4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, 2023, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
32 * Copyright (c) 2021, 2024 by George Melikov. All rights reserved.
34 * [1] Portions of this software were developed by Allan Jude
35 * under sponsorship from the FreeBSD Foundation.
39 * DVA-based Adjustable Replacement Cache
41 * While much of the theory of operation used here is
42 * based on the self-tuning, low overhead replacement cache
43 * presented by Megiddo and Modha at FAST 2003, there are some
44 * significant differences:
46 * 1. The Megiddo and Modha model assumes any page is evictable.
47 * Pages in its cache cannot be "locked" into memory. This makes
48 * the eviction algorithm simple: evict the last page in the list.
49 * This also make the performance characteristics easy to reason
50 * about. Our cache is not so simple. At any given moment, some
51 * subset of the blocks in the cache are un-evictable because we
52 * have handed out a reference to them. Blocks are only evictable
53 * when there are no external references active. This makes
54 * eviction far more problematic: we choose to evict the evictable
55 * blocks that are the "lowest" in the list.
57 * There are times when it is not possible to evict the requested
58 * space. In these circumstances we are unable to adjust the cache
59 * size. To prevent the cache growing unbounded at these times we
60 * implement a "cache throttle" that slows the flow of new data
61 * into the cache until we can make space available.
63 * 2. The Megiddo and Modha model assumes a fixed cache size.
64 * Pages are evicted when the cache is full and there is a cache
65 * miss. Our model has a variable sized cache. It grows with
66 * high use, but also tries to react to memory pressure from the
67 * operating system: decreasing its size when system memory is
70 * 3. The Megiddo and Modha model assumes a fixed page size. All
71 * elements of the cache are therefore exactly the same size. So
72 * when adjusting the cache size following a cache miss, its simply
73 * a matter of choosing a single page to evict. In our model, we
74 * have variable sized cache blocks (ranging from 512 bytes to
75 * 128K bytes). We therefore choose a set of blocks to evict to make
76 * space for a cache miss that approximates as closely as possible
77 * the space used by the new block.
79 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
80 * by N. Megiddo & D. Modha, FAST 2003
86 * A new reference to a cache buffer can be obtained in two
87 * ways: 1) via a hash table lookup using the DVA as a key,
88 * or 2) via one of the ARC lists. The arc_read() interface
89 * uses method 1, while the internal ARC algorithms for
90 * adjusting the cache use method 2. We therefore provide two
91 * types of locks: 1) the hash table lock array, and 2) the
94 * Buffers do not have their own mutexes, rather they rely on the
95 * hash table mutexes for the bulk of their protection (i.e. most
96 * fields in the arc_buf_hdr_t are protected by these mutexes).
98 * buf_hash_find() returns the appropriate mutex (held) when it
99 * locates the requested buffer in the hash table. It returns
100 * NULL for the mutex if the buffer was not in the table.
102 * buf_hash_remove() expects the appropriate hash mutex to be
103 * already held before it is invoked.
105 * Each ARC state also has a mutex which is used to protect the
106 * buffer list associated with the state. When attempting to
107 * obtain a hash table lock while holding an ARC list lock you
108 * must use: mutex_tryenter() to avoid deadlock. Also note that
109 * the active state mutex must be held before the ghost state mutex.
111 * It as also possible to register a callback which is run when the
112 * metadata limit is reached and no buffers can be safely evicted. In
113 * this case the arc user should drop a reference on some arc buffers so
114 * they can be reclaimed. For example, when using the ZPL each dentry
115 * holds a references on a znode. These dentries must be pruned before
116 * the arc buffer holding the znode can be safely evicted.
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154 * compressed ARC functionality is disabled, the b_pabd will point to an
155 * uncompressed version of the on-disk data.
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164 * "overhead_size" kstat.
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
192 * | b_buf +------------>+-----------+ arc_buf_t
193 * | b_pabd +-+ |b_next +---->+-----------+
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
207 * When a consumer reads a block, the ARC must first look to see if the
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
218 * The diagram below shows an example of an uncompressed ARC hdr that is
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
235 * | b_pabd +-+ |---------| |b_next +-->NULL
236 * +-----------+ | | | +---------+
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
241 * uncompressed | | | |
244 * | uncompressed | | |
247 * +---------------------------------+
249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250 * since the physical block is about to be rewritten. The new data contents
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will memcpy the transformed on-disk block into
254 * a newly allocated b_pabd. Writes are always done into buffers which have
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262 * that when compressed ARC is enabled that the L2ARC blocks are identical
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
266 * ARC is disabled, then the L2ARC's block must be transformed to look
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch
= B_FALSE
;
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
324 static zthr_t
*arc_reap_zthr
;
327 * This thread's job is to keep arc_size under arc_c, by calling
328 * arc_evict(), which improves arc_is_overflowing().
330 static zthr_t
*arc_evict_zthr
;
331 static arc_buf_hdr_t
**arc_state_evict_markers
;
332 static int arc_state_evict_marker_count
;
334 static kmutex_t arc_evict_lock
;
335 static boolean_t arc_evict_needed
= B_FALSE
;
336 static clock_t arc_last_uncached_flush
;
339 * Count of bytes evicted since boot.
341 static uint64_t arc_evict_count
;
344 * List of arc_evict_waiter_t's, representing threads waiting for the
345 * arc_evict_count to reach specific values.
347 static list_t arc_evict_waiters
;
350 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
351 * the requested amount of data to be evicted. For example, by default for
352 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
353 * Since this is above 100%, it ensures that progress is made towards getting
354 * arc_size under arc_c. Since this is finite, it ensures that allocations
355 * can still happen, even during the potentially long time that arc_size is
358 static uint_t zfs_arc_eviction_pct
= 200;
361 * The number of headers to evict in arc_evict_state_impl() before
362 * dropping the sublist lock and evicting from another sublist. A lower
363 * value means we're more likely to evict the "correct" header (i.e. the
364 * oldest header in the arc state), but comes with higher overhead
365 * (i.e. more invocations of arc_evict_state_impl()).
367 static uint_t zfs_arc_evict_batch_limit
= 10;
369 /* number of seconds before growing cache again */
370 uint_t arc_grow_retry
= 5;
373 * Minimum time between calls to arc_kmem_reap_soon().
375 static const int arc_kmem_cache_reap_retry_ms
= 1000;
377 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
378 static int zfs_arc_overflow_shift
= 8;
380 /* log2(fraction of arc to reclaim) */
381 uint_t arc_shrink_shift
= 7;
383 /* percent of pagecache to reclaim arc to */
385 uint_t zfs_arc_pc_percent
= 0;
389 * log2(fraction of ARC which must be free to allow growing).
390 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
391 * when reading a new block into the ARC, we will evict an equal-sized block
394 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
395 * we will still not allow it to grow.
397 uint_t arc_no_grow_shift
= 5;
401 * minimum lifespan of a prefetch block in clock ticks
402 * (initialized in arc_init())
404 static uint_t arc_min_prefetch_ms
;
405 static uint_t arc_min_prescient_prefetch_ms
;
408 * If this percent of memory is free, don't throttle.
410 uint_t arc_lotsfree_percent
= 10;
413 * The arc has filled available memory and has now warmed up.
418 * These tunables are for performance analysis.
420 uint64_t zfs_arc_max
= 0;
421 uint64_t zfs_arc_min
= 0;
422 static uint64_t zfs_arc_dnode_limit
= 0;
423 static uint_t zfs_arc_dnode_reduce_percent
= 10;
424 static uint_t zfs_arc_grow_retry
= 0;
425 static uint_t zfs_arc_shrink_shift
= 0;
426 uint_t zfs_arc_average_blocksize
= 8 * 1024; /* 8KB */
429 * ARC dirty data constraints for arc_tempreserve_space() throttle:
430 * * total dirty data limit
431 * * anon block dirty limit
432 * * each pool's anon allowance
434 static const unsigned long zfs_arc_dirty_limit_percent
= 50;
435 static const unsigned long zfs_arc_anon_limit_percent
= 25;
436 static const unsigned long zfs_arc_pool_dirty_percent
= 20;
439 * Enable or disable compressed arc buffers.
441 int zfs_compressed_arc_enabled
= B_TRUE
;
444 * Balance between metadata and data on ghost hits. Values above 100
445 * increase metadata caching by proportionally reducing effect of ghost
446 * data hits on target data/metadata rate.
448 static uint_t zfs_arc_meta_balance
= 500;
451 * Percentage that can be consumed by dnodes of ARC meta buffers.
453 static uint_t zfs_arc_dnode_limit_percent
= 10;
456 * These tunables are Linux-specific
458 static uint64_t zfs_arc_sys_free
= 0;
459 static uint_t zfs_arc_min_prefetch_ms
= 0;
460 static uint_t zfs_arc_min_prescient_prefetch_ms
= 0;
461 static uint_t zfs_arc_lotsfree_percent
= 10;
464 * Number of arc_prune threads
466 static int zfs_arc_prune_task_threads
= 1;
469 arc_state_t ARC_anon
;
471 arc_state_t ARC_mru_ghost
;
473 arc_state_t ARC_mfu_ghost
;
474 arc_state_t ARC_l2c_only
;
475 arc_state_t ARC_uncached
;
477 arc_stats_t arc_stats
= {
478 { "hits", KSTAT_DATA_UINT64
},
479 { "iohits", KSTAT_DATA_UINT64
},
480 { "misses", KSTAT_DATA_UINT64
},
481 { "demand_data_hits", KSTAT_DATA_UINT64
},
482 { "demand_data_iohits", KSTAT_DATA_UINT64
},
483 { "demand_data_misses", KSTAT_DATA_UINT64
},
484 { "demand_metadata_hits", KSTAT_DATA_UINT64
},
485 { "demand_metadata_iohits", KSTAT_DATA_UINT64
},
486 { "demand_metadata_misses", KSTAT_DATA_UINT64
},
487 { "prefetch_data_hits", KSTAT_DATA_UINT64
},
488 { "prefetch_data_iohits", KSTAT_DATA_UINT64
},
489 { "prefetch_data_misses", KSTAT_DATA_UINT64
},
490 { "prefetch_metadata_hits", KSTAT_DATA_UINT64
},
491 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64
},
492 { "prefetch_metadata_misses", KSTAT_DATA_UINT64
},
493 { "mru_hits", KSTAT_DATA_UINT64
},
494 { "mru_ghost_hits", KSTAT_DATA_UINT64
},
495 { "mfu_hits", KSTAT_DATA_UINT64
},
496 { "mfu_ghost_hits", KSTAT_DATA_UINT64
},
497 { "uncached_hits", KSTAT_DATA_UINT64
},
498 { "deleted", KSTAT_DATA_UINT64
},
499 { "mutex_miss", KSTAT_DATA_UINT64
},
500 { "access_skip", KSTAT_DATA_UINT64
},
501 { "evict_skip", KSTAT_DATA_UINT64
},
502 { "evict_not_enough", KSTAT_DATA_UINT64
},
503 { "evict_l2_cached", KSTAT_DATA_UINT64
},
504 { "evict_l2_eligible", KSTAT_DATA_UINT64
},
505 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64
},
506 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64
},
507 { "evict_l2_ineligible", KSTAT_DATA_UINT64
},
508 { "evict_l2_skip", KSTAT_DATA_UINT64
},
509 { "hash_elements", KSTAT_DATA_UINT64
},
510 { "hash_elements_max", KSTAT_DATA_UINT64
},
511 { "hash_collisions", KSTAT_DATA_UINT64
},
512 { "hash_chains", KSTAT_DATA_UINT64
},
513 { "hash_chain_max", KSTAT_DATA_UINT64
},
514 { "meta", KSTAT_DATA_UINT64
},
515 { "pd", KSTAT_DATA_UINT64
},
516 { "pm", KSTAT_DATA_UINT64
},
517 { "c", KSTAT_DATA_UINT64
},
518 { "c_min", KSTAT_DATA_UINT64
},
519 { "c_max", KSTAT_DATA_UINT64
},
520 { "size", KSTAT_DATA_UINT64
},
521 { "compressed_size", KSTAT_DATA_UINT64
},
522 { "uncompressed_size", KSTAT_DATA_UINT64
},
523 { "overhead_size", KSTAT_DATA_UINT64
},
524 { "hdr_size", KSTAT_DATA_UINT64
},
525 { "data_size", KSTAT_DATA_UINT64
},
526 { "metadata_size", KSTAT_DATA_UINT64
},
527 { "dbuf_size", KSTAT_DATA_UINT64
},
528 { "dnode_size", KSTAT_DATA_UINT64
},
529 { "bonus_size", KSTAT_DATA_UINT64
},
530 #if defined(COMPAT_FREEBSD11)
531 { "other_size", KSTAT_DATA_UINT64
},
533 { "anon_size", KSTAT_DATA_UINT64
},
534 { "anon_data", KSTAT_DATA_UINT64
},
535 { "anon_metadata", KSTAT_DATA_UINT64
},
536 { "anon_evictable_data", KSTAT_DATA_UINT64
},
537 { "anon_evictable_metadata", KSTAT_DATA_UINT64
},
538 { "mru_size", KSTAT_DATA_UINT64
},
539 { "mru_data", KSTAT_DATA_UINT64
},
540 { "mru_metadata", KSTAT_DATA_UINT64
},
541 { "mru_evictable_data", KSTAT_DATA_UINT64
},
542 { "mru_evictable_metadata", KSTAT_DATA_UINT64
},
543 { "mru_ghost_size", KSTAT_DATA_UINT64
},
544 { "mru_ghost_data", KSTAT_DATA_UINT64
},
545 { "mru_ghost_metadata", KSTAT_DATA_UINT64
},
546 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64
},
547 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
548 { "mfu_size", KSTAT_DATA_UINT64
},
549 { "mfu_data", KSTAT_DATA_UINT64
},
550 { "mfu_metadata", KSTAT_DATA_UINT64
},
551 { "mfu_evictable_data", KSTAT_DATA_UINT64
},
552 { "mfu_evictable_metadata", KSTAT_DATA_UINT64
},
553 { "mfu_ghost_size", KSTAT_DATA_UINT64
},
554 { "mfu_ghost_data", KSTAT_DATA_UINT64
},
555 { "mfu_ghost_metadata", KSTAT_DATA_UINT64
},
556 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64
},
557 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
558 { "uncached_size", KSTAT_DATA_UINT64
},
559 { "uncached_data", KSTAT_DATA_UINT64
},
560 { "uncached_metadata", KSTAT_DATA_UINT64
},
561 { "uncached_evictable_data", KSTAT_DATA_UINT64
},
562 { "uncached_evictable_metadata", KSTAT_DATA_UINT64
},
563 { "l2_hits", KSTAT_DATA_UINT64
},
564 { "l2_misses", KSTAT_DATA_UINT64
},
565 { "l2_prefetch_asize", KSTAT_DATA_UINT64
},
566 { "l2_mru_asize", KSTAT_DATA_UINT64
},
567 { "l2_mfu_asize", KSTAT_DATA_UINT64
},
568 { "l2_bufc_data_asize", KSTAT_DATA_UINT64
},
569 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64
},
570 { "l2_feeds", KSTAT_DATA_UINT64
},
571 { "l2_rw_clash", KSTAT_DATA_UINT64
},
572 { "l2_read_bytes", KSTAT_DATA_UINT64
},
573 { "l2_write_bytes", KSTAT_DATA_UINT64
},
574 { "l2_writes_sent", KSTAT_DATA_UINT64
},
575 { "l2_writes_done", KSTAT_DATA_UINT64
},
576 { "l2_writes_error", KSTAT_DATA_UINT64
},
577 { "l2_writes_lock_retry", KSTAT_DATA_UINT64
},
578 { "l2_evict_lock_retry", KSTAT_DATA_UINT64
},
579 { "l2_evict_reading", KSTAT_DATA_UINT64
},
580 { "l2_evict_l1cached", KSTAT_DATA_UINT64
},
581 { "l2_free_on_write", KSTAT_DATA_UINT64
},
582 { "l2_abort_lowmem", KSTAT_DATA_UINT64
},
583 { "l2_cksum_bad", KSTAT_DATA_UINT64
},
584 { "l2_io_error", KSTAT_DATA_UINT64
},
585 { "l2_size", KSTAT_DATA_UINT64
},
586 { "l2_asize", KSTAT_DATA_UINT64
},
587 { "l2_hdr_size", KSTAT_DATA_UINT64
},
588 { "l2_log_blk_writes", KSTAT_DATA_UINT64
},
589 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64
},
590 { "l2_log_blk_asize", KSTAT_DATA_UINT64
},
591 { "l2_log_blk_count", KSTAT_DATA_UINT64
},
592 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64
},
593 { "l2_rebuild_success", KSTAT_DATA_UINT64
},
594 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64
},
595 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64
},
596 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64
},
597 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64
},
598 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64
},
599 { "l2_rebuild_size", KSTAT_DATA_UINT64
},
600 { "l2_rebuild_asize", KSTAT_DATA_UINT64
},
601 { "l2_rebuild_bufs", KSTAT_DATA_UINT64
},
602 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64
},
603 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64
},
604 { "memory_throttle_count", KSTAT_DATA_UINT64
},
605 { "memory_direct_count", KSTAT_DATA_UINT64
},
606 { "memory_indirect_count", KSTAT_DATA_UINT64
},
607 { "memory_all_bytes", KSTAT_DATA_UINT64
},
608 { "memory_free_bytes", KSTAT_DATA_UINT64
},
609 { "memory_available_bytes", KSTAT_DATA_INT64
},
610 { "arc_no_grow", KSTAT_DATA_UINT64
},
611 { "arc_tempreserve", KSTAT_DATA_UINT64
},
612 { "arc_loaned_bytes", KSTAT_DATA_UINT64
},
613 { "arc_prune", KSTAT_DATA_UINT64
},
614 { "arc_meta_used", KSTAT_DATA_UINT64
},
615 { "arc_dnode_limit", KSTAT_DATA_UINT64
},
616 { "async_upgrade_sync", KSTAT_DATA_UINT64
},
617 { "predictive_prefetch", KSTAT_DATA_UINT64
},
618 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64
},
619 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64
},
620 { "prescient_prefetch", KSTAT_DATA_UINT64
},
621 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64
},
622 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64
},
623 { "arc_need_free", KSTAT_DATA_UINT64
},
624 { "arc_sys_free", KSTAT_DATA_UINT64
},
625 { "arc_raw_size", KSTAT_DATA_UINT64
},
626 { "cached_only_in_progress", KSTAT_DATA_UINT64
},
627 { "abd_chunk_waste_size", KSTAT_DATA_UINT64
},
632 #define ARCSTAT_MAX(stat, val) { \
634 while ((val) > (m = arc_stats.stat.value.ui64) && \
635 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
640 * We define a macro to allow ARC hits/misses to be easily broken down by
641 * two separate conditions, giving a total of four different subtypes for
642 * each of hits and misses (so eight statistics total).
644 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
647 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
649 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
653 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
655 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
660 * This macro allows us to use kstats as floating averages. Each time we
661 * update this kstat, we first factor it and the update value by
662 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
663 * average. This macro assumes that integer loads and stores are atomic, but
664 * is not safe for multiple writers updating the kstat in parallel (only the
665 * last writer's update will remain).
667 #define ARCSTAT_F_AVG_FACTOR 3
668 #define ARCSTAT_F_AVG(stat, value) \
670 uint64_t x = ARCSTAT(stat); \
671 x = x - x / ARCSTAT_F_AVG_FACTOR + \
672 (value) / ARCSTAT_F_AVG_FACTOR; \
676 static kstat_t
*arc_ksp
;
679 * There are several ARC variables that are critical to export as kstats --
680 * but we don't want to have to grovel around in the kstat whenever we wish to
681 * manipulate them. For these variables, we therefore define them to be in
682 * terms of the statistic variable. This assures that we are not introducing
683 * the possibility of inconsistency by having shadow copies of the variables,
684 * while still allowing the code to be readable.
686 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
687 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
688 #define arc_dnode_limit ARCSTAT(arcstat_dnode_limit) /* max size for dnodes */
689 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
691 hrtime_t arc_growtime
;
692 list_t arc_prune_list
;
693 kmutex_t arc_prune_mtx
;
694 taskq_t
*arc_prune_taskq
;
696 #define GHOST_STATE(state) \
697 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
698 (state) == arc_l2c_only)
700 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
701 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
702 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
703 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
704 #define HDR_PRESCIENT_PREFETCH(hdr) \
705 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
706 #define HDR_COMPRESSION_ENABLED(hdr) \
707 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
709 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
710 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED)
711 #define HDR_L2_READING(hdr) \
712 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
713 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
714 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
715 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
716 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
717 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
718 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
719 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
721 #define HDR_ISTYPE_METADATA(hdr) \
722 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
723 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
725 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
726 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
727 #define HDR_HAS_RABD(hdr) \
728 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
729 (hdr)->b_crypt_hdr.b_rabd != NULL)
730 #define HDR_ENCRYPTED(hdr) \
731 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
732 #define HDR_AUTHENTICATED(hdr) \
733 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
735 /* For storing compression mode in b_flags */
736 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
738 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
739 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
740 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
741 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
743 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
744 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
745 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
746 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
752 #define HDR_FULL_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
753 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
756 * Hash table routines
759 #define BUF_LOCKS 2048
760 typedef struct buf_hash_table
{
762 arc_buf_hdr_t
**ht_table
;
763 kmutex_t ht_locks
[BUF_LOCKS
] ____cacheline_aligned
;
766 static buf_hash_table_t buf_hash_table
;
768 #define BUF_HASH_INDEX(spa, dva, birth) \
769 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
770 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
771 #define HDR_LOCK(hdr) \
772 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
774 uint64_t zfs_crc64_table
[256];
780 #define L2ARC_WRITE_SIZE (32 * 1024 * 1024) /* initial write max */
781 #define L2ARC_HEADROOM 8 /* num of writes */
784 * If we discover during ARC scan any buffers to be compressed, we boost
785 * our headroom for the next scanning cycle by this percentage multiple.
787 #define L2ARC_HEADROOM_BOOST 200
788 #define L2ARC_FEED_SECS 1 /* caching interval secs */
789 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
792 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
793 * and each of the state has two types: data and metadata.
795 #define L2ARC_FEED_TYPES 4
797 /* L2ARC Performance Tunables */
798 uint64_t l2arc_write_max
= L2ARC_WRITE_SIZE
; /* def max write size */
799 uint64_t l2arc_write_boost
= L2ARC_WRITE_SIZE
; /* extra warmup write */
800 uint64_t l2arc_headroom
= L2ARC_HEADROOM
; /* # of dev writes */
801 uint64_t l2arc_headroom_boost
= L2ARC_HEADROOM_BOOST
;
802 uint64_t l2arc_feed_secs
= L2ARC_FEED_SECS
; /* interval seconds */
803 uint64_t l2arc_feed_min_ms
= L2ARC_FEED_MIN_MS
; /* min interval msecs */
804 int l2arc_noprefetch
= B_TRUE
; /* don't cache prefetch bufs */
805 int l2arc_feed_again
= B_TRUE
; /* turbo warmup */
806 int l2arc_norw
= B_FALSE
; /* no reads during writes */
807 static uint_t l2arc_meta_percent
= 33; /* limit on headers size */
812 static list_t L2ARC_dev_list
; /* device list */
813 static list_t
*l2arc_dev_list
; /* device list pointer */
814 static kmutex_t l2arc_dev_mtx
; /* device list mutex */
815 static l2arc_dev_t
*l2arc_dev_last
; /* last device used */
816 static list_t L2ARC_free_on_write
; /* free after write buf list */
817 static list_t
*l2arc_free_on_write
; /* free after write list ptr */
818 static kmutex_t l2arc_free_on_write_mtx
; /* mutex for list */
819 static uint64_t l2arc_ndev
; /* number of devices */
821 typedef struct l2arc_read_callback
{
822 arc_buf_hdr_t
*l2rcb_hdr
; /* read header */
823 blkptr_t l2rcb_bp
; /* original blkptr */
824 zbookmark_phys_t l2rcb_zb
; /* original bookmark */
825 int l2rcb_flags
; /* original flags */
826 abd_t
*l2rcb_abd
; /* temporary buffer */
827 } l2arc_read_callback_t
;
829 typedef struct l2arc_data_free
{
830 /* protected by l2arc_free_on_write_mtx */
833 arc_buf_contents_t l2df_type
;
834 list_node_t l2df_list_node
;
837 typedef enum arc_fill_flags
{
838 ARC_FILL_LOCKED
= 1 << 0, /* hdr lock is held */
839 ARC_FILL_COMPRESSED
= 1 << 1, /* fill with compressed data */
840 ARC_FILL_ENCRYPTED
= 1 << 2, /* fill with encrypted data */
841 ARC_FILL_NOAUTH
= 1 << 3, /* don't attempt to authenticate */
842 ARC_FILL_IN_PLACE
= 1 << 4 /* fill in place (special case) */
845 typedef enum arc_ovf_level
{
846 ARC_OVF_NONE
, /* ARC within target size. */
847 ARC_OVF_SOME
, /* ARC is slightly overflowed. */
848 ARC_OVF_SEVERE
/* ARC is severely overflowed. */
851 static kmutex_t l2arc_feed_thr_lock
;
852 static kcondvar_t l2arc_feed_thr_cv
;
853 static uint8_t l2arc_thread_exit
;
855 static kmutex_t l2arc_rebuild_thr_lock
;
856 static kcondvar_t l2arc_rebuild_thr_cv
;
858 enum arc_hdr_alloc_flags
{
859 ARC_HDR_ALLOC_RDATA
= 0x1,
860 ARC_HDR_USE_RESERVE
= 0x4,
861 ARC_HDR_ALLOC_LINEAR
= 0x8,
865 static abd_t
*arc_get_data_abd(arc_buf_hdr_t
*, uint64_t, const void *, int);
866 static void *arc_get_data_buf(arc_buf_hdr_t
*, uint64_t, const void *);
867 static void arc_get_data_impl(arc_buf_hdr_t
*, uint64_t, const void *, int);
868 static void arc_free_data_abd(arc_buf_hdr_t
*, abd_t
*, uint64_t, const void *);
869 static void arc_free_data_buf(arc_buf_hdr_t
*, void *, uint64_t, const void *);
870 static void arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
,
872 static void arc_hdr_free_abd(arc_buf_hdr_t
*, boolean_t
);
873 static void arc_hdr_alloc_abd(arc_buf_hdr_t
*, int);
874 static void arc_hdr_destroy(arc_buf_hdr_t
*);
875 static void arc_access(arc_buf_hdr_t
*, arc_flags_t
, boolean_t
);
876 static void arc_buf_watch(arc_buf_t
*);
877 static void arc_change_state(arc_state_t
*, arc_buf_hdr_t
*);
879 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t
*);
880 static uint32_t arc_bufc_to_flags(arc_buf_contents_t
);
881 static inline void arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
882 static inline void arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
884 static boolean_t
l2arc_write_eligible(uint64_t, arc_buf_hdr_t
*);
885 static void l2arc_read_done(zio_t
*);
886 static void l2arc_do_free_on_write(void);
887 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t
*hdr
, boolean_t incr
,
888 boolean_t state_only
);
890 static void arc_prune_async(uint64_t adjust
);
892 #define l2arc_hdr_arcstats_increment(hdr) \
893 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
894 #define l2arc_hdr_arcstats_decrement(hdr) \
895 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
896 #define l2arc_hdr_arcstats_increment_state(hdr) \
897 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
898 #define l2arc_hdr_arcstats_decrement_state(hdr) \
899 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
902 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
903 * present on special vdevs are eligibile for caching in L2ARC. If
904 * set to 1, exclude dbufs on special vdevs from being cached to
907 int l2arc_exclude_special
= 0;
910 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
911 * metadata and data are cached from ARC into L2ARC.
913 static int l2arc_mfuonly
= 0;
917 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
918 * the current write size (l2arc_write_max) we should TRIM if we
919 * have filled the device. It is defined as a percentage of the
920 * write size. If set to 100 we trim twice the space required to
921 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
922 * It also enables TRIM of the whole L2ARC device upon creation or
923 * addition to an existing pool or if the header of the device is
924 * invalid upon importing a pool or onlining a cache device. The
925 * default is 0, which disables TRIM on L2ARC altogether as it can
926 * put significant stress on the underlying storage devices. This
927 * will vary depending of how well the specific device handles
930 static uint64_t l2arc_trim_ahead
= 0;
933 * Performance tuning of L2ARC persistence:
935 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
936 * an L2ARC device (either at pool import or later) will attempt
937 * to rebuild L2ARC buffer contents.
938 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
939 * whether log blocks are written to the L2ARC device. If the L2ARC
940 * device is less than 1GB, the amount of data l2arc_evict()
941 * evicts is significant compared to the amount of restored L2ARC
942 * data. In this case do not write log blocks in L2ARC in order
943 * not to waste space.
945 static int l2arc_rebuild_enabled
= B_TRUE
;
946 static uint64_t l2arc_rebuild_blocks_min_l2size
= 1024 * 1024 * 1024;
948 /* L2ARC persistence rebuild control routines. */
949 void l2arc_rebuild_vdev(vdev_t
*vd
, boolean_t reopen
);
950 static __attribute__((noreturn
)) void l2arc_dev_rebuild_thread(void *arg
);
951 static int l2arc_rebuild(l2arc_dev_t
*dev
);
953 /* L2ARC persistence read I/O routines. */
954 static int l2arc_dev_hdr_read(l2arc_dev_t
*dev
);
955 static int l2arc_log_blk_read(l2arc_dev_t
*dev
,
956 const l2arc_log_blkptr_t
*this_lp
, const l2arc_log_blkptr_t
*next_lp
,
957 l2arc_log_blk_phys_t
*this_lb
, l2arc_log_blk_phys_t
*next_lb
,
958 zio_t
*this_io
, zio_t
**next_io
);
959 static zio_t
*l2arc_log_blk_fetch(vdev_t
*vd
,
960 const l2arc_log_blkptr_t
*lp
, l2arc_log_blk_phys_t
*lb
);
961 static void l2arc_log_blk_fetch_abort(zio_t
*zio
);
963 /* L2ARC persistence block restoration routines. */
964 static void l2arc_log_blk_restore(l2arc_dev_t
*dev
,
965 const l2arc_log_blk_phys_t
*lb
, uint64_t lb_asize
);
966 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t
*le
,
969 /* L2ARC persistence write I/O routines. */
970 static uint64_t l2arc_log_blk_commit(l2arc_dev_t
*dev
, zio_t
*pio
,
971 l2arc_write_callback_t
*cb
);
973 /* L2ARC persistence auxiliary routines. */
974 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t
*dev
,
975 const l2arc_log_blkptr_t
*lbp
);
976 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t
*dev
,
977 const arc_buf_hdr_t
*ab
);
978 boolean_t
l2arc_range_check_overlap(uint64_t bottom
,
979 uint64_t top
, uint64_t check
);
980 static void l2arc_blk_fetch_done(zio_t
*zio
);
981 static inline uint64_t
982 l2arc_log_blk_overhead(uint64_t write_sz
, l2arc_dev_t
*dev
);
985 * We use Cityhash for this. It's fast, and has good hash properties without
986 * requiring any large static buffers.
989 buf_hash(uint64_t spa
, const dva_t
*dva
, uint64_t birth
)
991 return (cityhash4(spa
, dva
->dva_word
[0], dva
->dva_word
[1], birth
));
994 #define HDR_EMPTY(hdr) \
995 ((hdr)->b_dva.dva_word[0] == 0 && \
996 (hdr)->b_dva.dva_word[1] == 0)
998 #define HDR_EMPTY_OR_LOCKED(hdr) \
999 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1001 #define HDR_EQUAL(spa, dva, birth, hdr) \
1002 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1003 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1004 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1007 buf_discard_identity(arc_buf_hdr_t
*hdr
)
1009 hdr
->b_dva
.dva_word
[0] = 0;
1010 hdr
->b_dva
.dva_word
[1] = 0;
1014 static arc_buf_hdr_t
*
1015 buf_hash_find(uint64_t spa
, const blkptr_t
*bp
, kmutex_t
**lockp
)
1017 const dva_t
*dva
= BP_IDENTITY(bp
);
1018 uint64_t birth
= BP_GET_BIRTH(bp
);
1019 uint64_t idx
= BUF_HASH_INDEX(spa
, dva
, birth
);
1020 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1023 mutex_enter(hash_lock
);
1024 for (hdr
= buf_hash_table
.ht_table
[idx
]; hdr
!= NULL
;
1025 hdr
= hdr
->b_hash_next
) {
1026 if (HDR_EQUAL(spa
, dva
, birth
, hdr
)) {
1031 mutex_exit(hash_lock
);
1037 * Insert an entry into the hash table. If there is already an element
1038 * equal to elem in the hash table, then the already existing element
1039 * will be returned and the new element will not be inserted.
1040 * Otherwise returns NULL.
1041 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1043 static arc_buf_hdr_t
*
1044 buf_hash_insert(arc_buf_hdr_t
*hdr
, kmutex_t
**lockp
)
1046 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1047 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1048 arc_buf_hdr_t
*fhdr
;
1051 ASSERT(!DVA_IS_EMPTY(&hdr
->b_dva
));
1052 ASSERT(hdr
->b_birth
!= 0);
1053 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
1055 if (lockp
!= NULL
) {
1057 mutex_enter(hash_lock
);
1059 ASSERT(MUTEX_HELD(hash_lock
));
1062 for (fhdr
= buf_hash_table
.ht_table
[idx
], i
= 0; fhdr
!= NULL
;
1063 fhdr
= fhdr
->b_hash_next
, i
++) {
1064 if (HDR_EQUAL(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
, fhdr
))
1068 hdr
->b_hash_next
= buf_hash_table
.ht_table
[idx
];
1069 buf_hash_table
.ht_table
[idx
] = hdr
;
1070 arc_hdr_set_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1072 /* collect some hash table performance data */
1074 ARCSTAT_BUMP(arcstat_hash_collisions
);
1076 ARCSTAT_BUMP(arcstat_hash_chains
);
1078 ARCSTAT_MAX(arcstat_hash_chain_max
, i
);
1080 uint64_t he
= atomic_inc_64_nv(
1081 &arc_stats
.arcstat_hash_elements
.value
.ui64
);
1082 ARCSTAT_MAX(arcstat_hash_elements_max
, he
);
1088 buf_hash_remove(arc_buf_hdr_t
*hdr
)
1090 arc_buf_hdr_t
*fhdr
, **hdrp
;
1091 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1093 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx
)));
1094 ASSERT(HDR_IN_HASH_TABLE(hdr
));
1096 hdrp
= &buf_hash_table
.ht_table
[idx
];
1097 while ((fhdr
= *hdrp
) != hdr
) {
1098 ASSERT3P(fhdr
, !=, NULL
);
1099 hdrp
= &fhdr
->b_hash_next
;
1101 *hdrp
= hdr
->b_hash_next
;
1102 hdr
->b_hash_next
= NULL
;
1103 arc_hdr_clear_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1105 /* collect some hash table performance data */
1106 atomic_dec_64(&arc_stats
.arcstat_hash_elements
.value
.ui64
);
1108 if (buf_hash_table
.ht_table
[idx
] &&
1109 buf_hash_table
.ht_table
[idx
]->b_hash_next
== NULL
)
1110 ARCSTAT_BUMPDOWN(arcstat_hash_chains
);
1114 * Global data structures and functions for the buf kmem cache.
1117 static kmem_cache_t
*hdr_full_cache
;
1118 static kmem_cache_t
*hdr_l2only_cache
;
1119 static kmem_cache_t
*buf_cache
;
1124 #if defined(_KERNEL)
1126 * Large allocations which do not require contiguous pages
1127 * should be using vmem_free() in the linux kernel\
1129 vmem_free(buf_hash_table
.ht_table
,
1130 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1132 kmem_free(buf_hash_table
.ht_table
,
1133 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1135 for (int i
= 0; i
< BUF_LOCKS
; i
++)
1136 mutex_destroy(BUF_HASH_LOCK(i
));
1137 kmem_cache_destroy(hdr_full_cache
);
1138 kmem_cache_destroy(hdr_l2only_cache
);
1139 kmem_cache_destroy(buf_cache
);
1143 * Constructor callback - called when the cache is empty
1144 * and a new buf is requested.
1147 hdr_full_cons(void *vbuf
, void *unused
, int kmflag
)
1149 (void) unused
, (void) kmflag
;
1150 arc_buf_hdr_t
*hdr
= vbuf
;
1152 memset(hdr
, 0, HDR_FULL_SIZE
);
1153 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
1154 zfs_refcount_create(&hdr
->b_l1hdr
.b_refcnt
);
1156 mutex_init(&hdr
->b_l1hdr
.b_freeze_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1158 multilist_link_init(&hdr
->b_l1hdr
.b_arc_node
);
1159 list_link_init(&hdr
->b_l2hdr
.b_l2node
);
1160 arc_space_consume(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1166 hdr_l2only_cons(void *vbuf
, void *unused
, int kmflag
)
1168 (void) unused
, (void) kmflag
;
1169 arc_buf_hdr_t
*hdr
= vbuf
;
1171 memset(hdr
, 0, HDR_L2ONLY_SIZE
);
1172 arc_space_consume(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1178 buf_cons(void *vbuf
, void *unused
, int kmflag
)
1180 (void) unused
, (void) kmflag
;
1181 arc_buf_t
*buf
= vbuf
;
1183 memset(buf
, 0, sizeof (arc_buf_t
));
1184 arc_space_consume(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1190 * Destructor callback - called when a cached buf is
1191 * no longer required.
1194 hdr_full_dest(void *vbuf
, void *unused
)
1197 arc_buf_hdr_t
*hdr
= vbuf
;
1199 ASSERT(HDR_EMPTY(hdr
));
1200 zfs_refcount_destroy(&hdr
->b_l1hdr
.b_refcnt
);
1202 mutex_destroy(&hdr
->b_l1hdr
.b_freeze_lock
);
1204 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
1205 arc_space_return(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1209 hdr_l2only_dest(void *vbuf
, void *unused
)
1212 arc_buf_hdr_t
*hdr
= vbuf
;
1214 ASSERT(HDR_EMPTY(hdr
));
1215 arc_space_return(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1219 buf_dest(void *vbuf
, void *unused
)
1224 arc_space_return(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1230 uint64_t *ct
= NULL
;
1231 uint64_t hsize
= 1ULL << 12;
1235 * The hash table is big enough to fill all of physical memory
1236 * with an average block size of zfs_arc_average_blocksize (default 8K).
1237 * By default, the table will take up
1238 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1240 while (hsize
* zfs_arc_average_blocksize
< arc_all_memory())
1243 buf_hash_table
.ht_mask
= hsize
- 1;
1244 #if defined(_KERNEL)
1246 * Large allocations which do not require contiguous pages
1247 * should be using vmem_alloc() in the linux kernel
1249 buf_hash_table
.ht_table
=
1250 vmem_zalloc(hsize
* sizeof (void*), KM_SLEEP
);
1252 buf_hash_table
.ht_table
=
1253 kmem_zalloc(hsize
* sizeof (void*), KM_NOSLEEP
);
1255 if (buf_hash_table
.ht_table
== NULL
) {
1256 ASSERT(hsize
> (1ULL << 8));
1261 hdr_full_cache
= kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE
,
1262 0, hdr_full_cons
, hdr_full_dest
, NULL
, NULL
, NULL
, KMC_RECLAIMABLE
);
1263 hdr_l2only_cache
= kmem_cache_create("arc_buf_hdr_t_l2only",
1264 HDR_L2ONLY_SIZE
, 0, hdr_l2only_cons
, hdr_l2only_dest
, NULL
,
1266 buf_cache
= kmem_cache_create("arc_buf_t", sizeof (arc_buf_t
),
1267 0, buf_cons
, buf_dest
, NULL
, NULL
, NULL
, 0);
1269 for (i
= 0; i
< 256; i
++)
1270 for (ct
= zfs_crc64_table
+ i
, *ct
= i
, j
= 8; j
> 0; j
--)
1271 *ct
= (*ct
>> 1) ^ (-(*ct
& 1) & ZFS_CRC64_POLY
);
1273 for (i
= 0; i
< BUF_LOCKS
; i
++)
1274 mutex_init(BUF_HASH_LOCK(i
), NULL
, MUTEX_DEFAULT
, NULL
);
1277 #define ARC_MINTIME (hz>>4) /* 62 ms */
1280 * This is the size that the buf occupies in memory. If the buf is compressed,
1281 * it will correspond to the compressed size. You should use this method of
1282 * getting the buf size unless you explicitly need the logical size.
1285 arc_buf_size(arc_buf_t
*buf
)
1287 return (ARC_BUF_COMPRESSED(buf
) ?
1288 HDR_GET_PSIZE(buf
->b_hdr
) : HDR_GET_LSIZE(buf
->b_hdr
));
1292 arc_buf_lsize(arc_buf_t
*buf
)
1294 return (HDR_GET_LSIZE(buf
->b_hdr
));
1298 * This function will return B_TRUE if the buffer is encrypted in memory.
1299 * This buffer can be decrypted by calling arc_untransform().
1302 arc_is_encrypted(arc_buf_t
*buf
)
1304 return (ARC_BUF_ENCRYPTED(buf
) != 0);
1308 * Returns B_TRUE if the buffer represents data that has not had its MAC
1312 arc_is_unauthenticated(arc_buf_t
*buf
)
1314 return (HDR_NOAUTH(buf
->b_hdr
) != 0);
1318 arc_get_raw_params(arc_buf_t
*buf
, boolean_t
*byteorder
, uint8_t *salt
,
1319 uint8_t *iv
, uint8_t *mac
)
1321 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1323 ASSERT(HDR_PROTECTED(hdr
));
1325 memcpy(salt
, hdr
->b_crypt_hdr
.b_salt
, ZIO_DATA_SALT_LEN
);
1326 memcpy(iv
, hdr
->b_crypt_hdr
.b_iv
, ZIO_DATA_IV_LEN
);
1327 memcpy(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
);
1328 *byteorder
= (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
1329 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
1333 * Indicates how this buffer is compressed in memory. If it is not compressed
1334 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1335 * arc_untransform() as long as it is also unencrypted.
1338 arc_get_compression(arc_buf_t
*buf
)
1340 return (ARC_BUF_COMPRESSED(buf
) ?
1341 HDR_GET_COMPRESS(buf
->b_hdr
) : ZIO_COMPRESS_OFF
);
1345 * Return the compression algorithm used to store this data in the ARC. If ARC
1346 * compression is enabled or this is an encrypted block, this will be the same
1347 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1349 static inline enum zio_compress
1350 arc_hdr_get_compress(arc_buf_hdr_t
*hdr
)
1352 return (HDR_COMPRESSION_ENABLED(hdr
) ?
1353 HDR_GET_COMPRESS(hdr
) : ZIO_COMPRESS_OFF
);
1357 arc_get_complevel(arc_buf_t
*buf
)
1359 return (buf
->b_hdr
->b_complevel
);
1362 static inline boolean_t
1363 arc_buf_is_shared(arc_buf_t
*buf
)
1365 boolean_t shared
= (buf
->b_data
!= NULL
&&
1366 buf
->b_hdr
->b_l1hdr
.b_pabd
!= NULL
&&
1367 abd_is_linear(buf
->b_hdr
->b_l1hdr
.b_pabd
) &&
1368 buf
->b_data
== abd_to_buf(buf
->b_hdr
->b_l1hdr
.b_pabd
));
1369 IMPLY(shared
, HDR_SHARED_DATA(buf
->b_hdr
));
1370 EQUIV(shared
, ARC_BUF_SHARED(buf
));
1371 IMPLY(shared
, ARC_BUF_COMPRESSED(buf
) || ARC_BUF_LAST(buf
));
1374 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1375 * already being shared" requirement prevents us from doing that.
1382 * Free the checksum associated with this header. If there is no checksum, this
1386 arc_cksum_free(arc_buf_hdr_t
*hdr
)
1389 ASSERT(HDR_HAS_L1HDR(hdr
));
1391 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1392 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
) {
1393 kmem_free(hdr
->b_l1hdr
.b_freeze_cksum
, sizeof (zio_cksum_t
));
1394 hdr
->b_l1hdr
.b_freeze_cksum
= NULL
;
1396 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1401 * Return true iff at least one of the bufs on hdr is not compressed.
1402 * Encrypted buffers count as compressed.
1405 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t
*hdr
)
1407 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY_OR_LOCKED(hdr
));
1409 for (arc_buf_t
*b
= hdr
->b_l1hdr
.b_buf
; b
!= NULL
; b
= b
->b_next
) {
1410 if (!ARC_BUF_COMPRESSED(b
)) {
1419 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1420 * matches the checksum that is stored in the hdr. If there is no checksum,
1421 * or if the buf is compressed, this is a no-op.
1424 arc_cksum_verify(arc_buf_t
*buf
)
1427 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1430 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1433 if (ARC_BUF_COMPRESSED(buf
))
1436 ASSERT(HDR_HAS_L1HDR(hdr
));
1438 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1440 if (hdr
->b_l1hdr
.b_freeze_cksum
== NULL
|| HDR_IO_ERROR(hdr
)) {
1441 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1445 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
, &zc
);
1446 if (!ZIO_CHECKSUM_EQUAL(*hdr
->b_l1hdr
.b_freeze_cksum
, zc
))
1447 panic("buffer modified while frozen!");
1448 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1453 * This function makes the assumption that data stored in the L2ARC
1454 * will be transformed exactly as it is in the main pool. Because of
1455 * this we can verify the checksum against the reading process's bp.
1458 arc_cksum_is_equal(arc_buf_hdr_t
*hdr
, zio_t
*zio
)
1460 ASSERT(!BP_IS_EMBEDDED(zio
->io_bp
));
1461 VERIFY3U(BP_GET_PSIZE(zio
->io_bp
), ==, HDR_GET_PSIZE(hdr
));
1464 * Block pointers always store the checksum for the logical data.
1465 * If the block pointer has the gang bit set, then the checksum
1466 * it represents is for the reconstituted data and not for an
1467 * individual gang member. The zio pipeline, however, must be able to
1468 * determine the checksum of each of the gang constituents so it
1469 * treats the checksum comparison differently than what we need
1470 * for l2arc blocks. This prevents us from using the
1471 * zio_checksum_error() interface directly. Instead we must call the
1472 * zio_checksum_error_impl() so that we can ensure the checksum is
1473 * generated using the correct checksum algorithm and accounts for the
1474 * logical I/O size and not just a gang fragment.
1476 return (zio_checksum_error_impl(zio
->io_spa
, zio
->io_bp
,
1477 BP_GET_CHECKSUM(zio
->io_bp
), zio
->io_abd
, zio
->io_size
,
1478 zio
->io_offset
, NULL
) == 0);
1482 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1483 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1484 * isn't modified later on. If buf is compressed or there is already a checksum
1485 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1488 arc_cksum_compute(arc_buf_t
*buf
)
1490 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1494 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1495 ASSERT(HDR_HAS_L1HDR(hdr
));
1496 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1497 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
|| ARC_BUF_COMPRESSED(buf
)) {
1498 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1502 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
1503 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1504 hdr
->b_l1hdr
.b_freeze_cksum
= kmem_alloc(sizeof (zio_cksum_t
),
1506 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
,
1507 hdr
->b_l1hdr
.b_freeze_cksum
);
1508 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1515 arc_buf_sigsegv(int sig
, siginfo_t
*si
, void *unused
)
1517 (void) sig
, (void) unused
;
1518 panic("Got SIGSEGV at address: 0x%lx\n", (long)si
->si_addr
);
1523 arc_buf_unwatch(arc_buf_t
*buf
)
1527 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1528 PROT_READ
| PROT_WRITE
));
1536 arc_buf_watch(arc_buf_t
*buf
)
1540 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1547 static arc_buf_contents_t
1548 arc_buf_type(arc_buf_hdr_t
*hdr
)
1550 arc_buf_contents_t type
;
1551 if (HDR_ISTYPE_METADATA(hdr
)) {
1552 type
= ARC_BUFC_METADATA
;
1554 type
= ARC_BUFC_DATA
;
1556 VERIFY3U(hdr
->b_type
, ==, type
);
1561 arc_is_metadata(arc_buf_t
*buf
)
1563 return (HDR_ISTYPE_METADATA(buf
->b_hdr
) != 0);
1567 arc_bufc_to_flags(arc_buf_contents_t type
)
1571 /* metadata field is 0 if buffer contains normal data */
1573 case ARC_BUFC_METADATA
:
1574 return (ARC_FLAG_BUFC_METADATA
);
1578 panic("undefined ARC buffer type!");
1579 return ((uint32_t)-1);
1583 arc_buf_thaw(arc_buf_t
*buf
)
1585 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1587 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
1588 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
1590 arc_cksum_verify(buf
);
1593 * Compressed buffers do not manipulate the b_freeze_cksum.
1595 if (ARC_BUF_COMPRESSED(buf
))
1598 ASSERT(HDR_HAS_L1HDR(hdr
));
1599 arc_cksum_free(hdr
);
1600 arc_buf_unwatch(buf
);
1604 arc_buf_freeze(arc_buf_t
*buf
)
1606 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1609 if (ARC_BUF_COMPRESSED(buf
))
1612 ASSERT(HDR_HAS_L1HDR(buf
->b_hdr
));
1613 arc_cksum_compute(buf
);
1617 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1618 * the following functions should be used to ensure that the flags are
1619 * updated in a thread-safe way. When manipulating the flags either
1620 * the hash_lock must be held or the hdr must be undiscoverable. This
1621 * ensures that we're not racing with any other threads when updating
1625 arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1627 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1628 hdr
->b_flags
|= flags
;
1632 arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1634 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1635 hdr
->b_flags
&= ~flags
;
1639 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1640 * done in a special way since we have to clear and set bits
1641 * at the same time. Consumers that wish to set the compression bits
1642 * must use this function to ensure that the flags are updated in
1643 * thread-safe manner.
1646 arc_hdr_set_compress(arc_buf_hdr_t
*hdr
, enum zio_compress cmp
)
1648 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1651 * Holes and embedded blocks will always have a psize = 0 so
1652 * we ignore the compression of the blkptr and set the
1653 * want to uncompress them. Mark them as uncompressed.
1655 if (!zfs_compressed_arc_enabled
|| HDR_GET_PSIZE(hdr
) == 0) {
1656 arc_hdr_clear_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1657 ASSERT(!HDR_COMPRESSION_ENABLED(hdr
));
1659 arc_hdr_set_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1660 ASSERT(HDR_COMPRESSION_ENABLED(hdr
));
1663 HDR_SET_COMPRESS(hdr
, cmp
);
1664 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, cmp
);
1668 * Looks for another buf on the same hdr which has the data decompressed, copies
1669 * from it, and returns true. If no such buf exists, returns false.
1672 arc_buf_try_copy_decompressed_data(arc_buf_t
*buf
)
1674 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1675 boolean_t copied
= B_FALSE
;
1677 ASSERT(HDR_HAS_L1HDR(hdr
));
1678 ASSERT3P(buf
->b_data
, !=, NULL
);
1679 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1681 for (arc_buf_t
*from
= hdr
->b_l1hdr
.b_buf
; from
!= NULL
;
1682 from
= from
->b_next
) {
1683 /* can't use our own data buffer */
1688 if (!ARC_BUF_COMPRESSED(from
)) {
1689 memcpy(buf
->b_data
, from
->b_data
, arc_buf_size(buf
));
1697 * There were no decompressed bufs, so there should not be a
1698 * checksum on the hdr either.
1700 if (zfs_flags
& ZFS_DEBUG_MODIFY
)
1701 EQUIV(!copied
, hdr
->b_l1hdr
.b_freeze_cksum
== NULL
);
1708 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1709 * This is used during l2arc reconstruction to make empty ARC buffers
1710 * which circumvent the regular disk->arc->l2arc path and instead come
1711 * into being in the reverse order, i.e. l2arc->arc.
1713 static arc_buf_hdr_t
*
1714 arc_buf_alloc_l2only(size_t size
, arc_buf_contents_t type
, l2arc_dev_t
*dev
,
1715 dva_t dva
, uint64_t daddr
, int32_t psize
, uint64_t birth
,
1716 enum zio_compress compress
, uint8_t complevel
, boolean_t
protected,
1717 boolean_t prefetch
, arc_state_type_t arcs_state
)
1722 hdr
= kmem_cache_alloc(hdr_l2only_cache
, KM_SLEEP
);
1723 hdr
->b_birth
= birth
;
1726 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L2HDR
);
1727 HDR_SET_LSIZE(hdr
, size
);
1728 HDR_SET_PSIZE(hdr
, psize
);
1729 arc_hdr_set_compress(hdr
, compress
);
1730 hdr
->b_complevel
= complevel
;
1732 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
1734 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
1735 hdr
->b_spa
= spa_load_guid(dev
->l2ad_vdev
->vdev_spa
);
1739 hdr
->b_l2hdr
.b_dev
= dev
;
1740 hdr
->b_l2hdr
.b_daddr
= daddr
;
1741 hdr
->b_l2hdr
.b_arcs_state
= arcs_state
;
1747 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1750 arc_hdr_size(arc_buf_hdr_t
*hdr
)
1754 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
1755 HDR_GET_PSIZE(hdr
) > 0) {
1756 size
= HDR_GET_PSIZE(hdr
);
1758 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, 0);
1759 size
= HDR_GET_LSIZE(hdr
);
1765 arc_hdr_authenticate(arc_buf_hdr_t
*hdr
, spa_t
*spa
, uint64_t dsobj
)
1769 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
1770 uint64_t psize
= HDR_GET_PSIZE(hdr
);
1771 abd_t
*abd
= hdr
->b_l1hdr
.b_pabd
;
1772 boolean_t free_abd
= B_FALSE
;
1774 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1775 ASSERT(HDR_AUTHENTICATED(hdr
));
1776 ASSERT3P(abd
, !=, NULL
);
1779 * The MAC is calculated on the compressed data that is stored on disk.
1780 * However, if compressed arc is disabled we will only have the
1781 * decompressed data available to us now. Compress it into a temporary
1782 * abd so we can verify the MAC. The performance overhead of this will
1783 * be relatively low, since most objects in an encrypted objset will
1784 * be encrypted (instead of authenticated) anyway.
1786 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1787 !HDR_COMPRESSION_ENABLED(hdr
)) {
1789 csize
= zio_compress_data(HDR_GET_COMPRESS(hdr
),
1790 hdr
->b_l1hdr
.b_pabd
, &abd
, lsize
, MIN(lsize
, psize
),
1792 if (csize
>= lsize
|| csize
> psize
) {
1793 ret
= SET_ERROR(EIO
);
1796 ASSERT3P(abd
, !=, NULL
);
1797 abd_zero_off(abd
, csize
, psize
- csize
);
1802 * Authentication is best effort. We authenticate whenever the key is
1803 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1805 if (hdr
->b_crypt_hdr
.b_ot
== DMU_OT_OBJSET
) {
1806 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, ZIO_COMPRESS_OFF
);
1807 ASSERT3U(lsize
, ==, psize
);
1808 ret
= spa_do_crypt_objset_mac_abd(B_FALSE
, spa
, dsobj
, abd
,
1809 psize
, hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1811 ret
= spa_do_crypt_mac_abd(B_FALSE
, spa
, dsobj
, abd
, psize
,
1812 hdr
->b_crypt_hdr
.b_mac
);
1816 arc_hdr_clear_flags(hdr
, ARC_FLAG_NOAUTH
);
1817 else if (ret
== ENOENT
)
1827 * This function will take a header that only has raw encrypted data in
1828 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1829 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1830 * also decompress the data.
1833 arc_hdr_decrypt(arc_buf_hdr_t
*hdr
, spa_t
*spa
, const zbookmark_phys_t
*zb
)
1837 boolean_t no_crypt
= B_FALSE
;
1838 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1840 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1841 ASSERT(HDR_ENCRYPTED(hdr
));
1843 arc_hdr_alloc_abd(hdr
, 0);
1845 ret
= spa_do_crypt_abd(B_FALSE
, spa
, zb
, hdr
->b_crypt_hdr
.b_ot
,
1846 B_FALSE
, bswap
, hdr
->b_crypt_hdr
.b_salt
, hdr
->b_crypt_hdr
.b_iv
,
1847 hdr
->b_crypt_hdr
.b_mac
, HDR_GET_PSIZE(hdr
), hdr
->b_l1hdr
.b_pabd
,
1848 hdr
->b_crypt_hdr
.b_rabd
, &no_crypt
);
1853 abd_copy(hdr
->b_l1hdr
.b_pabd
, hdr
->b_crypt_hdr
.b_rabd
,
1854 HDR_GET_PSIZE(hdr
));
1858 * If this header has disabled arc compression but the b_pabd is
1859 * compressed after decrypting it, we need to decompress the newly
1862 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1863 !HDR_COMPRESSION_ENABLED(hdr
)) {
1865 * We want to make sure that we are correctly honoring the
1866 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1867 * and then loan a buffer from it, rather than allocating a
1868 * linear buffer and wrapping it in an abd later.
1870 cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
, 0);
1872 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
1873 hdr
->b_l1hdr
.b_pabd
, cabd
, HDR_GET_PSIZE(hdr
),
1874 HDR_GET_LSIZE(hdr
), &hdr
->b_complevel
);
1879 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
1880 arc_hdr_size(hdr
), hdr
);
1881 hdr
->b_l1hdr
.b_pabd
= cabd
;
1887 arc_hdr_free_abd(hdr
, B_FALSE
);
1889 arc_free_data_buf(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
1895 * This function is called during arc_buf_fill() to prepare the header's
1896 * abd plaintext pointer for use. This involves authenticated protected
1897 * data and decrypting encrypted data into the plaintext abd.
1900 arc_fill_hdr_crypt(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, spa_t
*spa
,
1901 const zbookmark_phys_t
*zb
, boolean_t noauth
)
1905 ASSERT(HDR_PROTECTED(hdr
));
1907 if (hash_lock
!= NULL
)
1908 mutex_enter(hash_lock
);
1910 if (HDR_NOAUTH(hdr
) && !noauth
) {
1912 * The caller requested authenticated data but our data has
1913 * not been authenticated yet. Verify the MAC now if we can.
1915 ret
= arc_hdr_authenticate(hdr
, spa
, zb
->zb_objset
);
1918 } else if (HDR_HAS_RABD(hdr
) && hdr
->b_l1hdr
.b_pabd
== NULL
) {
1920 * If we only have the encrypted version of the data, but the
1921 * unencrypted version was requested we take this opportunity
1922 * to store the decrypted version in the header for future use.
1924 ret
= arc_hdr_decrypt(hdr
, spa
, zb
);
1929 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1931 if (hash_lock
!= NULL
)
1932 mutex_exit(hash_lock
);
1937 if (hash_lock
!= NULL
)
1938 mutex_exit(hash_lock
);
1944 * This function is used by the dbuf code to decrypt bonus buffers in place.
1945 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1946 * block, so we use the hash lock here to protect against concurrent calls to
1950 arc_buf_untransform_in_place(arc_buf_t
*buf
)
1952 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1954 ASSERT(HDR_ENCRYPTED(hdr
));
1955 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
1956 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1957 ASSERT3PF(hdr
->b_l1hdr
.b_pabd
, !=, NULL
, "hdr %px buf %px", hdr
, buf
);
1959 zio_crypt_copy_dnode_bonus(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
1961 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
1962 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
1966 * Given a buf that has a data buffer attached to it, this function will
1967 * efficiently fill the buf with data of the specified compression setting from
1968 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1969 * are already sharing a data buf, no copy is performed.
1971 * If the buf is marked as compressed but uncompressed data was requested, this
1972 * will allocate a new data buffer for the buf, remove that flag, and fill the
1973 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1974 * uncompressed data, and (since we haven't added support for it yet) if you
1975 * want compressed data your buf must already be marked as compressed and have
1976 * the correct-sized data buffer.
1979 arc_buf_fill(arc_buf_t
*buf
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
1980 arc_fill_flags_t flags
)
1983 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1984 boolean_t hdr_compressed
=
1985 (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
1986 boolean_t compressed
= (flags
& ARC_FILL_COMPRESSED
) != 0;
1987 boolean_t encrypted
= (flags
& ARC_FILL_ENCRYPTED
) != 0;
1988 dmu_object_byteswap_t bswap
= hdr
->b_l1hdr
.b_byteswap
;
1989 kmutex_t
*hash_lock
= (flags
& ARC_FILL_LOCKED
) ? NULL
: HDR_LOCK(hdr
);
1991 ASSERT3P(buf
->b_data
, !=, NULL
);
1992 IMPLY(compressed
, hdr_compressed
|| ARC_BUF_ENCRYPTED(buf
));
1993 IMPLY(compressed
, ARC_BUF_COMPRESSED(buf
));
1994 IMPLY(encrypted
, HDR_ENCRYPTED(hdr
));
1995 IMPLY(encrypted
, ARC_BUF_ENCRYPTED(buf
));
1996 IMPLY(encrypted
, ARC_BUF_COMPRESSED(buf
));
1997 IMPLY(encrypted
, !arc_buf_is_shared(buf
));
2000 * If the caller wanted encrypted data we just need to copy it from
2001 * b_rabd and potentially byteswap it. We won't be able to do any
2002 * further transforms on it.
2005 ASSERT(HDR_HAS_RABD(hdr
));
2006 abd_copy_to_buf(buf
->b_data
, hdr
->b_crypt_hdr
.b_rabd
,
2007 HDR_GET_PSIZE(hdr
));
2012 * Adjust encrypted and authenticated headers to accommodate
2013 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2014 * allowed to fail decryption due to keys not being loaded
2015 * without being marked as an IO error.
2017 if (HDR_PROTECTED(hdr
)) {
2018 error
= arc_fill_hdr_crypt(hdr
, hash_lock
, spa
,
2019 zb
, !!(flags
& ARC_FILL_NOAUTH
));
2020 if (error
== EACCES
&& (flags
& ARC_FILL_IN_PLACE
) != 0) {
2022 } else if (error
!= 0) {
2023 if (hash_lock
!= NULL
)
2024 mutex_enter(hash_lock
);
2025 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
2026 if (hash_lock
!= NULL
)
2027 mutex_exit(hash_lock
);
2033 * There is a special case here for dnode blocks which are
2034 * decrypting their bonus buffers. These blocks may request to
2035 * be decrypted in-place. This is necessary because there may
2036 * be many dnodes pointing into this buffer and there is
2037 * currently no method to synchronize replacing the backing
2038 * b_data buffer and updating all of the pointers. Here we use
2039 * the hash lock to ensure there are no races. If the need
2040 * arises for other types to be decrypted in-place, they must
2041 * add handling here as well.
2043 if ((flags
& ARC_FILL_IN_PLACE
) != 0) {
2044 ASSERT(!hdr_compressed
);
2045 ASSERT(!compressed
);
2048 if (HDR_ENCRYPTED(hdr
) && ARC_BUF_ENCRYPTED(buf
)) {
2049 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
2051 if (hash_lock
!= NULL
)
2052 mutex_enter(hash_lock
);
2053 arc_buf_untransform_in_place(buf
);
2054 if (hash_lock
!= NULL
)
2055 mutex_exit(hash_lock
);
2057 /* Compute the hdr's checksum if necessary */
2058 arc_cksum_compute(buf
);
2064 if (hdr_compressed
== compressed
) {
2065 if (ARC_BUF_SHARED(buf
)) {
2066 ASSERT(arc_buf_is_shared(buf
));
2068 abd_copy_to_buf(buf
->b_data
, hdr
->b_l1hdr
.b_pabd
,
2072 ASSERT(hdr_compressed
);
2073 ASSERT(!compressed
);
2076 * If the buf is sharing its data with the hdr, unlink it and
2077 * allocate a new data buffer for the buf.
2079 if (ARC_BUF_SHARED(buf
)) {
2080 ASSERTF(ARC_BUF_COMPRESSED(buf
),
2081 "buf %p was uncompressed", buf
);
2083 /* We need to give the buf its own b_data */
2084 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
2086 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2087 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2089 /* Previously overhead was 0; just add new overhead */
2090 ARCSTAT_INCR(arcstat_overhead_size
, HDR_GET_LSIZE(hdr
));
2091 } else if (ARC_BUF_COMPRESSED(buf
)) {
2092 ASSERT(!arc_buf_is_shared(buf
));
2094 /* We need to reallocate the buf's b_data */
2095 arc_free_data_buf(hdr
, buf
->b_data
, HDR_GET_PSIZE(hdr
),
2098 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2100 /* We increased the size of b_data; update overhead */
2101 ARCSTAT_INCR(arcstat_overhead_size
,
2102 HDR_GET_LSIZE(hdr
) - HDR_GET_PSIZE(hdr
));
2106 * Regardless of the buf's previous compression settings, it
2107 * should not be compressed at the end of this function.
2109 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
2112 * Try copying the data from another buf which already has a
2113 * decompressed version. If that's not possible, it's time to
2114 * bite the bullet and decompress the data from the hdr.
2116 if (arc_buf_try_copy_decompressed_data(buf
)) {
2117 /* Skip byteswapping and checksumming (already done) */
2121 abd_get_from_buf_struct(&dabd
, buf
->b_data
,
2122 HDR_GET_LSIZE(hdr
));
2123 error
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
2124 hdr
->b_l1hdr
.b_pabd
, &dabd
,
2125 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
),
2130 * Absent hardware errors or software bugs, this should
2131 * be impossible, but log it anyway so we can debug it.
2135 "hdr %px, compress %d, psize %d, lsize %d",
2136 hdr
, arc_hdr_get_compress(hdr
),
2137 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
));
2138 if (hash_lock
!= NULL
)
2139 mutex_enter(hash_lock
);
2140 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
2141 if (hash_lock
!= NULL
)
2142 mutex_exit(hash_lock
);
2143 return (SET_ERROR(EIO
));
2149 /* Byteswap the buf's data if necessary */
2150 if (bswap
!= DMU_BSWAP_NUMFUNCS
) {
2151 ASSERT(!HDR_SHARED_DATA(hdr
));
2152 ASSERT3U(bswap
, <, DMU_BSWAP_NUMFUNCS
);
2153 dmu_ot_byteswap
[bswap
].ob_func(buf
->b_data
, HDR_GET_LSIZE(hdr
));
2156 /* Compute the hdr's checksum if necessary */
2157 arc_cksum_compute(buf
);
2163 * If this function is being called to decrypt an encrypted buffer or verify an
2164 * authenticated one, the key must be loaded and a mapping must be made
2165 * available in the keystore via spa_keystore_create_mapping() or one of its
2169 arc_untransform(arc_buf_t
*buf
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2173 arc_fill_flags_t flags
= 0;
2176 flags
|= ARC_FILL_IN_PLACE
;
2178 ret
= arc_buf_fill(buf
, spa
, zb
, flags
);
2179 if (ret
== ECKSUM
) {
2181 * Convert authentication and decryption errors to EIO
2182 * (and generate an ereport) before leaving the ARC.
2184 ret
= SET_ERROR(EIO
);
2185 spa_log_error(spa
, zb
, buf
->b_hdr
->b_birth
);
2186 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION
,
2187 spa
, NULL
, zb
, NULL
, 0);
2194 * Increment the amount of evictable space in the arc_state_t's refcount.
2195 * We account for the space used by the hdr and the arc buf individually
2196 * so that we can add and remove them from the refcount individually.
2199 arc_evictable_space_increment(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2201 arc_buf_contents_t type
= arc_buf_type(hdr
);
2203 ASSERT(HDR_HAS_L1HDR(hdr
));
2205 if (GHOST_STATE(state
)) {
2206 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2207 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2208 ASSERT(!HDR_HAS_RABD(hdr
));
2209 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2210 HDR_GET_LSIZE(hdr
), hdr
);
2214 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2215 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2216 arc_hdr_size(hdr
), hdr
);
2218 if (HDR_HAS_RABD(hdr
)) {
2219 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2220 HDR_GET_PSIZE(hdr
), hdr
);
2223 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2224 buf
= buf
->b_next
) {
2225 if (ARC_BUF_SHARED(buf
))
2227 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2228 arc_buf_size(buf
), buf
);
2233 * Decrement the amount of evictable space in the arc_state_t's refcount.
2234 * We account for the space used by the hdr and the arc buf individually
2235 * so that we can add and remove them from the refcount individually.
2238 arc_evictable_space_decrement(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2240 arc_buf_contents_t type
= arc_buf_type(hdr
);
2242 ASSERT(HDR_HAS_L1HDR(hdr
));
2244 if (GHOST_STATE(state
)) {
2245 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2246 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2247 ASSERT(!HDR_HAS_RABD(hdr
));
2248 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2249 HDR_GET_LSIZE(hdr
), hdr
);
2253 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2254 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2255 arc_hdr_size(hdr
), hdr
);
2257 if (HDR_HAS_RABD(hdr
)) {
2258 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2259 HDR_GET_PSIZE(hdr
), hdr
);
2262 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2263 buf
= buf
->b_next
) {
2264 if (ARC_BUF_SHARED(buf
))
2266 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2267 arc_buf_size(buf
), buf
);
2272 * Add a reference to this hdr indicating that someone is actively
2273 * referencing that memory. When the refcount transitions from 0 to 1,
2274 * we remove it from the respective arc_state_t list to indicate that
2275 * it is not evictable.
2278 add_reference(arc_buf_hdr_t
*hdr
, const void *tag
)
2280 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2282 ASSERT(HDR_HAS_L1HDR(hdr
));
2283 if (!HDR_EMPTY(hdr
) && !MUTEX_HELD(HDR_LOCK(hdr
))) {
2284 ASSERT(state
== arc_anon
);
2285 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2286 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2289 if ((zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
) == 1) &&
2290 state
!= arc_anon
&& state
!= arc_l2c_only
) {
2291 /* We don't use the L2-only state list. */
2292 multilist_remove(&state
->arcs_list
[arc_buf_type(hdr
)], hdr
);
2293 arc_evictable_space_decrement(hdr
, state
);
2298 * Remove a reference from this hdr. When the reference transitions from
2299 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2300 * list making it eligible for eviction.
2303 remove_reference(arc_buf_hdr_t
*hdr
, const void *tag
)
2306 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2308 ASSERT(HDR_HAS_L1HDR(hdr
));
2309 ASSERT(state
== arc_anon
|| MUTEX_HELD(HDR_LOCK(hdr
)));
2310 ASSERT(!GHOST_STATE(state
)); /* arc_l2c_only counts as a ghost. */
2312 if ((cnt
= zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
)) != 0)
2315 if (state
== arc_anon
) {
2316 arc_hdr_destroy(hdr
);
2319 if (state
== arc_uncached
&& !HDR_PREFETCH(hdr
)) {
2320 arc_change_state(arc_anon
, hdr
);
2321 arc_hdr_destroy(hdr
);
2324 multilist_insert(&state
->arcs_list
[arc_buf_type(hdr
)], hdr
);
2325 arc_evictable_space_increment(hdr
, state
);
2330 * Returns detailed information about a specific arc buffer. When the
2331 * state_index argument is set the function will calculate the arc header
2332 * list position for its arc state. Since this requires a linear traversal
2333 * callers are strongly encourage not to do this. However, it can be helpful
2334 * for targeted analysis so the functionality is provided.
2337 arc_buf_info(arc_buf_t
*ab
, arc_buf_info_t
*abi
, int state_index
)
2340 arc_buf_hdr_t
*hdr
= ab
->b_hdr
;
2341 l1arc_buf_hdr_t
*l1hdr
= NULL
;
2342 l2arc_buf_hdr_t
*l2hdr
= NULL
;
2343 arc_state_t
*state
= NULL
;
2345 memset(abi
, 0, sizeof (arc_buf_info_t
));
2350 abi
->abi_flags
= hdr
->b_flags
;
2352 if (HDR_HAS_L1HDR(hdr
)) {
2353 l1hdr
= &hdr
->b_l1hdr
;
2354 state
= l1hdr
->b_state
;
2356 if (HDR_HAS_L2HDR(hdr
))
2357 l2hdr
= &hdr
->b_l2hdr
;
2360 abi
->abi_bufcnt
= 0;
2361 for (arc_buf_t
*buf
= l1hdr
->b_buf
; buf
; buf
= buf
->b_next
)
2363 abi
->abi_access
= l1hdr
->b_arc_access
;
2364 abi
->abi_mru_hits
= l1hdr
->b_mru_hits
;
2365 abi
->abi_mru_ghost_hits
= l1hdr
->b_mru_ghost_hits
;
2366 abi
->abi_mfu_hits
= l1hdr
->b_mfu_hits
;
2367 abi
->abi_mfu_ghost_hits
= l1hdr
->b_mfu_ghost_hits
;
2368 abi
->abi_holds
= zfs_refcount_count(&l1hdr
->b_refcnt
);
2372 abi
->abi_l2arc_dattr
= l2hdr
->b_daddr
;
2373 abi
->abi_l2arc_hits
= l2hdr
->b_hits
;
2376 abi
->abi_state_type
= state
? state
->arcs_state
: ARC_STATE_ANON
;
2377 abi
->abi_state_contents
= arc_buf_type(hdr
);
2378 abi
->abi_size
= arc_hdr_size(hdr
);
2382 * Move the supplied buffer to the indicated state. The hash lock
2383 * for the buffer must be held by the caller.
2386 arc_change_state(arc_state_t
*new_state
, arc_buf_hdr_t
*hdr
)
2388 arc_state_t
*old_state
;
2390 boolean_t update_old
, update_new
;
2391 arc_buf_contents_t type
= arc_buf_type(hdr
);
2394 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2395 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2396 * L1 hdr doesn't always exist when we change state to arc_anon before
2397 * destroying a header, in which case reallocating to add the L1 hdr is
2400 if (HDR_HAS_L1HDR(hdr
)) {
2401 old_state
= hdr
->b_l1hdr
.b_state
;
2402 refcnt
= zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
);
2403 update_old
= (hdr
->b_l1hdr
.b_buf
!= NULL
||
2404 hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
2406 IMPLY(GHOST_STATE(old_state
), hdr
->b_l1hdr
.b_buf
== NULL
);
2407 IMPLY(GHOST_STATE(new_state
), hdr
->b_l1hdr
.b_buf
== NULL
);
2408 IMPLY(old_state
== arc_anon
, hdr
->b_l1hdr
.b_buf
== NULL
||
2409 ARC_BUF_LAST(hdr
->b_l1hdr
.b_buf
));
2411 old_state
= arc_l2c_only
;
2413 update_old
= B_FALSE
;
2415 update_new
= update_old
;
2416 if (GHOST_STATE(old_state
))
2417 update_old
= B_TRUE
;
2418 if (GHOST_STATE(new_state
))
2419 update_new
= B_TRUE
;
2421 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
2422 ASSERT3P(new_state
, !=, old_state
);
2425 * If this buffer is evictable, transfer it from the
2426 * old state list to the new state list.
2429 if (old_state
!= arc_anon
&& old_state
!= arc_l2c_only
) {
2430 ASSERT(HDR_HAS_L1HDR(hdr
));
2431 /* remove_reference() saves on insert. */
2432 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
2433 multilist_remove(&old_state
->arcs_list
[type
],
2435 arc_evictable_space_decrement(hdr
, old_state
);
2438 if (new_state
!= arc_anon
&& new_state
!= arc_l2c_only
) {
2440 * An L1 header always exists here, since if we're
2441 * moving to some L1-cached state (i.e. not l2c_only or
2442 * anonymous), we realloc the header to add an L1hdr
2445 ASSERT(HDR_HAS_L1HDR(hdr
));
2446 multilist_insert(&new_state
->arcs_list
[type
], hdr
);
2447 arc_evictable_space_increment(hdr
, new_state
);
2451 ASSERT(!HDR_EMPTY(hdr
));
2452 if (new_state
== arc_anon
&& HDR_IN_HASH_TABLE(hdr
))
2453 buf_hash_remove(hdr
);
2455 /* adjust state sizes (ignore arc_l2c_only) */
2457 if (update_new
&& new_state
!= arc_l2c_only
) {
2458 ASSERT(HDR_HAS_L1HDR(hdr
));
2459 if (GHOST_STATE(new_state
)) {
2462 * When moving a header to a ghost state, we first
2463 * remove all arc buffers. Thus, we'll have no arc
2464 * buffer to use for the reference. As a result, we
2465 * use the arc header pointer for the reference.
2467 (void) zfs_refcount_add_many(
2468 &new_state
->arcs_size
[type
],
2469 HDR_GET_LSIZE(hdr
), hdr
);
2470 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2471 ASSERT(!HDR_HAS_RABD(hdr
));
2475 * Each individual buffer holds a unique reference,
2476 * thus we must remove each of these references one
2479 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2480 buf
= buf
->b_next
) {
2483 * When the arc_buf_t is sharing the data
2484 * block with the hdr, the owner of the
2485 * reference belongs to the hdr. Only
2486 * add to the refcount if the arc_buf_t is
2489 if (ARC_BUF_SHARED(buf
))
2492 (void) zfs_refcount_add_many(
2493 &new_state
->arcs_size
[type
],
2494 arc_buf_size(buf
), buf
);
2497 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2498 (void) zfs_refcount_add_many(
2499 &new_state
->arcs_size
[type
],
2500 arc_hdr_size(hdr
), hdr
);
2503 if (HDR_HAS_RABD(hdr
)) {
2504 (void) zfs_refcount_add_many(
2505 &new_state
->arcs_size
[type
],
2506 HDR_GET_PSIZE(hdr
), hdr
);
2511 if (update_old
&& old_state
!= arc_l2c_only
) {
2512 ASSERT(HDR_HAS_L1HDR(hdr
));
2513 if (GHOST_STATE(old_state
)) {
2514 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2515 ASSERT(!HDR_HAS_RABD(hdr
));
2518 * When moving a header off of a ghost state,
2519 * the header will not contain any arc buffers.
2520 * We use the arc header pointer for the reference
2521 * which is exactly what we did when we put the
2522 * header on the ghost state.
2525 (void) zfs_refcount_remove_many(
2526 &old_state
->arcs_size
[type
],
2527 HDR_GET_LSIZE(hdr
), hdr
);
2531 * Each individual buffer holds a unique reference,
2532 * thus we must remove each of these references one
2535 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2536 buf
= buf
->b_next
) {
2539 * When the arc_buf_t is sharing the data
2540 * block with the hdr, the owner of the
2541 * reference belongs to the hdr. Only
2542 * add to the refcount if the arc_buf_t is
2545 if (ARC_BUF_SHARED(buf
))
2548 (void) zfs_refcount_remove_many(
2549 &old_state
->arcs_size
[type
],
2550 arc_buf_size(buf
), buf
);
2552 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
2555 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2556 (void) zfs_refcount_remove_many(
2557 &old_state
->arcs_size
[type
],
2558 arc_hdr_size(hdr
), hdr
);
2561 if (HDR_HAS_RABD(hdr
)) {
2562 (void) zfs_refcount_remove_many(
2563 &old_state
->arcs_size
[type
],
2564 HDR_GET_PSIZE(hdr
), hdr
);
2569 if (HDR_HAS_L1HDR(hdr
)) {
2570 hdr
->b_l1hdr
.b_state
= new_state
;
2572 if (HDR_HAS_L2HDR(hdr
) && new_state
!= arc_l2c_only
) {
2573 l2arc_hdr_arcstats_decrement_state(hdr
);
2574 hdr
->b_l2hdr
.b_arcs_state
= new_state
->arcs_state
;
2575 l2arc_hdr_arcstats_increment_state(hdr
);
2581 arc_space_consume(uint64_t space
, arc_space_type_t type
)
2583 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2588 case ARC_SPACE_DATA
:
2589 ARCSTAT_INCR(arcstat_data_size
, space
);
2591 case ARC_SPACE_META
:
2592 ARCSTAT_INCR(arcstat_metadata_size
, space
);
2594 case ARC_SPACE_BONUS
:
2595 ARCSTAT_INCR(arcstat_bonus_size
, space
);
2597 case ARC_SPACE_DNODE
:
2598 ARCSTAT_INCR(arcstat_dnode_size
, space
);
2600 case ARC_SPACE_DBUF
:
2601 ARCSTAT_INCR(arcstat_dbuf_size
, space
);
2603 case ARC_SPACE_HDRS
:
2604 ARCSTAT_INCR(arcstat_hdr_size
, space
);
2606 case ARC_SPACE_L2HDRS
:
2607 aggsum_add(&arc_sums
.arcstat_l2_hdr_size
, space
);
2609 case ARC_SPACE_ABD_CHUNK_WASTE
:
2611 * Note: this includes space wasted by all scatter ABD's, not
2612 * just those allocated by the ARC. But the vast majority of
2613 * scatter ABD's come from the ARC, because other users are
2616 ARCSTAT_INCR(arcstat_abd_chunk_waste_size
, space
);
2620 if (type
!= ARC_SPACE_DATA
&& type
!= ARC_SPACE_ABD_CHUNK_WASTE
)
2621 ARCSTAT_INCR(arcstat_meta_used
, space
);
2623 aggsum_add(&arc_sums
.arcstat_size
, space
);
2627 arc_space_return(uint64_t space
, arc_space_type_t type
)
2629 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2634 case ARC_SPACE_DATA
:
2635 ARCSTAT_INCR(arcstat_data_size
, -space
);
2637 case ARC_SPACE_META
:
2638 ARCSTAT_INCR(arcstat_metadata_size
, -space
);
2640 case ARC_SPACE_BONUS
:
2641 ARCSTAT_INCR(arcstat_bonus_size
, -space
);
2643 case ARC_SPACE_DNODE
:
2644 ARCSTAT_INCR(arcstat_dnode_size
, -space
);
2646 case ARC_SPACE_DBUF
:
2647 ARCSTAT_INCR(arcstat_dbuf_size
, -space
);
2649 case ARC_SPACE_HDRS
:
2650 ARCSTAT_INCR(arcstat_hdr_size
, -space
);
2652 case ARC_SPACE_L2HDRS
:
2653 aggsum_add(&arc_sums
.arcstat_l2_hdr_size
, -space
);
2655 case ARC_SPACE_ABD_CHUNK_WASTE
:
2656 ARCSTAT_INCR(arcstat_abd_chunk_waste_size
, -space
);
2660 if (type
!= ARC_SPACE_DATA
&& type
!= ARC_SPACE_ABD_CHUNK_WASTE
)
2661 ARCSTAT_INCR(arcstat_meta_used
, -space
);
2663 ASSERT(aggsum_compare(&arc_sums
.arcstat_size
, space
) >= 0);
2664 aggsum_add(&arc_sums
.arcstat_size
, -space
);
2668 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2669 * with the hdr's b_pabd.
2672 arc_can_share(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2675 * The criteria for sharing a hdr's data are:
2676 * 1. the buffer is not encrypted
2677 * 2. the hdr's compression matches the buf's compression
2678 * 3. the hdr doesn't need to be byteswapped
2679 * 4. the hdr isn't already being shared
2680 * 5. the buf is either compressed or it is the last buf in the hdr list
2682 * Criterion #5 maintains the invariant that shared uncompressed
2683 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2684 * might ask, "if a compressed buf is allocated first, won't that be the
2685 * last thing in the list?", but in that case it's impossible to create
2686 * a shared uncompressed buf anyway (because the hdr must be compressed
2687 * to have the compressed buf). You might also think that #3 is
2688 * sufficient to make this guarantee, however it's possible
2689 * (specifically in the rare L2ARC write race mentioned in
2690 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2691 * is shareable, but wasn't at the time of its allocation. Rather than
2692 * allow a new shared uncompressed buf to be created and then shuffle
2693 * the list around to make it the last element, this simply disallows
2694 * sharing if the new buf isn't the first to be added.
2696 ASSERT3P(buf
->b_hdr
, ==, hdr
);
2697 boolean_t hdr_compressed
=
2698 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
;
2699 boolean_t buf_compressed
= ARC_BUF_COMPRESSED(buf
) != 0;
2700 return (!ARC_BUF_ENCRYPTED(buf
) &&
2701 buf_compressed
== hdr_compressed
&&
2702 hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
&&
2703 !HDR_SHARED_DATA(hdr
) &&
2704 (ARC_BUF_LAST(buf
) || ARC_BUF_COMPRESSED(buf
)));
2708 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2709 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2710 * copy was made successfully, or an error code otherwise.
2713 arc_buf_alloc_impl(arc_buf_hdr_t
*hdr
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2714 const void *tag
, boolean_t encrypted
, boolean_t compressed
,
2715 boolean_t noauth
, boolean_t fill
, arc_buf_t
**ret
)
2718 arc_fill_flags_t flags
= ARC_FILL_LOCKED
;
2720 ASSERT(HDR_HAS_L1HDR(hdr
));
2721 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
2722 VERIFY(hdr
->b_type
== ARC_BUFC_DATA
||
2723 hdr
->b_type
== ARC_BUFC_METADATA
);
2724 ASSERT3P(ret
, !=, NULL
);
2725 ASSERT3P(*ret
, ==, NULL
);
2726 IMPLY(encrypted
, compressed
);
2728 buf
= *ret
= kmem_cache_alloc(buf_cache
, KM_PUSHPAGE
);
2731 buf
->b_next
= hdr
->b_l1hdr
.b_buf
;
2734 add_reference(hdr
, tag
);
2737 * We're about to change the hdr's b_flags. We must either
2738 * hold the hash_lock or be undiscoverable.
2740 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2743 * Only honor requests for compressed bufs if the hdr is actually
2744 * compressed. This must be overridden if the buffer is encrypted since
2745 * encrypted buffers cannot be decompressed.
2748 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2749 buf
->b_flags
|= ARC_BUF_FLAG_ENCRYPTED
;
2750 flags
|= ARC_FILL_COMPRESSED
| ARC_FILL_ENCRYPTED
;
2751 } else if (compressed
&&
2752 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
2753 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2754 flags
|= ARC_FILL_COMPRESSED
;
2759 flags
|= ARC_FILL_NOAUTH
;
2763 * If the hdr's data can be shared then we share the data buffer and
2764 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2765 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2766 * buffer to store the buf's data.
2768 * There are two additional restrictions here because we're sharing
2769 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2770 * actively involved in an L2ARC write, because if this buf is used by
2771 * an arc_write() then the hdr's data buffer will be released when the
2772 * write completes, even though the L2ARC write might still be using it.
2773 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2774 * need to be ABD-aware. It must be allocated via
2775 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2776 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2777 * page" buffers because the ABD code needs to handle freeing them
2780 boolean_t can_share
= arc_can_share(hdr
, buf
) &&
2781 !HDR_L2_WRITING(hdr
) &&
2782 hdr
->b_l1hdr
.b_pabd
!= NULL
&&
2783 abd_is_linear(hdr
->b_l1hdr
.b_pabd
) &&
2784 !abd_is_linear_page(hdr
->b_l1hdr
.b_pabd
);
2786 /* Set up b_data and sharing */
2788 buf
->b_data
= abd_to_buf(hdr
->b_l1hdr
.b_pabd
);
2789 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
2790 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2793 arc_get_data_buf(hdr
, arc_buf_size(buf
), buf
);
2794 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
2796 VERIFY3P(buf
->b_data
, !=, NULL
);
2798 hdr
->b_l1hdr
.b_buf
= buf
;
2801 * If the user wants the data from the hdr, we need to either copy or
2802 * decompress the data.
2805 ASSERT3P(zb
, !=, NULL
);
2806 return (arc_buf_fill(buf
, spa
, zb
, flags
));
2812 static const char *arc_onloan_tag
= "onloan";
2815 arc_loaned_bytes_update(int64_t delta
)
2817 atomic_add_64(&arc_loaned_bytes
, delta
);
2819 /* assert that it did not wrap around */
2820 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
2824 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2825 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2826 * buffers must be returned to the arc before they can be used by the DMU or
2830 arc_loan_buf(spa_t
*spa
, boolean_t is_metadata
, int size
)
2832 arc_buf_t
*buf
= arc_alloc_buf(spa
, arc_onloan_tag
,
2833 is_metadata
? ARC_BUFC_METADATA
: ARC_BUFC_DATA
, size
);
2835 arc_loaned_bytes_update(arc_buf_size(buf
));
2841 arc_loan_compressed_buf(spa_t
*spa
, uint64_t psize
, uint64_t lsize
,
2842 enum zio_compress compression_type
, uint8_t complevel
)
2844 arc_buf_t
*buf
= arc_alloc_compressed_buf(spa
, arc_onloan_tag
,
2845 psize
, lsize
, compression_type
, complevel
);
2847 arc_loaned_bytes_update(arc_buf_size(buf
));
2853 arc_loan_raw_buf(spa_t
*spa
, uint64_t dsobj
, boolean_t byteorder
,
2854 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
,
2855 dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
2856 enum zio_compress compression_type
, uint8_t complevel
)
2858 arc_buf_t
*buf
= arc_alloc_raw_buf(spa
, arc_onloan_tag
, dsobj
,
2859 byteorder
, salt
, iv
, mac
, ot
, psize
, lsize
, compression_type
,
2862 atomic_add_64(&arc_loaned_bytes
, psize
);
2868 * Return a loaned arc buffer to the arc.
2871 arc_return_buf(arc_buf_t
*buf
, const void *tag
)
2873 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2875 ASSERT3P(buf
->b_data
, !=, NULL
);
2876 ASSERT(HDR_HAS_L1HDR(hdr
));
2877 (void) zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2878 (void) zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2880 arc_loaned_bytes_update(-arc_buf_size(buf
));
2883 /* Detach an arc_buf from a dbuf (tag) */
2885 arc_loan_inuse_buf(arc_buf_t
*buf
, const void *tag
)
2887 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2889 ASSERT3P(buf
->b_data
, !=, NULL
);
2890 ASSERT(HDR_HAS_L1HDR(hdr
));
2891 (void) zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2892 (void) zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2894 arc_loaned_bytes_update(arc_buf_size(buf
));
2898 l2arc_free_abd_on_write(abd_t
*abd
, size_t size
, arc_buf_contents_t type
)
2900 l2arc_data_free_t
*df
= kmem_alloc(sizeof (*df
), KM_SLEEP
);
2903 df
->l2df_size
= size
;
2904 df
->l2df_type
= type
;
2905 mutex_enter(&l2arc_free_on_write_mtx
);
2906 list_insert_head(l2arc_free_on_write
, df
);
2907 mutex_exit(&l2arc_free_on_write_mtx
);
2911 arc_hdr_free_on_write(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
2913 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2914 arc_buf_contents_t type
= arc_buf_type(hdr
);
2915 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
2917 /* protected by hash lock, if in the hash table */
2918 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
2919 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2920 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
2922 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2925 (void) zfs_refcount_remove_many(&state
->arcs_size
[type
], size
, hdr
);
2926 if (type
== ARC_BUFC_METADATA
) {
2927 arc_space_return(size
, ARC_SPACE_META
);
2929 ASSERT(type
== ARC_BUFC_DATA
);
2930 arc_space_return(size
, ARC_SPACE_DATA
);
2934 l2arc_free_abd_on_write(hdr
->b_crypt_hdr
.b_rabd
, size
, type
);
2936 l2arc_free_abd_on_write(hdr
->b_l1hdr
.b_pabd
, size
, type
);
2941 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2942 * data buffer, we transfer the refcount ownership to the hdr and update
2943 * the appropriate kstats.
2946 arc_share_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2948 ASSERT(arc_can_share(hdr
, buf
));
2949 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2950 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
2951 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2954 * Start sharing the data buffer. We transfer the
2955 * refcount ownership to the hdr since it always owns
2956 * the refcount whenever an arc_buf_t is shared.
2958 zfs_refcount_transfer_ownership_many(
2959 &hdr
->b_l1hdr
.b_state
->arcs_size
[arc_buf_type(hdr
)],
2960 arc_hdr_size(hdr
), buf
, hdr
);
2961 hdr
->b_l1hdr
.b_pabd
= abd_get_from_buf(buf
->b_data
, arc_buf_size(buf
));
2962 abd_take_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
,
2963 HDR_ISTYPE_METADATA(hdr
));
2964 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2965 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
2968 * Since we've transferred ownership to the hdr we need
2969 * to increment its compressed and uncompressed kstats and
2970 * decrement the overhead size.
2972 ARCSTAT_INCR(arcstat_compressed_size
, arc_hdr_size(hdr
));
2973 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
2974 ARCSTAT_INCR(arcstat_overhead_size
, -arc_buf_size(buf
));
2978 arc_unshare_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2980 ASSERT(arc_buf_is_shared(buf
));
2981 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
2982 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2985 * We are no longer sharing this buffer so we need
2986 * to transfer its ownership to the rightful owner.
2988 zfs_refcount_transfer_ownership_many(
2989 &hdr
->b_l1hdr
.b_state
->arcs_size
[arc_buf_type(hdr
)],
2990 arc_hdr_size(hdr
), hdr
, buf
);
2991 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2992 abd_release_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
);
2993 abd_free(hdr
->b_l1hdr
.b_pabd
);
2994 hdr
->b_l1hdr
.b_pabd
= NULL
;
2995 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
2998 * Since the buffer is no longer shared between
2999 * the arc buf and the hdr, count it as overhead.
3001 ARCSTAT_INCR(arcstat_compressed_size
, -arc_hdr_size(hdr
));
3002 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3003 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
3007 * Remove an arc_buf_t from the hdr's buf list and return the last
3008 * arc_buf_t on the list. If no buffers remain on the list then return
3012 arc_buf_remove(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3014 ASSERT(HDR_HAS_L1HDR(hdr
));
3015 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3017 arc_buf_t
**bufp
= &hdr
->b_l1hdr
.b_buf
;
3018 arc_buf_t
*lastbuf
= NULL
;
3021 * Remove the buf from the hdr list and locate the last
3022 * remaining buffer on the list.
3024 while (*bufp
!= NULL
) {
3026 *bufp
= buf
->b_next
;
3029 * If we've removed a buffer in the middle of
3030 * the list then update the lastbuf and update
3033 if (*bufp
!= NULL
) {
3035 bufp
= &(*bufp
)->b_next
;
3039 ASSERT3P(lastbuf
, !=, buf
);
3040 IMPLY(lastbuf
!= NULL
, ARC_BUF_LAST(lastbuf
));
3046 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3050 arc_buf_destroy_impl(arc_buf_t
*buf
)
3052 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3055 * Free up the data associated with the buf but only if we're not
3056 * sharing this with the hdr. If we are sharing it with the hdr, the
3057 * hdr is responsible for doing the free.
3059 if (buf
->b_data
!= NULL
) {
3061 * We're about to change the hdr's b_flags. We must either
3062 * hold the hash_lock or be undiscoverable.
3064 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3066 arc_cksum_verify(buf
);
3067 arc_buf_unwatch(buf
);
3069 if (ARC_BUF_SHARED(buf
)) {
3070 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3072 ASSERT(!arc_buf_is_shared(buf
));
3073 uint64_t size
= arc_buf_size(buf
);
3074 arc_free_data_buf(hdr
, buf
->b_data
, size
, buf
);
3075 ARCSTAT_INCR(arcstat_overhead_size
, -size
);
3080 * If we have no more encrypted buffers and we've already
3081 * gotten a copy of the decrypted data we can free b_rabd
3082 * to save some space.
3084 if (ARC_BUF_ENCRYPTED(buf
) && HDR_HAS_RABD(hdr
) &&
3085 hdr
->b_l1hdr
.b_pabd
!= NULL
&& !HDR_IO_IN_PROGRESS(hdr
)) {
3087 for (b
= hdr
->b_l1hdr
.b_buf
; b
; b
= b
->b_next
) {
3088 if (b
!= buf
&& ARC_BUF_ENCRYPTED(b
))
3092 arc_hdr_free_abd(hdr
, B_TRUE
);
3096 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
3098 if (ARC_BUF_SHARED(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
3100 * If the current arc_buf_t is sharing its data buffer with the
3101 * hdr, then reassign the hdr's b_pabd to share it with the new
3102 * buffer at the end of the list. The shared buffer is always
3103 * the last one on the hdr's buffer list.
3105 * There is an equivalent case for compressed bufs, but since
3106 * they aren't guaranteed to be the last buf in the list and
3107 * that is an exceedingly rare case, we just allow that space be
3108 * wasted temporarily. We must also be careful not to share
3109 * encrypted buffers, since they cannot be shared.
3111 if (lastbuf
!= NULL
&& !ARC_BUF_ENCRYPTED(lastbuf
)) {
3112 /* Only one buf can be shared at once */
3113 ASSERT(!arc_buf_is_shared(lastbuf
));
3114 /* hdr is uncompressed so can't have compressed buf */
3115 ASSERT(!ARC_BUF_COMPRESSED(lastbuf
));
3117 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3118 arc_hdr_free_abd(hdr
, B_FALSE
);
3121 * We must setup a new shared block between the
3122 * last buffer and the hdr. The data would have
3123 * been allocated by the arc buf so we need to transfer
3124 * ownership to the hdr since it's now being shared.
3126 arc_share_buf(hdr
, lastbuf
);
3128 } else if (HDR_SHARED_DATA(hdr
)) {
3130 * Uncompressed shared buffers are always at the end
3131 * of the list. Compressed buffers don't have the
3132 * same requirements. This makes it hard to
3133 * simply assert that the lastbuf is shared so
3134 * we rely on the hdr's compression flags to determine
3135 * if we have a compressed, shared buffer.
3137 ASSERT3P(lastbuf
, !=, NULL
);
3138 ASSERT(arc_buf_is_shared(lastbuf
) ||
3139 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
3143 * Free the checksum if we're removing the last uncompressed buf from
3146 if (!arc_hdr_has_uncompressed_buf(hdr
)) {
3147 arc_cksum_free(hdr
);
3150 /* clean up the buf */
3152 kmem_cache_free(buf_cache
, buf
);
3156 arc_hdr_alloc_abd(arc_buf_hdr_t
*hdr
, int alloc_flags
)
3159 boolean_t alloc_rdata
= ((alloc_flags
& ARC_HDR_ALLOC_RDATA
) != 0);
3161 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
3162 ASSERT(HDR_HAS_L1HDR(hdr
));
3163 ASSERT(!HDR_SHARED_DATA(hdr
) || alloc_rdata
);
3164 IMPLY(alloc_rdata
, HDR_PROTECTED(hdr
));
3167 size
= HDR_GET_PSIZE(hdr
);
3168 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, ==, NULL
);
3169 hdr
->b_crypt_hdr
.b_rabd
= arc_get_data_abd(hdr
, size
, hdr
,
3171 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, !=, NULL
);
3172 ARCSTAT_INCR(arcstat_raw_size
, size
);
3174 size
= arc_hdr_size(hdr
);
3175 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3176 hdr
->b_l1hdr
.b_pabd
= arc_get_data_abd(hdr
, size
, hdr
,
3178 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3181 ARCSTAT_INCR(arcstat_compressed_size
, size
);
3182 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
3186 arc_hdr_free_abd(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
3188 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
3190 ASSERT(HDR_HAS_L1HDR(hdr
));
3191 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
3192 IMPLY(free_rdata
, HDR_HAS_RABD(hdr
));
3195 * If the hdr is currently being written to the l2arc then
3196 * we defer freeing the data by adding it to the l2arc_free_on_write
3197 * list. The l2arc will free the data once it's finished
3198 * writing it to the l2arc device.
3200 if (HDR_L2_WRITING(hdr
)) {
3201 arc_hdr_free_on_write(hdr
, free_rdata
);
3202 ARCSTAT_BUMP(arcstat_l2_free_on_write
);
3203 } else if (free_rdata
) {
3204 arc_free_data_abd(hdr
, hdr
->b_crypt_hdr
.b_rabd
, size
, hdr
);
3206 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
, size
, hdr
);
3210 hdr
->b_crypt_hdr
.b_rabd
= NULL
;
3211 ARCSTAT_INCR(arcstat_raw_size
, -size
);
3213 hdr
->b_l1hdr
.b_pabd
= NULL
;
3216 if (hdr
->b_l1hdr
.b_pabd
== NULL
&& !HDR_HAS_RABD(hdr
))
3217 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
3219 ARCSTAT_INCR(arcstat_compressed_size
, -size
);
3220 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3224 * Allocate empty anonymous ARC header. The header will get its identity
3225 * assigned and buffers attached later as part of read or write operations.
3227 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3228 * inserts it into ARC hash to become globally visible and allocates physical
3229 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3230 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3231 * sharing one of them with the physical ABD buffer.
3233 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3234 * data. Then after compression and/or encryption arc_write_ready() allocates
3235 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3236 * buffer. On disk write completion arc_write_done() assigns the header its
3237 * new identity (b_dva + b_birth) and inserts into ARC hash.
3239 * In case of partial overwrite the old data is read first as described. Then
3240 * arc_release() either allocates new anonymous ARC header and moves the ARC
3241 * buffer to it, or reuses the old ARC header by discarding its identity and
3242 * removing it from ARC hash. After buffer modification normal write process
3243 * follows as described.
3245 static arc_buf_hdr_t
*
3246 arc_hdr_alloc(uint64_t spa
, int32_t psize
, int32_t lsize
,
3247 boolean_t
protected, enum zio_compress compression_type
, uint8_t complevel
,
3248 arc_buf_contents_t type
)
3252 VERIFY(type
== ARC_BUFC_DATA
|| type
== ARC_BUFC_METADATA
);
3253 hdr
= kmem_cache_alloc(hdr_full_cache
, KM_PUSHPAGE
);
3255 ASSERT(HDR_EMPTY(hdr
));
3257 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3259 HDR_SET_PSIZE(hdr
, psize
);
3260 HDR_SET_LSIZE(hdr
, lsize
);
3264 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L1HDR
);
3265 arc_hdr_set_compress(hdr
, compression_type
);
3266 hdr
->b_complevel
= complevel
;
3268 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
3270 hdr
->b_l1hdr
.b_state
= arc_anon
;
3271 hdr
->b_l1hdr
.b_arc_access
= 0;
3272 hdr
->b_l1hdr
.b_mru_hits
= 0;
3273 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
3274 hdr
->b_l1hdr
.b_mfu_hits
= 0;
3275 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
3276 hdr
->b_l1hdr
.b_buf
= NULL
;
3278 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3284 * Transition between the two allocation states for the arc_buf_hdr struct.
3285 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3286 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3287 * version is used when a cache buffer is only in the L2ARC in order to reduce
3290 static arc_buf_hdr_t
*
3291 arc_hdr_realloc(arc_buf_hdr_t
*hdr
, kmem_cache_t
*old
, kmem_cache_t
*new)
3293 ASSERT(HDR_HAS_L2HDR(hdr
));
3295 arc_buf_hdr_t
*nhdr
;
3296 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3298 ASSERT((old
== hdr_full_cache
&& new == hdr_l2only_cache
) ||
3299 (old
== hdr_l2only_cache
&& new == hdr_full_cache
));
3301 nhdr
= kmem_cache_alloc(new, KM_PUSHPAGE
);
3303 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
3304 buf_hash_remove(hdr
);
3306 memcpy(nhdr
, hdr
, HDR_L2ONLY_SIZE
);
3308 if (new == hdr_full_cache
) {
3309 arc_hdr_set_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3311 * arc_access and arc_change_state need to be aware that a
3312 * header has just come out of L2ARC, so we set its state to
3313 * l2c_only even though it's about to change.
3315 nhdr
->b_l1hdr
.b_state
= arc_l2c_only
;
3317 /* Verify previous threads set to NULL before freeing */
3318 ASSERT3P(nhdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3319 ASSERT(!HDR_HAS_RABD(hdr
));
3321 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3323 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3327 * If we've reached here, We must have been called from
3328 * arc_evict_hdr(), as such we should have already been
3329 * removed from any ghost list we were previously on
3330 * (which protects us from racing with arc_evict_state),
3331 * thus no locking is needed during this check.
3333 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3336 * A buffer must not be moved into the arc_l2c_only
3337 * state if it's not finished being written out to the
3338 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3339 * might try to be accessed, even though it was removed.
3341 VERIFY(!HDR_L2_WRITING(hdr
));
3342 VERIFY3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3343 ASSERT(!HDR_HAS_RABD(hdr
));
3345 arc_hdr_clear_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3348 * The header has been reallocated so we need to re-insert it into any
3351 (void) buf_hash_insert(nhdr
, NULL
);
3353 ASSERT(list_link_active(&hdr
->b_l2hdr
.b_l2node
));
3355 mutex_enter(&dev
->l2ad_mtx
);
3358 * We must place the realloc'ed header back into the list at
3359 * the same spot. Otherwise, if it's placed earlier in the list,
3360 * l2arc_write_buffers() could find it during the function's
3361 * write phase, and try to write it out to the l2arc.
3363 list_insert_after(&dev
->l2ad_buflist
, hdr
, nhdr
);
3364 list_remove(&dev
->l2ad_buflist
, hdr
);
3366 mutex_exit(&dev
->l2ad_mtx
);
3369 * Since we're using the pointer address as the tag when
3370 * incrementing and decrementing the l2ad_alloc refcount, we
3371 * must remove the old pointer (that we're about to destroy) and
3372 * add the new pointer to the refcount. Otherwise we'd remove
3373 * the wrong pointer address when calling arc_hdr_destroy() later.
3376 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
,
3377 arc_hdr_size(hdr
), hdr
);
3378 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
3379 arc_hdr_size(nhdr
), nhdr
);
3381 buf_discard_identity(hdr
);
3382 kmem_cache_free(old
, hdr
);
3388 * This function is used by the send / receive code to convert a newly
3389 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3390 * is also used to allow the root objset block to be updated without altering
3391 * its embedded MACs. Both block types will always be uncompressed so we do not
3392 * have to worry about compression type or psize.
3395 arc_convert_to_raw(arc_buf_t
*buf
, uint64_t dsobj
, boolean_t byteorder
,
3396 dmu_object_type_t ot
, const uint8_t *salt
, const uint8_t *iv
,
3399 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3401 ASSERT(ot
== DMU_OT_DNODE
|| ot
== DMU_OT_OBJSET
);
3402 ASSERT(HDR_HAS_L1HDR(hdr
));
3403 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3405 buf
->b_flags
|= (ARC_BUF_FLAG_COMPRESSED
| ARC_BUF_FLAG_ENCRYPTED
);
3406 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
3407 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3408 hdr
->b_crypt_hdr
.b_ot
= ot
;
3409 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3410 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3411 if (!arc_hdr_has_uncompressed_buf(hdr
))
3412 arc_cksum_free(hdr
);
3415 memcpy(hdr
->b_crypt_hdr
.b_salt
, salt
, ZIO_DATA_SALT_LEN
);
3417 memcpy(hdr
->b_crypt_hdr
.b_iv
, iv
, ZIO_DATA_IV_LEN
);
3419 memcpy(hdr
->b_crypt_hdr
.b_mac
, mac
, ZIO_DATA_MAC_LEN
);
3423 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3424 * The buf is returned thawed since we expect the consumer to modify it.
3427 arc_alloc_buf(spa_t
*spa
, const void *tag
, arc_buf_contents_t type
,
3430 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), size
, size
,
3431 B_FALSE
, ZIO_COMPRESS_OFF
, 0, type
);
3433 arc_buf_t
*buf
= NULL
;
3434 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_FALSE
, B_FALSE
,
3435 B_FALSE
, B_FALSE
, &buf
));
3442 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3443 * for bufs containing metadata.
3446 arc_alloc_compressed_buf(spa_t
*spa
, const void *tag
, uint64_t psize
,
3447 uint64_t lsize
, enum zio_compress compression_type
, uint8_t complevel
)
3449 ASSERT3U(lsize
, >, 0);
3450 ASSERT3U(lsize
, >=, psize
);
3451 ASSERT3U(compression_type
, >, ZIO_COMPRESS_OFF
);
3452 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3454 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
,
3455 B_FALSE
, compression_type
, complevel
, ARC_BUFC_DATA
);
3457 arc_buf_t
*buf
= NULL
;
3458 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_FALSE
,
3459 B_TRUE
, B_FALSE
, B_FALSE
, &buf
));
3463 * To ensure that the hdr has the correct data in it if we call
3464 * arc_untransform() on this buf before it's been written to disk,
3465 * it's easiest if we just set up sharing between the buf and the hdr.
3467 arc_share_buf(hdr
, buf
);
3473 arc_alloc_raw_buf(spa_t
*spa
, const void *tag
, uint64_t dsobj
,
3474 boolean_t byteorder
, const uint8_t *salt
, const uint8_t *iv
,
3475 const uint8_t *mac
, dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
3476 enum zio_compress compression_type
, uint8_t complevel
)
3480 arc_buf_contents_t type
= DMU_OT_IS_METADATA(ot
) ?
3481 ARC_BUFC_METADATA
: ARC_BUFC_DATA
;
3483 ASSERT3U(lsize
, >, 0);
3484 ASSERT3U(lsize
, >=, psize
);
3485 ASSERT3U(compression_type
, >=, ZIO_COMPRESS_OFF
);
3486 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3488 hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
, B_TRUE
,
3489 compression_type
, complevel
, type
);
3491 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3492 hdr
->b_crypt_hdr
.b_ot
= ot
;
3493 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3494 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3495 memcpy(hdr
->b_crypt_hdr
.b_salt
, salt
, ZIO_DATA_SALT_LEN
);
3496 memcpy(hdr
->b_crypt_hdr
.b_iv
, iv
, ZIO_DATA_IV_LEN
);
3497 memcpy(hdr
->b_crypt_hdr
.b_mac
, mac
, ZIO_DATA_MAC_LEN
);
3500 * This buffer will be considered encrypted even if the ot is not an
3501 * encrypted type. It will become authenticated instead in
3502 * arc_write_ready().
3505 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_TRUE
, B_TRUE
,
3506 B_FALSE
, B_FALSE
, &buf
));
3513 l2arc_hdr_arcstats_update(arc_buf_hdr_t
*hdr
, boolean_t incr
,
3514 boolean_t state_only
)
3516 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3517 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3518 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
3519 uint64_t psize
= HDR_GET_PSIZE(hdr
);
3520 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
3521 arc_buf_contents_t type
= hdr
->b_type
;
3536 /* If the buffer is a prefetch, count it as such. */
3537 if (HDR_PREFETCH(hdr
)) {
3538 ARCSTAT_INCR(arcstat_l2_prefetch_asize
, asize_s
);
3541 * We use the value stored in the L2 header upon initial
3542 * caching in L2ARC. This value will be updated in case
3543 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3544 * metadata (log entry) cannot currently be updated. Having
3545 * the ARC state in the L2 header solves the problem of a
3546 * possibly absent L1 header (apparent in buffers restored
3547 * from persistent L2ARC).
3549 switch (hdr
->b_l2hdr
.b_arcs_state
) {
3550 case ARC_STATE_MRU_GHOST
:
3552 ARCSTAT_INCR(arcstat_l2_mru_asize
, asize_s
);
3554 case ARC_STATE_MFU_GHOST
:
3556 ARCSTAT_INCR(arcstat_l2_mfu_asize
, asize_s
);
3566 ARCSTAT_INCR(arcstat_l2_psize
, psize_s
);
3567 ARCSTAT_INCR(arcstat_l2_lsize
, lsize_s
);
3571 ARCSTAT_INCR(arcstat_l2_bufc_data_asize
, asize_s
);
3573 case ARC_BUFC_METADATA
:
3574 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize
, asize_s
);
3583 arc_hdr_l2hdr_destroy(arc_buf_hdr_t
*hdr
)
3585 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3586 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3587 uint64_t psize
= HDR_GET_PSIZE(hdr
);
3588 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
3590 ASSERT(MUTEX_HELD(&dev
->l2ad_mtx
));
3591 ASSERT(HDR_HAS_L2HDR(hdr
));
3593 list_remove(&dev
->l2ad_buflist
, hdr
);
3595 l2arc_hdr_arcstats_decrement(hdr
);
3596 vdev_space_update(dev
->l2ad_vdev
, -asize
, 0, 0);
3598 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
),
3600 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
3604 arc_hdr_destroy(arc_buf_hdr_t
*hdr
)
3606 if (HDR_HAS_L1HDR(hdr
)) {
3607 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3608 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3610 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3611 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
3613 if (HDR_HAS_L2HDR(hdr
)) {
3614 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3615 boolean_t buflist_held
= MUTEX_HELD(&dev
->l2ad_mtx
);
3618 mutex_enter(&dev
->l2ad_mtx
);
3621 * Even though we checked this conditional above, we
3622 * need to check this again now that we have the
3623 * l2ad_mtx. This is because we could be racing with
3624 * another thread calling l2arc_evict() which might have
3625 * destroyed this header's L2 portion as we were waiting
3626 * to acquire the l2ad_mtx. If that happens, we don't
3627 * want to re-destroy the header's L2 portion.
3629 if (HDR_HAS_L2HDR(hdr
)) {
3631 if (!HDR_EMPTY(hdr
))
3632 buf_discard_identity(hdr
);
3634 arc_hdr_l2hdr_destroy(hdr
);
3638 mutex_exit(&dev
->l2ad_mtx
);
3642 * The header's identify can only be safely discarded once it is no
3643 * longer discoverable. This requires removing it from the hash table
3644 * and the l2arc header list. After this point the hash lock can not
3645 * be used to protect the header.
3647 if (!HDR_EMPTY(hdr
))
3648 buf_discard_identity(hdr
);
3650 if (HDR_HAS_L1HDR(hdr
)) {
3651 arc_cksum_free(hdr
);
3653 while (hdr
->b_l1hdr
.b_buf
!= NULL
)
3654 arc_buf_destroy_impl(hdr
->b_l1hdr
.b_buf
);
3656 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
3657 arc_hdr_free_abd(hdr
, B_FALSE
);
3659 if (HDR_HAS_RABD(hdr
))
3660 arc_hdr_free_abd(hdr
, B_TRUE
);
3663 ASSERT3P(hdr
->b_hash_next
, ==, NULL
);
3664 if (HDR_HAS_L1HDR(hdr
)) {
3665 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3666 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
3668 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3670 kmem_cache_free(hdr_full_cache
, hdr
);
3672 kmem_cache_free(hdr_l2only_cache
, hdr
);
3677 arc_buf_destroy(arc_buf_t
*buf
, const void *tag
)
3679 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3681 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
3682 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, buf
);
3683 ASSERT(ARC_BUF_LAST(buf
));
3684 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3685 VERIFY0(remove_reference(hdr
, tag
));
3689 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
3690 mutex_enter(hash_lock
);
3692 ASSERT3P(hdr
, ==, buf
->b_hdr
);
3693 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, NULL
);
3694 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
3695 ASSERT3P(hdr
->b_l1hdr
.b_state
, !=, arc_anon
);
3696 ASSERT3P(buf
->b_data
, !=, NULL
);
3698 arc_buf_destroy_impl(buf
);
3699 (void) remove_reference(hdr
, tag
);
3700 mutex_exit(hash_lock
);
3704 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3705 * state of the header is dependent on its state prior to entering this
3706 * function. The following transitions are possible:
3708 * - arc_mru -> arc_mru_ghost
3709 * - arc_mfu -> arc_mfu_ghost
3710 * - arc_mru_ghost -> arc_l2c_only
3711 * - arc_mru_ghost -> deleted
3712 * - arc_mfu_ghost -> arc_l2c_only
3713 * - arc_mfu_ghost -> deleted
3714 * - arc_uncached -> deleted
3716 * Return total size of evicted data buffers for eviction progress tracking.
3717 * When evicting from ghost states return logical buffer size to make eviction
3718 * progress at the same (or at least comparable) rate as from non-ghost states.
3720 * Return *real_evicted for actual ARC size reduction to wake up threads
3721 * waiting for it. For non-ghost states it includes size of evicted data
3722 * buffers (the headers are not freed there). For ghost states it includes
3723 * only the evicted headers size.
3726 arc_evict_hdr(arc_buf_hdr_t
*hdr
, uint64_t *real_evicted
)
3728 arc_state_t
*evicted_state
, *state
;
3729 int64_t bytes_evicted
= 0;
3730 uint_t min_lifetime
= HDR_PRESCIENT_PREFETCH(hdr
) ?
3731 arc_min_prescient_prefetch_ms
: arc_min_prefetch_ms
;
3733 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
3734 ASSERT(HDR_HAS_L1HDR(hdr
));
3735 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3736 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3737 ASSERT0(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
3740 state
= hdr
->b_l1hdr
.b_state
;
3741 if (GHOST_STATE(state
)) {
3744 * l2arc_write_buffers() relies on a header's L1 portion
3745 * (i.e. its b_pabd field) during it's write phase.
3746 * Thus, we cannot push a header onto the arc_l2c_only
3747 * state (removing its L1 piece) until the header is
3748 * done being written to the l2arc.
3750 if (HDR_HAS_L2HDR(hdr
) && HDR_L2_WRITING(hdr
)) {
3751 ARCSTAT_BUMP(arcstat_evict_l2_skip
);
3752 return (bytes_evicted
);
3755 ARCSTAT_BUMP(arcstat_deleted
);
3756 bytes_evicted
+= HDR_GET_LSIZE(hdr
);
3758 DTRACE_PROBE1(arc__delete
, arc_buf_hdr_t
*, hdr
);
3760 if (HDR_HAS_L2HDR(hdr
)) {
3761 ASSERT(hdr
->b_l1hdr
.b_pabd
== NULL
);
3762 ASSERT(!HDR_HAS_RABD(hdr
));
3764 * This buffer is cached on the 2nd Level ARC;
3765 * don't destroy the header.
3767 arc_change_state(arc_l2c_only
, hdr
);
3769 * dropping from L1+L2 cached to L2-only,
3770 * realloc to remove the L1 header.
3772 (void) arc_hdr_realloc(hdr
, hdr_full_cache
,
3774 *real_evicted
+= HDR_FULL_SIZE
- HDR_L2ONLY_SIZE
;
3776 arc_change_state(arc_anon
, hdr
);
3777 arc_hdr_destroy(hdr
);
3778 *real_evicted
+= HDR_FULL_SIZE
;
3780 return (bytes_evicted
);
3783 ASSERT(state
== arc_mru
|| state
== arc_mfu
|| state
== arc_uncached
);
3784 evicted_state
= (state
== arc_uncached
) ? arc_anon
:
3785 ((state
== arc_mru
) ? arc_mru_ghost
: arc_mfu_ghost
);
3787 /* prefetch buffers have a minimum lifespan */
3788 if ((hdr
->b_flags
& (ARC_FLAG_PREFETCH
| ARC_FLAG_INDIRECT
)) &&
3789 ddi_get_lbolt() - hdr
->b_l1hdr
.b_arc_access
<
3790 MSEC_TO_TICK(min_lifetime
)) {
3791 ARCSTAT_BUMP(arcstat_evict_skip
);
3792 return (bytes_evicted
);
3795 if (HDR_HAS_L2HDR(hdr
)) {
3796 ARCSTAT_INCR(arcstat_evict_l2_cached
, HDR_GET_LSIZE(hdr
));
3798 if (l2arc_write_eligible(hdr
->b_spa
, hdr
)) {
3799 ARCSTAT_INCR(arcstat_evict_l2_eligible
,
3800 HDR_GET_LSIZE(hdr
));
3802 switch (state
->arcs_state
) {
3805 arcstat_evict_l2_eligible_mru
,
3806 HDR_GET_LSIZE(hdr
));
3810 arcstat_evict_l2_eligible_mfu
,
3811 HDR_GET_LSIZE(hdr
));
3817 ARCSTAT_INCR(arcstat_evict_l2_ineligible
,
3818 HDR_GET_LSIZE(hdr
));
3822 bytes_evicted
+= arc_hdr_size(hdr
);
3823 *real_evicted
+= arc_hdr_size(hdr
);
3826 * If this hdr is being evicted and has a compressed buffer then we
3827 * discard it here before we change states. This ensures that the
3828 * accounting is updated correctly in arc_free_data_impl().
3830 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
3831 arc_hdr_free_abd(hdr
, B_FALSE
);
3833 if (HDR_HAS_RABD(hdr
))
3834 arc_hdr_free_abd(hdr
, B_TRUE
);
3836 arc_change_state(evicted_state
, hdr
);
3837 DTRACE_PROBE1(arc__evict
, arc_buf_hdr_t
*, hdr
);
3838 if (evicted_state
== arc_anon
) {
3839 arc_hdr_destroy(hdr
);
3840 *real_evicted
+= HDR_FULL_SIZE
;
3842 ASSERT(HDR_IN_HASH_TABLE(hdr
));
3845 return (bytes_evicted
);
3849 arc_set_need_free(void)
3851 ASSERT(MUTEX_HELD(&arc_evict_lock
));
3852 int64_t remaining
= arc_free_memory() - arc_sys_free
/ 2;
3853 arc_evict_waiter_t
*aw
= list_tail(&arc_evict_waiters
);
3855 arc_need_free
= MAX(-remaining
, 0);
3858 MAX(-remaining
, (int64_t)(aw
->aew_count
- arc_evict_count
));
3863 arc_evict_state_impl(multilist_t
*ml
, int idx
, arc_buf_hdr_t
*marker
,
3864 uint64_t spa
, uint64_t bytes
)
3866 multilist_sublist_t
*mls
;
3867 uint64_t bytes_evicted
= 0, real_evicted
= 0;
3869 kmutex_t
*hash_lock
;
3870 uint_t evict_count
= zfs_arc_evict_batch_limit
;
3872 ASSERT3P(marker
, !=, NULL
);
3874 mls
= multilist_sublist_lock_idx(ml
, idx
);
3876 for (hdr
= multilist_sublist_prev(mls
, marker
); likely(hdr
!= NULL
);
3877 hdr
= multilist_sublist_prev(mls
, marker
)) {
3878 if ((evict_count
== 0) || (bytes_evicted
>= bytes
))
3882 * To keep our iteration location, move the marker
3883 * forward. Since we're not holding hdr's hash lock, we
3884 * must be very careful and not remove 'hdr' from the
3885 * sublist. Otherwise, other consumers might mistake the
3886 * 'hdr' as not being on a sublist when they call the
3887 * multilist_link_active() function (they all rely on
3888 * the hash lock protecting concurrent insertions and
3889 * removals). multilist_sublist_move_forward() was
3890 * specifically implemented to ensure this is the case
3891 * (only 'marker' will be removed and re-inserted).
3893 multilist_sublist_move_forward(mls
, marker
);
3896 * The only case where the b_spa field should ever be
3897 * zero, is the marker headers inserted by
3898 * arc_evict_state(). It's possible for multiple threads
3899 * to be calling arc_evict_state() concurrently (e.g.
3900 * dsl_pool_close() and zio_inject_fault()), so we must
3901 * skip any markers we see from these other threads.
3903 if (hdr
->b_spa
== 0)
3906 /* we're only interested in evicting buffers of a certain spa */
3907 if (spa
!= 0 && hdr
->b_spa
!= spa
) {
3908 ARCSTAT_BUMP(arcstat_evict_skip
);
3912 hash_lock
= HDR_LOCK(hdr
);
3915 * We aren't calling this function from any code path
3916 * that would already be holding a hash lock, so we're
3917 * asserting on this assumption to be defensive in case
3918 * this ever changes. Without this check, it would be
3919 * possible to incorrectly increment arcstat_mutex_miss
3920 * below (e.g. if the code changed such that we called
3921 * this function with a hash lock held).
3923 ASSERT(!MUTEX_HELD(hash_lock
));
3925 if (mutex_tryenter(hash_lock
)) {
3927 uint64_t evicted
= arc_evict_hdr(hdr
, &revicted
);
3928 mutex_exit(hash_lock
);
3930 bytes_evicted
+= evicted
;
3931 real_evicted
+= revicted
;
3934 * If evicted is zero, arc_evict_hdr() must have
3935 * decided to skip this header, don't increment
3936 * evict_count in this case.
3942 ARCSTAT_BUMP(arcstat_mutex_miss
);
3946 multilist_sublist_unlock(mls
);
3949 * Increment the count of evicted bytes, and wake up any threads that
3950 * are waiting for the count to reach this value. Since the list is
3951 * ordered by ascending aew_count, we pop off the beginning of the
3952 * list until we reach the end, or a waiter that's past the current
3953 * "count". Doing this outside the loop reduces the number of times
3954 * we need to acquire the global arc_evict_lock.
3956 * Only wake when there's sufficient free memory in the system
3957 * (specifically, arc_sys_free/2, which by default is a bit more than
3958 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
3960 mutex_enter(&arc_evict_lock
);
3961 arc_evict_count
+= real_evicted
;
3963 if (arc_free_memory() > arc_sys_free
/ 2) {
3964 arc_evict_waiter_t
*aw
;
3965 while ((aw
= list_head(&arc_evict_waiters
)) != NULL
&&
3966 aw
->aew_count
<= arc_evict_count
) {
3967 list_remove(&arc_evict_waiters
, aw
);
3968 cv_broadcast(&aw
->aew_cv
);
3971 arc_set_need_free();
3972 mutex_exit(&arc_evict_lock
);
3975 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
3976 * if the average cached block is small), eviction can be on-CPU for
3977 * many seconds. To ensure that other threads that may be bound to
3978 * this CPU are able to make progress, make a voluntary preemption
3981 kpreempt(KPREEMPT_SYNC
);
3983 return (bytes_evicted
);
3986 static arc_buf_hdr_t
*
3987 arc_state_alloc_marker(void)
3989 arc_buf_hdr_t
*marker
= kmem_cache_alloc(hdr_full_cache
, KM_SLEEP
);
3992 * A b_spa of 0 is used to indicate that this header is
3993 * a marker. This fact is used in arc_evict_state_impl().
4001 arc_state_free_marker(arc_buf_hdr_t
*marker
)
4003 kmem_cache_free(hdr_full_cache
, marker
);
4007 * Allocate an array of buffer headers used as placeholders during arc state
4010 static arc_buf_hdr_t
**
4011 arc_state_alloc_markers(int count
)
4013 arc_buf_hdr_t
**markers
;
4015 markers
= kmem_zalloc(sizeof (*markers
) * count
, KM_SLEEP
);
4016 for (int i
= 0; i
< count
; i
++)
4017 markers
[i
] = arc_state_alloc_marker();
4022 arc_state_free_markers(arc_buf_hdr_t
**markers
, int count
)
4024 for (int i
= 0; i
< count
; i
++)
4025 arc_state_free_marker(markers
[i
]);
4026 kmem_free(markers
, sizeof (*markers
) * count
);
4030 * Evict buffers from the given arc state, until we've removed the
4031 * specified number of bytes. Move the removed buffers to the
4032 * appropriate evict state.
4034 * This function makes a "best effort". It skips over any buffers
4035 * it can't get a hash_lock on, and so, may not catch all candidates.
4036 * It may also return without evicting as much space as requested.
4038 * If bytes is specified using the special value ARC_EVICT_ALL, this
4039 * will evict all available (i.e. unlocked and evictable) buffers from
4040 * the given arc state; which is used by arc_flush().
4043 arc_evict_state(arc_state_t
*state
, arc_buf_contents_t type
, uint64_t spa
,
4046 uint64_t total_evicted
= 0;
4047 multilist_t
*ml
= &state
->arcs_list
[type
];
4049 arc_buf_hdr_t
**markers
;
4051 num_sublists
= multilist_get_num_sublists(ml
);
4054 * If we've tried to evict from each sublist, made some
4055 * progress, but still have not hit the target number of bytes
4056 * to evict, we want to keep trying. The markers allow us to
4057 * pick up where we left off for each individual sublist, rather
4058 * than starting from the tail each time.
4060 if (zthr_iscurthread(arc_evict_zthr
)) {
4061 markers
= arc_state_evict_markers
;
4062 ASSERT3S(num_sublists
, <=, arc_state_evict_marker_count
);
4064 markers
= arc_state_alloc_markers(num_sublists
);
4066 for (int i
= 0; i
< num_sublists
; i
++) {
4067 multilist_sublist_t
*mls
;
4069 mls
= multilist_sublist_lock_idx(ml
, i
);
4070 multilist_sublist_insert_tail(mls
, markers
[i
]);
4071 multilist_sublist_unlock(mls
);
4075 * While we haven't hit our target number of bytes to evict, or
4076 * we're evicting all available buffers.
4078 while (total_evicted
< bytes
) {
4079 int sublist_idx
= multilist_get_random_index(ml
);
4080 uint64_t scan_evicted
= 0;
4083 * Start eviction using a randomly selected sublist,
4084 * this is to try and evenly balance eviction across all
4085 * sublists. Always starting at the same sublist
4086 * (e.g. index 0) would cause evictions to favor certain
4087 * sublists over others.
4089 for (int i
= 0; i
< num_sublists
; i
++) {
4090 uint64_t bytes_remaining
;
4091 uint64_t bytes_evicted
;
4093 if (total_evicted
< bytes
)
4094 bytes_remaining
= bytes
- total_evicted
;
4098 bytes_evicted
= arc_evict_state_impl(ml
, sublist_idx
,
4099 markers
[sublist_idx
], spa
, bytes_remaining
);
4101 scan_evicted
+= bytes_evicted
;
4102 total_evicted
+= bytes_evicted
;
4104 /* we've reached the end, wrap to the beginning */
4105 if (++sublist_idx
>= num_sublists
)
4110 * If we didn't evict anything during this scan, we have
4111 * no reason to believe we'll evict more during another
4112 * scan, so break the loop.
4114 if (scan_evicted
== 0) {
4115 /* This isn't possible, let's make that obvious */
4116 ASSERT3S(bytes
, !=, 0);
4119 * When bytes is ARC_EVICT_ALL, the only way to
4120 * break the loop is when scan_evicted is zero.
4121 * In that case, we actually have evicted enough,
4122 * so we don't want to increment the kstat.
4124 if (bytes
!= ARC_EVICT_ALL
) {
4125 ASSERT3S(total_evicted
, <, bytes
);
4126 ARCSTAT_BUMP(arcstat_evict_not_enough
);
4133 for (int i
= 0; i
< num_sublists
; i
++) {
4134 multilist_sublist_t
*mls
= multilist_sublist_lock_idx(ml
, i
);
4135 multilist_sublist_remove(mls
, markers
[i
]);
4136 multilist_sublist_unlock(mls
);
4138 if (markers
!= arc_state_evict_markers
)
4139 arc_state_free_markers(markers
, num_sublists
);
4141 return (total_evicted
);
4145 * Flush all "evictable" data of the given type from the arc state
4146 * specified. This will not evict any "active" buffers (i.e. referenced).
4148 * When 'retry' is set to B_FALSE, the function will make a single pass
4149 * over the state and evict any buffers that it can. Since it doesn't
4150 * continually retry the eviction, it might end up leaving some buffers
4151 * in the ARC due to lock misses.
4153 * When 'retry' is set to B_TRUE, the function will continually retry the
4154 * eviction until *all* evictable buffers have been removed from the
4155 * state. As a result, if concurrent insertions into the state are
4156 * allowed (e.g. if the ARC isn't shutting down), this function might
4157 * wind up in an infinite loop, continually trying to evict buffers.
4160 arc_flush_state(arc_state_t
*state
, uint64_t spa
, arc_buf_contents_t type
,
4163 uint64_t evicted
= 0;
4165 while (zfs_refcount_count(&state
->arcs_esize
[type
]) != 0) {
4166 evicted
+= arc_evict_state(state
, type
, spa
, ARC_EVICT_ALL
);
4176 * Evict the specified number of bytes from the state specified. This
4177 * function prevents us from trying to evict more from a state's list
4178 * than is "evictable", and to skip evicting altogether when passed a
4179 * negative value for "bytes". In contrast, arc_evict_state() will
4180 * evict everything it can, when passed a negative value for "bytes".
4183 arc_evict_impl(arc_state_t
*state
, arc_buf_contents_t type
, int64_t bytes
)
4187 if (bytes
> 0 && zfs_refcount_count(&state
->arcs_esize
[type
]) > 0) {
4188 delta
= MIN(zfs_refcount_count(&state
->arcs_esize
[type
]),
4190 return (arc_evict_state(state
, type
, 0, delta
));
4197 * Adjust specified fraction, taking into account initial ghost state(s) size,
4198 * ghost hit bytes towards increasing the fraction, ghost hit bytes towards
4199 * decreasing it, plus a balance factor, controlling the decrease rate, used
4200 * to balance metadata vs data.
4203 arc_evict_adj(uint64_t frac
, uint64_t total
, uint64_t up
, uint64_t down
,
4206 if (total
< 8 || up
+ down
== 0)
4210 * We should not have more ghost hits than ghost size, but they
4211 * may get close. Restrict maximum adjustment in that case.
4213 if (up
+ down
>= total
/ 4) {
4214 uint64_t scale
= (up
+ down
) / (total
/ 8);
4219 /* Get maximal dynamic range by choosing optimal shifts. */
4220 int s
= highbit64(total
);
4221 s
= MIN(64 - s
, 32);
4223 uint64_t ofrac
= (1ULL << 32) - frac
;
4225 if (frac
>= 4 * ofrac
)
4226 up
/= frac
/ (2 * ofrac
+ 1);
4227 up
= (up
<< s
) / (total
>> (32 - s
));
4228 if (ofrac
>= 4 * frac
)
4229 down
/= ofrac
/ (2 * frac
+ 1);
4230 down
= (down
<< s
) / (total
>> (32 - s
));
4231 down
= down
* 100 / balance
;
4233 return (frac
+ up
- down
);
4237 * Calculate (x * multiplier / divisor) without unnecesary overflows.
4240 arc_mf(uint64_t x
, uint64_t multiplier
, uint64_t divisor
)
4242 uint64_t q
= (x
/ divisor
);
4243 uint64_t r
= (x
% divisor
);
4245 return ((q
* multiplier
) + ((r
* multiplier
) / divisor
));
4249 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4254 uint64_t bytes
, total_evicted
= 0;
4255 int64_t e
, mrud
, mrum
, mfud
, mfum
, w
;
4256 static uint64_t ogrd
, ogrm
, ogfd
, ogfm
;
4257 static uint64_t gsrd
, gsrm
, gsfd
, gsfm
;
4258 uint64_t ngrd
, ngrm
, ngfd
, ngfm
;
4260 /* Get current size of ARC states we can evict from. */
4261 mrud
= zfs_refcount_count(&arc_mru
->arcs_size
[ARC_BUFC_DATA
]) +
4262 zfs_refcount_count(&arc_anon
->arcs_size
[ARC_BUFC_DATA
]);
4263 mrum
= zfs_refcount_count(&arc_mru
->arcs_size
[ARC_BUFC_METADATA
]) +
4264 zfs_refcount_count(&arc_anon
->arcs_size
[ARC_BUFC_METADATA
]);
4265 mfud
= zfs_refcount_count(&arc_mfu
->arcs_size
[ARC_BUFC_DATA
]);
4266 mfum
= zfs_refcount_count(&arc_mfu
->arcs_size
[ARC_BUFC_METADATA
]);
4267 uint64_t d
= mrud
+ mfud
;
4268 uint64_t m
= mrum
+ mfum
;
4271 /* Get ARC ghost hits since last eviction. */
4272 ngrd
= wmsum_value(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_DATA
]);
4273 uint64_t grd
= ngrd
- ogrd
;
4275 ngrm
= wmsum_value(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_METADATA
]);
4276 uint64_t grm
= ngrm
- ogrm
;
4278 ngfd
= wmsum_value(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_DATA
]);
4279 uint64_t gfd
= ngfd
- ogfd
;
4281 ngfm
= wmsum_value(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_METADATA
]);
4282 uint64_t gfm
= ngfm
- ogfm
;
4285 /* Adjust ARC states balance based on ghost hits. */
4286 arc_meta
= arc_evict_adj(arc_meta
, gsrd
+ gsrm
+ gsfd
+ gsfm
,
4287 grm
+ gfm
, grd
+ gfd
, zfs_arc_meta_balance
);
4288 arc_pd
= arc_evict_adj(arc_pd
, gsrd
+ gsfd
, grd
, gfd
, 100);
4289 arc_pm
= arc_evict_adj(arc_pm
, gsrm
+ gsfm
, grm
, gfm
, 100);
4291 uint64_t asize
= aggsum_value(&arc_sums
.arcstat_size
);
4292 uint64_t ac
= arc_c
;
4293 int64_t wt
= t
- (asize
- ac
);
4296 * Try to reduce pinned dnodes if more than 3/4 of wanted metadata
4297 * target is not evictable or if they go over arc_dnode_limit.
4300 int64_t dn
= wmsum_value(&arc_sums
.arcstat_dnode_size
);
4301 int64_t nem
= zfs_refcount_count(&arc_mru
->arcs_size
[ARC_BUFC_METADATA
])
4302 + zfs_refcount_count(&arc_mfu
->arcs_size
[ARC_BUFC_METADATA
])
4303 - zfs_refcount_count(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
])
4304 - zfs_refcount_count(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
4305 w
= wt
* (int64_t)(arc_meta
>> 16) >> 16;
4306 if (nem
> w
* 3 / 4) {
4307 prune
= dn
/ sizeof (dnode_t
) *
4308 zfs_arc_dnode_reduce_percent
/ 100;
4309 if (nem
< w
&& w
> 4)
4310 prune
= arc_mf(prune
, nem
- w
* 3 / 4, w
/ 4);
4312 if (dn
> arc_dnode_limit
) {
4313 prune
= MAX(prune
, (dn
- arc_dnode_limit
) / sizeof (dnode_t
) *
4314 zfs_arc_dnode_reduce_percent
/ 100);
4317 arc_prune_async(prune
);
4319 /* Evict MRU metadata. */
4320 w
= wt
* (int64_t)(arc_meta
* arc_pm
>> 48) >> 16;
4321 e
= MIN((int64_t)(asize
- ac
), (int64_t)(mrum
- w
));
4322 bytes
= arc_evict_impl(arc_mru
, ARC_BUFC_METADATA
, e
);
4323 total_evicted
+= bytes
;
4327 /* Evict MFU metadata. */
4328 w
= wt
* (int64_t)(arc_meta
>> 16) >> 16;
4329 e
= MIN((int64_t)(asize
- ac
), (int64_t)(m
- bytes
- w
));
4330 bytes
= arc_evict_impl(arc_mfu
, ARC_BUFC_METADATA
, e
);
4331 total_evicted
+= bytes
;
4335 /* Evict MRU data. */
4336 wt
-= m
- total_evicted
;
4337 w
= wt
* (int64_t)(arc_pd
>> 16) >> 16;
4338 e
= MIN((int64_t)(asize
- ac
), (int64_t)(mrud
- w
));
4339 bytes
= arc_evict_impl(arc_mru
, ARC_BUFC_DATA
, e
);
4340 total_evicted
+= bytes
;
4344 /* Evict MFU data. */
4346 bytes
= arc_evict_impl(arc_mfu
, ARC_BUFC_DATA
, e
);
4348 total_evicted
+= bytes
;
4353 * Size of each state's ghost list represents how much that state
4354 * may grow by shrinking the other states. Would it need to shrink
4355 * other states to zero (that is unlikely), its ghost size would be
4356 * equal to sum of other three state sizes. But excessive ghost
4357 * size may result in false ghost hits (too far back), that may
4358 * never result in real cache hits if several states are competing.
4359 * So choose some arbitraty point of 1/2 of other state sizes.
4361 gsrd
= (mrum
+ mfud
+ mfum
) / 2;
4362 e
= zfs_refcount_count(&arc_mru_ghost
->arcs_size
[ARC_BUFC_DATA
]) -
4364 (void) arc_evict_impl(arc_mru_ghost
, ARC_BUFC_DATA
, e
);
4366 gsrm
= (mrud
+ mfud
+ mfum
) / 2;
4367 e
= zfs_refcount_count(&arc_mru_ghost
->arcs_size
[ARC_BUFC_METADATA
]) -
4369 (void) arc_evict_impl(arc_mru_ghost
, ARC_BUFC_METADATA
, e
);
4371 gsfd
= (mrud
+ mrum
+ mfum
) / 2;
4372 e
= zfs_refcount_count(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_DATA
]) -
4374 (void) arc_evict_impl(arc_mfu_ghost
, ARC_BUFC_DATA
, e
);
4376 gsfm
= (mrud
+ mrum
+ mfud
) / 2;
4377 e
= zfs_refcount_count(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_METADATA
]) -
4379 (void) arc_evict_impl(arc_mfu_ghost
, ARC_BUFC_METADATA
, e
);
4381 return (total_evicted
);
4385 arc_flush(spa_t
*spa
, boolean_t retry
)
4390 * If retry is B_TRUE, a spa must not be specified since we have
4391 * no good way to determine if all of a spa's buffers have been
4392 * evicted from an arc state.
4394 ASSERT(!retry
|| spa
== NULL
);
4397 guid
= spa_load_guid(spa
);
4399 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_DATA
, retry
);
4400 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_METADATA
, retry
);
4402 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_DATA
, retry
);
4403 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_METADATA
, retry
);
4405 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4406 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4408 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4409 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4411 (void) arc_flush_state(arc_uncached
, guid
, ARC_BUFC_DATA
, retry
);
4412 (void) arc_flush_state(arc_uncached
, guid
, ARC_BUFC_METADATA
, retry
);
4416 arc_reduce_target_size(uint64_t to_free
)
4419 * Get the actual arc size. Even if we don't need it, this updates
4420 * the aggsum lower bound estimate for arc_is_overflowing().
4422 uint64_t asize
= aggsum_value(&arc_sums
.arcstat_size
);
4425 * All callers want the ARC to actually evict (at least) this much
4426 * memory. Therefore we reduce from the lower of the current size and
4427 * the target size. This way, even if arc_c is much higher than
4428 * arc_size (as can be the case after many calls to arc_freed(), we will
4429 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4433 if (c
> arc_c_min
) {
4434 c
= MIN(c
, MAX(asize
, arc_c_min
));
4435 to_free
= MIN(to_free
, c
- arc_c_min
);
4436 arc_c
= c
- to_free
;
4442 * Whether or not we reduced the target size, request eviction if the
4443 * current size is over it now, since caller obviously wants some RAM.
4445 if (asize
> arc_c
) {
4446 /* See comment in arc_evict_cb_check() on why lock+flag */
4447 mutex_enter(&arc_evict_lock
);
4448 arc_evict_needed
= B_TRUE
;
4449 mutex_exit(&arc_evict_lock
);
4450 zthr_wakeup(arc_evict_zthr
);
4457 * Determine if the system is under memory pressure and is asking
4458 * to reclaim memory. A return value of B_TRUE indicates that the system
4459 * is under memory pressure and that the arc should adjust accordingly.
4462 arc_reclaim_needed(void)
4464 return (arc_available_memory() < 0);
4468 arc_kmem_reap_soon(void)
4471 kmem_cache_t
*prev_cache
= NULL
;
4472 kmem_cache_t
*prev_data_cache
= NULL
;
4477 * Reclaim unused memory from all kmem caches.
4483 for (i
= 0; i
< SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
; i
++) {
4485 /* reach upper limit of cache size on 32-bit */
4486 if (zio_buf_cache
[i
] == NULL
)
4489 if (zio_buf_cache
[i
] != prev_cache
) {
4490 prev_cache
= zio_buf_cache
[i
];
4491 kmem_cache_reap_now(zio_buf_cache
[i
]);
4493 if (zio_data_buf_cache
[i
] != prev_data_cache
) {
4494 prev_data_cache
= zio_data_buf_cache
[i
];
4495 kmem_cache_reap_now(zio_data_buf_cache
[i
]);
4498 kmem_cache_reap_now(buf_cache
);
4499 kmem_cache_reap_now(hdr_full_cache
);
4500 kmem_cache_reap_now(hdr_l2only_cache
);
4501 kmem_cache_reap_now(zfs_btree_leaf_cache
);
4502 abd_cache_reap_now();
4506 arc_evict_cb_check(void *arg
, zthr_t
*zthr
)
4508 (void) arg
, (void) zthr
;
4512 * This is necessary in order to keep the kstat information
4513 * up to date for tools that display kstat data such as the
4514 * mdb ::arc dcmd and the Linux crash utility. These tools
4515 * typically do not call kstat's update function, but simply
4516 * dump out stats from the most recent update. Without
4517 * this call, these commands may show stale stats for the
4518 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4519 * with this call, the data might be out of date if the
4520 * evict thread hasn't been woken recently; but that should
4521 * suffice. The arc_state_t structures can be queried
4522 * directly if more accurate information is needed.
4524 if (arc_ksp
!= NULL
)
4525 arc_ksp
->ks_update(arc_ksp
, KSTAT_READ
);
4529 * We have to rely on arc_wait_for_eviction() to tell us when to
4530 * evict, rather than checking if we are overflowing here, so that we
4531 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4532 * If we have become "not overflowing" since arc_wait_for_eviction()
4533 * checked, we need to wake it up. We could broadcast the CV here,
4534 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4535 * would need to use a mutex to ensure that this function doesn't
4536 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4537 * the arc_evict_lock). However, the lock ordering of such a lock
4538 * would necessarily be incorrect with respect to the zthr_lock,
4539 * which is held before this function is called, and is held by
4540 * arc_wait_for_eviction() when it calls zthr_wakeup().
4542 if (arc_evict_needed
)
4546 * If we have buffers in uncached state, evict them periodically.
4548 return ((zfs_refcount_count(&arc_uncached
->arcs_esize
[ARC_BUFC_DATA
]) +
4549 zfs_refcount_count(&arc_uncached
->arcs_esize
[ARC_BUFC_METADATA
]) &&
4550 ddi_get_lbolt() - arc_last_uncached_flush
>
4551 MSEC_TO_TICK(arc_min_prefetch_ms
/ 2)));
4555 * Keep arc_size under arc_c by running arc_evict which evicts data
4559 arc_evict_cb(void *arg
, zthr_t
*zthr
)
4563 uint64_t evicted
= 0;
4564 fstrans_cookie_t cookie
= spl_fstrans_mark();
4566 /* Always try to evict from uncached state. */
4567 arc_last_uncached_flush
= ddi_get_lbolt();
4568 evicted
+= arc_flush_state(arc_uncached
, 0, ARC_BUFC_DATA
, B_FALSE
);
4569 evicted
+= arc_flush_state(arc_uncached
, 0, ARC_BUFC_METADATA
, B_FALSE
);
4571 /* Evict from other states only if told to. */
4572 if (arc_evict_needed
)
4573 evicted
+= arc_evict();
4576 * If evicted is zero, we couldn't evict anything
4577 * via arc_evict(). This could be due to hash lock
4578 * collisions, but more likely due to the majority of
4579 * arc buffers being unevictable. Therefore, even if
4580 * arc_size is above arc_c, another pass is unlikely to
4581 * be helpful and could potentially cause us to enter an
4582 * infinite loop. Additionally, zthr_iscancelled() is
4583 * checked here so that if the arc is shutting down, the
4584 * broadcast will wake any remaining arc evict waiters.
4586 * Note we cancel using zthr instead of arc_evict_zthr
4587 * because the latter may not yet be initializd when the
4588 * callback is first invoked.
4590 mutex_enter(&arc_evict_lock
);
4591 arc_evict_needed
= !zthr_iscancelled(zthr
) &&
4592 evicted
> 0 && aggsum_compare(&arc_sums
.arcstat_size
, arc_c
) > 0;
4593 if (!arc_evict_needed
) {
4595 * We're either no longer overflowing, or we
4596 * can't evict anything more, so we should wake
4597 * arc_get_data_impl() sooner.
4599 arc_evict_waiter_t
*aw
;
4600 while ((aw
= list_remove_head(&arc_evict_waiters
)) != NULL
) {
4601 cv_broadcast(&aw
->aew_cv
);
4603 arc_set_need_free();
4605 mutex_exit(&arc_evict_lock
);
4606 spl_fstrans_unmark(cookie
);
4610 arc_reap_cb_check(void *arg
, zthr_t
*zthr
)
4612 (void) arg
, (void) zthr
;
4614 int64_t free_memory
= arc_available_memory();
4615 static int reap_cb_check_counter
= 0;
4618 * If a kmem reap is already active, don't schedule more. We must
4619 * check for this because kmem_cache_reap_soon() won't actually
4620 * block on the cache being reaped (this is to prevent callers from
4621 * becoming implicitly blocked by a system-wide kmem reap -- which,
4622 * on a system with many, many full magazines, can take minutes).
4624 if (!kmem_cache_reap_active() && free_memory
< 0) {
4626 arc_no_grow
= B_TRUE
;
4629 * Wait at least zfs_grow_retry (default 5) seconds
4630 * before considering growing.
4632 arc_growtime
= gethrtime() + SEC2NSEC(arc_grow_retry
);
4634 } else if (free_memory
< arc_c
>> arc_no_grow_shift
) {
4635 arc_no_grow
= B_TRUE
;
4636 } else if (gethrtime() >= arc_growtime
) {
4637 arc_no_grow
= B_FALSE
;
4641 * Called unconditionally every 60 seconds to reclaim unused
4642 * zstd compression and decompression context. This is done
4643 * here to avoid the need for an independent thread.
4645 if (!((reap_cb_check_counter
++) % 60))
4646 zfs_zstd_cache_reap_now();
4652 * Keep enough free memory in the system by reaping the ARC's kmem
4653 * caches. To cause more slabs to be reapable, we may reduce the
4654 * target size of the cache (arc_c), causing the arc_evict_cb()
4655 * to free more buffers.
4658 arc_reap_cb(void *arg
, zthr_t
*zthr
)
4660 int64_t can_free
, free_memory
, to_free
;
4662 (void) arg
, (void) zthr
;
4663 fstrans_cookie_t cookie
= spl_fstrans_mark();
4666 * Kick off asynchronous kmem_reap()'s of all our caches.
4668 arc_kmem_reap_soon();
4671 * Wait at least arc_kmem_cache_reap_retry_ms between
4672 * arc_kmem_reap_soon() calls. Without this check it is possible to
4673 * end up in a situation where we spend lots of time reaping
4674 * caches, while we're near arc_c_min. Waiting here also gives the
4675 * subsequent free memory check a chance of finding that the
4676 * asynchronous reap has already freed enough memory, and we don't
4677 * need to call arc_reduce_target_size().
4679 delay((hz
* arc_kmem_cache_reap_retry_ms
+ 999) / 1000);
4682 * Reduce the target size as needed to maintain the amount of free
4683 * memory in the system at a fraction of the arc_size (1/128th by
4684 * default). If oversubscribed (free_memory < 0) then reduce the
4685 * target arc_size by the deficit amount plus the fractional
4686 * amount. If free memory is positive but less than the fractional
4687 * amount, reduce by what is needed to hit the fractional amount.
4689 free_memory
= arc_available_memory();
4690 can_free
= arc_c
- arc_c_min
;
4691 to_free
= (MAX(can_free
, 0) >> arc_shrink_shift
) - free_memory
;
4693 arc_reduce_target_size(to_free
);
4694 spl_fstrans_unmark(cookie
);
4699 * Determine the amount of memory eligible for eviction contained in the
4700 * ARC. All clean data reported by the ghost lists can always be safely
4701 * evicted. Due to arc_c_min, the same does not hold for all clean data
4702 * contained by the regular mru and mfu lists.
4704 * In the case of the regular mru and mfu lists, we need to report as
4705 * much clean data as possible, such that evicting that same reported
4706 * data will not bring arc_size below arc_c_min. Thus, in certain
4707 * circumstances, the total amount of clean data in the mru and mfu
4708 * lists might not actually be evictable.
4710 * The following two distinct cases are accounted for:
4712 * 1. The sum of the amount of dirty data contained by both the mru and
4713 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4714 * is greater than or equal to arc_c_min.
4715 * (i.e. amount of dirty data >= arc_c_min)
4717 * This is the easy case; all clean data contained by the mru and mfu
4718 * lists is evictable. Evicting all clean data can only drop arc_size
4719 * to the amount of dirty data, which is greater than arc_c_min.
4721 * 2. The sum of the amount of dirty data contained by both the mru and
4722 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
4723 * is less than arc_c_min.
4724 * (i.e. arc_c_min > amount of dirty data)
4726 * 2.1. arc_size is greater than or equal arc_c_min.
4727 * (i.e. arc_size >= arc_c_min > amount of dirty data)
4729 * In this case, not all clean data from the regular mru and mfu
4730 * lists is actually evictable; we must leave enough clean data
4731 * to keep arc_size above arc_c_min. Thus, the maximum amount of
4732 * evictable data from the two lists combined, is exactly the
4733 * difference between arc_size and arc_c_min.
4735 * 2.2. arc_size is less than arc_c_min
4736 * (i.e. arc_c_min > arc_size > amount of dirty data)
4738 * In this case, none of the data contained in the mru and mfu
4739 * lists is evictable, even if it's clean. Since arc_size is
4740 * already below arc_c_min, evicting any more would only
4741 * increase this negative difference.
4744 #endif /* _KERNEL */
4747 * Adapt arc info given the number of bytes we are trying to add and
4748 * the state that we are coming from. This function is only called
4749 * when we are adding new content to the cache.
4752 arc_adapt(uint64_t bytes
)
4755 * Wake reap thread if we do not have any available memory
4757 if (arc_reclaim_needed()) {
4758 zthr_wakeup(arc_reap_zthr
);
4765 if (arc_c
>= arc_c_max
)
4769 * If we're within (2 * maxblocksize) bytes of the target
4770 * cache size, increment the target cache size
4772 if (aggsum_upper_bound(&arc_sums
.arcstat_size
) +
4773 2 * SPA_MAXBLOCKSIZE
>= arc_c
) {
4774 uint64_t dc
= MAX(bytes
, SPA_OLD_MAXBLOCKSIZE
);
4775 if (atomic_add_64_nv(&arc_c
, dc
) > arc_c_max
)
4781 * Check if ARC current size has grown past our upper thresholds.
4783 static arc_ovf_level_t
4784 arc_is_overflowing(boolean_t lax
, boolean_t use_reserve
)
4787 * We just compare the lower bound here for performance reasons. Our
4788 * primary goals are to make sure that the arc never grows without
4789 * bound, and that it can reach its maximum size. This check
4790 * accomplishes both goals. The maximum amount we could run over by is
4791 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
4792 * in the ARC. In practice, that's in the tens of MB, which is low
4793 * enough to be safe.
4795 int64_t over
= aggsum_lower_bound(&arc_sums
.arcstat_size
) - arc_c
-
4798 /* Always allow at least one block of overflow. */
4800 return (ARC_OVF_NONE
);
4802 /* If we are under memory pressure, report severe overflow. */
4804 return (ARC_OVF_SEVERE
);
4806 /* We are not under pressure, so be more or less relaxed. */
4807 int64_t overflow
= (arc_c
>> zfs_arc_overflow_shift
) / 2;
4810 return (over
< overflow
? ARC_OVF_SOME
: ARC_OVF_SEVERE
);
4814 arc_get_data_abd(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
,
4817 arc_buf_contents_t type
= arc_buf_type(hdr
);
4819 arc_get_data_impl(hdr
, size
, tag
, alloc_flags
);
4820 if (alloc_flags
& ARC_HDR_ALLOC_LINEAR
)
4821 return (abd_alloc_linear(size
, type
== ARC_BUFC_METADATA
));
4823 return (abd_alloc(size
, type
== ARC_BUFC_METADATA
));
4827 arc_get_data_buf(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
)
4829 arc_buf_contents_t type
= arc_buf_type(hdr
);
4831 arc_get_data_impl(hdr
, size
, tag
, 0);
4832 if (type
== ARC_BUFC_METADATA
) {
4833 return (zio_buf_alloc(size
));
4835 ASSERT(type
== ARC_BUFC_DATA
);
4836 return (zio_data_buf_alloc(size
));
4841 * Wait for the specified amount of data (in bytes) to be evicted from the
4842 * ARC, and for there to be sufficient free memory in the system.
4843 * The lax argument specifies that caller does not have a specific reason
4844 * to wait, not aware of any memory pressure. Low memory handlers though
4845 * should set it to B_FALSE to wait for all required evictions to complete.
4846 * The use_reserve argument allows some callers to wait less than others
4847 * to not block critical code paths, possibly blocking other resources.
4850 arc_wait_for_eviction(uint64_t amount
, boolean_t lax
, boolean_t use_reserve
)
4852 switch (arc_is_overflowing(lax
, use_reserve
)) {
4857 * This is a bit racy without taking arc_evict_lock, but the
4858 * worst that can happen is we either call zthr_wakeup() extra
4859 * time due to race with other thread here, or the set flag
4860 * get cleared by arc_evict_cb(), which is unlikely due to
4861 * big hysteresis, but also not important since at this level
4862 * of overflow the eviction is purely advisory. Same time
4863 * taking the global lock here every time without waiting for
4864 * the actual eviction creates a significant lock contention.
4866 if (!arc_evict_needed
) {
4867 arc_evict_needed
= B_TRUE
;
4868 zthr_wakeup(arc_evict_zthr
);
4871 case ARC_OVF_SEVERE
:
4874 arc_evict_waiter_t aw
;
4875 list_link_init(&aw
.aew_node
);
4876 cv_init(&aw
.aew_cv
, NULL
, CV_DEFAULT
, NULL
);
4878 uint64_t last_count
= 0;
4879 mutex_enter(&arc_evict_lock
);
4880 if (!list_is_empty(&arc_evict_waiters
)) {
4881 arc_evict_waiter_t
*last
=
4882 list_tail(&arc_evict_waiters
);
4883 last_count
= last
->aew_count
;
4884 } else if (!arc_evict_needed
) {
4885 arc_evict_needed
= B_TRUE
;
4886 zthr_wakeup(arc_evict_zthr
);
4889 * Note, the last waiter's count may be less than
4890 * arc_evict_count if we are low on memory in which
4891 * case arc_evict_state_impl() may have deferred
4892 * wakeups (but still incremented arc_evict_count).
4894 aw
.aew_count
= MAX(last_count
, arc_evict_count
) + amount
;
4896 list_insert_tail(&arc_evict_waiters
, &aw
);
4898 arc_set_need_free();
4900 DTRACE_PROBE3(arc__wait__for__eviction
,
4902 uint64_t, arc_evict_count
,
4903 uint64_t, aw
.aew_count
);
4906 * We will be woken up either when arc_evict_count reaches
4907 * aew_count, or when the ARC is no longer overflowing and
4908 * eviction completes.
4909 * In case of "false" wakeup, we will still be on the list.
4912 cv_wait(&aw
.aew_cv
, &arc_evict_lock
);
4913 } while (list_link_active(&aw
.aew_node
));
4914 mutex_exit(&arc_evict_lock
);
4916 cv_destroy(&aw
.aew_cv
);
4922 * Allocate a block and return it to the caller. If we are hitting the
4923 * hard limit for the cache size, we must sleep, waiting for the eviction
4924 * thread to catch up. If we're past the target size but below the hard
4925 * limit, we'll only signal the reclaim thread and continue on.
4928 arc_get_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
,
4934 * If arc_size is currently overflowing, we must be adding data
4935 * faster than we are evicting. To ensure we don't compound the
4936 * problem by adding more data and forcing arc_size to grow even
4937 * further past it's target size, we wait for the eviction thread to
4938 * make some progress. We also wait for there to be sufficient free
4939 * memory in the system, as measured by arc_free_memory().
4941 * Specifically, we wait for zfs_arc_eviction_pct percent of the
4942 * requested size to be evicted. This should be more than 100%, to
4943 * ensure that that progress is also made towards getting arc_size
4944 * under arc_c. See the comment above zfs_arc_eviction_pct.
4946 arc_wait_for_eviction(size
* zfs_arc_eviction_pct
/ 100,
4947 B_TRUE
, alloc_flags
& ARC_HDR_USE_RESERVE
);
4949 arc_buf_contents_t type
= arc_buf_type(hdr
);
4950 if (type
== ARC_BUFC_METADATA
) {
4951 arc_space_consume(size
, ARC_SPACE_META
);
4953 arc_space_consume(size
, ARC_SPACE_DATA
);
4957 * Update the state size. Note that ghost states have a
4958 * "ghost size" and so don't need to be updated.
4960 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
4961 if (!GHOST_STATE(state
)) {
4963 (void) zfs_refcount_add_many(&state
->arcs_size
[type
], size
,
4967 * If this is reached via arc_read, the link is
4968 * protected by the hash lock. If reached via
4969 * arc_buf_alloc, the header should not be accessed by
4970 * any other thread. And, if reached via arc_read_done,
4971 * the hash lock will protect it if it's found in the
4972 * hash table; otherwise no other thread should be
4973 * trying to [add|remove]_reference it.
4975 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
4976 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
4977 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
4984 arc_free_data_abd(arc_buf_hdr_t
*hdr
, abd_t
*abd
, uint64_t size
,
4987 arc_free_data_impl(hdr
, size
, tag
);
4992 arc_free_data_buf(arc_buf_hdr_t
*hdr
, void *buf
, uint64_t size
, const void *tag
)
4994 arc_buf_contents_t type
= arc_buf_type(hdr
);
4996 arc_free_data_impl(hdr
, size
, tag
);
4997 if (type
== ARC_BUFC_METADATA
) {
4998 zio_buf_free(buf
, size
);
5000 ASSERT(type
== ARC_BUFC_DATA
);
5001 zio_data_buf_free(buf
, size
);
5006 * Free the arc data buffer.
5009 arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
)
5011 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5012 arc_buf_contents_t type
= arc_buf_type(hdr
);
5014 /* protected by hash lock, if in the hash table */
5015 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
5016 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5017 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
5019 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
5022 (void) zfs_refcount_remove_many(&state
->arcs_size
[type
], size
, tag
);
5024 VERIFY3U(hdr
->b_type
, ==, type
);
5025 if (type
== ARC_BUFC_METADATA
) {
5026 arc_space_return(size
, ARC_SPACE_META
);
5028 ASSERT(type
== ARC_BUFC_DATA
);
5029 arc_space_return(size
, ARC_SPACE_DATA
);
5034 * This routine is called whenever a buffer is accessed.
5037 arc_access(arc_buf_hdr_t
*hdr
, arc_flags_t arc_flags
, boolean_t hit
)
5039 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
5040 ASSERT(HDR_HAS_L1HDR(hdr
));
5043 * Update buffer prefetch status.
5045 boolean_t was_prefetch
= HDR_PREFETCH(hdr
);
5046 boolean_t now_prefetch
= arc_flags
& ARC_FLAG_PREFETCH
;
5047 if (was_prefetch
!= now_prefetch
) {
5049 ARCSTAT_CONDSTAT(hit
, demand_hit
, demand_iohit
,
5050 HDR_PRESCIENT_PREFETCH(hdr
), prescient
, predictive
,
5053 if (HDR_HAS_L2HDR(hdr
))
5054 l2arc_hdr_arcstats_decrement_state(hdr
);
5056 arc_hdr_clear_flags(hdr
,
5057 ARC_FLAG_PREFETCH
| ARC_FLAG_PRESCIENT_PREFETCH
);
5059 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
5061 if (HDR_HAS_L2HDR(hdr
))
5062 l2arc_hdr_arcstats_increment_state(hdr
);
5065 if (arc_flags
& ARC_FLAG_PRESCIENT_PREFETCH
) {
5066 arc_hdr_set_flags(hdr
, ARC_FLAG_PRESCIENT_PREFETCH
);
5067 ARCSTAT_BUMP(arcstat_prescient_prefetch
);
5069 ARCSTAT_BUMP(arcstat_predictive_prefetch
);
5072 if (arc_flags
& ARC_FLAG_L2CACHE
)
5073 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
5075 clock_t now
= ddi_get_lbolt();
5076 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
5077 arc_state_t
*new_state
;
5079 * This buffer is not in the cache, and does not appear in
5080 * our "ghost" lists. Add it to the MRU or uncached state.
5082 ASSERT0(hdr
->b_l1hdr
.b_arc_access
);
5083 hdr
->b_l1hdr
.b_arc_access
= now
;
5084 if (HDR_UNCACHED(hdr
)) {
5085 new_state
= arc_uncached
;
5086 DTRACE_PROBE1(new_state__uncached
, arc_buf_hdr_t
*,
5089 new_state
= arc_mru
;
5090 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5092 arc_change_state(new_state
, hdr
);
5093 } else if (hdr
->b_l1hdr
.b_state
== arc_mru
) {
5095 * This buffer has been accessed once recently and either
5096 * its read is still in progress or it is in the cache.
5098 if (HDR_IO_IN_PROGRESS(hdr
)) {
5099 hdr
->b_l1hdr
.b_arc_access
= now
;
5102 hdr
->b_l1hdr
.b_mru_hits
++;
5103 ARCSTAT_BUMP(arcstat_mru_hits
);
5106 * If the previous access was a prefetch, then it already
5107 * handled possible promotion, so nothing more to do for now.
5110 hdr
->b_l1hdr
.b_arc_access
= now
;
5115 * If more than ARC_MINTIME have passed from the previous
5116 * hit, promote the buffer to the MFU state.
5118 if (ddi_time_after(now
, hdr
->b_l1hdr
.b_arc_access
+
5120 hdr
->b_l1hdr
.b_arc_access
= now
;
5121 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5122 arc_change_state(arc_mfu
, hdr
);
5124 } else if (hdr
->b_l1hdr
.b_state
== arc_mru_ghost
) {
5125 arc_state_t
*new_state
;
5127 * This buffer has been accessed once recently, but was
5128 * evicted from the cache. Would we have bigger MRU, it
5129 * would be an MRU hit, so handle it the same way, except
5130 * we don't need to check the previous access time.
5132 hdr
->b_l1hdr
.b_mru_ghost_hits
++;
5133 ARCSTAT_BUMP(arcstat_mru_ghost_hits
);
5134 hdr
->b_l1hdr
.b_arc_access
= now
;
5135 wmsum_add(&arc_mru_ghost
->arcs_hits
[arc_buf_type(hdr
)],
5138 new_state
= arc_mru
;
5139 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5141 new_state
= arc_mfu
;
5142 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5144 arc_change_state(new_state
, hdr
);
5145 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu
) {
5147 * This buffer has been accessed more than once and either
5148 * still in the cache or being restored from one of ghosts.
5150 if (!HDR_IO_IN_PROGRESS(hdr
)) {
5151 hdr
->b_l1hdr
.b_mfu_hits
++;
5152 ARCSTAT_BUMP(arcstat_mfu_hits
);
5154 hdr
->b_l1hdr
.b_arc_access
= now
;
5155 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu_ghost
) {
5157 * This buffer has been accessed more than once recently, but
5158 * has been evicted from the cache. Would we have bigger MFU
5159 * it would stay in cache, so move it back to MFU state.
5161 hdr
->b_l1hdr
.b_mfu_ghost_hits
++;
5162 ARCSTAT_BUMP(arcstat_mfu_ghost_hits
);
5163 hdr
->b_l1hdr
.b_arc_access
= now
;
5164 wmsum_add(&arc_mfu_ghost
->arcs_hits
[arc_buf_type(hdr
)],
5166 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5167 arc_change_state(arc_mfu
, hdr
);
5168 } else if (hdr
->b_l1hdr
.b_state
== arc_uncached
) {
5170 * This buffer is uncacheable, but we got a hit. Probably
5171 * a demand read after prefetch. Nothing more to do here.
5173 if (!HDR_IO_IN_PROGRESS(hdr
))
5174 ARCSTAT_BUMP(arcstat_uncached_hits
);
5175 hdr
->b_l1hdr
.b_arc_access
= now
;
5176 } else if (hdr
->b_l1hdr
.b_state
== arc_l2c_only
) {
5178 * This buffer is on the 2nd Level ARC and was not accessed
5179 * for a long time, so treat it as new and put into MRU.
5181 hdr
->b_l1hdr
.b_arc_access
= now
;
5182 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5183 arc_change_state(arc_mru
, hdr
);
5185 cmn_err(CE_PANIC
, "invalid arc state 0x%p",
5186 hdr
->b_l1hdr
.b_state
);
5191 * This routine is called by dbuf_hold() to update the arc_access() state
5192 * which otherwise would be skipped for entries in the dbuf cache.
5195 arc_buf_access(arc_buf_t
*buf
)
5197 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
5200 * Avoid taking the hash_lock when possible as an optimization.
5201 * The header must be checked again under the hash_lock in order
5202 * to handle the case where it is concurrently being released.
5204 if (hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY(hdr
))
5207 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
5208 mutex_enter(hash_lock
);
5210 if (hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY(hdr
)) {
5211 mutex_exit(hash_lock
);
5212 ARCSTAT_BUMP(arcstat_access_skip
);
5216 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
5217 hdr
->b_l1hdr
.b_state
== arc_mfu
||
5218 hdr
->b_l1hdr
.b_state
== arc_uncached
);
5220 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
5221 arc_access(hdr
, 0, B_TRUE
);
5222 mutex_exit(hash_lock
);
5224 ARCSTAT_BUMP(arcstat_hits
);
5225 ARCSTAT_CONDSTAT(B_TRUE
/* demand */, demand
, prefetch
,
5226 !HDR_ISTYPE_METADATA(hdr
), data
, metadata
, hits
);
5229 /* a generic arc_read_done_func_t which you can use */
5231 arc_bcopy_func(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
5232 arc_buf_t
*buf
, void *arg
)
5234 (void) zio
, (void) zb
, (void) bp
;
5239 memcpy(arg
, buf
->b_data
, arc_buf_size(buf
));
5240 arc_buf_destroy(buf
, arg
);
5243 /* a generic arc_read_done_func_t */
5245 arc_getbuf_func(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
5246 arc_buf_t
*buf
, void *arg
)
5248 (void) zb
, (void) bp
;
5249 arc_buf_t
**bufp
= arg
;
5252 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
5255 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
5257 ASSERT(buf
->b_data
!= NULL
);
5262 arc_hdr_verify(arc_buf_hdr_t
*hdr
, blkptr_t
*bp
)
5264 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
5265 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, 0);
5266 ASSERT3U(arc_hdr_get_compress(hdr
), ==, ZIO_COMPRESS_OFF
);
5268 if (HDR_COMPRESSION_ENABLED(hdr
)) {
5269 ASSERT3U(arc_hdr_get_compress(hdr
), ==,
5270 BP_GET_COMPRESS(bp
));
5272 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
5273 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, BP_GET_PSIZE(bp
));
5274 ASSERT3U(!!HDR_PROTECTED(hdr
), ==, BP_IS_PROTECTED(bp
));
5279 arc_read_done(zio_t
*zio
)
5281 blkptr_t
*bp
= zio
->io_bp
;
5282 arc_buf_hdr_t
*hdr
= zio
->io_private
;
5283 kmutex_t
*hash_lock
= NULL
;
5284 arc_callback_t
*callback_list
;
5285 arc_callback_t
*acb
;
5288 * The hdr was inserted into hash-table and removed from lists
5289 * prior to starting I/O. We should find this header, since
5290 * it's in the hash table, and it should be legit since it's
5291 * not possible to evict it during the I/O. The only possible
5292 * reason for it not to be found is if we were freed during the
5295 if (HDR_IN_HASH_TABLE(hdr
)) {
5296 arc_buf_hdr_t
*found
;
5298 ASSERT3U(hdr
->b_birth
, ==, BP_GET_BIRTH(zio
->io_bp
));
5299 ASSERT3U(hdr
->b_dva
.dva_word
[0], ==,
5300 BP_IDENTITY(zio
->io_bp
)->dva_word
[0]);
5301 ASSERT3U(hdr
->b_dva
.dva_word
[1], ==,
5302 BP_IDENTITY(zio
->io_bp
)->dva_word
[1]);
5304 found
= buf_hash_find(hdr
->b_spa
, zio
->io_bp
, &hash_lock
);
5306 ASSERT((found
== hdr
&&
5307 DVA_EQUAL(&hdr
->b_dva
, BP_IDENTITY(zio
->io_bp
))) ||
5308 (found
== hdr
&& HDR_L2_READING(hdr
)));
5309 ASSERT3P(hash_lock
, !=, NULL
);
5312 if (BP_IS_PROTECTED(bp
)) {
5313 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
5314 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
5315 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
5316 hdr
->b_crypt_hdr
.b_iv
);
5318 if (zio
->io_error
== 0) {
5319 if (BP_GET_TYPE(bp
) == DMU_OT_INTENT_LOG
) {
5322 tmpbuf
= abd_borrow_buf_copy(zio
->io_abd
,
5323 sizeof (zil_chain_t
));
5324 zio_crypt_decode_mac_zil(tmpbuf
,
5325 hdr
->b_crypt_hdr
.b_mac
);
5326 abd_return_buf(zio
->io_abd
, tmpbuf
,
5327 sizeof (zil_chain_t
));
5329 zio_crypt_decode_mac_bp(bp
,
5330 hdr
->b_crypt_hdr
.b_mac
);
5335 if (zio
->io_error
== 0) {
5336 /* byteswap if necessary */
5337 if (BP_SHOULD_BYTESWAP(zio
->io_bp
)) {
5338 if (BP_GET_LEVEL(zio
->io_bp
) > 0) {
5339 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
5341 hdr
->b_l1hdr
.b_byteswap
=
5342 DMU_OT_BYTESWAP(BP_GET_TYPE(zio
->io_bp
));
5345 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
5347 if (!HDR_L2_READING(hdr
)) {
5348 hdr
->b_complevel
= zio
->io_prop
.zp_complevel
;
5352 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_EVICTED
);
5353 if (l2arc_noprefetch
&& HDR_PREFETCH(hdr
))
5354 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2CACHE
);
5356 callback_list
= hdr
->b_l1hdr
.b_acb
;
5357 ASSERT3P(callback_list
, !=, NULL
);
5358 hdr
->b_l1hdr
.b_acb
= NULL
;
5361 * If a read request has a callback (i.e. acb_done is not NULL), then we
5362 * make a buf containing the data according to the parameters which were
5363 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5364 * aren't needlessly decompressing the data multiple times.
5366 int callback_cnt
= 0;
5367 for (acb
= callback_list
; acb
!= NULL
; acb
= acb
->acb_next
) {
5369 /* We need the last one to call below in original order. */
5370 callback_list
= acb
;
5372 if (!acb
->acb_done
|| acb
->acb_nobuf
)
5377 if (zio
->io_error
!= 0)
5380 int error
= arc_buf_alloc_impl(hdr
, zio
->io_spa
,
5381 &acb
->acb_zb
, acb
->acb_private
, acb
->acb_encrypted
,
5382 acb
->acb_compressed
, acb
->acb_noauth
, B_TRUE
,
5386 * Assert non-speculative zios didn't fail because an
5387 * encryption key wasn't loaded
5389 ASSERT((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) ||
5393 * If we failed to decrypt, report an error now (as the zio
5394 * layer would have done if it had done the transforms).
5396 if (error
== ECKSUM
) {
5397 ASSERT(BP_IS_PROTECTED(bp
));
5398 error
= SET_ERROR(EIO
);
5399 if ((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
5400 spa_log_error(zio
->io_spa
, &acb
->acb_zb
,
5401 BP_GET_LOGICAL_BIRTH(zio
->io_bp
));
5402 (void) zfs_ereport_post(
5403 FM_EREPORT_ZFS_AUTHENTICATION
,
5404 zio
->io_spa
, NULL
, &acb
->acb_zb
, zio
, 0);
5410 * Decompression or decryption failed. Set
5411 * io_error so that when we call acb_done
5412 * (below), we will indicate that the read
5413 * failed. Note that in the unusual case
5414 * where one callback is compressed and another
5415 * uncompressed, we will mark all of them
5416 * as failed, even though the uncompressed
5417 * one can't actually fail. In this case,
5418 * the hdr will not be anonymous, because
5419 * if there are multiple callbacks, it's
5420 * because multiple threads found the same
5421 * arc buf in the hash table.
5423 zio
->io_error
= error
;
5428 * If there are multiple callbacks, we must have the hash lock,
5429 * because the only way for multiple threads to find this hdr is
5430 * in the hash table. This ensures that if there are multiple
5431 * callbacks, the hdr is not anonymous. If it were anonymous,
5432 * we couldn't use arc_buf_destroy() in the error case below.
5434 ASSERT(callback_cnt
< 2 || hash_lock
!= NULL
);
5436 if (zio
->io_error
== 0) {
5437 arc_hdr_verify(hdr
, zio
->io_bp
);
5439 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
5440 if (hdr
->b_l1hdr
.b_state
!= arc_anon
)
5441 arc_change_state(arc_anon
, hdr
);
5442 if (HDR_IN_HASH_TABLE(hdr
))
5443 buf_hash_remove(hdr
);
5446 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
5447 (void) remove_reference(hdr
, hdr
);
5449 if (hash_lock
!= NULL
)
5450 mutex_exit(hash_lock
);
5452 /* execute each callback and free its structure */
5453 while ((acb
= callback_list
) != NULL
) {
5454 if (acb
->acb_done
!= NULL
) {
5455 if (zio
->io_error
!= 0 && acb
->acb_buf
!= NULL
) {
5457 * If arc_buf_alloc_impl() fails during
5458 * decompression, the buf will still be
5459 * allocated, and needs to be freed here.
5461 arc_buf_destroy(acb
->acb_buf
,
5463 acb
->acb_buf
= NULL
;
5465 acb
->acb_done(zio
, &zio
->io_bookmark
, zio
->io_bp
,
5466 acb
->acb_buf
, acb
->acb_private
);
5469 if (acb
->acb_zio_dummy
!= NULL
) {
5470 acb
->acb_zio_dummy
->io_error
= zio
->io_error
;
5471 zio_nowait(acb
->acb_zio_dummy
);
5474 callback_list
= acb
->acb_prev
;
5475 if (acb
->acb_wait
) {
5476 mutex_enter(&acb
->acb_wait_lock
);
5477 acb
->acb_wait_error
= zio
->io_error
;
5478 acb
->acb_wait
= B_FALSE
;
5479 cv_signal(&acb
->acb_wait_cv
);
5480 mutex_exit(&acb
->acb_wait_lock
);
5481 /* acb will be freed by the waiting thread. */
5483 kmem_free(acb
, sizeof (arc_callback_t
));
5489 * Lookup the block at the specified DVA (in bp), and return the manner in
5490 * which the block is cached. A zero return indicates not cached.
5493 arc_cached(spa_t
*spa
, const blkptr_t
*bp
)
5495 arc_buf_hdr_t
*hdr
= NULL
;
5496 kmutex_t
*hash_lock
= NULL
;
5497 uint64_t guid
= spa_load_guid(spa
);
5500 if (BP_IS_EMBEDDED(bp
))
5501 return (ARC_CACHED_EMBEDDED
);
5503 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
5507 if (HDR_HAS_L1HDR(hdr
)) {
5508 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5510 * We switch to ensure that any future arc_state_type_t
5511 * changes are handled. This is just a shift to promote
5512 * more compile-time checking.
5514 switch (state
->arcs_state
) {
5515 case ARC_STATE_ANON
:
5518 flags
|= ARC_CACHED_IN_MRU
| ARC_CACHED_IN_L1
;
5521 flags
|= ARC_CACHED_IN_MFU
| ARC_CACHED_IN_L1
;
5523 case ARC_STATE_UNCACHED
:
5524 /* The header is still in L1, probably not for long */
5525 flags
|= ARC_CACHED_IN_L1
;
5531 if (HDR_HAS_L2HDR(hdr
))
5532 flags
|= ARC_CACHED_IN_L2
;
5534 mutex_exit(hash_lock
);
5540 * "Read" the block at the specified DVA (in bp) via the
5541 * cache. If the block is found in the cache, invoke the provided
5542 * callback immediately and return. Note that the `zio' parameter
5543 * in the callback will be NULL in this case, since no IO was
5544 * required. If the block is not in the cache pass the read request
5545 * on to the spa with a substitute callback function, so that the
5546 * requested block will be added to the cache.
5548 * If a read request arrives for a block that has a read in-progress,
5549 * either wait for the in-progress read to complete (and return the
5550 * results); or, if this is a read with a "done" func, add a record
5551 * to the read to invoke the "done" func when the read completes,
5552 * and return; or just return.
5554 * arc_read_done() will invoke all the requested "done" functions
5555 * for readers of this block.
5558 arc_read(zio_t
*pio
, spa_t
*spa
, const blkptr_t
*bp
,
5559 arc_read_done_func_t
*done
, void *private, zio_priority_t priority
,
5560 int zio_flags
, arc_flags_t
*arc_flags
, const zbookmark_phys_t
*zb
)
5562 arc_buf_hdr_t
*hdr
= NULL
;
5563 kmutex_t
*hash_lock
= NULL
;
5565 uint64_t guid
= spa_load_guid(spa
);
5566 boolean_t compressed_read
= (zio_flags
& ZIO_FLAG_RAW_COMPRESS
) != 0;
5567 boolean_t encrypted_read
= BP_IS_ENCRYPTED(bp
) &&
5568 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5569 boolean_t noauth_read
= BP_IS_AUTHENTICATED(bp
) &&
5570 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5571 boolean_t embedded_bp
= !!BP_IS_EMBEDDED(bp
);
5572 boolean_t no_buf
= *arc_flags
& ARC_FLAG_NO_BUF
;
5573 arc_buf_t
*buf
= NULL
;
5576 ASSERT(!embedded_bp
||
5577 BPE_GET_ETYPE(bp
) == BP_EMBEDDED_TYPE_DATA
);
5578 ASSERT(!BP_IS_HOLE(bp
));
5579 ASSERT(!BP_IS_REDACTED(bp
));
5582 * Normally SPL_FSTRANS will already be set since kernel threads which
5583 * expect to call the DMU interfaces will set it when created. System
5584 * calls are similarly handled by setting/cleaning the bit in the
5585 * registered callback (module/os/.../zfs/zpl_*).
5587 * External consumers such as Lustre which call the exported DMU
5588 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5589 * on the hash_lock always set and clear the bit.
5591 fstrans_cookie_t cookie
= spl_fstrans_mark();
5595 * Embedded BP's have no DVA and require no I/O to "read".
5596 * Create an anonymous arc buf to back it.
5598 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
5602 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5603 * we maintain encrypted data separately from compressed / uncompressed
5604 * data. If the user is requesting raw encrypted data and we don't have
5605 * that in the header we will read from disk to guarantee that we can
5606 * get it even if the encryption keys aren't loaded.
5608 if (hdr
!= NULL
&& HDR_HAS_L1HDR(hdr
) && (HDR_HAS_RABD(hdr
) ||
5609 (hdr
->b_l1hdr
.b_pabd
!= NULL
&& !encrypted_read
))) {
5610 boolean_t is_data
= !HDR_ISTYPE_METADATA(hdr
);
5613 * Verify the block pointer contents are reasonable. This
5614 * should always be the case since the blkptr is protected by
5617 if (!zfs_blkptr_verify(spa
, bp
, BLK_CONFIG_SKIP
,
5619 mutex_exit(hash_lock
);
5620 rc
= SET_ERROR(ECKSUM
);
5624 if (HDR_IO_IN_PROGRESS(hdr
)) {
5625 if (*arc_flags
& ARC_FLAG_CACHED_ONLY
) {
5626 mutex_exit(hash_lock
);
5627 ARCSTAT_BUMP(arcstat_cached_only_in_progress
);
5628 rc
= SET_ERROR(ENOENT
);
5632 zio_t
*head_zio
= hdr
->b_l1hdr
.b_acb
->acb_zio_head
;
5633 ASSERT3P(head_zio
, !=, NULL
);
5634 if ((hdr
->b_flags
& ARC_FLAG_PRIO_ASYNC_READ
) &&
5635 priority
== ZIO_PRIORITY_SYNC_READ
) {
5637 * This is a sync read that needs to wait for
5638 * an in-flight async read. Request that the
5639 * zio have its priority upgraded.
5641 zio_change_priority(head_zio
, priority
);
5642 DTRACE_PROBE1(arc__async__upgrade__sync
,
5643 arc_buf_hdr_t
*, hdr
);
5644 ARCSTAT_BUMP(arcstat_async_upgrade_sync
);
5647 DTRACE_PROBE1(arc__iohit
, arc_buf_hdr_t
*, hdr
);
5648 arc_access(hdr
, *arc_flags
, B_FALSE
);
5651 * If there are multiple threads reading the same block
5652 * and that block is not yet in the ARC, then only one
5653 * thread will do the physical I/O and all other
5654 * threads will wait until that I/O completes.
5655 * Synchronous reads use the acb_wait_cv whereas nowait
5656 * reads register a callback. Both are signalled/called
5659 * Errors of the physical I/O may need to be propagated.
5660 * Synchronous read errors are returned here from
5661 * arc_read_done via acb_wait_error. Nowait reads
5662 * attach the acb_zio_dummy zio to pio and
5663 * arc_read_done propagates the physical I/O's io_error
5664 * to acb_zio_dummy, and thereby to pio.
5666 arc_callback_t
*acb
= NULL
;
5667 if (done
|| pio
|| *arc_flags
& ARC_FLAG_WAIT
) {
5668 acb
= kmem_zalloc(sizeof (arc_callback_t
),
5670 acb
->acb_done
= done
;
5671 acb
->acb_private
= private;
5672 acb
->acb_compressed
= compressed_read
;
5673 acb
->acb_encrypted
= encrypted_read
;
5674 acb
->acb_noauth
= noauth_read
;
5675 acb
->acb_nobuf
= no_buf
;
5676 if (*arc_flags
& ARC_FLAG_WAIT
) {
5677 acb
->acb_wait
= B_TRUE
;
5678 mutex_init(&acb
->acb_wait_lock
, NULL
,
5679 MUTEX_DEFAULT
, NULL
);
5680 cv_init(&acb
->acb_wait_cv
, NULL
,
5685 acb
->acb_zio_dummy
= zio_null(pio
,
5686 spa
, NULL
, NULL
, NULL
, zio_flags
);
5688 acb
->acb_zio_head
= head_zio
;
5689 acb
->acb_next
= hdr
->b_l1hdr
.b_acb
;
5690 hdr
->b_l1hdr
.b_acb
->acb_prev
= acb
;
5691 hdr
->b_l1hdr
.b_acb
= acb
;
5693 mutex_exit(hash_lock
);
5695 ARCSTAT_BUMP(arcstat_iohits
);
5696 ARCSTAT_CONDSTAT(!(*arc_flags
& ARC_FLAG_PREFETCH
),
5697 demand
, prefetch
, is_data
, data
, metadata
, iohits
);
5699 if (*arc_flags
& ARC_FLAG_WAIT
) {
5700 mutex_enter(&acb
->acb_wait_lock
);
5701 while (acb
->acb_wait
) {
5702 cv_wait(&acb
->acb_wait_cv
,
5703 &acb
->acb_wait_lock
);
5705 rc
= acb
->acb_wait_error
;
5706 mutex_exit(&acb
->acb_wait_lock
);
5707 mutex_destroy(&acb
->acb_wait_lock
);
5708 cv_destroy(&acb
->acb_wait_cv
);
5709 kmem_free(acb
, sizeof (arc_callback_t
));
5714 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
5715 hdr
->b_l1hdr
.b_state
== arc_mfu
||
5716 hdr
->b_l1hdr
.b_state
== arc_uncached
);
5718 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
5719 arc_access(hdr
, *arc_flags
, B_TRUE
);
5721 if (done
&& !no_buf
) {
5722 ASSERT(!embedded_bp
|| !BP_IS_HOLE(bp
));
5724 /* Get a buf with the desired data in it. */
5725 rc
= arc_buf_alloc_impl(hdr
, spa
, zb
, private,
5726 encrypted_read
, compressed_read
, noauth_read
,
5730 * Convert authentication and decryption errors
5731 * to EIO (and generate an ereport if needed)
5732 * before leaving the ARC.
5734 rc
= SET_ERROR(EIO
);
5735 if ((zio_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
5736 spa_log_error(spa
, zb
, hdr
->b_birth
);
5737 (void) zfs_ereport_post(
5738 FM_EREPORT_ZFS_AUTHENTICATION
,
5739 spa
, NULL
, zb
, NULL
, 0);
5743 arc_buf_destroy_impl(buf
);
5745 (void) remove_reference(hdr
, private);
5748 /* assert any errors weren't due to unloaded keys */
5749 ASSERT((zio_flags
& ZIO_FLAG_SPECULATIVE
) ||
5752 mutex_exit(hash_lock
);
5753 ARCSTAT_BUMP(arcstat_hits
);
5754 ARCSTAT_CONDSTAT(!(*arc_flags
& ARC_FLAG_PREFETCH
),
5755 demand
, prefetch
, is_data
, data
, metadata
, hits
);
5756 *arc_flags
|= ARC_FLAG_CACHED
;
5759 uint64_t lsize
= BP_GET_LSIZE(bp
);
5760 uint64_t psize
= BP_GET_PSIZE(bp
);
5761 arc_callback_t
*acb
;
5764 boolean_t devw
= B_FALSE
;
5767 int alloc_flags
= encrypted_read
? ARC_HDR_ALLOC_RDATA
: 0;
5768 arc_buf_contents_t type
= BP_GET_BUFC_TYPE(bp
);
5770 if (*arc_flags
& ARC_FLAG_CACHED_ONLY
) {
5771 if (hash_lock
!= NULL
)
5772 mutex_exit(hash_lock
);
5773 rc
= SET_ERROR(ENOENT
);
5778 * Verify the block pointer contents are reasonable. This
5779 * should always be the case since the blkptr is protected by
5782 if (!zfs_blkptr_verify(spa
, bp
,
5783 (zio_flags
& ZIO_FLAG_CONFIG_WRITER
) ?
5784 BLK_CONFIG_HELD
: BLK_CONFIG_NEEDED
, BLK_VERIFY_LOG
)) {
5785 if (hash_lock
!= NULL
)
5786 mutex_exit(hash_lock
);
5787 rc
= SET_ERROR(ECKSUM
);
5793 * This block is not in the cache or it has
5796 arc_buf_hdr_t
*exists
= NULL
;
5797 hdr
= arc_hdr_alloc(guid
, psize
, lsize
,
5798 BP_IS_PROTECTED(bp
), BP_GET_COMPRESS(bp
), 0, type
);
5801 hdr
->b_dva
= *BP_IDENTITY(bp
);
5802 hdr
->b_birth
= BP_GET_BIRTH(bp
);
5803 exists
= buf_hash_insert(hdr
, &hash_lock
);
5805 if (exists
!= NULL
) {
5806 /* somebody beat us to the hash insert */
5807 mutex_exit(hash_lock
);
5808 buf_discard_identity(hdr
);
5809 arc_hdr_destroy(hdr
);
5810 goto top
; /* restart the IO request */
5814 * This block is in the ghost cache or encrypted data
5815 * was requested and we didn't have it. If it was
5816 * L2-only (and thus didn't have an L1 hdr),
5817 * we realloc the header to add an L1 hdr.
5819 if (!HDR_HAS_L1HDR(hdr
)) {
5820 hdr
= arc_hdr_realloc(hdr
, hdr_l2only_cache
,
5824 if (GHOST_STATE(hdr
->b_l1hdr
.b_state
)) {
5825 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
5826 ASSERT(!HDR_HAS_RABD(hdr
));
5827 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
5828 ASSERT0(zfs_refcount_count(
5829 &hdr
->b_l1hdr
.b_refcnt
));
5830 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
5832 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
5834 } else if (HDR_IO_IN_PROGRESS(hdr
)) {
5836 * If this header already had an IO in progress
5837 * and we are performing another IO to fetch
5838 * encrypted data we must wait until the first
5839 * IO completes so as not to confuse
5840 * arc_read_done(). This should be very rare
5841 * and so the performance impact shouldn't
5844 arc_callback_t
*acb
= kmem_zalloc(
5845 sizeof (arc_callback_t
), KM_SLEEP
);
5846 acb
->acb_wait
= B_TRUE
;
5847 mutex_init(&acb
->acb_wait_lock
, NULL
,
5848 MUTEX_DEFAULT
, NULL
);
5849 cv_init(&acb
->acb_wait_cv
, NULL
, CV_DEFAULT
,
5852 hdr
->b_l1hdr
.b_acb
->acb_zio_head
;
5853 acb
->acb_next
= hdr
->b_l1hdr
.b_acb
;
5854 hdr
->b_l1hdr
.b_acb
->acb_prev
= acb
;
5855 hdr
->b_l1hdr
.b_acb
= acb
;
5856 mutex_exit(hash_lock
);
5857 mutex_enter(&acb
->acb_wait_lock
);
5858 while (acb
->acb_wait
) {
5859 cv_wait(&acb
->acb_wait_cv
,
5860 &acb
->acb_wait_lock
);
5862 mutex_exit(&acb
->acb_wait_lock
);
5863 mutex_destroy(&acb
->acb_wait_lock
);
5864 cv_destroy(&acb
->acb_wait_cv
);
5865 kmem_free(acb
, sizeof (arc_callback_t
));
5869 if (*arc_flags
& ARC_FLAG_UNCACHED
) {
5870 arc_hdr_set_flags(hdr
, ARC_FLAG_UNCACHED
);
5871 if (!encrypted_read
)
5872 alloc_flags
|= ARC_HDR_ALLOC_LINEAR
;
5876 * Take additional reference for IO_IN_PROGRESS. It stops
5877 * arc_access() from putting this header without any buffers
5878 * and so other references but obviously nonevictable onto
5879 * the evictable list of MRU or MFU state.
5881 add_reference(hdr
, hdr
);
5883 arc_access(hdr
, *arc_flags
, B_FALSE
);
5884 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
5885 arc_hdr_alloc_abd(hdr
, alloc_flags
);
5886 if (encrypted_read
) {
5887 ASSERT(HDR_HAS_RABD(hdr
));
5888 size
= HDR_GET_PSIZE(hdr
);
5889 hdr_abd
= hdr
->b_crypt_hdr
.b_rabd
;
5890 zio_flags
|= ZIO_FLAG_RAW
;
5892 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
5893 size
= arc_hdr_size(hdr
);
5894 hdr_abd
= hdr
->b_l1hdr
.b_pabd
;
5896 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
5897 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
5901 * For authenticated bp's, we do not ask the ZIO layer
5902 * to authenticate them since this will cause the entire
5903 * IO to fail if the key isn't loaded. Instead, we
5904 * defer authentication until arc_buf_fill(), which will
5905 * verify the data when the key is available.
5907 if (BP_IS_AUTHENTICATED(bp
))
5908 zio_flags
|= ZIO_FLAG_RAW_ENCRYPT
;
5911 if (BP_IS_AUTHENTICATED(bp
))
5912 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
5913 if (BP_GET_LEVEL(bp
) > 0)
5914 arc_hdr_set_flags(hdr
, ARC_FLAG_INDIRECT
);
5915 ASSERT(!GHOST_STATE(hdr
->b_l1hdr
.b_state
));
5917 acb
= kmem_zalloc(sizeof (arc_callback_t
), KM_SLEEP
);
5918 acb
->acb_done
= done
;
5919 acb
->acb_private
= private;
5920 acb
->acb_compressed
= compressed_read
;
5921 acb
->acb_encrypted
= encrypted_read
;
5922 acb
->acb_noauth
= noauth_read
;
5925 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
5926 hdr
->b_l1hdr
.b_acb
= acb
;
5928 if (HDR_HAS_L2HDR(hdr
) &&
5929 (vd
= hdr
->b_l2hdr
.b_dev
->l2ad_vdev
) != NULL
) {
5930 devw
= hdr
->b_l2hdr
.b_dev
->l2ad_writing
;
5931 addr
= hdr
->b_l2hdr
.b_daddr
;
5933 * Lock out L2ARC device removal.
5935 if (vdev_is_dead(vd
) ||
5936 !spa_config_tryenter(spa
, SCL_L2ARC
, vd
, RW_READER
))
5941 * We count both async reads and scrub IOs as asynchronous so
5942 * that both can be upgraded in the event of a cache hit while
5943 * the read IO is still in-flight.
5945 if (priority
== ZIO_PRIORITY_ASYNC_READ
||
5946 priority
== ZIO_PRIORITY_SCRUB
)
5947 arc_hdr_set_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
5949 arc_hdr_clear_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
5952 * At this point, we have a level 1 cache miss or a blkptr
5953 * with embedded data. Try again in L2ARC if possible.
5955 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, lsize
);
5958 * Skip ARC stat bump for block pointers with embedded
5959 * data. The data are read from the blkptr itself via
5960 * decode_embedded_bp_compressed().
5963 DTRACE_PROBE4(arc__miss
, arc_buf_hdr_t
*, hdr
,
5964 blkptr_t
*, bp
, uint64_t, lsize
,
5965 zbookmark_phys_t
*, zb
);
5966 ARCSTAT_BUMP(arcstat_misses
);
5967 ARCSTAT_CONDSTAT(!(*arc_flags
& ARC_FLAG_PREFETCH
),
5968 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
), data
,
5970 zfs_racct_read(spa
, size
, 1, 0);
5973 /* Check if the spa even has l2 configured */
5974 const boolean_t spa_has_l2
= l2arc_ndev
!= 0 &&
5975 spa
->spa_l2cache
.sav_count
> 0;
5977 if (vd
!= NULL
&& spa_has_l2
&& !(l2arc_norw
&& devw
)) {
5979 * Read from the L2ARC if the following are true:
5980 * 1. The L2ARC vdev was previously cached.
5981 * 2. This buffer still has L2ARC metadata.
5982 * 3. This buffer isn't currently writing to the L2ARC.
5983 * 4. The L2ARC entry wasn't evicted, which may
5984 * also have invalidated the vdev.
5986 if (HDR_HAS_L2HDR(hdr
) &&
5987 !HDR_L2_WRITING(hdr
) && !HDR_L2_EVICTED(hdr
)) {
5988 l2arc_read_callback_t
*cb
;
5992 DTRACE_PROBE1(l2arc__hit
, arc_buf_hdr_t
*, hdr
);
5993 ARCSTAT_BUMP(arcstat_l2_hits
);
5994 hdr
->b_l2hdr
.b_hits
++;
5996 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
),
5998 cb
->l2rcb_hdr
= hdr
;
6001 cb
->l2rcb_flags
= zio_flags
;
6004 * When Compressed ARC is disabled, but the
6005 * L2ARC block is compressed, arc_hdr_size()
6006 * will have returned LSIZE rather than PSIZE.
6008 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
6009 !HDR_COMPRESSION_ENABLED(hdr
) &&
6010 HDR_GET_PSIZE(hdr
) != 0) {
6011 size
= HDR_GET_PSIZE(hdr
);
6014 asize
= vdev_psize_to_asize(vd
, size
);
6015 if (asize
!= size
) {
6016 abd
= abd_alloc_for_io(asize
,
6017 HDR_ISTYPE_METADATA(hdr
));
6018 cb
->l2rcb_abd
= abd
;
6023 ASSERT(addr
>= VDEV_LABEL_START_SIZE
&&
6024 addr
+ asize
<= vd
->vdev_psize
-
6025 VDEV_LABEL_END_SIZE
);
6028 * l2arc read. The SCL_L2ARC lock will be
6029 * released by l2arc_read_done().
6030 * Issue a null zio if the underlying buffer
6031 * was squashed to zero size by compression.
6033 ASSERT3U(arc_hdr_get_compress(hdr
), !=,
6034 ZIO_COMPRESS_EMPTY
);
6035 rzio
= zio_read_phys(pio
, vd
, addr
,
6038 l2arc_read_done
, cb
, priority
,
6039 zio_flags
| ZIO_FLAG_CANFAIL
|
6040 ZIO_FLAG_DONT_PROPAGATE
|
6041 ZIO_FLAG_DONT_RETRY
, B_FALSE
);
6042 acb
->acb_zio_head
= rzio
;
6044 if (hash_lock
!= NULL
)
6045 mutex_exit(hash_lock
);
6047 DTRACE_PROBE2(l2arc__read
, vdev_t
*, vd
,
6049 ARCSTAT_INCR(arcstat_l2_read_bytes
,
6050 HDR_GET_PSIZE(hdr
));
6052 if (*arc_flags
& ARC_FLAG_NOWAIT
) {
6057 ASSERT(*arc_flags
& ARC_FLAG_WAIT
);
6058 if (zio_wait(rzio
) == 0)
6061 /* l2arc read error; goto zio_read() */
6062 if (hash_lock
!= NULL
)
6063 mutex_enter(hash_lock
);
6065 DTRACE_PROBE1(l2arc__miss
,
6066 arc_buf_hdr_t
*, hdr
);
6067 ARCSTAT_BUMP(arcstat_l2_misses
);
6068 if (HDR_L2_WRITING(hdr
))
6069 ARCSTAT_BUMP(arcstat_l2_rw_clash
);
6070 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6074 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6077 * Only a spa with l2 should contribute to l2
6078 * miss stats. (Including the case of having a
6079 * faulted cache device - that's also a miss.)
6083 * Skip ARC stat bump for block pointers with
6084 * embedded data. The data are read from the
6086 * decode_embedded_bp_compressed().
6089 DTRACE_PROBE1(l2arc__miss
,
6090 arc_buf_hdr_t
*, hdr
);
6091 ARCSTAT_BUMP(arcstat_l2_misses
);
6096 rzio
= zio_read(pio
, spa
, bp
, hdr_abd
, size
,
6097 arc_read_done
, hdr
, priority
, zio_flags
, zb
);
6098 acb
->acb_zio_head
= rzio
;
6100 if (hash_lock
!= NULL
)
6101 mutex_exit(hash_lock
);
6103 if (*arc_flags
& ARC_FLAG_WAIT
) {
6104 rc
= zio_wait(rzio
);
6108 ASSERT(*arc_flags
& ARC_FLAG_NOWAIT
);
6113 /* embedded bps don't actually go to disk */
6115 spa_read_history_add(spa
, zb
, *arc_flags
);
6116 spl_fstrans_unmark(cookie
);
6121 done(NULL
, zb
, bp
, buf
, private);
6122 if (pio
&& rc
!= 0) {
6123 zio_t
*zio
= zio_null(pio
, spa
, NULL
, NULL
, NULL
, zio_flags
);
6131 arc_add_prune_callback(arc_prune_func_t
*func
, void *private)
6135 p
= kmem_alloc(sizeof (*p
), KM_SLEEP
);
6137 p
->p_private
= private;
6138 list_link_init(&p
->p_node
);
6139 zfs_refcount_create(&p
->p_refcnt
);
6141 mutex_enter(&arc_prune_mtx
);
6142 zfs_refcount_add(&p
->p_refcnt
, &arc_prune_list
);
6143 list_insert_head(&arc_prune_list
, p
);
6144 mutex_exit(&arc_prune_mtx
);
6150 arc_remove_prune_callback(arc_prune_t
*p
)
6152 boolean_t wait
= B_FALSE
;
6153 mutex_enter(&arc_prune_mtx
);
6154 list_remove(&arc_prune_list
, p
);
6155 if (zfs_refcount_remove(&p
->p_refcnt
, &arc_prune_list
) > 0)
6157 mutex_exit(&arc_prune_mtx
);
6159 /* wait for arc_prune_task to finish */
6161 taskq_wait_outstanding(arc_prune_taskq
, 0);
6162 ASSERT0(zfs_refcount_count(&p
->p_refcnt
));
6163 zfs_refcount_destroy(&p
->p_refcnt
);
6164 kmem_free(p
, sizeof (*p
));
6168 * Helper function for arc_prune_async() it is responsible for safely
6169 * handling the execution of a registered arc_prune_func_t.
6172 arc_prune_task(void *ptr
)
6174 arc_prune_t
*ap
= (arc_prune_t
*)ptr
;
6175 arc_prune_func_t
*func
= ap
->p_pfunc
;
6178 func(ap
->p_adjust
, ap
->p_private
);
6180 (void) zfs_refcount_remove(&ap
->p_refcnt
, func
);
6184 * Notify registered consumers they must drop holds on a portion of the ARC
6185 * buffers they reference. This provides a mechanism to ensure the ARC can
6186 * honor the metadata limit and reclaim otherwise pinned ARC buffers.
6188 * This operation is performed asynchronously so it may be safely called
6189 * in the context of the arc_reclaim_thread(). A reference is taken here
6190 * for each registered arc_prune_t and the arc_prune_task() is responsible
6191 * for releasing it once the registered arc_prune_func_t has completed.
6194 arc_prune_async(uint64_t adjust
)
6198 mutex_enter(&arc_prune_mtx
);
6199 for (ap
= list_head(&arc_prune_list
); ap
!= NULL
;
6200 ap
= list_next(&arc_prune_list
, ap
)) {
6202 if (zfs_refcount_count(&ap
->p_refcnt
) >= 2)
6205 zfs_refcount_add(&ap
->p_refcnt
, ap
->p_pfunc
);
6206 ap
->p_adjust
= adjust
;
6207 if (taskq_dispatch(arc_prune_taskq
, arc_prune_task
,
6208 ap
, TQ_SLEEP
) == TASKQID_INVALID
) {
6209 (void) zfs_refcount_remove(&ap
->p_refcnt
, ap
->p_pfunc
);
6212 ARCSTAT_BUMP(arcstat_prune
);
6214 mutex_exit(&arc_prune_mtx
);
6218 * Notify the arc that a block was freed, and thus will never be used again.
6221 arc_freed(spa_t
*spa
, const blkptr_t
*bp
)
6224 kmutex_t
*hash_lock
;
6225 uint64_t guid
= spa_load_guid(spa
);
6227 ASSERT(!BP_IS_EMBEDDED(bp
));
6229 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
6234 * We might be trying to free a block that is still doing I/O
6235 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6236 * dmu_sync-ed block). A block may also have a reference if it is
6237 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6238 * have written the new block to its final resting place on disk but
6239 * without the dedup flag set. This would have left the hdr in the MRU
6240 * state and discoverable. When the txg finally syncs it detects that
6241 * the block was overridden in open context and issues an override I/O.
6242 * Since this is a dedup block, the override I/O will determine if the
6243 * block is already in the DDT. If so, then it will replace the io_bp
6244 * with the bp from the DDT and allow the I/O to finish. When the I/O
6245 * reaches the done callback, dbuf_write_override_done, it will
6246 * check to see if the io_bp and io_bp_override are identical.
6247 * If they are not, then it indicates that the bp was replaced with
6248 * the bp in the DDT and the override bp is freed. This allows
6249 * us to arrive here with a reference on a block that is being
6250 * freed. So if we have an I/O in progress, or a reference to
6251 * this hdr, then we don't destroy the hdr.
6253 if (!HDR_HAS_L1HDR(hdr
) ||
6254 zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6255 arc_change_state(arc_anon
, hdr
);
6256 arc_hdr_destroy(hdr
);
6257 mutex_exit(hash_lock
);
6259 mutex_exit(hash_lock
);
6265 * Release this buffer from the cache, making it an anonymous buffer. This
6266 * must be done after a read and prior to modifying the buffer contents.
6267 * If the buffer has more than one reference, we must make
6268 * a new hdr for the buffer.
6271 arc_release(arc_buf_t
*buf
, const void *tag
)
6273 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6276 * It would be nice to assert that if its DMU metadata (level >
6277 * 0 || it's the dnode file), then it must be syncing context.
6278 * But we don't know that information at this level.
6281 ASSERT(HDR_HAS_L1HDR(hdr
));
6284 * We don't grab the hash lock prior to this check, because if
6285 * the buffer's header is in the arc_anon state, it won't be
6286 * linked into the hash table.
6288 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
6289 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6290 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
6291 ASSERT(!HDR_HAS_L2HDR(hdr
));
6293 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, buf
);
6294 ASSERT(ARC_BUF_LAST(buf
));
6295 ASSERT3S(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
), ==, 1);
6296 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6298 hdr
->b_l1hdr
.b_arc_access
= 0;
6301 * If the buf is being overridden then it may already
6302 * have a hdr that is not empty.
6304 buf_discard_identity(hdr
);
6310 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
6311 mutex_enter(hash_lock
);
6314 * This assignment is only valid as long as the hash_lock is
6315 * held, we must be careful not to reference state or the
6316 * b_state field after dropping the lock.
6318 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
6319 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
6320 ASSERT3P(state
, !=, arc_anon
);
6322 /* this buffer is not on any list */
6323 ASSERT3S(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
), >, 0);
6325 if (HDR_HAS_L2HDR(hdr
)) {
6326 mutex_enter(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6329 * We have to recheck this conditional again now that
6330 * we're holding the l2ad_mtx to prevent a race with
6331 * another thread which might be concurrently calling
6332 * l2arc_evict(). In that case, l2arc_evict() might have
6333 * destroyed the header's L2 portion as we were waiting
6334 * to acquire the l2ad_mtx.
6336 if (HDR_HAS_L2HDR(hdr
))
6337 arc_hdr_l2hdr_destroy(hdr
);
6339 mutex_exit(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6343 * Do we have more than one buf?
6345 if (hdr
->b_l1hdr
.b_buf
!= buf
|| !ARC_BUF_LAST(buf
)) {
6346 arc_buf_hdr_t
*nhdr
;
6347 uint64_t spa
= hdr
->b_spa
;
6348 uint64_t psize
= HDR_GET_PSIZE(hdr
);
6349 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
6350 boolean_t
protected = HDR_PROTECTED(hdr
);
6351 enum zio_compress compress
= arc_hdr_get_compress(hdr
);
6352 arc_buf_contents_t type
= arc_buf_type(hdr
);
6353 VERIFY3U(hdr
->b_type
, ==, type
);
6355 ASSERT(hdr
->b_l1hdr
.b_buf
!= buf
|| buf
->b_next
!= NULL
);
6356 VERIFY3S(remove_reference(hdr
, tag
), >, 0);
6358 if (ARC_BUF_SHARED(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
6359 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6360 ASSERT(ARC_BUF_LAST(buf
));
6364 * Pull the data off of this hdr and attach it to
6365 * a new anonymous hdr. Also find the last buffer
6366 * in the hdr's buffer list.
6368 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
6369 ASSERT3P(lastbuf
, !=, NULL
);
6372 * If the current arc_buf_t and the hdr are sharing their data
6373 * buffer, then we must stop sharing that block.
6375 if (ARC_BUF_SHARED(buf
)) {
6376 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6377 ASSERT(!arc_buf_is_shared(lastbuf
));
6380 * First, sever the block sharing relationship between
6381 * buf and the arc_buf_hdr_t.
6383 arc_unshare_buf(hdr
, buf
);
6386 * Now we need to recreate the hdr's b_pabd. Since we
6387 * have lastbuf handy, we try to share with it, but if
6388 * we can't then we allocate a new b_pabd and copy the
6389 * data from buf into it.
6391 if (arc_can_share(hdr
, lastbuf
)) {
6392 arc_share_buf(hdr
, lastbuf
);
6394 arc_hdr_alloc_abd(hdr
, 0);
6395 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
,
6396 buf
->b_data
, psize
);
6398 VERIFY3P(lastbuf
->b_data
, !=, NULL
);
6399 } else if (HDR_SHARED_DATA(hdr
)) {
6401 * Uncompressed shared buffers are always at the end
6402 * of the list. Compressed buffers don't have the
6403 * same requirements. This makes it hard to
6404 * simply assert that the lastbuf is shared so
6405 * we rely on the hdr's compression flags to determine
6406 * if we have a compressed, shared buffer.
6408 ASSERT(arc_buf_is_shared(lastbuf
) ||
6409 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
6410 ASSERT(!arc_buf_is_shared(buf
));
6413 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
6414 ASSERT3P(state
, !=, arc_l2c_only
);
6416 (void) zfs_refcount_remove_many(&state
->arcs_size
[type
],
6417 arc_buf_size(buf
), buf
);
6419 if (zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6420 ASSERT3P(state
, !=, arc_l2c_only
);
6421 (void) zfs_refcount_remove_many(
6422 &state
->arcs_esize
[type
],
6423 arc_buf_size(buf
), buf
);
6426 arc_cksum_verify(buf
);
6427 arc_buf_unwatch(buf
);
6429 /* if this is the last uncompressed buf free the checksum */
6430 if (!arc_hdr_has_uncompressed_buf(hdr
))
6431 arc_cksum_free(hdr
);
6433 mutex_exit(hash_lock
);
6435 nhdr
= arc_hdr_alloc(spa
, psize
, lsize
, protected,
6436 compress
, hdr
->b_complevel
, type
);
6437 ASSERT3P(nhdr
->b_l1hdr
.b_buf
, ==, NULL
);
6438 ASSERT0(zfs_refcount_count(&nhdr
->b_l1hdr
.b_refcnt
));
6439 VERIFY3U(nhdr
->b_type
, ==, type
);
6440 ASSERT(!HDR_SHARED_DATA(nhdr
));
6442 nhdr
->b_l1hdr
.b_buf
= buf
;
6443 (void) zfs_refcount_add(&nhdr
->b_l1hdr
.b_refcnt
, tag
);
6446 (void) zfs_refcount_add_many(&arc_anon
->arcs_size
[type
],
6447 arc_buf_size(buf
), buf
);
6449 ASSERT(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
) == 1);
6450 /* protected by hash lock, or hdr is on arc_anon */
6451 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6452 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6453 hdr
->b_l1hdr
.b_mru_hits
= 0;
6454 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
6455 hdr
->b_l1hdr
.b_mfu_hits
= 0;
6456 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
6457 arc_change_state(arc_anon
, hdr
);
6458 hdr
->b_l1hdr
.b_arc_access
= 0;
6460 mutex_exit(hash_lock
);
6461 buf_discard_identity(hdr
);
6467 arc_released(arc_buf_t
*buf
)
6469 return (buf
->b_data
!= NULL
&&
6470 buf
->b_hdr
->b_l1hdr
.b_state
== arc_anon
);
6475 arc_referenced(arc_buf_t
*buf
)
6477 return (zfs_refcount_count(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6482 arc_write_ready(zio_t
*zio
)
6484 arc_write_callback_t
*callback
= zio
->io_private
;
6485 arc_buf_t
*buf
= callback
->awcb_buf
;
6486 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6487 blkptr_t
*bp
= zio
->io_bp
;
6488 uint64_t psize
= BP_IS_HOLE(bp
) ? 0 : BP_GET_PSIZE(bp
);
6489 fstrans_cookie_t cookie
= spl_fstrans_mark();
6491 ASSERT(HDR_HAS_L1HDR(hdr
));
6492 ASSERT(!zfs_refcount_is_zero(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6493 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, NULL
);
6496 * If we're reexecuting this zio because the pool suspended, then
6497 * cleanup any state that was previously set the first time the
6498 * callback was invoked.
6500 if (zio
->io_flags
& ZIO_FLAG_REEXECUTED
) {
6501 arc_cksum_free(hdr
);
6502 arc_buf_unwatch(buf
);
6503 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
6504 if (ARC_BUF_SHARED(buf
)) {
6505 arc_unshare_buf(hdr
, buf
);
6507 ASSERT(!arc_buf_is_shared(buf
));
6508 arc_hdr_free_abd(hdr
, B_FALSE
);
6512 if (HDR_HAS_RABD(hdr
))
6513 arc_hdr_free_abd(hdr
, B_TRUE
);
6515 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6516 ASSERT(!HDR_HAS_RABD(hdr
));
6517 ASSERT(!HDR_SHARED_DATA(hdr
));
6518 ASSERT(!arc_buf_is_shared(buf
));
6520 callback
->awcb_ready(zio
, buf
, callback
->awcb_private
);
6522 if (HDR_IO_IN_PROGRESS(hdr
)) {
6523 ASSERT(zio
->io_flags
& ZIO_FLAG_REEXECUTED
);
6525 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6526 add_reference(hdr
, hdr
); /* For IO_IN_PROGRESS. */
6529 if (BP_IS_PROTECTED(bp
)) {
6530 /* ZIL blocks are written through zio_rewrite */
6531 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
6533 if (BP_SHOULD_BYTESWAP(bp
)) {
6534 if (BP_GET_LEVEL(bp
) > 0) {
6535 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
6537 hdr
->b_l1hdr
.b_byteswap
=
6538 DMU_OT_BYTESWAP(BP_GET_TYPE(bp
));
6541 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
6544 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
6545 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
6546 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
6547 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
6548 hdr
->b_crypt_hdr
.b_iv
);
6549 zio_crypt_decode_mac_bp(bp
, hdr
->b_crypt_hdr
.b_mac
);
6551 arc_hdr_clear_flags(hdr
, ARC_FLAG_PROTECTED
);
6555 * If this block was written for raw encryption but the zio layer
6556 * ended up only authenticating it, adjust the buffer flags now.
6558 if (BP_IS_AUTHENTICATED(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6559 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
6560 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6561 if (BP_GET_COMPRESS(bp
) == ZIO_COMPRESS_OFF
)
6562 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6563 } else if (BP_IS_HOLE(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6564 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6565 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6568 /* this must be done after the buffer flags are adjusted */
6569 arc_cksum_compute(buf
);
6571 enum zio_compress compress
;
6572 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
6573 compress
= ZIO_COMPRESS_OFF
;
6575 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
6576 compress
= BP_GET_COMPRESS(bp
);
6578 HDR_SET_PSIZE(hdr
, psize
);
6579 arc_hdr_set_compress(hdr
, compress
);
6580 hdr
->b_complevel
= zio
->io_prop
.zp_complevel
;
6582 if (zio
->io_error
!= 0 || psize
== 0)
6586 * Fill the hdr with data. If the buffer is encrypted we have no choice
6587 * but to copy the data into b_radb. If the hdr is compressed, the data
6588 * we want is available from the zio, otherwise we can take it from
6591 * We might be able to share the buf's data with the hdr here. However,
6592 * doing so would cause the ARC to be full of linear ABDs if we write a
6593 * lot of shareable data. As a compromise, we check whether scattered
6594 * ABDs are allowed, and assume that if they are then the user wants
6595 * the ARC to be primarily filled with them regardless of the data being
6596 * written. Therefore, if they're allowed then we allocate one and copy
6597 * the data into it; otherwise, we share the data directly if we can.
6599 if (ARC_BUF_ENCRYPTED(buf
)) {
6600 ASSERT3U(psize
, >, 0);
6601 ASSERT(ARC_BUF_COMPRESSED(buf
));
6602 arc_hdr_alloc_abd(hdr
, ARC_HDR_ALLOC_RDATA
|
6603 ARC_HDR_USE_RESERVE
);
6604 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6605 } else if (!(HDR_UNCACHED(hdr
) ||
6606 abd_size_alloc_linear(arc_buf_size(buf
))) ||
6607 !arc_can_share(hdr
, buf
)) {
6609 * Ideally, we would always copy the io_abd into b_pabd, but the
6610 * user may have disabled compressed ARC, thus we must check the
6611 * hdr's compression setting rather than the io_bp's.
6613 if (BP_IS_ENCRYPTED(bp
)) {
6614 ASSERT3U(psize
, >, 0);
6615 arc_hdr_alloc_abd(hdr
, ARC_HDR_ALLOC_RDATA
|
6616 ARC_HDR_USE_RESERVE
);
6617 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6618 } else if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
6619 !ARC_BUF_COMPRESSED(buf
)) {
6620 ASSERT3U(psize
, >, 0);
6621 arc_hdr_alloc_abd(hdr
, ARC_HDR_USE_RESERVE
);
6622 abd_copy(hdr
->b_l1hdr
.b_pabd
, zio
->io_abd
, psize
);
6624 ASSERT3U(zio
->io_orig_size
, ==, arc_hdr_size(hdr
));
6625 arc_hdr_alloc_abd(hdr
, ARC_HDR_USE_RESERVE
);
6626 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
6630 ASSERT3P(buf
->b_data
, ==, abd_to_buf(zio
->io_orig_abd
));
6631 ASSERT3U(zio
->io_orig_size
, ==, arc_buf_size(buf
));
6632 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, buf
);
6633 ASSERT(ARC_BUF_LAST(buf
));
6635 arc_share_buf(hdr
, buf
);
6639 arc_hdr_verify(hdr
, bp
);
6640 spl_fstrans_unmark(cookie
);
6644 arc_write_children_ready(zio_t
*zio
)
6646 arc_write_callback_t
*callback
= zio
->io_private
;
6647 arc_buf_t
*buf
= callback
->awcb_buf
;
6649 callback
->awcb_children_ready(zio
, buf
, callback
->awcb_private
);
6653 arc_write_done(zio_t
*zio
)
6655 arc_write_callback_t
*callback
= zio
->io_private
;
6656 arc_buf_t
*buf
= callback
->awcb_buf
;
6657 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6659 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6661 if (zio
->io_error
== 0) {
6662 arc_hdr_verify(hdr
, zio
->io_bp
);
6664 if (BP_IS_HOLE(zio
->io_bp
) || BP_IS_EMBEDDED(zio
->io_bp
)) {
6665 buf_discard_identity(hdr
);
6667 hdr
->b_dva
= *BP_IDENTITY(zio
->io_bp
);
6668 hdr
->b_birth
= BP_GET_BIRTH(zio
->io_bp
);
6671 ASSERT(HDR_EMPTY(hdr
));
6675 * If the block to be written was all-zero or compressed enough to be
6676 * embedded in the BP, no write was performed so there will be no
6677 * dva/birth/checksum. The buffer must therefore remain anonymous
6680 if (!HDR_EMPTY(hdr
)) {
6681 arc_buf_hdr_t
*exists
;
6682 kmutex_t
*hash_lock
;
6684 ASSERT3U(zio
->io_error
, ==, 0);
6686 arc_cksum_verify(buf
);
6688 exists
= buf_hash_insert(hdr
, &hash_lock
);
6689 if (exists
!= NULL
) {
6691 * This can only happen if we overwrite for
6692 * sync-to-convergence, because we remove
6693 * buffers from the hash table when we arc_free().
6695 if (zio
->io_flags
& ZIO_FLAG_IO_REWRITE
) {
6696 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
6697 panic("bad overwrite, hdr=%p exists=%p",
6698 (void *)hdr
, (void *)exists
);
6699 ASSERT(zfs_refcount_is_zero(
6700 &exists
->b_l1hdr
.b_refcnt
));
6701 arc_change_state(arc_anon
, exists
);
6702 arc_hdr_destroy(exists
);
6703 mutex_exit(hash_lock
);
6704 exists
= buf_hash_insert(hdr
, &hash_lock
);
6705 ASSERT3P(exists
, ==, NULL
);
6706 } else if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
) {
6708 ASSERT(zio
->io_prop
.zp_nopwrite
);
6709 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
6710 panic("bad nopwrite, hdr=%p exists=%p",
6711 (void *)hdr
, (void *)exists
);
6714 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, NULL
);
6715 ASSERT(ARC_BUF_LAST(hdr
->b_l1hdr
.b_buf
));
6716 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
);
6717 ASSERT(BP_GET_DEDUP(zio
->io_bp
));
6718 ASSERT(BP_GET_LEVEL(zio
->io_bp
) == 0);
6721 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6722 VERIFY3S(remove_reference(hdr
, hdr
), >, 0);
6723 /* if it's not anon, we are doing a scrub */
6724 if (exists
== NULL
&& hdr
->b_l1hdr
.b_state
== arc_anon
)
6725 arc_access(hdr
, 0, B_FALSE
);
6726 mutex_exit(hash_lock
);
6728 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6729 VERIFY3S(remove_reference(hdr
, hdr
), >, 0);
6732 callback
->awcb_done(zio
, buf
, callback
->awcb_private
);
6734 abd_free(zio
->io_abd
);
6735 kmem_free(callback
, sizeof (arc_write_callback_t
));
6739 arc_write(zio_t
*pio
, spa_t
*spa
, uint64_t txg
,
6740 blkptr_t
*bp
, arc_buf_t
*buf
, boolean_t uncached
, boolean_t l2arc
,
6741 const zio_prop_t
*zp
, arc_write_done_func_t
*ready
,
6742 arc_write_done_func_t
*children_ready
, arc_write_done_func_t
*done
,
6743 void *private, zio_priority_t priority
, int zio_flags
,
6744 const zbookmark_phys_t
*zb
)
6746 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6747 arc_write_callback_t
*callback
;
6749 zio_prop_t localprop
= *zp
;
6751 ASSERT3P(ready
, !=, NULL
);
6752 ASSERT3P(done
, !=, NULL
);
6753 ASSERT(!HDR_IO_ERROR(hdr
));
6754 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6755 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6756 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, NULL
);
6758 arc_hdr_set_flags(hdr
, ARC_FLAG_UNCACHED
);
6760 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
6762 if (ARC_BUF_ENCRYPTED(buf
)) {
6763 ASSERT(ARC_BUF_COMPRESSED(buf
));
6764 localprop
.zp_encrypt
= B_TRUE
;
6765 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
6766 localprop
.zp_complevel
= hdr
->b_complevel
;
6767 localprop
.zp_byteorder
=
6768 (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
6769 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
6770 memcpy(localprop
.zp_salt
, hdr
->b_crypt_hdr
.b_salt
,
6772 memcpy(localprop
.zp_iv
, hdr
->b_crypt_hdr
.b_iv
,
6774 memcpy(localprop
.zp_mac
, hdr
->b_crypt_hdr
.b_mac
,
6776 if (DMU_OT_IS_ENCRYPTED(localprop
.zp_type
)) {
6777 localprop
.zp_nopwrite
= B_FALSE
;
6778 localprop
.zp_copies
=
6779 MIN(localprop
.zp_copies
, SPA_DVAS_PER_BP
- 1);
6781 zio_flags
|= ZIO_FLAG_RAW
;
6782 } else if (ARC_BUF_COMPRESSED(buf
)) {
6783 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, arc_buf_size(buf
));
6784 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
6785 localprop
.zp_complevel
= hdr
->b_complevel
;
6786 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
6788 callback
= kmem_zalloc(sizeof (arc_write_callback_t
), KM_SLEEP
);
6789 callback
->awcb_ready
= ready
;
6790 callback
->awcb_children_ready
= children_ready
;
6791 callback
->awcb_done
= done
;
6792 callback
->awcb_private
= private;
6793 callback
->awcb_buf
= buf
;
6796 * The hdr's b_pabd is now stale, free it now. A new data block
6797 * will be allocated when the zio pipeline calls arc_write_ready().
6799 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
6801 * If the buf is currently sharing the data block with
6802 * the hdr then we need to break that relationship here.
6803 * The hdr will remain with a NULL data pointer and the
6804 * buf will take sole ownership of the block.
6806 if (ARC_BUF_SHARED(buf
)) {
6807 arc_unshare_buf(hdr
, buf
);
6809 ASSERT(!arc_buf_is_shared(buf
));
6810 arc_hdr_free_abd(hdr
, B_FALSE
);
6812 VERIFY3P(buf
->b_data
, !=, NULL
);
6815 if (HDR_HAS_RABD(hdr
))
6816 arc_hdr_free_abd(hdr
, B_TRUE
);
6818 if (!(zio_flags
& ZIO_FLAG_RAW
))
6819 arc_hdr_set_compress(hdr
, ZIO_COMPRESS_OFF
);
6821 ASSERT(!arc_buf_is_shared(buf
));
6822 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6824 zio
= zio_write(pio
, spa
, txg
, bp
,
6825 abd_get_from_buf(buf
->b_data
, HDR_GET_LSIZE(hdr
)),
6826 HDR_GET_LSIZE(hdr
), arc_buf_size(buf
), &localprop
, arc_write_ready
,
6827 (children_ready
!= NULL
) ? arc_write_children_ready
: NULL
,
6828 arc_write_done
, callback
, priority
, zio_flags
, zb
);
6834 arc_tempreserve_clear(uint64_t reserve
)
6836 atomic_add_64(&arc_tempreserve
, -reserve
);
6837 ASSERT((int64_t)arc_tempreserve
>= 0);
6841 arc_tempreserve_space(spa_t
*spa
, uint64_t reserve
, uint64_t txg
)
6847 reserve
> arc_c
/4 &&
6848 reserve
* 4 > (2ULL << SPA_MAXBLOCKSHIFT
))
6849 arc_c
= MIN(arc_c_max
, reserve
* 4);
6852 * Throttle when the calculated memory footprint for the TXG
6853 * exceeds the target ARC size.
6855 if (reserve
> arc_c
) {
6856 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve
);
6857 return (SET_ERROR(ERESTART
));
6861 * Don't count loaned bufs as in flight dirty data to prevent long
6862 * network delays from blocking transactions that are ready to be
6863 * assigned to a txg.
6866 /* assert that it has not wrapped around */
6867 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
6869 anon_size
= MAX((int64_t)
6870 (zfs_refcount_count(&arc_anon
->arcs_size
[ARC_BUFC_DATA
]) +
6871 zfs_refcount_count(&arc_anon
->arcs_size
[ARC_BUFC_METADATA
]) -
6872 arc_loaned_bytes
), 0);
6875 * Writes will, almost always, require additional memory allocations
6876 * in order to compress/encrypt/etc the data. We therefore need to
6877 * make sure that there is sufficient available memory for this.
6879 error
= arc_memory_throttle(spa
, reserve
, txg
);
6884 * Throttle writes when the amount of dirty data in the cache
6885 * gets too large. We try to keep the cache less than half full
6886 * of dirty blocks so that our sync times don't grow too large.
6888 * In the case of one pool being built on another pool, we want
6889 * to make sure we don't end up throttling the lower (backing)
6890 * pool when the upper pool is the majority contributor to dirty
6891 * data. To insure we make forward progress during throttling, we
6892 * also check the current pool's net dirty data and only throttle
6893 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
6894 * data in the cache.
6896 * Note: if two requests come in concurrently, we might let them
6897 * both succeed, when one of them should fail. Not a huge deal.
6899 uint64_t total_dirty
= reserve
+ arc_tempreserve
+ anon_size
;
6900 uint64_t spa_dirty_anon
= spa_dirty_data(spa
);
6901 uint64_t rarc_c
= arc_warm
? arc_c
: arc_c_max
;
6902 if (total_dirty
> rarc_c
* zfs_arc_dirty_limit_percent
/ 100 &&
6903 anon_size
> rarc_c
* zfs_arc_anon_limit_percent
/ 100 &&
6904 spa_dirty_anon
> anon_size
* zfs_arc_pool_dirty_percent
/ 100) {
6906 uint64_t meta_esize
= zfs_refcount_count(
6907 &arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
6908 uint64_t data_esize
=
6909 zfs_refcount_count(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
6910 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
6911 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
6912 (u_longlong_t
)arc_tempreserve
>> 10,
6913 (u_longlong_t
)meta_esize
>> 10,
6914 (u_longlong_t
)data_esize
>> 10,
6915 (u_longlong_t
)reserve
>> 10,
6916 (u_longlong_t
)rarc_c
>> 10);
6918 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle
);
6919 return (SET_ERROR(ERESTART
));
6921 atomic_add_64(&arc_tempreserve
, reserve
);
6926 arc_kstat_update_state(arc_state_t
*state
, kstat_named_t
*size
,
6927 kstat_named_t
*data
, kstat_named_t
*metadata
,
6928 kstat_named_t
*evict_data
, kstat_named_t
*evict_metadata
)
6931 zfs_refcount_count(&state
->arcs_size
[ARC_BUFC_DATA
]);
6932 metadata
->value
.ui64
=
6933 zfs_refcount_count(&state
->arcs_size
[ARC_BUFC_METADATA
]);
6934 size
->value
.ui64
= data
->value
.ui64
+ metadata
->value
.ui64
;
6935 evict_data
->value
.ui64
=
6936 zfs_refcount_count(&state
->arcs_esize
[ARC_BUFC_DATA
]);
6937 evict_metadata
->value
.ui64
=
6938 zfs_refcount_count(&state
->arcs_esize
[ARC_BUFC_METADATA
]);
6942 arc_kstat_update(kstat_t
*ksp
, int rw
)
6944 arc_stats_t
*as
= ksp
->ks_data
;
6946 if (rw
== KSTAT_WRITE
)
6947 return (SET_ERROR(EACCES
));
6949 as
->arcstat_hits
.value
.ui64
=
6950 wmsum_value(&arc_sums
.arcstat_hits
);
6951 as
->arcstat_iohits
.value
.ui64
=
6952 wmsum_value(&arc_sums
.arcstat_iohits
);
6953 as
->arcstat_misses
.value
.ui64
=
6954 wmsum_value(&arc_sums
.arcstat_misses
);
6955 as
->arcstat_demand_data_hits
.value
.ui64
=
6956 wmsum_value(&arc_sums
.arcstat_demand_data_hits
);
6957 as
->arcstat_demand_data_iohits
.value
.ui64
=
6958 wmsum_value(&arc_sums
.arcstat_demand_data_iohits
);
6959 as
->arcstat_demand_data_misses
.value
.ui64
=
6960 wmsum_value(&arc_sums
.arcstat_demand_data_misses
);
6961 as
->arcstat_demand_metadata_hits
.value
.ui64
=
6962 wmsum_value(&arc_sums
.arcstat_demand_metadata_hits
);
6963 as
->arcstat_demand_metadata_iohits
.value
.ui64
=
6964 wmsum_value(&arc_sums
.arcstat_demand_metadata_iohits
);
6965 as
->arcstat_demand_metadata_misses
.value
.ui64
=
6966 wmsum_value(&arc_sums
.arcstat_demand_metadata_misses
);
6967 as
->arcstat_prefetch_data_hits
.value
.ui64
=
6968 wmsum_value(&arc_sums
.arcstat_prefetch_data_hits
);
6969 as
->arcstat_prefetch_data_iohits
.value
.ui64
=
6970 wmsum_value(&arc_sums
.arcstat_prefetch_data_iohits
);
6971 as
->arcstat_prefetch_data_misses
.value
.ui64
=
6972 wmsum_value(&arc_sums
.arcstat_prefetch_data_misses
);
6973 as
->arcstat_prefetch_metadata_hits
.value
.ui64
=
6974 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_hits
);
6975 as
->arcstat_prefetch_metadata_iohits
.value
.ui64
=
6976 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_iohits
);
6977 as
->arcstat_prefetch_metadata_misses
.value
.ui64
=
6978 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_misses
);
6979 as
->arcstat_mru_hits
.value
.ui64
=
6980 wmsum_value(&arc_sums
.arcstat_mru_hits
);
6981 as
->arcstat_mru_ghost_hits
.value
.ui64
=
6982 wmsum_value(&arc_sums
.arcstat_mru_ghost_hits
);
6983 as
->arcstat_mfu_hits
.value
.ui64
=
6984 wmsum_value(&arc_sums
.arcstat_mfu_hits
);
6985 as
->arcstat_mfu_ghost_hits
.value
.ui64
=
6986 wmsum_value(&arc_sums
.arcstat_mfu_ghost_hits
);
6987 as
->arcstat_uncached_hits
.value
.ui64
=
6988 wmsum_value(&arc_sums
.arcstat_uncached_hits
);
6989 as
->arcstat_deleted
.value
.ui64
=
6990 wmsum_value(&arc_sums
.arcstat_deleted
);
6991 as
->arcstat_mutex_miss
.value
.ui64
=
6992 wmsum_value(&arc_sums
.arcstat_mutex_miss
);
6993 as
->arcstat_access_skip
.value
.ui64
=
6994 wmsum_value(&arc_sums
.arcstat_access_skip
);
6995 as
->arcstat_evict_skip
.value
.ui64
=
6996 wmsum_value(&arc_sums
.arcstat_evict_skip
);
6997 as
->arcstat_evict_not_enough
.value
.ui64
=
6998 wmsum_value(&arc_sums
.arcstat_evict_not_enough
);
6999 as
->arcstat_evict_l2_cached
.value
.ui64
=
7000 wmsum_value(&arc_sums
.arcstat_evict_l2_cached
);
7001 as
->arcstat_evict_l2_eligible
.value
.ui64
=
7002 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible
);
7003 as
->arcstat_evict_l2_eligible_mfu
.value
.ui64
=
7004 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible_mfu
);
7005 as
->arcstat_evict_l2_eligible_mru
.value
.ui64
=
7006 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible_mru
);
7007 as
->arcstat_evict_l2_ineligible
.value
.ui64
=
7008 wmsum_value(&arc_sums
.arcstat_evict_l2_ineligible
);
7009 as
->arcstat_evict_l2_skip
.value
.ui64
=
7010 wmsum_value(&arc_sums
.arcstat_evict_l2_skip
);
7011 as
->arcstat_hash_collisions
.value
.ui64
=
7012 wmsum_value(&arc_sums
.arcstat_hash_collisions
);
7013 as
->arcstat_hash_chains
.value
.ui64
=
7014 wmsum_value(&arc_sums
.arcstat_hash_chains
);
7015 as
->arcstat_size
.value
.ui64
=
7016 aggsum_value(&arc_sums
.arcstat_size
);
7017 as
->arcstat_compressed_size
.value
.ui64
=
7018 wmsum_value(&arc_sums
.arcstat_compressed_size
);
7019 as
->arcstat_uncompressed_size
.value
.ui64
=
7020 wmsum_value(&arc_sums
.arcstat_uncompressed_size
);
7021 as
->arcstat_overhead_size
.value
.ui64
=
7022 wmsum_value(&arc_sums
.arcstat_overhead_size
);
7023 as
->arcstat_hdr_size
.value
.ui64
=
7024 wmsum_value(&arc_sums
.arcstat_hdr_size
);
7025 as
->arcstat_data_size
.value
.ui64
=
7026 wmsum_value(&arc_sums
.arcstat_data_size
);
7027 as
->arcstat_metadata_size
.value
.ui64
=
7028 wmsum_value(&arc_sums
.arcstat_metadata_size
);
7029 as
->arcstat_dbuf_size
.value
.ui64
=
7030 wmsum_value(&arc_sums
.arcstat_dbuf_size
);
7031 #if defined(COMPAT_FREEBSD11)
7032 as
->arcstat_other_size
.value
.ui64
=
7033 wmsum_value(&arc_sums
.arcstat_bonus_size
) +
7034 wmsum_value(&arc_sums
.arcstat_dnode_size
) +
7035 wmsum_value(&arc_sums
.arcstat_dbuf_size
);
7038 arc_kstat_update_state(arc_anon
,
7039 &as
->arcstat_anon_size
,
7040 &as
->arcstat_anon_data
,
7041 &as
->arcstat_anon_metadata
,
7042 &as
->arcstat_anon_evictable_data
,
7043 &as
->arcstat_anon_evictable_metadata
);
7044 arc_kstat_update_state(arc_mru
,
7045 &as
->arcstat_mru_size
,
7046 &as
->arcstat_mru_data
,
7047 &as
->arcstat_mru_metadata
,
7048 &as
->arcstat_mru_evictable_data
,
7049 &as
->arcstat_mru_evictable_metadata
);
7050 arc_kstat_update_state(arc_mru_ghost
,
7051 &as
->arcstat_mru_ghost_size
,
7052 &as
->arcstat_mru_ghost_data
,
7053 &as
->arcstat_mru_ghost_metadata
,
7054 &as
->arcstat_mru_ghost_evictable_data
,
7055 &as
->arcstat_mru_ghost_evictable_metadata
);
7056 arc_kstat_update_state(arc_mfu
,
7057 &as
->arcstat_mfu_size
,
7058 &as
->arcstat_mfu_data
,
7059 &as
->arcstat_mfu_metadata
,
7060 &as
->arcstat_mfu_evictable_data
,
7061 &as
->arcstat_mfu_evictable_metadata
);
7062 arc_kstat_update_state(arc_mfu_ghost
,
7063 &as
->arcstat_mfu_ghost_size
,
7064 &as
->arcstat_mfu_ghost_data
,
7065 &as
->arcstat_mfu_ghost_metadata
,
7066 &as
->arcstat_mfu_ghost_evictable_data
,
7067 &as
->arcstat_mfu_ghost_evictable_metadata
);
7068 arc_kstat_update_state(arc_uncached
,
7069 &as
->arcstat_uncached_size
,
7070 &as
->arcstat_uncached_data
,
7071 &as
->arcstat_uncached_metadata
,
7072 &as
->arcstat_uncached_evictable_data
,
7073 &as
->arcstat_uncached_evictable_metadata
);
7075 as
->arcstat_dnode_size
.value
.ui64
=
7076 wmsum_value(&arc_sums
.arcstat_dnode_size
);
7077 as
->arcstat_bonus_size
.value
.ui64
=
7078 wmsum_value(&arc_sums
.arcstat_bonus_size
);
7079 as
->arcstat_l2_hits
.value
.ui64
=
7080 wmsum_value(&arc_sums
.arcstat_l2_hits
);
7081 as
->arcstat_l2_misses
.value
.ui64
=
7082 wmsum_value(&arc_sums
.arcstat_l2_misses
);
7083 as
->arcstat_l2_prefetch_asize
.value
.ui64
=
7084 wmsum_value(&arc_sums
.arcstat_l2_prefetch_asize
);
7085 as
->arcstat_l2_mru_asize
.value
.ui64
=
7086 wmsum_value(&arc_sums
.arcstat_l2_mru_asize
);
7087 as
->arcstat_l2_mfu_asize
.value
.ui64
=
7088 wmsum_value(&arc_sums
.arcstat_l2_mfu_asize
);
7089 as
->arcstat_l2_bufc_data_asize
.value
.ui64
=
7090 wmsum_value(&arc_sums
.arcstat_l2_bufc_data_asize
);
7091 as
->arcstat_l2_bufc_metadata_asize
.value
.ui64
=
7092 wmsum_value(&arc_sums
.arcstat_l2_bufc_metadata_asize
);
7093 as
->arcstat_l2_feeds
.value
.ui64
=
7094 wmsum_value(&arc_sums
.arcstat_l2_feeds
);
7095 as
->arcstat_l2_rw_clash
.value
.ui64
=
7096 wmsum_value(&arc_sums
.arcstat_l2_rw_clash
);
7097 as
->arcstat_l2_read_bytes
.value
.ui64
=
7098 wmsum_value(&arc_sums
.arcstat_l2_read_bytes
);
7099 as
->arcstat_l2_write_bytes
.value
.ui64
=
7100 wmsum_value(&arc_sums
.arcstat_l2_write_bytes
);
7101 as
->arcstat_l2_writes_sent
.value
.ui64
=
7102 wmsum_value(&arc_sums
.arcstat_l2_writes_sent
);
7103 as
->arcstat_l2_writes_done
.value
.ui64
=
7104 wmsum_value(&arc_sums
.arcstat_l2_writes_done
);
7105 as
->arcstat_l2_writes_error
.value
.ui64
=
7106 wmsum_value(&arc_sums
.arcstat_l2_writes_error
);
7107 as
->arcstat_l2_writes_lock_retry
.value
.ui64
=
7108 wmsum_value(&arc_sums
.arcstat_l2_writes_lock_retry
);
7109 as
->arcstat_l2_evict_lock_retry
.value
.ui64
=
7110 wmsum_value(&arc_sums
.arcstat_l2_evict_lock_retry
);
7111 as
->arcstat_l2_evict_reading
.value
.ui64
=
7112 wmsum_value(&arc_sums
.arcstat_l2_evict_reading
);
7113 as
->arcstat_l2_evict_l1cached
.value
.ui64
=
7114 wmsum_value(&arc_sums
.arcstat_l2_evict_l1cached
);
7115 as
->arcstat_l2_free_on_write
.value
.ui64
=
7116 wmsum_value(&arc_sums
.arcstat_l2_free_on_write
);
7117 as
->arcstat_l2_abort_lowmem
.value
.ui64
=
7118 wmsum_value(&arc_sums
.arcstat_l2_abort_lowmem
);
7119 as
->arcstat_l2_cksum_bad
.value
.ui64
=
7120 wmsum_value(&arc_sums
.arcstat_l2_cksum_bad
);
7121 as
->arcstat_l2_io_error
.value
.ui64
=
7122 wmsum_value(&arc_sums
.arcstat_l2_io_error
);
7123 as
->arcstat_l2_lsize
.value
.ui64
=
7124 wmsum_value(&arc_sums
.arcstat_l2_lsize
);
7125 as
->arcstat_l2_psize
.value
.ui64
=
7126 wmsum_value(&arc_sums
.arcstat_l2_psize
);
7127 as
->arcstat_l2_hdr_size
.value
.ui64
=
7128 aggsum_value(&arc_sums
.arcstat_l2_hdr_size
);
7129 as
->arcstat_l2_log_blk_writes
.value
.ui64
=
7130 wmsum_value(&arc_sums
.arcstat_l2_log_blk_writes
);
7131 as
->arcstat_l2_log_blk_asize
.value
.ui64
=
7132 wmsum_value(&arc_sums
.arcstat_l2_log_blk_asize
);
7133 as
->arcstat_l2_log_blk_count
.value
.ui64
=
7134 wmsum_value(&arc_sums
.arcstat_l2_log_blk_count
);
7135 as
->arcstat_l2_rebuild_success
.value
.ui64
=
7136 wmsum_value(&arc_sums
.arcstat_l2_rebuild_success
);
7137 as
->arcstat_l2_rebuild_abort_unsupported
.value
.ui64
=
7138 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
);
7139 as
->arcstat_l2_rebuild_abort_io_errors
.value
.ui64
=
7140 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
);
7141 as
->arcstat_l2_rebuild_abort_dh_errors
.value
.ui64
=
7142 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
);
7143 as
->arcstat_l2_rebuild_abort_cksum_lb_errors
.value
.ui64
=
7144 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
);
7145 as
->arcstat_l2_rebuild_abort_lowmem
.value
.ui64
=
7146 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
);
7147 as
->arcstat_l2_rebuild_size
.value
.ui64
=
7148 wmsum_value(&arc_sums
.arcstat_l2_rebuild_size
);
7149 as
->arcstat_l2_rebuild_asize
.value
.ui64
=
7150 wmsum_value(&arc_sums
.arcstat_l2_rebuild_asize
);
7151 as
->arcstat_l2_rebuild_bufs
.value
.ui64
=
7152 wmsum_value(&arc_sums
.arcstat_l2_rebuild_bufs
);
7153 as
->arcstat_l2_rebuild_bufs_precached
.value
.ui64
=
7154 wmsum_value(&arc_sums
.arcstat_l2_rebuild_bufs_precached
);
7155 as
->arcstat_l2_rebuild_log_blks
.value
.ui64
=
7156 wmsum_value(&arc_sums
.arcstat_l2_rebuild_log_blks
);
7157 as
->arcstat_memory_throttle_count
.value
.ui64
=
7158 wmsum_value(&arc_sums
.arcstat_memory_throttle_count
);
7159 as
->arcstat_memory_direct_count
.value
.ui64
=
7160 wmsum_value(&arc_sums
.arcstat_memory_direct_count
);
7161 as
->arcstat_memory_indirect_count
.value
.ui64
=
7162 wmsum_value(&arc_sums
.arcstat_memory_indirect_count
);
7164 as
->arcstat_memory_all_bytes
.value
.ui64
=
7166 as
->arcstat_memory_free_bytes
.value
.ui64
=
7168 as
->arcstat_memory_available_bytes
.value
.i64
=
7169 arc_available_memory();
7171 as
->arcstat_prune
.value
.ui64
=
7172 wmsum_value(&arc_sums
.arcstat_prune
);
7173 as
->arcstat_meta_used
.value
.ui64
=
7174 wmsum_value(&arc_sums
.arcstat_meta_used
);
7175 as
->arcstat_async_upgrade_sync
.value
.ui64
=
7176 wmsum_value(&arc_sums
.arcstat_async_upgrade_sync
);
7177 as
->arcstat_predictive_prefetch
.value
.ui64
=
7178 wmsum_value(&arc_sums
.arcstat_predictive_prefetch
);
7179 as
->arcstat_demand_hit_predictive_prefetch
.value
.ui64
=
7180 wmsum_value(&arc_sums
.arcstat_demand_hit_predictive_prefetch
);
7181 as
->arcstat_demand_iohit_predictive_prefetch
.value
.ui64
=
7182 wmsum_value(&arc_sums
.arcstat_demand_iohit_predictive_prefetch
);
7183 as
->arcstat_prescient_prefetch
.value
.ui64
=
7184 wmsum_value(&arc_sums
.arcstat_prescient_prefetch
);
7185 as
->arcstat_demand_hit_prescient_prefetch
.value
.ui64
=
7186 wmsum_value(&arc_sums
.arcstat_demand_hit_prescient_prefetch
);
7187 as
->arcstat_demand_iohit_prescient_prefetch
.value
.ui64
=
7188 wmsum_value(&arc_sums
.arcstat_demand_iohit_prescient_prefetch
);
7189 as
->arcstat_raw_size
.value
.ui64
=
7190 wmsum_value(&arc_sums
.arcstat_raw_size
);
7191 as
->arcstat_cached_only_in_progress
.value
.ui64
=
7192 wmsum_value(&arc_sums
.arcstat_cached_only_in_progress
);
7193 as
->arcstat_abd_chunk_waste_size
.value
.ui64
=
7194 wmsum_value(&arc_sums
.arcstat_abd_chunk_waste_size
);
7200 * This function *must* return indices evenly distributed between all
7201 * sublists of the multilist. This is needed due to how the ARC eviction
7202 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7203 * distributed between all sublists and uses this assumption when
7204 * deciding which sublist to evict from and how much to evict from it.
7207 arc_state_multilist_index_func(multilist_t
*ml
, void *obj
)
7209 arc_buf_hdr_t
*hdr
= obj
;
7212 * We rely on b_dva to generate evenly distributed index
7213 * numbers using buf_hash below. So, as an added precaution,
7214 * let's make sure we never add empty buffers to the arc lists.
7216 ASSERT(!HDR_EMPTY(hdr
));
7219 * The assumption here, is the hash value for a given
7220 * arc_buf_hdr_t will remain constant throughout its lifetime
7221 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7222 * Thus, we don't need to store the header's sublist index
7223 * on insertion, as this index can be recalculated on removal.
7225 * Also, the low order bits of the hash value are thought to be
7226 * distributed evenly. Otherwise, in the case that the multilist
7227 * has a power of two number of sublists, each sublists' usage
7228 * would not be evenly distributed. In this context full 64bit
7229 * division would be a waste of time, so limit it to 32 bits.
7231 return ((unsigned int)buf_hash(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
) %
7232 multilist_get_num_sublists(ml
));
7236 arc_state_l2c_multilist_index_func(multilist_t
*ml
, void *obj
)
7238 panic("Header %p insert into arc_l2c_only %p", obj
, ml
);
7241 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7242 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7244 "ignoring tunable %s (using %llu instead)", \
7245 (#tuning), (u_longlong_t)(value)); \
7250 * Called during module initialization and periodically thereafter to
7251 * apply reasonable changes to the exposed performance tunings. Can also be
7252 * called explicitly by param_set_arc_*() functions when ARC tunables are
7253 * updated manually. Non-zero zfs_* values which differ from the currently set
7254 * values will be applied.
7257 arc_tuning_update(boolean_t verbose
)
7259 uint64_t allmem
= arc_all_memory();
7261 /* Valid range: 32M - <arc_c_max> */
7262 if ((zfs_arc_min
) && (zfs_arc_min
!= arc_c_min
) &&
7263 (zfs_arc_min
>= 2ULL << SPA_MAXBLOCKSHIFT
) &&
7264 (zfs_arc_min
<= arc_c_max
)) {
7265 arc_c_min
= zfs_arc_min
;
7266 arc_c
= MAX(arc_c
, arc_c_min
);
7268 WARN_IF_TUNING_IGNORED(zfs_arc_min
, arc_c_min
, verbose
);
7270 /* Valid range: 64M - <all physical memory> */
7271 if ((zfs_arc_max
) && (zfs_arc_max
!= arc_c_max
) &&
7272 (zfs_arc_max
>= MIN_ARC_MAX
) && (zfs_arc_max
< allmem
) &&
7273 (zfs_arc_max
> arc_c_min
)) {
7274 arc_c_max
= zfs_arc_max
;
7275 arc_c
= MIN(arc_c
, arc_c_max
);
7276 if (arc_dnode_limit
> arc_c_max
)
7277 arc_dnode_limit
= arc_c_max
;
7279 WARN_IF_TUNING_IGNORED(zfs_arc_max
, arc_c_max
, verbose
);
7281 /* Valid range: 0 - <all physical memory> */
7282 arc_dnode_limit
= zfs_arc_dnode_limit
? zfs_arc_dnode_limit
:
7283 MIN(zfs_arc_dnode_limit_percent
, 100) * arc_c_max
/ 100;
7284 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit
, arc_dnode_limit
, verbose
);
7286 /* Valid range: 1 - N */
7287 if (zfs_arc_grow_retry
)
7288 arc_grow_retry
= zfs_arc_grow_retry
;
7290 /* Valid range: 1 - N */
7291 if (zfs_arc_shrink_shift
) {
7292 arc_shrink_shift
= zfs_arc_shrink_shift
;
7293 arc_no_grow_shift
= MIN(arc_no_grow_shift
, arc_shrink_shift
-1);
7296 /* Valid range: 1 - N ms */
7297 if (zfs_arc_min_prefetch_ms
)
7298 arc_min_prefetch_ms
= zfs_arc_min_prefetch_ms
;
7300 /* Valid range: 1 - N ms */
7301 if (zfs_arc_min_prescient_prefetch_ms
) {
7302 arc_min_prescient_prefetch_ms
=
7303 zfs_arc_min_prescient_prefetch_ms
;
7306 /* Valid range: 0 - 100 */
7307 if (zfs_arc_lotsfree_percent
<= 100)
7308 arc_lotsfree_percent
= zfs_arc_lotsfree_percent
;
7309 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent
, arc_lotsfree_percent
,
7312 /* Valid range: 0 - <all physical memory> */
7313 if ((zfs_arc_sys_free
) && (zfs_arc_sys_free
!= arc_sys_free
))
7314 arc_sys_free
= MIN(zfs_arc_sys_free
, allmem
);
7315 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free
, arc_sys_free
, verbose
);
7319 arc_state_multilist_init(multilist_t
*ml
,
7320 multilist_sublist_index_func_t
*index_func
, int *maxcountp
)
7322 multilist_create(ml
, sizeof (arc_buf_hdr_t
),
7323 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
), index_func
);
7324 *maxcountp
= MAX(*maxcountp
, multilist_get_num_sublists(ml
));
7328 arc_state_init(void)
7330 int num_sublists
= 0;
7332 arc_state_multilist_init(&arc_mru
->arcs_list
[ARC_BUFC_METADATA
],
7333 arc_state_multilist_index_func
, &num_sublists
);
7334 arc_state_multilist_init(&arc_mru
->arcs_list
[ARC_BUFC_DATA
],
7335 arc_state_multilist_index_func
, &num_sublists
);
7336 arc_state_multilist_init(&arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
],
7337 arc_state_multilist_index_func
, &num_sublists
);
7338 arc_state_multilist_init(&arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
],
7339 arc_state_multilist_index_func
, &num_sublists
);
7340 arc_state_multilist_init(&arc_mfu
->arcs_list
[ARC_BUFC_METADATA
],
7341 arc_state_multilist_index_func
, &num_sublists
);
7342 arc_state_multilist_init(&arc_mfu
->arcs_list
[ARC_BUFC_DATA
],
7343 arc_state_multilist_index_func
, &num_sublists
);
7344 arc_state_multilist_init(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
],
7345 arc_state_multilist_index_func
, &num_sublists
);
7346 arc_state_multilist_init(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
],
7347 arc_state_multilist_index_func
, &num_sublists
);
7348 arc_state_multilist_init(&arc_uncached
->arcs_list
[ARC_BUFC_METADATA
],
7349 arc_state_multilist_index_func
, &num_sublists
);
7350 arc_state_multilist_init(&arc_uncached
->arcs_list
[ARC_BUFC_DATA
],
7351 arc_state_multilist_index_func
, &num_sublists
);
7354 * L2 headers should never be on the L2 state list since they don't
7355 * have L1 headers allocated. Special index function asserts that.
7357 arc_state_multilist_init(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
],
7358 arc_state_l2c_multilist_index_func
, &num_sublists
);
7359 arc_state_multilist_init(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
],
7360 arc_state_l2c_multilist_index_func
, &num_sublists
);
7363 * Keep track of the number of markers needed to reclaim buffers from
7364 * any ARC state. The markers will be pre-allocated so as to minimize
7365 * the number of memory allocations performed by the eviction thread.
7367 arc_state_evict_marker_count
= num_sublists
;
7369 zfs_refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7370 zfs_refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7371 zfs_refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7372 zfs_refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7373 zfs_refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7374 zfs_refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7375 zfs_refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7376 zfs_refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7377 zfs_refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7378 zfs_refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7379 zfs_refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7380 zfs_refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7381 zfs_refcount_create(&arc_uncached
->arcs_esize
[ARC_BUFC_METADATA
]);
7382 zfs_refcount_create(&arc_uncached
->arcs_esize
[ARC_BUFC_DATA
]);
7384 zfs_refcount_create(&arc_anon
->arcs_size
[ARC_BUFC_DATA
]);
7385 zfs_refcount_create(&arc_anon
->arcs_size
[ARC_BUFC_METADATA
]);
7386 zfs_refcount_create(&arc_mru
->arcs_size
[ARC_BUFC_DATA
]);
7387 zfs_refcount_create(&arc_mru
->arcs_size
[ARC_BUFC_METADATA
]);
7388 zfs_refcount_create(&arc_mru_ghost
->arcs_size
[ARC_BUFC_DATA
]);
7389 zfs_refcount_create(&arc_mru_ghost
->arcs_size
[ARC_BUFC_METADATA
]);
7390 zfs_refcount_create(&arc_mfu
->arcs_size
[ARC_BUFC_DATA
]);
7391 zfs_refcount_create(&arc_mfu
->arcs_size
[ARC_BUFC_METADATA
]);
7392 zfs_refcount_create(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_DATA
]);
7393 zfs_refcount_create(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_METADATA
]);
7394 zfs_refcount_create(&arc_l2c_only
->arcs_size
[ARC_BUFC_DATA
]);
7395 zfs_refcount_create(&arc_l2c_only
->arcs_size
[ARC_BUFC_METADATA
]);
7396 zfs_refcount_create(&arc_uncached
->arcs_size
[ARC_BUFC_DATA
]);
7397 zfs_refcount_create(&arc_uncached
->arcs_size
[ARC_BUFC_METADATA
]);
7399 wmsum_init(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_DATA
], 0);
7400 wmsum_init(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_METADATA
], 0);
7401 wmsum_init(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_DATA
], 0);
7402 wmsum_init(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_METADATA
], 0);
7404 wmsum_init(&arc_sums
.arcstat_hits
, 0);
7405 wmsum_init(&arc_sums
.arcstat_iohits
, 0);
7406 wmsum_init(&arc_sums
.arcstat_misses
, 0);
7407 wmsum_init(&arc_sums
.arcstat_demand_data_hits
, 0);
7408 wmsum_init(&arc_sums
.arcstat_demand_data_iohits
, 0);
7409 wmsum_init(&arc_sums
.arcstat_demand_data_misses
, 0);
7410 wmsum_init(&arc_sums
.arcstat_demand_metadata_hits
, 0);
7411 wmsum_init(&arc_sums
.arcstat_demand_metadata_iohits
, 0);
7412 wmsum_init(&arc_sums
.arcstat_demand_metadata_misses
, 0);
7413 wmsum_init(&arc_sums
.arcstat_prefetch_data_hits
, 0);
7414 wmsum_init(&arc_sums
.arcstat_prefetch_data_iohits
, 0);
7415 wmsum_init(&arc_sums
.arcstat_prefetch_data_misses
, 0);
7416 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_hits
, 0);
7417 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_iohits
, 0);
7418 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_misses
, 0);
7419 wmsum_init(&arc_sums
.arcstat_mru_hits
, 0);
7420 wmsum_init(&arc_sums
.arcstat_mru_ghost_hits
, 0);
7421 wmsum_init(&arc_sums
.arcstat_mfu_hits
, 0);
7422 wmsum_init(&arc_sums
.arcstat_mfu_ghost_hits
, 0);
7423 wmsum_init(&arc_sums
.arcstat_uncached_hits
, 0);
7424 wmsum_init(&arc_sums
.arcstat_deleted
, 0);
7425 wmsum_init(&arc_sums
.arcstat_mutex_miss
, 0);
7426 wmsum_init(&arc_sums
.arcstat_access_skip
, 0);
7427 wmsum_init(&arc_sums
.arcstat_evict_skip
, 0);
7428 wmsum_init(&arc_sums
.arcstat_evict_not_enough
, 0);
7429 wmsum_init(&arc_sums
.arcstat_evict_l2_cached
, 0);
7430 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible
, 0);
7431 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible_mfu
, 0);
7432 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible_mru
, 0);
7433 wmsum_init(&arc_sums
.arcstat_evict_l2_ineligible
, 0);
7434 wmsum_init(&arc_sums
.arcstat_evict_l2_skip
, 0);
7435 wmsum_init(&arc_sums
.arcstat_hash_collisions
, 0);
7436 wmsum_init(&arc_sums
.arcstat_hash_chains
, 0);
7437 aggsum_init(&arc_sums
.arcstat_size
, 0);
7438 wmsum_init(&arc_sums
.arcstat_compressed_size
, 0);
7439 wmsum_init(&arc_sums
.arcstat_uncompressed_size
, 0);
7440 wmsum_init(&arc_sums
.arcstat_overhead_size
, 0);
7441 wmsum_init(&arc_sums
.arcstat_hdr_size
, 0);
7442 wmsum_init(&arc_sums
.arcstat_data_size
, 0);
7443 wmsum_init(&arc_sums
.arcstat_metadata_size
, 0);
7444 wmsum_init(&arc_sums
.arcstat_dbuf_size
, 0);
7445 wmsum_init(&arc_sums
.arcstat_dnode_size
, 0);
7446 wmsum_init(&arc_sums
.arcstat_bonus_size
, 0);
7447 wmsum_init(&arc_sums
.arcstat_l2_hits
, 0);
7448 wmsum_init(&arc_sums
.arcstat_l2_misses
, 0);
7449 wmsum_init(&arc_sums
.arcstat_l2_prefetch_asize
, 0);
7450 wmsum_init(&arc_sums
.arcstat_l2_mru_asize
, 0);
7451 wmsum_init(&arc_sums
.arcstat_l2_mfu_asize
, 0);
7452 wmsum_init(&arc_sums
.arcstat_l2_bufc_data_asize
, 0);
7453 wmsum_init(&arc_sums
.arcstat_l2_bufc_metadata_asize
, 0);
7454 wmsum_init(&arc_sums
.arcstat_l2_feeds
, 0);
7455 wmsum_init(&arc_sums
.arcstat_l2_rw_clash
, 0);
7456 wmsum_init(&arc_sums
.arcstat_l2_read_bytes
, 0);
7457 wmsum_init(&arc_sums
.arcstat_l2_write_bytes
, 0);
7458 wmsum_init(&arc_sums
.arcstat_l2_writes_sent
, 0);
7459 wmsum_init(&arc_sums
.arcstat_l2_writes_done
, 0);
7460 wmsum_init(&arc_sums
.arcstat_l2_writes_error
, 0);
7461 wmsum_init(&arc_sums
.arcstat_l2_writes_lock_retry
, 0);
7462 wmsum_init(&arc_sums
.arcstat_l2_evict_lock_retry
, 0);
7463 wmsum_init(&arc_sums
.arcstat_l2_evict_reading
, 0);
7464 wmsum_init(&arc_sums
.arcstat_l2_evict_l1cached
, 0);
7465 wmsum_init(&arc_sums
.arcstat_l2_free_on_write
, 0);
7466 wmsum_init(&arc_sums
.arcstat_l2_abort_lowmem
, 0);
7467 wmsum_init(&arc_sums
.arcstat_l2_cksum_bad
, 0);
7468 wmsum_init(&arc_sums
.arcstat_l2_io_error
, 0);
7469 wmsum_init(&arc_sums
.arcstat_l2_lsize
, 0);
7470 wmsum_init(&arc_sums
.arcstat_l2_psize
, 0);
7471 aggsum_init(&arc_sums
.arcstat_l2_hdr_size
, 0);
7472 wmsum_init(&arc_sums
.arcstat_l2_log_blk_writes
, 0);
7473 wmsum_init(&arc_sums
.arcstat_l2_log_blk_asize
, 0);
7474 wmsum_init(&arc_sums
.arcstat_l2_log_blk_count
, 0);
7475 wmsum_init(&arc_sums
.arcstat_l2_rebuild_success
, 0);
7476 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
, 0);
7477 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
, 0);
7478 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
, 0);
7479 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
, 0);
7480 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
, 0);
7481 wmsum_init(&arc_sums
.arcstat_l2_rebuild_size
, 0);
7482 wmsum_init(&arc_sums
.arcstat_l2_rebuild_asize
, 0);
7483 wmsum_init(&arc_sums
.arcstat_l2_rebuild_bufs
, 0);
7484 wmsum_init(&arc_sums
.arcstat_l2_rebuild_bufs_precached
, 0);
7485 wmsum_init(&arc_sums
.arcstat_l2_rebuild_log_blks
, 0);
7486 wmsum_init(&arc_sums
.arcstat_memory_throttle_count
, 0);
7487 wmsum_init(&arc_sums
.arcstat_memory_direct_count
, 0);
7488 wmsum_init(&arc_sums
.arcstat_memory_indirect_count
, 0);
7489 wmsum_init(&arc_sums
.arcstat_prune
, 0);
7490 wmsum_init(&arc_sums
.arcstat_meta_used
, 0);
7491 wmsum_init(&arc_sums
.arcstat_async_upgrade_sync
, 0);
7492 wmsum_init(&arc_sums
.arcstat_predictive_prefetch
, 0);
7493 wmsum_init(&arc_sums
.arcstat_demand_hit_predictive_prefetch
, 0);
7494 wmsum_init(&arc_sums
.arcstat_demand_iohit_predictive_prefetch
, 0);
7495 wmsum_init(&arc_sums
.arcstat_prescient_prefetch
, 0);
7496 wmsum_init(&arc_sums
.arcstat_demand_hit_prescient_prefetch
, 0);
7497 wmsum_init(&arc_sums
.arcstat_demand_iohit_prescient_prefetch
, 0);
7498 wmsum_init(&arc_sums
.arcstat_raw_size
, 0);
7499 wmsum_init(&arc_sums
.arcstat_cached_only_in_progress
, 0);
7500 wmsum_init(&arc_sums
.arcstat_abd_chunk_waste_size
, 0);
7502 arc_anon
->arcs_state
= ARC_STATE_ANON
;
7503 arc_mru
->arcs_state
= ARC_STATE_MRU
;
7504 arc_mru_ghost
->arcs_state
= ARC_STATE_MRU_GHOST
;
7505 arc_mfu
->arcs_state
= ARC_STATE_MFU
;
7506 arc_mfu_ghost
->arcs_state
= ARC_STATE_MFU_GHOST
;
7507 arc_l2c_only
->arcs_state
= ARC_STATE_L2C_ONLY
;
7508 arc_uncached
->arcs_state
= ARC_STATE_UNCACHED
;
7512 arc_state_fini(void)
7514 zfs_refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7515 zfs_refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7516 zfs_refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7517 zfs_refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7518 zfs_refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7519 zfs_refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7520 zfs_refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7521 zfs_refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7522 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7523 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7524 zfs_refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7525 zfs_refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7526 zfs_refcount_destroy(&arc_uncached
->arcs_esize
[ARC_BUFC_METADATA
]);
7527 zfs_refcount_destroy(&arc_uncached
->arcs_esize
[ARC_BUFC_DATA
]);
7529 zfs_refcount_destroy(&arc_anon
->arcs_size
[ARC_BUFC_DATA
]);
7530 zfs_refcount_destroy(&arc_anon
->arcs_size
[ARC_BUFC_METADATA
]);
7531 zfs_refcount_destroy(&arc_mru
->arcs_size
[ARC_BUFC_DATA
]);
7532 zfs_refcount_destroy(&arc_mru
->arcs_size
[ARC_BUFC_METADATA
]);
7533 zfs_refcount_destroy(&arc_mru_ghost
->arcs_size
[ARC_BUFC_DATA
]);
7534 zfs_refcount_destroy(&arc_mru_ghost
->arcs_size
[ARC_BUFC_METADATA
]);
7535 zfs_refcount_destroy(&arc_mfu
->arcs_size
[ARC_BUFC_DATA
]);
7536 zfs_refcount_destroy(&arc_mfu
->arcs_size
[ARC_BUFC_METADATA
]);
7537 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_DATA
]);
7538 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_size
[ARC_BUFC_METADATA
]);
7539 zfs_refcount_destroy(&arc_l2c_only
->arcs_size
[ARC_BUFC_DATA
]);
7540 zfs_refcount_destroy(&arc_l2c_only
->arcs_size
[ARC_BUFC_METADATA
]);
7541 zfs_refcount_destroy(&arc_uncached
->arcs_size
[ARC_BUFC_DATA
]);
7542 zfs_refcount_destroy(&arc_uncached
->arcs_size
[ARC_BUFC_METADATA
]);
7544 multilist_destroy(&arc_mru
->arcs_list
[ARC_BUFC_METADATA
]);
7545 multilist_destroy(&arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7546 multilist_destroy(&arc_mfu
->arcs_list
[ARC_BUFC_METADATA
]);
7547 multilist_destroy(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7548 multilist_destroy(&arc_mru
->arcs_list
[ARC_BUFC_DATA
]);
7549 multilist_destroy(&arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7550 multilist_destroy(&arc_mfu
->arcs_list
[ARC_BUFC_DATA
]);
7551 multilist_destroy(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7552 multilist_destroy(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
]);
7553 multilist_destroy(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
]);
7554 multilist_destroy(&arc_uncached
->arcs_list
[ARC_BUFC_METADATA
]);
7555 multilist_destroy(&arc_uncached
->arcs_list
[ARC_BUFC_DATA
]);
7557 wmsum_fini(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_DATA
]);
7558 wmsum_fini(&arc_mru_ghost
->arcs_hits
[ARC_BUFC_METADATA
]);
7559 wmsum_fini(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_DATA
]);
7560 wmsum_fini(&arc_mfu_ghost
->arcs_hits
[ARC_BUFC_METADATA
]);
7562 wmsum_fini(&arc_sums
.arcstat_hits
);
7563 wmsum_fini(&arc_sums
.arcstat_iohits
);
7564 wmsum_fini(&arc_sums
.arcstat_misses
);
7565 wmsum_fini(&arc_sums
.arcstat_demand_data_hits
);
7566 wmsum_fini(&arc_sums
.arcstat_demand_data_iohits
);
7567 wmsum_fini(&arc_sums
.arcstat_demand_data_misses
);
7568 wmsum_fini(&arc_sums
.arcstat_demand_metadata_hits
);
7569 wmsum_fini(&arc_sums
.arcstat_demand_metadata_iohits
);
7570 wmsum_fini(&arc_sums
.arcstat_demand_metadata_misses
);
7571 wmsum_fini(&arc_sums
.arcstat_prefetch_data_hits
);
7572 wmsum_fini(&arc_sums
.arcstat_prefetch_data_iohits
);
7573 wmsum_fini(&arc_sums
.arcstat_prefetch_data_misses
);
7574 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_hits
);
7575 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_iohits
);
7576 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_misses
);
7577 wmsum_fini(&arc_sums
.arcstat_mru_hits
);
7578 wmsum_fini(&arc_sums
.arcstat_mru_ghost_hits
);
7579 wmsum_fini(&arc_sums
.arcstat_mfu_hits
);
7580 wmsum_fini(&arc_sums
.arcstat_mfu_ghost_hits
);
7581 wmsum_fini(&arc_sums
.arcstat_uncached_hits
);
7582 wmsum_fini(&arc_sums
.arcstat_deleted
);
7583 wmsum_fini(&arc_sums
.arcstat_mutex_miss
);
7584 wmsum_fini(&arc_sums
.arcstat_access_skip
);
7585 wmsum_fini(&arc_sums
.arcstat_evict_skip
);
7586 wmsum_fini(&arc_sums
.arcstat_evict_not_enough
);
7587 wmsum_fini(&arc_sums
.arcstat_evict_l2_cached
);
7588 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible
);
7589 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible_mfu
);
7590 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible_mru
);
7591 wmsum_fini(&arc_sums
.arcstat_evict_l2_ineligible
);
7592 wmsum_fini(&arc_sums
.arcstat_evict_l2_skip
);
7593 wmsum_fini(&arc_sums
.arcstat_hash_collisions
);
7594 wmsum_fini(&arc_sums
.arcstat_hash_chains
);
7595 aggsum_fini(&arc_sums
.arcstat_size
);
7596 wmsum_fini(&arc_sums
.arcstat_compressed_size
);
7597 wmsum_fini(&arc_sums
.arcstat_uncompressed_size
);
7598 wmsum_fini(&arc_sums
.arcstat_overhead_size
);
7599 wmsum_fini(&arc_sums
.arcstat_hdr_size
);
7600 wmsum_fini(&arc_sums
.arcstat_data_size
);
7601 wmsum_fini(&arc_sums
.arcstat_metadata_size
);
7602 wmsum_fini(&arc_sums
.arcstat_dbuf_size
);
7603 wmsum_fini(&arc_sums
.arcstat_dnode_size
);
7604 wmsum_fini(&arc_sums
.arcstat_bonus_size
);
7605 wmsum_fini(&arc_sums
.arcstat_l2_hits
);
7606 wmsum_fini(&arc_sums
.arcstat_l2_misses
);
7607 wmsum_fini(&arc_sums
.arcstat_l2_prefetch_asize
);
7608 wmsum_fini(&arc_sums
.arcstat_l2_mru_asize
);
7609 wmsum_fini(&arc_sums
.arcstat_l2_mfu_asize
);
7610 wmsum_fini(&arc_sums
.arcstat_l2_bufc_data_asize
);
7611 wmsum_fini(&arc_sums
.arcstat_l2_bufc_metadata_asize
);
7612 wmsum_fini(&arc_sums
.arcstat_l2_feeds
);
7613 wmsum_fini(&arc_sums
.arcstat_l2_rw_clash
);
7614 wmsum_fini(&arc_sums
.arcstat_l2_read_bytes
);
7615 wmsum_fini(&arc_sums
.arcstat_l2_write_bytes
);
7616 wmsum_fini(&arc_sums
.arcstat_l2_writes_sent
);
7617 wmsum_fini(&arc_sums
.arcstat_l2_writes_done
);
7618 wmsum_fini(&arc_sums
.arcstat_l2_writes_error
);
7619 wmsum_fini(&arc_sums
.arcstat_l2_writes_lock_retry
);
7620 wmsum_fini(&arc_sums
.arcstat_l2_evict_lock_retry
);
7621 wmsum_fini(&arc_sums
.arcstat_l2_evict_reading
);
7622 wmsum_fini(&arc_sums
.arcstat_l2_evict_l1cached
);
7623 wmsum_fini(&arc_sums
.arcstat_l2_free_on_write
);
7624 wmsum_fini(&arc_sums
.arcstat_l2_abort_lowmem
);
7625 wmsum_fini(&arc_sums
.arcstat_l2_cksum_bad
);
7626 wmsum_fini(&arc_sums
.arcstat_l2_io_error
);
7627 wmsum_fini(&arc_sums
.arcstat_l2_lsize
);
7628 wmsum_fini(&arc_sums
.arcstat_l2_psize
);
7629 aggsum_fini(&arc_sums
.arcstat_l2_hdr_size
);
7630 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_writes
);
7631 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_asize
);
7632 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_count
);
7633 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_success
);
7634 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
);
7635 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
);
7636 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
);
7637 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
);
7638 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
);
7639 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_size
);
7640 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_asize
);
7641 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_bufs
);
7642 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_bufs_precached
);
7643 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_log_blks
);
7644 wmsum_fini(&arc_sums
.arcstat_memory_throttle_count
);
7645 wmsum_fini(&arc_sums
.arcstat_memory_direct_count
);
7646 wmsum_fini(&arc_sums
.arcstat_memory_indirect_count
);
7647 wmsum_fini(&arc_sums
.arcstat_prune
);
7648 wmsum_fini(&arc_sums
.arcstat_meta_used
);
7649 wmsum_fini(&arc_sums
.arcstat_async_upgrade_sync
);
7650 wmsum_fini(&arc_sums
.arcstat_predictive_prefetch
);
7651 wmsum_fini(&arc_sums
.arcstat_demand_hit_predictive_prefetch
);
7652 wmsum_fini(&arc_sums
.arcstat_demand_iohit_predictive_prefetch
);
7653 wmsum_fini(&arc_sums
.arcstat_prescient_prefetch
);
7654 wmsum_fini(&arc_sums
.arcstat_demand_hit_prescient_prefetch
);
7655 wmsum_fini(&arc_sums
.arcstat_demand_iohit_prescient_prefetch
);
7656 wmsum_fini(&arc_sums
.arcstat_raw_size
);
7657 wmsum_fini(&arc_sums
.arcstat_cached_only_in_progress
);
7658 wmsum_fini(&arc_sums
.arcstat_abd_chunk_waste_size
);
7662 arc_target_bytes(void)
7668 arc_set_limits(uint64_t allmem
)
7670 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7671 arc_c_min
= MAX(allmem
/ 32, 2ULL << SPA_MAXBLOCKSHIFT
);
7673 /* How to set default max varies by platform. */
7674 arc_c_max
= arc_default_max(arc_c_min
, allmem
);
7679 uint64_t percent
, allmem
= arc_all_memory();
7680 mutex_init(&arc_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7681 list_create(&arc_evict_waiters
, sizeof (arc_evict_waiter_t
),
7682 offsetof(arc_evict_waiter_t
, aew_node
));
7684 arc_min_prefetch_ms
= 1000;
7685 arc_min_prescient_prefetch_ms
= 6000;
7687 #if defined(_KERNEL)
7691 arc_set_limits(allmem
);
7695 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7696 * environment before the module was loaded, don't block setting the
7697 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7699 * zfs_arc_min will be handled by arc_tuning_update().
7701 if (zfs_arc_max
!= 0 && zfs_arc_max
>= MIN_ARC_MAX
&&
7702 zfs_arc_max
< allmem
) {
7703 arc_c_max
= zfs_arc_max
;
7704 if (arc_c_min
>= arc_c_max
) {
7705 arc_c_min
= MAX(zfs_arc_max
/ 2,
7706 2ULL << SPA_MAXBLOCKSHIFT
);
7711 * In userland, there's only the memory pressure that we artificially
7712 * create (see arc_available_memory()). Don't let arc_c get too
7713 * small, because it can cause transactions to be larger than
7714 * arc_c, causing arc_tempreserve_space() to fail.
7716 arc_c_min
= MAX(arc_c_max
/ 2, 2ULL << SPA_MAXBLOCKSHIFT
);
7721 * 32-bit fixed point fractions of metadata from total ARC size,
7722 * MRU data from all data and MRU metadata from all metadata.
7724 arc_meta
= (1ULL << 32) / 4; /* Metadata is 25% of arc_c. */
7725 arc_pd
= (1ULL << 32) / 2; /* Data MRU is 50% of data. */
7726 arc_pm
= (1ULL << 32) / 2; /* Metadata MRU is 50% of metadata. */
7728 percent
= MIN(zfs_arc_dnode_limit_percent
, 100);
7729 arc_dnode_limit
= arc_c_max
* percent
/ 100;
7731 /* Apply user specified tunings */
7732 arc_tuning_update(B_TRUE
);
7734 /* if kmem_flags are set, lets try to use less memory */
7735 if (kmem_debugging())
7737 if (arc_c
< arc_c_min
)
7740 arc_register_hotplug();
7746 list_create(&arc_prune_list
, sizeof (arc_prune_t
),
7747 offsetof(arc_prune_t
, p_node
));
7748 mutex_init(&arc_prune_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
7750 arc_prune_taskq
= taskq_create("arc_prune", zfs_arc_prune_task_threads
,
7751 defclsyspri
, 100, INT_MAX
, TASKQ_PREPOPULATE
| TASKQ_DYNAMIC
);
7753 arc_ksp
= kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED
,
7754 sizeof (arc_stats
) / sizeof (kstat_named_t
), KSTAT_FLAG_VIRTUAL
);
7756 if (arc_ksp
!= NULL
) {
7757 arc_ksp
->ks_data
= &arc_stats
;
7758 arc_ksp
->ks_update
= arc_kstat_update
;
7759 kstat_install(arc_ksp
);
7762 arc_state_evict_markers
=
7763 arc_state_alloc_markers(arc_state_evict_marker_count
);
7764 arc_evict_zthr
= zthr_create_timer("arc_evict",
7765 arc_evict_cb_check
, arc_evict_cb
, NULL
, SEC2NSEC(1), defclsyspri
);
7766 arc_reap_zthr
= zthr_create_timer("arc_reap",
7767 arc_reap_cb_check
, arc_reap_cb
, NULL
, SEC2NSEC(1), minclsyspri
);
7772 * Calculate maximum amount of dirty data per pool.
7774 * If it has been set by a module parameter, take that.
7775 * Otherwise, use a percentage of physical memory defined by
7776 * zfs_dirty_data_max_percent (default 10%) with a cap at
7777 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
7780 if (zfs_dirty_data_max_max
== 0)
7781 zfs_dirty_data_max_max
= MIN(4ULL * 1024 * 1024 * 1024,
7782 allmem
* zfs_dirty_data_max_max_percent
/ 100);
7784 if (zfs_dirty_data_max_max
== 0)
7785 zfs_dirty_data_max_max
= MIN(1ULL * 1024 * 1024 * 1024,
7786 allmem
* zfs_dirty_data_max_max_percent
/ 100);
7789 if (zfs_dirty_data_max
== 0) {
7790 zfs_dirty_data_max
= allmem
*
7791 zfs_dirty_data_max_percent
/ 100;
7792 zfs_dirty_data_max
= MIN(zfs_dirty_data_max
,
7793 zfs_dirty_data_max_max
);
7796 if (zfs_wrlog_data_max
== 0) {
7799 * dp_wrlog_total is reduced for each txg at the end of
7800 * spa_sync(). However, dp_dirty_total is reduced every time
7801 * a block is written out. Thus under normal operation,
7802 * dp_wrlog_total could grow 2 times as big as
7803 * zfs_dirty_data_max.
7805 zfs_wrlog_data_max
= zfs_dirty_data_max
* 2;
7816 #endif /* _KERNEL */
7818 /* Use B_TRUE to ensure *all* buffers are evicted */
7819 arc_flush(NULL
, B_TRUE
);
7821 if (arc_ksp
!= NULL
) {
7822 kstat_delete(arc_ksp
);
7826 taskq_wait(arc_prune_taskq
);
7827 taskq_destroy(arc_prune_taskq
);
7829 mutex_enter(&arc_prune_mtx
);
7830 while ((p
= list_remove_head(&arc_prune_list
)) != NULL
) {
7831 (void) zfs_refcount_remove(&p
->p_refcnt
, &arc_prune_list
);
7832 zfs_refcount_destroy(&p
->p_refcnt
);
7833 kmem_free(p
, sizeof (*p
));
7835 mutex_exit(&arc_prune_mtx
);
7837 list_destroy(&arc_prune_list
);
7838 mutex_destroy(&arc_prune_mtx
);
7840 (void) zthr_cancel(arc_evict_zthr
);
7841 (void) zthr_cancel(arc_reap_zthr
);
7842 arc_state_free_markers(arc_state_evict_markers
,
7843 arc_state_evict_marker_count
);
7845 mutex_destroy(&arc_evict_lock
);
7846 list_destroy(&arc_evict_waiters
);
7849 * Free any buffers that were tagged for destruction. This needs
7850 * to occur before arc_state_fini() runs and destroys the aggsum
7851 * values which are updated when freeing scatter ABDs.
7853 l2arc_do_free_on_write();
7856 * buf_fini() must proceed arc_state_fini() because buf_fin() may
7857 * trigger the release of kmem magazines, which can callback to
7858 * arc_space_return() which accesses aggsums freed in act_state_fini().
7863 arc_unregister_hotplug();
7866 * We destroy the zthrs after all the ARC state has been
7867 * torn down to avoid the case of them receiving any
7868 * wakeup() signals after they are destroyed.
7870 zthr_destroy(arc_evict_zthr
);
7871 zthr_destroy(arc_reap_zthr
);
7873 ASSERT0(arc_loaned_bytes
);
7879 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
7880 * It uses dedicated storage devices to hold cached data, which are populated
7881 * using large infrequent writes. The main role of this cache is to boost
7882 * the performance of random read workloads. The intended L2ARC devices
7883 * include short-stroked disks, solid state disks, and other media with
7884 * substantially faster read latency than disk.
7886 * +-----------------------+
7888 * +-----------------------+
7891 * l2arc_feed_thread() arc_read()
7895 * +---------------+ |
7897 * +---------------+ |
7902 * +-------+ +-------+
7904 * | cache | | cache |
7905 * +-------+ +-------+
7906 * +=========+ .-----.
7907 * : L2ARC : |-_____-|
7908 * : devices : | Disks |
7909 * +=========+ `-_____-'
7911 * Read requests are satisfied from the following sources, in order:
7914 * 2) vdev cache of L2ARC devices
7916 * 4) vdev cache of disks
7919 * Some L2ARC device types exhibit extremely slow write performance.
7920 * To accommodate for this there are some significant differences between
7921 * the L2ARC and traditional cache design:
7923 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
7924 * the ARC behave as usual, freeing buffers and placing headers on ghost
7925 * lists. The ARC does not send buffers to the L2ARC during eviction as
7926 * this would add inflated write latencies for all ARC memory pressure.
7928 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
7929 * It does this by periodically scanning buffers from the eviction-end of
7930 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
7931 * not already there. It scans until a headroom of buffers is satisfied,
7932 * which itself is a buffer for ARC eviction. If a compressible buffer is
7933 * found during scanning and selected for writing to an L2ARC device, we
7934 * temporarily boost scanning headroom during the next scan cycle to make
7935 * sure we adapt to compression effects (which might significantly reduce
7936 * the data volume we write to L2ARC). The thread that does this is
7937 * l2arc_feed_thread(), illustrated below; example sizes are included to
7938 * provide a better sense of ratio than this diagram:
7941 * +---------------------+----------+
7942 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
7943 * +---------------------+----------+ | o L2ARC eligible
7944 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
7945 * +---------------------+----------+ |
7946 * 15.9 Gbytes ^ 32 Mbytes |
7948 * l2arc_feed_thread()
7950 * l2arc write hand <--[oooo]--'
7954 * +==============================+
7955 * L2ARC dev |####|#|###|###| |####| ... |
7956 * +==============================+
7959 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
7960 * evicted, then the L2ARC has cached a buffer much sooner than it probably
7961 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
7962 * safe to say that this is an uncommon case, since buffers at the end of
7963 * the ARC lists have moved there due to inactivity.
7965 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
7966 * then the L2ARC simply misses copying some buffers. This serves as a
7967 * pressure valve to prevent heavy read workloads from both stalling the ARC
7968 * with waits and clogging the L2ARC with writes. This also helps prevent
7969 * the potential for the L2ARC to churn if it attempts to cache content too
7970 * quickly, such as during backups of the entire pool.
7972 * 5. After system boot and before the ARC has filled main memory, there are
7973 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
7974 * lists can remain mostly static. Instead of searching from tail of these
7975 * lists as pictured, the l2arc_feed_thread() will search from the list heads
7976 * for eligible buffers, greatly increasing its chance of finding them.
7978 * The L2ARC device write speed is also boosted during this time so that
7979 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
7980 * there are no L2ARC reads, and no fear of degrading read performance
7981 * through increased writes.
7983 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
7984 * the vdev queue can aggregate them into larger and fewer writes. Each
7985 * device is written to in a rotor fashion, sweeping writes through
7986 * available space then repeating.
7988 * 7. The L2ARC does not store dirty content. It never needs to flush
7989 * write buffers back to disk based storage.
7991 * 8. If an ARC buffer is written (and dirtied) which also exists in the
7992 * L2ARC, the now stale L2ARC buffer is immediately dropped.
7994 * The performance of the L2ARC can be tweaked by a number of tunables, which
7995 * may be necessary for different workloads:
7997 * l2arc_write_max max write bytes per interval
7998 * l2arc_write_boost extra write bytes during device warmup
7999 * l2arc_noprefetch skip caching prefetched buffers
8000 * l2arc_headroom number of max device writes to precache
8001 * l2arc_headroom_boost when we find compressed buffers during ARC
8002 * scanning, we multiply headroom by this
8003 * percentage factor for the next scan cycle,
8004 * since more compressed buffers are likely to
8006 * l2arc_feed_secs seconds between L2ARC writing
8008 * Tunables may be removed or added as future performance improvements are
8009 * integrated, and also may become zpool properties.
8011 * There are three key functions that control how the L2ARC warms up:
8013 * l2arc_write_eligible() check if a buffer is eligible to cache
8014 * l2arc_write_size() calculate how much to write
8015 * l2arc_write_interval() calculate sleep delay between writes
8017 * These three functions determine what to write, how much, and how quickly
8020 * L2ARC persistence:
8022 * When writing buffers to L2ARC, we periodically add some metadata to
8023 * make sure we can pick them up after reboot, thus dramatically reducing
8024 * the impact that any downtime has on the performance of storage systems
8025 * with large caches.
8027 * The implementation works fairly simply by integrating the following two
8030 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8031 * which is an additional piece of metadata which describes what's been
8032 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8033 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8034 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8035 * time-wise and offset-wise interleaved, but that is an optimization rather
8036 * than for correctness. The log block also includes a pointer to the
8037 * previous block in its chain.
8039 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8040 * for our header bookkeeping purposes. This contains a device header,
8041 * which contains our top-level reference structures. We update it each
8042 * time we write a new log block, so that we're able to locate it in the
8043 * L2ARC device. If this write results in an inconsistent device header
8044 * (e.g. due to power failure), we detect this by verifying the header's
8045 * checksum and simply fail to reconstruct the L2ARC after reboot.
8047 * Implementation diagram:
8049 * +=== L2ARC device (not to scale) ======================================+
8050 * | ___two newest log block pointers__.__________ |
8051 * | / \dh_start_lbps[1] |
8052 * | / \ \dh_start_lbps[0]|
8054 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8055 * || hdr| ^ /^ /^ / / |
8056 * |+------+ ...--\-------/ \-----/--\------/ / |
8057 * | \--------------/ \--------------/ |
8058 * +======================================================================+
8060 * As can be seen on the diagram, rather than using a simple linked list,
8061 * we use a pair of linked lists with alternating elements. This is a
8062 * performance enhancement due to the fact that we only find out the
8063 * address of the next log block access once the current block has been
8064 * completely read in. Obviously, this hurts performance, because we'd be
8065 * keeping the device's I/O queue at only a 1 operation deep, thus
8066 * incurring a large amount of I/O round-trip latency. Having two lists
8067 * allows us to fetch two log blocks ahead of where we are currently
8068 * rebuilding L2ARC buffers.
8070 * On-device data structures:
8072 * L2ARC device header: l2arc_dev_hdr_phys_t
8073 * L2ARC log block: l2arc_log_blk_phys_t
8075 * L2ARC reconstruction:
8077 * When writing data, we simply write in the standard rotary fashion,
8078 * evicting buffers as we go and simply writing new data over them (writing
8079 * a new log block every now and then). This obviously means that once we
8080 * loop around the end of the device, we will start cutting into an already
8081 * committed log block (and its referenced data buffers), like so:
8083 * current write head__ __old tail
8086 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8087 * ^ ^^^^^^^^^___________________________________
8089 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8091 * When importing the pool, we detect this situation and use it to stop
8092 * our scanning process (see l2arc_rebuild).
8094 * There is one significant caveat to consider when rebuilding ARC contents
8095 * from an L2ARC device: what about invalidated buffers? Given the above
8096 * construction, we cannot update blocks which we've already written to amend
8097 * them to remove buffers which were invalidated. Thus, during reconstruction,
8098 * we might be populating the cache with buffers for data that's not on the
8099 * main pool anymore, or may have been overwritten!
8101 * As it turns out, this isn't a problem. Every arc_read request includes
8102 * both the DVA and, crucially, the birth TXG of the BP the caller is
8103 * looking for. So even if the cache were populated by completely rotten
8104 * blocks for data that had been long deleted and/or overwritten, we'll
8105 * never actually return bad data from the cache, since the DVA with the
8106 * birth TXG uniquely identify a block in space and time - once created,
8107 * a block is immutable on disk. The worst thing we have done is wasted
8108 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8109 * entries that will get dropped from the l2arc as it is being updated
8112 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8113 * hand are not restored. This is done by saving the offset (in bytes)
8114 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8115 * into account when restoring buffers.
8119 l2arc_write_eligible(uint64_t spa_guid
, arc_buf_hdr_t
*hdr
)
8122 * A buffer is *not* eligible for the L2ARC if it:
8123 * 1. belongs to a different spa.
8124 * 2. is already cached on the L2ARC.
8125 * 3. has an I/O in progress (it may be an incomplete read).
8126 * 4. is flagged not eligible (zfs property).
8128 if (hdr
->b_spa
!= spa_guid
|| HDR_HAS_L2HDR(hdr
) ||
8129 HDR_IO_IN_PROGRESS(hdr
) || !HDR_L2CACHE(hdr
))
8136 l2arc_write_size(l2arc_dev_t
*dev
)
8141 * Make sure our globals have meaningful values in case the user
8144 size
= l2arc_write_max
;
8146 cmn_err(CE_NOTE
, "l2arc_write_max must be greater than zero, "
8147 "resetting it to the default (%d)", L2ARC_WRITE_SIZE
);
8148 size
= l2arc_write_max
= L2ARC_WRITE_SIZE
;
8151 if (arc_warm
== B_FALSE
)
8152 size
+= l2arc_write_boost
;
8154 /* We need to add in the worst case scenario of log block overhead. */
8155 size
+= l2arc_log_blk_overhead(size
, dev
);
8156 if (dev
->l2ad_vdev
->vdev_has_trim
&& l2arc_trim_ahead
> 0) {
8158 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
8159 * times the writesize, whichever is greater.
8161 size
+= MAX(64 * 1024 * 1024,
8162 (size
* l2arc_trim_ahead
) / 100);
8166 * Make sure the write size does not exceed the size of the cache
8167 * device. This is important in l2arc_evict(), otherwise infinite
8168 * iteration can occur.
8170 size
= MIN(size
, (dev
->l2ad_end
- dev
->l2ad_start
) / 4);
8172 size
= P2ROUNDUP(size
, 1ULL << dev
->l2ad_vdev
->vdev_ashift
);
8179 l2arc_write_interval(clock_t began
, uint64_t wanted
, uint64_t wrote
)
8181 clock_t interval
, next
, now
;
8184 * If the ARC lists are busy, increase our write rate; if the
8185 * lists are stale, idle back. This is achieved by checking
8186 * how much we previously wrote - if it was more than half of
8187 * what we wanted, schedule the next write much sooner.
8189 if (l2arc_feed_again
&& wrote
> (wanted
/ 2))
8190 interval
= (hz
* l2arc_feed_min_ms
) / 1000;
8192 interval
= hz
* l2arc_feed_secs
;
8194 now
= ddi_get_lbolt();
8195 next
= MAX(now
, MIN(now
+ interval
, began
+ interval
));
8201 * Cycle through L2ARC devices. This is how L2ARC load balances.
8202 * If a device is returned, this also returns holding the spa config lock.
8204 static l2arc_dev_t
*
8205 l2arc_dev_get_next(void)
8207 l2arc_dev_t
*first
, *next
= NULL
;
8210 * Lock out the removal of spas (spa_namespace_lock), then removal
8211 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8212 * both locks will be dropped and a spa config lock held instead.
8214 mutex_enter(&spa_namespace_lock
);
8215 mutex_enter(&l2arc_dev_mtx
);
8217 /* if there are no vdevs, there is nothing to do */
8218 if (l2arc_ndev
== 0)
8222 next
= l2arc_dev_last
;
8224 /* loop around the list looking for a non-faulted vdev */
8226 next
= list_head(l2arc_dev_list
);
8228 next
= list_next(l2arc_dev_list
, next
);
8230 next
= list_head(l2arc_dev_list
);
8233 /* if we have come back to the start, bail out */
8236 else if (next
== first
)
8239 ASSERT3P(next
, !=, NULL
);
8240 } while (vdev_is_dead(next
->l2ad_vdev
) || next
->l2ad_rebuild
||
8241 next
->l2ad_trim_all
|| next
->l2ad_spa
->spa_is_exporting
);
8243 /* if we were unable to find any usable vdevs, return NULL */
8244 if (vdev_is_dead(next
->l2ad_vdev
) || next
->l2ad_rebuild
||
8245 next
->l2ad_trim_all
|| next
->l2ad_spa
->spa_is_exporting
)
8248 l2arc_dev_last
= next
;
8251 mutex_exit(&l2arc_dev_mtx
);
8254 * Grab the config lock to prevent the 'next' device from being
8255 * removed while we are writing to it.
8258 spa_config_enter(next
->l2ad_spa
, SCL_L2ARC
, next
, RW_READER
);
8259 mutex_exit(&spa_namespace_lock
);
8265 * Free buffers that were tagged for destruction.
8268 l2arc_do_free_on_write(void)
8270 l2arc_data_free_t
*df
;
8272 mutex_enter(&l2arc_free_on_write_mtx
);
8273 while ((df
= list_remove_head(l2arc_free_on_write
)) != NULL
) {
8274 ASSERT3P(df
->l2df_abd
, !=, NULL
);
8275 abd_free(df
->l2df_abd
);
8276 kmem_free(df
, sizeof (l2arc_data_free_t
));
8278 mutex_exit(&l2arc_free_on_write_mtx
);
8282 * A write to a cache device has completed. Update all headers to allow
8283 * reads from these buffers to begin.
8286 l2arc_write_done(zio_t
*zio
)
8288 l2arc_write_callback_t
*cb
;
8289 l2arc_lb_abd_buf_t
*abd_buf
;
8290 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
8292 l2arc_dev_hdr_phys_t
*l2dhdr
;
8294 arc_buf_hdr_t
*head
, *hdr
, *hdr_prev
;
8295 kmutex_t
*hash_lock
;
8296 int64_t bytes_dropped
= 0;
8298 cb
= zio
->io_private
;
8299 ASSERT3P(cb
, !=, NULL
);
8300 dev
= cb
->l2wcb_dev
;
8301 l2dhdr
= dev
->l2ad_dev_hdr
;
8302 ASSERT3P(dev
, !=, NULL
);
8303 head
= cb
->l2wcb_head
;
8304 ASSERT3P(head
, !=, NULL
);
8305 buflist
= &dev
->l2ad_buflist
;
8306 ASSERT3P(buflist
, !=, NULL
);
8307 DTRACE_PROBE2(l2arc__iodone
, zio_t
*, zio
,
8308 l2arc_write_callback_t
*, cb
);
8311 * All writes completed, or an error was hit.
8314 mutex_enter(&dev
->l2ad_mtx
);
8315 for (hdr
= list_prev(buflist
, head
); hdr
; hdr
= hdr_prev
) {
8316 hdr_prev
= list_prev(buflist
, hdr
);
8318 hash_lock
= HDR_LOCK(hdr
);
8321 * We cannot use mutex_enter or else we can deadlock
8322 * with l2arc_write_buffers (due to swapping the order
8323 * the hash lock and l2ad_mtx are taken).
8325 if (!mutex_tryenter(hash_lock
)) {
8327 * Missed the hash lock. We must retry so we
8328 * don't leave the ARC_FLAG_L2_WRITING bit set.
8330 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry
);
8333 * We don't want to rescan the headers we've
8334 * already marked as having been written out, so
8335 * we reinsert the head node so we can pick up
8336 * where we left off.
8338 list_remove(buflist
, head
);
8339 list_insert_after(buflist
, hdr
, head
);
8341 mutex_exit(&dev
->l2ad_mtx
);
8344 * We wait for the hash lock to become available
8345 * to try and prevent busy waiting, and increase
8346 * the chance we'll be able to acquire the lock
8347 * the next time around.
8349 mutex_enter(hash_lock
);
8350 mutex_exit(hash_lock
);
8355 * We could not have been moved into the arc_l2c_only
8356 * state while in-flight due to our ARC_FLAG_L2_WRITING
8357 * bit being set. Let's just ensure that's being enforced.
8359 ASSERT(HDR_HAS_L1HDR(hdr
));
8362 * Skipped - drop L2ARC entry and mark the header as no
8363 * longer L2 eligibile.
8365 if (zio
->io_error
!= 0) {
8367 * Error - drop L2ARC entry.
8369 list_remove(buflist
, hdr
);
8370 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
8372 uint64_t psize
= HDR_GET_PSIZE(hdr
);
8373 l2arc_hdr_arcstats_decrement(hdr
);
8376 vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
8377 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
,
8378 arc_hdr_size(hdr
), hdr
);
8382 * Allow ARC to begin reads and ghost list evictions to
8385 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_WRITING
);
8387 mutex_exit(hash_lock
);
8391 * Free the allocated abd buffers for writing the log blocks.
8392 * If the zio failed reclaim the allocated space and remove the
8393 * pointers to these log blocks from the log block pointer list
8394 * of the L2ARC device.
8396 while ((abd_buf
= list_remove_tail(&cb
->l2wcb_abd_list
)) != NULL
) {
8397 abd_free(abd_buf
->abd
);
8398 zio_buf_free(abd_buf
, sizeof (*abd_buf
));
8399 if (zio
->io_error
!= 0) {
8400 lb_ptr_buf
= list_remove_head(&dev
->l2ad_lbptr_list
);
8402 * L2BLK_GET_PSIZE returns aligned size for log
8406 L2BLK_GET_PSIZE((lb_ptr_buf
->lb_ptr
)->lbp_prop
);
8407 bytes_dropped
+= asize
;
8408 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, -asize
);
8409 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count
);
8410 zfs_refcount_remove_many(&dev
->l2ad_lb_asize
, asize
,
8412 (void) zfs_refcount_remove(&dev
->l2ad_lb_count
,
8414 kmem_free(lb_ptr_buf
->lb_ptr
,
8415 sizeof (l2arc_log_blkptr_t
));
8416 kmem_free(lb_ptr_buf
, sizeof (l2arc_lb_ptr_buf_t
));
8419 list_destroy(&cb
->l2wcb_abd_list
);
8421 if (zio
->io_error
!= 0) {
8422 ARCSTAT_BUMP(arcstat_l2_writes_error
);
8425 * Restore the lbps array in the header to its previous state.
8426 * If the list of log block pointers is empty, zero out the
8427 * log block pointers in the device header.
8429 lb_ptr_buf
= list_head(&dev
->l2ad_lbptr_list
);
8430 for (int i
= 0; i
< 2; i
++) {
8431 if (lb_ptr_buf
== NULL
) {
8433 * If the list is empty zero out the device
8434 * header. Otherwise zero out the second log
8435 * block pointer in the header.
8439 dev
->l2ad_dev_hdr_asize
);
8441 memset(&l2dhdr
->dh_start_lbps
[i
], 0,
8442 sizeof (l2arc_log_blkptr_t
));
8446 memcpy(&l2dhdr
->dh_start_lbps
[i
], lb_ptr_buf
->lb_ptr
,
8447 sizeof (l2arc_log_blkptr_t
));
8448 lb_ptr_buf
= list_next(&dev
->l2ad_lbptr_list
,
8453 ARCSTAT_BUMP(arcstat_l2_writes_done
);
8454 list_remove(buflist
, head
);
8455 ASSERT(!HDR_HAS_L1HDR(head
));
8456 kmem_cache_free(hdr_l2only_cache
, head
);
8457 mutex_exit(&dev
->l2ad_mtx
);
8459 ASSERT(dev
->l2ad_vdev
!= NULL
);
8460 vdev_space_update(dev
->l2ad_vdev
, -bytes_dropped
, 0, 0);
8462 l2arc_do_free_on_write();
8464 kmem_free(cb
, sizeof (l2arc_write_callback_t
));
8468 l2arc_untransform(zio_t
*zio
, l2arc_read_callback_t
*cb
)
8471 spa_t
*spa
= zio
->io_spa
;
8472 arc_buf_hdr_t
*hdr
= cb
->l2rcb_hdr
;
8473 blkptr_t
*bp
= zio
->io_bp
;
8474 uint8_t salt
[ZIO_DATA_SALT_LEN
];
8475 uint8_t iv
[ZIO_DATA_IV_LEN
];
8476 uint8_t mac
[ZIO_DATA_MAC_LEN
];
8477 boolean_t no_crypt
= B_FALSE
;
8480 * ZIL data is never be written to the L2ARC, so we don't need
8481 * special handling for its unique MAC storage.
8483 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
8484 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
8485 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
8488 * If the data was encrypted, decrypt it now. Note that
8489 * we must check the bp here and not the hdr, since the
8490 * hdr does not have its encryption parameters updated
8491 * until arc_read_done().
8493 if (BP_IS_ENCRYPTED(bp
)) {
8494 abd_t
*eabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
8495 ARC_HDR_USE_RESERVE
);
8497 zio_crypt_decode_params_bp(bp
, salt
, iv
);
8498 zio_crypt_decode_mac_bp(bp
, mac
);
8500 ret
= spa_do_crypt_abd(B_FALSE
, spa
, &cb
->l2rcb_zb
,
8501 BP_GET_TYPE(bp
), BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
),
8502 salt
, iv
, mac
, HDR_GET_PSIZE(hdr
), eabd
,
8503 hdr
->b_l1hdr
.b_pabd
, &no_crypt
);
8505 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8510 * If we actually performed decryption, replace b_pabd
8511 * with the decrypted data. Otherwise we can just throw
8512 * our decryption buffer away.
8515 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8516 arc_hdr_size(hdr
), hdr
);
8517 hdr
->b_l1hdr
.b_pabd
= eabd
;
8520 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8525 * If the L2ARC block was compressed, but ARC compression
8526 * is disabled we decompress the data into a new buffer and
8527 * replace the existing data.
8529 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
8530 !HDR_COMPRESSION_ENABLED(hdr
)) {
8531 abd_t
*cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
8532 ARC_HDR_USE_RESERVE
);
8534 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
8535 hdr
->b_l1hdr
.b_pabd
, cabd
, HDR_GET_PSIZE(hdr
),
8536 HDR_GET_LSIZE(hdr
), &hdr
->b_complevel
);
8538 arc_free_data_abd(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
8542 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8543 arc_hdr_size(hdr
), hdr
);
8544 hdr
->b_l1hdr
.b_pabd
= cabd
;
8546 zio
->io_size
= HDR_GET_LSIZE(hdr
);
8557 * A read to a cache device completed. Validate buffer contents before
8558 * handing over to the regular ARC routines.
8561 l2arc_read_done(zio_t
*zio
)
8564 l2arc_read_callback_t
*cb
= zio
->io_private
;
8566 kmutex_t
*hash_lock
;
8567 boolean_t valid_cksum
;
8568 boolean_t using_rdata
= (BP_IS_ENCRYPTED(&cb
->l2rcb_bp
) &&
8569 (cb
->l2rcb_flags
& ZIO_FLAG_RAW_ENCRYPT
));
8571 ASSERT3P(zio
->io_vd
, !=, NULL
);
8572 ASSERT(zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
);
8574 spa_config_exit(zio
->io_spa
, SCL_L2ARC
, zio
->io_vd
);
8576 ASSERT3P(cb
, !=, NULL
);
8577 hdr
= cb
->l2rcb_hdr
;
8578 ASSERT3P(hdr
, !=, NULL
);
8580 hash_lock
= HDR_LOCK(hdr
);
8581 mutex_enter(hash_lock
);
8582 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
8585 * If the data was read into a temporary buffer,
8586 * move it and free the buffer.
8588 if (cb
->l2rcb_abd
!= NULL
) {
8589 ASSERT3U(arc_hdr_size(hdr
), <, zio
->io_size
);
8590 if (zio
->io_error
== 0) {
8592 abd_copy(hdr
->b_crypt_hdr
.b_rabd
,
8593 cb
->l2rcb_abd
, arc_hdr_size(hdr
));
8595 abd_copy(hdr
->b_l1hdr
.b_pabd
,
8596 cb
->l2rcb_abd
, arc_hdr_size(hdr
));
8601 * The following must be done regardless of whether
8602 * there was an error:
8603 * - free the temporary buffer
8604 * - point zio to the real ARC buffer
8605 * - set zio size accordingly
8606 * These are required because zio is either re-used for
8607 * an I/O of the block in the case of the error
8608 * or the zio is passed to arc_read_done() and it
8611 abd_free(cb
->l2rcb_abd
);
8612 zio
->io_size
= zio
->io_orig_size
= arc_hdr_size(hdr
);
8615 ASSERT(HDR_HAS_RABD(hdr
));
8616 zio
->io_abd
= zio
->io_orig_abd
=
8617 hdr
->b_crypt_hdr
.b_rabd
;
8619 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
8620 zio
->io_abd
= zio
->io_orig_abd
= hdr
->b_l1hdr
.b_pabd
;
8624 ASSERT3P(zio
->io_abd
, !=, NULL
);
8627 * Check this survived the L2ARC journey.
8629 ASSERT(zio
->io_abd
== hdr
->b_l1hdr
.b_pabd
||
8630 (HDR_HAS_RABD(hdr
) && zio
->io_abd
== hdr
->b_crypt_hdr
.b_rabd
));
8631 zio
->io_bp_copy
= cb
->l2rcb_bp
; /* XXX fix in L2ARC 2.0 */
8632 zio
->io_bp
= &zio
->io_bp_copy
; /* XXX fix in L2ARC 2.0 */
8633 zio
->io_prop
.zp_complevel
= hdr
->b_complevel
;
8635 valid_cksum
= arc_cksum_is_equal(hdr
, zio
);
8638 * b_rabd will always match the data as it exists on disk if it is
8639 * being used. Therefore if we are reading into b_rabd we do not
8640 * attempt to untransform the data.
8642 if (valid_cksum
&& !using_rdata
)
8643 tfm_error
= l2arc_untransform(zio
, cb
);
8645 if (valid_cksum
&& tfm_error
== 0 && zio
->io_error
== 0 &&
8646 !HDR_L2_EVICTED(hdr
)) {
8647 mutex_exit(hash_lock
);
8648 zio
->io_private
= hdr
;
8652 * Buffer didn't survive caching. Increment stats and
8653 * reissue to the original storage device.
8655 if (zio
->io_error
!= 0) {
8656 ARCSTAT_BUMP(arcstat_l2_io_error
);
8658 zio
->io_error
= SET_ERROR(EIO
);
8660 if (!valid_cksum
|| tfm_error
!= 0)
8661 ARCSTAT_BUMP(arcstat_l2_cksum_bad
);
8664 * If there's no waiter, issue an async i/o to the primary
8665 * storage now. If there *is* a waiter, the caller must
8666 * issue the i/o in a context where it's OK to block.
8668 if (zio
->io_waiter
== NULL
) {
8669 zio_t
*pio
= zio_unique_parent(zio
);
8670 void *abd
= (using_rdata
) ?
8671 hdr
->b_crypt_hdr
.b_rabd
: hdr
->b_l1hdr
.b_pabd
;
8673 ASSERT(!pio
|| pio
->io_child_type
== ZIO_CHILD_LOGICAL
);
8675 zio
= zio_read(pio
, zio
->io_spa
, zio
->io_bp
,
8676 abd
, zio
->io_size
, arc_read_done
,
8677 hdr
, zio
->io_priority
, cb
->l2rcb_flags
,
8681 * Original ZIO will be freed, so we need to update
8682 * ARC header with the new ZIO pointer to be used
8683 * by zio_change_priority() in arc_read().
8685 for (struct arc_callback
*acb
= hdr
->b_l1hdr
.b_acb
;
8686 acb
!= NULL
; acb
= acb
->acb_next
)
8687 acb
->acb_zio_head
= zio
;
8689 mutex_exit(hash_lock
);
8692 mutex_exit(hash_lock
);
8696 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
8700 * This is the list priority from which the L2ARC will search for pages to
8701 * cache. This is used within loops (0..3) to cycle through lists in the
8702 * desired order. This order can have a significant effect on cache
8705 * Currently the metadata lists are hit first, MFU then MRU, followed by
8706 * the data lists. This function returns a locked list, and also returns
8709 static multilist_sublist_t
*
8710 l2arc_sublist_lock(int list_num
)
8712 multilist_t
*ml
= NULL
;
8715 ASSERT(list_num
>= 0 && list_num
< L2ARC_FEED_TYPES
);
8719 ml
= &arc_mfu
->arcs_list
[ARC_BUFC_METADATA
];
8722 ml
= &arc_mru
->arcs_list
[ARC_BUFC_METADATA
];
8725 ml
= &arc_mfu
->arcs_list
[ARC_BUFC_DATA
];
8728 ml
= &arc_mru
->arcs_list
[ARC_BUFC_DATA
];
8735 * Return a randomly-selected sublist. This is acceptable
8736 * because the caller feeds only a little bit of data for each
8737 * call (8MB). Subsequent calls will result in different
8738 * sublists being selected.
8740 idx
= multilist_get_random_index(ml
);
8741 return (multilist_sublist_lock_idx(ml
, idx
));
8745 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
8746 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
8747 * overhead in processing to make sure there is enough headroom available
8748 * when writing buffers.
8750 static inline uint64_t
8751 l2arc_log_blk_overhead(uint64_t write_sz
, l2arc_dev_t
*dev
)
8753 if (dev
->l2ad_log_entries
== 0) {
8756 uint64_t log_entries
= write_sz
>> SPA_MINBLOCKSHIFT
;
8758 uint64_t log_blocks
= (log_entries
+
8759 dev
->l2ad_log_entries
- 1) /
8760 dev
->l2ad_log_entries
;
8762 return (vdev_psize_to_asize(dev
->l2ad_vdev
,
8763 sizeof (l2arc_log_blk_phys_t
)) * log_blocks
);
8768 * Evict buffers from the device write hand to the distance specified in
8769 * bytes. This distance may span populated buffers, it may span nothing.
8770 * This is clearing a region on the L2ARC device ready for writing.
8771 * If the 'all' boolean is set, every buffer is evicted.
8774 l2arc_evict(l2arc_dev_t
*dev
, uint64_t distance
, boolean_t all
)
8777 arc_buf_hdr_t
*hdr
, *hdr_prev
;
8778 kmutex_t
*hash_lock
;
8780 l2arc_lb_ptr_buf_t
*lb_ptr_buf
, *lb_ptr_buf_prev
;
8781 vdev_t
*vd
= dev
->l2ad_vdev
;
8784 buflist
= &dev
->l2ad_buflist
;
8788 if (dev
->l2ad_hand
+ distance
> dev
->l2ad_end
) {
8790 * When there is no space to accommodate upcoming writes,
8791 * evict to the end. Then bump the write and evict hands
8792 * to the start and iterate. This iteration does not
8793 * happen indefinitely as we make sure in
8794 * l2arc_write_size() that when the write hand is reset,
8795 * the write size does not exceed the end of the device.
8798 taddr
= dev
->l2ad_end
;
8800 taddr
= dev
->l2ad_hand
+ distance
;
8802 DTRACE_PROBE4(l2arc__evict
, l2arc_dev_t
*, dev
, list_t
*, buflist
,
8803 uint64_t, taddr
, boolean_t
, all
);
8807 * This check has to be placed after deciding whether to
8810 if (dev
->l2ad_first
) {
8812 * This is the first sweep through the device. There is
8813 * nothing to evict. We have already trimmmed the
8819 * Trim the space to be evicted.
8821 if (vd
->vdev_has_trim
&& dev
->l2ad_evict
< taddr
&&
8822 l2arc_trim_ahead
> 0) {
8824 * We have to drop the spa_config lock because
8825 * vdev_trim_range() will acquire it.
8826 * l2ad_evict already accounts for the label
8827 * size. To prevent vdev_trim_ranges() from
8828 * adding it again, we subtract it from
8831 spa_config_exit(dev
->l2ad_spa
, SCL_L2ARC
, dev
);
8832 vdev_trim_simple(vd
,
8833 dev
->l2ad_evict
- VDEV_LABEL_START_SIZE
,
8834 taddr
- dev
->l2ad_evict
);
8835 spa_config_enter(dev
->l2ad_spa
, SCL_L2ARC
, dev
,
8840 * When rebuilding L2ARC we retrieve the evict hand
8841 * from the header of the device. Of note, l2arc_evict()
8842 * does not actually delete buffers from the cache
8843 * device, but trimming may do so depending on the
8844 * hardware implementation. Thus keeping track of the
8845 * evict hand is useful.
8847 dev
->l2ad_evict
= MAX(dev
->l2ad_evict
, taddr
);
8852 mutex_enter(&dev
->l2ad_mtx
);
8854 * We have to account for evicted log blocks. Run vdev_space_update()
8855 * on log blocks whose offset (in bytes) is before the evicted offset
8856 * (in bytes) by searching in the list of pointers to log blocks
8857 * present in the L2ARC device.
8859 for (lb_ptr_buf
= list_tail(&dev
->l2ad_lbptr_list
); lb_ptr_buf
;
8860 lb_ptr_buf
= lb_ptr_buf_prev
) {
8862 lb_ptr_buf_prev
= list_prev(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
8864 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
8865 uint64_t asize
= L2BLK_GET_PSIZE(
8866 (lb_ptr_buf
->lb_ptr
)->lbp_prop
);
8869 * We don't worry about log blocks left behind (ie
8870 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
8871 * will never write more than l2arc_evict() evicts.
8873 if (!all
&& l2arc_log_blkptr_valid(dev
, lb_ptr_buf
->lb_ptr
)) {
8876 vdev_space_update(vd
, -asize
, 0, 0);
8877 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, -asize
);
8878 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count
);
8879 zfs_refcount_remove_many(&dev
->l2ad_lb_asize
, asize
,
8881 (void) zfs_refcount_remove(&dev
->l2ad_lb_count
,
8883 list_remove(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
8884 kmem_free(lb_ptr_buf
->lb_ptr
,
8885 sizeof (l2arc_log_blkptr_t
));
8886 kmem_free(lb_ptr_buf
, sizeof (l2arc_lb_ptr_buf_t
));
8890 for (hdr
= list_tail(buflist
); hdr
; hdr
= hdr_prev
) {
8891 hdr_prev
= list_prev(buflist
, hdr
);
8893 ASSERT(!HDR_EMPTY(hdr
));
8894 hash_lock
= HDR_LOCK(hdr
);
8897 * We cannot use mutex_enter or else we can deadlock
8898 * with l2arc_write_buffers (due to swapping the order
8899 * the hash lock and l2ad_mtx are taken).
8901 if (!mutex_tryenter(hash_lock
)) {
8903 * Missed the hash lock. Retry.
8905 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry
);
8906 mutex_exit(&dev
->l2ad_mtx
);
8907 mutex_enter(hash_lock
);
8908 mutex_exit(hash_lock
);
8913 * A header can't be on this list if it doesn't have L2 header.
8915 ASSERT(HDR_HAS_L2HDR(hdr
));
8917 /* Ensure this header has finished being written. */
8918 ASSERT(!HDR_L2_WRITING(hdr
));
8919 ASSERT(!HDR_L2_WRITE_HEAD(hdr
));
8921 if (!all
&& (hdr
->b_l2hdr
.b_daddr
>= dev
->l2ad_evict
||
8922 hdr
->b_l2hdr
.b_daddr
< dev
->l2ad_hand
)) {
8924 * We've evicted to the target address,
8925 * or the end of the device.
8927 mutex_exit(hash_lock
);
8931 if (!HDR_HAS_L1HDR(hdr
)) {
8932 ASSERT(!HDR_L2_READING(hdr
));
8934 * This doesn't exist in the ARC. Destroy.
8935 * arc_hdr_destroy() will call list_remove()
8936 * and decrement arcstat_l2_lsize.
8938 arc_change_state(arc_anon
, hdr
);
8939 arc_hdr_destroy(hdr
);
8941 ASSERT(hdr
->b_l1hdr
.b_state
!= arc_l2c_only
);
8942 ARCSTAT_BUMP(arcstat_l2_evict_l1cached
);
8944 * Invalidate issued or about to be issued
8945 * reads, since we may be about to write
8946 * over this location.
8948 if (HDR_L2_READING(hdr
)) {
8949 ARCSTAT_BUMP(arcstat_l2_evict_reading
);
8950 arc_hdr_set_flags(hdr
, ARC_FLAG_L2_EVICTED
);
8953 arc_hdr_l2hdr_destroy(hdr
);
8955 mutex_exit(hash_lock
);
8957 mutex_exit(&dev
->l2ad_mtx
);
8961 * We need to check if we evict all buffers, otherwise we may iterate
8964 if (!all
&& rerun
) {
8966 * Bump device hand to the device start if it is approaching the
8967 * end. l2arc_evict() has already evicted ahead for this case.
8969 dev
->l2ad_hand
= dev
->l2ad_start
;
8970 dev
->l2ad_evict
= dev
->l2ad_start
;
8971 dev
->l2ad_first
= B_FALSE
;
8977 * In case of cache device removal (all) the following
8978 * assertions may be violated without functional consequences
8979 * as the device is about to be removed.
8981 ASSERT3U(dev
->l2ad_hand
+ distance
, <=, dev
->l2ad_end
);
8982 if (!dev
->l2ad_first
)
8983 ASSERT3U(dev
->l2ad_hand
, <=, dev
->l2ad_evict
);
8988 * Handle any abd transforms that might be required for writing to the L2ARC.
8989 * If successful, this function will always return an abd with the data
8990 * transformed as it is on disk in a new abd of asize bytes.
8993 l2arc_apply_transforms(spa_t
*spa
, arc_buf_hdr_t
*hdr
, uint64_t asize
,
8997 abd_t
*cabd
= NULL
, *eabd
= NULL
, *to_write
= hdr
->b_l1hdr
.b_pabd
;
8998 enum zio_compress compress
= HDR_GET_COMPRESS(hdr
);
8999 uint64_t psize
= HDR_GET_PSIZE(hdr
);
9000 uint64_t size
= arc_hdr_size(hdr
);
9001 boolean_t ismd
= HDR_ISTYPE_METADATA(hdr
);
9002 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
9003 dsl_crypto_key_t
*dck
= NULL
;
9004 uint8_t mac
[ZIO_DATA_MAC_LEN
] = { 0 };
9005 boolean_t no_crypt
= B_FALSE
;
9007 ASSERT((HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
9008 !HDR_COMPRESSION_ENABLED(hdr
)) ||
9009 HDR_ENCRYPTED(hdr
) || HDR_SHARED_DATA(hdr
) || psize
!= asize
);
9010 ASSERT3U(psize
, <=, asize
);
9013 * If this data simply needs its own buffer, we simply allocate it
9014 * and copy the data. This may be done to eliminate a dependency on a
9015 * shared buffer or to reallocate the buffer to match asize.
9017 if (HDR_HAS_RABD(hdr
)) {
9018 ASSERT3U(asize
, >, psize
);
9019 to_write
= abd_alloc_for_io(asize
, ismd
);
9020 abd_copy(to_write
, hdr
->b_crypt_hdr
.b_rabd
, psize
);
9021 abd_zero_off(to_write
, psize
, asize
- psize
);
9025 if ((compress
== ZIO_COMPRESS_OFF
|| HDR_COMPRESSION_ENABLED(hdr
)) &&
9026 !HDR_ENCRYPTED(hdr
)) {
9027 ASSERT3U(size
, ==, psize
);
9028 to_write
= abd_alloc_for_io(asize
, ismd
);
9029 abd_copy(to_write
, hdr
->b_l1hdr
.b_pabd
, size
);
9031 abd_zero_off(to_write
, size
, asize
- size
);
9035 if (compress
!= ZIO_COMPRESS_OFF
&& !HDR_COMPRESSION_ENABLED(hdr
)) {
9036 cabd
= abd_alloc_for_io(MAX(size
, asize
), ismd
);
9037 uint64_t csize
= zio_compress_data(compress
, to_write
, &cabd
,
9038 size
, MIN(size
, psize
), hdr
->b_complevel
);
9039 if (csize
>= size
|| csize
> psize
) {
9041 * We can't re-compress the block into the original
9042 * psize. Even if it fits into asize, it does not
9043 * matter, since checksum will never match on read.
9046 return (SET_ERROR(EIO
));
9049 abd_zero_off(cabd
, csize
, asize
- csize
);
9053 if (HDR_ENCRYPTED(hdr
)) {
9054 eabd
= abd_alloc_for_io(asize
, ismd
);
9057 * If the dataset was disowned before the buffer
9058 * made it to this point, the key to re-encrypt
9059 * it won't be available. In this case we simply
9060 * won't write the buffer to the L2ARC.
9062 ret
= spa_keystore_lookup_key(spa
, hdr
->b_crypt_hdr
.b_dsobj
,
9067 ret
= zio_do_crypt_abd(B_TRUE
, &dck
->dck_key
,
9068 hdr
->b_crypt_hdr
.b_ot
, bswap
, hdr
->b_crypt_hdr
.b_salt
,
9069 hdr
->b_crypt_hdr
.b_iv
, mac
, psize
, to_write
, eabd
,
9075 abd_copy(eabd
, to_write
, psize
);
9078 abd_zero_off(eabd
, psize
, asize
- psize
);
9080 /* assert that the MAC we got here matches the one we saved */
9081 ASSERT0(memcmp(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
));
9082 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
9084 if (to_write
== cabd
)
9091 ASSERT3P(to_write
, !=, hdr
->b_l1hdr
.b_pabd
);
9092 *abd_out
= to_write
;
9097 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
9108 l2arc_blk_fetch_done(zio_t
*zio
)
9110 l2arc_read_callback_t
*cb
;
9112 cb
= zio
->io_private
;
9113 if (cb
->l2rcb_abd
!= NULL
)
9114 abd_free(cb
->l2rcb_abd
);
9115 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
9119 * Find and write ARC buffers to the L2ARC device.
9121 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9122 * for reading until they have completed writing.
9123 * The headroom_boost is an in-out parameter used to maintain headroom boost
9124 * state between calls to this function.
9126 * Returns the number of bytes actually written (which may be smaller than
9127 * the delta by which the device hand has changed due to alignment and the
9128 * writing of log blocks).
9131 l2arc_write_buffers(spa_t
*spa
, l2arc_dev_t
*dev
, uint64_t target_sz
)
9133 arc_buf_hdr_t
*hdr
, *head
, *marker
;
9134 uint64_t write_asize
, write_psize
, headroom
;
9135 boolean_t full
, from_head
= !arc_warm
;
9136 l2arc_write_callback_t
*cb
= NULL
;
9138 uint64_t guid
= spa_load_guid(spa
);
9139 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9141 ASSERT3P(dev
->l2ad_vdev
, !=, NULL
);
9144 write_asize
= write_psize
= 0;
9146 head
= kmem_cache_alloc(hdr_l2only_cache
, KM_PUSHPAGE
);
9147 arc_hdr_set_flags(head
, ARC_FLAG_L2_WRITE_HEAD
| ARC_FLAG_HAS_L2HDR
);
9148 marker
= arc_state_alloc_marker();
9151 * Copy buffers for L2ARC writing.
9153 for (int pass
= 0; pass
< L2ARC_FEED_TYPES
; pass
++) {
9155 * pass == 0: MFU meta
9156 * pass == 1: MRU meta
9157 * pass == 2: MFU data
9158 * pass == 3: MRU data
9160 if (l2arc_mfuonly
== 1) {
9161 if (pass
== 1 || pass
== 3)
9163 } else if (l2arc_mfuonly
> 1) {
9168 uint64_t passed_sz
= 0;
9169 headroom
= target_sz
* l2arc_headroom
;
9170 if (zfs_compressed_arc_enabled
)
9171 headroom
= (headroom
* l2arc_headroom_boost
) / 100;
9174 * Until the ARC is warm and starts to evict, read from the
9175 * head of the ARC lists rather than the tail.
9177 multilist_sublist_t
*mls
= l2arc_sublist_lock(pass
);
9178 ASSERT3P(mls
, !=, NULL
);
9180 hdr
= multilist_sublist_head(mls
);
9182 hdr
= multilist_sublist_tail(mls
);
9184 while (hdr
!= NULL
) {
9185 kmutex_t
*hash_lock
;
9186 abd_t
*to_write
= NULL
;
9188 hash_lock
= HDR_LOCK(hdr
);
9189 if (!mutex_tryenter(hash_lock
)) {
9191 /* Skip this buffer rather than waiting. */
9193 hdr
= multilist_sublist_next(mls
, hdr
);
9195 hdr
= multilist_sublist_prev(mls
, hdr
);
9199 passed_sz
+= HDR_GET_LSIZE(hdr
);
9200 if (l2arc_headroom
!= 0 && passed_sz
> headroom
) {
9204 mutex_exit(hash_lock
);
9208 if (!l2arc_write_eligible(guid
, hdr
)) {
9209 mutex_exit(hash_lock
);
9213 ASSERT(HDR_HAS_L1HDR(hdr
));
9214 ASSERT3U(HDR_GET_PSIZE(hdr
), >, 0);
9215 ASSERT3U(arc_hdr_size(hdr
), >, 0);
9216 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
9218 uint64_t psize
= HDR_GET_PSIZE(hdr
);
9219 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
9223 * If the allocated size of this buffer plus the max
9224 * size for the pending log block exceeds the evicted
9225 * target size, terminate writing buffers for this run.
9227 if (write_asize
+ asize
+
9228 sizeof (l2arc_log_blk_phys_t
) > target_sz
) {
9230 mutex_exit(hash_lock
);
9235 * We should not sleep with sublist lock held or it
9236 * may block ARC eviction. Insert a marker to save
9237 * the position and drop the lock.
9240 multilist_sublist_insert_after(mls
, hdr
,
9243 multilist_sublist_insert_before(mls
, hdr
,
9246 multilist_sublist_unlock(mls
);
9249 * If this header has b_rabd, we can use this since it
9250 * must always match the data exactly as it exists on
9251 * disk. Otherwise, the L2ARC can normally use the
9252 * hdr's data, but if we're sharing data between the
9253 * hdr and one of its bufs, L2ARC needs its own copy of
9254 * the data so that the ZIO below can't race with the
9255 * buf consumer. To ensure that this copy will be
9256 * available for the lifetime of the ZIO and be cleaned
9257 * up afterwards, we add it to the l2arc_free_on_write
9258 * queue. If we need to apply any transforms to the
9259 * data (compression, encryption) we will also need the
9262 if (HDR_HAS_RABD(hdr
) && psize
== asize
) {
9263 to_write
= hdr
->b_crypt_hdr
.b_rabd
;
9264 } else if ((HDR_COMPRESSION_ENABLED(hdr
) ||
9265 HDR_GET_COMPRESS(hdr
) == ZIO_COMPRESS_OFF
) &&
9266 !HDR_ENCRYPTED(hdr
) && !HDR_SHARED_DATA(hdr
) &&
9268 to_write
= hdr
->b_l1hdr
.b_pabd
;
9271 arc_buf_contents_t type
= arc_buf_type(hdr
);
9273 ret
= l2arc_apply_transforms(spa
, hdr
, asize
,
9276 arc_hdr_clear_flags(hdr
,
9278 mutex_exit(hash_lock
);
9282 l2arc_free_abd_on_write(to_write
, asize
, type
);
9285 hdr
->b_l2hdr
.b_dev
= dev
;
9286 hdr
->b_l2hdr
.b_daddr
= dev
->l2ad_hand
;
9287 hdr
->b_l2hdr
.b_hits
= 0;
9288 hdr
->b_l2hdr
.b_arcs_state
=
9289 hdr
->b_l1hdr
.b_state
->arcs_state
;
9290 mutex_enter(&dev
->l2ad_mtx
);
9293 * Insert a dummy header on the buflist so
9294 * l2arc_write_done() can find where the
9295 * write buffers begin without searching.
9297 list_insert_head(&dev
->l2ad_buflist
, head
);
9299 list_insert_head(&dev
->l2ad_buflist
, hdr
);
9300 mutex_exit(&dev
->l2ad_mtx
);
9301 arc_hdr_set_flags(hdr
, ARC_FLAG_HAS_L2HDR
|
9302 ARC_FLAG_L2_WRITING
);
9304 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
9305 arc_hdr_size(hdr
), hdr
);
9306 l2arc_hdr_arcstats_increment(hdr
);
9308 boolean_t commit
= l2arc_log_blk_insert(dev
, hdr
);
9309 mutex_exit(hash_lock
);
9313 sizeof (l2arc_write_callback_t
), KM_SLEEP
);
9314 cb
->l2wcb_dev
= dev
;
9315 cb
->l2wcb_head
= head
;
9316 list_create(&cb
->l2wcb_abd_list
,
9317 sizeof (l2arc_lb_abd_buf_t
),
9318 offsetof(l2arc_lb_abd_buf_t
, node
));
9319 pio
= zio_root(spa
, l2arc_write_done
, cb
,
9323 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
,
9324 dev
->l2ad_hand
, asize
, to_write
,
9325 ZIO_CHECKSUM_OFF
, NULL
, hdr
,
9326 ZIO_PRIORITY_ASYNC_WRITE
,
9327 ZIO_FLAG_CANFAIL
, B_FALSE
);
9329 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
,
9333 write_psize
+= psize
;
9334 write_asize
+= asize
;
9335 dev
->l2ad_hand
+= asize
;
9336 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
9339 /* l2ad_hand will be adjusted inside. */
9341 l2arc_log_blk_commit(dev
, pio
, cb
);
9345 multilist_sublist_lock(mls
);
9347 hdr
= multilist_sublist_next(mls
, marker
);
9349 hdr
= multilist_sublist_prev(mls
, marker
);
9350 multilist_sublist_remove(mls
, marker
);
9353 multilist_sublist_unlock(mls
);
9359 arc_state_free_marker(marker
);
9361 /* No buffers selected for writing? */
9363 ASSERT0(write_psize
);
9364 ASSERT(!HDR_HAS_L1HDR(head
));
9365 kmem_cache_free(hdr_l2only_cache
, head
);
9368 * Although we did not write any buffers l2ad_evict may
9371 if (dev
->l2ad_evict
!= l2dhdr
->dh_evict
)
9372 l2arc_dev_hdr_update(dev
);
9377 if (!dev
->l2ad_first
)
9378 ASSERT3U(dev
->l2ad_hand
, <=, dev
->l2ad_evict
);
9380 ASSERT3U(write_asize
, <=, target_sz
);
9381 ARCSTAT_BUMP(arcstat_l2_writes_sent
);
9382 ARCSTAT_INCR(arcstat_l2_write_bytes
, write_psize
);
9384 dev
->l2ad_writing
= B_TRUE
;
9385 (void) zio_wait(pio
);
9386 dev
->l2ad_writing
= B_FALSE
;
9389 * Update the device header after the zio completes as
9390 * l2arc_write_done() may have updated the memory holding the log block
9391 * pointers in the device header.
9393 l2arc_dev_hdr_update(dev
);
9395 return (write_asize
);
9399 l2arc_hdr_limit_reached(void)
9401 int64_t s
= aggsum_upper_bound(&arc_sums
.arcstat_l2_hdr_size
);
9403 return (arc_reclaim_needed() ||
9404 (s
> (arc_warm
? arc_c
: arc_c_max
) * l2arc_meta_percent
/ 100));
9408 * This thread feeds the L2ARC at regular intervals. This is the beating
9409 * heart of the L2ARC.
9411 static __attribute__((noreturn
)) void
9412 l2arc_feed_thread(void *unused
)
9418 uint64_t size
, wrote
;
9419 clock_t begin
, next
= ddi_get_lbolt();
9420 fstrans_cookie_t cookie
;
9422 CALLB_CPR_INIT(&cpr
, &l2arc_feed_thr_lock
, callb_generic_cpr
, FTAG
);
9424 mutex_enter(&l2arc_feed_thr_lock
);
9426 cookie
= spl_fstrans_mark();
9427 while (l2arc_thread_exit
== 0) {
9428 CALLB_CPR_SAFE_BEGIN(&cpr
);
9429 (void) cv_timedwait_idle(&l2arc_feed_thr_cv
,
9430 &l2arc_feed_thr_lock
, next
);
9431 CALLB_CPR_SAFE_END(&cpr
, &l2arc_feed_thr_lock
);
9432 next
= ddi_get_lbolt() + hz
;
9435 * Quick check for L2ARC devices.
9437 mutex_enter(&l2arc_dev_mtx
);
9438 if (l2arc_ndev
== 0) {
9439 mutex_exit(&l2arc_dev_mtx
);
9442 mutex_exit(&l2arc_dev_mtx
);
9443 begin
= ddi_get_lbolt();
9446 * This selects the next l2arc device to write to, and in
9447 * doing so the next spa to feed from: dev->l2ad_spa. This
9448 * will return NULL if there are now no l2arc devices or if
9449 * they are all faulted.
9451 * If a device is returned, its spa's config lock is also
9452 * held to prevent device removal. l2arc_dev_get_next()
9453 * will grab and release l2arc_dev_mtx.
9455 if ((dev
= l2arc_dev_get_next()) == NULL
)
9458 spa
= dev
->l2ad_spa
;
9459 ASSERT3P(spa
, !=, NULL
);
9462 * If the pool is read-only then force the feed thread to
9463 * sleep a little longer.
9465 if (!spa_writeable(spa
)) {
9466 next
= ddi_get_lbolt() + 5 * l2arc_feed_secs
* hz
;
9467 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9472 * Avoid contributing to memory pressure.
9474 if (l2arc_hdr_limit_reached()) {
9475 ARCSTAT_BUMP(arcstat_l2_abort_lowmem
);
9476 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9480 ARCSTAT_BUMP(arcstat_l2_feeds
);
9482 size
= l2arc_write_size(dev
);
9485 * Evict L2ARC buffers that will be overwritten.
9487 l2arc_evict(dev
, size
, B_FALSE
);
9490 * Write ARC buffers.
9492 wrote
= l2arc_write_buffers(spa
, dev
, size
);
9495 * Calculate interval between writes.
9497 next
= l2arc_write_interval(begin
, size
, wrote
);
9498 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9500 spl_fstrans_unmark(cookie
);
9502 l2arc_thread_exit
= 0;
9503 cv_broadcast(&l2arc_feed_thr_cv
);
9504 CALLB_CPR_EXIT(&cpr
); /* drops l2arc_feed_thr_lock */
9509 l2arc_vdev_present(vdev_t
*vd
)
9511 return (l2arc_vdev_get(vd
) != NULL
);
9515 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9516 * the vdev_t isn't an L2ARC device.
9519 l2arc_vdev_get(vdev_t
*vd
)
9523 mutex_enter(&l2arc_dev_mtx
);
9524 for (dev
= list_head(l2arc_dev_list
); dev
!= NULL
;
9525 dev
= list_next(l2arc_dev_list
, dev
)) {
9526 if (dev
->l2ad_vdev
== vd
)
9529 mutex_exit(&l2arc_dev_mtx
);
9535 l2arc_rebuild_dev(l2arc_dev_t
*dev
, boolean_t reopen
)
9537 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9538 uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
9539 spa_t
*spa
= dev
->l2ad_spa
;
9542 * The L2ARC has to hold at least the payload of one log block for
9543 * them to be restored (persistent L2ARC). The payload of a log block
9544 * depends on the amount of its log entries. We always write log blocks
9545 * with 1022 entries. How many of them are committed or restored depends
9546 * on the size of the L2ARC device. Thus the maximum payload of
9547 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9548 * is less than that, we reduce the amount of committed and restored
9549 * log entries per block so as to enable persistence.
9551 if (dev
->l2ad_end
< l2arc_rebuild_blocks_min_l2size
) {
9552 dev
->l2ad_log_entries
= 0;
9554 dev
->l2ad_log_entries
= MIN((dev
->l2ad_end
-
9555 dev
->l2ad_start
) >> SPA_MAXBLOCKSHIFT
,
9556 L2ARC_LOG_BLK_MAX_ENTRIES
);
9560 * Read the device header, if an error is returned do not rebuild L2ARC.
9562 if (l2arc_dev_hdr_read(dev
) == 0 && dev
->l2ad_log_entries
> 0) {
9564 * If we are onlining a cache device (vdev_reopen) that was
9565 * still present (l2arc_vdev_present()) and rebuild is enabled,
9566 * we should evict all ARC buffers and pointers to log blocks
9567 * and reclaim their space before restoring its contents to
9571 if (!l2arc_rebuild_enabled
) {
9574 l2arc_evict(dev
, 0, B_TRUE
);
9575 /* start a new log block */
9576 dev
->l2ad_log_ent_idx
= 0;
9577 dev
->l2ad_log_blk_payload_asize
= 0;
9578 dev
->l2ad_log_blk_payload_start
= 0;
9582 * Just mark the device as pending for a rebuild. We won't
9583 * be starting a rebuild in line here as it would block pool
9584 * import. Instead spa_load_impl will hand that off to an
9585 * async task which will call l2arc_spa_rebuild_start.
9587 dev
->l2ad_rebuild
= B_TRUE
;
9588 } else if (spa_writeable(spa
)) {
9590 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9591 * otherwise create a new header. We zero out the memory holding
9592 * the header to reset dh_start_lbps. If we TRIM the whole
9593 * device the new header will be written by
9594 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9595 * trim_state in the header too. When reading the header, if
9596 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9597 * we opt to TRIM the whole device again.
9599 if (l2arc_trim_ahead
> 0) {
9600 dev
->l2ad_trim_all
= B_TRUE
;
9602 memset(l2dhdr
, 0, l2dhdr_asize
);
9603 l2arc_dev_hdr_update(dev
);
9609 * Add a vdev for use by the L2ARC. By this point the spa has already
9610 * validated the vdev and opened it.
9613 l2arc_add_vdev(spa_t
*spa
, vdev_t
*vd
)
9615 l2arc_dev_t
*adddev
;
9616 uint64_t l2dhdr_asize
;
9618 ASSERT(!l2arc_vdev_present(vd
));
9621 * Create a new l2arc device entry.
9623 adddev
= vmem_zalloc(sizeof (l2arc_dev_t
), KM_SLEEP
);
9624 adddev
->l2ad_spa
= spa
;
9625 adddev
->l2ad_vdev
= vd
;
9626 /* leave extra size for an l2arc device header */
9627 l2dhdr_asize
= adddev
->l2ad_dev_hdr_asize
=
9628 MAX(sizeof (*adddev
->l2ad_dev_hdr
), 1 << vd
->vdev_ashift
);
9629 adddev
->l2ad_start
= VDEV_LABEL_START_SIZE
+ l2dhdr_asize
;
9630 adddev
->l2ad_end
= VDEV_LABEL_START_SIZE
+ vdev_get_min_asize(vd
);
9631 ASSERT3U(adddev
->l2ad_start
, <, adddev
->l2ad_end
);
9632 adddev
->l2ad_hand
= adddev
->l2ad_start
;
9633 adddev
->l2ad_evict
= adddev
->l2ad_start
;
9634 adddev
->l2ad_first
= B_TRUE
;
9635 adddev
->l2ad_writing
= B_FALSE
;
9636 adddev
->l2ad_trim_all
= B_FALSE
;
9637 list_link_init(&adddev
->l2ad_node
);
9638 adddev
->l2ad_dev_hdr
= kmem_zalloc(l2dhdr_asize
, KM_SLEEP
);
9640 mutex_init(&adddev
->l2ad_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
9642 * This is a list of all ARC buffers that are still valid on the
9645 list_create(&adddev
->l2ad_buflist
, sizeof (arc_buf_hdr_t
),
9646 offsetof(arc_buf_hdr_t
, b_l2hdr
.b_l2node
));
9649 * This is a list of pointers to log blocks that are still present
9652 list_create(&adddev
->l2ad_lbptr_list
, sizeof (l2arc_lb_ptr_buf_t
),
9653 offsetof(l2arc_lb_ptr_buf_t
, node
));
9655 vdev_space_update(vd
, 0, 0, adddev
->l2ad_end
- adddev
->l2ad_hand
);
9656 zfs_refcount_create(&adddev
->l2ad_alloc
);
9657 zfs_refcount_create(&adddev
->l2ad_lb_asize
);
9658 zfs_refcount_create(&adddev
->l2ad_lb_count
);
9661 * Decide if dev is eligible for L2ARC rebuild or whole device
9662 * trimming. This has to happen before the device is added in the
9663 * cache device list and l2arc_dev_mtx is released. Otherwise
9664 * l2arc_feed_thread() might already start writing on the
9667 l2arc_rebuild_dev(adddev
, B_FALSE
);
9670 * Add device to global list
9672 mutex_enter(&l2arc_dev_mtx
);
9673 list_insert_head(l2arc_dev_list
, adddev
);
9674 atomic_inc_64(&l2arc_ndev
);
9675 mutex_exit(&l2arc_dev_mtx
);
9679 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9680 * in case of onlining a cache device.
9683 l2arc_rebuild_vdev(vdev_t
*vd
, boolean_t reopen
)
9685 l2arc_dev_t
*dev
= NULL
;
9687 dev
= l2arc_vdev_get(vd
);
9688 ASSERT3P(dev
, !=, NULL
);
9691 * In contrast to l2arc_add_vdev() we do not have to worry about
9692 * l2arc_feed_thread() invalidating previous content when onlining a
9693 * cache device. The device parameters (l2ad*) are not cleared when
9694 * offlining the device and writing new buffers will not invalidate
9695 * all previous content. In worst case only buffers that have not had
9696 * their log block written to the device will be lost.
9697 * When onlining the cache device (ie offline->online without exporting
9698 * the pool in between) this happens:
9699 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
9701 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
9702 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
9703 * is set to B_TRUE we might write additional buffers to the device.
9705 l2arc_rebuild_dev(dev
, reopen
);
9709 * Remove a vdev from the L2ARC.
9712 l2arc_remove_vdev(vdev_t
*vd
)
9714 l2arc_dev_t
*remdev
= NULL
;
9717 * Find the device by vdev
9719 remdev
= l2arc_vdev_get(vd
);
9720 ASSERT3P(remdev
, !=, NULL
);
9723 * Cancel any ongoing or scheduled rebuild.
9725 mutex_enter(&l2arc_rebuild_thr_lock
);
9726 if (remdev
->l2ad_rebuild_began
== B_TRUE
) {
9727 remdev
->l2ad_rebuild_cancel
= B_TRUE
;
9728 while (remdev
->l2ad_rebuild
== B_TRUE
)
9729 cv_wait(&l2arc_rebuild_thr_cv
, &l2arc_rebuild_thr_lock
);
9731 mutex_exit(&l2arc_rebuild_thr_lock
);
9734 * Remove device from global list
9736 mutex_enter(&l2arc_dev_mtx
);
9737 list_remove(l2arc_dev_list
, remdev
);
9738 l2arc_dev_last
= NULL
; /* may have been invalidated */
9739 atomic_dec_64(&l2arc_ndev
);
9740 mutex_exit(&l2arc_dev_mtx
);
9743 * Clear all buflists and ARC references. L2ARC device flush.
9745 l2arc_evict(remdev
, 0, B_TRUE
);
9746 list_destroy(&remdev
->l2ad_buflist
);
9747 ASSERT(list_is_empty(&remdev
->l2ad_lbptr_list
));
9748 list_destroy(&remdev
->l2ad_lbptr_list
);
9749 mutex_destroy(&remdev
->l2ad_mtx
);
9750 zfs_refcount_destroy(&remdev
->l2ad_alloc
);
9751 zfs_refcount_destroy(&remdev
->l2ad_lb_asize
);
9752 zfs_refcount_destroy(&remdev
->l2ad_lb_count
);
9753 kmem_free(remdev
->l2ad_dev_hdr
, remdev
->l2ad_dev_hdr_asize
);
9754 vmem_free(remdev
, sizeof (l2arc_dev_t
));
9760 l2arc_thread_exit
= 0;
9763 mutex_init(&l2arc_feed_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
9764 cv_init(&l2arc_feed_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
9765 mutex_init(&l2arc_rebuild_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
9766 cv_init(&l2arc_rebuild_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
9767 mutex_init(&l2arc_dev_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
9768 mutex_init(&l2arc_free_on_write_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
9770 l2arc_dev_list
= &L2ARC_dev_list
;
9771 l2arc_free_on_write
= &L2ARC_free_on_write
;
9772 list_create(l2arc_dev_list
, sizeof (l2arc_dev_t
),
9773 offsetof(l2arc_dev_t
, l2ad_node
));
9774 list_create(l2arc_free_on_write
, sizeof (l2arc_data_free_t
),
9775 offsetof(l2arc_data_free_t
, l2df_list_node
));
9781 mutex_destroy(&l2arc_feed_thr_lock
);
9782 cv_destroy(&l2arc_feed_thr_cv
);
9783 mutex_destroy(&l2arc_rebuild_thr_lock
);
9784 cv_destroy(&l2arc_rebuild_thr_cv
);
9785 mutex_destroy(&l2arc_dev_mtx
);
9786 mutex_destroy(&l2arc_free_on_write_mtx
);
9788 list_destroy(l2arc_dev_list
);
9789 list_destroy(l2arc_free_on_write
);
9795 if (!(spa_mode_global
& SPA_MODE_WRITE
))
9798 (void) thread_create(NULL
, 0, l2arc_feed_thread
, NULL
, 0, &p0
,
9799 TS_RUN
, defclsyspri
);
9805 if (!(spa_mode_global
& SPA_MODE_WRITE
))
9808 mutex_enter(&l2arc_feed_thr_lock
);
9809 cv_signal(&l2arc_feed_thr_cv
); /* kick thread out of startup */
9810 l2arc_thread_exit
= 1;
9811 while (l2arc_thread_exit
!= 0)
9812 cv_wait(&l2arc_feed_thr_cv
, &l2arc_feed_thr_lock
);
9813 mutex_exit(&l2arc_feed_thr_lock
);
9817 * Punches out rebuild threads for the L2ARC devices in a spa. This should
9818 * be called after pool import from the spa async thread, since starting
9819 * these threads directly from spa_import() will make them part of the
9820 * "zpool import" context and delay process exit (and thus pool import).
9823 l2arc_spa_rebuild_start(spa_t
*spa
)
9825 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
9828 * Locate the spa's l2arc devices and kick off rebuild threads.
9830 for (int i
= 0; i
< spa
->spa_l2cache
.sav_count
; i
++) {
9832 l2arc_vdev_get(spa
->spa_l2cache
.sav_vdevs
[i
]);
9834 /* Don't attempt a rebuild if the vdev is UNAVAIL */
9837 mutex_enter(&l2arc_rebuild_thr_lock
);
9838 if (dev
->l2ad_rebuild
&& !dev
->l2ad_rebuild_cancel
) {
9839 dev
->l2ad_rebuild_began
= B_TRUE
;
9840 (void) thread_create(NULL
, 0, l2arc_dev_rebuild_thread
,
9841 dev
, 0, &p0
, TS_RUN
, minclsyspri
);
9843 mutex_exit(&l2arc_rebuild_thr_lock
);
9848 * Main entry point for L2ARC rebuilding.
9850 static __attribute__((noreturn
)) void
9851 l2arc_dev_rebuild_thread(void *arg
)
9853 l2arc_dev_t
*dev
= arg
;
9855 VERIFY(!dev
->l2ad_rebuild_cancel
);
9856 VERIFY(dev
->l2ad_rebuild
);
9857 (void) l2arc_rebuild(dev
);
9858 mutex_enter(&l2arc_rebuild_thr_lock
);
9859 dev
->l2ad_rebuild_began
= B_FALSE
;
9860 dev
->l2ad_rebuild
= B_FALSE
;
9861 mutex_exit(&l2arc_rebuild_thr_lock
);
9867 * This function implements the actual L2ARC metadata rebuild. It:
9868 * starts reading the log block chain and restores each block's contents
9869 * to memory (reconstructing arc_buf_hdr_t's).
9871 * Operation stops under any of the following conditions:
9873 * 1) We reach the end of the log block chain.
9874 * 2) We encounter *any* error condition (cksum errors, io errors)
9877 l2arc_rebuild(l2arc_dev_t
*dev
)
9879 vdev_t
*vd
= dev
->l2ad_vdev
;
9880 spa_t
*spa
= vd
->vdev_spa
;
9882 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9883 l2arc_log_blk_phys_t
*this_lb
, *next_lb
;
9884 zio_t
*this_io
= NULL
, *next_io
= NULL
;
9885 l2arc_log_blkptr_t lbps
[2];
9886 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
9887 boolean_t lock_held
;
9889 this_lb
= vmem_zalloc(sizeof (*this_lb
), KM_SLEEP
);
9890 next_lb
= vmem_zalloc(sizeof (*next_lb
), KM_SLEEP
);
9893 * We prevent device removal while issuing reads to the device,
9894 * then during the rebuilding phases we drop this lock again so
9895 * that a spa_unload or device remove can be initiated - this is
9896 * safe, because the spa will signal us to stop before removing
9897 * our device and wait for us to stop.
9899 spa_config_enter(spa
, SCL_L2ARC
, vd
, RW_READER
);
9903 * Retrieve the persistent L2ARC device state.
9904 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9906 dev
->l2ad_evict
= MAX(l2dhdr
->dh_evict
, dev
->l2ad_start
);
9907 dev
->l2ad_hand
= MAX(l2dhdr
->dh_start_lbps
[0].lbp_daddr
+
9908 L2BLK_GET_PSIZE((&l2dhdr
->dh_start_lbps
[0])->lbp_prop
),
9910 dev
->l2ad_first
= !!(l2dhdr
->dh_flags
& L2ARC_DEV_HDR_EVICT_FIRST
);
9912 vd
->vdev_trim_action_time
= l2dhdr
->dh_trim_action_time
;
9913 vd
->vdev_trim_state
= l2dhdr
->dh_trim_state
;
9916 * In case the zfs module parameter l2arc_rebuild_enabled is false
9917 * we do not start the rebuild process.
9919 if (!l2arc_rebuild_enabled
)
9922 /* Prepare the rebuild process */
9923 memcpy(lbps
, l2dhdr
->dh_start_lbps
, sizeof (lbps
));
9925 /* Start the rebuild process */
9927 if (!l2arc_log_blkptr_valid(dev
, &lbps
[0]))
9930 if ((err
= l2arc_log_blk_read(dev
, &lbps
[0], &lbps
[1],
9931 this_lb
, next_lb
, this_io
, &next_io
)) != 0)
9935 * Our memory pressure valve. If the system is running low
9936 * on memory, rather than swamping memory with new ARC buf
9937 * hdrs, we opt not to rebuild the L2ARC. At this point,
9938 * however, we have already set up our L2ARC dev to chain in
9939 * new metadata log blocks, so the user may choose to offline/
9940 * online the L2ARC dev at a later time (or re-import the pool)
9941 * to reconstruct it (when there's less memory pressure).
9943 if (l2arc_hdr_limit_reached()) {
9944 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem
);
9945 cmn_err(CE_NOTE
, "System running low on memory, "
9946 "aborting L2ARC rebuild.");
9947 err
= SET_ERROR(ENOMEM
);
9951 spa_config_exit(spa
, SCL_L2ARC
, vd
);
9952 lock_held
= B_FALSE
;
9955 * Now that we know that the next_lb checks out alright, we
9956 * can start reconstruction from this log block.
9957 * L2BLK_GET_PSIZE returns aligned size for log blocks.
9959 uint64_t asize
= L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
9960 l2arc_log_blk_restore(dev
, this_lb
, asize
);
9963 * log block restored, include its pointer in the list of
9964 * pointers to log blocks present in the L2ARC device.
9966 lb_ptr_buf
= kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t
), KM_SLEEP
);
9967 lb_ptr_buf
->lb_ptr
= kmem_zalloc(sizeof (l2arc_log_blkptr_t
),
9969 memcpy(lb_ptr_buf
->lb_ptr
, &lbps
[0],
9970 sizeof (l2arc_log_blkptr_t
));
9971 mutex_enter(&dev
->l2ad_mtx
);
9972 list_insert_tail(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
9973 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, asize
);
9974 ARCSTAT_BUMP(arcstat_l2_log_blk_count
);
9975 zfs_refcount_add_many(&dev
->l2ad_lb_asize
, asize
, lb_ptr_buf
);
9976 zfs_refcount_add(&dev
->l2ad_lb_count
, lb_ptr_buf
);
9977 mutex_exit(&dev
->l2ad_mtx
);
9978 vdev_space_update(vd
, asize
, 0, 0);
9981 * Protection against loops of log blocks:
9983 * l2ad_hand l2ad_evict
9985 * l2ad_start |=======================================| l2ad_end
9986 * -----|||----|||---|||----|||
9988 * ---|||---|||----|||---|||
9991 * In this situation the pointer of log block (4) passes
9992 * l2arc_log_blkptr_valid() but the log block should not be
9993 * restored as it is overwritten by the payload of log block
9994 * (0). Only log blocks (0)-(3) should be restored. We check
9995 * whether l2ad_evict lies in between the payload starting
9996 * offset of the next log block (lbps[1].lbp_payload_start)
9997 * and the payload starting offset of the present log block
9998 * (lbps[0].lbp_payload_start). If true and this isn't the
9999 * first pass, we are looping from the beginning and we should
10002 if (l2arc_range_check_overlap(lbps
[1].lbp_payload_start
,
10003 lbps
[0].lbp_payload_start
, dev
->l2ad_evict
) &&
10007 kpreempt(KPREEMPT_SYNC
);
10009 mutex_enter(&l2arc_rebuild_thr_lock
);
10010 if (dev
->l2ad_rebuild_cancel
) {
10011 dev
->l2ad_rebuild
= B_FALSE
;
10012 cv_signal(&l2arc_rebuild_thr_cv
);
10013 mutex_exit(&l2arc_rebuild_thr_lock
);
10014 err
= SET_ERROR(ECANCELED
);
10017 mutex_exit(&l2arc_rebuild_thr_lock
);
10018 if (spa_config_tryenter(spa
, SCL_L2ARC
, vd
,
10020 lock_held
= B_TRUE
;
10024 * L2ARC config lock held by somebody in writer,
10025 * possibly due to them trying to remove us. They'll
10026 * likely to want us to shut down, so after a little
10027 * delay, we check l2ad_rebuild_cancel and retry
10034 * Continue with the next log block.
10037 lbps
[1] = this_lb
->lb_prev_lbp
;
10038 PTR_SWAP(this_lb
, next_lb
);
10043 if (this_io
!= NULL
)
10044 l2arc_log_blk_fetch_abort(this_io
);
10046 if (next_io
!= NULL
)
10047 l2arc_log_blk_fetch_abort(next_io
);
10048 vmem_free(this_lb
, sizeof (*this_lb
));
10049 vmem_free(next_lb
, sizeof (*next_lb
));
10051 if (!l2arc_rebuild_enabled
) {
10052 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10054 } else if (err
== 0 && zfs_refcount_count(&dev
->l2ad_lb_count
) > 0) {
10055 ARCSTAT_BUMP(arcstat_l2_rebuild_success
);
10056 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10057 "successful, restored %llu blocks",
10058 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10059 } else if (err
== 0 && zfs_refcount_count(&dev
->l2ad_lb_count
) == 0) {
10061 * No error but also nothing restored, meaning the lbps array
10062 * in the device header points to invalid/non-present log
10063 * blocks. Reset the header.
10065 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10066 "no valid log blocks");
10067 memset(l2dhdr
, 0, dev
->l2ad_dev_hdr_asize
);
10068 l2arc_dev_hdr_update(dev
);
10069 } else if (err
== ECANCELED
) {
10071 * In case the rebuild was canceled do not log to spa history
10072 * log as the pool may be in the process of being removed.
10074 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10075 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10076 } else if (err
!= 0) {
10077 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10078 "aborted, restored %llu blocks",
10079 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10083 spa_config_exit(spa
, SCL_L2ARC
, vd
);
10089 * Attempts to read the device header on the provided L2ARC device and writes
10090 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10091 * error code is returned.
10094 l2arc_dev_hdr_read(l2arc_dev_t
*dev
)
10098 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10099 const uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
10102 guid
= spa_guid(dev
->l2ad_vdev
->vdev_spa
);
10104 abd
= abd_get_from_buf(l2dhdr
, l2dhdr_asize
);
10106 err
= zio_wait(zio_read_phys(NULL
, dev
->l2ad_vdev
,
10107 VDEV_LABEL_START_SIZE
, l2dhdr_asize
, abd
,
10108 ZIO_CHECKSUM_LABEL
, NULL
, NULL
, ZIO_PRIORITY_SYNC_READ
,
10109 ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
|
10110 ZIO_FLAG_SPECULATIVE
, B_FALSE
));
10115 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors
);
10116 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10117 "vdev guid: %llu", err
,
10118 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10122 if (l2dhdr
->dh_magic
== BSWAP_64(L2ARC_DEV_HDR_MAGIC
))
10123 byteswap_uint64_array(l2dhdr
, sizeof (*l2dhdr
));
10125 if (l2dhdr
->dh_magic
!= L2ARC_DEV_HDR_MAGIC
||
10126 l2dhdr
->dh_spa_guid
!= guid
||
10127 l2dhdr
->dh_vdev_guid
!= dev
->l2ad_vdev
->vdev_guid
||
10128 l2dhdr
->dh_version
!= L2ARC_PERSISTENT_VERSION
||
10129 l2dhdr
->dh_log_entries
!= dev
->l2ad_log_entries
||
10130 l2dhdr
->dh_end
!= dev
->l2ad_end
||
10131 !l2arc_range_check_overlap(dev
->l2ad_start
, dev
->l2ad_end
,
10132 l2dhdr
->dh_evict
) ||
10133 (l2dhdr
->dh_trim_state
!= VDEV_TRIM_COMPLETE
&&
10134 l2arc_trim_ahead
> 0)) {
10136 * Attempt to rebuild a device containing no actual dev hdr
10137 * or containing a header from some other pool or from another
10138 * version of persistent L2ARC.
10140 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported
);
10141 return (SET_ERROR(ENOTSUP
));
10148 * Reads L2ARC log blocks from storage and validates their contents.
10150 * This function implements a simple fetcher to make sure that while
10151 * we're processing one buffer the L2ARC is already fetching the next
10152 * one in the chain.
10154 * The arguments this_lp and next_lp point to the current and next log block
10155 * address in the block chain. Similarly, this_lb and next_lb hold the
10156 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10158 * The `this_io' and `next_io' arguments are used for block fetching.
10159 * When issuing the first blk IO during rebuild, you should pass NULL for
10160 * `this_io'. This function will then issue a sync IO to read the block and
10161 * also issue an async IO to fetch the next block in the block chain. The
10162 * fetched IO is returned in `next_io'. On subsequent calls to this
10163 * function, pass the value returned in `next_io' from the previous call
10164 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10165 * Prior to the call, you should initialize your `next_io' pointer to be
10166 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10168 * On success, this function returns 0, otherwise it returns an appropriate
10169 * error code. On error the fetching IO is aborted and cleared before
10170 * returning from this function. Therefore, if we return `success', the
10171 * caller can assume that we have taken care of cleanup of fetch IOs.
10174 l2arc_log_blk_read(l2arc_dev_t
*dev
,
10175 const l2arc_log_blkptr_t
*this_lbp
, const l2arc_log_blkptr_t
*next_lbp
,
10176 l2arc_log_blk_phys_t
*this_lb
, l2arc_log_blk_phys_t
*next_lb
,
10177 zio_t
*this_io
, zio_t
**next_io
)
10183 ASSERT(this_lbp
!= NULL
&& next_lbp
!= NULL
);
10184 ASSERT(this_lb
!= NULL
&& next_lb
!= NULL
);
10185 ASSERT(next_io
!= NULL
&& *next_io
== NULL
);
10186 ASSERT(l2arc_log_blkptr_valid(dev
, this_lbp
));
10189 * Check to see if we have issued the IO for this log block in a
10190 * previous run. If not, this is the first call, so issue it now.
10192 if (this_io
== NULL
) {
10193 this_io
= l2arc_log_blk_fetch(dev
->l2ad_vdev
, this_lbp
,
10198 * Peek to see if we can start issuing the next IO immediately.
10200 if (l2arc_log_blkptr_valid(dev
, next_lbp
)) {
10202 * Start issuing IO for the next log block early - this
10203 * should help keep the L2ARC device busy while we
10204 * decompress and restore this log block.
10206 *next_io
= l2arc_log_blk_fetch(dev
->l2ad_vdev
, next_lbp
,
10210 /* Wait for the IO to read this log block to complete */
10211 if ((err
= zio_wait(this_io
)) != 0) {
10212 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors
);
10213 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10214 "offset: %llu, vdev guid: %llu", err
,
10215 (u_longlong_t
)this_lbp
->lbp_daddr
,
10216 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10221 * Make sure the buffer checks out.
10222 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10224 asize
= L2BLK_GET_PSIZE((this_lbp
)->lbp_prop
);
10225 fletcher_4_native(this_lb
, asize
, NULL
, &cksum
);
10226 if (!ZIO_CHECKSUM_EQUAL(cksum
, this_lbp
->lbp_cksum
)) {
10227 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors
);
10228 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10229 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10230 (u_longlong_t
)this_lbp
->lbp_daddr
,
10231 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
,
10232 (u_longlong_t
)dev
->l2ad_hand
,
10233 (u_longlong_t
)dev
->l2ad_evict
);
10234 err
= SET_ERROR(ECKSUM
);
10238 /* Now we can take our time decoding this buffer */
10239 switch (L2BLK_GET_COMPRESS((this_lbp
)->lbp_prop
)) {
10240 case ZIO_COMPRESS_OFF
:
10242 case ZIO_COMPRESS_LZ4
: {
10243 abd_t
*abd
= abd_alloc_linear(asize
, B_TRUE
);
10244 abd_copy_from_buf_off(abd
, this_lb
, 0, asize
);
10246 abd_get_from_buf_struct(&dabd
, this_lb
, sizeof (*this_lb
));
10247 err
= zio_decompress_data(
10248 L2BLK_GET_COMPRESS((this_lbp
)->lbp_prop
),
10249 abd
, &dabd
, asize
, sizeof (*this_lb
), NULL
);
10253 err
= SET_ERROR(EINVAL
);
10259 err
= SET_ERROR(EINVAL
);
10262 if (this_lb
->lb_magic
== BSWAP_64(L2ARC_LOG_BLK_MAGIC
))
10263 byteswap_uint64_array(this_lb
, sizeof (*this_lb
));
10264 if (this_lb
->lb_magic
!= L2ARC_LOG_BLK_MAGIC
) {
10265 err
= SET_ERROR(EINVAL
);
10269 /* Abort an in-flight fetch I/O in case of error */
10270 if (err
!= 0 && *next_io
!= NULL
) {
10271 l2arc_log_blk_fetch_abort(*next_io
);
10278 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10279 * entries which only contain an l2arc hdr, essentially restoring the
10280 * buffers to their L2ARC evicted state. This function also updates space
10281 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10284 l2arc_log_blk_restore(l2arc_dev_t
*dev
, const l2arc_log_blk_phys_t
*lb
,
10287 uint64_t size
= 0, asize
= 0;
10288 uint64_t log_entries
= dev
->l2ad_log_entries
;
10291 * Usually arc_adapt() is called only for data, not headers, but
10292 * since we may allocate significant amount of memory here, let ARC
10295 arc_adapt(log_entries
* HDR_L2ONLY_SIZE
);
10297 for (int i
= log_entries
- 1; i
>= 0; i
--) {
10299 * Restore goes in the reverse temporal direction to preserve
10300 * correct temporal ordering of buffers in the l2ad_buflist.
10301 * l2arc_hdr_restore also does a list_insert_tail instead of
10302 * list_insert_head on the l2ad_buflist:
10304 * LIST l2ad_buflist LIST
10305 * HEAD <------ (time) ------ TAIL
10306 * direction +-----+-----+-----+-----+-----+ direction
10307 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10308 * fill +-----+-----+-----+-----+-----+
10312 * l2arc_feed_thread l2arc_rebuild
10313 * will place new bufs here restores bufs here
10315 * During l2arc_rebuild() the device is not used by
10316 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10318 size
+= L2BLK_GET_LSIZE((&lb
->lb_entries
[i
])->le_prop
);
10319 asize
+= vdev_psize_to_asize(dev
->l2ad_vdev
,
10320 L2BLK_GET_PSIZE((&lb
->lb_entries
[i
])->le_prop
));
10321 l2arc_hdr_restore(&lb
->lb_entries
[i
], dev
);
10325 * Record rebuild stats:
10326 * size Logical size of restored buffers in the L2ARC
10327 * asize Aligned size of restored buffers in the L2ARC
10329 ARCSTAT_INCR(arcstat_l2_rebuild_size
, size
);
10330 ARCSTAT_INCR(arcstat_l2_rebuild_asize
, asize
);
10331 ARCSTAT_INCR(arcstat_l2_rebuild_bufs
, log_entries
);
10332 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize
, lb_asize
);
10333 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio
, asize
/ lb_asize
);
10334 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks
);
10338 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10339 * into a state indicating that it has been evicted to L2ARC.
10342 l2arc_hdr_restore(const l2arc_log_ent_phys_t
*le
, l2arc_dev_t
*dev
)
10344 arc_buf_hdr_t
*hdr
, *exists
;
10345 kmutex_t
*hash_lock
;
10346 arc_buf_contents_t type
= L2BLK_GET_TYPE((le
)->le_prop
);
10350 * Do all the allocation before grabbing any locks, this lets us
10351 * sleep if memory is full and we don't have to deal with failed
10354 hdr
= arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le
)->le_prop
), type
,
10355 dev
, le
->le_dva
, le
->le_daddr
,
10356 L2BLK_GET_PSIZE((le
)->le_prop
), le
->le_birth
,
10357 L2BLK_GET_COMPRESS((le
)->le_prop
), le
->le_complevel
,
10358 L2BLK_GET_PROTECTED((le
)->le_prop
),
10359 L2BLK_GET_PREFETCH((le
)->le_prop
),
10360 L2BLK_GET_STATE((le
)->le_prop
));
10361 asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
10362 L2BLK_GET_PSIZE((le
)->le_prop
));
10365 * vdev_space_update() has to be called before arc_hdr_destroy() to
10366 * avoid underflow since the latter also calls vdev_space_update().
10368 l2arc_hdr_arcstats_increment(hdr
);
10369 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10371 mutex_enter(&dev
->l2ad_mtx
);
10372 list_insert_tail(&dev
->l2ad_buflist
, hdr
);
10373 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
), hdr
);
10374 mutex_exit(&dev
->l2ad_mtx
);
10376 exists
= buf_hash_insert(hdr
, &hash_lock
);
10378 /* Buffer was already cached, no need to restore it. */
10379 arc_hdr_destroy(hdr
);
10381 * If the buffer is already cached, check whether it has
10382 * L2ARC metadata. If not, enter them and update the flag.
10383 * This is important is case of onlining a cache device, since
10384 * we previously evicted all L2ARC metadata from ARC.
10386 if (!HDR_HAS_L2HDR(exists
)) {
10387 arc_hdr_set_flags(exists
, ARC_FLAG_HAS_L2HDR
);
10388 exists
->b_l2hdr
.b_dev
= dev
;
10389 exists
->b_l2hdr
.b_daddr
= le
->le_daddr
;
10390 exists
->b_l2hdr
.b_arcs_state
=
10391 L2BLK_GET_STATE((le
)->le_prop
);
10392 mutex_enter(&dev
->l2ad_mtx
);
10393 list_insert_tail(&dev
->l2ad_buflist
, exists
);
10394 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
10395 arc_hdr_size(exists
), exists
);
10396 mutex_exit(&dev
->l2ad_mtx
);
10397 l2arc_hdr_arcstats_increment(exists
);
10398 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10400 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached
);
10403 mutex_exit(hash_lock
);
10407 * Starts an asynchronous read IO to read a log block. This is used in log
10408 * block reconstruction to start reading the next block before we are done
10409 * decoding and reconstructing the current block, to keep the l2arc device
10410 * nice and hot with read IO to process.
10411 * The returned zio will contain a newly allocated memory buffers for the IO
10412 * data which should then be freed by the caller once the zio is no longer
10413 * needed (i.e. due to it having completed). If you wish to abort this
10414 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10415 * care of disposing of the allocated buffers correctly.
10418 l2arc_log_blk_fetch(vdev_t
*vd
, const l2arc_log_blkptr_t
*lbp
,
10419 l2arc_log_blk_phys_t
*lb
)
10423 l2arc_read_callback_t
*cb
;
10425 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10426 asize
= L2BLK_GET_PSIZE((lbp
)->lbp_prop
);
10427 ASSERT(asize
<= sizeof (l2arc_log_blk_phys_t
));
10429 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
), KM_SLEEP
);
10430 cb
->l2rcb_abd
= abd_get_from_buf(lb
, asize
);
10431 pio
= zio_root(vd
->vdev_spa
, l2arc_blk_fetch_done
, cb
,
10432 ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
);
10433 (void) zio_nowait(zio_read_phys(pio
, vd
, lbp
->lbp_daddr
, asize
,
10434 cb
->l2rcb_abd
, ZIO_CHECKSUM_OFF
, NULL
, NULL
,
10435 ZIO_PRIORITY_ASYNC_READ
, ZIO_FLAG_CANFAIL
|
10436 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
, B_FALSE
));
10442 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10443 * buffers allocated for it.
10446 l2arc_log_blk_fetch_abort(zio_t
*zio
)
10448 (void) zio_wait(zio
);
10452 * Creates a zio to update the device header on an l2arc device.
10455 l2arc_dev_hdr_update(l2arc_dev_t
*dev
)
10457 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10458 const uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
10462 VERIFY(spa_config_held(dev
->l2ad_spa
, SCL_STATE_ALL
, RW_READER
));
10464 l2dhdr
->dh_magic
= L2ARC_DEV_HDR_MAGIC
;
10465 l2dhdr
->dh_version
= L2ARC_PERSISTENT_VERSION
;
10466 l2dhdr
->dh_spa_guid
= spa_guid(dev
->l2ad_vdev
->vdev_spa
);
10467 l2dhdr
->dh_vdev_guid
= dev
->l2ad_vdev
->vdev_guid
;
10468 l2dhdr
->dh_log_entries
= dev
->l2ad_log_entries
;
10469 l2dhdr
->dh_evict
= dev
->l2ad_evict
;
10470 l2dhdr
->dh_start
= dev
->l2ad_start
;
10471 l2dhdr
->dh_end
= dev
->l2ad_end
;
10472 l2dhdr
->dh_lb_asize
= zfs_refcount_count(&dev
->l2ad_lb_asize
);
10473 l2dhdr
->dh_lb_count
= zfs_refcount_count(&dev
->l2ad_lb_count
);
10474 l2dhdr
->dh_flags
= 0;
10475 l2dhdr
->dh_trim_action_time
= dev
->l2ad_vdev
->vdev_trim_action_time
;
10476 l2dhdr
->dh_trim_state
= dev
->l2ad_vdev
->vdev_trim_state
;
10477 if (dev
->l2ad_first
)
10478 l2dhdr
->dh_flags
|= L2ARC_DEV_HDR_EVICT_FIRST
;
10480 abd
= abd_get_from_buf(l2dhdr
, l2dhdr_asize
);
10482 err
= zio_wait(zio_write_phys(NULL
, dev
->l2ad_vdev
,
10483 VDEV_LABEL_START_SIZE
, l2dhdr_asize
, abd
, ZIO_CHECKSUM_LABEL
, NULL
,
10484 NULL
, ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_CANFAIL
, B_FALSE
));
10489 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10490 "vdev guid: %llu", err
,
10491 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10496 * Commits a log block to the L2ARC device. This routine is invoked from
10497 * l2arc_write_buffers when the log block fills up.
10498 * This function allocates some memory to temporarily hold the serialized
10499 * buffer to be written. This is then released in l2arc_write_done.
10502 l2arc_log_blk_commit(l2arc_dev_t
*dev
, zio_t
*pio
, l2arc_write_callback_t
*cb
)
10504 l2arc_log_blk_phys_t
*lb
= &dev
->l2ad_log_blk
;
10505 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10506 uint64_t psize
, asize
;
10508 l2arc_lb_abd_buf_t
*abd_buf
;
10510 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
10512 VERIFY3S(dev
->l2ad_log_ent_idx
, ==, dev
->l2ad_log_entries
);
10514 abd_buf
= zio_buf_alloc(sizeof (*abd_buf
));
10515 abd_buf
->abd
= abd_get_from_buf(lb
, sizeof (*lb
));
10516 lb_ptr_buf
= kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t
), KM_SLEEP
);
10517 lb_ptr_buf
->lb_ptr
= kmem_zalloc(sizeof (l2arc_log_blkptr_t
), KM_SLEEP
);
10519 /* link the buffer into the block chain */
10520 lb
->lb_prev_lbp
= l2dhdr
->dh_start_lbps
[1];
10521 lb
->lb_magic
= L2ARC_LOG_BLK_MAGIC
;
10524 * l2arc_log_blk_commit() may be called multiple times during a single
10525 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10526 * so we can free them in l2arc_write_done() later on.
10528 list_insert_tail(&cb
->l2wcb_abd_list
, abd_buf
);
10530 /* try to compress the buffer, at least one sector to save */
10531 psize
= zio_compress_data(ZIO_COMPRESS_LZ4
,
10532 abd_buf
->abd
, &abd
, sizeof (*lb
),
10533 zio_get_compression_max_size(ZIO_COMPRESS_LZ4
,
10534 dev
->l2ad_vdev
->vdev_ashift
,
10535 dev
->l2ad_vdev
->vdev_ashift
, sizeof (*lb
)), 0);
10537 /* a log block is never entirely zero */
10538 ASSERT(psize
!= 0);
10539 asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
10540 ASSERT(asize
<= sizeof (*lb
));
10543 * Update the start log block pointer in the device header to point
10544 * to the log block we're about to write.
10546 l2dhdr
->dh_start_lbps
[1] = l2dhdr
->dh_start_lbps
[0];
10547 l2dhdr
->dh_start_lbps
[0].lbp_daddr
= dev
->l2ad_hand
;
10548 l2dhdr
->dh_start_lbps
[0].lbp_payload_asize
=
10549 dev
->l2ad_log_blk_payload_asize
;
10550 l2dhdr
->dh_start_lbps
[0].lbp_payload_start
=
10551 dev
->l2ad_log_blk_payload_start
;
10553 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
, sizeof (*lb
));
10555 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
, asize
);
10556 L2BLK_SET_CHECKSUM(
10557 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10558 ZIO_CHECKSUM_FLETCHER_4
);
10559 if (asize
< sizeof (*lb
)) {
10560 /* compression succeeded */
10561 abd_zero_off(abd
, psize
, asize
- psize
);
10562 L2BLK_SET_COMPRESS(
10563 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10566 /* compression failed */
10567 abd_copy_from_buf_off(abd
, lb
, 0, sizeof (*lb
));
10568 L2BLK_SET_COMPRESS(
10569 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10573 /* checksum what we're about to write */
10574 abd_fletcher_4_native(abd
, asize
, NULL
,
10575 &l2dhdr
->dh_start_lbps
[0].lbp_cksum
);
10577 abd_free(abd_buf
->abd
);
10579 /* perform the write itself */
10580 abd_buf
->abd
= abd
;
10581 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
, dev
->l2ad_hand
,
10582 asize
, abd_buf
->abd
, ZIO_CHECKSUM_OFF
, NULL
, NULL
,
10583 ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_CANFAIL
, B_FALSE
);
10584 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
, zio_t
*, wzio
);
10585 (void) zio_nowait(wzio
);
10587 dev
->l2ad_hand
+= asize
;
10589 * Include the committed log block's pointer in the list of pointers
10590 * to log blocks present in the L2ARC device.
10592 memcpy(lb_ptr_buf
->lb_ptr
, &l2dhdr
->dh_start_lbps
[0],
10593 sizeof (l2arc_log_blkptr_t
));
10594 mutex_enter(&dev
->l2ad_mtx
);
10595 list_insert_head(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
10596 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, asize
);
10597 ARCSTAT_BUMP(arcstat_l2_log_blk_count
);
10598 zfs_refcount_add_many(&dev
->l2ad_lb_asize
, asize
, lb_ptr_buf
);
10599 zfs_refcount_add(&dev
->l2ad_lb_count
, lb_ptr_buf
);
10600 mutex_exit(&dev
->l2ad_mtx
);
10601 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10603 /* bump the kstats */
10604 ARCSTAT_INCR(arcstat_l2_write_bytes
, asize
);
10605 ARCSTAT_BUMP(arcstat_l2_log_blk_writes
);
10606 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize
, asize
);
10607 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio
,
10608 dev
->l2ad_log_blk_payload_asize
/ asize
);
10610 /* start a new log block */
10611 dev
->l2ad_log_ent_idx
= 0;
10612 dev
->l2ad_log_blk_payload_asize
= 0;
10613 dev
->l2ad_log_blk_payload_start
= 0;
10619 * Validates an L2ARC log block address to make sure that it can be read
10620 * from the provided L2ARC device.
10623 l2arc_log_blkptr_valid(l2arc_dev_t
*dev
, const l2arc_log_blkptr_t
*lbp
)
10625 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10626 uint64_t asize
= L2BLK_GET_PSIZE((lbp
)->lbp_prop
);
10627 uint64_t end
= lbp
->lbp_daddr
+ asize
- 1;
10628 uint64_t start
= lbp
->lbp_payload_start
;
10629 boolean_t evicted
= B_FALSE
;
10632 * A log block is valid if all of the following conditions are true:
10633 * - it fits entirely (including its payload) between l2ad_start and
10635 * - it has a valid size
10636 * - neither the log block itself nor part of its payload was evicted
10637 * by l2arc_evict():
10639 * l2ad_hand l2ad_evict
10644 * l2ad_start ============================================ l2ad_end
10645 * --------------------------||||
10652 l2arc_range_check_overlap(start
, end
, dev
->l2ad_hand
) ||
10653 l2arc_range_check_overlap(start
, end
, dev
->l2ad_evict
) ||
10654 l2arc_range_check_overlap(dev
->l2ad_hand
, dev
->l2ad_evict
, start
) ||
10655 l2arc_range_check_overlap(dev
->l2ad_hand
, dev
->l2ad_evict
, end
);
10657 return (start
>= dev
->l2ad_start
&& end
<= dev
->l2ad_end
&&
10658 asize
> 0 && asize
<= sizeof (l2arc_log_blk_phys_t
) &&
10659 (!evicted
|| dev
->l2ad_first
));
10663 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10664 * the device. The buffer being inserted must be present in L2ARC.
10665 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10666 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10669 l2arc_log_blk_insert(l2arc_dev_t
*dev
, const arc_buf_hdr_t
*hdr
)
10671 l2arc_log_blk_phys_t
*lb
= &dev
->l2ad_log_blk
;
10672 l2arc_log_ent_phys_t
*le
;
10674 if (dev
->l2ad_log_entries
== 0)
10677 int index
= dev
->l2ad_log_ent_idx
++;
10679 ASSERT3S(index
, <, dev
->l2ad_log_entries
);
10680 ASSERT(HDR_HAS_L2HDR(hdr
));
10682 le
= &lb
->lb_entries
[index
];
10683 memset(le
, 0, sizeof (*le
));
10684 le
->le_dva
= hdr
->b_dva
;
10685 le
->le_birth
= hdr
->b_birth
;
10686 le
->le_daddr
= hdr
->b_l2hdr
.b_daddr
;
10688 dev
->l2ad_log_blk_payload_start
= le
->le_daddr
;
10689 L2BLK_SET_LSIZE((le
)->le_prop
, HDR_GET_LSIZE(hdr
));
10690 L2BLK_SET_PSIZE((le
)->le_prop
, HDR_GET_PSIZE(hdr
));
10691 L2BLK_SET_COMPRESS((le
)->le_prop
, HDR_GET_COMPRESS(hdr
));
10692 le
->le_complevel
= hdr
->b_complevel
;
10693 L2BLK_SET_TYPE((le
)->le_prop
, hdr
->b_type
);
10694 L2BLK_SET_PROTECTED((le
)->le_prop
, !!(HDR_PROTECTED(hdr
)));
10695 L2BLK_SET_PREFETCH((le
)->le_prop
, !!(HDR_PREFETCH(hdr
)));
10696 L2BLK_SET_STATE((le
)->le_prop
, hdr
->b_l2hdr
.b_arcs_state
);
10698 dev
->l2ad_log_blk_payload_asize
+= vdev_psize_to_asize(dev
->l2ad_vdev
,
10699 HDR_GET_PSIZE(hdr
));
10701 return (dev
->l2ad_log_ent_idx
== dev
->l2ad_log_entries
);
10705 * Checks whether a given L2ARC device address sits in a time-sequential
10706 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
10707 * just do a range comparison, we need to handle the situation in which the
10708 * range wraps around the end of the L2ARC device. Arguments:
10709 * bottom -- Lower end of the range to check (written to earlier).
10710 * top -- Upper end of the range to check (written to later).
10711 * check -- The address for which we want to determine if it sits in
10712 * between the top and bottom.
10714 * The 3-way conditional below represents the following cases:
10716 * bottom < top : Sequentially ordered case:
10717 * <check>--------+-------------------+
10718 * | (overlap here?) |
10720 * |---------------<bottom>============<top>--------------|
10722 * bottom > top: Looped-around case:
10723 * <check>--------+------------------+
10724 * | (overlap here?) |
10726 * |===============<top>---------------<bottom>===========|
10729 * +---------------+---------<check>
10731 * top == bottom : Just a single address comparison.
10734 l2arc_range_check_overlap(uint64_t bottom
, uint64_t top
, uint64_t check
)
10737 return (bottom
<= check
&& check
<= top
);
10738 else if (bottom
> top
)
10739 return (check
<= top
|| bottom
<= check
);
10741 return (check
== top
);
10744 EXPORT_SYMBOL(arc_buf_size
);
10745 EXPORT_SYMBOL(arc_write
);
10746 EXPORT_SYMBOL(arc_read
);
10747 EXPORT_SYMBOL(arc_buf_info
);
10748 EXPORT_SYMBOL(arc_getbuf_func
);
10749 EXPORT_SYMBOL(arc_add_prune_callback
);
10750 EXPORT_SYMBOL(arc_remove_prune_callback
);
10752 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min
, param_set_arc_min
,
10753 spl_param_get_u64
, ZMOD_RW
, "Minimum ARC size in bytes");
10755 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, max
, param_set_arc_max
,
10756 spl_param_get_u64
, ZMOD_RW
, "Maximum ARC size in bytes");
10758 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_balance
, UINT
, ZMOD_RW
,
10759 "Balance between metadata and data on ghost hits.");
10761 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, grow_retry
, param_set_arc_int
,
10762 param_get_uint
, ZMOD_RW
, "Seconds before growing ARC size");
10764 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, shrink_shift
, param_set_arc_int
,
10765 param_get_uint
, ZMOD_RW
, "log2(fraction of ARC to reclaim)");
10767 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, pc_percent
, UINT
, ZMOD_RW
,
10768 "Percent of pagecache to reclaim ARC to");
10770 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, average_blocksize
, UINT
, ZMOD_RD
,
10771 "Target average block size");
10773 ZFS_MODULE_PARAM(zfs
, zfs_
, compressed_arc_enabled
, INT
, ZMOD_RW
,
10774 "Disable compressed ARC buffers");
10776 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min_prefetch_ms
, param_set_arc_int
,
10777 param_get_uint
, ZMOD_RW
, "Min life of prefetch block in ms");
10779 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min_prescient_prefetch_ms
,
10780 param_set_arc_int
, param_get_uint
, ZMOD_RW
,
10781 "Min life of prescient prefetched block in ms");
10783 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, write_max
, U64
, ZMOD_RW
,
10784 "Max write bytes per interval");
10786 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, write_boost
, U64
, ZMOD_RW
,
10787 "Extra write bytes during device warmup");
10789 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, headroom
, U64
, ZMOD_RW
,
10790 "Number of max device writes to precache");
10792 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, headroom_boost
, U64
, ZMOD_RW
,
10793 "Compressed l2arc_headroom multiplier");
10795 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, trim_ahead
, U64
, ZMOD_RW
,
10796 "TRIM ahead L2ARC write size multiplier");
10798 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_secs
, U64
, ZMOD_RW
,
10799 "Seconds between L2ARC writing");
10801 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_min_ms
, U64
, ZMOD_RW
,
10802 "Min feed interval in milliseconds");
10804 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, noprefetch
, INT
, ZMOD_RW
,
10805 "Skip caching prefetched buffers");
10807 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_again
, INT
, ZMOD_RW
,
10808 "Turbo L2ARC warmup");
10810 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, norw
, INT
, ZMOD_RW
,
10811 "No reads during writes");
10813 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, meta_percent
, UINT
, ZMOD_RW
,
10814 "Percent of ARC size allowed for L2ARC-only headers");
10816 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, rebuild_enabled
, INT
, ZMOD_RW
,
10817 "Rebuild the L2ARC when importing a pool");
10819 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, rebuild_blocks_min_l2size
, U64
, ZMOD_RW
,
10820 "Min size in bytes to write rebuild log blocks in L2ARC");
10822 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, mfuonly
, INT
, ZMOD_RW
,
10823 "Cache only MFU data from ARC into L2ARC");
10825 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, exclude_special
, INT
, ZMOD_RW
,
10826 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
10828 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, lotsfree_percent
, param_set_arc_int
,
10829 param_get_uint
, ZMOD_RW
, "System free memory I/O throttle in bytes");
10831 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, sys_free
, param_set_arc_u64
,
10832 spl_param_get_u64
, ZMOD_RW
, "System free memory target size in bytes");
10834 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, dnode_limit
, param_set_arc_u64
,
10835 spl_param_get_u64
, ZMOD_RW
, "Minimum bytes of dnodes in ARC");
10837 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, dnode_limit_percent
,
10838 param_set_arc_int
, param_get_uint
, ZMOD_RW
,
10839 "Percent of ARC meta buffers for dnodes");
10841 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, dnode_reduce_percent
, UINT
, ZMOD_RW
,
10842 "Percentage of excess dnodes to try to unpin");
10844 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, eviction_pct
, UINT
, ZMOD_RW
,
10845 "When full, ARC allocation waits for eviction of this % of alloc size");
10847 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, evict_batch_limit
, UINT
, ZMOD_RW
,
10848 "The number of headers to evict per sublist before moving to the next");
10850 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, prune_task_threads
, INT
, ZMOD_RW
,
10851 "Number of arc_prune threads");