4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2009 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
26 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
29 #include <sys/zfs_context.h>
32 #include <sys/dmu_tx.h>
33 #include <sys/dnode.h>
34 #include <sys/dsl_pool.h>
36 #include <sys/space_map.h>
37 #include <sys/refcount.h>
38 #include <sys/zfeature.h>
41 * Note on space map block size:
43 * The data for a given space map can be kept on blocks of any size.
44 * Larger blocks entail fewer I/O operations, but they also cause the
45 * DMU to keep more data in-core, and also to waste more I/O bandwidth
46 * when only a few blocks have changed since the last transaction group.
50 * Enabled whenever we want to stress test the use of double-word
53 boolean_t zfs_force_some_double_word_sm_entries
= B_FALSE
;
56 * Override the default indirect block size of 128K, instead use 16K for
57 * spacemaps (2^14 bytes). This dramatically reduces write inflation since
58 * appending to a spacemap typically has to write one data block (4KB) and one
59 * or two indirect blocks (16K-32K, rather than 128K).
61 int space_map_ibs
= 14;
64 sm_entry_is_debug(uint64_t e
)
66 return (SM_PREFIX_DECODE(e
) == SM_DEBUG_PREFIX
);
70 sm_entry_is_single_word(uint64_t e
)
72 uint8_t prefix
= SM_PREFIX_DECODE(e
);
73 return (prefix
!= SM_DEBUG_PREFIX
&& prefix
!= SM2_PREFIX
);
77 sm_entry_is_double_word(uint64_t e
)
79 return (SM_PREFIX_DECODE(e
) == SM2_PREFIX
);
83 * Iterate through the space map, invoking the callback on each (non-debug)
84 * space map entry. Stop after reading 'end' bytes of the space map.
87 space_map_iterate(space_map_t
*sm
, uint64_t end
, sm_cb_t callback
, void *arg
)
89 uint64_t blksz
= sm
->sm_blksz
;
91 ASSERT3U(blksz
, !=, 0);
92 ASSERT3U(end
, <=, space_map_length(sm
));
93 ASSERT0(P2PHASE(end
, sizeof (uint64_t)));
95 dmu_prefetch(sm
->sm_os
, space_map_object(sm
), 0, 0, end
,
96 ZIO_PRIORITY_SYNC_READ
);
99 for (uint64_t block_base
= 0; block_base
< end
&& error
== 0;
100 block_base
+= blksz
) {
102 error
= dmu_buf_hold(sm
->sm_os
, space_map_object(sm
),
103 block_base
, FTAG
, &db
, DMU_READ_PREFETCH
);
107 uint64_t *block_start
= db
->db_data
;
108 uint64_t block_length
= MIN(end
- block_base
, blksz
);
109 uint64_t *block_end
= block_start
+
110 (block_length
/ sizeof (uint64_t));
112 VERIFY0(P2PHASE(block_length
, sizeof (uint64_t)));
113 VERIFY3U(block_length
, !=, 0);
114 ASSERT3U(blksz
, ==, db
->db_size
);
116 for (uint64_t *block_cursor
= block_start
;
117 block_cursor
< block_end
&& error
== 0; block_cursor
++) {
118 uint64_t e
= *block_cursor
;
120 if (sm_entry_is_debug(e
)) /* Skip debug entries */
123 uint64_t raw_offset
, raw_run
, vdev_id
;
125 if (sm_entry_is_single_word(e
)) {
126 type
= SM_TYPE_DECODE(e
);
127 vdev_id
= SM_NO_VDEVID
;
128 raw_offset
= SM_OFFSET_DECODE(e
);
129 raw_run
= SM_RUN_DECODE(e
);
131 /* it is a two-word entry */
132 ASSERT(sm_entry_is_double_word(e
));
133 raw_run
= SM2_RUN_DECODE(e
);
134 vdev_id
= SM2_VDEV_DECODE(e
);
136 /* move on to the second word */
139 VERIFY3P(block_cursor
, <=, block_end
);
141 type
= SM2_TYPE_DECODE(e
);
142 raw_offset
= SM2_OFFSET_DECODE(e
);
145 uint64_t entry_offset
= (raw_offset
<< sm
->sm_shift
) +
147 uint64_t entry_run
= raw_run
<< sm
->sm_shift
;
149 VERIFY0(P2PHASE(entry_offset
, 1ULL << sm
->sm_shift
));
150 VERIFY0(P2PHASE(entry_run
, 1ULL << sm
->sm_shift
));
151 ASSERT3U(entry_offset
, >=, sm
->sm_start
);
152 ASSERT3U(entry_offset
, <, sm
->sm_start
+ sm
->sm_size
);
153 ASSERT3U(entry_run
, <=, sm
->sm_size
);
154 ASSERT3U(entry_offset
+ entry_run
, <=,
155 sm
->sm_start
+ sm
->sm_size
);
157 space_map_entry_t sme
= {
160 .sme_offset
= entry_offset
,
163 error
= callback(&sme
, arg
);
165 dmu_buf_rele(db
, FTAG
);
171 * Reads the entries from the last block of the space map into
172 * buf in reverse order. Populates nwords with number of words
175 * Refer to block comment within space_map_incremental_destroy()
176 * to understand why this function is needed.
179 space_map_reversed_last_block_entries(space_map_t
*sm
, uint64_t *buf
,
180 uint64_t bufsz
, uint64_t *nwords
)
186 * Find the offset of the last word in the space map and use
187 * that to read the last block of the space map with
190 uint64_t last_word_offset
=
191 sm
->sm_phys
->smp_length
- sizeof (uint64_t);
192 error
= dmu_buf_hold(sm
->sm_os
, space_map_object(sm
), last_word_offset
,
193 FTAG
, &db
, DMU_READ_NO_PREFETCH
);
197 ASSERT3U(sm
->sm_object
, ==, db
->db_object
);
198 ASSERT3U(sm
->sm_blksz
, ==, db
->db_size
);
199 ASSERT3U(bufsz
, >=, db
->db_size
);
200 ASSERT(nwords
!= NULL
);
202 uint64_t *words
= db
->db_data
;
204 (sm
->sm_phys
->smp_length
- db
->db_offset
) / sizeof (uint64_t);
206 ASSERT3U(*nwords
, <=, bufsz
/ sizeof (uint64_t));
208 uint64_t n
= *nwords
;
210 for (uint64_t i
= 0; i
< n
; i
++) {
211 uint64_t entry
= words
[i
];
212 if (sm_entry_is_double_word(entry
)) {
214 * Since we are populating the buffer backwards
215 * we have to be extra careful and add the two
216 * words of the double-word entry in the right
228 ASSERT(sm_entry_is_debug(entry
) ||
229 sm_entry_is_single_word(entry
));
236 * Assert that we wrote backwards all the
237 * way to the beginning of the buffer.
241 dmu_buf_rele(db
, FTAG
);
246 * Note: This function performs destructive actions - specifically
247 * it deletes entries from the end of the space map. Thus, callers
248 * should ensure that they are holding the appropriate locks for
249 * the space map that they provide.
252 space_map_incremental_destroy(space_map_t
*sm
, sm_cb_t callback
, void *arg
,
255 uint64_t bufsz
= MAX(sm
->sm_blksz
, SPA_MINBLOCKSIZE
);
256 uint64_t *buf
= zio_buf_alloc(bufsz
);
258 dmu_buf_will_dirty(sm
->sm_dbuf
, tx
);
261 * Ideally we would want to iterate from the beginning of the
262 * space map to the end in incremental steps. The issue with this
263 * approach is that we don't have any field on-disk that points
264 * us where to start between each step. We could try zeroing out
265 * entries that we've destroyed, but this doesn't work either as
266 * an entry that is 0 is a valid one (ALLOC for range [0x0:0x200]).
268 * As a result, we destroy its entries incrementally starting from
269 * the end after applying the callback to each of them.
271 * The problem with this approach is that we cannot literally
272 * iterate through the words in the space map backwards as we
273 * can't distinguish two-word space map entries from their second
274 * word. Thus we do the following:
276 * 1] We get all the entries from the last block of the space map
277 * and put them into a buffer in reverse order. This way the
278 * last entry comes first in the buffer, the second to last is
280 * 2] We iterate through the entries in the buffer and we apply
281 * the callback to each one. As we move from entry to entry we
282 * we decrease the size of the space map, deleting effectively
284 * 3] If there are no more entries in the space map or the callback
285 * returns a value other than 0, we stop iterating over the
286 * space map. If there are entries remaining and the callback
287 * returned 0, we go back to step [1].
290 while (space_map_length(sm
) > 0 && error
== 0) {
292 error
= space_map_reversed_last_block_entries(sm
, buf
, bufsz
,
297 ASSERT3U(nwords
, <=, bufsz
/ sizeof (uint64_t));
299 for (uint64_t i
= 0; i
< nwords
; i
++) {
302 if (sm_entry_is_debug(e
)) {
303 sm
->sm_phys
->smp_length
-= sizeof (uint64_t);
308 uint64_t raw_offset
, raw_run
, vdev_id
;
310 if (sm_entry_is_single_word(e
)) {
311 type
= SM_TYPE_DECODE(e
);
312 vdev_id
= SM_NO_VDEVID
;
313 raw_offset
= SM_OFFSET_DECODE(e
);
314 raw_run
= SM_RUN_DECODE(e
);
316 ASSERT(sm_entry_is_double_word(e
));
319 raw_run
= SM2_RUN_DECODE(e
);
320 vdev_id
= SM2_VDEV_DECODE(e
);
322 /* move to the second word */
326 ASSERT3P(i
, <=, nwords
);
328 type
= SM2_TYPE_DECODE(e
);
329 raw_offset
= SM2_OFFSET_DECODE(e
);
332 uint64_t entry_offset
=
333 (raw_offset
<< sm
->sm_shift
) + sm
->sm_start
;
334 uint64_t entry_run
= raw_run
<< sm
->sm_shift
;
336 VERIFY0(P2PHASE(entry_offset
, 1ULL << sm
->sm_shift
));
337 VERIFY0(P2PHASE(entry_run
, 1ULL << sm
->sm_shift
));
338 VERIFY3U(entry_offset
, >=, sm
->sm_start
);
339 VERIFY3U(entry_offset
, <, sm
->sm_start
+ sm
->sm_size
);
340 VERIFY3U(entry_run
, <=, sm
->sm_size
);
341 VERIFY3U(entry_offset
+ entry_run
, <=,
342 sm
->sm_start
+ sm
->sm_size
);
344 space_map_entry_t sme
= {
347 .sme_offset
= entry_offset
,
350 error
= callback(&sme
, arg
);
354 if (type
== SM_ALLOC
)
355 sm
->sm_phys
->smp_alloc
-= entry_run
;
357 sm
->sm_phys
->smp_alloc
+= entry_run
;
358 sm
->sm_phys
->smp_length
-= words
* sizeof (uint64_t);
362 if (space_map_length(sm
) == 0) {
364 ASSERT0(space_map_allocated(sm
));
367 zio_buf_free(buf
, bufsz
);
371 typedef struct space_map_load_arg
{
372 space_map_t
*smla_sm
;
373 range_tree_t
*smla_rt
;
375 } space_map_load_arg_t
;
378 space_map_load_callback(space_map_entry_t
*sme
, void *arg
)
380 space_map_load_arg_t
*smla
= arg
;
381 if (sme
->sme_type
== smla
->smla_type
) {
382 VERIFY3U(range_tree_space(smla
->smla_rt
) + sme
->sme_run
, <=,
383 smla
->smla_sm
->sm_size
);
384 range_tree_add(smla
->smla_rt
, sme
->sme_offset
, sme
->sme_run
);
386 range_tree_remove(smla
->smla_rt
, sme
->sme_offset
, sme
->sme_run
);
393 * Load the spacemap into the rangetree, like space_map_load. But only
394 * read the first 'length' bytes of the spacemap.
397 space_map_load_length(space_map_t
*sm
, range_tree_t
*rt
, maptype_t maptype
,
400 space_map_load_arg_t smla
;
402 VERIFY0(range_tree_space(rt
));
404 if (maptype
== SM_FREE
)
405 range_tree_add(rt
, sm
->sm_start
, sm
->sm_size
);
409 smla
.smla_type
= maptype
;
410 int err
= space_map_iterate(sm
, length
,
411 space_map_load_callback
, &smla
);
414 range_tree_vacate(rt
, NULL
, NULL
);
420 * Load the space map disk into the specified range tree. Segments of maptype
421 * are added to the range tree, other segment types are removed.
424 space_map_load(space_map_t
*sm
, range_tree_t
*rt
, maptype_t maptype
)
426 return (space_map_load_length(sm
, rt
, maptype
, space_map_length(sm
)));
430 space_map_histogram_clear(space_map_t
*sm
)
432 if (sm
->sm_dbuf
->db_size
!= sizeof (space_map_phys_t
))
435 bzero(sm
->sm_phys
->smp_histogram
, sizeof (sm
->sm_phys
->smp_histogram
));
439 space_map_histogram_verify(space_map_t
*sm
, range_tree_t
*rt
)
442 * Verify that the in-core range tree does not have any
443 * ranges smaller than our sm_shift size.
445 for (int i
= 0; i
< sm
->sm_shift
; i
++) {
446 if (rt
->rt_histogram
[i
] != 0)
453 space_map_histogram_add(space_map_t
*sm
, range_tree_t
*rt
, dmu_tx_t
*tx
)
457 ASSERT(dmu_tx_is_syncing(tx
));
458 VERIFY3U(space_map_object(sm
), !=, 0);
460 if (sm
->sm_dbuf
->db_size
!= sizeof (space_map_phys_t
))
463 dmu_buf_will_dirty(sm
->sm_dbuf
, tx
);
465 ASSERT(space_map_histogram_verify(sm
, rt
));
467 * Transfer the content of the range tree histogram to the space
468 * map histogram. The space map histogram contains 32 buckets ranging
469 * between 2^sm_shift to 2^(32+sm_shift-1). The range tree,
470 * however, can represent ranges from 2^0 to 2^63. Since the space
471 * map only cares about allocatable blocks (minimum of sm_shift) we
472 * can safely ignore all ranges in the range tree smaller than sm_shift.
474 for (int i
= sm
->sm_shift
; i
< RANGE_TREE_HISTOGRAM_SIZE
; i
++) {
477 * Since the largest histogram bucket in the space map is
478 * 2^(32+sm_shift-1), we need to normalize the values in
479 * the range tree for any bucket larger than that size. For
480 * example given an sm_shift of 9, ranges larger than 2^40
481 * would get normalized as if they were 1TB ranges. Assume
482 * the range tree had a count of 5 in the 2^44 (16TB) bucket,
483 * the calculation below would normalize this to 5 * 2^4 (16).
485 ASSERT3U(i
, >=, idx
+ sm
->sm_shift
);
486 sm
->sm_phys
->smp_histogram
[idx
] +=
487 rt
->rt_histogram
[i
] << (i
- idx
- sm
->sm_shift
);
490 * Increment the space map's index as long as we haven't
491 * reached the maximum bucket size. Accumulate all ranges
492 * larger than the max bucket size into the last bucket.
494 if (idx
< SPACE_MAP_HISTOGRAM_SIZE
- 1) {
495 ASSERT3U(idx
+ sm
->sm_shift
, ==, i
);
497 ASSERT3U(idx
, <, SPACE_MAP_HISTOGRAM_SIZE
);
503 space_map_write_intro_debug(space_map_t
*sm
, maptype_t maptype
, dmu_tx_t
*tx
)
505 dmu_buf_will_dirty(sm
->sm_dbuf
, tx
);
507 uint64_t dentry
= SM_PREFIX_ENCODE(SM_DEBUG_PREFIX
) |
508 SM_DEBUG_ACTION_ENCODE(maptype
) |
509 SM_DEBUG_SYNCPASS_ENCODE(spa_sync_pass(tx
->tx_pool
->dp_spa
)) |
510 SM_DEBUG_TXG_ENCODE(dmu_tx_get_txg(tx
));
512 dmu_write(sm
->sm_os
, space_map_object(sm
), sm
->sm_phys
->smp_length
,
513 sizeof (dentry
), &dentry
, tx
);
515 sm
->sm_phys
->smp_length
+= sizeof (dentry
);
519 * Writes one or more entries given a segment.
521 * Note: The function may release the dbuf from the pointer initially
522 * passed to it, and return a different dbuf. Also, the space map's
523 * dbuf must be dirty for the changes in sm_phys to take effect.
526 space_map_write_seg(space_map_t
*sm
, range_seg_t
*rs
, maptype_t maptype
,
527 uint64_t vdev_id
, uint8_t words
, dmu_buf_t
**dbp
, void *tag
, dmu_tx_t
*tx
)
529 ASSERT3U(words
, !=, 0);
530 ASSERT3U(words
, <=, 2);
532 /* ensure the vdev_id can be represented by the space map */
533 ASSERT3U(vdev_id
, <=, SM_NO_VDEVID
);
536 * if this is a single word entry, ensure that no vdev was
539 IMPLY(words
== 1, vdev_id
== SM_NO_VDEVID
);
541 dmu_buf_t
*db
= *dbp
;
542 ASSERT3U(db
->db_size
, ==, sm
->sm_blksz
);
544 uint64_t *block_base
= db
->db_data
;
545 uint64_t *block_end
= block_base
+ (sm
->sm_blksz
/ sizeof (uint64_t));
546 uint64_t *block_cursor
= block_base
+
547 (sm
->sm_phys
->smp_length
- db
->db_offset
) / sizeof (uint64_t);
549 ASSERT3P(block_cursor
, <=, block_end
);
551 uint64_t size
= (rs
->rs_end
- rs
->rs_start
) >> sm
->sm_shift
;
552 uint64_t start
= (rs
->rs_start
- sm
->sm_start
) >> sm
->sm_shift
;
553 uint64_t run_max
= (words
== 2) ? SM2_RUN_MAX
: SM_RUN_MAX
;
555 ASSERT3U(rs
->rs_start
, >=, sm
->sm_start
);
556 ASSERT3U(rs
->rs_start
, <, sm
->sm_start
+ sm
->sm_size
);
557 ASSERT3U(rs
->rs_end
- rs
->rs_start
, <=, sm
->sm_size
);
558 ASSERT3U(rs
->rs_end
, <=, sm
->sm_start
+ sm
->sm_size
);
561 ASSERT3P(block_cursor
, <=, block_end
);
564 * If we are at the end of this block, flush it and start
565 * writing again from the beginning.
567 if (block_cursor
== block_end
) {
568 dmu_buf_rele(db
, tag
);
570 uint64_t next_word_offset
= sm
->sm_phys
->smp_length
;
571 VERIFY0(dmu_buf_hold(sm
->sm_os
,
572 space_map_object(sm
), next_word_offset
,
573 tag
, &db
, DMU_READ_PREFETCH
));
574 dmu_buf_will_dirty(db
, tx
);
576 /* update caller's dbuf */
579 ASSERT3U(db
->db_size
, ==, sm
->sm_blksz
);
581 block_base
= db
->db_data
;
582 block_cursor
= block_base
;
583 block_end
= block_base
+
584 (db
->db_size
/ sizeof (uint64_t));
588 * If we are writing a two-word entry and we only have one
589 * word left on this block, just pad it with an empty debug
590 * entry and write the two-word entry in the next block.
592 uint64_t *next_entry
= block_cursor
+ 1;
593 if (next_entry
== block_end
&& words
> 1) {
594 ASSERT3U(words
, ==, 2);
595 *block_cursor
= SM_PREFIX_ENCODE(SM_DEBUG_PREFIX
) |
596 SM_DEBUG_ACTION_ENCODE(0) |
597 SM_DEBUG_SYNCPASS_ENCODE(0) |
598 SM_DEBUG_TXG_ENCODE(0);
600 sm
->sm_phys
->smp_length
+= sizeof (uint64_t);
601 ASSERT3P(block_cursor
, ==, block_end
);
605 uint64_t run_len
= MIN(size
, run_max
);
608 *block_cursor
= SM_OFFSET_ENCODE(start
) |
609 SM_TYPE_ENCODE(maptype
) |
610 SM_RUN_ENCODE(run_len
);
614 /* write the first word of the entry */
615 *block_cursor
= SM_PREFIX_ENCODE(SM2_PREFIX
) |
616 SM2_RUN_ENCODE(run_len
) |
617 SM2_VDEV_ENCODE(vdev_id
);
620 /* move on to the second word of the entry */
621 ASSERT3P(block_cursor
, <, block_end
);
622 *block_cursor
= SM2_TYPE_ENCODE(maptype
) |
623 SM2_OFFSET_ENCODE(start
);
627 panic("%d-word space map entries are not supported",
631 sm
->sm_phys
->smp_length
+= words
* sizeof (uint64_t);
641 * Note: The space map's dbuf must be dirty for the changes in sm_phys to
645 space_map_write_impl(space_map_t
*sm
, range_tree_t
*rt
, maptype_t maptype
,
646 uint64_t vdev_id
, dmu_tx_t
*tx
)
648 spa_t
*spa
= tx
->tx_pool
->dp_spa
;
651 space_map_write_intro_debug(sm
, maptype
, tx
);
655 * We do this right after we write the intro debug entry
656 * because the estimate does not take it into account.
658 uint64_t initial_objsize
= sm
->sm_phys
->smp_length
;
659 uint64_t estimated_growth
=
660 space_map_estimate_optimal_size(sm
, rt
, SM_NO_VDEVID
);
661 uint64_t estimated_final_objsize
= initial_objsize
+ estimated_growth
;
665 * Find the offset right after the last word in the space map
666 * and use that to get a hold of the last block, so we can
667 * start appending to it.
669 uint64_t next_word_offset
= sm
->sm_phys
->smp_length
;
670 VERIFY0(dmu_buf_hold(sm
->sm_os
, space_map_object(sm
),
671 next_word_offset
, FTAG
, &db
, DMU_READ_PREFETCH
));
672 ASSERT3U(db
->db_size
, ==, sm
->sm_blksz
);
674 dmu_buf_will_dirty(db
, tx
);
676 avl_tree_t
*t
= &rt
->rt_root
;
677 for (range_seg_t
*rs
= avl_first(t
); rs
!= NULL
; rs
= AVL_NEXT(t
, rs
)) {
678 uint64_t offset
= (rs
->rs_start
- sm
->sm_start
) >> sm
->sm_shift
;
679 uint64_t length
= (rs
->rs_end
- rs
->rs_start
) >> sm
->sm_shift
;
683 * We only write two-word entries when both of the following
686 * [1] The feature is enabled.
687 * [2] The offset or run is too big for a single-word entry,
688 * or the vdev_id is set (meaning not equal to
691 * Note that for purposes of testing we've added the case that
692 * we write two-word entries occasionally when the feature is
693 * enabled and zfs_force_some_double_word_sm_entries has been
696 if (spa_feature_is_active(spa
, SPA_FEATURE_SPACEMAP_V2
) &&
697 (offset
>= (1ULL << SM_OFFSET_BITS
) ||
698 length
> SM_RUN_MAX
||
699 vdev_id
!= SM_NO_VDEVID
||
700 (zfs_force_some_double_word_sm_entries
&&
701 spa_get_random(100) == 0)))
704 space_map_write_seg(sm
, rs
, maptype
, vdev_id
, words
,
708 dmu_buf_rele(db
, FTAG
);
712 * We expect our estimation to be based on the worst case
713 * scenario [see comment in space_map_estimate_optimal_size()].
714 * Therefore we expect the actual objsize to be equal or less
715 * than whatever we estimated it to be.
717 ASSERT3U(estimated_final_objsize
, >=, sm
->sm_phys
->smp_length
);
722 * Note: This function manipulates the state of the given space map but
723 * does not hold any locks implicitly. Thus the caller is responsible
724 * for synchronizing writes to the space map.
727 space_map_write(space_map_t
*sm
, range_tree_t
*rt
, maptype_t maptype
,
728 uint64_t vdev_id
, dmu_tx_t
*tx
)
730 ASSERT(dsl_pool_sync_context(dmu_objset_pool(sm
->sm_os
)));
731 VERIFY3U(space_map_object(sm
), !=, 0);
733 dmu_buf_will_dirty(sm
->sm_dbuf
, tx
);
736 * This field is no longer necessary since the in-core space map
737 * now contains the object number but is maintained for backwards
740 sm
->sm_phys
->smp_object
= sm
->sm_object
;
742 if (range_tree_is_empty(rt
)) {
743 VERIFY3U(sm
->sm_object
, ==, sm
->sm_phys
->smp_object
);
747 if (maptype
== SM_ALLOC
)
748 sm
->sm_phys
->smp_alloc
+= range_tree_space(rt
);
750 sm
->sm_phys
->smp_alloc
-= range_tree_space(rt
);
752 uint64_t nodes
= avl_numnodes(&rt
->rt_root
);
753 uint64_t rt_space
= range_tree_space(rt
);
755 space_map_write_impl(sm
, rt
, maptype
, vdev_id
, tx
);
758 * Ensure that the space_map's accounting wasn't changed
759 * while we were in the middle of writing it out.
761 VERIFY3U(nodes
, ==, avl_numnodes(&rt
->rt_root
));
762 VERIFY3U(range_tree_space(rt
), ==, rt_space
);
766 space_map_open_impl(space_map_t
*sm
)
771 error
= dmu_bonus_hold(sm
->sm_os
, sm
->sm_object
, sm
, &sm
->sm_dbuf
);
775 dmu_object_size_from_db(sm
->sm_dbuf
, &sm
->sm_blksz
, &blocks
);
776 sm
->sm_phys
= sm
->sm_dbuf
->db_data
;
781 space_map_open(space_map_t
**smp
, objset_t
*os
, uint64_t object
,
782 uint64_t start
, uint64_t size
, uint8_t shift
)
787 ASSERT(*smp
== NULL
);
791 sm
= kmem_alloc(sizeof (space_map_t
), KM_SLEEP
);
793 sm
->sm_start
= start
;
795 sm
->sm_shift
= shift
;
797 sm
->sm_object
= object
;
802 error
= space_map_open_impl(sm
);
813 space_map_close(space_map_t
*sm
)
818 if (sm
->sm_dbuf
!= NULL
)
819 dmu_buf_rele(sm
->sm_dbuf
, sm
);
823 kmem_free(sm
, sizeof (*sm
));
827 space_map_truncate(space_map_t
*sm
, int blocksize
, dmu_tx_t
*tx
)
829 objset_t
*os
= sm
->sm_os
;
830 spa_t
*spa
= dmu_objset_spa(os
);
831 dmu_object_info_t doi
;
833 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os
)));
834 ASSERT(dmu_tx_is_syncing(tx
));
835 VERIFY3U(dmu_tx_get_txg(tx
), <=, spa_final_dirty_txg(spa
));
837 dmu_object_info_from_db(sm
->sm_dbuf
, &doi
);
840 * If the space map has the wrong bonus size (because
841 * SPA_FEATURE_SPACEMAP_HISTOGRAM has recently been enabled), or
842 * the wrong block size (because space_map_blksz has changed),
843 * free and re-allocate its object with the updated sizes.
845 * Otherwise, just truncate the current object.
847 if ((spa_feature_is_enabled(spa
, SPA_FEATURE_SPACEMAP_HISTOGRAM
) &&
848 doi
.doi_bonus_size
!= sizeof (space_map_phys_t
)) ||
849 doi
.doi_data_block_size
!= blocksize
||
850 doi
.doi_metadata_block_size
!= 1 << space_map_ibs
) {
851 zfs_dbgmsg("txg %llu, spa %s, sm %px, reallocating "
852 "object[%llu]: old bonus %u, old blocksz %u",
853 dmu_tx_get_txg(tx
), spa_name(spa
), sm
, sm
->sm_object
,
854 doi
.doi_bonus_size
, doi
.doi_data_block_size
);
856 space_map_free(sm
, tx
);
857 dmu_buf_rele(sm
->sm_dbuf
, sm
);
859 sm
->sm_object
= space_map_alloc(sm
->sm_os
, blocksize
, tx
);
860 VERIFY0(space_map_open_impl(sm
));
862 VERIFY0(dmu_free_range(os
, space_map_object(sm
), 0, -1ULL, tx
));
865 * If the spacemap is reallocated, its histogram
866 * will be reset. Do the same in the common case so that
867 * bugs related to the uncommon case do not go unnoticed.
869 bzero(sm
->sm_phys
->smp_histogram
,
870 sizeof (sm
->sm_phys
->smp_histogram
));
873 dmu_buf_will_dirty(sm
->sm_dbuf
, tx
);
874 sm
->sm_phys
->smp_length
= 0;
875 sm
->sm_phys
->smp_alloc
= 0;
879 space_map_alloc(objset_t
*os
, int blocksize
, dmu_tx_t
*tx
)
881 spa_t
*spa
= dmu_objset_spa(os
);
885 if (spa_feature_is_enabled(spa
, SPA_FEATURE_SPACEMAP_HISTOGRAM
)) {
886 spa_feature_incr(spa
, SPA_FEATURE_SPACEMAP_HISTOGRAM
, tx
);
887 bonuslen
= sizeof (space_map_phys_t
);
888 ASSERT3U(bonuslen
, <=, dmu_bonus_max());
890 bonuslen
= SPACE_MAP_SIZE_V0
;
893 object
= dmu_object_alloc_ibs(os
, DMU_OT_SPACE_MAP
, blocksize
,
894 space_map_ibs
, DMU_OT_SPACE_MAP_HEADER
, bonuslen
, tx
);
900 space_map_free_obj(objset_t
*os
, uint64_t smobj
, dmu_tx_t
*tx
)
902 spa_t
*spa
= dmu_objset_spa(os
);
903 if (spa_feature_is_enabled(spa
, SPA_FEATURE_SPACEMAP_HISTOGRAM
)) {
904 dmu_object_info_t doi
;
906 VERIFY0(dmu_object_info(os
, smobj
, &doi
));
907 if (doi
.doi_bonus_size
!= SPACE_MAP_SIZE_V0
) {
908 spa_feature_decr(spa
,
909 SPA_FEATURE_SPACEMAP_HISTOGRAM
, tx
);
913 VERIFY0(dmu_object_free(os
, smobj
, tx
));
917 space_map_free(space_map_t
*sm
, dmu_tx_t
*tx
)
922 space_map_free_obj(sm
->sm_os
, space_map_object(sm
), tx
);
927 * Given a range tree, it makes a worst-case estimate of how much
928 * space would the tree's segments take if they were written to
929 * the given space map.
932 space_map_estimate_optimal_size(space_map_t
*sm
, range_tree_t
*rt
,
935 spa_t
*spa
= dmu_objset_spa(sm
->sm_os
);
936 uint64_t shift
= sm
->sm_shift
;
937 uint64_t *histogram
= rt
->rt_histogram
;
938 uint64_t entries_for_seg
= 0;
941 * In order to get a quick estimate of the optimal size that this
942 * range tree would have on-disk as a space map, we iterate through
943 * its histogram buckets instead of iterating through its nodes.
945 * Note that this is a highest-bound/worst-case estimate for the
948 * 1] We assume that we always add a debug padding for each block
949 * we write and we also assume that we start at the last word
950 * of a block attempting to write a two-word entry.
951 * 2] Rounding up errors due to the way segments are distributed
952 * in the buckets of the range tree's histogram.
953 * 3] The activation of zfs_force_some_double_word_sm_entries
954 * (tunable) when testing.
956 * = Math and Rounding Errors =
958 * rt_histogram[i] bucket of a range tree represents the number
959 * of entries in [2^i, (2^(i+1))-1] of that range_tree. Given
960 * that, we want to divide the buckets into groups: Buckets that
961 * can be represented using a single-word entry, ones that can
962 * be represented with a double-word entry, and ones that can
963 * only be represented with multiple two-word entries.
965 * [Note that if the new encoding feature is not enabled there
966 * are only two groups: single-word entry buckets and multiple
967 * single-word entry buckets. The information below assumes
968 * two-word entries enabled, but it can easily applied when
969 * the feature is not enabled]
971 * To find the highest bucket that can be represented with a
972 * single-word entry we look at the maximum run that such entry
973 * can have, which is 2^(SM_RUN_BITS + sm_shift) [remember that
974 * the run of a space map entry is shifted by sm_shift, thus we
975 * add it to the exponent]. This way, excluding the value of the
976 * maximum run that can be represented by a single-word entry,
977 * all runs that are smaller exist in buckets 0 to
978 * SM_RUN_BITS + shift - 1.
980 * To find the highest bucket that can be represented with a
981 * double-word entry, we follow the same approach. Finally, any
982 * bucket higher than that are represented with multiple two-word
983 * entries. To be more specific, if the highest bucket whose
984 * segments can be represented with a single two-word entry is X,
985 * then bucket X+1 will need 2 two-word entries for each of its
986 * segments, X+2 will need 4, X+3 will need 8, ...etc.
988 * With all of the above we make our estimation based on bucket
989 * groups. There is a rounding error though. As we mentioned in
990 * the example with the one-word entry, the maximum run that can
991 * be represented in a one-word entry 2^(SM_RUN_BITS + shift) is
992 * not part of bucket SM_RUN_BITS + shift - 1. Thus, segments of
993 * that length fall into the next bucket (and bucket group) where
994 * we start counting two-word entries and this is one more reason
995 * why the estimated size may end up being bigger than the actual
1001 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_SPACEMAP_V2
) ||
1002 (vdev_id
== SM_NO_VDEVID
&& sm
->sm_size
< SM_OFFSET_MAX
)) {
1005 * If we are trying to force some double word entries just
1006 * assume the worst-case of every single word entry being
1007 * written as a double word entry.
1009 uint64_t entry_size
=
1010 (spa_feature_is_enabled(spa
, SPA_FEATURE_SPACEMAP_V2
) &&
1011 zfs_force_some_double_word_sm_entries
) ?
1012 (2 * sizeof (uint64_t)) : sizeof (uint64_t);
1014 uint64_t single_entry_max_bucket
= SM_RUN_BITS
+ shift
- 1;
1015 for (; idx
<= single_entry_max_bucket
; idx
++)
1016 size
+= histogram
[idx
] * entry_size
;
1018 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_SPACEMAP_V2
)) {
1019 for (; idx
< RANGE_TREE_HISTOGRAM_SIZE
; idx
++) {
1020 ASSERT3U(idx
, >=, single_entry_max_bucket
);
1022 1ULL << (idx
- single_entry_max_bucket
);
1023 size
+= histogram
[idx
] *
1024 entries_for_seg
* entry_size
;
1030 ASSERT(spa_feature_is_enabled(spa
, SPA_FEATURE_SPACEMAP_V2
));
1032 uint64_t double_entry_max_bucket
= SM2_RUN_BITS
+ shift
- 1;
1033 for (; idx
<= double_entry_max_bucket
; idx
++)
1034 size
+= histogram
[idx
] * 2 * sizeof (uint64_t);
1036 for (; idx
< RANGE_TREE_HISTOGRAM_SIZE
; idx
++) {
1037 ASSERT3U(idx
, >=, double_entry_max_bucket
);
1038 entries_for_seg
= 1ULL << (idx
- double_entry_max_bucket
);
1039 size
+= histogram
[idx
] *
1040 entries_for_seg
* 2 * sizeof (uint64_t);
1044 * Assume the worst case where we start with the padding at the end
1045 * of the current block and we add an extra padding entry at the end
1046 * of all subsequent blocks.
1048 size
+= ((size
/ sm
->sm_blksz
) + 1) * sizeof (uint64_t);
1054 space_map_object(space_map_t
*sm
)
1056 return (sm
!= NULL
? sm
->sm_object
: 0);
1060 space_map_allocated(space_map_t
*sm
)
1062 return (sm
!= NULL
? sm
->sm_phys
->smp_alloc
: 0);
1066 space_map_length(space_map_t
*sm
)
1068 return (sm
!= NULL
? sm
->sm_phys
->smp_length
: 0);