)kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
880 zgd->zgd_lwb = lwb;
881 zgd->zgd_private = zp;
884 * Write records come in two flavors: immediate and indirect.
885 * For small writes it's cheaper to store the data with the
886 * log record (immediate); for large writes it's cheaper to
887 * sync the data and get a pointer to it (indirect) so that
888 * we don't have to write the data twice.
890 if (buf != NULL) { /* immediate write */
891 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
892 offset, size, RL_READER);
893 /* test for truncation needs to be done while range locked */
894 if (offset >= zp->z_size) {
895 error = SET_ERROR(ENOENT);
896 } else {
897 error = dmu_read(os, object, offset, size, buf,
898 DMU_READ_NO_PREFETCH);
900 ASSERT(error == 0 || error == ENOENT);
901 } else { /* indirect write */
903 * Have to lock the whole block to ensure when it's
904 * written out and its checksum is being calculated
905 * that no one can change the data. We need to re-check
906 * blocksize after we get the lock in case it's changed!
908 for (;;) {
909 uint64_t blkoff;
910 size = zp->z_blksz;
911 blkoff = ISP2(size) ? P2PHASE(offset, size) : offset;
912 offset -= blkoff;
913 zgd->zgd_lr = zfs_rangelock_enter(&zp->z_rangelock,
914 offset, size, RL_READER);
915 if (zp->z_blksz == size)
916 break;
917 offset += blkoff;
918 zfs_rangelock_exit(zgd->zgd_lr);
920 /* test for truncation needs to be done while range locked */
921 if (lr->lr_offset >= zp->z_size)
922 error = SET_ERROR(ENOENT);
923 #ifdef ZFS_DEBUG
924 if (zil_fault_io) {
925 error = SET_ERROR(EIO);
926 zil_fault_io = 0;
928 #endif
929 if (error == 0)
930 error = dmu_buf_hold(os, object, offset, zgd, &db,
931 DMU_READ_NO_PREFETCH);
933 if (error == 0) {
934 blkptr_t *bp = &lr->lr_blkptr;
936 zgd->zgd_db = db;
937 zgd->zgd_bp = bp;
939 ASSERT(db->db_offset == offset);
940 ASSERT(db->db_size == size);
942 error = dmu_sync(zio, lr->lr_common.lrc_txg,
943 zfs_get_done, zgd);
944 ASSERT(error || lr->lr_length <= size);
947 * On success, we need to wait for the write I/O
948 * initiated by dmu_sync() to complete before we can
949 * release this dbuf. We will finish everything up
950 * in the zfs_get_done() callback.
952 if (error == 0)
953 return (0);
955 if (error == EALREADY) {
956 lr->lr_common.lrc_txtype = TX_WRITE2;
958 * TX_WRITE2 relies on the data previously
959 * written by the TX_WRITE that caused
960 * EALREADY. We zero out the BP because
961 * it is the old, currently-on-disk BP.
963 zgd->zgd_bp = NULL;
964 BP_ZERO(bp);
965 error = 0;
970 zfs_get_done(zgd, error);
972 return (error);
976 static void
977 zfs_get_done(zgd_t *zgd, int error)
979 (void) error;
980 znode_t *zp = zgd->zgd_private;
982 if (zgd->zgd_db)
983 dmu_buf_rele(zgd->zgd_db, zgd);
985 zfs_rangelock_exit(zgd->zgd_lr);
988 * Release the vnode asynchronously as we currently have the
989 * txg stopped from syncing.
991 zfs_zrele_async(zp);
993 kmem_free(zgd, sizeof (zgd_t));
996 EXPORT_SYMBOL(zfs_access);
997 EXPORT_SYMBOL(zfs_fsync);
998 EXPORT_SYMBOL(zfs_holey);
999 EXPORT_SYMBOL(zfs_read);
1000 EXPORT_SYMBOL(zfs_write);
1001 EXPORT_SYMBOL(zfs_getsecattr);
1002 EXPORT_SYMBOL(zfs_setsecattr);
1004 ZFS_MODULE_PARAM(zfs_vnops, zfs_vnops_, read_chunk_size, U64, ZMOD_RW,
1005 "Bytes to read per chunk");