4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright (c) 2013, 2015 by Delphix. All rights reserved.
30 #include <sys/zfs_context.h>
31 #include <sys/dnode.h>
32 #include <sys/dmu_objset.h>
33 #include <sys/dmu_zfetch.h>
36 #include <sys/kstat.h>
39 * This tunable disables predictive prefetch. Note that it leaves "prescient"
40 * prefetch (e.g. prefetch for zfs send) intact. Unlike predictive prefetch,
41 * prescient prefetch never issues i/os that end up not being needed,
42 * so it can't hurt performance.
45 int zfs_prefetch_disable
= B_FALSE
;
47 /* max # of streams per zfetch */
48 unsigned int zfetch_max_streams
= 8;
49 /* min time before stream reclaim */
50 unsigned int zfetch_min_sec_reap
= 2;
51 /* max bytes to prefetch per stream (default 8MB) */
52 unsigned int zfetch_max_distance
= 8 * 1024 * 1024;
53 /* max bytes to prefetch indirects for per stream (default 64MB) */
54 unsigned int zfetch_max_idistance
= 64 * 1024 * 1024;
55 /* max number of bytes in an array_read in which we allow prefetching (1MB) */
56 unsigned long zfetch_array_rd_sz
= 1024 * 1024;
58 typedef struct zfetch_stats
{
59 kstat_named_t zfetchstat_hits
;
60 kstat_named_t zfetchstat_misses
;
61 kstat_named_t zfetchstat_max_streams
;
64 static zfetch_stats_t zfetch_stats
= {
65 { "hits", KSTAT_DATA_UINT64
},
66 { "misses", KSTAT_DATA_UINT64
},
67 { "max_streams", KSTAT_DATA_UINT64
},
70 #define ZFETCHSTAT_BUMP(stat) \
71 atomic_inc_64(&zfetch_stats.stat.value.ui64);
78 zfetch_ksp
= kstat_create("zfs", 0, "zfetchstats", "misc",
79 KSTAT_TYPE_NAMED
, sizeof (zfetch_stats
) / sizeof (kstat_named_t
),
82 if (zfetch_ksp
!= NULL
) {
83 zfetch_ksp
->ks_data
= &zfetch_stats
;
84 kstat_install(zfetch_ksp
);
91 if (zfetch_ksp
!= NULL
) {
92 kstat_delete(zfetch_ksp
);
98 * This takes a pointer to a zfetch structure and a dnode. It performs the
99 * necessary setup for the zfetch structure, grokking data from the
103 dmu_zfetch_init(zfetch_t
*zf
, dnode_t
*dno
)
110 list_create(&zf
->zf_stream
, sizeof (zstream_t
),
111 offsetof(zstream_t
, zs_node
));
113 rw_init(&zf
->zf_rwlock
, NULL
, RW_DEFAULT
, NULL
);
117 dmu_zfetch_stream_remove(zfetch_t
*zf
, zstream_t
*zs
)
119 ASSERT(RW_WRITE_HELD(&zf
->zf_rwlock
));
120 list_remove(&zf
->zf_stream
, zs
);
121 mutex_destroy(&zs
->zs_lock
);
122 kmem_free(zs
, sizeof (*zs
));
126 * Clean-up state associated with a zfetch structure (e.g. destroy the
127 * streams). This doesn't free the zfetch_t itself, that's left to the caller.
130 dmu_zfetch_fini(zfetch_t
*zf
)
134 ASSERT(!RW_LOCK_HELD(&zf
->zf_rwlock
));
136 rw_enter(&zf
->zf_rwlock
, RW_WRITER
);
137 while ((zs
= list_head(&zf
->zf_stream
)) != NULL
)
138 dmu_zfetch_stream_remove(zf
, zs
);
139 rw_exit(&zf
->zf_rwlock
);
140 list_destroy(&zf
->zf_stream
);
141 rw_destroy(&zf
->zf_rwlock
);
147 * If there aren't too many streams already, create a new stream.
148 * The "blkid" argument is the next block that we expect this stream to access.
149 * While we're here, clean up old streams (which haven't been
150 * accessed for at least zfetch_min_sec_reap seconds).
153 dmu_zfetch_stream_create(zfetch_t
*zf
, uint64_t blkid
)
158 ASSERT(RW_WRITE_HELD(&zf
->zf_rwlock
));
161 * Clean up old streams.
163 for (zstream_t
*zs
= list_head(&zf
->zf_stream
);
164 zs
!= NULL
; zs
= zs_next
) {
165 zs_next
= list_next(&zf
->zf_stream
, zs
);
166 if (((gethrtime() - zs
->zs_atime
) / NANOSEC
) >
168 dmu_zfetch_stream_remove(zf
, zs
);
174 * The maximum number of streams is normally zfetch_max_streams,
175 * but for small files we lower it such that it's at least possible
176 * for all the streams to be non-overlapping.
178 * If we are already at the maximum number of streams for this file,
179 * even after removing old streams, then don't create this stream.
181 uint32_t max_streams
= MAX(1, MIN(zfetch_max_streams
,
182 zf
->zf_dnode
->dn_maxblkid
* zf
->zf_dnode
->dn_datablksz
/
183 zfetch_max_distance
));
184 if (numstreams
>= max_streams
) {
185 ZFETCHSTAT_BUMP(zfetchstat_max_streams
);
189 zstream_t
*zs
= kmem_zalloc(sizeof (*zs
), KM_SLEEP
);
190 zs
->zs_blkid
= blkid
;
191 zs
->zs_pf_blkid
= blkid
;
192 zs
->zs_ipf_blkid
= blkid
;
193 zs
->zs_atime
= gethrtime();
194 mutex_init(&zs
->zs_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
196 list_insert_head(&zf
->zf_stream
, zs
);
200 * This is the predictive prefetch entry point. It associates dnode access
201 * specified with blkid and nblks arguments with prefetch stream, predicts
202 * further accesses based on that stats and initiates speculative prefetch.
203 * fetch_data argument specifies whether actual data blocks should be fetched:
204 * FALSE -- prefetch only indirect blocks for predicted data blocks;
205 * TRUE -- prefetch predicted data blocks plus following indirect blocks.
208 dmu_zfetch(zfetch_t
*zf
, uint64_t blkid
, uint64_t nblks
, boolean_t fetch_data
)
211 int64_t pf_start
, ipf_start
, ipf_istart
, ipf_iend
;
212 int64_t pf_ahead_blks
, max_blks
;
213 int epbs
, max_dist_blks
, pf_nblks
, ipf_nblks
;
214 uint64_t end_of_access_blkid
;
215 end_of_access_blkid
= blkid
+ nblks
;
216 spa_t
*spa
= zf
->zf_dnode
->dn_objset
->os_spa
;
217 krw_t rw
= RW_READER
;
219 if (zfs_prefetch_disable
)
222 * If we haven't yet loaded the indirect vdevs' mappings, we
223 * can only read from blocks that we carefully ensure are on
224 * concrete vdevs (or previously-loaded indirect vdevs). So we
225 * can't allow the predictive prefetcher to attempt reads of other
226 * blocks (e.g. of the MOS's dnode object).
228 if (!spa_indirect_vdevs_loaded(spa
))
232 * As a fast path for small (single-block) files, ignore access
233 * to the first block.
239 rw_enter(&zf
->zf_rwlock
, rw
);
242 * Find matching prefetch stream. Depending on whether the accesses
243 * are block-aligned, first block of the new access may either follow
244 * the last block of the previous access, or be equal to it.
246 for (zs
= list_head(&zf
->zf_stream
); zs
!= NULL
;
247 zs
= list_next(&zf
->zf_stream
, zs
)) {
248 if (blkid
== zs
->zs_blkid
|| blkid
+ 1 == zs
->zs_blkid
) {
249 mutex_enter(&zs
->zs_lock
);
251 * zs_blkid could have changed before we
252 * acquired zs_lock; re-check them here.
254 if (blkid
== zs
->zs_blkid
) {
256 } else if (blkid
+ 1 == zs
->zs_blkid
) {
260 /* Already prefetched this before. */
261 mutex_exit(&zs
->zs_lock
);
262 rw_exit(&zf
->zf_rwlock
);
267 mutex_exit(&zs
->zs_lock
);
273 * This access is not part of any existing stream. Create
274 * a new stream for it.
276 ZFETCHSTAT_BUMP(zfetchstat_misses
);
277 if (rw
== RW_READER
&& !rw_tryupgrade(&zf
->zf_rwlock
)) {
278 rw_exit(&zf
->zf_rwlock
);
283 dmu_zfetch_stream_create(zf
, end_of_access_blkid
);
284 rw_exit(&zf
->zf_rwlock
);
289 * This access was to a block that we issued a prefetch for on
290 * behalf of this stream. Issue further prefetches for this stream.
292 * Normally, we start prefetching where we stopped
293 * prefetching last (zs_pf_blkid). But when we get our first
294 * hit on this stream, zs_pf_blkid == zs_blkid, we don't
295 * want to prefetch the block we just accessed. In this case,
296 * start just after the block we just accessed.
298 pf_start
= MAX(zs
->zs_pf_blkid
, end_of_access_blkid
);
301 * Double our amount of prefetched data, but don't let the
302 * prefetch get further ahead than zfetch_max_distance.
306 zfetch_max_distance
>> zf
->zf_dnode
->dn_datablkshift
;
308 * Previously, we were (zs_pf_blkid - blkid) ahead. We
309 * want to now be double that, so read that amount again,
310 * plus the amount we are catching up by (i.e. the amount
313 pf_ahead_blks
= zs
->zs_pf_blkid
- blkid
+ nblks
;
314 max_blks
= max_dist_blks
- (pf_start
- end_of_access_blkid
);
315 pf_nblks
= MIN(pf_ahead_blks
, max_blks
);
320 zs
->zs_pf_blkid
= pf_start
+ pf_nblks
;
323 * Do the same for indirects, starting from where we stopped last,
324 * or where we will stop reading data blocks (and the indirects
325 * that point to them).
327 ipf_start
= MAX(zs
->zs_ipf_blkid
, zs
->zs_pf_blkid
);
328 max_dist_blks
= zfetch_max_idistance
>> zf
->zf_dnode
->dn_datablkshift
;
330 * We want to double our distance ahead of the data prefetch
331 * (or reader, if we are not prefetching data). Previously, we
332 * were (zs_ipf_blkid - blkid) ahead. To double that, we read
333 * that amount again, plus the amount we are catching up by
334 * (i.e. the amount read now + the amount of data prefetched now).
336 pf_ahead_blks
= zs
->zs_ipf_blkid
- blkid
+ nblks
+ pf_nblks
;
337 max_blks
= max_dist_blks
- (ipf_start
- end_of_access_blkid
);
338 ipf_nblks
= MIN(pf_ahead_blks
, max_blks
);
339 zs
->zs_ipf_blkid
= ipf_start
+ ipf_nblks
;
341 epbs
= zf
->zf_dnode
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
342 ipf_istart
= P2ROUNDUP(ipf_start
, 1 << epbs
) >> epbs
;
343 ipf_iend
= P2ROUNDUP(zs
->zs_ipf_blkid
, 1 << epbs
) >> epbs
;
345 zs
->zs_atime
= gethrtime();
346 zs
->zs_blkid
= end_of_access_blkid
;
347 mutex_exit(&zs
->zs_lock
);
348 rw_exit(&zf
->zf_rwlock
);
351 * dbuf_prefetch() is asynchronous (even when it needs to read
352 * indirect blocks), but we still prefer to drop our locks before
353 * calling it to reduce the time we hold them.
356 for (int i
= 0; i
< pf_nblks
; i
++) {
357 dbuf_prefetch(zf
->zf_dnode
, 0, pf_start
+ i
,
358 ZIO_PRIORITY_ASYNC_READ
, ARC_FLAG_PREDICTIVE_PREFETCH
);
360 for (int64_t iblk
= ipf_istart
; iblk
< ipf_iend
; iblk
++) {
361 dbuf_prefetch(zf
->zf_dnode
, 1, iblk
,
362 ZIO_PRIORITY_ASYNC_READ
, ARC_FLAG_PREDICTIVE_PREFETCH
);
364 ZFETCHSTAT_BUMP(zfetchstat_hits
);
369 module_param(zfs_prefetch_disable
, int, 0644);
370 MODULE_PARM_DESC(zfs_prefetch_disable
, "Disable all ZFS prefetching");
372 module_param(zfetch_max_streams
, uint
, 0644);
373 MODULE_PARM_DESC(zfetch_max_streams
, "Max number of streams per zfetch");
375 module_param(zfetch_min_sec_reap
, uint
, 0644);
376 MODULE_PARM_DESC(zfetch_min_sec_reap
, "Min time before stream reclaim");
378 module_param(zfetch_max_distance
, uint
, 0644);
379 MODULE_PARM_DESC(zfetch_max_distance
,
380 "Max bytes to prefetch per stream (default 8MB)");
382 module_param(zfetch_array_rd_sz
, ulong
, 0644);
383 MODULE_PARM_DESC(zfetch_array_rd_sz
, "Number of bytes in a array_read");