Add missing zfs_refcount_destroy() in key_mapping_rele()
[zfs.git] / module / zfs / dmu_tx.c
blobd6a42f84c75161374e88c79042b823dde0905139
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2017 by Delphix. All rights reserved.
27 #include <sys/dmu.h>
28 #include <sys/dmu_impl.h>
29 #include <sys/dbuf.h>
30 #include <sys/dmu_tx.h>
31 #include <sys/dmu_objset.h>
32 #include <sys/dsl_dataset.h>
33 #include <sys/dsl_dir.h>
34 #include <sys/dsl_pool.h>
35 #include <sys/zap_impl.h>
36 #include <sys/spa.h>
37 #include <sys/sa.h>
38 #include <sys/sa_impl.h>
39 #include <sys/zfs_context.h>
40 #include <sys/trace_dmu.h>
42 typedef void (*dmu_tx_hold_func_t)(dmu_tx_t *tx, struct dnode *dn,
43 uint64_t arg1, uint64_t arg2);
45 dmu_tx_stats_t dmu_tx_stats = {
46 { "dmu_tx_assigned", KSTAT_DATA_UINT64 },
47 { "dmu_tx_delay", KSTAT_DATA_UINT64 },
48 { "dmu_tx_error", KSTAT_DATA_UINT64 },
49 { "dmu_tx_suspended", KSTAT_DATA_UINT64 },
50 { "dmu_tx_group", KSTAT_DATA_UINT64 },
51 { "dmu_tx_memory_reserve", KSTAT_DATA_UINT64 },
52 { "dmu_tx_memory_reclaim", KSTAT_DATA_UINT64 },
53 { "dmu_tx_dirty_throttle", KSTAT_DATA_UINT64 },
54 { "dmu_tx_dirty_delay", KSTAT_DATA_UINT64 },
55 { "dmu_tx_dirty_over_max", KSTAT_DATA_UINT64 },
56 { "dmu_tx_dirty_frees_delay", KSTAT_DATA_UINT64 },
57 { "dmu_tx_quota", KSTAT_DATA_UINT64 },
60 static kstat_t *dmu_tx_ksp;
62 dmu_tx_t *
63 dmu_tx_create_dd(dsl_dir_t *dd)
65 dmu_tx_t *tx = kmem_zalloc(sizeof (dmu_tx_t), KM_SLEEP);
66 tx->tx_dir = dd;
67 if (dd != NULL)
68 tx->tx_pool = dd->dd_pool;
69 list_create(&tx->tx_holds, sizeof (dmu_tx_hold_t),
70 offsetof(dmu_tx_hold_t, txh_node));
71 list_create(&tx->tx_callbacks, sizeof (dmu_tx_callback_t),
72 offsetof(dmu_tx_callback_t, dcb_node));
73 tx->tx_start = gethrtime();
74 return (tx);
77 dmu_tx_t *
78 dmu_tx_create(objset_t *os)
80 dmu_tx_t *tx = dmu_tx_create_dd(os->os_dsl_dataset->ds_dir);
81 tx->tx_objset = os;
82 return (tx);
85 dmu_tx_t *
86 dmu_tx_create_assigned(struct dsl_pool *dp, uint64_t txg)
88 dmu_tx_t *tx = dmu_tx_create_dd(NULL);
90 TXG_VERIFY(dp->dp_spa, txg);
91 tx->tx_pool = dp;
92 tx->tx_txg = txg;
93 tx->tx_anyobj = TRUE;
95 return (tx);
98 int
99 dmu_tx_is_syncing(dmu_tx_t *tx)
101 return (tx->tx_anyobj);
105 dmu_tx_private_ok(dmu_tx_t *tx)
107 return (tx->tx_anyobj);
110 static dmu_tx_hold_t *
111 dmu_tx_hold_dnode_impl(dmu_tx_t *tx, dnode_t *dn, enum dmu_tx_hold_type type,
112 uint64_t arg1, uint64_t arg2)
114 dmu_tx_hold_t *txh;
116 if (dn != NULL) {
117 (void) zfs_refcount_add(&dn->dn_holds, tx);
118 if (tx->tx_txg != 0) {
119 mutex_enter(&dn->dn_mtx);
121 * dn->dn_assigned_txg == tx->tx_txg doesn't pose a
122 * problem, but there's no way for it to happen (for
123 * now, at least).
125 ASSERT(dn->dn_assigned_txg == 0);
126 dn->dn_assigned_txg = tx->tx_txg;
127 (void) zfs_refcount_add(&dn->dn_tx_holds, tx);
128 mutex_exit(&dn->dn_mtx);
132 txh = kmem_zalloc(sizeof (dmu_tx_hold_t), KM_SLEEP);
133 txh->txh_tx = tx;
134 txh->txh_dnode = dn;
135 zfs_refcount_create(&txh->txh_space_towrite);
136 zfs_refcount_create(&txh->txh_memory_tohold);
137 txh->txh_type = type;
138 txh->txh_arg1 = arg1;
139 txh->txh_arg2 = arg2;
140 list_insert_tail(&tx->tx_holds, txh);
142 return (txh);
145 static dmu_tx_hold_t *
146 dmu_tx_hold_object_impl(dmu_tx_t *tx, objset_t *os, uint64_t object,
147 enum dmu_tx_hold_type type, uint64_t arg1, uint64_t arg2)
149 dnode_t *dn = NULL;
150 dmu_tx_hold_t *txh;
151 int err;
153 if (object != DMU_NEW_OBJECT) {
154 err = dnode_hold(os, object, FTAG, &dn);
155 if (err != 0) {
156 tx->tx_err = err;
157 return (NULL);
160 txh = dmu_tx_hold_dnode_impl(tx, dn, type, arg1, arg2);
161 if (dn != NULL)
162 dnode_rele(dn, FTAG);
163 return (txh);
166 void
167 dmu_tx_add_new_object(dmu_tx_t *tx, dnode_t *dn)
170 * If we're syncing, they can manipulate any object anyhow, and
171 * the hold on the dnode_t can cause problems.
173 if (!dmu_tx_is_syncing(tx))
174 (void) dmu_tx_hold_dnode_impl(tx, dn, THT_NEWOBJECT, 0, 0);
178 * This function reads specified data from disk. The specified data will
179 * be needed to perform the transaction -- i.e, it will be read after
180 * we do dmu_tx_assign(). There are two reasons that we read the data now
181 * (before dmu_tx_assign()):
183 * 1. Reading it now has potentially better performance. The transaction
184 * has not yet been assigned, so the TXG is not held open, and also the
185 * caller typically has less locks held when calling dmu_tx_hold_*() than
186 * after the transaction has been assigned. This reduces the lock (and txg)
187 * hold times, thus reducing lock contention.
189 * 2. It is easier for callers (primarily the ZPL) to handle i/o errors
190 * that are detected before they start making changes to the DMU state
191 * (i.e. now). Once the transaction has been assigned, and some DMU
192 * state has been changed, it can be difficult to recover from an i/o
193 * error (e.g. to undo the changes already made in memory at the DMU
194 * layer). Typically code to do so does not exist in the caller -- it
195 * assumes that the data has already been cached and thus i/o errors are
196 * not possible.
198 * It has been observed that the i/o initiated here can be a performance
199 * problem, and it appears to be optional, because we don't look at the
200 * data which is read. However, removing this read would only serve to
201 * move the work elsewhere (after the dmu_tx_assign()), where it may
202 * have a greater impact on performance (in addition to the impact on
203 * fault tolerance noted above).
205 static int
206 dmu_tx_check_ioerr(zio_t *zio, dnode_t *dn, int level, uint64_t blkid)
208 int err;
209 dmu_buf_impl_t *db;
211 rw_enter(&dn->dn_struct_rwlock, RW_READER);
212 db = dbuf_hold_level(dn, level, blkid, FTAG);
213 rw_exit(&dn->dn_struct_rwlock);
214 if (db == NULL)
215 return (SET_ERROR(EIO));
216 err = dbuf_read(db, zio, DB_RF_CANFAIL | DB_RF_NOPREFETCH);
217 dbuf_rele(db, FTAG);
218 return (err);
221 /* ARGSUSED */
222 static void
223 dmu_tx_count_write(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
225 dnode_t *dn = txh->txh_dnode;
226 int err = 0;
228 if (len == 0)
229 return;
231 (void) zfs_refcount_add_many(&txh->txh_space_towrite, len, FTAG);
233 if (zfs_refcount_count(&txh->txh_space_towrite) > 2 * DMU_MAX_ACCESS)
234 err = SET_ERROR(EFBIG);
236 if (dn == NULL)
237 return;
240 * For i/o error checking, read the blocks that will be needed
241 * to perform the write: the first and last level-0 blocks (if
242 * they are not aligned, i.e. if they are partial-block writes),
243 * and all the level-1 blocks.
245 if (dn->dn_maxblkid == 0) {
246 if (off < dn->dn_datablksz &&
247 (off > 0 || len < dn->dn_datablksz)) {
248 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
249 if (err != 0) {
250 txh->txh_tx->tx_err = err;
253 } else {
254 zio_t *zio = zio_root(dn->dn_objset->os_spa,
255 NULL, NULL, ZIO_FLAG_CANFAIL);
257 /* first level-0 block */
258 uint64_t start = off >> dn->dn_datablkshift;
259 if (P2PHASE(off, dn->dn_datablksz) || len < dn->dn_datablksz) {
260 err = dmu_tx_check_ioerr(zio, dn, 0, start);
261 if (err != 0) {
262 txh->txh_tx->tx_err = err;
266 /* last level-0 block */
267 uint64_t end = (off + len - 1) >> dn->dn_datablkshift;
268 if (end != start && end <= dn->dn_maxblkid &&
269 P2PHASE(off + len, dn->dn_datablksz)) {
270 err = dmu_tx_check_ioerr(zio, dn, 0, end);
271 if (err != 0) {
272 txh->txh_tx->tx_err = err;
276 /* level-1 blocks */
277 if (dn->dn_nlevels > 1) {
278 int shft = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
279 for (uint64_t i = (start >> shft) + 1;
280 i < end >> shft; i++) {
281 err = dmu_tx_check_ioerr(zio, dn, 1, i);
282 if (err != 0) {
283 txh->txh_tx->tx_err = err;
288 err = zio_wait(zio);
289 if (err != 0) {
290 txh->txh_tx->tx_err = err;
295 static void
296 dmu_tx_count_dnode(dmu_tx_hold_t *txh)
298 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
299 DNODE_MIN_SIZE, FTAG);
302 void
303 dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len)
305 dmu_tx_hold_t *txh;
307 ASSERT0(tx->tx_txg);
308 ASSERT3U(len, <=, DMU_MAX_ACCESS);
309 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
311 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
312 object, THT_WRITE, off, len);
313 if (txh != NULL) {
314 dmu_tx_count_write(txh, off, len);
315 dmu_tx_count_dnode(txh);
319 void
320 dmu_tx_hold_remap_l1indirect(dmu_tx_t *tx, uint64_t object)
322 dmu_tx_hold_t *txh;
324 ASSERT(tx->tx_txg == 0);
325 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
326 object, THT_WRITE, 0, 0);
327 if (txh == NULL)
328 return;
330 dnode_t *dn = txh->txh_dnode;
331 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
332 1ULL << dn->dn_indblkshift, FTAG);
333 dmu_tx_count_dnode(txh);
336 void
337 dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, int len)
339 dmu_tx_hold_t *txh;
341 ASSERT0(tx->tx_txg);
342 ASSERT3U(len, <=, DMU_MAX_ACCESS);
343 ASSERT(len == 0 || UINT64_MAX - off >= len - 1);
345 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_WRITE, off, len);
346 if (txh != NULL) {
347 dmu_tx_count_write(txh, off, len);
348 dmu_tx_count_dnode(txh);
353 * This function marks the transaction as being a "net free". The end
354 * result is that refquotas will be disabled for this transaction, and
355 * this transaction will be able to use half of the pool space overhead
356 * (see dsl_pool_adjustedsize()). Therefore this function should only
357 * be called for transactions that we expect will not cause a net increase
358 * in the amount of space used (but it's OK if that is occasionally not true).
360 void
361 dmu_tx_mark_netfree(dmu_tx_t *tx)
363 tx->tx_netfree = B_TRUE;
366 static void
367 dmu_tx_hold_free_impl(dmu_tx_hold_t *txh, uint64_t off, uint64_t len)
369 dmu_tx_t *tx = txh->txh_tx;
370 dnode_t *dn = txh->txh_dnode;
371 int err;
373 ASSERT(tx->tx_txg == 0);
375 dmu_tx_count_dnode(txh);
377 if (off >= (dn->dn_maxblkid + 1) * dn->dn_datablksz)
378 return;
379 if (len == DMU_OBJECT_END)
380 len = (dn->dn_maxblkid + 1) * dn->dn_datablksz - off;
382 dmu_tx_count_dnode(txh);
385 * For i/o error checking, we read the first and last level-0
386 * blocks if they are not aligned, and all the level-1 blocks.
388 * Note: dbuf_free_range() assumes that we have not instantiated
389 * any level-0 dbufs that will be completely freed. Therefore we must
390 * exercise care to not read or count the first and last blocks
391 * if they are blocksize-aligned.
393 if (dn->dn_datablkshift == 0) {
394 if (off != 0 || len < dn->dn_datablksz)
395 dmu_tx_count_write(txh, 0, dn->dn_datablksz);
396 } else {
397 /* first block will be modified if it is not aligned */
398 if (!IS_P2ALIGNED(off, 1 << dn->dn_datablkshift))
399 dmu_tx_count_write(txh, off, 1);
400 /* last block will be modified if it is not aligned */
401 if (!IS_P2ALIGNED(off + len, 1 << dn->dn_datablkshift))
402 dmu_tx_count_write(txh, off + len, 1);
406 * Check level-1 blocks.
408 if (dn->dn_nlevels > 1) {
409 int shift = dn->dn_datablkshift + dn->dn_indblkshift -
410 SPA_BLKPTRSHIFT;
411 uint64_t start = off >> shift;
412 uint64_t end = (off + len) >> shift;
414 ASSERT(dn->dn_indblkshift != 0);
417 * dnode_reallocate() can result in an object with indirect
418 * blocks having an odd data block size. In this case,
419 * just check the single block.
421 if (dn->dn_datablkshift == 0)
422 start = end = 0;
424 zio_t *zio = zio_root(tx->tx_pool->dp_spa,
425 NULL, NULL, ZIO_FLAG_CANFAIL);
426 for (uint64_t i = start; i <= end; i++) {
427 uint64_t ibyte = i << shift;
428 err = dnode_next_offset(dn, 0, &ibyte, 2, 1, 0);
429 i = ibyte >> shift;
430 if (err == ESRCH || i > end)
431 break;
432 if (err != 0) {
433 tx->tx_err = err;
434 (void) zio_wait(zio);
435 return;
438 (void) zfs_refcount_add_many(&txh->txh_memory_tohold,
439 1 << dn->dn_indblkshift, FTAG);
441 err = dmu_tx_check_ioerr(zio, dn, 1, i);
442 if (err != 0) {
443 tx->tx_err = err;
444 (void) zio_wait(zio);
445 return;
448 err = zio_wait(zio);
449 if (err != 0) {
450 tx->tx_err = err;
451 return;
456 void
457 dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off, uint64_t len)
459 dmu_tx_hold_t *txh;
461 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
462 object, THT_FREE, off, len);
463 if (txh != NULL)
464 (void) dmu_tx_hold_free_impl(txh, off, len);
467 void
468 dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off, uint64_t len)
470 dmu_tx_hold_t *txh;
472 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_FREE, off, len);
473 if (txh != NULL)
474 (void) dmu_tx_hold_free_impl(txh, off, len);
477 static void
478 dmu_tx_hold_zap_impl(dmu_tx_hold_t *txh, const char *name)
480 dmu_tx_t *tx = txh->txh_tx;
481 dnode_t *dn = txh->txh_dnode;
482 int err;
484 ASSERT(tx->tx_txg == 0);
486 dmu_tx_count_dnode(txh);
489 * Modifying a almost-full microzap is around the worst case (128KB)
491 * If it is a fat zap, the worst case would be 7*16KB=112KB:
492 * - 3 blocks overwritten: target leaf, ptrtbl block, header block
493 * - 4 new blocks written if adding:
494 * - 2 blocks for possibly split leaves,
495 * - 2 grown ptrtbl blocks
497 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
498 MZAP_MAX_BLKSZ, FTAG);
500 if (dn == NULL)
501 return;
503 ASSERT3U(DMU_OT_BYTESWAP(dn->dn_type), ==, DMU_BSWAP_ZAP);
505 if (dn->dn_maxblkid == 0 || name == NULL) {
507 * This is a microzap (only one block), or we don't know
508 * the name. Check the first block for i/o errors.
510 err = dmu_tx_check_ioerr(NULL, dn, 0, 0);
511 if (err != 0) {
512 tx->tx_err = err;
514 } else {
516 * Access the name so that we'll check for i/o errors to
517 * the leaf blocks, etc. We ignore ENOENT, as this name
518 * may not yet exist.
520 err = zap_lookup_by_dnode(dn, name, 8, 0, NULL);
521 if (err == EIO || err == ECKSUM || err == ENXIO) {
522 tx->tx_err = err;
527 void
528 dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name)
530 dmu_tx_hold_t *txh;
532 ASSERT0(tx->tx_txg);
534 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
535 object, THT_ZAP, add, (uintptr_t)name);
536 if (txh != NULL)
537 dmu_tx_hold_zap_impl(txh, name);
540 void
541 dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add, const char *name)
543 dmu_tx_hold_t *txh;
545 ASSERT0(tx->tx_txg);
546 ASSERT(dn != NULL);
548 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_ZAP, add, (uintptr_t)name);
549 if (txh != NULL)
550 dmu_tx_hold_zap_impl(txh, name);
553 void
554 dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object)
556 dmu_tx_hold_t *txh;
558 ASSERT(tx->tx_txg == 0);
560 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
561 object, THT_BONUS, 0, 0);
562 if (txh)
563 dmu_tx_count_dnode(txh);
566 void
567 dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn)
569 dmu_tx_hold_t *txh;
571 ASSERT0(tx->tx_txg);
573 txh = dmu_tx_hold_dnode_impl(tx, dn, THT_BONUS, 0, 0);
574 if (txh)
575 dmu_tx_count_dnode(txh);
578 void
579 dmu_tx_hold_space(dmu_tx_t *tx, uint64_t space)
581 dmu_tx_hold_t *txh;
583 ASSERT(tx->tx_txg == 0);
585 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset,
586 DMU_NEW_OBJECT, THT_SPACE, space, 0);
587 if (txh) {
588 (void) zfs_refcount_add_many(
589 &txh->txh_space_towrite, space, FTAG);
593 #ifdef ZFS_DEBUG
594 void
595 dmu_tx_dirty_buf(dmu_tx_t *tx, dmu_buf_impl_t *db)
597 boolean_t match_object = B_FALSE;
598 boolean_t match_offset = B_FALSE;
600 DB_DNODE_ENTER(db);
601 dnode_t *dn = DB_DNODE(db);
602 ASSERT(tx->tx_txg != 0);
603 ASSERT(tx->tx_objset == NULL || dn->dn_objset == tx->tx_objset);
604 ASSERT3U(dn->dn_object, ==, db->db.db_object);
606 if (tx->tx_anyobj) {
607 DB_DNODE_EXIT(db);
608 return;
611 /* XXX No checking on the meta dnode for now */
612 if (db->db.db_object == DMU_META_DNODE_OBJECT) {
613 DB_DNODE_EXIT(db);
614 return;
617 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
618 txh = list_next(&tx->tx_holds, txh)) {
619 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
620 if (txh->txh_dnode == dn && txh->txh_type != THT_NEWOBJECT)
621 match_object = TRUE;
622 if (txh->txh_dnode == NULL || txh->txh_dnode == dn) {
623 int datablkshift = dn->dn_datablkshift ?
624 dn->dn_datablkshift : SPA_MAXBLOCKSHIFT;
625 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
626 int shift = datablkshift + epbs * db->db_level;
627 uint64_t beginblk = shift >= 64 ? 0 :
628 (txh->txh_arg1 >> shift);
629 uint64_t endblk = shift >= 64 ? 0 :
630 ((txh->txh_arg1 + txh->txh_arg2 - 1) >> shift);
631 uint64_t blkid = db->db_blkid;
633 /* XXX txh_arg2 better not be zero... */
635 dprintf("found txh type %x beginblk=%llx endblk=%llx\n",
636 txh->txh_type, beginblk, endblk);
638 switch (txh->txh_type) {
639 case THT_WRITE:
640 if (blkid >= beginblk && blkid <= endblk)
641 match_offset = TRUE;
643 * We will let this hold work for the bonus
644 * or spill buffer so that we don't need to
645 * hold it when creating a new object.
647 if (blkid == DMU_BONUS_BLKID ||
648 blkid == DMU_SPILL_BLKID)
649 match_offset = TRUE;
651 * They might have to increase nlevels,
652 * thus dirtying the new TLIBs. Or the
653 * might have to change the block size,
654 * thus dirying the new lvl=0 blk=0.
656 if (blkid == 0)
657 match_offset = TRUE;
658 break;
659 case THT_FREE:
661 * We will dirty all the level 1 blocks in
662 * the free range and perhaps the first and
663 * last level 0 block.
665 if (blkid >= beginblk && (blkid <= endblk ||
666 txh->txh_arg2 == DMU_OBJECT_END))
667 match_offset = TRUE;
668 break;
669 case THT_SPILL:
670 if (blkid == DMU_SPILL_BLKID)
671 match_offset = TRUE;
672 break;
673 case THT_BONUS:
674 if (blkid == DMU_BONUS_BLKID)
675 match_offset = TRUE;
676 break;
677 case THT_ZAP:
678 match_offset = TRUE;
679 break;
680 case THT_NEWOBJECT:
681 match_object = TRUE;
682 break;
683 default:
684 cmn_err(CE_PANIC, "bad txh_type %d",
685 txh->txh_type);
688 if (match_object && match_offset) {
689 DB_DNODE_EXIT(db);
690 return;
693 DB_DNODE_EXIT(db);
694 panic("dirtying dbuf obj=%llx lvl=%u blkid=%llx but not tx_held\n",
695 (u_longlong_t)db->db.db_object, db->db_level,
696 (u_longlong_t)db->db_blkid);
698 #endif
701 * If we can't do 10 iops, something is wrong. Let us go ahead
702 * and hit zfs_dirty_data_max.
704 hrtime_t zfs_delay_max_ns = 100 * MICROSEC; /* 100 milliseconds */
705 int zfs_delay_resolution_ns = 100 * 1000; /* 100 microseconds */
708 * We delay transactions when we've determined that the backend storage
709 * isn't able to accommodate the rate of incoming writes.
711 * If there is already a transaction waiting, we delay relative to when
712 * that transaction finishes waiting. This way the calculated min_time
713 * is independent of the number of threads concurrently executing
714 * transactions.
716 * If we are the only waiter, wait relative to when the transaction
717 * started, rather than the current time. This credits the transaction for
718 * "time already served", e.g. reading indirect blocks.
720 * The minimum time for a transaction to take is calculated as:
721 * min_time = scale * (dirty - min) / (max - dirty)
722 * min_time is then capped at zfs_delay_max_ns.
724 * The delay has two degrees of freedom that can be adjusted via tunables.
725 * The percentage of dirty data at which we start to delay is defined by
726 * zfs_delay_min_dirty_percent. This should typically be at or above
727 * zfs_vdev_async_write_active_max_dirty_percent so that we only start to
728 * delay after writing at full speed has failed to keep up with the incoming
729 * write rate. The scale of the curve is defined by zfs_delay_scale. Roughly
730 * speaking, this variable determines the amount of delay at the midpoint of
731 * the curve.
733 * delay
734 * 10ms +-------------------------------------------------------------*+
735 * | *|
736 * 9ms + *+
737 * | *|
738 * 8ms + *+
739 * | * |
740 * 7ms + * +
741 * | * |
742 * 6ms + * +
743 * | * |
744 * 5ms + * +
745 * | * |
746 * 4ms + * +
747 * | * |
748 * 3ms + * +
749 * | * |
750 * 2ms + (midpoint) * +
751 * | | ** |
752 * 1ms + v *** +
753 * | zfs_delay_scale ----------> ******** |
754 * 0 +-------------------------------------*********----------------+
755 * 0% <- zfs_dirty_data_max -> 100%
757 * Note that since the delay is added to the outstanding time remaining on the
758 * most recent transaction, the delay is effectively the inverse of IOPS.
759 * Here the midpoint of 500us translates to 2000 IOPS. The shape of the curve
760 * was chosen such that small changes in the amount of accumulated dirty data
761 * in the first 3/4 of the curve yield relatively small differences in the
762 * amount of delay.
764 * The effects can be easier to understand when the amount of delay is
765 * represented on a log scale:
767 * delay
768 * 100ms +-------------------------------------------------------------++
769 * + +
770 * | |
771 * + *+
772 * 10ms + *+
773 * + ** +
774 * | (midpoint) ** |
775 * + | ** +
776 * 1ms + v **** +
777 * + zfs_delay_scale ----------> ***** +
778 * | **** |
779 * + **** +
780 * 100us + ** +
781 * + * +
782 * | * |
783 * + * +
784 * 10us + * +
785 * + +
786 * | |
787 * + +
788 * +--------------------------------------------------------------+
789 * 0% <- zfs_dirty_data_max -> 100%
791 * Note here that only as the amount of dirty data approaches its limit does
792 * the delay start to increase rapidly. The goal of a properly tuned system
793 * should be to keep the amount of dirty data out of that range by first
794 * ensuring that the appropriate limits are set for the I/O scheduler to reach
795 * optimal throughput on the backend storage, and then by changing the value
796 * of zfs_delay_scale to increase the steepness of the curve.
798 static void
799 dmu_tx_delay(dmu_tx_t *tx, uint64_t dirty)
801 dsl_pool_t *dp = tx->tx_pool;
802 uint64_t delay_min_bytes =
803 zfs_dirty_data_max * zfs_delay_min_dirty_percent / 100;
804 hrtime_t wakeup, min_tx_time, now;
806 if (dirty <= delay_min_bytes)
807 return;
810 * The caller has already waited until we are under the max.
811 * We make them pass us the amount of dirty data so we don't
812 * have to handle the case of it being >= the max, which could
813 * cause a divide-by-zero if it's == the max.
815 ASSERT3U(dirty, <, zfs_dirty_data_max);
817 now = gethrtime();
818 min_tx_time = zfs_delay_scale *
819 (dirty - delay_min_bytes) / (zfs_dirty_data_max - dirty);
820 min_tx_time = MIN(min_tx_time, zfs_delay_max_ns);
821 if (now > tx->tx_start + min_tx_time)
822 return;
824 DTRACE_PROBE3(delay__mintime, dmu_tx_t *, tx, uint64_t, dirty,
825 uint64_t, min_tx_time);
827 mutex_enter(&dp->dp_lock);
828 wakeup = MAX(tx->tx_start + min_tx_time,
829 dp->dp_last_wakeup + min_tx_time);
830 dp->dp_last_wakeup = wakeup;
831 mutex_exit(&dp->dp_lock);
833 zfs_sleep_until(wakeup);
837 * This routine attempts to assign the transaction to a transaction group.
838 * To do so, we must determine if there is sufficient free space on disk.
840 * If this is a "netfree" transaction (i.e. we called dmu_tx_mark_netfree()
841 * on it), then it is assumed that there is sufficient free space,
842 * unless there's insufficient slop space in the pool (see the comment
843 * above spa_slop_shift in spa_misc.c).
845 * If it is not a "netfree" transaction, then if the data already on disk
846 * is over the allowed usage (e.g. quota), this will fail with EDQUOT or
847 * ENOSPC. Otherwise, if the current rough estimate of pending changes,
848 * plus the rough estimate of this transaction's changes, may exceed the
849 * allowed usage, then this will fail with ERESTART, which will cause the
850 * caller to wait for the pending changes to be written to disk (by waiting
851 * for the next TXG to open), and then check the space usage again.
853 * The rough estimate of pending changes is comprised of the sum of:
855 * - this transaction's holds' txh_space_towrite
857 * - dd_tempreserved[], which is the sum of in-flight transactions'
858 * holds' txh_space_towrite (i.e. those transactions that have called
859 * dmu_tx_assign() but not yet called dmu_tx_commit()).
861 * - dd_space_towrite[], which is the amount of dirtied dbufs.
863 * Note that all of these values are inflated by spa_get_worst_case_asize(),
864 * which means that we may get ERESTART well before we are actually in danger
865 * of running out of space, but this also mitigates any small inaccuracies
866 * in the rough estimate (e.g. txh_space_towrite doesn't take into account
867 * indirect blocks, and dd_space_towrite[] doesn't take into account changes
868 * to the MOS).
870 * Note that due to this algorithm, it is possible to exceed the allowed
871 * usage by one transaction. Also, as we approach the allowed usage,
872 * we will allow a very limited amount of changes into each TXG, thus
873 * decreasing performance.
875 static int
876 dmu_tx_try_assign(dmu_tx_t *tx, uint64_t txg_how)
878 spa_t *spa = tx->tx_pool->dp_spa;
880 ASSERT0(tx->tx_txg);
882 if (tx->tx_err) {
883 DMU_TX_STAT_BUMP(dmu_tx_error);
884 return (tx->tx_err);
887 if (spa_suspended(spa)) {
888 DMU_TX_STAT_BUMP(dmu_tx_suspended);
891 * If the user has indicated a blocking failure mode
892 * then return ERESTART which will block in dmu_tx_wait().
893 * Otherwise, return EIO so that an error can get
894 * propagated back to the VOP calls.
896 * Note that we always honor the txg_how flag regardless
897 * of the failuremode setting.
899 if (spa_get_failmode(spa) == ZIO_FAILURE_MODE_CONTINUE &&
900 !(txg_how & TXG_WAIT))
901 return (SET_ERROR(EIO));
903 return (SET_ERROR(ERESTART));
906 if (!tx->tx_dirty_delayed &&
907 dsl_pool_need_dirty_delay(tx->tx_pool)) {
908 tx->tx_wait_dirty = B_TRUE;
909 DMU_TX_STAT_BUMP(dmu_tx_dirty_delay);
910 return (SET_ERROR(ERESTART));
913 tx->tx_txg = txg_hold_open(tx->tx_pool, &tx->tx_txgh);
914 tx->tx_needassign_txh = NULL;
917 * NB: No error returns are allowed after txg_hold_open, but
918 * before processing the dnode holds, due to the
919 * dmu_tx_unassign() logic.
922 uint64_t towrite = 0;
923 uint64_t tohold = 0;
924 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
925 txh = list_next(&tx->tx_holds, txh)) {
926 dnode_t *dn = txh->txh_dnode;
927 if (dn != NULL) {
929 * This thread can't hold the dn_struct_rwlock
930 * while assigning the tx, because this can lead to
931 * deadlock. Specifically, if this dnode is already
932 * assigned to an earlier txg, this thread may need
933 * to wait for that txg to sync (the ERESTART case
934 * below). The other thread that has assigned this
935 * dnode to an earlier txg prevents this txg from
936 * syncing until its tx can complete (calling
937 * dmu_tx_commit()), but it may need to acquire the
938 * dn_struct_rwlock to do so (e.g. via
939 * dmu_buf_hold*()).
941 * Note that this thread can't hold the lock for
942 * read either, but the rwlock doesn't record
943 * enough information to make that assertion.
945 ASSERT(!RW_WRITE_HELD(&dn->dn_struct_rwlock));
947 mutex_enter(&dn->dn_mtx);
948 if (dn->dn_assigned_txg == tx->tx_txg - 1) {
949 mutex_exit(&dn->dn_mtx);
950 tx->tx_needassign_txh = txh;
951 DMU_TX_STAT_BUMP(dmu_tx_group);
952 return (SET_ERROR(ERESTART));
954 if (dn->dn_assigned_txg == 0)
955 dn->dn_assigned_txg = tx->tx_txg;
956 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
957 (void) zfs_refcount_add(&dn->dn_tx_holds, tx);
958 mutex_exit(&dn->dn_mtx);
960 towrite += zfs_refcount_count(&txh->txh_space_towrite);
961 tohold += zfs_refcount_count(&txh->txh_memory_tohold);
964 /* needed allocation: worst-case estimate of write space */
965 uint64_t asize = spa_get_worst_case_asize(tx->tx_pool->dp_spa, towrite);
966 /* calculate memory footprint estimate */
967 uint64_t memory = towrite + tohold;
969 if (tx->tx_dir != NULL && asize != 0) {
970 int err = dsl_dir_tempreserve_space(tx->tx_dir, memory,
971 asize, tx->tx_netfree, &tx->tx_tempreserve_cookie, tx);
972 if (err != 0)
973 return (err);
976 DMU_TX_STAT_BUMP(dmu_tx_assigned);
978 return (0);
981 static void
982 dmu_tx_unassign(dmu_tx_t *tx)
984 if (tx->tx_txg == 0)
985 return;
987 txg_rele_to_quiesce(&tx->tx_txgh);
990 * Walk the transaction's hold list, removing the hold on the
991 * associated dnode, and notifying waiters if the refcount drops to 0.
993 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds);
994 txh && txh != tx->tx_needassign_txh;
995 txh = list_next(&tx->tx_holds, txh)) {
996 dnode_t *dn = txh->txh_dnode;
998 if (dn == NULL)
999 continue;
1000 mutex_enter(&dn->dn_mtx);
1001 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1003 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1004 dn->dn_assigned_txg = 0;
1005 cv_broadcast(&dn->dn_notxholds);
1007 mutex_exit(&dn->dn_mtx);
1010 txg_rele_to_sync(&tx->tx_txgh);
1012 tx->tx_lasttried_txg = tx->tx_txg;
1013 tx->tx_txg = 0;
1017 * Assign tx to a transaction group; txg_how is a bitmask:
1019 * If TXG_WAIT is set and the currently open txg is full, this function
1020 * will wait until there's a new txg. This should be used when no locks
1021 * are being held. With this bit set, this function will only fail if
1022 * we're truly out of space (or over quota).
1024 * If TXG_WAIT is *not* set and we can't assign into the currently open
1025 * txg without blocking, this function will return immediately with
1026 * ERESTART. This should be used whenever locks are being held. On an
1027 * ERESTART error, the caller should drop all locks, call dmu_tx_wait(),
1028 * and try again.
1030 * If TXG_NOTHROTTLE is set, this indicates that this tx should not be
1031 * delayed due on the ZFS Write Throttle (see comments in dsl_pool.c for
1032 * details on the throttle). This is used by the VFS operations, after
1033 * they have already called dmu_tx_wait() (though most likely on a
1034 * different tx).
1037 dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how)
1039 int err;
1041 ASSERT(tx->tx_txg == 0);
1042 ASSERT0(txg_how & ~(TXG_WAIT | TXG_NOTHROTTLE));
1043 ASSERT(!dsl_pool_sync_context(tx->tx_pool));
1045 /* If we might wait, we must not hold the config lock. */
1046 IMPLY((txg_how & TXG_WAIT), !dsl_pool_config_held(tx->tx_pool));
1048 if ((txg_how & TXG_NOTHROTTLE))
1049 tx->tx_dirty_delayed = B_TRUE;
1051 while ((err = dmu_tx_try_assign(tx, txg_how)) != 0) {
1052 dmu_tx_unassign(tx);
1054 if (err != ERESTART || !(txg_how & TXG_WAIT))
1055 return (err);
1057 dmu_tx_wait(tx);
1060 txg_rele_to_quiesce(&tx->tx_txgh);
1062 return (0);
1065 void
1066 dmu_tx_wait(dmu_tx_t *tx)
1068 spa_t *spa = tx->tx_pool->dp_spa;
1069 dsl_pool_t *dp = tx->tx_pool;
1070 hrtime_t before;
1072 ASSERT(tx->tx_txg == 0);
1073 ASSERT(!dsl_pool_config_held(tx->tx_pool));
1075 before = gethrtime();
1077 if (tx->tx_wait_dirty) {
1078 uint64_t dirty;
1081 * dmu_tx_try_assign() has determined that we need to wait
1082 * because we've consumed much or all of the dirty buffer
1083 * space.
1085 mutex_enter(&dp->dp_lock);
1086 if (dp->dp_dirty_total >= zfs_dirty_data_max)
1087 DMU_TX_STAT_BUMP(dmu_tx_dirty_over_max);
1088 while (dp->dp_dirty_total >= zfs_dirty_data_max)
1089 cv_wait(&dp->dp_spaceavail_cv, &dp->dp_lock);
1090 dirty = dp->dp_dirty_total;
1091 mutex_exit(&dp->dp_lock);
1093 dmu_tx_delay(tx, dirty);
1095 tx->tx_wait_dirty = B_FALSE;
1098 * Note: setting tx_dirty_delayed only has effect if the
1099 * caller used TX_WAIT. Otherwise they are going to
1100 * destroy this tx and try again. The common case,
1101 * zfs_write(), uses TX_WAIT.
1103 tx->tx_dirty_delayed = B_TRUE;
1104 } else if (spa_suspended(spa) || tx->tx_lasttried_txg == 0) {
1106 * If the pool is suspended we need to wait until it
1107 * is resumed. Note that it's possible that the pool
1108 * has become active after this thread has tried to
1109 * obtain a tx. If that's the case then tx_lasttried_txg
1110 * would not have been set.
1112 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1113 } else if (tx->tx_needassign_txh) {
1114 dnode_t *dn = tx->tx_needassign_txh->txh_dnode;
1116 mutex_enter(&dn->dn_mtx);
1117 while (dn->dn_assigned_txg == tx->tx_lasttried_txg - 1)
1118 cv_wait(&dn->dn_notxholds, &dn->dn_mtx);
1119 mutex_exit(&dn->dn_mtx);
1120 tx->tx_needassign_txh = NULL;
1121 } else {
1123 * If we have a lot of dirty data just wait until we sync
1124 * out a TXG at which point we'll hopefully have synced
1125 * a portion of the changes.
1127 txg_wait_synced(dp, spa_last_synced_txg(spa) + 1);
1130 spa_tx_assign_add_nsecs(spa, gethrtime() - before);
1133 static void
1134 dmu_tx_destroy(dmu_tx_t *tx)
1136 dmu_tx_hold_t *txh;
1138 while ((txh = list_head(&tx->tx_holds)) != NULL) {
1139 dnode_t *dn = txh->txh_dnode;
1141 list_remove(&tx->tx_holds, txh);
1142 zfs_refcount_destroy_many(&txh->txh_space_towrite,
1143 zfs_refcount_count(&txh->txh_space_towrite));
1144 zfs_refcount_destroy_many(&txh->txh_memory_tohold,
1145 zfs_refcount_count(&txh->txh_memory_tohold));
1146 kmem_free(txh, sizeof (dmu_tx_hold_t));
1147 if (dn != NULL)
1148 dnode_rele(dn, tx);
1151 list_destroy(&tx->tx_callbacks);
1152 list_destroy(&tx->tx_holds);
1153 kmem_free(tx, sizeof (dmu_tx_t));
1156 void
1157 dmu_tx_commit(dmu_tx_t *tx)
1159 ASSERT(tx->tx_txg != 0);
1162 * Go through the transaction's hold list and remove holds on
1163 * associated dnodes, notifying waiters if no holds remain.
1165 for (dmu_tx_hold_t *txh = list_head(&tx->tx_holds); txh != NULL;
1166 txh = list_next(&tx->tx_holds, txh)) {
1167 dnode_t *dn = txh->txh_dnode;
1169 if (dn == NULL)
1170 continue;
1172 mutex_enter(&dn->dn_mtx);
1173 ASSERT3U(dn->dn_assigned_txg, ==, tx->tx_txg);
1175 if (zfs_refcount_remove(&dn->dn_tx_holds, tx) == 0) {
1176 dn->dn_assigned_txg = 0;
1177 cv_broadcast(&dn->dn_notxholds);
1179 mutex_exit(&dn->dn_mtx);
1182 if (tx->tx_tempreserve_cookie)
1183 dsl_dir_tempreserve_clear(tx->tx_tempreserve_cookie, tx);
1185 if (!list_is_empty(&tx->tx_callbacks))
1186 txg_register_callbacks(&tx->tx_txgh, &tx->tx_callbacks);
1188 if (tx->tx_anyobj == FALSE)
1189 txg_rele_to_sync(&tx->tx_txgh);
1191 dmu_tx_destroy(tx);
1194 void
1195 dmu_tx_abort(dmu_tx_t *tx)
1197 ASSERT(tx->tx_txg == 0);
1200 * Call any registered callbacks with an error code.
1202 if (!list_is_empty(&tx->tx_callbacks))
1203 dmu_tx_do_callbacks(&tx->tx_callbacks, ECANCELED);
1205 dmu_tx_destroy(tx);
1208 uint64_t
1209 dmu_tx_get_txg(dmu_tx_t *tx)
1211 ASSERT(tx->tx_txg != 0);
1212 return (tx->tx_txg);
1215 dsl_pool_t *
1216 dmu_tx_pool(dmu_tx_t *tx)
1218 ASSERT(tx->tx_pool != NULL);
1219 return (tx->tx_pool);
1222 void
1223 dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *func, void *data)
1225 dmu_tx_callback_t *dcb;
1227 dcb = kmem_alloc(sizeof (dmu_tx_callback_t), KM_SLEEP);
1229 dcb->dcb_func = func;
1230 dcb->dcb_data = data;
1232 list_insert_tail(&tx->tx_callbacks, dcb);
1236 * Call all the commit callbacks on a list, with a given error code.
1238 void
1239 dmu_tx_do_callbacks(list_t *cb_list, int error)
1241 dmu_tx_callback_t *dcb;
1243 while ((dcb = list_tail(cb_list)) != NULL) {
1244 list_remove(cb_list, dcb);
1245 dcb->dcb_func(dcb->dcb_data, error);
1246 kmem_free(dcb, sizeof (dmu_tx_callback_t));
1251 * Interface to hold a bunch of attributes.
1252 * used for creating new files.
1253 * attrsize is the total size of all attributes
1254 * to be added during object creation
1256 * For updating/adding a single attribute dmu_tx_hold_sa() should be used.
1260 * hold necessary attribute name for attribute registration.
1261 * should be a very rare case where this is needed. If it does
1262 * happen it would only happen on the first write to the file system.
1264 static void
1265 dmu_tx_sa_registration_hold(sa_os_t *sa, dmu_tx_t *tx)
1267 if (!sa->sa_need_attr_registration)
1268 return;
1270 for (int i = 0; i != sa->sa_num_attrs; i++) {
1271 if (!sa->sa_attr_table[i].sa_registered) {
1272 if (sa->sa_reg_attr_obj)
1273 dmu_tx_hold_zap(tx, sa->sa_reg_attr_obj,
1274 B_TRUE, sa->sa_attr_table[i].sa_name);
1275 else
1276 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT,
1277 B_TRUE, sa->sa_attr_table[i].sa_name);
1282 void
1283 dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object)
1285 dmu_tx_hold_t *txh;
1287 txh = dmu_tx_hold_object_impl(tx, tx->tx_objset, object,
1288 THT_SPILL, 0, 0);
1289 if (txh != NULL)
1290 (void) zfs_refcount_add_many(&txh->txh_space_towrite,
1291 SPA_OLD_MAXBLOCKSIZE, FTAG);
1294 void
1295 dmu_tx_hold_sa_create(dmu_tx_t *tx, int attrsize)
1297 sa_os_t *sa = tx->tx_objset->os_sa;
1299 dmu_tx_hold_bonus(tx, DMU_NEW_OBJECT);
1301 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1302 return;
1304 if (tx->tx_objset->os_sa->sa_layout_attr_obj) {
1305 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1306 } else {
1307 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1308 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1309 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1310 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1313 dmu_tx_sa_registration_hold(sa, tx);
1315 if (attrsize <= DN_OLD_MAX_BONUSLEN && !sa->sa_force_spill)
1316 return;
1318 (void) dmu_tx_hold_object_impl(tx, tx->tx_objset, DMU_NEW_OBJECT,
1319 THT_SPILL, 0, 0);
1323 * Hold SA attribute
1325 * dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *, attribute, add, size)
1327 * variable_size is the total size of all variable sized attributes
1328 * passed to this function. It is not the total size of all
1329 * variable size attributes that *may* exist on this object.
1331 void
1332 dmu_tx_hold_sa(dmu_tx_t *tx, sa_handle_t *hdl, boolean_t may_grow)
1334 uint64_t object;
1335 sa_os_t *sa = tx->tx_objset->os_sa;
1337 ASSERT(hdl != NULL);
1339 object = sa_handle_object(hdl);
1341 dmu_buf_impl_t *db = (dmu_buf_impl_t *)hdl->sa_bonus;
1342 DB_DNODE_ENTER(db);
1343 dmu_tx_hold_bonus_by_dnode(tx, DB_DNODE(db));
1344 DB_DNODE_EXIT(db);
1346 if (tx->tx_objset->os_sa->sa_master_obj == 0)
1347 return;
1349 if (tx->tx_objset->os_sa->sa_reg_attr_obj == 0 ||
1350 tx->tx_objset->os_sa->sa_layout_attr_obj == 0) {
1351 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_LAYOUTS);
1352 dmu_tx_hold_zap(tx, sa->sa_master_obj, B_TRUE, SA_REGISTRY);
1353 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1354 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, B_TRUE, NULL);
1357 dmu_tx_sa_registration_hold(sa, tx);
1359 if (may_grow && tx->tx_objset->os_sa->sa_layout_attr_obj)
1360 dmu_tx_hold_zap(tx, sa->sa_layout_attr_obj, B_TRUE, NULL);
1362 if (sa->sa_force_spill || may_grow || hdl->sa_spill) {
1363 ASSERT(tx->tx_txg == 0);
1364 dmu_tx_hold_spill(tx, object);
1365 } else {
1366 dnode_t *dn;
1368 DB_DNODE_ENTER(db);
1369 dn = DB_DNODE(db);
1370 if (dn->dn_have_spill) {
1371 ASSERT(tx->tx_txg == 0);
1372 dmu_tx_hold_spill(tx, object);
1374 DB_DNODE_EXIT(db);
1378 void
1379 dmu_tx_init(void)
1381 dmu_tx_ksp = kstat_create("zfs", 0, "dmu_tx", "misc",
1382 KSTAT_TYPE_NAMED, sizeof (dmu_tx_stats) / sizeof (kstat_named_t),
1383 KSTAT_FLAG_VIRTUAL);
1385 if (dmu_tx_ksp != NULL) {
1386 dmu_tx_ksp->ks_data = &dmu_tx_stats;
1387 kstat_install(dmu_tx_ksp);
1391 void
1392 dmu_tx_fini(void)
1394 if (dmu_tx_ksp != NULL) {
1395 kstat_delete(dmu_tx_ksp);
1396 dmu_tx_ksp = NULL;
1400 #if defined(_KERNEL)
1401 EXPORT_SYMBOL(dmu_tx_create);
1402 EXPORT_SYMBOL(dmu_tx_hold_write);
1403 EXPORT_SYMBOL(dmu_tx_hold_write_by_dnode);
1404 EXPORT_SYMBOL(dmu_tx_hold_free);
1405 EXPORT_SYMBOL(dmu_tx_hold_free_by_dnode);
1406 EXPORT_SYMBOL(dmu_tx_hold_zap);
1407 EXPORT_SYMBOL(dmu_tx_hold_zap_by_dnode);
1408 EXPORT_SYMBOL(dmu_tx_hold_bonus);
1409 EXPORT_SYMBOL(dmu_tx_hold_bonus_by_dnode);
1410 EXPORT_SYMBOL(dmu_tx_abort);
1411 EXPORT_SYMBOL(dmu_tx_assign);
1412 EXPORT_SYMBOL(dmu_tx_wait);
1413 EXPORT_SYMBOL(dmu_tx_commit);
1414 EXPORT_SYMBOL(dmu_tx_mark_netfree);
1415 EXPORT_SYMBOL(dmu_tx_get_txg);
1416 EXPORT_SYMBOL(dmu_tx_callback_register);
1417 EXPORT_SYMBOL(dmu_tx_do_callbacks);
1418 EXPORT_SYMBOL(dmu_tx_hold_spill);
1419 EXPORT_SYMBOL(dmu_tx_hold_sa_create);
1420 EXPORT_SYMBOL(dmu_tx_hold_sa);
1421 #endif