4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
18 * Copyright (c) 2018 by Delphix. All rights reserved.
21 #include <sys/dsl_crypt.h>
22 #include <sys/dsl_pool.h>
25 #include <sys/dsl_dir.h>
26 #include <sys/dsl_prop.h>
27 #include <sys/spa_impl.h>
28 #include <sys/dmu_objset.h>
32 * This file's primary purpose is for managing master encryption keys in
33 * memory and on disk. For more info on how these keys are used, see the
34 * block comment in zio_crypt.c.
36 * All master keys are stored encrypted on disk in the form of the DSL
37 * Crypto Key ZAP object. The binary key data in this object is always
38 * randomly generated and is encrypted with the user's wrapping key. This
39 * layer of indirection allows the user to change their key without
40 * needing to re-encrypt the entire dataset. The ZAP also holds on to the
41 * (non-encrypted) encryption algorithm identifier, IV, and MAC needed to
42 * safely decrypt the master key. For more info on the user's key see the
43 * block comment in libzfs_crypto.c
45 * In-memory encryption keys are managed through the spa_keystore. The
46 * keystore consists of 3 AVL trees, which are as follows:
48 * The Wrapping Key Tree:
49 * The wrapping key (wkey) tree stores the user's keys that are fed into the
50 * kernel through 'zfs load-key' and related commands. Datasets inherit their
51 * parent's wkey by default, so these structures are refcounted. The wrapping
52 * keys remain in memory until they are explicitly unloaded (with
53 * "zfs unload-key"). Unloading is only possible when no datasets are using
56 * The DSL Crypto Key Tree:
57 * The DSL Crypto Keys (DCK) are the in-memory representation of decrypted
58 * master keys. They are used by the functions in zio_crypt.c to perform
59 * encryption, decryption, and authentication. Snapshots and clones of a given
60 * dataset will share a DSL Crypto Key, so they are also refcounted. Once the
61 * refcount on a key hits zero, it is immediately zeroed out and freed.
63 * The Crypto Key Mapping Tree:
64 * The zio layer needs to lookup master keys by their dataset object id. Since
65 * the DSL Crypto Keys can belong to multiple datasets, we maintain a tree of
66 * dsl_key_mapping_t's which essentially just map the dataset object id to its
67 * appropriate DSL Crypto Key. The management for creating and destroying these
68 * mappings hooks into the code for owning and disowning datasets. Usually,
69 * there will only be one active dataset owner, but there are times
70 * (particularly during dataset creation and destruction) when this may not be
71 * true or the dataset may not be initialized enough to own. As a result, this
72 * object is also refcounted.
76 * This tunable allows datasets to be raw received even if the stream does
77 * not include IVset guids or if the guids don't match. This is used as part
78 * of the resolution for ZPOOL_ERRATA_ZOL_8308_ENCRYPTION.
80 int zfs_disable_ivset_guid_check
= 0;
83 dsl_wrapping_key_hold(dsl_wrapping_key_t
*wkey
, void *tag
)
85 (void) zfs_refcount_add(&wkey
->wk_refcnt
, tag
);
89 dsl_wrapping_key_rele(dsl_wrapping_key_t
*wkey
, void *tag
)
91 (void) zfs_refcount_remove(&wkey
->wk_refcnt
, tag
);
95 dsl_wrapping_key_free(dsl_wrapping_key_t
*wkey
)
97 ASSERT0(zfs_refcount_count(&wkey
->wk_refcnt
));
99 if (wkey
->wk_key
.ck_data
) {
100 bzero(wkey
->wk_key
.ck_data
,
101 CRYPTO_BITS2BYTES(wkey
->wk_key
.ck_length
));
102 kmem_free(wkey
->wk_key
.ck_data
,
103 CRYPTO_BITS2BYTES(wkey
->wk_key
.ck_length
));
106 zfs_refcount_destroy(&wkey
->wk_refcnt
);
107 kmem_free(wkey
, sizeof (dsl_wrapping_key_t
));
111 dsl_wrapping_key_create(uint8_t *wkeydata
, zfs_keyformat_t keyformat
,
112 uint64_t salt
, uint64_t iters
, dsl_wrapping_key_t
**wkey_out
)
115 dsl_wrapping_key_t
*wkey
;
117 /* allocate the wrapping key */
118 wkey
= kmem_alloc(sizeof (dsl_wrapping_key_t
), KM_SLEEP
);
120 return (SET_ERROR(ENOMEM
));
122 /* allocate and initialize the underlying crypto key */
123 wkey
->wk_key
.ck_data
= kmem_alloc(WRAPPING_KEY_LEN
, KM_SLEEP
);
124 if (!wkey
->wk_key
.ck_data
) {
129 wkey
->wk_key
.ck_format
= CRYPTO_KEY_RAW
;
130 wkey
->wk_key
.ck_length
= CRYPTO_BYTES2BITS(WRAPPING_KEY_LEN
);
131 bcopy(wkeydata
, wkey
->wk_key
.ck_data
, WRAPPING_KEY_LEN
);
133 /* initialize the rest of the struct */
134 zfs_refcount_create(&wkey
->wk_refcnt
);
135 wkey
->wk_keyformat
= keyformat
;
136 wkey
->wk_salt
= salt
;
137 wkey
->wk_iters
= iters
;
143 dsl_wrapping_key_free(wkey
);
150 dsl_crypto_params_create_nvlist(dcp_cmd_t cmd
, nvlist_t
*props
,
151 nvlist_t
*crypto_args
, dsl_crypto_params_t
**dcp_out
)
154 uint64_t crypt
= ZIO_CRYPT_INHERIT
;
155 uint64_t keyformat
= ZFS_KEYFORMAT_NONE
;
156 uint64_t salt
= 0, iters
= 0;
157 dsl_crypto_params_t
*dcp
= NULL
;
158 dsl_wrapping_key_t
*wkey
= NULL
;
159 uint8_t *wkeydata
= NULL
;
160 uint_t wkeydata_len
= 0;
161 char *keylocation
= NULL
;
163 dcp
= kmem_zalloc(sizeof (dsl_crypto_params_t
), KM_SLEEP
);
165 ret
= SET_ERROR(ENOMEM
);
171 /* get relevant arguments from the nvlists */
173 (void) nvlist_lookup_uint64(props
,
174 zfs_prop_to_name(ZFS_PROP_ENCRYPTION
), &crypt
);
175 (void) nvlist_lookup_uint64(props
,
176 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), &keyformat
);
177 (void) nvlist_lookup_string(props
,
178 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), &keylocation
);
179 (void) nvlist_lookup_uint64(props
,
180 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), &salt
);
181 (void) nvlist_lookup_uint64(props
,
182 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), &iters
);
184 dcp
->cp_crypt
= crypt
;
187 if (crypto_args
!= NULL
) {
188 (void) nvlist_lookup_uint8_array(crypto_args
, "wkeydata",
189 &wkeydata
, &wkeydata_len
);
192 /* check for valid command */
193 if (dcp
->cp_cmd
>= DCP_CMD_MAX
) {
194 ret
= SET_ERROR(EINVAL
);
200 /* check for valid crypt */
201 if (dcp
->cp_crypt
>= ZIO_CRYPT_FUNCTIONS
) {
202 ret
= SET_ERROR(EINVAL
);
205 dcp
->cp_crypt
= crypt
;
208 /* check for valid keyformat */
209 if (keyformat
>= ZFS_KEYFORMAT_FORMATS
) {
210 ret
= SET_ERROR(EINVAL
);
214 /* check for a valid keylocation (of any kind) and copy it in */
215 if (keylocation
!= NULL
) {
216 if (!zfs_prop_valid_keylocation(keylocation
, B_FALSE
)) {
217 ret
= SET_ERROR(EINVAL
);
221 dcp
->cp_keylocation
= spa_strdup(keylocation
);
224 /* check wrapping key length, if given */
225 if (wkeydata
!= NULL
&& wkeydata_len
!= WRAPPING_KEY_LEN
) {
226 ret
= SET_ERROR(EINVAL
);
230 /* if the user asked for the default crypt, determine that now */
231 if (dcp
->cp_crypt
== ZIO_CRYPT_ON
)
232 dcp
->cp_crypt
= ZIO_CRYPT_ON_VALUE
;
234 /* create the wrapping key from the raw data */
235 if (wkeydata
!= NULL
) {
236 /* create the wrapping key with the verified parameters */
237 ret
= dsl_wrapping_key_create(wkeydata
, keyformat
, salt
,
246 * Remove the encryption properties from the nvlist since they are not
247 * maintained through the DSL.
249 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_ENCRYPTION
));
250 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
));
251 (void) nvlist_remove_all(props
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
));
252 (void) nvlist_remove_all(props
,
253 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
));
261 dsl_wrapping_key_free(wkey
);
263 kmem_free(dcp
, sizeof (dsl_crypto_params_t
));
270 dsl_crypto_params_free(dsl_crypto_params_t
*dcp
, boolean_t unload
)
275 if (dcp
->cp_keylocation
!= NULL
)
276 spa_strfree(dcp
->cp_keylocation
);
277 if (unload
&& dcp
->cp_wkey
!= NULL
)
278 dsl_wrapping_key_free(dcp
->cp_wkey
);
280 kmem_free(dcp
, sizeof (dsl_crypto_params_t
));
284 spa_crypto_key_compare(const void *a
, const void *b
)
286 const dsl_crypto_key_t
*dcka
= a
;
287 const dsl_crypto_key_t
*dckb
= b
;
289 if (dcka
->dck_obj
< dckb
->dck_obj
)
291 if (dcka
->dck_obj
> dckb
->dck_obj
)
297 spa_key_mapping_compare(const void *a
, const void *b
)
299 const dsl_key_mapping_t
*kma
= a
;
300 const dsl_key_mapping_t
*kmb
= b
;
302 if (kma
->km_dsobj
< kmb
->km_dsobj
)
304 if (kma
->km_dsobj
> kmb
->km_dsobj
)
310 spa_wkey_compare(const void *a
, const void *b
)
312 const dsl_wrapping_key_t
*wka
= a
;
313 const dsl_wrapping_key_t
*wkb
= b
;
315 if (wka
->wk_ddobj
< wkb
->wk_ddobj
)
317 if (wka
->wk_ddobj
> wkb
->wk_ddobj
)
323 spa_keystore_init(spa_keystore_t
*sk
)
325 rw_init(&sk
->sk_dk_lock
, NULL
, RW_DEFAULT
, NULL
);
326 rw_init(&sk
->sk_km_lock
, NULL
, RW_DEFAULT
, NULL
);
327 rw_init(&sk
->sk_wkeys_lock
, NULL
, RW_DEFAULT
, NULL
);
328 avl_create(&sk
->sk_dsl_keys
, spa_crypto_key_compare
,
329 sizeof (dsl_crypto_key_t
),
330 offsetof(dsl_crypto_key_t
, dck_avl_link
));
331 avl_create(&sk
->sk_key_mappings
, spa_key_mapping_compare
,
332 sizeof (dsl_key_mapping_t
),
333 offsetof(dsl_key_mapping_t
, km_avl_link
));
334 avl_create(&sk
->sk_wkeys
, spa_wkey_compare
, sizeof (dsl_wrapping_key_t
),
335 offsetof(dsl_wrapping_key_t
, wk_avl_link
));
339 spa_keystore_fini(spa_keystore_t
*sk
)
341 dsl_wrapping_key_t
*wkey
;
344 ASSERT(avl_is_empty(&sk
->sk_dsl_keys
));
345 ASSERT(avl_is_empty(&sk
->sk_key_mappings
));
347 while ((wkey
= avl_destroy_nodes(&sk
->sk_wkeys
, &cookie
)) != NULL
)
348 dsl_wrapping_key_free(wkey
);
350 avl_destroy(&sk
->sk_wkeys
);
351 avl_destroy(&sk
->sk_key_mappings
);
352 avl_destroy(&sk
->sk_dsl_keys
);
353 rw_destroy(&sk
->sk_wkeys_lock
);
354 rw_destroy(&sk
->sk_km_lock
);
355 rw_destroy(&sk
->sk_dk_lock
);
359 dsl_dir_get_encryption_root_ddobj(dsl_dir_t
*dd
, uint64_t *rddobj
)
361 if (dd
->dd_crypto_obj
== 0)
362 return (SET_ERROR(ENOENT
));
364 return (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
365 DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1, rddobj
));
369 dsl_dir_get_encryption_version(dsl_dir_t
*dd
, uint64_t *version
)
373 if (dd
->dd_crypto_obj
== 0)
374 return (SET_ERROR(ENOENT
));
376 /* version 0 is implied by ENOENT */
377 (void) zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
378 DSL_CRYPTO_KEY_VERSION
, 8, 1, version
);
384 dsl_dir_incompatible_encryption_version(dsl_dir_t
*dd
)
387 uint64_t version
= 0;
389 ret
= dsl_dir_get_encryption_version(dd
, &version
);
393 return (version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
);
397 spa_keystore_wkey_hold_ddobj_impl(spa_t
*spa
, uint64_t ddobj
,
398 void *tag
, dsl_wrapping_key_t
**wkey_out
)
401 dsl_wrapping_key_t search_wkey
;
402 dsl_wrapping_key_t
*found_wkey
;
404 ASSERT(RW_LOCK_HELD(&spa
->spa_keystore
.sk_wkeys_lock
));
406 /* init the search wrapping key */
407 search_wkey
.wk_ddobj
= ddobj
;
409 /* lookup the wrapping key */
410 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, &search_wkey
, NULL
);
412 ret
= SET_ERROR(ENOENT
);
416 /* increment the refcount */
417 dsl_wrapping_key_hold(found_wkey
, tag
);
419 *wkey_out
= found_wkey
;
428 spa_keystore_wkey_hold_dd(spa_t
*spa
, dsl_dir_t
*dd
, void *tag
,
429 dsl_wrapping_key_t
**wkey_out
)
432 dsl_wrapping_key_t
*wkey
;
434 boolean_t locked
= B_FALSE
;
436 if (!RW_WRITE_HELD(&spa
->spa_keystore
.sk_wkeys_lock
)) {
437 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_READER
);
441 /* get the ddobj that the keylocation property was inherited from */
442 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
446 /* lookup the wkey in the avl tree */
447 ret
= spa_keystore_wkey_hold_ddobj_impl(spa
, rddobj
, tag
, &wkey
);
451 /* unlock the wkey tree if we locked it */
453 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
460 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
467 dsl_crypto_can_set_keylocation(const char *dsname
, const char *keylocation
)
470 dsl_dir_t
*dd
= NULL
;
471 dsl_pool_t
*dp
= NULL
;
474 /* hold the dsl dir */
475 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
479 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
485 /* if dd is not encrypted, the value may only be "none" */
486 if (dd
->dd_crypto_obj
== 0) {
487 if (strcmp(keylocation
, "none") != 0) {
488 ret
= SET_ERROR(EACCES
);
496 /* check for a valid keylocation for encrypted datasets */
497 if (!zfs_prop_valid_keylocation(keylocation
, B_TRUE
)) {
498 ret
= SET_ERROR(EINVAL
);
502 /* check that this is an encryption root */
503 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
507 if (rddobj
!= dd
->dd_object
) {
508 ret
= SET_ERROR(EACCES
);
512 dsl_dir_rele(dd
, FTAG
);
513 dsl_pool_rele(dp
, FTAG
);
519 dsl_dir_rele(dd
, FTAG
);
521 dsl_pool_rele(dp
, FTAG
);
527 dsl_crypto_key_free(dsl_crypto_key_t
*dck
)
529 ASSERT(zfs_refcount_count(&dck
->dck_holds
) == 0);
531 /* destroy the zio_crypt_key_t */
532 zio_crypt_key_destroy(&dck
->dck_key
);
534 /* free the refcount, wrapping key, and lock */
535 zfs_refcount_destroy(&dck
->dck_holds
);
537 dsl_wrapping_key_rele(dck
->dck_wkey
, dck
);
540 kmem_free(dck
, sizeof (dsl_crypto_key_t
));
544 dsl_crypto_key_rele(dsl_crypto_key_t
*dck
, void *tag
)
546 if (zfs_refcount_remove(&dck
->dck_holds
, tag
) == 0)
547 dsl_crypto_key_free(dck
);
551 dsl_crypto_key_open(objset_t
*mos
, dsl_wrapping_key_t
*wkey
,
552 uint64_t dckobj
, void *tag
, dsl_crypto_key_t
**dck_out
)
555 uint64_t crypt
= 0, guid
= 0, version
= 0;
556 uint8_t raw_keydata
[MASTER_KEY_MAX_LEN
];
557 uint8_t raw_hmac_keydata
[SHA512_HMAC_KEYLEN
];
558 uint8_t iv
[WRAPPING_IV_LEN
];
559 uint8_t mac
[WRAPPING_MAC_LEN
];
560 dsl_crypto_key_t
*dck
;
562 /* allocate and initialize the key */
563 dck
= kmem_zalloc(sizeof (dsl_crypto_key_t
), KM_SLEEP
);
565 return (SET_ERROR(ENOMEM
));
567 /* fetch all of the values we need from the ZAP */
568 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
573 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1, &guid
);
577 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
578 MASTER_KEY_MAX_LEN
, raw_keydata
);
582 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
583 SHA512_HMAC_KEYLEN
, raw_hmac_keydata
);
587 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
592 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
597 /* the initial on-disk format for encryption did not have a version */
598 (void) zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_VERSION
, 8, 1, &version
);
601 * Unwrap the keys. If there is an error return EACCES to indicate
602 * an authentication failure.
604 ret
= zio_crypt_key_unwrap(&wkey
->wk_key
, crypt
, version
, guid
,
605 raw_keydata
, raw_hmac_keydata
, iv
, mac
, &dck
->dck_key
);
607 ret
= SET_ERROR(EACCES
);
611 /* finish initializing the dsl_crypto_key_t */
612 zfs_refcount_create(&dck
->dck_holds
);
613 dsl_wrapping_key_hold(wkey
, dck
);
614 dck
->dck_wkey
= wkey
;
615 dck
->dck_obj
= dckobj
;
616 zfs_refcount_add(&dck
->dck_holds
, tag
);
623 bzero(dck
, sizeof (dsl_crypto_key_t
));
624 kmem_free(dck
, sizeof (dsl_crypto_key_t
));
632 spa_keystore_dsl_key_hold_impl(spa_t
*spa
, uint64_t dckobj
, void *tag
,
633 dsl_crypto_key_t
**dck_out
)
636 dsl_crypto_key_t search_dck
;
637 dsl_crypto_key_t
*found_dck
;
639 ASSERT(RW_LOCK_HELD(&spa
->spa_keystore
.sk_dk_lock
));
641 /* init the search key */
642 search_dck
.dck_obj
= dckobj
;
644 /* find the matching key in the keystore */
645 found_dck
= avl_find(&spa
->spa_keystore
.sk_dsl_keys
, &search_dck
, NULL
);
647 ret
= SET_ERROR(ENOENT
);
651 /* increment the refcount */
652 zfs_refcount_add(&found_dck
->dck_holds
, tag
);
654 *dck_out
= found_dck
;
663 spa_keystore_dsl_key_hold_dd(spa_t
*spa
, dsl_dir_t
*dd
, void *tag
,
664 dsl_crypto_key_t
**dck_out
)
668 dsl_crypto_key_t
*dck_io
= NULL
, *dck_ks
= NULL
;
669 dsl_wrapping_key_t
*wkey
= NULL
;
670 uint64_t dckobj
= dd
->dd_crypto_obj
;
672 /* Lookup the key in the tree of currently loaded keys */
673 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_READER
);
674 ret
= spa_keystore_dsl_key_hold_impl(spa
, dckobj
, tag
, &dck_ks
);
675 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
681 /* Lookup the wrapping key from the keystore */
682 ret
= spa_keystore_wkey_hold_dd(spa
, dd
, FTAG
, &wkey
);
685 return (SET_ERROR(EACCES
));
688 /* Read the key from disk */
689 ret
= dsl_crypto_key_open(spa
->spa_meta_objset
, wkey
, dckobj
,
692 dsl_wrapping_key_rele(wkey
, FTAG
);
698 * Add the key to the keystore. It may already exist if it was
699 * added while performing the read from disk. In this case discard
700 * it and return the key from the keystore.
702 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_WRITER
);
703 ret
= spa_keystore_dsl_key_hold_impl(spa
, dckobj
, tag
, &dck_ks
);
705 avl_find(&spa
->spa_keystore
.sk_dsl_keys
, dck_io
, &where
);
706 avl_insert(&spa
->spa_keystore
.sk_dsl_keys
, dck_io
, where
);
709 dsl_crypto_key_free(dck_io
);
713 /* Release the wrapping key (the dsl key now has a reference to it) */
714 dsl_wrapping_key_rele(wkey
, FTAG
);
715 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
721 spa_keystore_dsl_key_rele(spa_t
*spa
, dsl_crypto_key_t
*dck
, void *tag
)
723 rw_enter(&spa
->spa_keystore
.sk_dk_lock
, RW_WRITER
);
725 if (zfs_refcount_remove(&dck
->dck_holds
, tag
) == 0) {
726 avl_remove(&spa
->spa_keystore
.sk_dsl_keys
, dck
);
727 dsl_crypto_key_free(dck
);
730 rw_exit(&spa
->spa_keystore
.sk_dk_lock
);
734 spa_keystore_load_wkey_impl(spa_t
*spa
, dsl_wrapping_key_t
*wkey
)
738 dsl_wrapping_key_t
*found_wkey
;
740 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
742 /* insert the wrapping key into the keystore */
743 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, wkey
, &where
);
744 if (found_wkey
!= NULL
) {
745 ret
= SET_ERROR(EEXIST
);
748 avl_insert(&spa
->spa_keystore
.sk_wkeys
, wkey
, where
);
750 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
755 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
760 spa_keystore_load_wkey(const char *dsname
, dsl_crypto_params_t
*dcp
,
764 dsl_dir_t
*dd
= NULL
;
765 dsl_crypto_key_t
*dck
= NULL
;
766 dsl_wrapping_key_t
*wkey
= dcp
->cp_wkey
;
767 dsl_pool_t
*dp
= NULL
;
768 uint64_t rddobj
, keyformat
, salt
, iters
;
771 * We don't validate the wrapping key's keyformat, salt, or iters
772 * since they will never be needed after the DCK has been wrapped.
774 if (dcp
->cp_wkey
== NULL
||
775 dcp
->cp_cmd
!= DCP_CMD_NONE
||
776 dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
777 dcp
->cp_keylocation
!= NULL
)
778 return (SET_ERROR(EINVAL
));
780 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
784 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
785 ret
= SET_ERROR(ENOTSUP
);
789 /* hold the dsl dir */
790 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
796 /* confirm that dd is the encryption root */
797 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
798 if (ret
!= 0 || rddobj
!= dd
->dd_object
) {
799 ret
= SET_ERROR(EINVAL
);
803 /* initialize the wkey's ddobj */
804 wkey
->wk_ddobj
= dd
->dd_object
;
806 /* verify that the wkey is correct by opening its dsl key */
807 ret
= dsl_crypto_key_open(dp
->dp_meta_objset
, wkey
,
808 dd
->dd_crypto_obj
, FTAG
, &dck
);
812 /* initialize the wkey encryption parameters from the DSL Crypto Key */
813 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
814 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &keyformat
);
818 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
819 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &salt
);
823 ret
= zap_lookup(dp
->dp_meta_objset
, dd
->dd_crypto_obj
,
824 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &iters
);
828 ASSERT3U(keyformat
, <, ZFS_KEYFORMAT_FORMATS
);
829 ASSERT3U(keyformat
, !=, ZFS_KEYFORMAT_NONE
);
830 IMPLY(keyformat
== ZFS_KEYFORMAT_PASSPHRASE
, iters
!= 0);
831 IMPLY(keyformat
== ZFS_KEYFORMAT_PASSPHRASE
, salt
!= 0);
832 IMPLY(keyformat
!= ZFS_KEYFORMAT_PASSPHRASE
, iters
== 0);
833 IMPLY(keyformat
!= ZFS_KEYFORMAT_PASSPHRASE
, salt
== 0);
835 wkey
->wk_keyformat
= keyformat
;
836 wkey
->wk_salt
= salt
;
837 wkey
->wk_iters
= iters
;
840 * At this point we have verified the wkey and confirmed that it can
841 * be used to decrypt a DSL Crypto Key. We can simply cleanup and
842 * return if this is all the user wanted to do.
847 /* insert the wrapping key into the keystore */
848 ret
= spa_keystore_load_wkey_impl(dp
->dp_spa
, wkey
);
852 dsl_crypto_key_rele(dck
, FTAG
);
853 dsl_dir_rele(dd
, FTAG
);
854 dsl_pool_rele(dp
, FTAG
);
856 /* create any zvols under this ds */
857 zvol_create_minors(dp
->dp_spa
, dsname
, B_TRUE
);
863 dsl_crypto_key_rele(dck
, FTAG
);
865 dsl_dir_rele(dd
, FTAG
);
867 dsl_pool_rele(dp
, FTAG
);
873 spa_keystore_unload_wkey_impl(spa_t
*spa
, uint64_t ddobj
)
876 dsl_wrapping_key_t search_wkey
;
877 dsl_wrapping_key_t
*found_wkey
;
879 /* init the search wrapping key */
880 search_wkey
.wk_ddobj
= ddobj
;
882 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
884 /* remove the wrapping key from the keystore */
885 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
,
888 ret
= SET_ERROR(EACCES
);
890 } else if (zfs_refcount_count(&found_wkey
->wk_refcnt
) != 0) {
891 ret
= SET_ERROR(EBUSY
);
894 avl_remove(&spa
->spa_keystore
.sk_wkeys
, found_wkey
);
896 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
898 /* free the wrapping key */
899 dsl_wrapping_key_free(found_wkey
);
904 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
909 spa_keystore_unload_wkey(const char *dsname
)
912 dsl_dir_t
*dd
= NULL
;
913 dsl_pool_t
*dp
= NULL
;
916 ret
= spa_open(dsname
, &spa
, FTAG
);
921 * Wait for any outstanding txg IO to complete, releasing any
922 * remaining references on the wkey.
924 if (spa_mode(spa
) != FREAD
)
925 txg_wait_synced(spa
->spa_dsl_pool
, 0);
927 spa_close(spa
, FTAG
);
929 /* hold the dsl dir */
930 ret
= dsl_pool_hold(dsname
, FTAG
, &dp
);
934 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
935 ret
= (SET_ERROR(ENOTSUP
));
939 ret
= dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
);
945 /* unload the wkey */
946 ret
= spa_keystore_unload_wkey_impl(dp
->dp_spa
, dd
->dd_object
);
950 dsl_dir_rele(dd
, FTAG
);
951 dsl_pool_rele(dp
, FTAG
);
953 /* remove any zvols under this ds */
954 zvol_remove_minors(dp
->dp_spa
, dsname
, B_TRUE
);
960 dsl_dir_rele(dd
, FTAG
);
962 dsl_pool_rele(dp
, FTAG
);
968 key_mapping_add_ref(dsl_key_mapping_t
*km
, void *tag
)
970 ASSERT3U(zfs_refcount_count(&km
->km_refcnt
), >=, 1);
971 zfs_refcount_add(&km
->km_refcnt
, tag
);
975 * The locking here is a little tricky to ensure we don't cause unnecessary
976 * performance problems. We want to release a key mapping whenever someone
977 * decrements the refcount to 0, but freeing the mapping requires removing
978 * it from the spa_keystore, which requires holding sk_km_lock as a writer.
979 * Most of the time we don't want to hold this lock as a writer, since the
980 * same lock is held as a reader for each IO that needs to encrypt / decrypt
981 * data for any dataset and in practice we will only actually free the
982 * mapping after unmounting a dataset.
985 key_mapping_rele(spa_t
*spa
, dsl_key_mapping_t
*km
, void *tag
)
987 ASSERT3U(zfs_refcount_count(&km
->km_refcnt
), >=, 1);
989 if (zfs_refcount_remove(&km
->km_refcnt
, tag
) != 0)
993 * We think we are going to need to free the mapping. Add a
994 * reference to prevent most other releasers from thinking
995 * this might be their responsibility. This is inherently
996 * racy, so we will confirm that we are legitimately the
997 * last holder once we have the sk_km_lock as a writer.
999 zfs_refcount_add(&km
->km_refcnt
, FTAG
);
1001 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_WRITER
);
1002 if (zfs_refcount_remove(&km
->km_refcnt
, FTAG
) != 0) {
1003 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1007 avl_remove(&spa
->spa_keystore
.sk_key_mappings
, km
);
1008 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1010 spa_keystore_dsl_key_rele(spa
, km
->km_key
, km
);
1011 zfs_refcount_destroy(&km
->km_refcnt
);
1012 kmem_free(km
, sizeof (dsl_key_mapping_t
));
1016 spa_keystore_create_mapping(spa_t
*spa
, dsl_dataset_t
*ds
, void *tag
,
1017 dsl_key_mapping_t
**km_out
)
1021 dsl_key_mapping_t
*km
, *found_km
;
1022 boolean_t should_free
= B_FALSE
;
1024 /* Allocate and initialize the mapping */
1025 km
= kmem_zalloc(sizeof (dsl_key_mapping_t
), KM_SLEEP
);
1026 zfs_refcount_create(&km
->km_refcnt
);
1028 ret
= spa_keystore_dsl_key_hold_dd(spa
, ds
->ds_dir
, km
, &km
->km_key
);
1030 zfs_refcount_destroy(&km
->km_refcnt
);
1031 kmem_free(km
, sizeof (dsl_key_mapping_t
));
1038 km
->km_dsobj
= ds
->ds_object
;
1040 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_WRITER
);
1043 * If a mapping already exists, simply increment its refcount and
1044 * cleanup the one we made. We want to allocate / free outside of
1045 * the lock because this lock is also used by the zio layer to lookup
1046 * key mappings. Otherwise, use the one we created. Normally, there will
1047 * only be one active reference at a time (the objset owner), but there
1048 * are times when there could be multiple async users.
1050 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
, km
, &where
);
1051 if (found_km
!= NULL
) {
1052 should_free
= B_TRUE
;
1053 zfs_refcount_add(&found_km
->km_refcnt
, tag
);
1057 zfs_refcount_add(&km
->km_refcnt
, tag
);
1058 avl_insert(&spa
->spa_keystore
.sk_key_mappings
, km
, where
);
1063 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1066 spa_keystore_dsl_key_rele(spa
, km
->km_key
, km
);
1067 zfs_refcount_destroy(&km
->km_refcnt
);
1068 kmem_free(km
, sizeof (dsl_key_mapping_t
));
1075 spa_keystore_remove_mapping(spa_t
*spa
, uint64_t dsobj
, void *tag
)
1078 dsl_key_mapping_t search_km
;
1079 dsl_key_mapping_t
*found_km
;
1081 /* init the search key mapping */
1082 search_km
.km_dsobj
= dsobj
;
1084 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_READER
);
1086 /* find the matching mapping */
1087 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
,
1089 if (found_km
== NULL
) {
1090 ret
= SET_ERROR(ENOENT
);
1094 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1096 key_mapping_rele(spa
, found_km
, tag
);
1101 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1106 * This function is primarily used by the zio and arc layer to lookup
1107 * DSL Crypto Keys for encryption. Callers must release the key with
1108 * spa_keystore_dsl_key_rele(). The function may also be called with
1109 * dck_out == NULL and tag == NULL to simply check that a key exists
1110 * without getting a reference to it.
1113 spa_keystore_lookup_key(spa_t
*spa
, uint64_t dsobj
, void *tag
,
1114 dsl_crypto_key_t
**dck_out
)
1117 dsl_key_mapping_t search_km
;
1118 dsl_key_mapping_t
*found_km
;
1120 ASSERT((tag
!= NULL
&& dck_out
!= NULL
) ||
1121 (tag
== NULL
&& dck_out
== NULL
));
1123 /* init the search key mapping */
1124 search_km
.km_dsobj
= dsobj
;
1126 rw_enter(&spa
->spa_keystore
.sk_km_lock
, RW_READER
);
1128 /* remove the mapping from the tree */
1129 found_km
= avl_find(&spa
->spa_keystore
.sk_key_mappings
, &search_km
,
1131 if (found_km
== NULL
) {
1132 ret
= SET_ERROR(ENOENT
);
1136 if (found_km
&& tag
)
1137 zfs_refcount_add(&found_km
->km_key
->dck_holds
, tag
);
1139 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1141 if (dck_out
!= NULL
)
1142 *dck_out
= found_km
->km_key
;
1146 rw_exit(&spa
->spa_keystore
.sk_km_lock
);
1148 if (dck_out
!= NULL
)
1154 dmu_objset_check_wkey_loaded(dsl_dir_t
*dd
)
1157 dsl_wrapping_key_t
*wkey
= NULL
;
1159 ret
= spa_keystore_wkey_hold_dd(dd
->dd_pool
->dp_spa
, dd
, FTAG
,
1162 return (SET_ERROR(EACCES
));
1164 dsl_wrapping_key_rele(wkey
, FTAG
);
1169 static zfs_keystatus_t
1170 dsl_dataset_get_keystatus(dsl_dir_t
*dd
)
1172 /* check if this dd has a has a dsl key */
1173 if (dd
->dd_crypto_obj
== 0)
1174 return (ZFS_KEYSTATUS_NONE
);
1176 return (dmu_objset_check_wkey_loaded(dd
) == 0 ?
1177 ZFS_KEYSTATUS_AVAILABLE
: ZFS_KEYSTATUS_UNAVAILABLE
);
1181 dsl_dir_get_crypt(dsl_dir_t
*dd
, uint64_t *crypt
)
1183 if (dd
->dd_crypto_obj
== 0) {
1184 *crypt
= ZIO_CRYPT_OFF
;
1188 return (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
1189 DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1, crypt
));
1193 dsl_crypto_key_sync_impl(objset_t
*mos
, uint64_t dckobj
, uint64_t crypt
,
1194 uint64_t root_ddobj
, uint64_t guid
, uint8_t *iv
, uint8_t *mac
,
1195 uint8_t *keydata
, uint8_t *hmac_keydata
, uint64_t keyformat
,
1196 uint64_t salt
, uint64_t iters
, dmu_tx_t
*tx
)
1198 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
1200 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1,
1202 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1,
1204 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
1206 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
1208 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
1209 MASTER_KEY_MAX_LEN
, keydata
, tx
));
1210 VERIFY0(zap_update(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
1211 SHA512_HMAC_KEYLEN
, hmac_keydata
, tx
));
1212 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
),
1213 8, 1, &keyformat
, tx
));
1214 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
1216 VERIFY0(zap_update(mos
, dckobj
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
1221 dsl_crypto_key_sync(dsl_crypto_key_t
*dck
, dmu_tx_t
*tx
)
1223 zio_crypt_key_t
*key
= &dck
->dck_key
;
1224 dsl_wrapping_key_t
*wkey
= dck
->dck_wkey
;
1225 uint8_t keydata
[MASTER_KEY_MAX_LEN
];
1226 uint8_t hmac_keydata
[SHA512_HMAC_KEYLEN
];
1227 uint8_t iv
[WRAPPING_IV_LEN
];
1228 uint8_t mac
[WRAPPING_MAC_LEN
];
1230 ASSERT(dmu_tx_is_syncing(tx
));
1231 ASSERT3U(key
->zk_crypt
, <, ZIO_CRYPT_FUNCTIONS
);
1233 /* encrypt and store the keys along with the IV and MAC */
1234 VERIFY0(zio_crypt_key_wrap(&dck
->dck_wkey
->wk_key
, key
, iv
, mac
,
1235 keydata
, hmac_keydata
));
1237 /* update the ZAP with the obtained values */
1238 dsl_crypto_key_sync_impl(tx
->tx_pool
->dp_meta_objset
, dck
->dck_obj
,
1239 key
->zk_crypt
, wkey
->wk_ddobj
, key
->zk_guid
, iv
, mac
, keydata
,
1240 hmac_keydata
, wkey
->wk_keyformat
, wkey
->wk_salt
, wkey
->wk_iters
,
1244 typedef struct spa_keystore_change_key_args
{
1245 const char *skcka_dsname
;
1246 dsl_crypto_params_t
*skcka_cp
;
1247 } spa_keystore_change_key_args_t
;
1250 spa_keystore_change_key_check(void *arg
, dmu_tx_t
*tx
)
1253 dsl_dir_t
*dd
= NULL
;
1254 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1255 spa_keystore_change_key_args_t
*skcka
= arg
;
1256 dsl_crypto_params_t
*dcp
= skcka
->skcka_cp
;
1259 /* check for the encryption feature */
1260 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_ENCRYPTION
)) {
1261 ret
= SET_ERROR(ENOTSUP
);
1265 /* check for valid key change command */
1266 if (dcp
->cp_cmd
!= DCP_CMD_NEW_KEY
&&
1267 dcp
->cp_cmd
!= DCP_CMD_INHERIT
&&
1268 dcp
->cp_cmd
!= DCP_CMD_FORCE_NEW_KEY
&&
1269 dcp
->cp_cmd
!= DCP_CMD_FORCE_INHERIT
) {
1270 ret
= SET_ERROR(EINVAL
);
1275 ret
= dsl_dir_hold(dp
, skcka
->skcka_dsname
, FTAG
, &dd
, NULL
);
1281 /* verify that the dataset is encrypted */
1282 if (dd
->dd_crypto_obj
== 0) {
1283 ret
= SET_ERROR(EINVAL
);
1287 /* clones must always use their origin's key */
1288 if (dsl_dir_is_clone(dd
)) {
1289 ret
= SET_ERROR(EINVAL
);
1293 /* lookup the ddobj we are inheriting the keylocation from */
1294 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
);
1298 /* Handle inheritance */
1299 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
||
1300 dcp
->cp_cmd
== DCP_CMD_FORCE_INHERIT
) {
1301 /* no other encryption params should be given */
1302 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
1303 dcp
->cp_keylocation
!= NULL
||
1304 dcp
->cp_wkey
!= NULL
) {
1305 ret
= SET_ERROR(EINVAL
);
1309 /* check that this is an encryption root */
1310 if (dd
->dd_object
!= rddobj
) {
1311 ret
= SET_ERROR(EINVAL
);
1315 /* check that the parent is encrypted */
1316 if (dd
->dd_parent
->dd_crypto_obj
== 0) {
1317 ret
= SET_ERROR(EINVAL
);
1321 /* if we are rewrapping check that both keys are loaded */
1322 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
) {
1323 ret
= dmu_objset_check_wkey_loaded(dd
);
1327 ret
= dmu_objset_check_wkey_loaded(dd
->dd_parent
);
1332 dsl_dir_rele(dd
, FTAG
);
1336 /* handle forcing an encryption root without rewrapping */
1337 if (dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
) {
1338 /* no other encryption params should be given */
1339 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
||
1340 dcp
->cp_keylocation
!= NULL
||
1341 dcp
->cp_wkey
!= NULL
) {
1342 ret
= SET_ERROR(EINVAL
);
1346 /* check that this is not an encryption root */
1347 if (dd
->dd_object
== rddobj
) {
1348 ret
= SET_ERROR(EINVAL
);
1352 dsl_dir_rele(dd
, FTAG
);
1356 /* crypt cannot be changed after creation */
1357 if (dcp
->cp_crypt
!= ZIO_CRYPT_INHERIT
) {
1358 ret
= SET_ERROR(EINVAL
);
1362 /* we are not inheritting our parent's wkey so we need one ourselves */
1363 if (dcp
->cp_wkey
== NULL
) {
1364 ret
= SET_ERROR(EINVAL
);
1368 /* check for a valid keyformat for the new wrapping key */
1369 if (dcp
->cp_wkey
->wk_keyformat
>= ZFS_KEYFORMAT_FORMATS
||
1370 dcp
->cp_wkey
->wk_keyformat
== ZFS_KEYFORMAT_NONE
) {
1371 ret
= SET_ERROR(EINVAL
);
1376 * If this dataset is not currently an encryption root we need a new
1377 * keylocation for this dataset's new wrapping key. Otherwise we can
1378 * just keep the one we already had.
1380 if (dd
->dd_object
!= rddobj
&& dcp
->cp_keylocation
== NULL
) {
1381 ret
= SET_ERROR(EINVAL
);
1385 /* check that the keylocation is valid if it is not NULL */
1386 if (dcp
->cp_keylocation
!= NULL
&&
1387 !zfs_prop_valid_keylocation(dcp
->cp_keylocation
, B_TRUE
)) {
1388 ret
= SET_ERROR(EINVAL
);
1392 /* passphrases require pbkdf2 salt and iters */
1393 if (dcp
->cp_wkey
->wk_keyformat
== ZFS_KEYFORMAT_PASSPHRASE
) {
1394 if (dcp
->cp_wkey
->wk_salt
== 0 ||
1395 dcp
->cp_wkey
->wk_iters
< MIN_PBKDF2_ITERATIONS
) {
1396 ret
= SET_ERROR(EINVAL
);
1400 if (dcp
->cp_wkey
->wk_salt
!= 0 || dcp
->cp_wkey
->wk_iters
!= 0) {
1401 ret
= SET_ERROR(EINVAL
);
1406 /* make sure the dd's wkey is loaded */
1407 ret
= dmu_objset_check_wkey_loaded(dd
);
1411 dsl_dir_rele(dd
, FTAG
);
1417 dsl_dir_rele(dd
, FTAG
);
1423 * This function deals with the intricacies of updating wrapping
1424 * key references and encryption roots recursively in the event
1425 * of a call to 'zfs change-key' or 'zfs promote'. The 'skip'
1426 * parameter should always be set to B_FALSE when called
1430 spa_keystore_change_key_sync_impl(uint64_t rddobj
, uint64_t ddobj
,
1431 uint64_t new_rddobj
, dsl_wrapping_key_t
*wkey
, boolean_t skip
,
1436 zap_attribute_t
*za
;
1437 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1438 dsl_dir_t
*dd
= NULL
;
1439 dsl_crypto_key_t
*dck
= NULL
;
1440 uint64_t curr_rddobj
;
1442 ASSERT(RW_WRITE_HELD(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
));
1445 VERIFY0(dsl_dir_hold_obj(dp
, ddobj
, NULL
, FTAG
, &dd
));
1447 /* ignore special dsl dirs */
1448 if (dd
->dd_myname
[0] == '$' || dd
->dd_myname
[0] == '%') {
1449 dsl_dir_rele(dd
, FTAG
);
1453 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &curr_rddobj
);
1454 VERIFY(ret
== 0 || ret
== ENOENT
);
1457 * Stop recursing if this dsl dir didn't inherit from the root
1458 * or if this dd is a clone.
1460 if (ret
== ENOENT
||
1461 (!skip
&& (curr_rddobj
!= rddobj
|| dsl_dir_is_clone(dd
)))) {
1462 dsl_dir_rele(dd
, FTAG
);
1467 * If we don't have a wrapping key just update the dck to reflect the
1468 * new encryption root. Otherwise rewrap the entire dck and re-sync it
1469 * to disk. If skip is set, we don't do any of this work.
1473 VERIFY0(zap_update(dp
->dp_meta_objset
,
1475 DSL_CRYPTO_KEY_ROOT_DDOBJ
, 8, 1,
1478 VERIFY0(spa_keystore_dsl_key_hold_dd(dp
->dp_spa
, dd
,
1480 dsl_wrapping_key_hold(wkey
, dck
);
1481 dsl_wrapping_key_rele(dck
->dck_wkey
, dck
);
1482 dck
->dck_wkey
= wkey
;
1483 dsl_crypto_key_sync(dck
, tx
);
1484 spa_keystore_dsl_key_rele(dp
->dp_spa
, dck
, FTAG
);
1488 zc
= kmem_alloc(sizeof (zap_cursor_t
), KM_SLEEP
);
1489 za
= kmem_alloc(sizeof (zap_attribute_t
), KM_SLEEP
);
1491 /* Recurse into all child dsl dirs. */
1492 for (zap_cursor_init(zc
, dp
->dp_meta_objset
,
1493 dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
1494 zap_cursor_retrieve(zc
, za
) == 0;
1495 zap_cursor_advance(zc
)) {
1496 spa_keystore_change_key_sync_impl(rddobj
,
1497 za
->za_first_integer
, new_rddobj
, wkey
, B_FALSE
, tx
);
1499 zap_cursor_fini(zc
);
1502 * Recurse into all dsl dirs of clones. We utilize the skip parameter
1503 * here so that we don't attempt to process the clones directly. This
1504 * is because the clone and its origin share the same dck, which has
1505 * already been updated.
1507 for (zap_cursor_init(zc
, dp
->dp_meta_objset
,
1508 dsl_dir_phys(dd
)->dd_clones
);
1509 zap_cursor_retrieve(zc
, za
) == 0;
1510 zap_cursor_advance(zc
)) {
1511 dsl_dataset_t
*clone
;
1513 VERIFY0(dsl_dataset_hold_obj(dp
, za
->za_first_integer
,
1515 spa_keystore_change_key_sync_impl(rddobj
,
1516 clone
->ds_dir
->dd_object
, new_rddobj
, wkey
, B_TRUE
, tx
);
1517 dsl_dataset_rele(clone
, FTAG
);
1519 zap_cursor_fini(zc
);
1521 kmem_free(za
, sizeof (zap_attribute_t
));
1522 kmem_free(zc
, sizeof (zap_cursor_t
));
1524 dsl_dir_rele(dd
, FTAG
);
1528 spa_keystore_change_key_sync(void *arg
, dmu_tx_t
*tx
)
1532 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1533 spa_t
*spa
= dp
->dp_spa
;
1534 spa_keystore_change_key_args_t
*skcka
= arg
;
1535 dsl_crypto_params_t
*dcp
= skcka
->skcka_cp
;
1536 dsl_wrapping_key_t
*wkey
= NULL
, *found_wkey
;
1537 dsl_wrapping_key_t wkey_search
;
1538 char *keylocation
= dcp
->cp_keylocation
;
1539 uint64_t rddobj
, new_rddobj
;
1541 /* create and initialize the wrapping key */
1542 VERIFY0(dsl_dataset_hold(dp
, skcka
->skcka_dsname
, FTAG
, &ds
));
1543 ASSERT(!ds
->ds_is_snapshot
);
1545 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
||
1546 dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
) {
1548 * We are changing to a new wkey. Set additional properties
1549 * which can be sent along with this ioctl. Note that this
1550 * command can set keylocation even if it can't normally be
1551 * set via 'zfs set' due to a non-local keylocation.
1553 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
) {
1554 wkey
= dcp
->cp_wkey
;
1555 wkey
->wk_ddobj
= ds
->ds_dir
->dd_object
;
1557 keylocation
= "prompt";
1560 if (keylocation
!= NULL
) {
1561 dsl_prop_set_sync_impl(ds
,
1562 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1563 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1,
1567 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
, &rddobj
));
1568 new_rddobj
= ds
->ds_dir
->dd_object
;
1571 * We are inheritting the parent's wkey. Unset any local
1572 * keylocation and grab a reference to the wkey.
1574 if (dcp
->cp_cmd
== DCP_CMD_INHERIT
) {
1575 VERIFY0(spa_keystore_wkey_hold_dd(spa
,
1576 ds
->ds_dir
->dd_parent
, FTAG
, &wkey
));
1579 dsl_prop_set_sync_impl(ds
,
1580 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), ZPROP_SRC_NONE
,
1583 rddobj
= ds
->ds_dir
->dd_object
;
1584 VERIFY0(dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
->dd_parent
,
1589 ASSERT(dcp
->cp_cmd
== DCP_CMD_FORCE_INHERIT
||
1590 dcp
->cp_cmd
== DCP_CMD_FORCE_NEW_KEY
);
1593 rw_enter(&spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
1595 /* recurse through all children and rewrap their keys */
1596 spa_keystore_change_key_sync_impl(rddobj
, ds
->ds_dir
->dd_object
,
1597 new_rddobj
, wkey
, B_FALSE
, tx
);
1600 * All references to the old wkey should be released now (if it
1601 * existed). Replace the wrapping key.
1603 wkey_search
.wk_ddobj
= ds
->ds_dir
->dd_object
;
1604 found_wkey
= avl_find(&spa
->spa_keystore
.sk_wkeys
, &wkey_search
, NULL
);
1605 if (found_wkey
!= NULL
) {
1606 ASSERT0(zfs_refcount_count(&found_wkey
->wk_refcnt
));
1607 avl_remove(&spa
->spa_keystore
.sk_wkeys
, found_wkey
);
1608 dsl_wrapping_key_free(found_wkey
);
1611 if (dcp
->cp_cmd
== DCP_CMD_NEW_KEY
) {
1612 avl_find(&spa
->spa_keystore
.sk_wkeys
, wkey
, &where
);
1613 avl_insert(&spa
->spa_keystore
.sk_wkeys
, wkey
, where
);
1614 } else if (wkey
!= NULL
) {
1615 dsl_wrapping_key_rele(wkey
, FTAG
);
1618 rw_exit(&spa
->spa_keystore
.sk_wkeys_lock
);
1620 dsl_dataset_rele(ds
, FTAG
);
1624 spa_keystore_change_key(const char *dsname
, dsl_crypto_params_t
*dcp
)
1626 spa_keystore_change_key_args_t skcka
;
1628 /* initialize the args struct */
1629 skcka
.skcka_dsname
= dsname
;
1630 skcka
.skcka_cp
= dcp
;
1633 * Perform the actual work in syncing context. The blocks modified
1634 * here could be calculated but it would require holding the pool
1635 * lock and traversing all of the datasets that will have their keys
1638 return (dsl_sync_task(dsname
, spa_keystore_change_key_check
,
1639 spa_keystore_change_key_sync
, &skcka
, 15,
1640 ZFS_SPACE_CHECK_RESERVED
));
1644 dsl_dir_rename_crypt_check(dsl_dir_t
*dd
, dsl_dir_t
*newparent
)
1647 uint64_t curr_rddobj
, parent_rddobj
;
1649 if (dd
->dd_crypto_obj
== 0)
1652 ret
= dsl_dir_get_encryption_root_ddobj(dd
, &curr_rddobj
);
1657 * if this is not an encryption root, we must make sure we are not
1658 * moving dd to a new encryption root
1660 if (dd
->dd_object
!= curr_rddobj
) {
1661 ret
= dsl_dir_get_encryption_root_ddobj(newparent
,
1666 if (parent_rddobj
!= curr_rddobj
) {
1667 ret
= SET_ERROR(EACCES
);
1679 * Check to make sure that a promote from targetdd to origindd will not require
1683 dsl_dataset_promote_crypt_check(dsl_dir_t
*target
, dsl_dir_t
*origin
)
1686 uint64_t rddobj
, op_rddobj
, tp_rddobj
;
1688 /* If the dataset is not encrypted we don't need to check anything */
1689 if (origin
->dd_crypto_obj
== 0)
1693 * If we are not changing the first origin snapshot in a chain
1694 * the encryption root won't change either.
1696 if (dsl_dir_is_clone(origin
))
1700 * If the origin is the encryption root we will update
1701 * the DSL Crypto Key to point to the target instead.
1703 ret
= dsl_dir_get_encryption_root_ddobj(origin
, &rddobj
);
1707 if (rddobj
== origin
->dd_object
)
1711 * The origin is inheriting its encryption root from its parent.
1712 * Check that the parent of the target has the same encryption root.
1714 ret
= dsl_dir_get_encryption_root_ddobj(origin
->dd_parent
, &op_rddobj
);
1716 return (SET_ERROR(EACCES
));
1720 ret
= dsl_dir_get_encryption_root_ddobj(target
->dd_parent
, &tp_rddobj
);
1722 return (SET_ERROR(EACCES
));
1726 if (op_rddobj
!= tp_rddobj
)
1727 return (SET_ERROR(EACCES
));
1733 dsl_dataset_promote_crypt_sync(dsl_dir_t
*target
, dsl_dir_t
*origin
,
1737 dsl_pool_t
*dp
= target
->dd_pool
;
1738 dsl_dataset_t
*targetds
;
1739 dsl_dataset_t
*originds
;
1742 if (origin
->dd_crypto_obj
== 0)
1744 if (dsl_dir_is_clone(origin
))
1747 VERIFY0(dsl_dir_get_encryption_root_ddobj(origin
, &rddobj
));
1749 if (rddobj
!= origin
->dd_object
)
1753 * If the target is being promoted to the encryption root update the
1754 * DSL Crypto Key and keylocation to reflect that. We also need to
1755 * update the DSL Crypto Keys of all children inheritting their
1756 * encryption root to point to the new target. Otherwise, the check
1757 * function ensured that the encryption root will not change.
1759 keylocation
= kmem_alloc(ZAP_MAXVALUELEN
, KM_SLEEP
);
1761 VERIFY0(dsl_dataset_hold_obj(dp
,
1762 dsl_dir_phys(target
)->dd_head_dataset_obj
, FTAG
, &targetds
));
1763 VERIFY0(dsl_dataset_hold_obj(dp
,
1764 dsl_dir_phys(origin
)->dd_head_dataset_obj
, FTAG
, &originds
));
1766 VERIFY0(dsl_prop_get_dd(origin
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1767 1, ZAP_MAXVALUELEN
, keylocation
, NULL
, B_FALSE
));
1768 dsl_prop_set_sync_impl(targetds
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1769 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1, keylocation
, tx
);
1770 dsl_prop_set_sync_impl(originds
, zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
1771 ZPROP_SRC_NONE
, 0, 0, NULL
, tx
);
1773 rw_enter(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
, RW_WRITER
);
1774 spa_keystore_change_key_sync_impl(rddobj
, origin
->dd_object
,
1775 target
->dd_object
, NULL
, B_FALSE
, tx
);
1776 rw_exit(&dp
->dp_spa
->spa_keystore
.sk_wkeys_lock
);
1778 dsl_dataset_rele(targetds
, FTAG
);
1779 dsl_dataset_rele(originds
, FTAG
);
1780 kmem_free(keylocation
, ZAP_MAXVALUELEN
);
1784 dmu_objset_create_crypt_check(dsl_dir_t
*parentdd
, dsl_crypto_params_t
*dcp
,
1785 boolean_t
*will_encrypt
)
1788 uint64_t pcrypt
, crypt
;
1789 dsl_crypto_params_t dummy_dcp
= { 0 };
1791 if (will_encrypt
!= NULL
)
1792 *will_encrypt
= B_FALSE
;
1797 if (dcp
->cp_cmd
!= DCP_CMD_NONE
)
1798 return (SET_ERROR(EINVAL
));
1800 if (parentdd
!= NULL
) {
1801 ret
= dsl_dir_get_crypt(parentdd
, &pcrypt
);
1805 pcrypt
= ZIO_CRYPT_OFF
;
1808 crypt
= (dcp
->cp_crypt
== ZIO_CRYPT_INHERIT
) ? pcrypt
: dcp
->cp_crypt
;
1810 ASSERT3U(pcrypt
, !=, ZIO_CRYPT_INHERIT
);
1811 ASSERT3U(crypt
, !=, ZIO_CRYPT_INHERIT
);
1813 /* check for valid dcp with no encryption (inherited or local) */
1814 if (crypt
== ZIO_CRYPT_OFF
) {
1815 /* Must not specify encryption params */
1816 if (dcp
->cp_wkey
!= NULL
||
1817 (dcp
->cp_keylocation
!= NULL
&&
1818 strcmp(dcp
->cp_keylocation
, "none") != 0))
1819 return (SET_ERROR(EINVAL
));
1824 if (will_encrypt
!= NULL
)
1825 *will_encrypt
= B_TRUE
;
1828 * We will now definitely be encrypting. Check the feature flag. When
1829 * creating the pool the caller will check this for us since we won't
1830 * technically have the feature activated yet.
1832 if (parentdd
!= NULL
&&
1833 !spa_feature_is_enabled(parentdd
->dd_pool
->dp_spa
,
1834 SPA_FEATURE_ENCRYPTION
)) {
1835 return (SET_ERROR(EOPNOTSUPP
));
1838 /* Check for errata #4 (encryption enabled, bookmark_v2 disabled) */
1839 if (parentdd
!= NULL
&&
1840 !spa_feature_is_enabled(parentdd
->dd_pool
->dp_spa
,
1841 SPA_FEATURE_BOOKMARK_V2
)) {
1842 return (SET_ERROR(EOPNOTSUPP
));
1845 /* handle inheritance */
1846 if (dcp
->cp_wkey
== NULL
) {
1847 ASSERT3P(parentdd
, !=, NULL
);
1849 /* key must be fully unspecified */
1850 if (dcp
->cp_keylocation
!= NULL
)
1851 return (SET_ERROR(EINVAL
));
1853 /* parent must have a key to inherit */
1854 if (pcrypt
== ZIO_CRYPT_OFF
)
1855 return (SET_ERROR(EINVAL
));
1857 /* check for parent key */
1858 ret
= dmu_objset_check_wkey_loaded(parentdd
);
1865 /* At this point we should have a fully specified key. Check location */
1866 if (dcp
->cp_keylocation
== NULL
||
1867 !zfs_prop_valid_keylocation(dcp
->cp_keylocation
, B_TRUE
))
1868 return (SET_ERROR(EINVAL
));
1870 /* Must have fully specified keyformat */
1871 switch (dcp
->cp_wkey
->wk_keyformat
) {
1872 case ZFS_KEYFORMAT_HEX
:
1873 case ZFS_KEYFORMAT_RAW
:
1874 /* requires no pbkdf2 iters and salt */
1875 if (dcp
->cp_wkey
->wk_salt
!= 0 || dcp
->cp_wkey
->wk_iters
!= 0)
1876 return (SET_ERROR(EINVAL
));
1878 case ZFS_KEYFORMAT_PASSPHRASE
:
1879 /* requires pbkdf2 iters and salt */
1880 if (dcp
->cp_wkey
->wk_salt
== 0 ||
1881 dcp
->cp_wkey
->wk_iters
< MIN_PBKDF2_ITERATIONS
)
1882 return (SET_ERROR(EINVAL
));
1884 case ZFS_KEYFORMAT_NONE
:
1886 /* keyformat must be specified and valid */
1887 return (SET_ERROR(EINVAL
));
1894 dsl_dataset_create_crypt_sync(uint64_t dsobj
, dsl_dir_t
*dd
,
1895 dsl_dataset_t
*origin
, dsl_crypto_params_t
*dcp
, dmu_tx_t
*tx
)
1897 dsl_pool_t
*dp
= dd
->dd_pool
;
1899 dsl_wrapping_key_t
*wkey
;
1901 /* clones always use their origin's wrapping key */
1902 if (dsl_dir_is_clone(dd
)) {
1903 ASSERT3P(dcp
, ==, NULL
);
1906 * If this is an encrypted clone we just need to clone the
1907 * dck into dd. Zapify the dd so we can do that.
1909 if (origin
->ds_dir
->dd_crypto_obj
!= 0) {
1910 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1911 dsl_dir_zapify(dd
, tx
);
1914 dsl_crypto_key_clone_sync(origin
->ds_dir
, tx
);
1915 VERIFY0(zap_add(dp
->dp_meta_objset
, dd
->dd_object
,
1916 DD_FIELD_CRYPTO_KEY_OBJ
, sizeof (uint64_t), 1,
1917 &dd
->dd_crypto_obj
, tx
));
1924 * A NULL dcp at this point indicates this is the origin dataset
1925 * which does not have an objset to encrypt. Raw receives will handle
1926 * encryption separately later. In both cases we can simply return.
1928 if (dcp
== NULL
|| dcp
->cp_cmd
== DCP_CMD_RAW_RECV
)
1931 crypt
= dcp
->cp_crypt
;
1932 wkey
= dcp
->cp_wkey
;
1934 /* figure out the effective crypt */
1935 if (crypt
== ZIO_CRYPT_INHERIT
&& dd
->dd_parent
!= NULL
)
1936 VERIFY0(dsl_dir_get_crypt(dd
->dd_parent
, &crypt
));
1938 /* if we aren't doing encryption just return */
1939 if (crypt
== ZIO_CRYPT_OFF
|| crypt
== ZIO_CRYPT_INHERIT
)
1942 /* zapify the dd so that we can add the crypto key obj to it */
1943 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1944 dsl_dir_zapify(dd
, tx
);
1946 /* use the new key if given or inherit from the parent */
1948 VERIFY0(spa_keystore_wkey_hold_dd(dp
->dp_spa
,
1949 dd
->dd_parent
, FTAG
, &wkey
));
1951 wkey
->wk_ddobj
= dd
->dd_object
;
1954 ASSERT3P(wkey
, !=, NULL
);
1956 /* Create or clone the DSL crypto key and activate the feature */
1957 dd
->dd_crypto_obj
= dsl_crypto_key_create_sync(crypt
, wkey
, tx
);
1958 VERIFY0(zap_add(dp
->dp_meta_objset
, dd
->dd_object
,
1959 DD_FIELD_CRYPTO_KEY_OBJ
, sizeof (uint64_t), 1, &dd
->dd_crypto_obj
,
1961 dsl_dataset_activate_feature(dsobj
, SPA_FEATURE_ENCRYPTION
,
1962 (void *)B_TRUE
, tx
);
1965 * If we inherited the wrapping key we release our reference now.
1966 * Otherwise, this is a new key and we need to load it into the
1969 if (dcp
->cp_wkey
== NULL
) {
1970 dsl_wrapping_key_rele(wkey
, FTAG
);
1972 VERIFY0(spa_keystore_load_wkey_impl(dp
->dp_spa
, wkey
));
1976 typedef struct dsl_crypto_recv_key_arg
{
1977 uint64_t dcrka_dsobj
;
1978 uint64_t dcrka_fromobj
;
1979 dmu_objset_type_t dcrka_ostype
;
1980 nvlist_t
*dcrka_nvl
;
1981 boolean_t dcrka_do_key
;
1982 } dsl_crypto_recv_key_arg_t
;
1985 dsl_crypto_recv_raw_objset_check(dsl_dataset_t
*ds
, dsl_dataset_t
*fromds
,
1986 dmu_objset_type_t ostype
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
1991 uint8_t *buf
= NULL
;
1993 uint64_t intval
, nlevels
, blksz
, ibs
;
1994 uint64_t nblkptr
, maxblkid
;
1996 if (ostype
!= DMU_OST_ZFS
&& ostype
!= DMU_OST_ZVOL
)
1997 return (SET_ERROR(EINVAL
));
1999 /* raw receives also need info about the structure of the metadnode */
2000 ret
= nvlist_lookup_uint64(nvl
, "mdn_compress", &intval
);
2001 if (ret
!= 0 || intval
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
)
2002 return (SET_ERROR(EINVAL
));
2004 ret
= nvlist_lookup_uint64(nvl
, "mdn_checksum", &intval
);
2005 if (ret
!= 0 || intval
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
)
2006 return (SET_ERROR(EINVAL
));
2008 ret
= nvlist_lookup_uint64(nvl
, "mdn_nlevels", &nlevels
);
2009 if (ret
!= 0 || nlevels
> DN_MAX_LEVELS
)
2010 return (SET_ERROR(EINVAL
));
2012 ret
= nvlist_lookup_uint64(nvl
, "mdn_blksz", &blksz
);
2013 if (ret
!= 0 || blksz
< SPA_MINBLOCKSIZE
)
2014 return (SET_ERROR(EINVAL
));
2015 else if (blksz
> spa_maxblocksize(tx
->tx_pool
->dp_spa
))
2016 return (SET_ERROR(ENOTSUP
));
2018 ret
= nvlist_lookup_uint64(nvl
, "mdn_indblkshift", &ibs
);
2019 if (ret
!= 0 || ibs
< DN_MIN_INDBLKSHIFT
|| ibs
> DN_MAX_INDBLKSHIFT
)
2020 return (SET_ERROR(ENOTSUP
));
2022 ret
= nvlist_lookup_uint64(nvl
, "mdn_nblkptr", &nblkptr
);
2023 if (ret
!= 0 || nblkptr
!= DN_MAX_NBLKPTR
)
2024 return (SET_ERROR(ENOTSUP
));
2026 ret
= nvlist_lookup_uint64(nvl
, "mdn_maxblkid", &maxblkid
);
2028 return (SET_ERROR(EINVAL
));
2030 ret
= nvlist_lookup_uint8_array(nvl
, "portable_mac", &buf
, &len
);
2031 if (ret
!= 0 || len
!= ZIO_OBJSET_MAC_LEN
)
2032 return (SET_ERROR(EINVAL
));
2034 ret
= dmu_objset_from_ds(ds
, &os
);
2039 * Useraccounting is not portable and must be done with the keys loaded.
2040 * Therefore, whenever we do any kind of receive the useraccounting
2041 * must not be present.
2043 ASSERT0(os
->os_flags
& OBJSET_FLAG_USERACCOUNTING_COMPLETE
);
2044 ASSERT0(os
->os_flags
& OBJSET_FLAG_USEROBJACCOUNTING_COMPLETE
);
2046 mdn
= DMU_META_DNODE(os
);
2049 * If we already created the objset, make sure its unchangeable
2050 * properties match the ones received in the nvlist.
2052 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2053 if (!BP_IS_HOLE(dsl_dataset_get_blkptr(ds
)) &&
2054 (mdn
->dn_nlevels
!= nlevels
|| mdn
->dn_datablksz
!= blksz
||
2055 mdn
->dn_indblkshift
!= ibs
|| mdn
->dn_nblkptr
!= nblkptr
)) {
2056 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2057 return (SET_ERROR(EINVAL
));
2059 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2062 * Check that the ivset guid of the fromds matches the one from the
2063 * send stream. Older versions of the encryption code did not have
2064 * an ivset guid on the from dataset and did not send one in the
2065 * stream. For these streams we provide the
2066 * zfs_disable_ivset_guid_check tunable to allow these datasets to
2067 * be received with a generated ivset guid.
2069 if (fromds
!= NULL
&& !zfs_disable_ivset_guid_check
) {
2070 uint64_t from_ivset_guid
= 0;
2073 (void) nvlist_lookup_uint64(nvl
, "from_ivset_guid", &intval
);
2074 (void) zap_lookup(tx
->tx_pool
->dp_meta_objset
,
2075 fromds
->ds_object
, DS_FIELD_IVSET_GUID
,
2076 sizeof (from_ivset_guid
), 1, &from_ivset_guid
);
2078 if (intval
== 0 || from_ivset_guid
== 0)
2079 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISSING
));
2081 if (intval
!= from_ivset_guid
)
2082 return (SET_ERROR(ZFS_ERR_FROM_IVSET_GUID_MISMATCH
));
2089 dsl_crypto_recv_raw_objset_sync(dsl_dataset_t
*ds
, dmu_objset_type_t ostype
,
2090 nvlist_t
*nvl
, dmu_tx_t
*tx
)
2092 dsl_pool_t
*dp
= tx
->tx_pool
;
2096 uint8_t *portable_mac
;
2098 uint64_t compress
, checksum
, nlevels
, blksz
, ibs
, maxblkid
;
2099 boolean_t newds
= B_FALSE
;
2101 VERIFY0(dmu_objset_from_ds(ds
, &os
));
2102 mdn
= DMU_META_DNODE(os
);
2105 * Fetch the values we need from the nvlist. "to_ivset_guid" must
2106 * be set on the snapshot, which doesn't exist yet. The receive
2107 * code will take care of this for us later.
2109 compress
= fnvlist_lookup_uint64(nvl
, "mdn_compress");
2110 checksum
= fnvlist_lookup_uint64(nvl
, "mdn_checksum");
2111 nlevels
= fnvlist_lookup_uint64(nvl
, "mdn_nlevels");
2112 blksz
= fnvlist_lookup_uint64(nvl
, "mdn_blksz");
2113 ibs
= fnvlist_lookup_uint64(nvl
, "mdn_indblkshift");
2114 maxblkid
= fnvlist_lookup_uint64(nvl
, "mdn_maxblkid");
2115 VERIFY0(nvlist_lookup_uint8_array(nvl
, "portable_mac", &portable_mac
,
2118 /* if we haven't created an objset for the ds yet, do that now */
2119 rrw_enter(&ds
->ds_bp_rwlock
, RW_READER
, FTAG
);
2120 if (BP_IS_HOLE(dsl_dataset_get_blkptr(ds
))) {
2121 (void) dmu_objset_create_impl_dnstats(dp
->dp_spa
, ds
,
2122 dsl_dataset_get_blkptr(ds
), ostype
, nlevels
, blksz
,
2126 rrw_exit(&ds
->ds_bp_rwlock
, FTAG
);
2129 * Set the portable MAC. The local MAC will always be zero since the
2130 * incoming data will all be portable and user accounting will be
2131 * deferred until the next mount. Afterwards, flag the os to be
2132 * written out raw next time.
2134 arc_release(os
->os_phys_buf
, &os
->os_phys_buf
);
2135 bcopy(portable_mac
, os
->os_phys
->os_portable_mac
, ZIO_OBJSET_MAC_LEN
);
2136 bzero(os
->os_phys
->os_local_mac
, ZIO_OBJSET_MAC_LEN
);
2137 os
->os_next_write_raw
[tx
->tx_txg
& TXG_MASK
] = B_TRUE
;
2139 /* set metadnode compression and checksum */
2140 mdn
->dn_compress
= compress
;
2141 mdn
->dn_checksum
= checksum
;
2143 rw_enter(&mdn
->dn_struct_rwlock
, RW_WRITER
);
2144 dnode_new_blkid(mdn
, maxblkid
, tx
, B_FALSE
, B_TRUE
);
2145 rw_exit(&mdn
->dn_struct_rwlock
);
2148 * We can't normally dirty the dataset in syncing context unless
2149 * we are creating a new dataset. In this case, we perform a
2150 * pseudo txg sync here instead.
2153 dsl_dataset_dirty(ds
, tx
);
2155 zio
= zio_root(dp
->dp_spa
, NULL
, NULL
, ZIO_FLAG_MUSTSUCCEED
);
2156 dsl_dataset_sync(ds
, zio
, tx
);
2157 VERIFY0(zio_wait(zio
));
2159 /* dsl_dataset_sync_done will drop this reference. */
2160 dmu_buf_add_ref(ds
->ds_dbuf
, ds
);
2161 dsl_dataset_sync_done(ds
, tx
);
2166 dsl_crypto_recv_raw_key_check(dsl_dataset_t
*ds
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
2169 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2170 uint8_t *buf
= NULL
;
2172 uint64_t intval
, key_guid
, version
;
2173 boolean_t is_passphrase
= B_FALSE
;
2175 ASSERT(dsl_dataset_phys(ds
)->ds_flags
& DS_FLAG_INCONSISTENT
);
2178 * Read and check all the encryption values from the nvlist. We need
2179 * all of the fields of a DSL Crypto Key, as well as a fully specified
2182 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, &intval
);
2183 if (ret
!= 0 || intval
>= ZIO_CRYPT_FUNCTIONS
||
2184 intval
<= ZIO_CRYPT_OFF
)
2185 return (SET_ERROR(EINVAL
));
2187 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_GUID
, &intval
);
2189 return (SET_ERROR(EINVAL
));
2192 * If this is an incremental receive make sure the given key guid
2193 * matches the one we already have.
2195 if (ds
->ds_dir
->dd_crypto_obj
!= 0) {
2196 ret
= zap_lookup(mos
, ds
->ds_dir
->dd_crypto_obj
,
2197 DSL_CRYPTO_KEY_GUID
, 8, 1, &key_guid
);
2200 if (intval
!= key_guid
)
2201 return (SET_ERROR(EACCES
));
2204 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2206 if (ret
!= 0 || len
!= MASTER_KEY_MAX_LEN
)
2207 return (SET_ERROR(EINVAL
));
2209 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2211 if (ret
!= 0 || len
!= SHA512_HMAC_KEYLEN
)
2212 return (SET_ERROR(EINVAL
));
2214 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, &buf
, &len
);
2215 if (ret
!= 0 || len
!= WRAPPING_IV_LEN
)
2216 return (SET_ERROR(EINVAL
));
2218 ret
= nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, &buf
, &len
);
2219 if (ret
!= 0 || len
!= WRAPPING_MAC_LEN
)
2220 return (SET_ERROR(EINVAL
));
2223 * We don't support receiving old on-disk formats. The version 0
2224 * implementation protected several fields in an objset that were
2225 * not always portable during a raw receive. As a result, we call
2226 * the old version an on-disk errata #3.
2228 ret
= nvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_VERSION
, &version
);
2229 if (ret
!= 0 || version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
)
2230 return (SET_ERROR(ENOTSUP
));
2232 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
),
2234 if (ret
!= 0 || intval
>= ZFS_KEYFORMAT_FORMATS
||
2235 intval
== ZFS_KEYFORMAT_NONE
)
2236 return (SET_ERROR(EINVAL
));
2238 is_passphrase
= (intval
== ZFS_KEYFORMAT_PASSPHRASE
);
2241 * for raw receives we allow any number of pbkdf2iters since there
2242 * won't be a chance for the user to change it.
2244 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
),
2246 if (ret
!= 0 || (is_passphrase
== (intval
== 0)))
2247 return (SET_ERROR(EINVAL
));
2249 ret
= nvlist_lookup_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
),
2251 if (ret
!= 0 || (is_passphrase
== (intval
== 0)))
2252 return (SET_ERROR(EINVAL
));
2258 dsl_crypto_recv_raw_key_sync(dsl_dataset_t
*ds
, nvlist_t
*nvl
, dmu_tx_t
*tx
)
2260 dsl_pool_t
*dp
= tx
->tx_pool
;
2261 objset_t
*mos
= dp
->dp_meta_objset
;
2262 dsl_dir_t
*dd
= ds
->ds_dir
;
2264 uint64_t rddobj
, one
= 1;
2265 uint8_t *keydata
, *hmac_keydata
, *iv
, *mac
;
2266 uint64_t crypt
, key_guid
, keyformat
, iters
, salt
;
2267 uint64_t version
= ZIO_CRYPT_KEY_CURRENT_VERSION
;
2268 char *keylocation
= "prompt";
2270 /* lookup the values we need to create the DSL Crypto Key */
2271 crypt
= fnvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
);
2272 key_guid
= fnvlist_lookup_uint64(nvl
, DSL_CRYPTO_KEY_GUID
);
2273 keyformat
= fnvlist_lookup_uint64(nvl
,
2274 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
));
2275 iters
= fnvlist_lookup_uint64(nvl
,
2276 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
));
2277 salt
= fnvlist_lookup_uint64(nvl
,
2278 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
));
2279 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2281 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2282 &hmac_keydata
, &len
));
2283 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, &iv
, &len
));
2284 VERIFY0(nvlist_lookup_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, &mac
, &len
));
2286 /* if this is a new dataset setup the DSL Crypto Key. */
2287 if (dd
->dd_crypto_obj
== 0) {
2288 /* zapify the dsl dir so we can add the key object to it */
2289 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
2290 dsl_dir_zapify(dd
, tx
);
2292 /* create the DSL Crypto Key on disk and activate the feature */
2293 dd
->dd_crypto_obj
= zap_create(mos
,
2294 DMU_OTN_ZAP_METADATA
, DMU_OT_NONE
, 0, tx
);
2295 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
,
2296 dd
->dd_crypto_obj
, DSL_CRYPTO_KEY_REFCOUNT
,
2297 sizeof (uint64_t), 1, &one
, tx
));
2298 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
,
2299 dd
->dd_crypto_obj
, DSL_CRYPTO_KEY_VERSION
,
2300 sizeof (uint64_t), 1, &version
, tx
));
2302 dsl_dataset_activate_feature(ds
->ds_object
,
2303 SPA_FEATURE_ENCRYPTION
, (void *)B_TRUE
, tx
);
2304 ds
->ds_feature
[SPA_FEATURE_ENCRYPTION
] = (void *)B_TRUE
;
2306 /* save the dd_crypto_obj on disk */
2307 VERIFY0(zap_add(mos
, dd
->dd_object
, DD_FIELD_CRYPTO_KEY_OBJ
,
2308 sizeof (uint64_t), 1, &dd
->dd_crypto_obj
, tx
));
2311 * Set the keylocation to prompt by default. If keylocation
2312 * has been provided via the properties, this will be overridden
2315 dsl_prop_set_sync_impl(ds
,
2316 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
),
2317 ZPROP_SRC_LOCAL
, 1, strlen(keylocation
) + 1,
2320 rddobj
= dd
->dd_object
;
2322 VERIFY0(dsl_dir_get_encryption_root_ddobj(dd
, &rddobj
));
2325 /* sync the key data to the ZAP object on disk */
2326 dsl_crypto_key_sync_impl(mos
, dd
->dd_crypto_obj
, crypt
,
2327 rddobj
, key_guid
, iv
, mac
, keydata
, hmac_keydata
, keyformat
, salt
,
2332 dsl_crypto_recv_key_check(void *arg
, dmu_tx_t
*tx
)
2335 dsl_crypto_recv_key_arg_t
*dcrka
= arg
;
2336 dsl_dataset_t
*ds
= NULL
, *fromds
= NULL
;
2338 ret
= dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_dsobj
,
2343 if (dcrka
->dcrka_fromobj
!= 0) {
2344 ret
= dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_fromobj
,
2350 ret
= dsl_crypto_recv_raw_objset_check(ds
, fromds
,
2351 dcrka
->dcrka_ostype
, dcrka
->dcrka_nvl
, tx
);
2356 * We run this check even if we won't be doing this part of
2357 * the receive now so that we don't make the user wait until
2358 * the receive finishes to fail.
2360 ret
= dsl_crypto_recv_raw_key_check(ds
, dcrka
->dcrka_nvl
, tx
);
2366 dsl_dataset_rele(ds
, FTAG
);
2368 dsl_dataset_rele(fromds
, FTAG
);
2373 dsl_crypto_recv_key_sync(void *arg
, dmu_tx_t
*tx
)
2375 dsl_crypto_recv_key_arg_t
*dcrka
= arg
;
2378 VERIFY0(dsl_dataset_hold_obj(tx
->tx_pool
, dcrka
->dcrka_dsobj
,
2380 dsl_crypto_recv_raw_objset_sync(ds
, dcrka
->dcrka_ostype
,
2381 dcrka
->dcrka_nvl
, tx
);
2382 if (dcrka
->dcrka_do_key
)
2383 dsl_crypto_recv_raw_key_sync(ds
, dcrka
->dcrka_nvl
, tx
);
2384 dsl_dataset_rele(ds
, FTAG
);
2388 * This function is used to sync an nvlist representing a DSL Crypto Key and
2389 * the associated encryption parameters. The key will be written exactly as is
2390 * without wrapping it.
2393 dsl_crypto_recv_raw(const char *poolname
, uint64_t dsobj
, uint64_t fromobj
,
2394 dmu_objset_type_t ostype
, nvlist_t
*nvl
, boolean_t do_key
)
2396 dsl_crypto_recv_key_arg_t dcrka
;
2398 dcrka
.dcrka_dsobj
= dsobj
;
2399 dcrka
.dcrka_fromobj
= fromobj
;
2400 dcrka
.dcrka_ostype
= ostype
;
2401 dcrka
.dcrka_nvl
= nvl
;
2402 dcrka
.dcrka_do_key
= do_key
;
2404 return (dsl_sync_task(poolname
, dsl_crypto_recv_key_check
,
2405 dsl_crypto_recv_key_sync
, &dcrka
, 1, ZFS_SPACE_CHECK_NORMAL
));
2409 dsl_crypto_populate_key_nvlist(dsl_dataset_t
*ds
, uint64_t from_ivset_guid
,
2416 nvlist_t
*nvl
= NULL
;
2417 uint64_t dckobj
= ds
->ds_dir
->dd_crypto_obj
;
2418 dsl_dir_t
*rdd
= NULL
;
2419 dsl_pool_t
*dp
= ds
->ds_dir
->dd_pool
;
2420 objset_t
*mos
= dp
->dp_meta_objset
;
2421 uint64_t crypt
= 0, key_guid
= 0, format
= 0;
2422 uint64_t iters
= 0, salt
= 0, version
= 0;
2423 uint64_t to_ivset_guid
= 0;
2424 uint8_t raw_keydata
[MASTER_KEY_MAX_LEN
];
2425 uint8_t raw_hmac_keydata
[SHA512_HMAC_KEYLEN
];
2426 uint8_t iv
[WRAPPING_IV_LEN
];
2427 uint8_t mac
[WRAPPING_MAC_LEN
];
2429 ASSERT(dckobj
!= 0);
2431 VERIFY0(dmu_objset_from_ds(ds
, &os
));
2432 mdn
= DMU_META_DNODE(os
);
2434 ret
= nvlist_alloc(&nvl
, NV_UNIQUE_NAME
, KM_SLEEP
);
2438 /* lookup values from the DSL Crypto Key */
2439 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, 8, 1,
2444 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_GUID
, 8, 1, &key_guid
);
2448 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MASTER_KEY
, 1,
2449 MASTER_KEY_MAX_LEN
, raw_keydata
);
2453 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_HMAC_KEY
, 1,
2454 SHA512_HMAC_KEYLEN
, raw_hmac_keydata
);
2458 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_IV
, 1, WRAPPING_IV_LEN
,
2463 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_MAC
, 1, WRAPPING_MAC_LEN
,
2468 /* see zfs_disable_ivset_guid_check tunable for errata info */
2469 ret
= zap_lookup(mos
, ds
->ds_object
, DS_FIELD_IVSET_GUID
, 8, 1,
2472 ASSERT3U(dp
->dp_spa
->spa_errata
, !=, 0);
2475 * We don't support raw sends of legacy on-disk formats. See the
2476 * comment in dsl_crypto_recv_key_check() for details.
2478 ret
= zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_VERSION
, 8, 1, &version
);
2479 if (ret
!= 0 || version
!= ZIO_CRYPT_KEY_CURRENT_VERSION
) {
2480 dp
->dp_spa
->spa_errata
= ZPOOL_ERRATA_ZOL_6845_ENCRYPTION
;
2481 ret
= SET_ERROR(ENOTSUP
);
2486 * Lookup wrapping key properties. An early version of the code did
2487 * not correctly add these values to the wrapping key or the DSL
2488 * Crypto Key on disk for non encryption roots, so to be safe we
2489 * always take the slightly circuitous route of looking it up from
2490 * the encryption root's key.
2492 ret
= dsl_dir_get_encryption_root_ddobj(ds
->ds_dir
, &rddobj
);
2496 dsl_pool_config_enter(dp
, FTAG
);
2498 ret
= dsl_dir_hold_obj(dp
, rddobj
, NULL
, FTAG
, &rdd
);
2502 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2503 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &format
);
2507 if (format
== ZFS_KEYFORMAT_PASSPHRASE
) {
2508 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2509 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &iters
);
2513 ret
= zap_lookup(dp
->dp_meta_objset
, rdd
->dd_crypto_obj
,
2514 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &salt
);
2519 dsl_dir_rele(rdd
, FTAG
);
2520 dsl_pool_config_exit(dp
, FTAG
);
2522 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_CRYPTO_SUITE
, crypt
);
2523 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_GUID
, key_guid
);
2524 fnvlist_add_uint64(nvl
, DSL_CRYPTO_KEY_VERSION
, version
);
2525 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_MASTER_KEY
,
2526 raw_keydata
, MASTER_KEY_MAX_LEN
));
2527 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_HMAC_KEY
,
2528 raw_hmac_keydata
, SHA512_HMAC_KEYLEN
));
2529 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_IV
, iv
,
2531 VERIFY0(nvlist_add_uint8_array(nvl
, DSL_CRYPTO_KEY_MAC
, mac
,
2533 VERIFY0(nvlist_add_uint8_array(nvl
, "portable_mac",
2534 os
->os_phys
->os_portable_mac
, ZIO_OBJSET_MAC_LEN
));
2535 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), format
);
2536 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), iters
);
2537 fnvlist_add_uint64(nvl
, zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), salt
);
2538 fnvlist_add_uint64(nvl
, "mdn_checksum", mdn
->dn_checksum
);
2539 fnvlist_add_uint64(nvl
, "mdn_compress", mdn
->dn_compress
);
2540 fnvlist_add_uint64(nvl
, "mdn_nlevels", mdn
->dn_nlevels
);
2541 fnvlist_add_uint64(nvl
, "mdn_blksz", mdn
->dn_datablksz
);
2542 fnvlist_add_uint64(nvl
, "mdn_indblkshift", mdn
->dn_indblkshift
);
2543 fnvlist_add_uint64(nvl
, "mdn_nblkptr", mdn
->dn_nblkptr
);
2544 fnvlist_add_uint64(nvl
, "mdn_maxblkid", mdn
->dn_maxblkid
);
2545 fnvlist_add_uint64(nvl
, "to_ivset_guid", to_ivset_guid
);
2546 fnvlist_add_uint64(nvl
, "from_ivset_guid", from_ivset_guid
);
2552 dsl_pool_config_exit(dp
, FTAG
);
2555 dsl_dir_rele(rdd
, FTAG
);
2563 dsl_crypto_key_create_sync(uint64_t crypt
, dsl_wrapping_key_t
*wkey
,
2566 dsl_crypto_key_t dck
;
2567 uint64_t version
= ZIO_CRYPT_KEY_CURRENT_VERSION
;
2568 uint64_t one
= 1ULL;
2570 ASSERT(dmu_tx_is_syncing(tx
));
2571 ASSERT3U(crypt
, <, ZIO_CRYPT_FUNCTIONS
);
2572 ASSERT3U(crypt
, >, ZIO_CRYPT_OFF
);
2574 /* create the DSL Crypto Key ZAP object */
2575 dck
.dck_obj
= zap_create(tx
->tx_pool
->dp_meta_objset
,
2576 DMU_OTN_ZAP_METADATA
, DMU_OT_NONE
, 0, tx
);
2578 /* fill in the key (on the stack) and sync it to disk */
2579 dck
.dck_wkey
= wkey
;
2580 VERIFY0(zio_crypt_key_init(crypt
, &dck
.dck_key
));
2582 dsl_crypto_key_sync(&dck
, tx
);
2583 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
, dck
.dck_obj
,
2584 DSL_CRYPTO_KEY_REFCOUNT
, sizeof (uint64_t), 1, &one
, tx
));
2585 VERIFY0(zap_update(tx
->tx_pool
->dp_meta_objset
, dck
.dck_obj
,
2586 DSL_CRYPTO_KEY_VERSION
, sizeof (uint64_t), 1, &version
, tx
));
2588 zio_crypt_key_destroy(&dck
.dck_key
);
2589 bzero(&dck
.dck_key
, sizeof (zio_crypt_key_t
));
2591 return (dck
.dck_obj
);
2595 dsl_crypto_key_clone_sync(dsl_dir_t
*origindd
, dmu_tx_t
*tx
)
2597 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2599 ASSERT(dmu_tx_is_syncing(tx
));
2601 VERIFY0(zap_increment(mos
, origindd
->dd_crypto_obj
,
2602 DSL_CRYPTO_KEY_REFCOUNT
, 1, tx
));
2604 return (origindd
->dd_crypto_obj
);
2608 dsl_crypto_key_destroy_sync(uint64_t dckobj
, dmu_tx_t
*tx
)
2610 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
2613 /* Decrement the refcount, destroy if this is the last reference */
2614 VERIFY0(zap_lookup(mos
, dckobj
, DSL_CRYPTO_KEY_REFCOUNT
,
2615 sizeof (uint64_t), 1, &refcnt
));
2618 VERIFY0(zap_increment(mos
, dckobj
, DSL_CRYPTO_KEY_REFCOUNT
,
2621 VERIFY0(zap_destroy(mos
, dckobj
, tx
));
2626 dsl_dataset_crypt_stats(dsl_dataset_t
*ds
, nvlist_t
*nv
)
2629 dsl_dir_t
*dd
= ds
->ds_dir
;
2630 dsl_dir_t
*enc_root
;
2631 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
2633 if (dd
->dd_crypto_obj
== 0)
2636 intval
= dsl_dataset_get_keystatus(dd
);
2637 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEYSTATUS
, intval
);
2639 if (dsl_dir_get_crypt(dd
, &intval
) == 0)
2640 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_ENCRYPTION
, intval
);
2641 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2642 DSL_CRYPTO_KEY_GUID
, 8, 1, &intval
) == 0) {
2643 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEY_GUID
, intval
);
2645 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2646 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), 8, 1, &intval
) == 0) {
2647 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_KEYFORMAT
, intval
);
2649 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2650 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 8, 1, &intval
) == 0) {
2651 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_PBKDF2_SALT
, intval
);
2653 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, dd
->dd_crypto_obj
,
2654 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 8, 1, &intval
) == 0) {
2655 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_PBKDF2_ITERS
, intval
);
2657 if (zap_lookup(dd
->dd_pool
->dp_meta_objset
, ds
->ds_object
,
2658 DS_FIELD_IVSET_GUID
, 8, 1, &intval
) == 0) {
2659 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_IVSET_GUID
, intval
);
2662 if (dsl_dir_get_encryption_root_ddobj(dd
, &intval
) == 0) {
2663 if (dsl_dir_hold_obj(dd
->dd_pool
, intval
, NULL
, FTAG
,
2665 dsl_dir_name(enc_root
, buf
);
2666 dsl_dir_rele(enc_root
, FTAG
);
2667 dsl_prop_nvlist_add_string(nv
,
2668 ZFS_PROP_ENCRYPTION_ROOT
, buf
);
2674 spa_crypt_get_salt(spa_t
*spa
, uint64_t dsobj
, uint8_t *salt
)
2677 dsl_crypto_key_t
*dck
= NULL
;
2679 /* look up the key from the spa's keystore */
2680 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2684 ret
= zio_crypt_key_get_salt(&dck
->dck_key
, salt
);
2688 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2693 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2698 * Objset blocks are a special case for MAC generation. These blocks have 2
2699 * 256-bit MACs which are embedded within the block itself, rather than a
2700 * single 128 bit MAC. As a result, this function handles encoding and decoding
2701 * the MACs on its own, unlike other functions in this file.
2704 spa_do_crypt_objset_mac_abd(boolean_t generate
, spa_t
*spa
, uint64_t dsobj
,
2705 abd_t
*abd
, uint_t datalen
, boolean_t byteswap
)
2708 dsl_crypto_key_t
*dck
= NULL
;
2709 void *buf
= abd_borrow_buf_copy(abd
, datalen
);
2710 objset_phys_t
*osp
= buf
;
2711 uint8_t portable_mac
[ZIO_OBJSET_MAC_LEN
];
2712 uint8_t local_mac
[ZIO_OBJSET_MAC_LEN
];
2714 /* look up the key from the spa's keystore */
2715 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2719 /* calculate both HMACs */
2720 ret
= zio_crypt_do_objset_hmacs(&dck
->dck_key
, buf
, datalen
,
2721 byteswap
, portable_mac
, local_mac
);
2725 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2727 /* if we are generating encode the HMACs in the objset_phys_t */
2729 bcopy(portable_mac
, osp
->os_portable_mac
, ZIO_OBJSET_MAC_LEN
);
2730 bcopy(local_mac
, osp
->os_local_mac
, ZIO_OBJSET_MAC_LEN
);
2731 abd_return_buf_copy(abd
, buf
, datalen
);
2735 if (bcmp(portable_mac
, osp
->os_portable_mac
, ZIO_OBJSET_MAC_LEN
) != 0 ||
2736 bcmp(local_mac
, osp
->os_local_mac
, ZIO_OBJSET_MAC_LEN
) != 0) {
2737 abd_return_buf(abd
, buf
, datalen
);
2738 return (SET_ERROR(ECKSUM
));
2741 abd_return_buf(abd
, buf
, datalen
);
2747 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2748 abd_return_buf(abd
, buf
, datalen
);
2753 spa_do_crypt_mac_abd(boolean_t generate
, spa_t
*spa
, uint64_t dsobj
, abd_t
*abd
,
2754 uint_t datalen
, uint8_t *mac
)
2757 dsl_crypto_key_t
*dck
= NULL
;
2758 uint8_t *buf
= abd_borrow_buf_copy(abd
, datalen
);
2759 uint8_t digestbuf
[ZIO_DATA_MAC_LEN
];
2761 /* look up the key from the spa's keystore */
2762 ret
= spa_keystore_lookup_key(spa
, dsobj
, FTAG
, &dck
);
2766 /* perform the hmac */
2767 ret
= zio_crypt_do_hmac(&dck
->dck_key
, buf
, datalen
,
2768 digestbuf
, ZIO_DATA_MAC_LEN
);
2772 abd_return_buf(abd
, buf
, datalen
);
2773 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2776 * Truncate and fill in mac buffer if we were asked to generate a MAC.
2777 * Otherwise verify that the MAC matched what we expected.
2780 bcopy(digestbuf
, mac
, ZIO_DATA_MAC_LEN
);
2784 if (bcmp(digestbuf
, mac
, ZIO_DATA_MAC_LEN
) != 0)
2785 return (SET_ERROR(ECKSUM
));
2791 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2792 abd_return_buf(abd
, buf
, datalen
);
2797 * This function serves as a multiplexer for encryption and decryption of
2798 * all blocks (except the L2ARC). For encryption, it will populate the IV,
2799 * salt, MAC, and cabd (the ciphertext). On decryption it will simply use
2800 * these fields to populate pabd (the plaintext).
2803 spa_do_crypt_abd(boolean_t encrypt
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2804 dmu_object_type_t ot
, boolean_t dedup
, boolean_t bswap
, uint8_t *salt
,
2805 uint8_t *iv
, uint8_t *mac
, uint_t datalen
, abd_t
*pabd
, abd_t
*cabd
,
2806 boolean_t
*no_crypt
)
2809 dsl_crypto_key_t
*dck
= NULL
;
2810 uint8_t *plainbuf
= NULL
, *cipherbuf
= NULL
;
2812 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_ENCRYPTION
));
2814 /* look up the key from the spa's keystore */
2815 ret
= spa_keystore_lookup_key(spa
, zb
->zb_objset
, FTAG
, &dck
);
2817 ret
= SET_ERROR(EACCES
);
2822 plainbuf
= abd_borrow_buf_copy(pabd
, datalen
);
2823 cipherbuf
= abd_borrow_buf(cabd
, datalen
);
2825 plainbuf
= abd_borrow_buf(pabd
, datalen
);
2826 cipherbuf
= abd_borrow_buf_copy(cabd
, datalen
);
2830 * Both encryption and decryption functions need a salt for key
2831 * generation and an IV. When encrypting a non-dedup block, we
2832 * generate the salt and IV randomly to be stored by the caller. Dedup
2833 * blocks perform a (more expensive) HMAC of the plaintext to obtain
2834 * the salt and the IV. ZIL blocks have their salt and IV generated
2835 * at allocation time in zio_alloc_zil(). On decryption, we simply use
2836 * the provided values.
2838 if (encrypt
&& ot
!= DMU_OT_INTENT_LOG
&& !dedup
) {
2839 ret
= zio_crypt_key_get_salt(&dck
->dck_key
, salt
);
2843 ret
= zio_crypt_generate_iv(iv
);
2846 } else if (encrypt
&& dedup
) {
2847 ret
= zio_crypt_generate_iv_salt_dedup(&dck
->dck_key
,
2848 plainbuf
, datalen
, iv
, salt
);
2853 /* call lower level function to perform encryption / decryption */
2854 ret
= zio_do_crypt_data(encrypt
, &dck
->dck_key
, ot
, bswap
, salt
, iv
,
2855 mac
, datalen
, plainbuf
, cipherbuf
, no_crypt
);
2858 * Handle injected decryption faults. Unfortunately, we cannot inject
2859 * faults for dnode blocks because we might trigger the panic in
2860 * dbuf_prepare_encrypted_dnode_leaf(), which exists because syncing
2861 * context is not prepared to handle malicious decryption failures.
2863 if (zio_injection_enabled
&& !encrypt
&& ot
!= DMU_OT_DNODE
&& ret
== 0)
2864 ret
= zio_handle_decrypt_injection(spa
, zb
, ot
, ECKSUM
);
2869 abd_return_buf(pabd
, plainbuf
, datalen
);
2870 abd_return_buf_copy(cabd
, cipherbuf
, datalen
);
2872 abd_return_buf_copy(pabd
, plainbuf
, datalen
);
2873 abd_return_buf(cabd
, cipherbuf
, datalen
);
2876 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2882 /* zero out any state we might have changed while encrypting */
2883 bzero(salt
, ZIO_DATA_SALT_LEN
);
2884 bzero(iv
, ZIO_DATA_IV_LEN
);
2885 bzero(mac
, ZIO_DATA_MAC_LEN
);
2886 abd_return_buf(pabd
, plainbuf
, datalen
);
2887 abd_return_buf_copy(cabd
, cipherbuf
, datalen
);
2889 abd_return_buf_copy(pabd
, plainbuf
, datalen
);
2890 abd_return_buf(cabd
, cipherbuf
, datalen
);
2893 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
2898 #if defined(_KERNEL)
2899 module_param(zfs_disable_ivset_guid_check
, int, 0644);
2900 MODULE_PARM_DESC(zfs_disable_ivset_guid_check
,
2901 "Set to allow raw receives without IVset guids");