Add missing zfs_refcount_destroy() in key_mapping_rele()
[zfs.git] / module / zfs / dmu.c
blobf972545d30b5cf795a61db39b8eb9f2dc631ad49
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2017 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2016, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
28 * Copyright (c) 2019 Datto Inc.
31 #include <sys/dmu.h>
32 #include <sys/dmu_impl.h>
33 #include <sys/dmu_tx.h>
34 #include <sys/dbuf.h>
35 #include <sys/dnode.h>
36 #include <sys/zfs_context.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dmu_traverse.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dsl_pool.h>
42 #include <sys/dsl_synctask.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/zfs_ioctl.h>
46 #include <sys/zap.h>
47 #include <sys/zio_checksum.h>
48 #include <sys/zio_compress.h>
49 #include <sys/sa.h>
50 #include <sys/zfeature.h>
51 #include <sys/abd.h>
52 #include <sys/trace_dmu.h>
53 #include <sys/zfs_rlock.h>
54 #ifdef _KERNEL
55 #include <sys/vmsystm.h>
56 #include <sys/zfs_znode.h>
57 #endif
60 * Enable/disable nopwrite feature.
62 int zfs_nopwrite_enabled = 1;
65 * Tunable to control percentage of dirtied L1 blocks from frees allowed into
66 * one TXG. After this threshold is crossed, additional dirty blocks from frees
67 * will wait until the next TXG.
68 * A value of zero will disable this throttle.
70 unsigned long zfs_per_txg_dirty_frees_percent = 5;
73 * Enable/disable forcing txg sync when dirty in dmu_offset_next.
75 int zfs_dmu_offset_next_sync = 0;
78 * This can be used for testing, to ensure that certain actions happen
79 * while in the middle of a remap (which might otherwise complete too
80 * quickly). Used by ztest(8).
82 int zfs_object_remap_one_indirect_delay_ms = 0;
85 * Limit the amount we can prefetch with one call to this amount. This
86 * helps to limit the amount of memory that can be used by prefetching.
87 * Larger objects should be prefetched a bit at a time.
89 int dmu_prefetch_max = 8 * SPA_MAXBLOCKSIZE;
91 const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES] = {
92 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "unallocated" },
93 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "object directory" },
94 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "object array" },
95 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "packed nvlist" },
96 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "packed nvlist size" },
97 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj" },
98 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj header" },
99 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map header" },
100 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA space map" },
101 {DMU_BSWAP_UINT64, TRUE, FALSE, TRUE, "ZIL intent log" },
102 {DMU_BSWAP_DNODE, TRUE, FALSE, TRUE, "DMU dnode" },
103 {DMU_BSWAP_OBJSET, TRUE, TRUE, FALSE, "DMU objset" },
104 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL directory" },
105 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL directory child map"},
106 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset snap map" },
107 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL props" },
108 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL dataset" },
109 {DMU_BSWAP_ZNODE, TRUE, FALSE, FALSE, "ZFS znode" },
110 {DMU_BSWAP_OLDACL, TRUE, FALSE, TRUE, "ZFS V0 ACL" },
111 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "ZFS plain file" },
112 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS directory" },
113 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "ZFS master node" },
114 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS delete queue" },
115 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "zvol object" },
116 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "zvol prop" },
117 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "other uint8[]" },
118 {DMU_BSWAP_UINT64, FALSE, FALSE, TRUE, "other uint64[]" },
119 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "other ZAP" },
120 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "persistent error log" },
121 {DMU_BSWAP_UINT8, TRUE, FALSE, FALSE, "SPA history" },
122 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "SPA history offsets" },
123 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "Pool properties" },
124 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL permissions" },
125 {DMU_BSWAP_ACL, TRUE, FALSE, TRUE, "ZFS ACL" },
126 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "ZFS SYSACL" },
127 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "FUID table" },
128 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "FUID table size" },
129 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dataset next clones"},
130 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan work queue" },
131 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project used" },
132 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "ZFS user/group/project quota"},
133 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "snapshot refcount tags"},
134 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT ZAP algorithm" },
135 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "DDT statistics" },
136 {DMU_BSWAP_UINT8, TRUE, FALSE, TRUE, "System attributes" },
137 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA master node" },
138 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr registration" },
139 {DMU_BSWAP_ZAP, TRUE, FALSE, TRUE, "SA attr layouts" },
140 {DMU_BSWAP_ZAP, TRUE, FALSE, FALSE, "scan translations" },
141 {DMU_BSWAP_UINT8, FALSE, FALSE, TRUE, "deduplicated block" },
142 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL deadlist map" },
143 {DMU_BSWAP_UINT64, TRUE, TRUE, FALSE, "DSL deadlist map hdr" },
144 {DMU_BSWAP_ZAP, TRUE, TRUE, FALSE, "DSL dir clones" },
145 {DMU_BSWAP_UINT64, TRUE, FALSE, FALSE, "bpobj subobj" }
148 const dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS] = {
149 { byteswap_uint8_array, "uint8" },
150 { byteswap_uint16_array, "uint16" },
151 { byteswap_uint32_array, "uint32" },
152 { byteswap_uint64_array, "uint64" },
153 { zap_byteswap, "zap" },
154 { dnode_buf_byteswap, "dnode" },
155 { dmu_objset_byteswap, "objset" },
156 { zfs_znode_byteswap, "znode" },
157 { zfs_oldacl_byteswap, "oldacl" },
158 { zfs_acl_byteswap, "acl" }
162 dmu_buf_hold_noread_by_dnode(dnode_t *dn, uint64_t offset,
163 void *tag, dmu_buf_t **dbp)
165 uint64_t blkid;
166 dmu_buf_impl_t *db;
168 blkid = dbuf_whichblock(dn, 0, offset);
169 rw_enter(&dn->dn_struct_rwlock, RW_READER);
170 db = dbuf_hold(dn, blkid, tag);
171 rw_exit(&dn->dn_struct_rwlock);
173 if (db == NULL) {
174 *dbp = NULL;
175 return (SET_ERROR(EIO));
178 *dbp = &db->db;
179 return (0);
182 dmu_buf_hold_noread(objset_t *os, uint64_t object, uint64_t offset,
183 void *tag, dmu_buf_t **dbp)
185 dnode_t *dn;
186 uint64_t blkid;
187 dmu_buf_impl_t *db;
188 int err;
190 err = dnode_hold(os, object, FTAG, &dn);
191 if (err)
192 return (err);
193 blkid = dbuf_whichblock(dn, 0, offset);
194 rw_enter(&dn->dn_struct_rwlock, RW_READER);
195 db = dbuf_hold(dn, blkid, tag);
196 rw_exit(&dn->dn_struct_rwlock);
197 dnode_rele(dn, FTAG);
199 if (db == NULL) {
200 *dbp = NULL;
201 return (SET_ERROR(EIO));
204 *dbp = &db->db;
205 return (err);
209 dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
210 void *tag, dmu_buf_t **dbp, int flags)
212 int err;
213 int db_flags = DB_RF_CANFAIL;
215 if (flags & DMU_READ_NO_PREFETCH)
216 db_flags |= DB_RF_NOPREFETCH;
217 if (flags & DMU_READ_NO_DECRYPT)
218 db_flags |= DB_RF_NO_DECRYPT;
220 err = dmu_buf_hold_noread_by_dnode(dn, offset, tag, dbp);
221 if (err == 0) {
222 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
223 err = dbuf_read(db, NULL, db_flags);
224 if (err != 0) {
225 dbuf_rele(db, tag);
226 *dbp = NULL;
230 return (err);
234 dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
235 void *tag, dmu_buf_t **dbp, int flags)
237 int err;
238 int db_flags = DB_RF_CANFAIL;
240 if (flags & DMU_READ_NO_PREFETCH)
241 db_flags |= DB_RF_NOPREFETCH;
242 if (flags & DMU_READ_NO_DECRYPT)
243 db_flags |= DB_RF_NO_DECRYPT;
245 err = dmu_buf_hold_noread(os, object, offset, tag, dbp);
246 if (err == 0) {
247 dmu_buf_impl_t *db = (dmu_buf_impl_t *)(*dbp);
248 err = dbuf_read(db, NULL, db_flags);
249 if (err != 0) {
250 dbuf_rele(db, tag);
251 *dbp = NULL;
255 return (err);
259 dmu_bonus_max(void)
261 return (DN_OLD_MAX_BONUSLEN);
265 dmu_set_bonus(dmu_buf_t *db_fake, int newsize, dmu_tx_t *tx)
267 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
268 dnode_t *dn;
269 int error;
271 DB_DNODE_ENTER(db);
272 dn = DB_DNODE(db);
274 if (dn->dn_bonus != db) {
275 error = SET_ERROR(EINVAL);
276 } else if (newsize < 0 || newsize > db_fake->db_size) {
277 error = SET_ERROR(EINVAL);
278 } else {
279 dnode_setbonuslen(dn, newsize, tx);
280 error = 0;
283 DB_DNODE_EXIT(db);
284 return (error);
288 dmu_set_bonustype(dmu_buf_t *db_fake, dmu_object_type_t type, dmu_tx_t *tx)
290 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
291 dnode_t *dn;
292 int error;
294 DB_DNODE_ENTER(db);
295 dn = DB_DNODE(db);
297 if (!DMU_OT_IS_VALID(type)) {
298 error = SET_ERROR(EINVAL);
299 } else if (dn->dn_bonus != db) {
300 error = SET_ERROR(EINVAL);
301 } else {
302 dnode_setbonus_type(dn, type, tx);
303 error = 0;
306 DB_DNODE_EXIT(db);
307 return (error);
310 dmu_object_type_t
311 dmu_get_bonustype(dmu_buf_t *db_fake)
313 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
314 dnode_t *dn;
315 dmu_object_type_t type;
317 DB_DNODE_ENTER(db);
318 dn = DB_DNODE(db);
319 type = dn->dn_bonustype;
320 DB_DNODE_EXIT(db);
322 return (type);
326 dmu_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx)
328 dnode_t *dn;
329 int error;
331 error = dnode_hold(os, object, FTAG, &dn);
332 dbuf_rm_spill(dn, tx);
333 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
334 dnode_rm_spill(dn, tx);
335 rw_exit(&dn->dn_struct_rwlock);
336 dnode_rele(dn, FTAG);
337 return (error);
341 * Lookup and hold the bonus buffer for the provided dnode. If the dnode
342 * has not yet been allocated a new bonus dbuf a will be allocated.
343 * Returns ENOENT, EIO, or 0.
345 int dmu_bonus_hold_by_dnode(dnode_t *dn, void *tag, dmu_buf_t **dbp,
346 uint32_t flags)
348 dmu_buf_impl_t *db;
349 int error;
350 uint32_t db_flags = DB_RF_MUST_SUCCEED;
352 if (flags & DMU_READ_NO_PREFETCH)
353 db_flags |= DB_RF_NOPREFETCH;
354 if (flags & DMU_READ_NO_DECRYPT)
355 db_flags |= DB_RF_NO_DECRYPT;
357 rw_enter(&dn->dn_struct_rwlock, RW_READER);
358 if (dn->dn_bonus == NULL) {
359 rw_exit(&dn->dn_struct_rwlock);
360 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
361 if (dn->dn_bonus == NULL)
362 dbuf_create_bonus(dn);
364 db = dn->dn_bonus;
366 /* as long as the bonus buf is held, the dnode will be held */
367 if (zfs_refcount_add(&db->db_holds, tag) == 1) {
368 VERIFY(dnode_add_ref(dn, db));
369 atomic_inc_32(&dn->dn_dbufs_count);
373 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
374 * hold and incrementing the dbuf count to ensure that dnode_move() sees
375 * a dnode hold for every dbuf.
377 rw_exit(&dn->dn_struct_rwlock);
379 error = dbuf_read(db, NULL, db_flags);
380 if (error) {
381 dnode_evict_bonus(dn);
382 dbuf_rele(db, tag);
383 *dbp = NULL;
384 return (error);
387 *dbp = &db->db;
388 return (0);
392 dmu_bonus_hold(objset_t *os, uint64_t object, void *tag, dmu_buf_t **dbp)
394 dnode_t *dn;
395 int error;
397 error = dnode_hold(os, object, FTAG, &dn);
398 if (error)
399 return (error);
401 error = dmu_bonus_hold_by_dnode(dn, tag, dbp, DMU_READ_NO_PREFETCH);
402 dnode_rele(dn, FTAG);
404 return (error);
408 * returns ENOENT, EIO, or 0.
410 * This interface will allocate a blank spill dbuf when a spill blk
411 * doesn't already exist on the dnode.
413 * if you only want to find an already existing spill db, then
414 * dmu_spill_hold_existing() should be used.
417 dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags, void *tag, dmu_buf_t **dbp)
419 dmu_buf_impl_t *db = NULL;
420 int err;
422 if ((flags & DB_RF_HAVESTRUCT) == 0)
423 rw_enter(&dn->dn_struct_rwlock, RW_READER);
425 db = dbuf_hold(dn, DMU_SPILL_BLKID, tag);
427 if ((flags & DB_RF_HAVESTRUCT) == 0)
428 rw_exit(&dn->dn_struct_rwlock);
430 if (db == NULL) {
431 *dbp = NULL;
432 return (SET_ERROR(EIO));
434 err = dbuf_read(db, NULL, flags);
435 if (err == 0)
436 *dbp = &db->db;
437 else {
438 dbuf_rele(db, tag);
439 *dbp = NULL;
441 return (err);
445 dmu_spill_hold_existing(dmu_buf_t *bonus, void *tag, dmu_buf_t **dbp)
447 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
448 dnode_t *dn;
449 int err;
451 DB_DNODE_ENTER(db);
452 dn = DB_DNODE(db);
454 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_SA) {
455 err = SET_ERROR(EINVAL);
456 } else {
457 rw_enter(&dn->dn_struct_rwlock, RW_READER);
459 if (!dn->dn_have_spill) {
460 err = SET_ERROR(ENOENT);
461 } else {
462 err = dmu_spill_hold_by_dnode(dn,
463 DB_RF_HAVESTRUCT | DB_RF_CANFAIL, tag, dbp);
466 rw_exit(&dn->dn_struct_rwlock);
469 DB_DNODE_EXIT(db);
470 return (err);
474 dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, void *tag,
475 dmu_buf_t **dbp)
477 dmu_buf_impl_t *db = (dmu_buf_impl_t *)bonus;
478 dnode_t *dn;
479 int err;
480 uint32_t db_flags = DB_RF_CANFAIL;
482 if (flags & DMU_READ_NO_DECRYPT)
483 db_flags |= DB_RF_NO_DECRYPT;
485 DB_DNODE_ENTER(db);
486 dn = DB_DNODE(db);
487 err = dmu_spill_hold_by_dnode(dn, db_flags, tag, dbp);
488 DB_DNODE_EXIT(db);
490 return (err);
494 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
495 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
496 * and can induce severe lock contention when writing to several files
497 * whose dnodes are in the same block.
499 static int
500 dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset, uint64_t length,
501 boolean_t read, void *tag, int *numbufsp, dmu_buf_t ***dbpp, uint32_t flags)
503 dmu_buf_t **dbp;
504 uint64_t blkid, nblks, i;
505 uint32_t dbuf_flags;
506 int err;
507 zio_t *zio;
509 ASSERT(length <= DMU_MAX_ACCESS);
512 * Note: We directly notify the prefetch code of this read, so that
513 * we can tell it about the multi-block read. dbuf_read() only knows
514 * about the one block it is accessing.
516 dbuf_flags = DB_RF_CANFAIL | DB_RF_NEVERWAIT | DB_RF_HAVESTRUCT |
517 DB_RF_NOPREFETCH;
519 rw_enter(&dn->dn_struct_rwlock, RW_READER);
520 if (dn->dn_datablkshift) {
521 int blkshift = dn->dn_datablkshift;
522 nblks = (P2ROUNDUP(offset + length, 1ULL << blkshift) -
523 P2ALIGN(offset, 1ULL << blkshift)) >> blkshift;
524 } else {
525 if (offset + length > dn->dn_datablksz) {
526 zfs_panic_recover("zfs: accessing past end of object "
527 "%llx/%llx (size=%u access=%llu+%llu)",
528 (longlong_t)dn->dn_objset->
529 os_dsl_dataset->ds_object,
530 (longlong_t)dn->dn_object, dn->dn_datablksz,
531 (longlong_t)offset, (longlong_t)length);
532 rw_exit(&dn->dn_struct_rwlock);
533 return (SET_ERROR(EIO));
535 nblks = 1;
537 dbp = kmem_zalloc(sizeof (dmu_buf_t *) * nblks, KM_SLEEP);
539 zio = zio_root(dn->dn_objset->os_spa, NULL, NULL, ZIO_FLAG_CANFAIL);
540 blkid = dbuf_whichblock(dn, 0, offset);
541 for (i = 0; i < nblks; i++) {
542 dmu_buf_impl_t *db = dbuf_hold(dn, blkid + i, tag);
543 if (db == NULL) {
544 rw_exit(&dn->dn_struct_rwlock);
545 dmu_buf_rele_array(dbp, nblks, tag);
546 zio_nowait(zio);
547 return (SET_ERROR(EIO));
550 /* initiate async i/o */
551 if (read)
552 (void) dbuf_read(db, zio, dbuf_flags);
553 dbp[i] = &db->db;
556 if ((flags & DMU_READ_NO_PREFETCH) == 0 &&
557 DNODE_META_IS_CACHEABLE(dn) && length <= zfetch_array_rd_sz) {
558 dmu_zfetch(&dn->dn_zfetch, blkid, nblks,
559 read && DNODE_IS_CACHEABLE(dn));
561 rw_exit(&dn->dn_struct_rwlock);
563 /* wait for async i/o */
564 err = zio_wait(zio);
565 if (err) {
566 dmu_buf_rele_array(dbp, nblks, tag);
567 return (err);
570 /* wait for other io to complete */
571 if (read) {
572 for (i = 0; i < nblks; i++) {
573 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbp[i];
574 mutex_enter(&db->db_mtx);
575 while (db->db_state == DB_READ ||
576 db->db_state == DB_FILL)
577 cv_wait(&db->db_changed, &db->db_mtx);
578 if (db->db_state == DB_UNCACHED)
579 err = SET_ERROR(EIO);
580 mutex_exit(&db->db_mtx);
581 if (err) {
582 dmu_buf_rele_array(dbp, nblks, tag);
583 return (err);
588 *numbufsp = nblks;
589 *dbpp = dbp;
590 return (0);
593 static int
594 dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
595 uint64_t length, int read, void *tag, int *numbufsp, dmu_buf_t ***dbpp)
597 dnode_t *dn;
598 int err;
600 err = dnode_hold(os, object, FTAG, &dn);
601 if (err)
602 return (err);
604 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
605 numbufsp, dbpp, DMU_READ_PREFETCH);
607 dnode_rele(dn, FTAG);
609 return (err);
613 dmu_buf_hold_array_by_bonus(dmu_buf_t *db_fake, uint64_t offset,
614 uint64_t length, boolean_t read, void *tag, int *numbufsp,
615 dmu_buf_t ***dbpp)
617 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
618 dnode_t *dn;
619 int err;
621 DB_DNODE_ENTER(db);
622 dn = DB_DNODE(db);
623 err = dmu_buf_hold_array_by_dnode(dn, offset, length, read, tag,
624 numbufsp, dbpp, DMU_READ_PREFETCH);
625 DB_DNODE_EXIT(db);
627 return (err);
630 void
631 dmu_buf_rele_array(dmu_buf_t **dbp_fake, int numbufs, void *tag)
633 int i;
634 dmu_buf_impl_t **dbp = (dmu_buf_impl_t **)dbp_fake;
636 if (numbufs == 0)
637 return;
639 for (i = 0; i < numbufs; i++) {
640 if (dbp[i])
641 dbuf_rele(dbp[i], tag);
644 kmem_free(dbp, sizeof (dmu_buf_t *) * numbufs);
648 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
649 * indirect blocks prefetched will be those that point to the blocks containing
650 * the data starting at offset, and continuing to offset + len.
652 * Note that if the indirect blocks above the blocks being prefetched are not
653 * in cache, they will be asynchronously read in.
655 void
656 dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
657 uint64_t len, zio_priority_t pri)
659 dnode_t *dn;
660 uint64_t blkid;
661 int nblks, err;
663 if (len == 0) { /* they're interested in the bonus buffer */
664 dn = DMU_META_DNODE(os);
666 if (object == 0 || object >= DN_MAX_OBJECT)
667 return;
669 rw_enter(&dn->dn_struct_rwlock, RW_READER);
670 blkid = dbuf_whichblock(dn, level,
671 object * sizeof (dnode_phys_t));
672 dbuf_prefetch(dn, level, blkid, pri, 0);
673 rw_exit(&dn->dn_struct_rwlock);
674 return;
678 * See comment before the definition of dmu_prefetch_max.
680 len = MIN(len, dmu_prefetch_max);
683 * XXX - Note, if the dnode for the requested object is not
684 * already cached, we will do a *synchronous* read in the
685 * dnode_hold() call. The same is true for any indirects.
687 err = dnode_hold(os, object, FTAG, &dn);
688 if (err != 0)
689 return;
691 rw_enter(&dn->dn_struct_rwlock, RW_READER);
693 * offset + len - 1 is the last byte we want to prefetch for, and offset
694 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
695 * last block we want to prefetch, and dbuf_whichblock(dn, level,
696 * offset) is the first. Then the number we need to prefetch is the
697 * last - first + 1.
699 if (level > 0 || dn->dn_datablkshift != 0) {
700 nblks = dbuf_whichblock(dn, level, offset + len - 1) -
701 dbuf_whichblock(dn, level, offset) + 1;
702 } else {
703 nblks = (offset < dn->dn_datablksz);
706 if (nblks != 0) {
707 blkid = dbuf_whichblock(dn, level, offset);
708 for (int i = 0; i < nblks; i++)
709 dbuf_prefetch(dn, level, blkid + i, pri, 0);
712 rw_exit(&dn->dn_struct_rwlock);
714 dnode_rele(dn, FTAG);
718 * Get the next "chunk" of file data to free. We traverse the file from
719 * the end so that the file gets shorter over time (if we crashes in the
720 * middle, this will leave us in a better state). We find allocated file
721 * data by simply searching the allocated level 1 indirects.
723 * On input, *start should be the first offset that does not need to be
724 * freed (e.g. "offset + length"). On return, *start will be the first
725 * offset that should be freed and l1blks is set to the number of level 1
726 * indirect blocks found within the chunk.
728 static int
729 get_next_chunk(dnode_t *dn, uint64_t *start, uint64_t minimum, uint64_t *l1blks)
731 uint64_t blks;
732 uint64_t maxblks = DMU_MAX_ACCESS >> (dn->dn_indblkshift + 1);
733 /* bytes of data covered by a level-1 indirect block */
734 uint64_t iblkrange = (uint64_t)dn->dn_datablksz *
735 EPB(dn->dn_indblkshift, SPA_BLKPTRSHIFT);
737 ASSERT3U(minimum, <=, *start);
740 * Check if we can free the entire range assuming that all of the
741 * L1 blocks in this range have data. If we can, we use this
742 * worst case value as an estimate so we can avoid having to look
743 * at the object's actual data.
745 uint64_t total_l1blks =
746 (roundup(*start, iblkrange) - (minimum / iblkrange * iblkrange)) /
747 iblkrange;
748 if (total_l1blks <= maxblks) {
749 *l1blks = total_l1blks;
750 *start = minimum;
751 return (0);
753 ASSERT(ISP2(iblkrange));
755 for (blks = 0; *start > minimum && blks < maxblks; blks++) {
756 int err;
759 * dnode_next_offset(BACKWARDS) will find an allocated L1
760 * indirect block at or before the input offset. We must
761 * decrement *start so that it is at the end of the region
762 * to search.
764 (*start)--;
766 err = dnode_next_offset(dn,
767 DNODE_FIND_BACKWARDS, start, 2, 1, 0);
769 /* if there are no indirect blocks before start, we are done */
770 if (err == ESRCH) {
771 *start = minimum;
772 break;
773 } else if (err != 0) {
774 *l1blks = blks;
775 return (err);
778 /* set start to the beginning of this L1 indirect */
779 *start = P2ALIGN(*start, iblkrange);
781 if (*start < minimum)
782 *start = minimum;
783 *l1blks = blks;
785 return (0);
789 * If this objset is of type OST_ZFS return true if vfs's unmounted flag is set,
790 * otherwise return false.
791 * Used below in dmu_free_long_range_impl() to enable abort when unmounting
793 /*ARGSUSED*/
794 static boolean_t
795 dmu_objset_zfs_unmounting(objset_t *os)
797 #ifdef _KERNEL
798 if (dmu_objset_type(os) == DMU_OST_ZFS)
799 return (zfs_get_vfs_flag_unmounted(os));
800 #endif
801 return (B_FALSE);
804 static int
805 dmu_free_long_range_impl(objset_t *os, dnode_t *dn, uint64_t offset,
806 uint64_t length)
808 uint64_t object_size;
809 int err;
810 uint64_t dirty_frees_threshold;
811 dsl_pool_t *dp = dmu_objset_pool(os);
813 if (dn == NULL)
814 return (SET_ERROR(EINVAL));
816 object_size = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
817 if (offset >= object_size)
818 return (0);
820 if (zfs_per_txg_dirty_frees_percent <= 100)
821 dirty_frees_threshold =
822 zfs_per_txg_dirty_frees_percent * zfs_dirty_data_max / 100;
823 else
824 dirty_frees_threshold = zfs_dirty_data_max / 20;
826 if (length == DMU_OBJECT_END || offset + length > object_size)
827 length = object_size - offset;
829 while (length != 0) {
830 uint64_t chunk_end, chunk_begin, chunk_len;
831 uint64_t l1blks;
832 dmu_tx_t *tx;
834 if (dmu_objset_zfs_unmounting(dn->dn_objset))
835 return (SET_ERROR(EINTR));
837 chunk_end = chunk_begin = offset + length;
839 /* move chunk_begin backwards to the beginning of this chunk */
840 err = get_next_chunk(dn, &chunk_begin, offset, &l1blks);
841 if (err)
842 return (err);
843 ASSERT3U(chunk_begin, >=, offset);
844 ASSERT3U(chunk_begin, <=, chunk_end);
846 chunk_len = chunk_end - chunk_begin;
848 tx = dmu_tx_create(os);
849 dmu_tx_hold_free(tx, dn->dn_object, chunk_begin, chunk_len);
852 * Mark this transaction as typically resulting in a net
853 * reduction in space used.
855 dmu_tx_mark_netfree(tx);
856 err = dmu_tx_assign(tx, TXG_WAIT);
857 if (err) {
858 dmu_tx_abort(tx);
859 return (err);
862 uint64_t txg = dmu_tx_get_txg(tx);
864 mutex_enter(&dp->dp_lock);
865 uint64_t long_free_dirty =
866 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK];
867 mutex_exit(&dp->dp_lock);
870 * To avoid filling up a TXG with just frees, wait for
871 * the next TXG to open before freeing more chunks if
872 * we have reached the threshold of frees.
874 if (dirty_frees_threshold != 0 &&
875 long_free_dirty >= dirty_frees_threshold) {
876 DMU_TX_STAT_BUMP(dmu_tx_dirty_frees_delay);
877 dmu_tx_commit(tx);
878 txg_wait_open(dp, 0, B_TRUE);
879 continue;
883 * In order to prevent unnecessary write throttling, for each
884 * TXG, we track the cumulative size of L1 blocks being dirtied
885 * in dnode_free_range() below. We compare this number to a
886 * tunable threshold, past which we prevent new L1 dirty freeing
887 * blocks from being added into the open TXG. See
888 * dmu_free_long_range_impl() for details. The threshold
889 * prevents write throttle activation due to dirty freeing L1
890 * blocks taking up a large percentage of zfs_dirty_data_max.
892 mutex_enter(&dp->dp_lock);
893 dp->dp_long_free_dirty_pertxg[txg & TXG_MASK] +=
894 l1blks << dn->dn_indblkshift;
895 mutex_exit(&dp->dp_lock);
896 DTRACE_PROBE3(free__long__range,
897 uint64_t, long_free_dirty, uint64_t, chunk_len,
898 uint64_t, txg);
899 dnode_free_range(dn, chunk_begin, chunk_len, tx);
901 dmu_tx_commit(tx);
903 length -= chunk_len;
905 return (0);
909 dmu_free_long_range(objset_t *os, uint64_t object,
910 uint64_t offset, uint64_t length)
912 dnode_t *dn;
913 int err;
915 err = dnode_hold(os, object, FTAG, &dn);
916 if (err != 0)
917 return (err);
918 err = dmu_free_long_range_impl(os, dn, offset, length);
921 * It is important to zero out the maxblkid when freeing the entire
922 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
923 * will take the fast path, and (b) dnode_reallocate() can verify
924 * that the entire file has been freed.
926 if (err == 0 && offset == 0 && length == DMU_OBJECT_END)
927 dn->dn_maxblkid = 0;
929 dnode_rele(dn, FTAG);
930 return (err);
934 dmu_free_long_object(objset_t *os, uint64_t object)
936 dmu_tx_t *tx;
937 int err;
939 err = dmu_free_long_range(os, object, 0, DMU_OBJECT_END);
940 if (err != 0)
941 return (err);
943 tx = dmu_tx_create(os);
944 dmu_tx_hold_bonus(tx, object);
945 dmu_tx_hold_free(tx, object, 0, DMU_OBJECT_END);
946 dmu_tx_mark_netfree(tx);
947 err = dmu_tx_assign(tx, TXG_WAIT);
948 if (err == 0) {
949 if (err == 0)
950 err = dmu_object_free(os, object, tx);
952 dmu_tx_commit(tx);
953 } else {
954 dmu_tx_abort(tx);
957 return (err);
961 dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
962 uint64_t size, dmu_tx_t *tx)
964 dnode_t *dn;
965 int err = dnode_hold(os, object, FTAG, &dn);
966 if (err)
967 return (err);
968 ASSERT(offset < UINT64_MAX);
969 ASSERT(size == DMU_OBJECT_END || size <= UINT64_MAX - offset);
970 dnode_free_range(dn, offset, size, tx);
971 dnode_rele(dn, FTAG);
972 return (0);
975 static int
976 dmu_read_impl(dnode_t *dn, uint64_t offset, uint64_t size,
977 void *buf, uint32_t flags)
979 dmu_buf_t **dbp;
980 int numbufs, err = 0;
983 * Deal with odd block sizes, where there can't be data past the first
984 * block. If we ever do the tail block optimization, we will need to
985 * handle that here as well.
987 if (dn->dn_maxblkid == 0) {
988 uint64_t newsz = offset > dn->dn_datablksz ? 0 :
989 MIN(size, dn->dn_datablksz - offset);
990 bzero((char *)buf + newsz, size - newsz);
991 size = newsz;
994 while (size > 0) {
995 uint64_t mylen = MIN(size, DMU_MAX_ACCESS / 2);
996 int i;
999 * NB: we could do this block-at-a-time, but it's nice
1000 * to be reading in parallel.
1002 err = dmu_buf_hold_array_by_dnode(dn, offset, mylen,
1003 TRUE, FTAG, &numbufs, &dbp, flags);
1004 if (err)
1005 break;
1007 for (i = 0; i < numbufs; i++) {
1008 uint64_t tocpy;
1009 int64_t bufoff;
1010 dmu_buf_t *db = dbp[i];
1012 ASSERT(size > 0);
1014 bufoff = offset - db->db_offset;
1015 tocpy = MIN(db->db_size - bufoff, size);
1017 (void) memcpy(buf, (char *)db->db_data + bufoff, tocpy);
1019 offset += tocpy;
1020 size -= tocpy;
1021 buf = (char *)buf + tocpy;
1023 dmu_buf_rele_array(dbp, numbufs, FTAG);
1025 return (err);
1029 dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1030 void *buf, uint32_t flags)
1032 dnode_t *dn;
1033 int err;
1035 err = dnode_hold(os, object, FTAG, &dn);
1036 if (err != 0)
1037 return (err);
1039 err = dmu_read_impl(dn, offset, size, buf, flags);
1040 dnode_rele(dn, FTAG);
1041 return (err);
1045 dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
1046 uint32_t flags)
1048 return (dmu_read_impl(dn, offset, size, buf, flags));
1051 static void
1052 dmu_write_impl(dmu_buf_t **dbp, int numbufs, uint64_t offset, uint64_t size,
1053 const void *buf, dmu_tx_t *tx)
1055 int i;
1057 for (i = 0; i < numbufs; i++) {
1058 uint64_t tocpy;
1059 int64_t bufoff;
1060 dmu_buf_t *db = dbp[i];
1062 ASSERT(size > 0);
1064 bufoff = offset - db->db_offset;
1065 tocpy = MIN(db->db_size - bufoff, size);
1067 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1069 if (tocpy == db->db_size)
1070 dmu_buf_will_fill(db, tx);
1071 else
1072 dmu_buf_will_dirty(db, tx);
1074 (void) memcpy((char *)db->db_data + bufoff, buf, tocpy);
1076 if (tocpy == db->db_size)
1077 dmu_buf_fill_done(db, tx);
1079 offset += tocpy;
1080 size -= tocpy;
1081 buf = (char *)buf + tocpy;
1085 void
1086 dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1087 const void *buf, dmu_tx_t *tx)
1089 dmu_buf_t **dbp;
1090 int numbufs;
1092 if (size == 0)
1093 return;
1095 VERIFY0(dmu_buf_hold_array(os, object, offset, size,
1096 FALSE, FTAG, &numbufs, &dbp));
1097 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1098 dmu_buf_rele_array(dbp, numbufs, FTAG);
1102 * Note: Lustre is an external consumer of this interface.
1104 void
1105 dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
1106 const void *buf, dmu_tx_t *tx)
1108 dmu_buf_t **dbp;
1109 int numbufs;
1111 if (size == 0)
1112 return;
1114 VERIFY0(dmu_buf_hold_array_by_dnode(dn, offset, size,
1115 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH));
1116 dmu_write_impl(dbp, numbufs, offset, size, buf, tx);
1117 dmu_buf_rele_array(dbp, numbufs, FTAG);
1120 static int
1121 dmu_object_remap_one_indirect(objset_t *os, dnode_t *dn,
1122 uint64_t last_removal_txg, uint64_t offset)
1124 uint64_t l1blkid = dbuf_whichblock(dn, 1, offset);
1125 dnode_t *dn_tx;
1126 int err = 0;
1128 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1129 dmu_buf_impl_t *dbuf = dbuf_hold_level(dn, 1, l1blkid, FTAG);
1130 ASSERT3P(dbuf, !=, NULL);
1133 * If the block hasn't been written yet, this default will ensure
1134 * we don't try to remap it.
1136 uint64_t birth = UINT64_MAX;
1137 ASSERT3U(last_removal_txg, !=, UINT64_MAX);
1138 if (dbuf->db_blkptr != NULL)
1139 birth = dbuf->db_blkptr->blk_birth;
1140 rw_exit(&dn->dn_struct_rwlock);
1143 * If this L1 was already written after the last removal, then we've
1144 * already tried to remap it. An additional hold is taken after the
1145 * dmu_tx_assign() to handle the case where the dnode is freed while
1146 * waiting for the next open txg.
1148 if (birth <= last_removal_txg &&
1149 dbuf_read(dbuf, NULL, DB_RF_MUST_SUCCEED) == 0 &&
1150 dbuf_can_remap(dbuf)) {
1151 dmu_tx_t *tx = dmu_tx_create(os);
1152 dmu_tx_hold_remap_l1indirect(tx, dn->dn_object);
1153 err = dmu_tx_assign(tx, TXG_WAIT);
1154 if (err == 0) {
1155 err = dnode_hold(os, dn->dn_object, FTAG, &dn_tx);
1156 if (err == 0) {
1157 (void) dbuf_dirty(dbuf, tx);
1158 dnode_rele(dn_tx, FTAG);
1160 dmu_tx_commit(tx);
1161 } else {
1162 dmu_tx_abort(tx);
1166 dbuf_rele(dbuf, FTAG);
1168 delay(MSEC_TO_TICK(zfs_object_remap_one_indirect_delay_ms));
1170 return (err);
1174 * Remap all blockpointers in the object, if possible, so that they reference
1175 * only concrete vdevs.
1177 * To do this, iterate over the L0 blockpointers and remap any that reference
1178 * an indirect vdev. Note that we only examine L0 blockpointers; since we
1179 * cannot guarantee that we can remap all blockpointer anyways (due to split
1180 * blocks), we do not want to make the code unnecessarily complicated to
1181 * catch the unlikely case that there is an L1 block on an indirect vdev that
1182 * contains no indirect blockpointers.
1185 dmu_object_remap_indirects(objset_t *os, uint64_t object,
1186 uint64_t last_removal_txg)
1188 uint64_t offset, l1span;
1189 int err;
1190 dnode_t *dn, *dn_tx;
1192 err = dnode_hold(os, object, FTAG, &dn);
1193 if (err != 0) {
1194 return (err);
1197 if (dn->dn_nlevels <= 1) {
1198 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1199 err = SET_ERROR(EINTR);
1203 * If the dnode has no indirect blocks, we cannot dirty them.
1204 * We still want to remap the blkptr(s) in the dnode if
1205 * appropriate, so mark it as dirty. An additional hold is
1206 * taken after the dmu_tx_assign() to handle the case where
1207 * the dnode is freed while waiting for the next open txg.
1209 if (err == 0 && dnode_needs_remap(dn)) {
1210 dmu_tx_t *tx = dmu_tx_create(os);
1211 dmu_tx_hold_bonus(tx, object);
1212 err = dmu_tx_assign(tx, TXG_WAIT);
1213 if (err == 0) {
1214 err = dnode_hold(os, object, FTAG, &dn_tx);
1215 if (err == 0) {
1216 dnode_setdirty(dn_tx, tx);
1217 dnode_rele(dn_tx, FTAG);
1219 dmu_tx_commit(tx);
1220 } else {
1221 dmu_tx_abort(tx);
1225 dnode_rele(dn, FTAG);
1226 return (err);
1229 offset = 0;
1230 l1span = 1ULL << (dn->dn_indblkshift - SPA_BLKPTRSHIFT +
1231 dn->dn_datablkshift);
1233 * Find the next L1 indirect that is not a hole.
1235 while (dnode_next_offset(dn, 0, &offset, 2, 1, 0) == 0) {
1236 if (issig(JUSTLOOKING) && issig(FORREAL)) {
1237 err = SET_ERROR(EINTR);
1238 break;
1240 if ((err = dmu_object_remap_one_indirect(os, dn,
1241 last_removal_txg, offset)) != 0) {
1242 break;
1244 offset += l1span;
1247 dnode_rele(dn, FTAG);
1248 return (err);
1251 void
1252 dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
1253 dmu_tx_t *tx)
1255 dmu_buf_t **dbp;
1256 int numbufs, i;
1258 if (size == 0)
1259 return;
1261 VERIFY(0 == dmu_buf_hold_array(os, object, offset, size,
1262 FALSE, FTAG, &numbufs, &dbp));
1264 for (i = 0; i < numbufs; i++) {
1265 dmu_buf_t *db = dbp[i];
1267 dmu_buf_will_not_fill(db, tx);
1269 dmu_buf_rele_array(dbp, numbufs, FTAG);
1272 void
1273 dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
1274 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
1275 int compressed_size, int byteorder, dmu_tx_t *tx)
1277 dmu_buf_t *db;
1279 ASSERT3U(etype, <, NUM_BP_EMBEDDED_TYPES);
1280 ASSERT3U(comp, <, ZIO_COMPRESS_FUNCTIONS);
1281 VERIFY0(dmu_buf_hold_noread(os, object, offset,
1282 FTAG, &db));
1284 dmu_buf_write_embedded(db,
1285 data, (bp_embedded_type_t)etype, (enum zio_compress)comp,
1286 uncompressed_size, compressed_size, byteorder, tx);
1288 dmu_buf_rele(db, FTAG);
1292 * DMU support for xuio
1294 kstat_t *xuio_ksp = NULL;
1296 typedef struct xuio_stats {
1297 /* loaned yet not returned arc_buf */
1298 kstat_named_t xuiostat_onloan_rbuf;
1299 kstat_named_t xuiostat_onloan_wbuf;
1300 /* whether a copy is made when loaning out a read buffer */
1301 kstat_named_t xuiostat_rbuf_copied;
1302 kstat_named_t xuiostat_rbuf_nocopy;
1303 /* whether a copy is made when assigning a write buffer */
1304 kstat_named_t xuiostat_wbuf_copied;
1305 kstat_named_t xuiostat_wbuf_nocopy;
1306 } xuio_stats_t;
1308 static xuio_stats_t xuio_stats = {
1309 { "onloan_read_buf", KSTAT_DATA_UINT64 },
1310 { "onloan_write_buf", KSTAT_DATA_UINT64 },
1311 { "read_buf_copied", KSTAT_DATA_UINT64 },
1312 { "read_buf_nocopy", KSTAT_DATA_UINT64 },
1313 { "write_buf_copied", KSTAT_DATA_UINT64 },
1314 { "write_buf_nocopy", KSTAT_DATA_UINT64 }
1317 #define XUIOSTAT_INCR(stat, val) \
1318 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
1319 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
1321 #ifdef HAVE_UIO_ZEROCOPY
1323 dmu_xuio_init(xuio_t *xuio, int nblk)
1325 dmu_xuio_t *priv;
1326 uio_t *uio = &xuio->xu_uio;
1328 uio->uio_iovcnt = nblk;
1329 uio->uio_iov = kmem_zalloc(nblk * sizeof (iovec_t), KM_SLEEP);
1331 priv = kmem_zalloc(sizeof (dmu_xuio_t), KM_SLEEP);
1332 priv->cnt = nblk;
1333 priv->bufs = kmem_zalloc(nblk * sizeof (arc_buf_t *), KM_SLEEP);
1334 priv->iovp = (iovec_t *)uio->uio_iov;
1335 XUIO_XUZC_PRIV(xuio) = priv;
1337 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1338 XUIOSTAT_INCR(xuiostat_onloan_rbuf, nblk);
1339 else
1340 XUIOSTAT_INCR(xuiostat_onloan_wbuf, nblk);
1342 return (0);
1345 void
1346 dmu_xuio_fini(xuio_t *xuio)
1348 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1349 int nblk = priv->cnt;
1351 kmem_free(priv->iovp, nblk * sizeof (iovec_t));
1352 kmem_free(priv->bufs, nblk * sizeof (arc_buf_t *));
1353 kmem_free(priv, sizeof (dmu_xuio_t));
1355 if (XUIO_XUZC_RW(xuio) == UIO_READ)
1356 XUIOSTAT_INCR(xuiostat_onloan_rbuf, -nblk);
1357 else
1358 XUIOSTAT_INCR(xuiostat_onloan_wbuf, -nblk);
1362 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
1363 * and increase priv->next by 1.
1366 dmu_xuio_add(xuio_t *xuio, arc_buf_t *abuf, offset_t off, size_t n)
1368 struct iovec *iov;
1369 uio_t *uio = &xuio->xu_uio;
1370 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1371 int i = priv->next++;
1373 ASSERT(i < priv->cnt);
1374 ASSERT(off + n <= arc_buf_lsize(abuf));
1375 iov = (iovec_t *)uio->uio_iov + i;
1376 iov->iov_base = (char *)abuf->b_data + off;
1377 iov->iov_len = n;
1378 priv->bufs[i] = abuf;
1379 return (0);
1383 dmu_xuio_cnt(xuio_t *xuio)
1385 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1386 return (priv->cnt);
1389 arc_buf_t *
1390 dmu_xuio_arcbuf(xuio_t *xuio, int i)
1392 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1394 ASSERT(i < priv->cnt);
1395 return (priv->bufs[i]);
1398 void
1399 dmu_xuio_clear(xuio_t *xuio, int i)
1401 dmu_xuio_t *priv = XUIO_XUZC_PRIV(xuio);
1403 ASSERT(i < priv->cnt);
1404 priv->bufs[i] = NULL;
1406 #endif /* HAVE_UIO_ZEROCOPY */
1408 static void
1409 xuio_stat_init(void)
1411 xuio_ksp = kstat_create("zfs", 0, "xuio_stats", "misc",
1412 KSTAT_TYPE_NAMED, sizeof (xuio_stats) / sizeof (kstat_named_t),
1413 KSTAT_FLAG_VIRTUAL);
1414 if (xuio_ksp != NULL) {
1415 xuio_ksp->ks_data = &xuio_stats;
1416 kstat_install(xuio_ksp);
1420 static void
1421 xuio_stat_fini(void)
1423 if (xuio_ksp != NULL) {
1424 kstat_delete(xuio_ksp);
1425 xuio_ksp = NULL;
1429 void
1430 xuio_stat_wbuf_copied(void)
1432 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1435 void
1436 xuio_stat_wbuf_nocopy(void)
1438 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy);
1441 #ifdef _KERNEL
1443 dmu_read_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size)
1445 dmu_buf_t **dbp;
1446 int numbufs, i, err;
1447 #ifdef HAVE_UIO_ZEROCOPY
1448 xuio_t *xuio = NULL;
1449 #endif
1452 * NB: we could do this block-at-a-time, but it's nice
1453 * to be reading in parallel.
1455 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1456 TRUE, FTAG, &numbufs, &dbp, 0);
1457 if (err)
1458 return (err);
1460 for (i = 0; i < numbufs; i++) {
1461 uint64_t tocpy;
1462 int64_t bufoff;
1463 dmu_buf_t *db = dbp[i];
1465 ASSERT(size > 0);
1467 bufoff = uio->uio_loffset - db->db_offset;
1468 tocpy = MIN(db->db_size - bufoff, size);
1470 #ifdef HAVE_UIO_ZEROCOPY
1471 if (xuio) {
1472 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
1473 arc_buf_t *dbuf_abuf = dbi->db_buf;
1474 arc_buf_t *abuf = dbuf_loan_arcbuf(dbi);
1475 err = dmu_xuio_add(xuio, abuf, bufoff, tocpy);
1476 if (!err) {
1477 uio->uio_resid -= tocpy;
1478 uio->uio_loffset += tocpy;
1481 if (abuf == dbuf_abuf)
1482 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy);
1483 else
1484 XUIOSTAT_BUMP(xuiostat_rbuf_copied);
1485 } else
1486 #endif
1487 err = uiomove((char *)db->db_data + bufoff, tocpy,
1488 UIO_READ, uio);
1489 if (err)
1490 break;
1492 size -= tocpy;
1494 dmu_buf_rele_array(dbp, numbufs, FTAG);
1496 return (err);
1500 * Read 'size' bytes into the uio buffer.
1501 * From object zdb->db_object.
1502 * Starting at offset uio->uio_loffset.
1504 * If the caller already has a dbuf in the target object
1505 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1506 * because we don't have to find the dnode_t for the object.
1509 dmu_read_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size)
1511 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1512 dnode_t *dn;
1513 int err;
1515 if (size == 0)
1516 return (0);
1518 DB_DNODE_ENTER(db);
1519 dn = DB_DNODE(db);
1520 err = dmu_read_uio_dnode(dn, uio, size);
1521 DB_DNODE_EXIT(db);
1523 return (err);
1527 * Read 'size' bytes into the uio buffer.
1528 * From the specified object
1529 * Starting at offset uio->uio_loffset.
1532 dmu_read_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size)
1534 dnode_t *dn;
1535 int err;
1537 if (size == 0)
1538 return (0);
1540 err = dnode_hold(os, object, FTAG, &dn);
1541 if (err)
1542 return (err);
1544 err = dmu_read_uio_dnode(dn, uio, size);
1546 dnode_rele(dn, FTAG);
1548 return (err);
1552 dmu_write_uio_dnode(dnode_t *dn, uio_t *uio, uint64_t size, dmu_tx_t *tx)
1554 dmu_buf_t **dbp;
1555 int numbufs;
1556 int err = 0;
1557 int i;
1559 err = dmu_buf_hold_array_by_dnode(dn, uio->uio_loffset, size,
1560 FALSE, FTAG, &numbufs, &dbp, DMU_READ_PREFETCH);
1561 if (err)
1562 return (err);
1564 for (i = 0; i < numbufs; i++) {
1565 uint64_t tocpy;
1566 int64_t bufoff;
1567 dmu_buf_t *db = dbp[i];
1569 ASSERT(size > 0);
1571 bufoff = uio->uio_loffset - db->db_offset;
1572 tocpy = MIN(db->db_size - bufoff, size);
1574 ASSERT(i == 0 || i == numbufs-1 || tocpy == db->db_size);
1576 if (tocpy == db->db_size)
1577 dmu_buf_will_fill(db, tx);
1578 else
1579 dmu_buf_will_dirty(db, tx);
1582 * XXX uiomove could block forever (eg.nfs-backed
1583 * pages). There needs to be a uiolockdown() function
1584 * to lock the pages in memory, so that uiomove won't
1585 * block.
1587 err = uiomove((char *)db->db_data + bufoff, tocpy,
1588 UIO_WRITE, uio);
1590 if (tocpy == db->db_size)
1591 dmu_buf_fill_done(db, tx);
1593 if (err)
1594 break;
1596 size -= tocpy;
1599 dmu_buf_rele_array(dbp, numbufs, FTAG);
1600 return (err);
1604 * Write 'size' bytes from the uio buffer.
1605 * To object zdb->db_object.
1606 * Starting at offset uio->uio_loffset.
1608 * If the caller already has a dbuf in the target object
1609 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1610 * because we don't have to find the dnode_t for the object.
1613 dmu_write_uio_dbuf(dmu_buf_t *zdb, uio_t *uio, uint64_t size,
1614 dmu_tx_t *tx)
1616 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zdb;
1617 dnode_t *dn;
1618 int err;
1620 if (size == 0)
1621 return (0);
1623 DB_DNODE_ENTER(db);
1624 dn = DB_DNODE(db);
1625 err = dmu_write_uio_dnode(dn, uio, size, tx);
1626 DB_DNODE_EXIT(db);
1628 return (err);
1632 * Write 'size' bytes from the uio buffer.
1633 * To the specified object.
1634 * Starting at offset uio->uio_loffset.
1637 dmu_write_uio(objset_t *os, uint64_t object, uio_t *uio, uint64_t size,
1638 dmu_tx_t *tx)
1640 dnode_t *dn;
1641 int err;
1643 if (size == 0)
1644 return (0);
1646 err = dnode_hold(os, object, FTAG, &dn);
1647 if (err)
1648 return (err);
1650 err = dmu_write_uio_dnode(dn, uio, size, tx);
1652 dnode_rele(dn, FTAG);
1654 return (err);
1656 #endif /* _KERNEL */
1659 * Allocate a loaned anonymous arc buffer.
1661 arc_buf_t *
1662 dmu_request_arcbuf(dmu_buf_t *handle, int size)
1664 dmu_buf_impl_t *db = (dmu_buf_impl_t *)handle;
1666 return (arc_loan_buf(db->db_objset->os_spa, B_FALSE, size));
1670 * Free a loaned arc buffer.
1672 void
1673 dmu_return_arcbuf(arc_buf_t *buf)
1675 arc_return_buf(buf, FTAG);
1676 arc_buf_destroy(buf, FTAG);
1679 void
1680 dmu_copy_from_buf(objset_t *os, uint64_t object, uint64_t offset,
1681 dmu_buf_t *handle, dmu_tx_t *tx)
1683 dmu_buf_t *dst_handle;
1684 dmu_buf_impl_t *dstdb;
1685 dmu_buf_impl_t *srcdb = (dmu_buf_impl_t *)handle;
1686 dmu_object_type_t type;
1687 arc_buf_t *abuf;
1688 uint64_t datalen;
1689 boolean_t byteorder;
1690 uint8_t salt[ZIO_DATA_SALT_LEN];
1691 uint8_t iv[ZIO_DATA_IV_LEN];
1692 uint8_t mac[ZIO_DATA_MAC_LEN];
1694 ASSERT3P(srcdb->db_buf, !=, NULL);
1696 /* hold the db that we want to write to */
1697 VERIFY0(dmu_buf_hold(os, object, offset, FTAG, &dst_handle,
1698 DMU_READ_NO_DECRYPT));
1699 dstdb = (dmu_buf_impl_t *)dst_handle;
1700 datalen = arc_buf_size(srcdb->db_buf);
1702 DB_DNODE_ENTER(dstdb);
1703 type = DB_DNODE(dstdb)->dn_type;
1704 DB_DNODE_EXIT(dstdb);
1706 /* allocated an arc buffer that matches the type of srcdb->db_buf */
1707 if (arc_is_encrypted(srcdb->db_buf)) {
1708 arc_get_raw_params(srcdb->db_buf, &byteorder, salt, iv, mac);
1709 abuf = arc_loan_raw_buf(os->os_spa, dmu_objset_id(os),
1710 byteorder, salt, iv, mac, type,
1711 datalen, arc_buf_lsize(srcdb->db_buf),
1712 arc_get_compression(srcdb->db_buf));
1713 } else {
1714 /* we won't get a compressed db back from dmu_buf_hold() */
1715 ASSERT3U(arc_get_compression(srcdb->db_buf),
1716 ==, ZIO_COMPRESS_OFF);
1717 abuf = arc_loan_buf(os->os_spa,
1718 DMU_OT_IS_METADATA(type), datalen);
1721 ASSERT3U(datalen, ==, arc_buf_size(abuf));
1723 /* copy the data to the new buffer and assign it to the dstdb */
1724 bcopy(srcdb->db_buf->b_data, abuf->b_data, datalen);
1725 dbuf_assign_arcbuf(dstdb, abuf, tx);
1726 dmu_buf_rele(dst_handle, FTAG);
1730 * When possible directly assign passed loaned arc buffer to a dbuf.
1731 * If this is not possible copy the contents of passed arc buf via
1732 * dmu_write().
1735 dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset, arc_buf_t *buf,
1736 dmu_tx_t *tx)
1738 dmu_buf_impl_t *db;
1739 objset_t *os = dn->dn_objset;
1740 uint64_t object = dn->dn_object;
1741 uint32_t blksz = (uint32_t)arc_buf_lsize(buf);
1742 uint64_t blkid;
1744 rw_enter(&dn->dn_struct_rwlock, RW_READER);
1745 blkid = dbuf_whichblock(dn, 0, offset);
1746 db = dbuf_hold(dn, blkid, FTAG);
1747 if (db == NULL)
1748 return (SET_ERROR(EIO));
1749 rw_exit(&dn->dn_struct_rwlock);
1752 * We can only assign if the offset is aligned, the arc buf is the
1753 * same size as the dbuf, and the dbuf is not metadata.
1755 if (offset == db->db.db_offset && blksz == db->db.db_size) {
1756 dbuf_assign_arcbuf(db, buf, tx);
1757 dbuf_rele(db, FTAG);
1758 } else {
1759 /* compressed bufs must always be assignable to their dbuf */
1760 ASSERT3U(arc_get_compression(buf), ==, ZIO_COMPRESS_OFF);
1761 ASSERT(!(buf->b_flags & ARC_BUF_FLAG_COMPRESSED));
1763 dbuf_rele(db, FTAG);
1764 dmu_write(os, object, offset, blksz, buf->b_data, tx);
1765 dmu_return_arcbuf(buf);
1766 XUIOSTAT_BUMP(xuiostat_wbuf_copied);
1769 return (0);
1773 dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset, arc_buf_t *buf,
1774 dmu_tx_t *tx)
1776 int err;
1777 dmu_buf_impl_t *dbuf = (dmu_buf_impl_t *)handle;
1779 DB_DNODE_ENTER(dbuf);
1780 err = dmu_assign_arcbuf_by_dnode(DB_DNODE(dbuf), offset, buf, tx);
1781 DB_DNODE_EXIT(dbuf);
1783 return (err);
1786 typedef struct {
1787 dbuf_dirty_record_t *dsa_dr;
1788 dmu_sync_cb_t *dsa_done;
1789 zgd_t *dsa_zgd;
1790 dmu_tx_t *dsa_tx;
1791 } dmu_sync_arg_t;
1793 /* ARGSUSED */
1794 static void
1795 dmu_sync_ready(zio_t *zio, arc_buf_t *buf, void *varg)
1797 dmu_sync_arg_t *dsa = varg;
1798 dmu_buf_t *db = dsa->dsa_zgd->zgd_db;
1799 blkptr_t *bp = zio->io_bp;
1801 if (zio->io_error == 0) {
1802 if (BP_IS_HOLE(bp)) {
1804 * A block of zeros may compress to a hole, but the
1805 * block size still needs to be known for replay.
1807 BP_SET_LSIZE(bp, db->db_size);
1808 } else if (!BP_IS_EMBEDDED(bp)) {
1809 ASSERT(BP_GET_LEVEL(bp) == 0);
1810 BP_SET_FILL(bp, 1);
1815 static void
1816 dmu_sync_late_arrival_ready(zio_t *zio)
1818 dmu_sync_ready(zio, NULL, zio->io_private);
1821 /* ARGSUSED */
1822 static void
1823 dmu_sync_done(zio_t *zio, arc_buf_t *buf, void *varg)
1825 dmu_sync_arg_t *dsa = varg;
1826 dbuf_dirty_record_t *dr = dsa->dsa_dr;
1827 dmu_buf_impl_t *db = dr->dr_dbuf;
1828 zgd_t *zgd = dsa->dsa_zgd;
1831 * Record the vdev(s) backing this blkptr so they can be flushed after
1832 * the writes for the lwb have completed.
1834 if (zio->io_error == 0) {
1835 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1838 mutex_enter(&db->db_mtx);
1839 ASSERT(dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC);
1840 if (zio->io_error == 0) {
1841 dr->dt.dl.dr_nopwrite = !!(zio->io_flags & ZIO_FLAG_NOPWRITE);
1842 if (dr->dt.dl.dr_nopwrite) {
1843 blkptr_t *bp = zio->io_bp;
1844 blkptr_t *bp_orig = &zio->io_bp_orig;
1845 uint8_t chksum = BP_GET_CHECKSUM(bp_orig);
1847 ASSERT(BP_EQUAL(bp, bp_orig));
1848 VERIFY(BP_EQUAL(bp, db->db_blkptr));
1849 ASSERT(zio->io_prop.zp_compress != ZIO_COMPRESS_OFF);
1850 VERIFY(zio_checksum_table[chksum].ci_flags &
1851 ZCHECKSUM_FLAG_NOPWRITE);
1853 dr->dt.dl.dr_overridden_by = *zio->io_bp;
1854 dr->dt.dl.dr_override_state = DR_OVERRIDDEN;
1855 dr->dt.dl.dr_copies = zio->io_prop.zp_copies;
1858 * Old style holes are filled with all zeros, whereas
1859 * new-style holes maintain their lsize, type, level,
1860 * and birth time (see zio_write_compress). While we
1861 * need to reset the BP_SET_LSIZE() call that happened
1862 * in dmu_sync_ready for old style holes, we do *not*
1863 * want to wipe out the information contained in new
1864 * style holes. Thus, only zero out the block pointer if
1865 * it's an old style hole.
1867 if (BP_IS_HOLE(&dr->dt.dl.dr_overridden_by) &&
1868 dr->dt.dl.dr_overridden_by.blk_birth == 0)
1869 BP_ZERO(&dr->dt.dl.dr_overridden_by);
1870 } else {
1871 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1873 cv_broadcast(&db->db_changed);
1874 mutex_exit(&db->db_mtx);
1876 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1878 kmem_free(dsa, sizeof (*dsa));
1881 static void
1882 dmu_sync_late_arrival_done(zio_t *zio)
1884 blkptr_t *bp = zio->io_bp;
1885 dmu_sync_arg_t *dsa = zio->io_private;
1886 zgd_t *zgd = dsa->dsa_zgd;
1888 if (zio->io_error == 0) {
1890 * Record the vdev(s) backing this blkptr so they can be
1891 * flushed after the writes for the lwb have completed.
1893 zil_lwb_add_block(zgd->zgd_lwb, zgd->zgd_bp);
1895 if (!BP_IS_HOLE(bp)) {
1896 ASSERTV(blkptr_t *bp_orig = &zio->io_bp_orig);
1897 ASSERT(!(zio->io_flags & ZIO_FLAG_NOPWRITE));
1898 ASSERT(BP_IS_HOLE(bp_orig) || !BP_EQUAL(bp, bp_orig));
1899 ASSERT(zio->io_bp->blk_birth == zio->io_txg);
1900 ASSERT(zio->io_txg > spa_syncing_txg(zio->io_spa));
1901 zio_free(zio->io_spa, zio->io_txg, zio->io_bp);
1905 dmu_tx_commit(dsa->dsa_tx);
1907 dsa->dsa_done(dsa->dsa_zgd, zio->io_error);
1909 abd_put(zio->io_abd);
1910 kmem_free(dsa, sizeof (*dsa));
1913 static int
1914 dmu_sync_late_arrival(zio_t *pio, objset_t *os, dmu_sync_cb_t *done, zgd_t *zgd,
1915 zio_prop_t *zp, zbookmark_phys_t *zb)
1917 dmu_sync_arg_t *dsa;
1918 dmu_tx_t *tx;
1920 tx = dmu_tx_create(os);
1921 dmu_tx_hold_space(tx, zgd->zgd_db->db_size);
1922 if (dmu_tx_assign(tx, TXG_WAIT) != 0) {
1923 dmu_tx_abort(tx);
1924 /* Make zl_get_data do txg_waited_synced() */
1925 return (SET_ERROR(EIO));
1929 * In order to prevent the zgd's lwb from being free'd prior to
1930 * dmu_sync_late_arrival_done() being called, we have to ensure
1931 * the lwb's "max txg" takes this tx's txg into account.
1933 zil_lwb_add_txg(zgd->zgd_lwb, dmu_tx_get_txg(tx));
1935 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
1936 dsa->dsa_dr = NULL;
1937 dsa->dsa_done = done;
1938 dsa->dsa_zgd = zgd;
1939 dsa->dsa_tx = tx;
1942 * Since we are currently syncing this txg, it's nontrivial to
1943 * determine what BP to nopwrite against, so we disable nopwrite.
1945 * When syncing, the db_blkptr is initially the BP of the previous
1946 * txg. We can not nopwrite against it because it will be changed
1947 * (this is similar to the non-late-arrival case where the dbuf is
1948 * dirty in a future txg).
1950 * Then dbuf_write_ready() sets bp_blkptr to the location we will write.
1951 * We can not nopwrite against it because although the BP will not
1952 * (typically) be changed, the data has not yet been persisted to this
1953 * location.
1955 * Finally, when dbuf_write_done() is called, it is theoretically
1956 * possible to always nopwrite, because the data that was written in
1957 * this txg is the same data that we are trying to write. However we
1958 * would need to check that this dbuf is not dirty in any future
1959 * txg's (as we do in the normal dmu_sync() path). For simplicity, we
1960 * don't nopwrite in this case.
1962 zp->zp_nopwrite = B_FALSE;
1964 zio_nowait(zio_write(pio, os->os_spa, dmu_tx_get_txg(tx), zgd->zgd_bp,
1965 abd_get_from_buf(zgd->zgd_db->db_data, zgd->zgd_db->db_size),
1966 zgd->zgd_db->db_size, zgd->zgd_db->db_size, zp,
1967 dmu_sync_late_arrival_ready, NULL, NULL, dmu_sync_late_arrival_done,
1968 dsa, ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, zb));
1970 return (0);
1974 * Intent log support: sync the block associated with db to disk.
1975 * N.B. and XXX: the caller is responsible for making sure that the
1976 * data isn't changing while dmu_sync() is writing it.
1978 * Return values:
1980 * EEXIST: this txg has already been synced, so there's nothing to do.
1981 * The caller should not log the write.
1983 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1984 * The caller should not log the write.
1986 * EALREADY: this block is already in the process of being synced.
1987 * The caller should track its progress (somehow).
1989 * EIO: could not do the I/O.
1990 * The caller should do a txg_wait_synced().
1992 * 0: the I/O has been initiated.
1993 * The caller should log this blkptr in the done callback.
1994 * It is possible that the I/O will fail, in which case
1995 * the error will be reported to the done callback and
1996 * propagated to pio from zio_done().
1999 dmu_sync(zio_t *pio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd)
2001 dmu_buf_impl_t *db = (dmu_buf_impl_t *)zgd->zgd_db;
2002 objset_t *os = db->db_objset;
2003 dsl_dataset_t *ds = os->os_dsl_dataset;
2004 dbuf_dirty_record_t *dr;
2005 dmu_sync_arg_t *dsa;
2006 zbookmark_phys_t zb;
2007 zio_prop_t zp;
2008 dnode_t *dn;
2010 ASSERT(pio != NULL);
2011 ASSERT(txg != 0);
2013 SET_BOOKMARK(&zb, ds->ds_object,
2014 db->db.db_object, db->db_level, db->db_blkid);
2016 DB_DNODE_ENTER(db);
2017 dn = DB_DNODE(db);
2018 dmu_write_policy(os, dn, db->db_level, WP_DMU_SYNC, &zp);
2019 DB_DNODE_EXIT(db);
2022 * If we're frozen (running ziltest), we always need to generate a bp.
2024 if (txg > spa_freeze_txg(os->os_spa))
2025 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2028 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
2029 * and us. If we determine that this txg is not yet syncing,
2030 * but it begins to sync a moment later, that's OK because the
2031 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
2033 mutex_enter(&db->db_mtx);
2035 if (txg <= spa_last_synced_txg(os->os_spa)) {
2037 * This txg has already synced. There's nothing to do.
2039 mutex_exit(&db->db_mtx);
2040 return (SET_ERROR(EEXIST));
2043 if (txg <= spa_syncing_txg(os->os_spa)) {
2045 * This txg is currently syncing, so we can't mess with
2046 * the dirty record anymore; just write a new log block.
2048 mutex_exit(&db->db_mtx);
2049 return (dmu_sync_late_arrival(pio, os, done, zgd, &zp, &zb));
2052 dr = db->db_last_dirty;
2053 while (dr && dr->dr_txg != txg)
2054 dr = dr->dr_next;
2056 if (dr == NULL) {
2058 * There's no dr for this dbuf, so it must have been freed.
2059 * There's no need to log writes to freed blocks, so we're done.
2061 mutex_exit(&db->db_mtx);
2062 return (SET_ERROR(ENOENT));
2065 ASSERT(dr->dr_next == NULL || dr->dr_next->dr_txg < txg);
2067 if (db->db_blkptr != NULL) {
2069 * We need to fill in zgd_bp with the current blkptr so that
2070 * the nopwrite code can check if we're writing the same
2071 * data that's already on disk. We can only nopwrite if we
2072 * are sure that after making the copy, db_blkptr will not
2073 * change until our i/o completes. We ensure this by
2074 * holding the db_mtx, and only allowing nopwrite if the
2075 * block is not already dirty (see below). This is verified
2076 * by dmu_sync_done(), which VERIFYs that the db_blkptr has
2077 * not changed.
2079 *zgd->zgd_bp = *db->db_blkptr;
2083 * Assume the on-disk data is X, the current syncing data (in
2084 * txg - 1) is Y, and the current in-memory data is Z (currently
2085 * in dmu_sync).
2087 * We usually want to perform a nopwrite if X and Z are the
2088 * same. However, if Y is different (i.e. the BP is going to
2089 * change before this write takes effect), then a nopwrite will
2090 * be incorrect - we would override with X, which could have
2091 * been freed when Y was written.
2093 * (Note that this is not a concern when we are nop-writing from
2094 * syncing context, because X and Y must be identical, because
2095 * all previous txgs have been synced.)
2097 * Therefore, we disable nopwrite if the current BP could change
2098 * before this TXG. There are two ways it could change: by
2099 * being dirty (dr_next is non-NULL), or by being freed
2100 * (dnode_block_freed()). This behavior is verified by
2101 * zio_done(), which VERIFYs that the override BP is identical
2102 * to the on-disk BP.
2104 DB_DNODE_ENTER(db);
2105 dn = DB_DNODE(db);
2106 if (dr->dr_next != NULL || dnode_block_freed(dn, db->db_blkid))
2107 zp.zp_nopwrite = B_FALSE;
2108 DB_DNODE_EXIT(db);
2110 ASSERT(dr->dr_txg == txg);
2111 if (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC ||
2112 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
2114 * We have already issued a sync write for this buffer,
2115 * or this buffer has already been synced. It could not
2116 * have been dirtied since, or we would have cleared the state.
2118 mutex_exit(&db->db_mtx);
2119 return (SET_ERROR(EALREADY));
2122 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
2123 dr->dt.dl.dr_override_state = DR_IN_DMU_SYNC;
2124 mutex_exit(&db->db_mtx);
2126 dsa = kmem_alloc(sizeof (dmu_sync_arg_t), KM_SLEEP);
2127 dsa->dsa_dr = dr;
2128 dsa->dsa_done = done;
2129 dsa->dsa_zgd = zgd;
2130 dsa->dsa_tx = NULL;
2132 zio_nowait(arc_write(pio, os->os_spa, txg,
2133 zgd->zgd_bp, dr->dt.dl.dr_data, DBUF_IS_L2CACHEABLE(db),
2134 &zp, dmu_sync_ready, NULL, NULL, dmu_sync_done, dsa,
2135 ZIO_PRIORITY_SYNC_WRITE, ZIO_FLAG_CANFAIL, &zb));
2137 return (0);
2141 dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels, dmu_tx_t *tx)
2143 dnode_t *dn;
2144 int err;
2146 err = dnode_hold(os, object, FTAG, &dn);
2147 if (err)
2148 return (err);
2149 err = dnode_set_nlevels(dn, nlevels, tx);
2150 dnode_rele(dn, FTAG);
2151 return (err);
2155 dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size, int ibs,
2156 dmu_tx_t *tx)
2158 dnode_t *dn;
2159 int err;
2161 err = dnode_hold(os, object, FTAG, &dn);
2162 if (err)
2163 return (err);
2164 err = dnode_set_blksz(dn, size, ibs, tx);
2165 dnode_rele(dn, FTAG);
2166 return (err);
2170 dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
2171 dmu_tx_t *tx)
2173 dnode_t *dn;
2174 int err;
2176 err = dnode_hold(os, object, FTAG, &dn);
2177 if (err)
2178 return (err);
2179 rw_enter(&dn->dn_struct_rwlock, RW_WRITER);
2180 dnode_new_blkid(dn, maxblkid, tx, B_FALSE, B_TRUE);
2181 rw_exit(&dn->dn_struct_rwlock);
2182 dnode_rele(dn, FTAG);
2183 return (0);
2186 void
2187 dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
2188 dmu_tx_t *tx)
2190 dnode_t *dn;
2193 * Send streams include each object's checksum function. This
2194 * check ensures that the receiving system can understand the
2195 * checksum function transmitted.
2197 ASSERT3U(checksum, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS);
2199 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2200 ASSERT3U(checksum, <, ZIO_CHECKSUM_FUNCTIONS);
2201 dn->dn_checksum = checksum;
2202 dnode_setdirty(dn, tx);
2203 dnode_rele(dn, FTAG);
2206 void
2207 dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
2208 dmu_tx_t *tx)
2210 dnode_t *dn;
2213 * Send streams include each object's compression function. This
2214 * check ensures that the receiving system can understand the
2215 * compression function transmitted.
2217 ASSERT3U(compress, <, ZIO_COMPRESS_LEGACY_FUNCTIONS);
2219 VERIFY0(dnode_hold(os, object, FTAG, &dn));
2220 dn->dn_compress = compress;
2221 dnode_setdirty(dn, tx);
2222 dnode_rele(dn, FTAG);
2226 * When the "redundant_metadata" property is set to "most", only indirect
2227 * blocks of this level and higher will have an additional ditto block.
2229 int zfs_redundant_metadata_most_ditto_level = 2;
2231 void
2232 dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp, zio_prop_t *zp)
2234 dmu_object_type_t type = dn ? dn->dn_type : DMU_OT_OBJSET;
2235 boolean_t ismd = (level > 0 || DMU_OT_IS_METADATA(type) ||
2236 (wp & WP_SPILL));
2237 enum zio_checksum checksum = os->os_checksum;
2238 enum zio_compress compress = os->os_compress;
2239 enum zio_checksum dedup_checksum = os->os_dedup_checksum;
2240 boolean_t dedup = B_FALSE;
2241 boolean_t nopwrite = B_FALSE;
2242 boolean_t dedup_verify = os->os_dedup_verify;
2243 boolean_t encrypt = B_FALSE;
2244 int copies = os->os_copies;
2247 * We maintain different write policies for each of the following
2248 * types of data:
2249 * 1. metadata
2250 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
2251 * 3. all other level 0 blocks
2253 if (ismd) {
2255 * XXX -- we should design a compression algorithm
2256 * that specializes in arrays of bps.
2258 compress = zio_compress_select(os->os_spa,
2259 ZIO_COMPRESS_ON, ZIO_COMPRESS_ON);
2262 * Metadata always gets checksummed. If the data
2263 * checksum is multi-bit correctable, and it's not a
2264 * ZBT-style checksum, then it's suitable for metadata
2265 * as well. Otherwise, the metadata checksum defaults
2266 * to fletcher4.
2268 if (!(zio_checksum_table[checksum].ci_flags &
2269 ZCHECKSUM_FLAG_METADATA) ||
2270 (zio_checksum_table[checksum].ci_flags &
2271 ZCHECKSUM_FLAG_EMBEDDED))
2272 checksum = ZIO_CHECKSUM_FLETCHER_4;
2274 if (os->os_redundant_metadata == ZFS_REDUNDANT_METADATA_ALL ||
2275 (os->os_redundant_metadata ==
2276 ZFS_REDUNDANT_METADATA_MOST &&
2277 (level >= zfs_redundant_metadata_most_ditto_level ||
2278 DMU_OT_IS_METADATA(type) || (wp & WP_SPILL))))
2279 copies++;
2280 } else if (wp & WP_NOFILL) {
2281 ASSERT(level == 0);
2284 * If we're writing preallocated blocks, we aren't actually
2285 * writing them so don't set any policy properties. These
2286 * blocks are currently only used by an external subsystem
2287 * outside of zfs (i.e. dump) and not written by the zio
2288 * pipeline.
2290 compress = ZIO_COMPRESS_OFF;
2291 checksum = ZIO_CHECKSUM_OFF;
2292 } else {
2293 compress = zio_compress_select(os->os_spa, dn->dn_compress,
2294 compress);
2296 checksum = (dedup_checksum == ZIO_CHECKSUM_OFF) ?
2297 zio_checksum_select(dn->dn_checksum, checksum) :
2298 dedup_checksum;
2301 * Determine dedup setting. If we are in dmu_sync(),
2302 * we won't actually dedup now because that's all
2303 * done in syncing context; but we do want to use the
2304 * dedup checksum. If the checksum is not strong
2305 * enough to ensure unique signatures, force
2306 * dedup_verify.
2308 if (dedup_checksum != ZIO_CHECKSUM_OFF) {
2309 dedup = (wp & WP_DMU_SYNC) ? B_FALSE : B_TRUE;
2310 if (!(zio_checksum_table[checksum].ci_flags &
2311 ZCHECKSUM_FLAG_DEDUP))
2312 dedup_verify = B_TRUE;
2316 * Enable nopwrite if we have secure enough checksum
2317 * algorithm (see comment in zio_nop_write) and
2318 * compression is enabled. We don't enable nopwrite if
2319 * dedup is enabled as the two features are mutually
2320 * exclusive.
2322 nopwrite = (!dedup && (zio_checksum_table[checksum].ci_flags &
2323 ZCHECKSUM_FLAG_NOPWRITE) &&
2324 compress != ZIO_COMPRESS_OFF && zfs_nopwrite_enabled);
2328 * All objects in an encrypted objset are protected from modification
2329 * via a MAC. Encrypted objects store their IV and salt in the last DVA
2330 * in the bp, so we cannot use all copies. Encrypted objects are also
2331 * not subject to nopwrite since writing the same data will still
2332 * result in a new ciphertext. Only encrypted blocks can be dedup'd
2333 * to avoid ambiguity in the dedup code since the DDT does not store
2334 * object types.
2336 if (os->os_encrypted && (wp & WP_NOFILL) == 0) {
2337 encrypt = B_TRUE;
2339 if (DMU_OT_IS_ENCRYPTED(type)) {
2340 copies = MIN(copies, SPA_DVAS_PER_BP - 1);
2341 nopwrite = B_FALSE;
2342 } else {
2343 dedup = B_FALSE;
2346 if (level <= 0 &&
2347 (type == DMU_OT_DNODE || type == DMU_OT_OBJSET)) {
2348 compress = ZIO_COMPRESS_EMPTY;
2352 zp->zp_compress = compress;
2353 zp->zp_checksum = checksum;
2354 zp->zp_type = (wp & WP_SPILL) ? dn->dn_bonustype : type;
2355 zp->zp_level = level;
2356 zp->zp_copies = MIN(copies, spa_max_replication(os->os_spa));
2357 zp->zp_dedup = dedup;
2358 zp->zp_dedup_verify = dedup && dedup_verify;
2359 zp->zp_nopwrite = nopwrite;
2360 zp->zp_encrypt = encrypt;
2361 zp->zp_byteorder = ZFS_HOST_BYTEORDER;
2362 bzero(zp->zp_salt, ZIO_DATA_SALT_LEN);
2363 bzero(zp->zp_iv, ZIO_DATA_IV_LEN);
2364 bzero(zp->zp_mac, ZIO_DATA_MAC_LEN);
2365 zp->zp_zpl_smallblk = DMU_OT_IS_FILE(zp->zp_type) ?
2366 os->os_zpl_special_smallblock : 0;
2368 ASSERT3U(zp->zp_compress, !=, ZIO_COMPRESS_INHERIT);
2372 * This function is only called from zfs_holey_common() for zpl_llseek()
2373 * in order to determine the location of holes. In order to accurately
2374 * report holes all dirty data must be synced to disk. This causes extremely
2375 * poor performance when seeking for holes in a dirty file. As a compromise,
2376 * only provide hole data when the dnode is clean. When a dnode is dirty
2377 * report the dnode as having no holes which is always a safe thing to do.
2380 dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole, uint64_t *off)
2382 dnode_t *dn;
2383 int i, err;
2384 boolean_t clean = B_TRUE;
2386 err = dnode_hold(os, object, FTAG, &dn);
2387 if (err)
2388 return (err);
2391 * Check if dnode is dirty
2393 for (i = 0; i < TXG_SIZE; i++) {
2394 if (multilist_link_active(&dn->dn_dirty_link[i])) {
2395 clean = B_FALSE;
2396 break;
2401 * If compatibility option is on, sync any current changes before
2402 * we go trundling through the block pointers.
2404 if (!clean && zfs_dmu_offset_next_sync) {
2405 clean = B_TRUE;
2406 dnode_rele(dn, FTAG);
2407 txg_wait_synced(dmu_objset_pool(os), 0);
2408 err = dnode_hold(os, object, FTAG, &dn);
2409 if (err)
2410 return (err);
2413 if (clean)
2414 err = dnode_next_offset(dn,
2415 (hole ? DNODE_FIND_HOLE : 0), off, 1, 1, 0);
2416 else
2417 err = SET_ERROR(EBUSY);
2419 dnode_rele(dn, FTAG);
2421 return (err);
2424 void
2425 __dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2427 dnode_phys_t *dnp = dn->dn_phys;
2429 doi->doi_data_block_size = dn->dn_datablksz;
2430 doi->doi_metadata_block_size = dn->dn_indblkshift ?
2431 1ULL << dn->dn_indblkshift : 0;
2432 doi->doi_type = dn->dn_type;
2433 doi->doi_bonus_type = dn->dn_bonustype;
2434 doi->doi_bonus_size = dn->dn_bonuslen;
2435 doi->doi_dnodesize = dn->dn_num_slots << DNODE_SHIFT;
2436 doi->doi_indirection = dn->dn_nlevels;
2437 doi->doi_checksum = dn->dn_checksum;
2438 doi->doi_compress = dn->dn_compress;
2439 doi->doi_nblkptr = dn->dn_nblkptr;
2440 doi->doi_physical_blocks_512 = (DN_USED_BYTES(dnp) + 256) >> 9;
2441 doi->doi_max_offset = (dn->dn_maxblkid + 1) * dn->dn_datablksz;
2442 doi->doi_fill_count = 0;
2443 for (int i = 0; i < dnp->dn_nblkptr; i++)
2444 doi->doi_fill_count += BP_GET_FILL(&dnp->dn_blkptr[i]);
2447 void
2448 dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi)
2450 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2451 mutex_enter(&dn->dn_mtx);
2453 __dmu_object_info_from_dnode(dn, doi);
2455 mutex_exit(&dn->dn_mtx);
2456 rw_exit(&dn->dn_struct_rwlock);
2460 * Get information on a DMU object.
2461 * If doi is NULL, just indicates whether the object exists.
2464 dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi)
2466 dnode_t *dn;
2467 int err = dnode_hold(os, object, FTAG, &dn);
2469 if (err)
2470 return (err);
2472 if (doi != NULL)
2473 dmu_object_info_from_dnode(dn, doi);
2475 dnode_rele(dn, FTAG);
2476 return (0);
2480 * As above, but faster; can be used when you have a held dbuf in hand.
2482 void
2483 dmu_object_info_from_db(dmu_buf_t *db_fake, dmu_object_info_t *doi)
2485 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2487 DB_DNODE_ENTER(db);
2488 dmu_object_info_from_dnode(DB_DNODE(db), doi);
2489 DB_DNODE_EXIT(db);
2493 * Faster still when you only care about the size.
2494 * This is specifically optimized for zfs_getattr().
2496 void
2497 dmu_object_size_from_db(dmu_buf_t *db_fake, uint32_t *blksize,
2498 u_longlong_t *nblk512)
2500 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2501 dnode_t *dn;
2503 DB_DNODE_ENTER(db);
2504 dn = DB_DNODE(db);
2506 *blksize = dn->dn_datablksz;
2507 /* add in number of slots used for the dnode itself */
2508 *nblk512 = ((DN_USED_BYTES(dn->dn_phys) + SPA_MINBLOCKSIZE/2) >>
2509 SPA_MINBLOCKSHIFT) + dn->dn_num_slots;
2510 DB_DNODE_EXIT(db);
2513 void
2514 dmu_object_dnsize_from_db(dmu_buf_t *db_fake, int *dnsize)
2516 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2517 dnode_t *dn;
2519 DB_DNODE_ENTER(db);
2520 dn = DB_DNODE(db);
2521 *dnsize = dn->dn_num_slots << DNODE_SHIFT;
2522 DB_DNODE_EXIT(db);
2525 void
2526 byteswap_uint64_array(void *vbuf, size_t size)
2528 uint64_t *buf = vbuf;
2529 size_t count = size >> 3;
2530 int i;
2532 ASSERT((size & 7) == 0);
2534 for (i = 0; i < count; i++)
2535 buf[i] = BSWAP_64(buf[i]);
2538 void
2539 byteswap_uint32_array(void *vbuf, size_t size)
2541 uint32_t *buf = vbuf;
2542 size_t count = size >> 2;
2543 int i;
2545 ASSERT((size & 3) == 0);
2547 for (i = 0; i < count; i++)
2548 buf[i] = BSWAP_32(buf[i]);
2551 void
2552 byteswap_uint16_array(void *vbuf, size_t size)
2554 uint16_t *buf = vbuf;
2555 size_t count = size >> 1;
2556 int i;
2558 ASSERT((size & 1) == 0);
2560 for (i = 0; i < count; i++)
2561 buf[i] = BSWAP_16(buf[i]);
2564 /* ARGSUSED */
2565 void
2566 byteswap_uint8_array(void *vbuf, size_t size)
2570 void
2571 dmu_init(void)
2573 abd_init();
2574 zfs_dbgmsg_init();
2575 sa_cache_init();
2576 xuio_stat_init();
2577 dmu_objset_init();
2578 dnode_init();
2579 zfetch_init();
2580 dmu_tx_init();
2581 l2arc_init();
2582 arc_init();
2583 dbuf_init();
2586 void
2587 dmu_fini(void)
2589 arc_fini(); /* arc depends on l2arc, so arc must go first */
2590 l2arc_fini();
2591 dmu_tx_fini();
2592 zfetch_fini();
2593 dbuf_fini();
2594 dnode_fini();
2595 dmu_objset_fini();
2596 xuio_stat_fini();
2597 sa_cache_fini();
2598 zfs_dbgmsg_fini();
2599 abd_fini();
2602 #if defined(_KERNEL)
2603 EXPORT_SYMBOL(dmu_bonus_hold);
2604 EXPORT_SYMBOL(dmu_bonus_hold_by_dnode);
2605 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus);
2606 EXPORT_SYMBOL(dmu_buf_rele_array);
2607 EXPORT_SYMBOL(dmu_prefetch);
2608 EXPORT_SYMBOL(dmu_free_range);
2609 EXPORT_SYMBOL(dmu_free_long_range);
2610 EXPORT_SYMBOL(dmu_free_long_object);
2611 EXPORT_SYMBOL(dmu_read);
2612 EXPORT_SYMBOL(dmu_read_by_dnode);
2613 EXPORT_SYMBOL(dmu_write);
2614 EXPORT_SYMBOL(dmu_write_by_dnode);
2615 EXPORT_SYMBOL(dmu_prealloc);
2616 EXPORT_SYMBOL(dmu_object_info);
2617 EXPORT_SYMBOL(dmu_object_info_from_dnode);
2618 EXPORT_SYMBOL(dmu_object_info_from_db);
2619 EXPORT_SYMBOL(dmu_object_size_from_db);
2620 EXPORT_SYMBOL(dmu_object_dnsize_from_db);
2621 EXPORT_SYMBOL(dmu_object_set_nlevels);
2622 EXPORT_SYMBOL(dmu_object_set_blocksize);
2623 EXPORT_SYMBOL(dmu_object_set_maxblkid);
2624 EXPORT_SYMBOL(dmu_object_set_checksum);
2625 EXPORT_SYMBOL(dmu_object_set_compress);
2626 EXPORT_SYMBOL(dmu_write_policy);
2627 EXPORT_SYMBOL(dmu_sync);
2628 EXPORT_SYMBOL(dmu_request_arcbuf);
2629 EXPORT_SYMBOL(dmu_return_arcbuf);
2630 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dnode);
2631 EXPORT_SYMBOL(dmu_assign_arcbuf_by_dbuf);
2632 EXPORT_SYMBOL(dmu_buf_hold);
2633 EXPORT_SYMBOL(dmu_ot);
2635 /* BEGIN CSTYLED */
2636 module_param(zfs_nopwrite_enabled, int, 0644);
2637 MODULE_PARM_DESC(zfs_nopwrite_enabled, "Enable NOP writes");
2639 module_param(zfs_per_txg_dirty_frees_percent, ulong, 0644);
2640 MODULE_PARM_DESC(zfs_per_txg_dirty_frees_percent,
2641 "percentage of dirtied blocks from frees in one TXG");
2643 module_param(zfs_dmu_offset_next_sync, int, 0644);
2644 MODULE_PARM_DESC(zfs_dmu_offset_next_sync,
2645 "Enable forcing txg sync to find holes");
2647 module_param(dmu_prefetch_max, int, 0644);
2648 MODULE_PARM_DESC(dmu_prefetch_max,
2649 "Limit one prefetch call to this size");
2651 /* END CSTYLED */
2653 #endif