4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
27 * ZFS volume emulation driver.
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
32 * /dev/<pool_name>/<dataset_name>
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
43 * Note on locking of zvol state structures.
45 * These structures are used to maintain internal state used to emulate block
46 * devices on top of zvols. In particular, management of device minor number
47 * operations - create, remove, rename, and set_snapdev - involves access to
48 * these structures. The zvol_state_lock is primarily used to protect the
49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50 * of the zvol_state_t structures, as well as to make sure that when the
51 * time comes to remove the structure from the list, it is not in use, and
52 * therefore, it can be taken off zvol_state_list and freed.
54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55 * e.g. for the duration of receive and rollback operations. This lock can be
56 * held for significant periods of time. Given that it is undesirable to hold
57 * mutexes for long periods of time, the following lock ordering applies:
58 * - take zvol_state_lock if necessary, to protect zvol_state_list
59 * - take zv_suspend_lock if necessary, by the code path in question
60 * - take zv_state_lock to protect zvol_state_t
62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63 * single-threaded (to preserve order of minor operations), and are executed
64 * through the zvol_task_cb that dispatches the specific operations. Therefore,
65 * these operations are serialized per pool. Consequently, we can be certain
66 * that for a given zvol, there is only one operation at a time in progress.
67 * That is why one can be sure that first, zvol_state_t for a given zvol is
68 * allocated and placed on zvol_state_list, and then other minor operations
69 * for this zvol are going to proceed in the order of issue.
71 * It is also worth keeping in mind that once add_disk() is called, the zvol is
72 * announced to the world, and zvol_open()/zvol_release() can be called at any
73 * time. Incidentally, add_disk() itself calls zvol_open()->zvol_first_open()
74 * and zvol_release()->zvol_last_close() directly as well.
77 #include <sys/dataset_kstats.h>
79 #include <sys/dmu_traverse.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_prop.h>
82 #include <sys/dsl_dir.h>
84 #include <sys/zfeature.h>
85 #include <sys/zil_impl.h>
86 #include <sys/dmu_tx.h>
88 #include <sys/zfs_rlock.h>
89 #include <sys/spa_impl.h>
92 #include <linux/blkdev_compat.h>
93 #include <linux/task_io_accounting_ops.h>
95 unsigned int zvol_inhibit_dev
= 0;
96 unsigned int zvol_major
= ZVOL_MAJOR
;
97 unsigned int zvol_threads
= 32;
98 unsigned int zvol_request_sync
= 0;
99 unsigned int zvol_prefetch_bytes
= (128 * 1024);
100 unsigned long zvol_max_discard_blocks
= 16384;
101 unsigned int zvol_volmode
= ZFS_VOLMODE_GEOM
;
103 static taskq_t
*zvol_taskq
;
104 static krwlock_t zvol_state_lock
;
105 static list_t zvol_state_list
;
107 #define ZVOL_HT_SIZE 1024
108 static struct hlist_head
*zvol_htable
;
109 #define ZVOL_HT_HEAD(hash) (&zvol_htable[(hash) & (ZVOL_HT_SIZE-1)])
111 static struct ida zvol_ida
;
114 * The in-core state of each volume.
117 char zv_name
[MAXNAMELEN
]; /* name */
118 uint64_t zv_volsize
; /* advertised space */
119 uint64_t zv_volblocksize
; /* volume block size */
120 objset_t
*zv_objset
; /* objset handle */
121 uint32_t zv_flags
; /* ZVOL_* flags */
122 uint32_t zv_open_count
; /* open counts */
123 uint32_t zv_changed
; /* disk changed */
124 zilog_t
*zv_zilog
; /* ZIL handle */
125 zfs_rangelock_t zv_rangelock
; /* for range locking */
126 dnode_t
*zv_dn
; /* dnode hold */
127 dev_t zv_dev
; /* device id */
128 struct gendisk
*zv_disk
; /* generic disk */
129 struct request_queue
*zv_queue
; /* request queue */
130 dataset_kstats_t zv_kstat
; /* zvol kstats */
131 list_node_t zv_next
; /* next zvol_state_t linkage */
132 uint64_t zv_hash
; /* name hash */
133 struct hlist_node zv_hlink
; /* hash link */
134 kmutex_t zv_state_lock
; /* protects zvol_state_t */
135 atomic_t zv_suspend_ref
; /* refcount for suspend */
136 krwlock_t zv_suspend_lock
; /* suspend lock */
140 ZVOL_ASYNC_CREATE_MINORS
,
141 ZVOL_ASYNC_REMOVE_MINORS
,
142 ZVOL_ASYNC_RENAME_MINORS
,
143 ZVOL_ASYNC_SET_SNAPDEV
,
144 ZVOL_ASYNC_SET_VOLMODE
,
150 char pool
[MAXNAMELEN
];
151 char name1
[MAXNAMELEN
];
152 char name2
[MAXNAMELEN
];
153 zprop_source_t source
;
157 #define ZVOL_RDONLY 0x1
159 * Whether the zvol has been written to (as opposed to ZVOL_RDONLY, which
160 * specifies whether or not the zvol _can_ be written to)
162 #define ZVOL_WRITTEN_TO 0x2
165 zvol_name_hash(const char *name
)
168 uint64_t crc
= -1ULL;
169 uint8_t *p
= (uint8_t *)name
;
170 ASSERT(zfs_crc64_table
[128] == ZFS_CRC64_POLY
);
171 for (i
= 0; i
< MAXNAMELEN
- 1 && *p
; i
++, p
++) {
172 crc
= (crc
>> 8) ^ zfs_crc64_table
[(crc
^ (*p
)) & 0xFF];
178 * Find a zvol_state_t given the full major+minor dev_t. If found,
179 * return with zv_state_lock taken, otherwise, return (NULL) without
180 * taking zv_state_lock.
182 static zvol_state_t
*
183 zvol_find_by_dev(dev_t dev
)
187 rw_enter(&zvol_state_lock
, RW_READER
);
188 for (zv
= list_head(&zvol_state_list
); zv
!= NULL
;
189 zv
= list_next(&zvol_state_list
, zv
)) {
190 mutex_enter(&zv
->zv_state_lock
);
191 if (zv
->zv_dev
== dev
) {
192 rw_exit(&zvol_state_lock
);
195 mutex_exit(&zv
->zv_state_lock
);
197 rw_exit(&zvol_state_lock
);
203 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
204 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
205 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
206 * before zv_state_lock. The mode argument indicates the mode (including none)
207 * for zv_suspend_lock to be taken.
209 static zvol_state_t
*
210 zvol_find_by_name_hash(const char *name
, uint64_t hash
, int mode
)
213 struct hlist_node
*p
= NULL
;
215 rw_enter(&zvol_state_lock
, RW_READER
);
216 hlist_for_each(p
, ZVOL_HT_HEAD(hash
)) {
217 zv
= hlist_entry(p
, zvol_state_t
, zv_hlink
);
218 mutex_enter(&zv
->zv_state_lock
);
219 if (zv
->zv_hash
== hash
&&
220 strncmp(zv
->zv_name
, name
, MAXNAMELEN
) == 0) {
222 * this is the right zvol, take the locks in the
225 if (mode
!= RW_NONE
&&
226 !rw_tryenter(&zv
->zv_suspend_lock
, mode
)) {
227 mutex_exit(&zv
->zv_state_lock
);
228 rw_enter(&zv
->zv_suspend_lock
, mode
);
229 mutex_enter(&zv
->zv_state_lock
);
231 * zvol cannot be renamed as we continue
232 * to hold zvol_state_lock
234 ASSERT(zv
->zv_hash
== hash
&&
235 strncmp(zv
->zv_name
, name
, MAXNAMELEN
)
238 rw_exit(&zvol_state_lock
);
241 mutex_exit(&zv
->zv_state_lock
);
243 rw_exit(&zvol_state_lock
);
249 * Find a zvol_state_t given the name.
250 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
251 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
252 * before zv_state_lock. The mode argument indicates the mode (including none)
253 * for zv_suspend_lock to be taken.
255 static zvol_state_t
*
256 zvol_find_by_name(const char *name
, int mode
)
258 return (zvol_find_by_name_hash(name
, zvol_name_hash(name
), mode
));
263 * Given a path, return TRUE if path is a ZVOL.
266 zvol_is_zvol(const char *device
)
268 struct block_device
*bdev
;
271 bdev
= vdev_lookup_bdev(device
);
275 major
= MAJOR(bdev
->bd_dev
);
278 if (major
== zvol_major
)
285 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
288 zvol_create_cb(objset_t
*os
, void *arg
, cred_t
*cr
, dmu_tx_t
*tx
)
290 zfs_creat_t
*zct
= arg
;
291 nvlist_t
*nvprops
= zct
->zct_props
;
293 uint64_t volblocksize
, volsize
;
295 VERIFY(nvlist_lookup_uint64(nvprops
,
296 zfs_prop_to_name(ZFS_PROP_VOLSIZE
), &volsize
) == 0);
297 if (nvlist_lookup_uint64(nvprops
,
298 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE
), &volblocksize
) != 0)
299 volblocksize
= zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE
);
302 * These properties must be removed from the list so the generic
303 * property setting step won't apply to them.
305 VERIFY(nvlist_remove_all(nvprops
,
306 zfs_prop_to_name(ZFS_PROP_VOLSIZE
)) == 0);
307 (void) nvlist_remove_all(nvprops
,
308 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE
));
310 error
= dmu_object_claim(os
, ZVOL_OBJ
, DMU_OT_ZVOL
, volblocksize
,
314 error
= zap_create_claim(os
, ZVOL_ZAP_OBJ
, DMU_OT_ZVOL_PROP
,
318 error
= zap_update(os
, ZVOL_ZAP_OBJ
, "size", 8, 1, &volsize
, tx
);
323 * ZFS_IOC_OBJSET_STATS entry point.
326 zvol_get_stats(objset_t
*os
, nvlist_t
*nv
)
329 dmu_object_info_t
*doi
;
332 error
= zap_lookup(os
, ZVOL_ZAP_OBJ
, "size", 8, 1, &val
);
334 return (SET_ERROR(error
));
336 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_VOLSIZE
, val
);
337 doi
= kmem_alloc(sizeof (dmu_object_info_t
), KM_SLEEP
);
338 error
= dmu_object_info(os
, ZVOL_OBJ
, doi
);
341 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_VOLBLOCKSIZE
,
342 doi
->doi_data_block_size
);
345 kmem_free(doi
, sizeof (dmu_object_info_t
));
347 return (SET_ERROR(error
));
351 * Sanity check volume size.
354 zvol_check_volsize(uint64_t volsize
, uint64_t blocksize
)
357 return (SET_ERROR(EINVAL
));
359 if (volsize
% blocksize
!= 0)
360 return (SET_ERROR(EINVAL
));
363 if (volsize
- 1 > SPEC_MAXOFFSET_T
)
364 return (SET_ERROR(EOVERFLOW
));
370 * Ensure the zap is flushed then inform the VFS of the capacity change.
373 zvol_update_volsize(uint64_t volsize
, objset_t
*os
)
379 tx
= dmu_tx_create(os
);
380 dmu_tx_hold_zap(tx
, ZVOL_ZAP_OBJ
, TRUE
, NULL
);
381 dmu_tx_mark_netfree(tx
);
382 error
= dmu_tx_assign(tx
, TXG_WAIT
);
385 return (SET_ERROR(error
));
387 txg
= dmu_tx_get_txg(tx
);
389 error
= zap_update(os
, ZVOL_ZAP_OBJ
, "size", 8, 1,
393 txg_wait_synced(dmu_objset_pool(os
), txg
);
396 error
= dmu_free_long_range(os
,
397 ZVOL_OBJ
, volsize
, DMU_OBJECT_END
);
403 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
404 * size will result in a udev "change" event being generated.
407 zvol_set_volsize(const char *name
, uint64_t volsize
)
410 struct gendisk
*disk
= NULL
;
413 boolean_t owned
= B_FALSE
;
415 error
= dsl_prop_get_integer(name
,
416 zfs_prop_to_name(ZFS_PROP_READONLY
), &readonly
, NULL
);
418 return (SET_ERROR(error
));
420 return (SET_ERROR(EROFS
));
422 zvol_state_t
*zv
= zvol_find_by_name(name
, RW_READER
);
424 ASSERT(zv
== NULL
|| (MUTEX_HELD(&zv
->zv_state_lock
) &&
425 RW_READ_HELD(&zv
->zv_suspend_lock
)));
427 if (zv
== NULL
|| zv
->zv_objset
== NULL
) {
429 rw_exit(&zv
->zv_suspend_lock
);
430 if ((error
= dmu_objset_own(name
, DMU_OST_ZVOL
, B_FALSE
, B_TRUE
,
433 mutex_exit(&zv
->zv_state_lock
);
434 return (SET_ERROR(error
));
443 dmu_object_info_t
*doi
= kmem_alloc(sizeof (*doi
), KM_SLEEP
);
445 if ((error
= dmu_object_info(os
, ZVOL_OBJ
, doi
)) ||
446 (error
= zvol_check_volsize(volsize
, doi
->doi_data_block_size
)))
449 error
= zvol_update_volsize(volsize
, os
);
450 if (error
== 0 && zv
!= NULL
) {
451 zv
->zv_volsize
= volsize
;
456 kmem_free(doi
, sizeof (dmu_object_info_t
));
459 dmu_objset_disown(os
, B_TRUE
, FTAG
);
461 zv
->zv_objset
= NULL
;
463 rw_exit(&zv
->zv_suspend_lock
);
467 mutex_exit(&zv
->zv_state_lock
);
470 revalidate_disk(disk
);
472 return (SET_ERROR(error
));
476 * Sanity check volume block size.
479 zvol_check_volblocksize(const char *name
, uint64_t volblocksize
)
481 /* Record sizes above 128k need the feature to be enabled */
482 if (volblocksize
> SPA_OLD_MAXBLOCKSIZE
) {
486 if ((error
= spa_open(name
, &spa
, FTAG
)) != 0)
489 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_LARGE_BLOCKS
)) {
490 spa_close(spa
, FTAG
);
491 return (SET_ERROR(ENOTSUP
));
495 * We don't allow setting the property above 1MB,
496 * unless the tunable has been changed.
498 if (volblocksize
> zfs_max_recordsize
)
499 return (SET_ERROR(EDOM
));
501 spa_close(spa
, FTAG
);
504 if (volblocksize
< SPA_MINBLOCKSIZE
||
505 volblocksize
> SPA_MAXBLOCKSIZE
||
507 return (SET_ERROR(EDOM
));
513 * Set ZFS_PROP_VOLBLOCKSIZE set entry point.
516 zvol_set_volblocksize(const char *name
, uint64_t volblocksize
)
522 zv
= zvol_find_by_name(name
, RW_READER
);
525 return (SET_ERROR(ENXIO
));
527 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
528 ASSERT(RW_READ_HELD(&zv
->zv_suspend_lock
));
530 if (zv
->zv_flags
& ZVOL_RDONLY
) {
531 mutex_exit(&zv
->zv_state_lock
);
532 rw_exit(&zv
->zv_suspend_lock
);
533 return (SET_ERROR(EROFS
));
536 tx
= dmu_tx_create(zv
->zv_objset
);
537 dmu_tx_hold_bonus(tx
, ZVOL_OBJ
);
538 error
= dmu_tx_assign(tx
, TXG_WAIT
);
542 error
= dmu_object_set_blocksize(zv
->zv_objset
, ZVOL_OBJ
,
543 volblocksize
, 0, tx
);
544 if (error
== ENOTSUP
)
545 error
= SET_ERROR(EBUSY
);
548 zv
->zv_volblocksize
= volblocksize
;
551 mutex_exit(&zv
->zv_state_lock
);
552 rw_exit(&zv
->zv_suspend_lock
);
554 return (SET_ERROR(error
));
558 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
559 * implement DKIOCFREE/free-long-range.
562 zvol_replay_truncate(void *arg1
, void *arg2
, boolean_t byteswap
)
564 zvol_state_t
*zv
= arg1
;
565 lr_truncate_t
*lr
= arg2
;
566 uint64_t offset
, length
;
569 byteswap_uint64_array(lr
, sizeof (*lr
));
571 offset
= lr
->lr_offset
;
572 length
= lr
->lr_length
;
574 return (dmu_free_long_range(zv
->zv_objset
, ZVOL_OBJ
, offset
, length
));
578 * Replay a TX_WRITE ZIL transaction that didn't get committed
579 * after a system failure
582 zvol_replay_write(void *arg1
, void *arg2
, boolean_t byteswap
)
584 zvol_state_t
*zv
= arg1
;
585 lr_write_t
*lr
= arg2
;
586 objset_t
*os
= zv
->zv_objset
;
587 char *data
= (char *)(lr
+ 1); /* data follows lr_write_t */
588 uint64_t offset
, length
;
593 byteswap_uint64_array(lr
, sizeof (*lr
));
595 offset
= lr
->lr_offset
;
596 length
= lr
->lr_length
;
598 /* If it's a dmu_sync() block, write the whole block */
599 if (lr
->lr_common
.lrc_reclen
== sizeof (lr_write_t
)) {
600 uint64_t blocksize
= BP_GET_LSIZE(&lr
->lr_blkptr
);
601 if (length
< blocksize
) {
602 offset
-= offset
% blocksize
;
607 tx
= dmu_tx_create(os
);
608 dmu_tx_hold_write(tx
, ZVOL_OBJ
, offset
, length
);
609 error
= dmu_tx_assign(tx
, TXG_WAIT
);
613 dmu_write(os
, ZVOL_OBJ
, offset
, length
, data
, tx
);
621 zvol_replay_err(void *arg1
, void *arg2
, boolean_t byteswap
)
623 return (SET_ERROR(ENOTSUP
));
627 * Callback vectors for replaying records.
628 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
630 zil_replay_func_t
*zvol_replay_vector
[TX_MAX_TYPE
] = {
631 zvol_replay_err
, /* no such transaction type */
632 zvol_replay_err
, /* TX_CREATE */
633 zvol_replay_err
, /* TX_MKDIR */
634 zvol_replay_err
, /* TX_MKXATTR */
635 zvol_replay_err
, /* TX_SYMLINK */
636 zvol_replay_err
, /* TX_REMOVE */
637 zvol_replay_err
, /* TX_RMDIR */
638 zvol_replay_err
, /* TX_LINK */
639 zvol_replay_err
, /* TX_RENAME */
640 zvol_replay_write
, /* TX_WRITE */
641 zvol_replay_truncate
, /* TX_TRUNCATE */
642 zvol_replay_err
, /* TX_SETATTR */
643 zvol_replay_err
, /* TX_ACL */
644 zvol_replay_err
, /* TX_CREATE_ATTR */
645 zvol_replay_err
, /* TX_CREATE_ACL_ATTR */
646 zvol_replay_err
, /* TX_MKDIR_ACL */
647 zvol_replay_err
, /* TX_MKDIR_ATTR */
648 zvol_replay_err
, /* TX_MKDIR_ACL_ATTR */
649 zvol_replay_err
, /* TX_WRITE2 */
653 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
655 * We store data in the log buffers if it's small enough.
656 * Otherwise we will later flush the data out via dmu_sync().
658 ssize_t zvol_immediate_write_sz
= 32768;
661 zvol_log_write(zvol_state_t
*zv
, dmu_tx_t
*tx
, uint64_t offset
,
662 uint64_t size
, int sync
)
664 uint32_t blocksize
= zv
->zv_volblocksize
;
665 zilog_t
*zilog
= zv
->zv_zilog
;
666 itx_wr_state_t write_state
;
668 if (zil_replaying(zilog
, tx
))
671 if (zilog
->zl_logbias
== ZFS_LOGBIAS_THROUGHPUT
)
672 write_state
= WR_INDIRECT
;
673 else if (!spa_has_slogs(zilog
->zl_spa
) &&
674 size
>= blocksize
&& blocksize
> zvol_immediate_write_sz
)
675 write_state
= WR_INDIRECT
;
677 write_state
= WR_COPIED
;
679 write_state
= WR_NEED_COPY
;
684 itx_wr_state_t wr_state
= write_state
;
687 if (wr_state
== WR_COPIED
&& size
> zil_max_copied_data(zilog
))
688 wr_state
= WR_NEED_COPY
;
689 else if (wr_state
== WR_INDIRECT
)
690 len
= MIN(blocksize
- P2PHASE(offset
, blocksize
), size
);
692 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
) +
693 (wr_state
== WR_COPIED
? len
: 0));
694 lr
= (lr_write_t
*)&itx
->itx_lr
;
695 if (wr_state
== WR_COPIED
&& dmu_read_by_dnode(zv
->zv_dn
,
696 offset
, len
, lr
+1, DMU_READ_NO_PREFETCH
) != 0) {
697 zil_itx_destroy(itx
);
698 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
));
699 lr
= (lr_write_t
*)&itx
->itx_lr
;
700 wr_state
= WR_NEED_COPY
;
703 itx
->itx_wr_state
= wr_state
;
704 lr
->lr_foid
= ZVOL_OBJ
;
705 lr
->lr_offset
= offset
;
708 BP_ZERO(&lr
->lr_blkptr
);
710 itx
->itx_private
= zv
;
711 itx
->itx_sync
= sync
;
713 (void) zil_itx_assign(zilog
, itx
, tx
);
720 typedef struct zv_request
{
723 zfs_locked_range_t
*lr
;
727 uio_from_bio(uio_t
*uio
, struct bio
*bio
)
729 uio
->uio_bvec
= &bio
->bi_io_vec
[BIO_BI_IDX(bio
)];
730 uio
->uio_iovcnt
= bio
->bi_vcnt
- BIO_BI_IDX(bio
);
731 uio
->uio_loffset
= BIO_BI_SECTOR(bio
) << 9;
732 uio
->uio_segflg
= UIO_BVEC
;
733 uio
->uio_limit
= MAXOFFSET_T
;
734 uio
->uio_resid
= BIO_BI_SIZE(bio
);
735 uio
->uio_skip
= BIO_BI_SKIP(bio
);
739 zvol_write(void *arg
)
743 zv_request_t
*zvr
= arg
;
744 struct bio
*bio
= zvr
->bio
;
745 uio_t uio
= { { 0 }, 0 };
746 uio_from_bio(&uio
, bio
);
748 zvol_state_t
*zv
= zvr
->zv
;
749 ASSERT(zv
&& zv
->zv_open_count
> 0);
750 ASSERT(zv
->zv_zilog
!= NULL
);
752 ssize_t start_resid
= uio
.uio_resid
;
753 unsigned long start_jif
= jiffies
;
754 blk_generic_start_io_acct(zv
->zv_queue
, WRITE
, bio_sectors(bio
),
755 &zv
->zv_disk
->part0
);
758 bio_is_fua(bio
) || zv
->zv_objset
->os_sync
== ZFS_SYNC_ALWAYS
;
760 uint64_t volsize
= zv
->zv_volsize
;
761 while (uio
.uio_resid
> 0 && uio
.uio_loffset
< volsize
) {
762 uint64_t bytes
= MIN(uio
.uio_resid
, DMU_MAX_ACCESS
>> 1);
763 uint64_t off
= uio
.uio_loffset
;
764 dmu_tx_t
*tx
= dmu_tx_create(zv
->zv_objset
);
766 if (bytes
> volsize
- off
) /* don't write past the end */
767 bytes
= volsize
- off
;
769 dmu_tx_hold_write(tx
, ZVOL_OBJ
, off
, bytes
);
771 /* This will only fail for ENOSPC */
772 error
= dmu_tx_assign(tx
, TXG_WAIT
);
777 error
= dmu_write_uio_dnode(zv
->zv_dn
, &uio
, bytes
, tx
);
779 zvol_log_write(zv
, tx
, off
, bytes
, sync
);
786 zfs_rangelock_exit(zvr
->lr
);
788 int64_t nwritten
= start_resid
- uio
.uio_resid
;
789 dataset_kstats_update_write_kstats(&zv
->zv_kstat
, nwritten
);
790 task_io_account_write(nwritten
);
793 zil_commit(zv
->zv_zilog
, ZVOL_OBJ
);
795 rw_exit(&zv
->zv_suspend_lock
);
796 blk_generic_end_io_acct(zv
->zv_queue
, WRITE
, &zv
->zv_disk
->part0
,
798 BIO_END_IO(bio
, -error
);
799 kmem_free(zvr
, sizeof (zv_request_t
));
803 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
806 zvol_log_truncate(zvol_state_t
*zv
, dmu_tx_t
*tx
, uint64_t off
, uint64_t len
,
811 zilog_t
*zilog
= zv
->zv_zilog
;
813 if (zil_replaying(zilog
, tx
))
816 itx
= zil_itx_create(TX_TRUNCATE
, sizeof (*lr
));
817 lr
= (lr_truncate_t
*)&itx
->itx_lr
;
818 lr
->lr_foid
= ZVOL_OBJ
;
822 itx
->itx_sync
= sync
;
823 zil_itx_assign(zilog
, itx
, tx
);
827 zvol_discard(void *arg
)
829 zv_request_t
*zvr
= arg
;
830 struct bio
*bio
= zvr
->bio
;
831 zvol_state_t
*zv
= zvr
->zv
;
832 uint64_t start
= BIO_BI_SECTOR(bio
) << 9;
833 uint64_t size
= BIO_BI_SIZE(bio
);
834 uint64_t end
= start
+ size
;
838 unsigned long start_jif
;
840 ASSERT(zv
&& zv
->zv_open_count
> 0);
841 ASSERT(zv
->zv_zilog
!= NULL
);
844 blk_generic_start_io_acct(zv
->zv_queue
, WRITE
, bio_sectors(bio
),
845 &zv
->zv_disk
->part0
);
847 sync
= bio_is_fua(bio
) || zv
->zv_objset
->os_sync
== ZFS_SYNC_ALWAYS
;
849 if (end
> zv
->zv_volsize
) {
850 error
= SET_ERROR(EIO
);
855 * Align the request to volume block boundaries when a secure erase is
856 * not required. This will prevent dnode_free_range() from zeroing out
857 * the unaligned parts which is slow (read-modify-write) and useless
858 * since we are not freeing any space by doing so.
860 if (!bio_is_secure_erase(bio
)) {
861 start
= P2ROUNDUP(start
, zv
->zv_volblocksize
);
862 end
= P2ALIGN(end
, zv
->zv_volblocksize
);
869 tx
= dmu_tx_create(zv
->zv_objset
);
870 dmu_tx_mark_netfree(tx
);
871 error
= dmu_tx_assign(tx
, TXG_WAIT
);
875 zvol_log_truncate(zv
, tx
, start
, size
, B_TRUE
);
877 error
= dmu_free_long_range(zv
->zv_objset
,
878 ZVOL_OBJ
, start
, size
);
881 zfs_rangelock_exit(zvr
->lr
);
883 if (error
== 0 && sync
)
884 zil_commit(zv
->zv_zilog
, ZVOL_OBJ
);
886 rw_exit(&zv
->zv_suspend_lock
);
887 blk_generic_end_io_acct(zv
->zv_queue
, WRITE
, &zv
->zv_disk
->part0
,
889 BIO_END_IO(bio
, -error
);
890 kmem_free(zvr
, sizeof (zv_request_t
));
898 zv_request_t
*zvr
= arg
;
899 struct bio
*bio
= zvr
->bio
;
900 uio_t uio
= { { 0 }, 0 };
901 uio_from_bio(&uio
, bio
);
903 zvol_state_t
*zv
= zvr
->zv
;
904 ASSERT(zv
&& zv
->zv_open_count
> 0);
906 ssize_t start_resid
= uio
.uio_resid
;
907 unsigned long start_jif
= jiffies
;
908 blk_generic_start_io_acct(zv
->zv_queue
, READ
, bio_sectors(bio
),
909 &zv
->zv_disk
->part0
);
911 uint64_t volsize
= zv
->zv_volsize
;
912 while (uio
.uio_resid
> 0 && uio
.uio_loffset
< volsize
) {
913 uint64_t bytes
= MIN(uio
.uio_resid
, DMU_MAX_ACCESS
>> 1);
915 /* don't read past the end */
916 if (bytes
> volsize
- uio
.uio_loffset
)
917 bytes
= volsize
- uio
.uio_loffset
;
919 error
= dmu_read_uio_dnode(zv
->zv_dn
, &uio
, bytes
);
921 /* convert checksum errors into IO errors */
923 error
= SET_ERROR(EIO
);
927 zfs_rangelock_exit(zvr
->lr
);
929 int64_t nread
= start_resid
- uio
.uio_resid
;
930 dataset_kstats_update_read_kstats(&zv
->zv_kstat
, nread
);
931 task_io_account_read(nread
);
933 rw_exit(&zv
->zv_suspend_lock
);
934 blk_generic_end_io_acct(zv
->zv_queue
, READ
, &zv
->zv_disk
->part0
,
936 BIO_END_IO(bio
, -error
);
937 kmem_free(zvr
, sizeof (zv_request_t
));
942 zvol_get_done(zgd_t
*zgd
, int error
)
945 dmu_buf_rele(zgd
->zgd_db
, zgd
);
947 zfs_rangelock_exit(zgd
->zgd_lr
);
949 kmem_free(zgd
, sizeof (zgd_t
));
953 * Get data to generate a TX_WRITE intent log record.
956 zvol_get_data(void *arg
, lr_write_t
*lr
, char *buf
, struct lwb
*lwb
, zio_t
*zio
)
958 zvol_state_t
*zv
= arg
;
959 uint64_t offset
= lr
->lr_offset
;
960 uint64_t size
= lr
->lr_length
;
965 ASSERT3P(lwb
, !=, NULL
);
966 ASSERT3P(zio
, !=, NULL
);
967 ASSERT3U(size
, !=, 0);
969 zgd
= (zgd_t
*)kmem_zalloc(sizeof (zgd_t
), KM_SLEEP
);
973 * Write records come in two flavors: immediate and indirect.
974 * For small writes it's cheaper to store the data with the
975 * log record (immediate); for large writes it's cheaper to
976 * sync the data and get a pointer to it (indirect) so that
977 * we don't have to write the data twice.
979 if (buf
!= NULL
) { /* immediate write */
980 zgd
->zgd_lr
= zfs_rangelock_enter(&zv
->zv_rangelock
, offset
,
982 error
= dmu_read_by_dnode(zv
->zv_dn
, offset
, size
, buf
,
983 DMU_READ_NO_PREFETCH
);
984 } else { /* indirect write */
986 * Have to lock the whole block to ensure when it's written out
987 * and its checksum is being calculated that no one can change
988 * the data. Contrarily to zfs_get_data we need not re-check
989 * blocksize after we get the lock because it cannot be changed.
991 size
= zv
->zv_volblocksize
;
992 offset
= P2ALIGN_TYPED(offset
, size
, uint64_t);
993 zgd
->zgd_lr
= zfs_rangelock_enter(&zv
->zv_rangelock
, offset
,
995 error
= dmu_buf_hold_by_dnode(zv
->zv_dn
, offset
, zgd
, &db
,
996 DMU_READ_NO_PREFETCH
);
998 blkptr_t
*bp
= &lr
->lr_blkptr
;
1004 ASSERT(db
->db_offset
== offset
);
1005 ASSERT(db
->db_size
== size
);
1007 error
= dmu_sync(zio
, lr
->lr_common
.lrc_txg
,
1008 zvol_get_done
, zgd
);
1015 zvol_get_done(zgd
, error
);
1017 return (SET_ERROR(error
));
1020 static MAKE_REQUEST_FN_RET
1021 zvol_request(struct request_queue
*q
, struct bio
*bio
)
1023 zvol_state_t
*zv
= q
->queuedata
;
1024 fstrans_cookie_t cookie
= spl_fstrans_mark();
1025 uint64_t offset
= BIO_BI_SECTOR(bio
) << 9;
1026 uint64_t size
= BIO_BI_SIZE(bio
);
1027 int rw
= bio_data_dir(bio
);
1030 if (bio_has_data(bio
) && offset
+ size
> zv
->zv_volsize
) {
1032 "%s: bad access: offset=%llu, size=%lu\n",
1033 zv
->zv_disk
->disk_name
,
1034 (long long unsigned)offset
,
1035 (long unsigned)size
);
1037 BIO_END_IO(bio
, -SET_ERROR(EIO
));
1042 boolean_t need_sync
= B_FALSE
;
1044 if (unlikely(zv
->zv_flags
& ZVOL_RDONLY
)) {
1045 BIO_END_IO(bio
, -SET_ERROR(EROFS
));
1050 * To be released in the I/O function. See the comment on
1051 * rangelock_enter() below.
1053 rw_enter(&zv
->zv_suspend_lock
, RW_READER
);
1056 * Open a ZIL if this is the first time we have written to this
1057 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
1058 * than zv_state_lock so that we don't need to acquire an
1059 * additional lock in this path.
1061 if (zv
->zv_zilog
== NULL
) {
1062 rw_exit(&zv
->zv_suspend_lock
);
1063 rw_enter(&zv
->zv_suspend_lock
, RW_WRITER
);
1064 if (zv
->zv_zilog
== NULL
) {
1065 zv
->zv_zilog
= zil_open(zv
->zv_objset
,
1067 zv
->zv_flags
|= ZVOL_WRITTEN_TO
;
1069 rw_downgrade(&zv
->zv_suspend_lock
);
1072 /* bio marked as FLUSH need to flush before write */
1073 if (bio_is_flush(bio
))
1074 zil_commit(zv
->zv_zilog
, ZVOL_OBJ
);
1076 /* Some requests are just for flush and nothing else. */
1078 rw_exit(&zv
->zv_suspend_lock
);
1083 zvr
= kmem_alloc(sizeof (zv_request_t
), KM_SLEEP
);
1088 * To be released in the I/O function. Since the I/O functions
1089 * are asynchronous, we take it here synchronously to make
1090 * sure overlapped I/Os are properly ordered.
1092 zvr
->lr
= zfs_rangelock_enter(&zv
->zv_rangelock
, offset
, size
,
1095 * Sync writes and discards execute zil_commit() which may need
1096 * to take a RL_READER lock on the whole block being modified
1097 * via its zillog->zl_get_data(): to avoid circular dependency
1098 * issues with taskq threads execute these requests
1099 * synchronously here in zvol_request().
1101 need_sync
= bio_is_fua(bio
) ||
1102 zv
->zv_objset
->os_sync
== ZFS_SYNC_ALWAYS
;
1103 if (bio_is_discard(bio
) || bio_is_secure_erase(bio
)) {
1104 if (zvol_request_sync
|| need_sync
||
1105 taskq_dispatch(zvol_taskq
, zvol_discard
, zvr
,
1106 TQ_SLEEP
) == TASKQID_INVALID
)
1109 if (zvol_request_sync
|| need_sync
||
1110 taskq_dispatch(zvol_taskq
, zvol_write
, zvr
,
1111 TQ_SLEEP
) == TASKQID_INVALID
)
1116 * The SCST driver, and possibly others, may issue READ I/Os
1117 * with a length of zero bytes. These empty I/Os contain no
1118 * data and require no additional handling.
1125 zvr
= kmem_alloc(sizeof (zv_request_t
), KM_SLEEP
);
1129 rw_enter(&zv
->zv_suspend_lock
, RW_READER
);
1131 zvr
->lr
= zfs_rangelock_enter(&zv
->zv_rangelock
, offset
, size
,
1133 if (zvol_request_sync
|| taskq_dispatch(zvol_taskq
,
1134 zvol_read
, zvr
, TQ_SLEEP
) == TASKQID_INVALID
)
1139 spl_fstrans_unmark(cookie
);
1140 #ifdef HAVE_MAKE_REQUEST_FN_RET_INT
1142 #elif defined(HAVE_MAKE_REQUEST_FN_RET_QC)
1143 return (BLK_QC_T_NONE
);
1148 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
1151 zvol_insert(zvol_state_t
*zv
)
1153 ASSERT(RW_WRITE_HELD(&zvol_state_lock
));
1154 ASSERT3U(MINOR(zv
->zv_dev
) & ZVOL_MINOR_MASK
, ==, 0);
1155 list_insert_head(&zvol_state_list
, zv
);
1156 hlist_add_head(&zv
->zv_hlink
, ZVOL_HT_HEAD(zv
->zv_hash
));
1160 * Simply remove the zvol from to list of zvols.
1163 zvol_remove(zvol_state_t
*zv
)
1165 ASSERT(RW_WRITE_HELD(&zvol_state_lock
));
1166 list_remove(&zvol_state_list
, zv
);
1167 hlist_del(&zv
->zv_hlink
);
1171 * Setup zv after we just own the zv->objset
1174 zvol_setup_zv(zvol_state_t
*zv
)
1179 objset_t
*os
= zv
->zv_objset
;
1181 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
1182 ASSERT(RW_LOCK_HELD(&zv
->zv_suspend_lock
));
1184 zv
->zv_zilog
= NULL
;
1185 zv
->zv_flags
&= ~ZVOL_WRITTEN_TO
;
1187 error
= dsl_prop_get_integer(zv
->zv_name
, "readonly", &ro
, NULL
);
1189 return (SET_ERROR(error
));
1191 error
= zap_lookup(os
, ZVOL_ZAP_OBJ
, "size", 8, 1, &volsize
);
1193 return (SET_ERROR(error
));
1195 error
= dnode_hold(os
, ZVOL_OBJ
, FTAG
, &zv
->zv_dn
);
1197 return (SET_ERROR(error
));
1199 set_capacity(zv
->zv_disk
, volsize
>> 9);
1200 zv
->zv_volsize
= volsize
;
1202 if (ro
|| dmu_objset_is_snapshot(os
) ||
1203 !spa_writeable(dmu_objset_spa(os
))) {
1204 set_disk_ro(zv
->zv_disk
, 1);
1205 zv
->zv_flags
|= ZVOL_RDONLY
;
1207 set_disk_ro(zv
->zv_disk
, 0);
1208 zv
->zv_flags
&= ~ZVOL_RDONLY
;
1214 * Shutdown every zv_objset related stuff except zv_objset itself.
1215 * The is the reverse of zvol_setup_zv.
1218 zvol_shutdown_zv(zvol_state_t
*zv
)
1220 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
) &&
1221 RW_LOCK_HELD(&zv
->zv_suspend_lock
));
1223 if (zv
->zv_flags
& ZVOL_WRITTEN_TO
) {
1224 ASSERT(zv
->zv_zilog
!= NULL
);
1225 zil_close(zv
->zv_zilog
);
1228 zv
->zv_zilog
= NULL
;
1230 dnode_rele(zv
->zv_dn
, FTAG
);
1234 * Evict cached data. We must write out any dirty data before
1235 * disowning the dataset.
1237 if (zv
->zv_flags
& ZVOL_WRITTEN_TO
)
1238 txg_wait_synced(dmu_objset_pool(zv
->zv_objset
), 0);
1239 (void) dmu_objset_evict_dbufs(zv
->zv_objset
);
1243 * return the proper tag for rollback and recv
1246 zvol_tag(zvol_state_t
*zv
)
1248 ASSERT(RW_WRITE_HELD(&zv
->zv_suspend_lock
));
1249 return (zv
->zv_open_count
> 0 ? zv
: NULL
);
1253 * Suspend the zvol for recv and rollback.
1256 zvol_suspend(const char *name
)
1260 zv
= zvol_find_by_name(name
, RW_WRITER
);
1265 /* block all I/O, release in zvol_resume. */
1266 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
1267 ASSERT(RW_WRITE_HELD(&zv
->zv_suspend_lock
));
1269 atomic_inc(&zv
->zv_suspend_ref
);
1271 if (zv
->zv_open_count
> 0)
1272 zvol_shutdown_zv(zv
);
1275 * do not hold zv_state_lock across suspend/resume to
1276 * avoid locking up zvol lookups
1278 mutex_exit(&zv
->zv_state_lock
);
1280 /* zv_suspend_lock is released in zvol_resume() */
1285 zvol_resume(zvol_state_t
*zv
)
1289 ASSERT(RW_WRITE_HELD(&zv
->zv_suspend_lock
));
1291 mutex_enter(&zv
->zv_state_lock
);
1293 if (zv
->zv_open_count
> 0) {
1294 VERIFY0(dmu_objset_hold(zv
->zv_name
, zv
, &zv
->zv_objset
));
1295 VERIFY3P(zv
->zv_objset
->os_dsl_dataset
->ds_owner
, ==, zv
);
1296 VERIFY(dsl_dataset_long_held(zv
->zv_objset
->os_dsl_dataset
));
1297 dmu_objset_rele(zv
->zv_objset
, zv
);
1299 error
= zvol_setup_zv(zv
);
1302 mutex_exit(&zv
->zv_state_lock
);
1304 rw_exit(&zv
->zv_suspend_lock
);
1306 * We need this because we don't hold zvol_state_lock while releasing
1307 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
1308 * zv_suspend_lock to determine it is safe to free because rwlock is
1309 * not inherent atomic.
1311 atomic_dec(&zv
->zv_suspend_ref
);
1313 return (SET_ERROR(error
));
1317 zvol_first_open(zvol_state_t
*zv
, boolean_t readonly
)
1320 int error
, locked
= 0;
1323 ASSERT(RW_READ_HELD(&zv
->zv_suspend_lock
));
1324 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
1327 * In all other cases the spa_namespace_lock is taken before the
1328 * bdev->bd_mutex lock. But in this case the Linux __blkdev_get()
1329 * function calls fops->open() with the bdev->bd_mutex lock held.
1330 * This deadlock can be easily observed with zvols used as vdevs.
1332 * To avoid a potential lock inversion deadlock we preemptively
1333 * try to take the spa_namespace_lock(). Normally it will not
1334 * be contended and this is safe because spa_open_common() handles
1335 * the case where the caller already holds the spa_namespace_lock.
1337 * When it is contended we risk a lock inversion if we were to
1338 * block waiting for the lock. Luckily, the __blkdev_get()
1339 * function allows us to return -ERESTARTSYS which will result in
1340 * bdev->bd_mutex being dropped, reacquired, and fops->open() being
1341 * called again. This process can be repeated safely until both
1342 * locks are acquired.
1344 if (!mutex_owned(&spa_namespace_lock
)) {
1345 locked
= mutex_tryenter(&spa_namespace_lock
);
1347 return (-SET_ERROR(ERESTARTSYS
));
1350 ro
= (readonly
|| (strchr(zv
->zv_name
, '@') != NULL
));
1351 error
= dmu_objset_own(zv
->zv_name
, DMU_OST_ZVOL
, ro
, B_TRUE
, zv
, &os
);
1357 error
= zvol_setup_zv(zv
);
1360 dmu_objset_disown(os
, 1, zv
);
1361 zv
->zv_objset
= NULL
;
1366 mutex_exit(&spa_namespace_lock
);
1367 return (SET_ERROR(-error
));
1371 zvol_last_close(zvol_state_t
*zv
)
1373 ASSERT(RW_READ_HELD(&zv
->zv_suspend_lock
));
1374 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
1376 zvol_shutdown_zv(zv
);
1378 dmu_objset_disown(zv
->zv_objset
, 1, zv
);
1379 zv
->zv_objset
= NULL
;
1383 zvol_open(struct block_device
*bdev
, fmode_t flag
)
1387 boolean_t drop_suspend
= B_TRUE
;
1389 rw_enter(&zvol_state_lock
, RW_READER
);
1391 * Obtain a copy of private_data under the zvol_state_lock to make
1392 * sure that either the result of zvol free code path setting
1393 * bdev->bd_disk->private_data to NULL is observed, or zvol_free()
1394 * is not called on this zv because of the positive zv_open_count.
1396 zv
= bdev
->bd_disk
->private_data
;
1398 rw_exit(&zvol_state_lock
);
1399 return (SET_ERROR(-ENXIO
));
1402 mutex_enter(&zv
->zv_state_lock
);
1404 * make sure zvol is not suspended during first open
1405 * (hold zv_suspend_lock) and respect proper lock acquisition
1406 * ordering - zv_suspend_lock before zv_state_lock
1408 if (zv
->zv_open_count
== 0) {
1409 if (!rw_tryenter(&zv
->zv_suspend_lock
, RW_READER
)) {
1410 mutex_exit(&zv
->zv_state_lock
);
1411 rw_enter(&zv
->zv_suspend_lock
, RW_READER
);
1412 mutex_enter(&zv
->zv_state_lock
);
1413 /* check to see if zv_suspend_lock is needed */
1414 if (zv
->zv_open_count
!= 0) {
1415 rw_exit(&zv
->zv_suspend_lock
);
1416 drop_suspend
= B_FALSE
;
1420 drop_suspend
= B_FALSE
;
1422 rw_exit(&zvol_state_lock
);
1424 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
1425 ASSERT(zv
->zv_open_count
!= 0 || RW_READ_HELD(&zv
->zv_suspend_lock
));
1427 if (zv
->zv_open_count
== 0) {
1428 error
= zvol_first_open(zv
, !(flag
& FMODE_WRITE
));
1433 if ((flag
& FMODE_WRITE
) && (zv
->zv_flags
& ZVOL_RDONLY
)) {
1435 goto out_open_count
;
1438 zv
->zv_open_count
++;
1440 mutex_exit(&zv
->zv_state_lock
);
1442 rw_exit(&zv
->zv_suspend_lock
);
1444 check_disk_change(bdev
);
1449 if (zv
->zv_open_count
== 0)
1450 zvol_last_close(zv
);
1453 mutex_exit(&zv
->zv_state_lock
);
1455 rw_exit(&zv
->zv_suspend_lock
);
1456 if (error
== -ERESTARTSYS
)
1459 return (SET_ERROR(error
));
1462 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1467 zvol_release(struct gendisk
*disk
, fmode_t mode
)
1470 boolean_t drop_suspend
= B_TRUE
;
1472 rw_enter(&zvol_state_lock
, RW_READER
);
1473 zv
= disk
->private_data
;
1475 mutex_enter(&zv
->zv_state_lock
);
1476 ASSERT(zv
->zv_open_count
> 0);
1478 * make sure zvol is not suspended during last close
1479 * (hold zv_suspend_lock) and respect proper lock acquisition
1480 * ordering - zv_suspend_lock before zv_state_lock
1482 if (zv
->zv_open_count
== 1) {
1483 if (!rw_tryenter(&zv
->zv_suspend_lock
, RW_READER
)) {
1484 mutex_exit(&zv
->zv_state_lock
);
1485 rw_enter(&zv
->zv_suspend_lock
, RW_READER
);
1486 mutex_enter(&zv
->zv_state_lock
);
1487 /* check to see if zv_suspend_lock is needed */
1488 if (zv
->zv_open_count
!= 1) {
1489 rw_exit(&zv
->zv_suspend_lock
);
1490 drop_suspend
= B_FALSE
;
1494 drop_suspend
= B_FALSE
;
1496 rw_exit(&zvol_state_lock
);
1498 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
1499 ASSERT(zv
->zv_open_count
!= 1 || RW_READ_HELD(&zv
->zv_suspend_lock
));
1501 zv
->zv_open_count
--;
1502 if (zv
->zv_open_count
== 0)
1503 zvol_last_close(zv
);
1505 mutex_exit(&zv
->zv_state_lock
);
1508 rw_exit(&zv
->zv_suspend_lock
);
1510 #ifndef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_VOID
1516 zvol_ioctl(struct block_device
*bdev
, fmode_t mode
,
1517 unsigned int cmd
, unsigned long arg
)
1519 zvol_state_t
*zv
= bdev
->bd_disk
->private_data
;
1522 ASSERT3U(zv
->zv_open_count
, >, 0);
1527 invalidate_bdev(bdev
);
1528 rw_enter(&zv
->zv_suspend_lock
, RW_READER
);
1530 if (!(zv
->zv_flags
& ZVOL_RDONLY
))
1531 txg_wait_synced(dmu_objset_pool(zv
->zv_objset
), 0);
1533 rw_exit(&zv
->zv_suspend_lock
);
1537 mutex_enter(&zv
->zv_state_lock
);
1538 error
= copy_to_user((void *)arg
, zv
->zv_name
, MAXNAMELEN
);
1539 mutex_exit(&zv
->zv_state_lock
);
1547 return (SET_ERROR(error
));
1550 #ifdef CONFIG_COMPAT
1552 zvol_compat_ioctl(struct block_device
*bdev
, fmode_t mode
,
1553 unsigned cmd
, unsigned long arg
)
1555 return (zvol_ioctl(bdev
, mode
, cmd
, arg
));
1558 #define zvol_compat_ioctl NULL
1562 * Linux 2.6.38 preferred interface.
1564 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1566 zvol_check_events(struct gendisk
*disk
, unsigned int clearing
)
1568 unsigned int mask
= 0;
1570 rw_enter(&zvol_state_lock
, RW_READER
);
1572 zvol_state_t
*zv
= disk
->private_data
;
1574 mutex_enter(&zv
->zv_state_lock
);
1575 mask
= zv
->zv_changed
? DISK_EVENT_MEDIA_CHANGE
: 0;
1577 mutex_exit(&zv
->zv_state_lock
);
1580 rw_exit(&zvol_state_lock
);
1585 static int zvol_media_changed(struct gendisk
*disk
)
1589 rw_enter(&zvol_state_lock
, RW_READER
);
1591 zvol_state_t
*zv
= disk
->private_data
;
1593 mutex_enter(&zv
->zv_state_lock
);
1594 changed
= zv
->zv_changed
;
1596 mutex_exit(&zv
->zv_state_lock
);
1599 rw_exit(&zvol_state_lock
);
1605 static int zvol_revalidate_disk(struct gendisk
*disk
)
1607 rw_enter(&zvol_state_lock
, RW_READER
);
1609 zvol_state_t
*zv
= disk
->private_data
;
1611 mutex_enter(&zv
->zv_state_lock
);
1612 set_capacity(zv
->zv_disk
, zv
->zv_volsize
>> SECTOR_BITS
);
1613 mutex_exit(&zv
->zv_state_lock
);
1616 rw_exit(&zvol_state_lock
);
1622 * Provide a simple virtual geometry for legacy compatibility. For devices
1623 * smaller than 1 MiB a small head and sector count is used to allow very
1624 * tiny devices. For devices over 1 Mib a standard head and sector count
1625 * is used to keep the cylinders count reasonable.
1628 zvol_getgeo(struct block_device
*bdev
, struct hd_geometry
*geo
)
1630 zvol_state_t
*zv
= bdev
->bd_disk
->private_data
;
1633 ASSERT3U(zv
->zv_open_count
, >, 0);
1635 sectors
= get_capacity(zv
->zv_disk
);
1637 if (sectors
> 2048) {
1646 geo
->cylinders
= sectors
/ (geo
->heads
* geo
->sectors
);
1651 static struct kobject
*
1652 zvol_probe(dev_t dev
, int *part
, void *arg
)
1655 struct kobject
*kobj
;
1657 zv
= zvol_find_by_dev(dev
);
1658 kobj
= zv
? get_disk_and_module(zv
->zv_disk
) : NULL
;
1659 ASSERT(zv
== NULL
|| MUTEX_HELD(&zv
->zv_state_lock
));
1661 mutex_exit(&zv
->zv_state_lock
);
1666 static struct block_device_operations zvol_ops
= {
1668 .release
= zvol_release
,
1669 .ioctl
= zvol_ioctl
,
1670 .compat_ioctl
= zvol_compat_ioctl
,
1671 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1672 .check_events
= zvol_check_events
,
1674 .media_changed
= zvol_media_changed
,
1676 .revalidate_disk
= zvol_revalidate_disk
,
1677 .getgeo
= zvol_getgeo
,
1678 .owner
= THIS_MODULE
,
1682 * Allocate memory for a new zvol_state_t and setup the required
1683 * request queue and generic disk structures for the block device.
1685 static zvol_state_t
*
1686 zvol_alloc(dev_t dev
, const char *name
)
1691 if (dsl_prop_get_integer(name
, "volmode", &volmode
, NULL
) != 0)
1694 if (volmode
== ZFS_VOLMODE_DEFAULT
)
1695 volmode
= zvol_volmode
;
1697 if (volmode
== ZFS_VOLMODE_NONE
)
1700 zv
= kmem_zalloc(sizeof (zvol_state_t
), KM_SLEEP
);
1702 list_link_init(&zv
->zv_next
);
1704 mutex_init(&zv
->zv_state_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1706 zv
->zv_queue
= blk_generic_alloc_queue(zvol_request
, NUMA_NO_NODE
);
1707 if (zv
->zv_queue
== NULL
)
1710 blk_queue_set_write_cache(zv
->zv_queue
, B_TRUE
, B_TRUE
);
1712 /* Limit read-ahead to a single page to prevent over-prefetching. */
1713 blk_queue_set_read_ahead(zv
->zv_queue
, 1);
1715 /* Disable write merging in favor of the ZIO pipeline. */
1716 blk_queue_flag_set(QUEUE_FLAG_NOMERGES
, zv
->zv_queue
);
1718 zv
->zv_disk
= alloc_disk(ZVOL_MINORS
);
1719 if (zv
->zv_disk
== NULL
)
1722 zv
->zv_queue
->queuedata
= zv
;
1724 zv
->zv_open_count
= 0;
1725 strlcpy(zv
->zv_name
, name
, MAXNAMELEN
);
1727 zfs_rangelock_init(&zv
->zv_rangelock
, NULL
, NULL
);
1728 rw_init(&zv
->zv_suspend_lock
, NULL
, RW_DEFAULT
, NULL
);
1730 zv
->zv_disk
->major
= zvol_major
;
1731 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_CHECK_EVENTS
1732 zv
->zv_disk
->events
= DISK_EVENT_MEDIA_CHANGE
;
1735 if (volmode
== ZFS_VOLMODE_DEV
) {
1737 * ZFS_VOLMODE_DEV disable partitioning on ZVOL devices: set
1738 * gendisk->minors = 1 as noted in include/linux/genhd.h.
1739 * Also disable extended partition numbers (GENHD_FL_EXT_DEVT)
1740 * and suppresses partition scanning (GENHD_FL_NO_PART_SCAN)
1741 * setting gendisk->flags accordingly.
1743 zv
->zv_disk
->minors
= 1;
1744 #if defined(GENHD_FL_EXT_DEVT)
1745 zv
->zv_disk
->flags
&= ~GENHD_FL_EXT_DEVT
;
1747 #if defined(GENHD_FL_NO_PART_SCAN)
1748 zv
->zv_disk
->flags
|= GENHD_FL_NO_PART_SCAN
;
1751 zv
->zv_disk
->first_minor
= (dev
& MINORMASK
);
1752 zv
->zv_disk
->fops
= &zvol_ops
;
1753 zv
->zv_disk
->private_data
= zv
;
1754 zv
->zv_disk
->queue
= zv
->zv_queue
;
1755 snprintf(zv
->zv_disk
->disk_name
, DISK_NAME_LEN
, "%s%d",
1756 ZVOL_DEV_NAME
, (dev
& MINORMASK
));
1761 blk_cleanup_queue(zv
->zv_queue
);
1763 kmem_free(zv
, sizeof (zvol_state_t
));
1769 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1770 * At this time, the structure is not opened by anyone, is taken off
1771 * the zvol_state_list, and has its private data set to NULL.
1772 * The zvol_state_lock is dropped.
1775 zvol_free(void *arg
)
1777 zvol_state_t
*zv
= arg
;
1779 ASSERT(!RW_LOCK_HELD(&zv
->zv_suspend_lock
));
1780 ASSERT(!MUTEX_HELD(&zv
->zv_state_lock
));
1781 ASSERT(zv
->zv_open_count
== 0);
1782 ASSERT(zv
->zv_disk
->private_data
== NULL
);
1784 rw_destroy(&zv
->zv_suspend_lock
);
1785 zfs_rangelock_fini(&zv
->zv_rangelock
);
1787 del_gendisk(zv
->zv_disk
);
1788 blk_cleanup_queue(zv
->zv_queue
);
1789 put_disk(zv
->zv_disk
);
1791 ida_simple_remove(&zvol_ida
, MINOR(zv
->zv_dev
) >> ZVOL_MINOR_BITS
);
1793 mutex_destroy(&zv
->zv_state_lock
);
1794 dataset_kstats_destroy(&zv
->zv_kstat
);
1796 kmem_free(zv
, sizeof (zvol_state_t
));
1800 * Create a block device minor node and setup the linkage between it
1801 * and the specified volume. Once this function returns the block
1802 * device is live and ready for use.
1805 zvol_create_minor_impl(const char *name
)
1809 dmu_object_info_t
*doi
;
1815 uint64_t hash
= zvol_name_hash(name
);
1817 if (zvol_inhibit_dev
)
1820 idx
= ida_simple_get(&zvol_ida
, 0, 0, kmem_flags_convert(KM_SLEEP
));
1822 return (SET_ERROR(-idx
));
1823 minor
= idx
<< ZVOL_MINOR_BITS
;
1825 zv
= zvol_find_by_name_hash(name
, hash
, RW_NONE
);
1827 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
1828 mutex_exit(&zv
->zv_state_lock
);
1829 ida_simple_remove(&zvol_ida
, idx
);
1830 return (SET_ERROR(EEXIST
));
1833 doi
= kmem_alloc(sizeof (dmu_object_info_t
), KM_SLEEP
);
1835 error
= dmu_objset_own(name
, DMU_OST_ZVOL
, B_TRUE
, B_TRUE
, FTAG
, &os
);
1839 error
= dmu_object_info(os
, ZVOL_OBJ
, doi
);
1841 goto out_dmu_objset_disown
;
1843 error
= zap_lookup(os
, ZVOL_ZAP_OBJ
, "size", 8, 1, &volsize
);
1845 goto out_dmu_objset_disown
;
1847 zv
= zvol_alloc(MKDEV(zvol_major
, minor
), name
);
1849 error
= SET_ERROR(EAGAIN
);
1850 goto out_dmu_objset_disown
;
1854 if (dmu_objset_is_snapshot(os
))
1855 zv
->zv_flags
|= ZVOL_RDONLY
;
1857 zv
->zv_volblocksize
= doi
->doi_data_block_size
;
1858 zv
->zv_volsize
= volsize
;
1861 set_capacity(zv
->zv_disk
, zv
->zv_volsize
>> 9);
1863 blk_queue_max_hw_sectors(zv
->zv_queue
, (DMU_MAX_ACCESS
/ 4) >> 9);
1864 blk_queue_max_segments(zv
->zv_queue
, UINT16_MAX
);
1865 blk_queue_max_segment_size(zv
->zv_queue
, UINT_MAX
);
1866 blk_queue_physical_block_size(zv
->zv_queue
, zv
->zv_volblocksize
);
1867 blk_queue_io_opt(zv
->zv_queue
, zv
->zv_volblocksize
);
1868 blk_queue_max_discard_sectors(zv
->zv_queue
,
1869 (zvol_max_discard_blocks
* zv
->zv_volblocksize
) >> 9);
1870 blk_queue_discard_granularity(zv
->zv_queue
, zv
->zv_volblocksize
);
1871 blk_queue_flag_set(QUEUE_FLAG_DISCARD
, zv
->zv_queue
);
1872 #ifdef QUEUE_FLAG_NONROT
1873 blk_queue_flag_set(QUEUE_FLAG_NONROT
, zv
->zv_queue
);
1875 #ifdef QUEUE_FLAG_ADD_RANDOM
1876 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM
, zv
->zv_queue
);
1878 /* This flag was introduced in kernel version 4.12. */
1879 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1880 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH
, zv
->zv_queue
);
1883 if (spa_writeable(dmu_objset_spa(os
))) {
1884 if (zil_replay_disable
)
1885 zil_destroy(dmu_objset_zil(os
), B_FALSE
);
1887 zil_replay(os
, zv
, zvol_replay_vector
);
1889 ASSERT3P(zv
->zv_kstat
.dk_kstats
, ==, NULL
);
1890 dataset_kstats_create(&zv
->zv_kstat
, zv
->zv_objset
);
1893 * When udev detects the addition of the device it will immediately
1894 * invoke blkid(8) to determine the type of content on the device.
1895 * Prefetching the blocks commonly scanned by blkid(8) will speed
1898 len
= MIN(MAX(zvol_prefetch_bytes
, 0), SPA_MAXBLOCKSIZE
);
1900 dmu_prefetch(os
, ZVOL_OBJ
, 0, 0, len
, ZIO_PRIORITY_SYNC_READ
);
1901 dmu_prefetch(os
, ZVOL_OBJ
, 0, volsize
- len
, len
,
1902 ZIO_PRIORITY_SYNC_READ
);
1905 zv
->zv_objset
= NULL
;
1906 out_dmu_objset_disown
:
1907 dmu_objset_disown(os
, B_TRUE
, FTAG
);
1909 kmem_free(doi
, sizeof (dmu_object_info_t
));
1912 rw_enter(&zvol_state_lock
, RW_WRITER
);
1914 rw_exit(&zvol_state_lock
);
1915 add_disk(zv
->zv_disk
);
1917 ida_simple_remove(&zvol_ida
, idx
);
1920 return (SET_ERROR(error
));
1924 * Rename a block device minor mode for the specified volume.
1927 zvol_rename_minor(zvol_state_t
*zv
, const char *newname
)
1929 int readonly
= get_disk_ro(zv
->zv_disk
);
1931 ASSERT(RW_LOCK_HELD(&zvol_state_lock
));
1932 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
1934 strlcpy(zv
->zv_name
, newname
, sizeof (zv
->zv_name
));
1936 /* move to new hashtable entry */
1937 zv
->zv_hash
= zvol_name_hash(zv
->zv_name
);
1938 hlist_del(&zv
->zv_hlink
);
1939 hlist_add_head(&zv
->zv_hlink
, ZVOL_HT_HEAD(zv
->zv_hash
));
1942 * The block device's read-only state is briefly changed causing
1943 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1944 * the name change and fixes the symlinks. This does not change
1945 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1946 * changes. This would normally be done using kobject_uevent() but
1947 * that is a GPL-only symbol which is why we need this workaround.
1949 set_disk_ro(zv
->zv_disk
, !readonly
);
1950 set_disk_ro(zv
->zv_disk
, readonly
);
1953 typedef struct minors_job
{
1963 * Prefetch zvol dnodes for the minors_job
1966 zvol_prefetch_minors_impl(void *arg
)
1968 minors_job_t
*job
= arg
;
1969 char *dsname
= job
->name
;
1970 objset_t
*os
= NULL
;
1972 job
->error
= dmu_objset_own(dsname
, DMU_OST_ZVOL
, B_TRUE
, B_TRUE
,
1974 if (job
->error
== 0) {
1975 dmu_prefetch(os
, ZVOL_OBJ
, 0, 0, 0, ZIO_PRIORITY_SYNC_READ
);
1976 dmu_objset_disown(os
, B_TRUE
, FTAG
);
1981 * Mask errors to continue dmu_objset_find() traversal
1984 zvol_create_snap_minor_cb(const char *dsname
, void *arg
)
1986 minors_job_t
*j
= arg
;
1987 list_t
*minors_list
= j
->list
;
1988 const char *name
= j
->name
;
1990 ASSERT0(MUTEX_HELD(&spa_namespace_lock
));
1992 /* skip the designated dataset */
1993 if (name
&& strcmp(dsname
, name
) == 0)
1996 /* at this point, the dsname should name a snapshot */
1997 if (strchr(dsname
, '@') == 0) {
1998 dprintf("zvol_create_snap_minor_cb(): "
1999 "%s is not a snapshot name\n", dsname
);
2002 char *n
= strdup(dsname
);
2006 job
= kmem_alloc(sizeof (minors_job_t
), KM_SLEEP
);
2008 job
->list
= minors_list
;
2010 list_insert_tail(minors_list
, job
);
2011 /* don't care if dispatch fails, because job->error is 0 */
2012 taskq_dispatch(system_taskq
, zvol_prefetch_minors_impl
, job
,
2020 * Mask errors to continue dmu_objset_find() traversal
2023 zvol_create_minors_cb(const char *dsname
, void *arg
)
2027 list_t
*minors_list
= arg
;
2029 ASSERT0(MUTEX_HELD(&spa_namespace_lock
));
2031 error
= dsl_prop_get_integer(dsname
, "snapdev", &snapdev
, NULL
);
2036 * Given the name and the 'snapdev' property, create device minor nodes
2037 * with the linkages to zvols/snapshots as needed.
2038 * If the name represents a zvol, create a minor node for the zvol, then
2039 * check if its snapshots are 'visible', and if so, iterate over the
2040 * snapshots and create device minor nodes for those.
2042 if (strchr(dsname
, '@') == 0) {
2044 char *n
= strdup(dsname
);
2048 job
= kmem_alloc(sizeof (minors_job_t
), KM_SLEEP
);
2050 job
->list
= minors_list
;
2052 list_insert_tail(minors_list
, job
);
2053 /* don't care if dispatch fails, because job->error is 0 */
2054 taskq_dispatch(system_taskq
, zvol_prefetch_minors_impl
, job
,
2057 if (snapdev
== ZFS_SNAPDEV_VISIBLE
) {
2059 * traverse snapshots only, do not traverse children,
2060 * and skip the 'dsname'
2062 error
= dmu_objset_find((char *)dsname
,
2063 zvol_create_snap_minor_cb
, (void *)job
,
2067 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
2075 * Create minors for the specified dataset, including children and snapshots.
2076 * Pay attention to the 'snapdev' property and iterate over the snapshots
2077 * only if they are 'visible'. This approach allows one to assure that the
2078 * snapshot metadata is read from disk only if it is needed.
2080 * The name can represent a dataset to be recursively scanned for zvols and
2081 * their snapshots, or a single zvol snapshot. If the name represents a
2082 * dataset, the scan is performed in two nested stages:
2083 * - scan the dataset for zvols, and
2084 * - for each zvol, create a minor node, then check if the zvol's snapshots
2085 * are 'visible', and only then iterate over the snapshots if needed
2087 * If the name represents a snapshot, a check is performed if the snapshot is
2088 * 'visible' (which also verifies that the parent is a zvol), and if so,
2089 * a minor node for that snapshot is created.
2092 zvol_create_minors_impl(const char *name
)
2095 fstrans_cookie_t cookie
;
2100 if (zvol_inhibit_dev
)
2104 * This is the list for prefetch jobs. Whenever we found a match
2105 * during dmu_objset_find, we insert a minors_job to the list and do
2106 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
2107 * any lock because all list operation is done on the current thread.
2109 * We will use this list to do zvol_create_minor_impl after prefetch
2110 * so we don't have to traverse using dmu_objset_find again.
2112 list_create(&minors_list
, sizeof (minors_job_t
),
2113 offsetof(minors_job_t
, link
));
2115 parent
= kmem_alloc(MAXPATHLEN
, KM_SLEEP
);
2116 (void) strlcpy(parent
, name
, MAXPATHLEN
);
2118 if ((atp
= strrchr(parent
, '@')) != NULL
) {
2122 error
= dsl_prop_get_integer(parent
, "snapdev",
2125 if (error
== 0 && snapdev
== ZFS_SNAPDEV_VISIBLE
)
2126 error
= zvol_create_minor_impl(name
);
2128 cookie
= spl_fstrans_mark();
2129 error
= dmu_objset_find(parent
, zvol_create_minors_cb
,
2130 &minors_list
, DS_FIND_CHILDREN
);
2131 spl_fstrans_unmark(cookie
);
2134 kmem_free(parent
, MAXPATHLEN
);
2135 taskq_wait_outstanding(system_taskq
, 0);
2138 * Prefetch is completed, we can do zvol_create_minor_impl
2141 while ((job
= list_head(&minors_list
)) != NULL
) {
2142 list_remove(&minors_list
, job
);
2144 zvol_create_minor_impl(job
->name
);
2146 kmem_free(job
, sizeof (minors_job_t
));
2149 list_destroy(&minors_list
);
2151 return (SET_ERROR(error
));
2155 * Remove minors for specified dataset including children and snapshots.
2158 zvol_remove_minors_impl(const char *name
)
2160 zvol_state_t
*zv
, *zv_next
;
2161 int namelen
= ((name
) ? strlen(name
) : 0);
2162 taskqid_t t
, tid
= TASKQID_INVALID
;
2165 if (zvol_inhibit_dev
)
2168 list_create(&free_list
, sizeof (zvol_state_t
),
2169 offsetof(zvol_state_t
, zv_next
));
2171 rw_enter(&zvol_state_lock
, RW_WRITER
);
2173 for (zv
= list_head(&zvol_state_list
); zv
!= NULL
; zv
= zv_next
) {
2174 zv_next
= list_next(&zvol_state_list
, zv
);
2176 mutex_enter(&zv
->zv_state_lock
);
2177 if (name
== NULL
|| strcmp(zv
->zv_name
, name
) == 0 ||
2178 (strncmp(zv
->zv_name
, name
, namelen
) == 0 &&
2179 (zv
->zv_name
[namelen
] == '/' ||
2180 zv
->zv_name
[namelen
] == '@'))) {
2182 * By holding zv_state_lock here, we guarantee that no
2183 * one is currently using this zv
2186 /* If in use, leave alone */
2187 if (zv
->zv_open_count
> 0 ||
2188 atomic_read(&zv
->zv_suspend_ref
)) {
2189 mutex_exit(&zv
->zv_state_lock
);
2196 * Cleared while holding zvol_state_lock as a writer
2197 * which will prevent zvol_open() from opening it.
2199 zv
->zv_disk
->private_data
= NULL
;
2201 /* Drop zv_state_lock before zvol_free() */
2202 mutex_exit(&zv
->zv_state_lock
);
2204 /* Try parallel zv_free, if failed do it in place */
2205 t
= taskq_dispatch(system_taskq
, zvol_free
, zv
,
2207 if (t
== TASKQID_INVALID
)
2208 list_insert_head(&free_list
, zv
);
2212 mutex_exit(&zv
->zv_state_lock
);
2215 rw_exit(&zvol_state_lock
);
2217 /* Drop zvol_state_lock before calling zvol_free() */
2218 while ((zv
= list_head(&free_list
)) != NULL
) {
2219 list_remove(&free_list
, zv
);
2223 if (tid
!= TASKQID_INVALID
)
2224 taskq_wait_outstanding(system_taskq
, tid
);
2227 /* Remove minor for this specific volume only */
2229 zvol_remove_minor_impl(const char *name
)
2231 zvol_state_t
*zv
= NULL
, *zv_next
;
2233 if (zvol_inhibit_dev
)
2236 rw_enter(&zvol_state_lock
, RW_WRITER
);
2238 for (zv
= list_head(&zvol_state_list
); zv
!= NULL
; zv
= zv_next
) {
2239 zv_next
= list_next(&zvol_state_list
, zv
);
2241 mutex_enter(&zv
->zv_state_lock
);
2242 if (strcmp(zv
->zv_name
, name
) == 0) {
2244 * By holding zv_state_lock here, we guarantee that no
2245 * one is currently using this zv
2248 /* If in use, leave alone */
2249 if (zv
->zv_open_count
> 0 ||
2250 atomic_read(&zv
->zv_suspend_ref
)) {
2251 mutex_exit(&zv
->zv_state_lock
);
2257 * Cleared while holding zvol_state_lock as a writer
2258 * which will prevent zvol_open() from opening it.
2260 zv
->zv_disk
->private_data
= NULL
;
2262 mutex_exit(&zv
->zv_state_lock
);
2265 mutex_exit(&zv
->zv_state_lock
);
2269 /* Drop zvol_state_lock before calling zvol_free() */
2270 rw_exit(&zvol_state_lock
);
2277 * Rename minors for specified dataset including children and snapshots.
2280 zvol_rename_minors_impl(const char *oldname
, const char *newname
)
2282 zvol_state_t
*zv
, *zv_next
;
2283 int oldnamelen
, newnamelen
;
2285 if (zvol_inhibit_dev
)
2288 oldnamelen
= strlen(oldname
);
2289 newnamelen
= strlen(newname
);
2291 rw_enter(&zvol_state_lock
, RW_READER
);
2293 for (zv
= list_head(&zvol_state_list
); zv
!= NULL
; zv
= zv_next
) {
2294 zv_next
= list_next(&zvol_state_list
, zv
);
2296 mutex_enter(&zv
->zv_state_lock
);
2298 if (strcmp(zv
->zv_name
, oldname
) == 0) {
2299 zvol_rename_minor(zv
, newname
);
2300 } else if (strncmp(zv
->zv_name
, oldname
, oldnamelen
) == 0 &&
2301 (zv
->zv_name
[oldnamelen
] == '/' ||
2302 zv
->zv_name
[oldnamelen
] == '@')) {
2303 char *name
= kmem_asprintf("%s%c%s", newname
,
2304 zv
->zv_name
[oldnamelen
],
2305 zv
->zv_name
+ oldnamelen
+ 1);
2306 zvol_rename_minor(zv
, name
);
2310 mutex_exit(&zv
->zv_state_lock
);
2313 rw_exit(&zvol_state_lock
);
2316 typedef struct zvol_snapdev_cb_arg
{
2318 } zvol_snapdev_cb_arg_t
;
2321 zvol_set_snapdev_cb(const char *dsname
, void *param
)
2323 zvol_snapdev_cb_arg_t
*arg
= param
;
2325 if (strchr(dsname
, '@') == NULL
)
2328 switch (arg
->snapdev
) {
2329 case ZFS_SNAPDEV_VISIBLE
:
2330 (void) zvol_create_minor_impl(dsname
);
2332 case ZFS_SNAPDEV_HIDDEN
:
2333 (void) zvol_remove_minor_impl(dsname
);
2341 zvol_set_snapdev_impl(char *name
, uint64_t snapdev
)
2343 zvol_snapdev_cb_arg_t arg
= {snapdev
};
2344 fstrans_cookie_t cookie
= spl_fstrans_mark();
2346 * The zvol_set_snapdev_sync() sets snapdev appropriately
2347 * in the dataset hierarchy. Here, we only scan snapshots.
2349 dmu_objset_find(name
, zvol_set_snapdev_cb
, &arg
, DS_FIND_SNAPSHOTS
);
2350 spl_fstrans_unmark(cookie
);
2353 typedef struct zvol_volmode_cb_arg
{
2355 } zvol_volmode_cb_arg_t
;
2358 zvol_set_volmode_impl(char *name
, uint64_t volmode
)
2360 fstrans_cookie_t cookie
= spl_fstrans_mark();
2362 if (strchr(name
, '@') != NULL
)
2366 * It's unfortunate we need to remove minors before we create new ones:
2367 * this is necessary because our backing gendisk (zvol_state->zv_disk)
2368 * coule be different when we set, for instance, volmode from "geom"
2369 * to "dev" (or vice versa).
2370 * A possible optimization is to modify our consumers so we don't get
2371 * called when "volmode" does not change.
2374 case ZFS_VOLMODE_NONE
:
2375 (void) zvol_remove_minor_impl(name
);
2377 case ZFS_VOLMODE_GEOM
:
2378 case ZFS_VOLMODE_DEV
:
2379 (void) zvol_remove_minor_impl(name
);
2380 (void) zvol_create_minor_impl(name
);
2382 case ZFS_VOLMODE_DEFAULT
:
2383 (void) zvol_remove_minor_impl(name
);
2384 if (zvol_volmode
== ZFS_VOLMODE_NONE
)
2386 else /* if zvol_volmode is invalid defaults to "geom" */
2387 (void) zvol_create_minor_impl(name
);
2391 spl_fstrans_unmark(cookie
);
2394 static zvol_task_t
*
2395 zvol_task_alloc(zvol_async_op_t op
, const char *name1
, const char *name2
,
2401 /* Never allow tasks on hidden names. */
2402 if (name1
[0] == '$')
2405 task
= kmem_zalloc(sizeof (zvol_task_t
), KM_SLEEP
);
2407 task
->value
= value
;
2408 delim
= strchr(name1
, '/');
2409 strlcpy(task
->pool
, name1
, delim
? (delim
- name1
+ 1) : MAXNAMELEN
);
2411 strlcpy(task
->name1
, name1
, MAXNAMELEN
);
2413 strlcpy(task
->name2
, name2
, MAXNAMELEN
);
2419 zvol_task_free(zvol_task_t
*task
)
2421 kmem_free(task
, sizeof (zvol_task_t
));
2425 * The worker thread function performed asynchronously.
2428 zvol_task_cb(void *param
)
2430 zvol_task_t
*task
= (zvol_task_t
*)param
;
2433 case ZVOL_ASYNC_CREATE_MINORS
:
2434 (void) zvol_create_minors_impl(task
->name1
);
2436 case ZVOL_ASYNC_REMOVE_MINORS
:
2437 zvol_remove_minors_impl(task
->name1
);
2439 case ZVOL_ASYNC_RENAME_MINORS
:
2440 zvol_rename_minors_impl(task
->name1
, task
->name2
);
2442 case ZVOL_ASYNC_SET_SNAPDEV
:
2443 zvol_set_snapdev_impl(task
->name1
, task
->value
);
2445 case ZVOL_ASYNC_SET_VOLMODE
:
2446 zvol_set_volmode_impl(task
->name1
, task
->value
);
2453 zvol_task_free(task
);
2456 typedef struct zvol_set_prop_int_arg
{
2457 const char *zsda_name
;
2458 uint64_t zsda_value
;
2459 zprop_source_t zsda_source
;
2461 } zvol_set_prop_int_arg_t
;
2464 * Sanity check the dataset for safe use by the sync task. No additional
2465 * conditions are imposed.
2468 zvol_set_snapdev_check(void *arg
, dmu_tx_t
*tx
)
2470 zvol_set_prop_int_arg_t
*zsda
= arg
;
2471 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
2475 error
= dsl_dir_hold(dp
, zsda
->zsda_name
, FTAG
, &dd
, NULL
);
2479 dsl_dir_rele(dd
, FTAG
);
2486 zvol_set_snapdev_sync_cb(dsl_pool_t
*dp
, dsl_dataset_t
*ds
, void *arg
)
2488 char dsname
[MAXNAMELEN
];
2492 dsl_dataset_name(ds
, dsname
);
2493 if (dsl_prop_get_int_ds(ds
, "snapdev", &snapdev
) != 0)
2495 task
= zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV
, dsname
, NULL
, snapdev
);
2499 (void) taskq_dispatch(dp
->dp_spa
->spa_zvol_taskq
, zvol_task_cb
,
2505 * Traverse all child datasets and apply snapdev appropriately.
2506 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
2507 * dataset and read the effective "snapdev" on every child in the callback
2508 * function: this is because the value is not guaranteed to be the same in the
2509 * whole dataset hierarchy.
2512 zvol_set_snapdev_sync(void *arg
, dmu_tx_t
*tx
)
2514 zvol_set_prop_int_arg_t
*zsda
= arg
;
2515 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
2520 VERIFY0(dsl_dir_hold(dp
, zsda
->zsda_name
, FTAG
, &dd
, NULL
));
2523 error
= dsl_dataset_hold(dp
, zsda
->zsda_name
, FTAG
, &ds
);
2525 dsl_prop_set_sync_impl(ds
, zfs_prop_to_name(ZFS_PROP_SNAPDEV
),
2526 zsda
->zsda_source
, sizeof (zsda
->zsda_value
), 1,
2527 &zsda
->zsda_value
, zsda
->zsda_tx
);
2528 dsl_dataset_rele(ds
, FTAG
);
2530 dmu_objset_find_dp(dp
, dd
->dd_object
, zvol_set_snapdev_sync_cb
,
2531 zsda
, DS_FIND_CHILDREN
);
2533 dsl_dir_rele(dd
, FTAG
);
2537 zvol_set_snapdev(const char *ddname
, zprop_source_t source
, uint64_t snapdev
)
2539 zvol_set_prop_int_arg_t zsda
;
2541 zsda
.zsda_name
= ddname
;
2542 zsda
.zsda_source
= source
;
2543 zsda
.zsda_value
= snapdev
;
2545 return (dsl_sync_task(ddname
, zvol_set_snapdev_check
,
2546 zvol_set_snapdev_sync
, &zsda
, 0, ZFS_SPACE_CHECK_NONE
));
2550 * Sanity check the dataset for safe use by the sync task. No additional
2551 * conditions are imposed.
2554 zvol_set_volmode_check(void *arg
, dmu_tx_t
*tx
)
2556 zvol_set_prop_int_arg_t
*zsda
= arg
;
2557 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
2561 error
= dsl_dir_hold(dp
, zsda
->zsda_name
, FTAG
, &dd
, NULL
);
2565 dsl_dir_rele(dd
, FTAG
);
2572 zvol_set_volmode_sync_cb(dsl_pool_t
*dp
, dsl_dataset_t
*ds
, void *arg
)
2574 char dsname
[MAXNAMELEN
];
2578 dsl_dataset_name(ds
, dsname
);
2579 if (dsl_prop_get_int_ds(ds
, "volmode", &volmode
) != 0)
2581 task
= zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE
, dsname
, NULL
, volmode
);
2585 (void) taskq_dispatch(dp
->dp_spa
->spa_zvol_taskq
, zvol_task_cb
,
2591 * Traverse all child datasets and apply volmode appropriately.
2592 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
2593 * dataset and read the effective "volmode" on every child in the callback
2594 * function: this is because the value is not guaranteed to be the same in the
2595 * whole dataset hierarchy.
2598 zvol_set_volmode_sync(void *arg
, dmu_tx_t
*tx
)
2600 zvol_set_prop_int_arg_t
*zsda
= arg
;
2601 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
2606 VERIFY0(dsl_dir_hold(dp
, zsda
->zsda_name
, FTAG
, &dd
, NULL
));
2609 error
= dsl_dataset_hold(dp
, zsda
->zsda_name
, FTAG
, &ds
);
2611 dsl_prop_set_sync_impl(ds
, zfs_prop_to_name(ZFS_PROP_VOLMODE
),
2612 zsda
->zsda_source
, sizeof (zsda
->zsda_value
), 1,
2613 &zsda
->zsda_value
, zsda
->zsda_tx
);
2614 dsl_dataset_rele(ds
, FTAG
);
2617 dmu_objset_find_dp(dp
, dd
->dd_object
, zvol_set_volmode_sync_cb
,
2618 zsda
, DS_FIND_CHILDREN
);
2620 dsl_dir_rele(dd
, FTAG
);
2624 zvol_set_volmode(const char *ddname
, zprop_source_t source
, uint64_t volmode
)
2626 zvol_set_prop_int_arg_t zsda
;
2628 zsda
.zsda_name
= ddname
;
2629 zsda
.zsda_source
= source
;
2630 zsda
.zsda_value
= volmode
;
2632 return (dsl_sync_task(ddname
, zvol_set_volmode_check
,
2633 zvol_set_volmode_sync
, &zsda
, 0, ZFS_SPACE_CHECK_NONE
));
2637 zvol_create_minors(spa_t
*spa
, const char *name
, boolean_t async
)
2642 task
= zvol_task_alloc(ZVOL_ASYNC_CREATE_MINORS
, name
, NULL
, ~0ULL);
2646 id
= taskq_dispatch(spa
->spa_zvol_taskq
, zvol_task_cb
, task
, TQ_SLEEP
);
2647 if ((async
== B_FALSE
) && (id
!= TASKQID_INVALID
))
2648 taskq_wait_id(spa
->spa_zvol_taskq
, id
);
2652 zvol_remove_minors(spa_t
*spa
, const char *name
, boolean_t async
)
2657 task
= zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS
, name
, NULL
, ~0ULL);
2661 id
= taskq_dispatch(spa
->spa_zvol_taskq
, zvol_task_cb
, task
, TQ_SLEEP
);
2662 if ((async
== B_FALSE
) && (id
!= TASKQID_INVALID
))
2663 taskq_wait_id(spa
->spa_zvol_taskq
, id
);
2667 zvol_rename_minors(spa_t
*spa
, const char *name1
, const char *name2
,
2673 task
= zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS
, name1
, name2
, ~0ULL);
2677 id
= taskq_dispatch(spa
->spa_zvol_taskq
, zvol_task_cb
, task
, TQ_SLEEP
);
2678 if ((async
== B_FALSE
) && (id
!= TASKQID_INVALID
))
2679 taskq_wait_id(spa
->spa_zvol_taskq
, id
);
2685 int threads
= MIN(MAX(zvol_threads
, 1), 1024);
2688 list_create(&zvol_state_list
, sizeof (zvol_state_t
),
2689 offsetof(zvol_state_t
, zv_next
));
2690 rw_init(&zvol_state_lock
, NULL
, RW_DEFAULT
, NULL
);
2691 ida_init(&zvol_ida
);
2693 zvol_taskq
= taskq_create(ZVOL_DRIVER
, threads
, maxclsyspri
,
2694 threads
* 2, INT_MAX
, TASKQ_PREPOPULATE
| TASKQ_DYNAMIC
);
2695 if (zvol_taskq
== NULL
) {
2696 printk(KERN_INFO
"ZFS: taskq_create() failed\n");
2701 zvol_htable
= kmem_alloc(ZVOL_HT_SIZE
* sizeof (struct hlist_head
),
2707 for (i
= 0; i
< ZVOL_HT_SIZE
; i
++)
2708 INIT_HLIST_HEAD(&zvol_htable
[i
]);
2710 error
= register_blkdev(zvol_major
, ZVOL_DRIVER
);
2712 printk(KERN_INFO
"ZFS: register_blkdev() failed %d\n", error
);
2716 blk_register_region(MKDEV(zvol_major
, 0), 1UL << MINORBITS
,
2717 THIS_MODULE
, zvol_probe
, NULL
, NULL
);
2722 kmem_free(zvol_htable
, ZVOL_HT_SIZE
* sizeof (struct hlist_head
));
2724 taskq_destroy(zvol_taskq
);
2726 ida_destroy(&zvol_ida
);
2727 rw_destroy(&zvol_state_lock
);
2728 list_destroy(&zvol_state_list
);
2730 return (SET_ERROR(error
));
2736 zvol_remove_minors_impl(NULL
);
2738 blk_unregister_region(MKDEV(zvol_major
, 0), 1UL << MINORBITS
);
2739 unregister_blkdev(zvol_major
, ZVOL_DRIVER
);
2740 kmem_free(zvol_htable
, ZVOL_HT_SIZE
* sizeof (struct hlist_head
));
2742 taskq_destroy(zvol_taskq
);
2743 list_destroy(&zvol_state_list
);
2744 rw_destroy(&zvol_state_lock
);
2746 ida_destroy(&zvol_ida
);
2750 module_param(zvol_inhibit_dev
, uint
, 0644);
2751 MODULE_PARM_DESC(zvol_inhibit_dev
, "Do not create zvol device nodes");
2753 module_param(zvol_major
, uint
, 0444);
2754 MODULE_PARM_DESC(zvol_major
, "Major number for zvol device");
2756 module_param(zvol_threads
, uint
, 0444);
2757 MODULE_PARM_DESC(zvol_threads
, "Max number of threads to handle I/O requests");
2759 module_param(zvol_request_sync
, uint
, 0644);
2760 MODULE_PARM_DESC(zvol_request_sync
, "Synchronously handle bio requests");
2762 module_param(zvol_max_discard_blocks
, ulong
, 0444);
2763 MODULE_PARM_DESC(zvol_max_discard_blocks
, "Max number of blocks to discard");
2765 module_param(zvol_prefetch_bytes
, uint
, 0644);
2766 MODULE_PARM_DESC(zvol_prefetch_bytes
, "Prefetch N bytes at zvol start+end");
2768 module_param(zvol_volmode
, uint
, 0644);
2769 MODULE_PARM_DESC(zvol_volmode
, "Default volmode property value");