zed: Allow autoreplace and fault LEDs for removed vdevs
[zfs.git] / module / zfs / metaslab.c
blob20dc934593f17bfa90c45cabc491030d777cba45
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2019 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2015, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2017, Intel Corporation.
29 #include <sys/zfs_context.h>
30 #include <sys/dmu.h>
31 #include <sys/dmu_tx.h>
32 #include <sys/space_map.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_impl.h>
35 #include <sys/vdev_draid.h>
36 #include <sys/zio.h>
37 #include <sys/spa_impl.h>
38 #include <sys/zfeature.h>
39 #include <sys/vdev_indirect_mapping.h>
40 #include <sys/zap.h>
41 #include <sys/btree.h>
43 #define WITH_DF_BLOCK_ALLOCATOR
45 #define GANG_ALLOCATION(flags) \
46 ((flags) & (METASLAB_GANG_CHILD | METASLAB_GANG_HEADER))
49 * Metaslab granularity, in bytes. This is roughly similar to what would be
50 * referred to as the "stripe size" in traditional RAID arrays. In normal
51 * operation, we will try to write this amount of data to each disk before
52 * moving on to the next top-level vdev.
54 static uint64_t metaslab_aliquot = 1024 * 1024;
57 * For testing, make some blocks above a certain size be gang blocks.
59 uint64_t metaslab_force_ganging = SPA_MAXBLOCKSIZE + 1;
62 * Of blocks of size >= metaslab_force_ganging, actually gang them this often.
64 uint_t metaslab_force_ganging_pct = 3;
67 * In pools where the log space map feature is not enabled we touch
68 * multiple metaslabs (and their respective space maps) with each
69 * transaction group. Thus, we benefit from having a small space map
70 * block size since it allows us to issue more I/O operations scattered
71 * around the disk. So a sane default for the space map block size
72 * is 8~16K.
74 int zfs_metaslab_sm_blksz_no_log = (1 << 14);
77 * When the log space map feature is enabled, we accumulate a lot of
78 * changes per metaslab that are flushed once in a while so we benefit
79 * from a bigger block size like 128K for the metaslab space maps.
81 int zfs_metaslab_sm_blksz_with_log = (1 << 17);
84 * The in-core space map representation is more compact than its on-disk form.
85 * The zfs_condense_pct determines how much more compact the in-core
86 * space map representation must be before we compact it on-disk.
87 * Values should be greater than or equal to 100.
89 uint_t zfs_condense_pct = 200;
92 * Condensing a metaslab is not guaranteed to actually reduce the amount of
93 * space used on disk. In particular, a space map uses data in increments of
94 * MAX(1 << ashift, space_map_blksz), so a metaslab might use the
95 * same number of blocks after condensing. Since the goal of condensing is to
96 * reduce the number of IOPs required to read the space map, we only want to
97 * condense when we can be sure we will reduce the number of blocks used by the
98 * space map. Unfortunately, we cannot precisely compute whether or not this is
99 * the case in metaslab_should_condense since we are holding ms_lock. Instead,
100 * we apply the following heuristic: do not condense a spacemap unless the
101 * uncondensed size consumes greater than zfs_metaslab_condense_block_threshold
102 * blocks.
104 static const int zfs_metaslab_condense_block_threshold = 4;
107 * The zfs_mg_noalloc_threshold defines which metaslab groups should
108 * be eligible for allocation. The value is defined as a percentage of
109 * free space. Metaslab groups that have more free space than
110 * zfs_mg_noalloc_threshold are always eligible for allocations. Once
111 * a metaslab group's free space is less than or equal to the
112 * zfs_mg_noalloc_threshold the allocator will avoid allocating to that
113 * group unless all groups in the pool have reached zfs_mg_noalloc_threshold.
114 * Once all groups in the pool reach zfs_mg_noalloc_threshold then all
115 * groups are allowed to accept allocations. Gang blocks are always
116 * eligible to allocate on any metaslab group. The default value of 0 means
117 * no metaslab group will be excluded based on this criterion.
119 static uint_t zfs_mg_noalloc_threshold = 0;
122 * Metaslab groups are considered eligible for allocations if their
123 * fragmentation metric (measured as a percentage) is less than or
124 * equal to zfs_mg_fragmentation_threshold. If a metaslab group
125 * exceeds this threshold then it will be skipped unless all metaslab
126 * groups within the metaslab class have also crossed this threshold.
128 * This tunable was introduced to avoid edge cases where we continue
129 * allocating from very fragmented disks in our pool while other, less
130 * fragmented disks, exists. On the other hand, if all disks in the
131 * pool are uniformly approaching the threshold, the threshold can
132 * be a speed bump in performance, where we keep switching the disks
133 * that we allocate from (e.g. we allocate some segments from disk A
134 * making it bypassing the threshold while freeing segments from disk
135 * B getting its fragmentation below the threshold).
137 * Empirically, we've seen that our vdev selection for allocations is
138 * good enough that fragmentation increases uniformly across all vdevs
139 * the majority of the time. Thus we set the threshold percentage high
140 * enough to avoid hitting the speed bump on pools that are being pushed
141 * to the edge.
143 static uint_t zfs_mg_fragmentation_threshold = 95;
146 * Allow metaslabs to keep their active state as long as their fragmentation
147 * percentage is less than or equal to zfs_metaslab_fragmentation_threshold. An
148 * active metaslab that exceeds this threshold will no longer keep its active
149 * status allowing better metaslabs to be selected.
151 static uint_t zfs_metaslab_fragmentation_threshold = 70;
154 * When set will load all metaslabs when pool is first opened.
156 int metaslab_debug_load = B_FALSE;
159 * When set will prevent metaslabs from being unloaded.
161 static int metaslab_debug_unload = B_FALSE;
164 * Minimum size which forces the dynamic allocator to change
165 * it's allocation strategy. Once the space map cannot satisfy
166 * an allocation of this size then it switches to using more
167 * aggressive strategy (i.e search by size rather than offset).
169 uint64_t metaslab_df_alloc_threshold = SPA_OLD_MAXBLOCKSIZE;
172 * The minimum free space, in percent, which must be available
173 * in a space map to continue allocations in a first-fit fashion.
174 * Once the space map's free space drops below this level we dynamically
175 * switch to using best-fit allocations.
177 uint_t metaslab_df_free_pct = 4;
180 * Maximum distance to search forward from the last offset. Without this
181 * limit, fragmented pools can see >100,000 iterations and
182 * metaslab_block_picker() becomes the performance limiting factor on
183 * high-performance storage.
185 * With the default setting of 16MB, we typically see less than 500
186 * iterations, even with very fragmented, ashift=9 pools. The maximum number
187 * of iterations possible is:
188 * metaslab_df_max_search / (2 * (1<<ashift))
189 * With the default setting of 16MB this is 16*1024 (with ashift=9) or
190 * 2048 (with ashift=12).
192 static uint_t metaslab_df_max_search = 16 * 1024 * 1024;
195 * Forces the metaslab_block_picker function to search for at least this many
196 * segments forwards until giving up on finding a segment that the allocation
197 * will fit into.
199 static const uint32_t metaslab_min_search_count = 100;
202 * If we are not searching forward (due to metaslab_df_max_search,
203 * metaslab_df_free_pct, or metaslab_df_alloc_threshold), this tunable
204 * controls what segment is used. If it is set, we will use the largest free
205 * segment. If it is not set, we will use a segment of exactly the requested
206 * size (or larger).
208 static int metaslab_df_use_largest_segment = B_FALSE;
211 * Percentage of all cpus that can be used by the metaslab taskq.
213 int metaslab_load_pct = 50;
216 * These tunables control how long a metaslab will remain loaded after the
217 * last allocation from it. A metaslab can't be unloaded until at least
218 * metaslab_unload_delay TXG's and metaslab_unload_delay_ms milliseconds
219 * have elapsed. However, zfs_metaslab_mem_limit may cause it to be
220 * unloaded sooner. These settings are intended to be generous -- to keep
221 * metaslabs loaded for a long time, reducing the rate of metaslab loading.
223 static uint_t metaslab_unload_delay = 32;
224 static uint_t metaslab_unload_delay_ms = 10 * 60 * 1000; /* ten minutes */
227 * Max number of metaslabs per group to preload.
229 uint_t metaslab_preload_limit = 10;
232 * Enable/disable preloading of metaslab.
234 static int metaslab_preload_enabled = B_TRUE;
237 * Enable/disable fragmentation weighting on metaslabs.
239 static int metaslab_fragmentation_factor_enabled = B_TRUE;
242 * Enable/disable lba weighting (i.e. outer tracks are given preference).
244 static int metaslab_lba_weighting_enabled = B_TRUE;
247 * Enable/disable metaslab group biasing.
249 static int metaslab_bias_enabled = B_TRUE;
252 * Enable/disable remapping of indirect DVAs to their concrete vdevs.
254 static const boolean_t zfs_remap_blkptr_enable = B_TRUE;
257 * Enable/disable segment-based metaslab selection.
259 static int zfs_metaslab_segment_weight_enabled = B_TRUE;
262 * When using segment-based metaslab selection, we will continue
263 * allocating from the active metaslab until we have exhausted
264 * zfs_metaslab_switch_threshold of its buckets.
266 static int zfs_metaslab_switch_threshold = 2;
269 * Internal switch to enable/disable the metaslab allocation tracing
270 * facility.
272 static const boolean_t metaslab_trace_enabled = B_FALSE;
275 * Maximum entries that the metaslab allocation tracing facility will keep
276 * in a given list when running in non-debug mode. We limit the number
277 * of entries in non-debug mode to prevent us from using up too much memory.
278 * The limit should be sufficiently large that we don't expect any allocation
279 * to every exceed this value. In debug mode, the system will panic if this
280 * limit is ever reached allowing for further investigation.
282 static const uint64_t metaslab_trace_max_entries = 5000;
285 * Maximum number of metaslabs per group that can be disabled
286 * simultaneously.
288 static const int max_disabled_ms = 3;
291 * Time (in seconds) to respect ms_max_size when the metaslab is not loaded.
292 * To avoid 64-bit overflow, don't set above UINT32_MAX.
294 static uint64_t zfs_metaslab_max_size_cache_sec = 1 * 60 * 60; /* 1 hour */
297 * Maximum percentage of memory to use on storing loaded metaslabs. If loading
298 * a metaslab would take it over this percentage, the oldest selected metaslab
299 * is automatically unloaded.
301 static uint_t zfs_metaslab_mem_limit = 25;
304 * Force the per-metaslab range trees to use 64-bit integers to store
305 * segments. Used for debugging purposes.
307 static const boolean_t zfs_metaslab_force_large_segs = B_FALSE;
310 * By default we only store segments over a certain size in the size-sorted
311 * metaslab trees (ms_allocatable_by_size and
312 * ms_unflushed_frees_by_size). This dramatically reduces memory usage and
313 * improves load and unload times at the cost of causing us to use slightly
314 * larger segments than we would otherwise in some cases.
316 static const uint32_t metaslab_by_size_min_shift = 14;
319 * If not set, we will first try normal allocation. If that fails then
320 * we will do a gang allocation. If that fails then we will do a "try hard"
321 * gang allocation. If that fails then we will have a multi-layer gang
322 * block.
324 * If set, we will first try normal allocation. If that fails then
325 * we will do a "try hard" allocation. If that fails we will do a gang
326 * allocation. If that fails we will do a "try hard" gang allocation. If
327 * that fails then we will have a multi-layer gang block.
329 static int zfs_metaslab_try_hard_before_gang = B_FALSE;
332 * When not trying hard, we only consider the best zfs_metaslab_find_max_tries
333 * metaslabs. This improves performance, especially when there are many
334 * metaslabs per vdev and the allocation can't actually be satisfied (so we
335 * would otherwise iterate all the metaslabs). If there is a metaslab with a
336 * worse weight but it can actually satisfy the allocation, we won't find it
337 * until trying hard. This may happen if the worse metaslab is not loaded
338 * (and the true weight is better than we have calculated), or due to weight
339 * bucketization. E.g. we are looking for a 60K segment, and the best
340 * metaslabs all have free segments in the 32-63K bucket, but the best
341 * zfs_metaslab_find_max_tries metaslabs have ms_max_size <60KB, and a
342 * subsequent metaslab has ms_max_size >60KB (but fewer segments in this
343 * bucket, and therefore a lower weight).
345 static uint_t zfs_metaslab_find_max_tries = 100;
347 static uint64_t metaslab_weight(metaslab_t *, boolean_t);
348 static void metaslab_set_fragmentation(metaslab_t *, boolean_t);
349 static void metaslab_free_impl(vdev_t *, uint64_t, uint64_t, boolean_t);
350 static void metaslab_check_free_impl(vdev_t *, uint64_t, uint64_t);
352 static void metaslab_passivate(metaslab_t *msp, uint64_t weight);
353 static uint64_t metaslab_weight_from_range_tree(metaslab_t *msp);
354 static void metaslab_flush_update(metaslab_t *, dmu_tx_t *);
355 static unsigned int metaslab_idx_func(multilist_t *, void *);
356 static void metaslab_evict(metaslab_t *, uint64_t);
357 static void metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg);
358 kmem_cache_t *metaslab_alloc_trace_cache;
360 typedef struct metaslab_stats {
361 kstat_named_t metaslabstat_trace_over_limit;
362 kstat_named_t metaslabstat_reload_tree;
363 kstat_named_t metaslabstat_too_many_tries;
364 kstat_named_t metaslabstat_try_hard;
365 } metaslab_stats_t;
367 static metaslab_stats_t metaslab_stats = {
368 { "trace_over_limit", KSTAT_DATA_UINT64 },
369 { "reload_tree", KSTAT_DATA_UINT64 },
370 { "too_many_tries", KSTAT_DATA_UINT64 },
371 { "try_hard", KSTAT_DATA_UINT64 },
374 #define METASLABSTAT_BUMP(stat) \
375 atomic_inc_64(&metaslab_stats.stat.value.ui64);
378 static kstat_t *metaslab_ksp;
380 void
381 metaslab_stat_init(void)
383 ASSERT(metaslab_alloc_trace_cache == NULL);
384 metaslab_alloc_trace_cache = kmem_cache_create(
385 "metaslab_alloc_trace_cache", sizeof (metaslab_alloc_trace_t),
386 0, NULL, NULL, NULL, NULL, NULL, 0);
387 metaslab_ksp = kstat_create("zfs", 0, "metaslab_stats",
388 "misc", KSTAT_TYPE_NAMED, sizeof (metaslab_stats) /
389 sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
390 if (metaslab_ksp != NULL) {
391 metaslab_ksp->ks_data = &metaslab_stats;
392 kstat_install(metaslab_ksp);
396 void
397 metaslab_stat_fini(void)
399 if (metaslab_ksp != NULL) {
400 kstat_delete(metaslab_ksp);
401 metaslab_ksp = NULL;
404 kmem_cache_destroy(metaslab_alloc_trace_cache);
405 metaslab_alloc_trace_cache = NULL;
409 * ==========================================================================
410 * Metaslab classes
411 * ==========================================================================
413 metaslab_class_t *
414 metaslab_class_create(spa_t *spa, const metaslab_ops_t *ops)
416 metaslab_class_t *mc;
418 mc = kmem_zalloc(offsetof(metaslab_class_t,
419 mc_allocator[spa->spa_alloc_count]), KM_SLEEP);
421 mc->mc_spa = spa;
422 mc->mc_ops = ops;
423 mutex_init(&mc->mc_lock, NULL, MUTEX_DEFAULT, NULL);
424 multilist_create(&mc->mc_metaslab_txg_list, sizeof (metaslab_t),
425 offsetof(metaslab_t, ms_class_txg_node), metaslab_idx_func);
426 for (int i = 0; i < spa->spa_alloc_count; i++) {
427 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
428 mca->mca_rotor = NULL;
429 zfs_refcount_create_tracked(&mca->mca_alloc_slots);
432 return (mc);
435 void
436 metaslab_class_destroy(metaslab_class_t *mc)
438 spa_t *spa = mc->mc_spa;
440 ASSERT(mc->mc_alloc == 0);
441 ASSERT(mc->mc_deferred == 0);
442 ASSERT(mc->mc_space == 0);
443 ASSERT(mc->mc_dspace == 0);
445 for (int i = 0; i < spa->spa_alloc_count; i++) {
446 metaslab_class_allocator_t *mca = &mc->mc_allocator[i];
447 ASSERT(mca->mca_rotor == NULL);
448 zfs_refcount_destroy(&mca->mca_alloc_slots);
450 mutex_destroy(&mc->mc_lock);
451 multilist_destroy(&mc->mc_metaslab_txg_list);
452 kmem_free(mc, offsetof(metaslab_class_t,
453 mc_allocator[spa->spa_alloc_count]));
457 metaslab_class_validate(metaslab_class_t *mc)
459 metaslab_group_t *mg;
460 vdev_t *vd;
463 * Must hold one of the spa_config locks.
465 ASSERT(spa_config_held(mc->mc_spa, SCL_ALL, RW_READER) ||
466 spa_config_held(mc->mc_spa, SCL_ALL, RW_WRITER));
468 if ((mg = mc->mc_allocator[0].mca_rotor) == NULL)
469 return (0);
471 do {
472 vd = mg->mg_vd;
473 ASSERT(vd->vdev_mg != NULL);
474 ASSERT3P(vd->vdev_top, ==, vd);
475 ASSERT3P(mg->mg_class, ==, mc);
476 ASSERT3P(vd->vdev_ops, !=, &vdev_hole_ops);
477 } while ((mg = mg->mg_next) != mc->mc_allocator[0].mca_rotor);
479 return (0);
482 static void
483 metaslab_class_space_update(metaslab_class_t *mc, int64_t alloc_delta,
484 int64_t defer_delta, int64_t space_delta, int64_t dspace_delta)
486 atomic_add_64(&mc->mc_alloc, alloc_delta);
487 atomic_add_64(&mc->mc_deferred, defer_delta);
488 atomic_add_64(&mc->mc_space, space_delta);
489 atomic_add_64(&mc->mc_dspace, dspace_delta);
492 uint64_t
493 metaslab_class_get_alloc(metaslab_class_t *mc)
495 return (mc->mc_alloc);
498 uint64_t
499 metaslab_class_get_deferred(metaslab_class_t *mc)
501 return (mc->mc_deferred);
504 uint64_t
505 metaslab_class_get_space(metaslab_class_t *mc)
507 return (mc->mc_space);
510 uint64_t
511 metaslab_class_get_dspace(metaslab_class_t *mc)
513 return (spa_deflate(mc->mc_spa) ? mc->mc_dspace : mc->mc_space);
516 void
517 metaslab_class_histogram_verify(metaslab_class_t *mc)
519 spa_t *spa = mc->mc_spa;
520 vdev_t *rvd = spa->spa_root_vdev;
521 uint64_t *mc_hist;
522 int i;
524 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
525 return;
527 mc_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
528 KM_SLEEP);
530 mutex_enter(&mc->mc_lock);
531 for (int c = 0; c < rvd->vdev_children; c++) {
532 vdev_t *tvd = rvd->vdev_child[c];
533 metaslab_group_t *mg = vdev_get_mg(tvd, mc);
536 * Skip any holes, uninitialized top-levels, or
537 * vdevs that are not in this metalab class.
539 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
540 mg->mg_class != mc) {
541 continue;
544 IMPLY(mg == mg->mg_vd->vdev_log_mg,
545 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
547 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++)
548 mc_hist[i] += mg->mg_histogram[i];
551 for (i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
552 VERIFY3U(mc_hist[i], ==, mc->mc_histogram[i]);
555 mutex_exit(&mc->mc_lock);
556 kmem_free(mc_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
560 * Calculate the metaslab class's fragmentation metric. The metric
561 * is weighted based on the space contribution of each metaslab group.
562 * The return value will be a number between 0 and 100 (inclusive), or
563 * ZFS_FRAG_INVALID if the metric has not been set. See comment above the
564 * zfs_frag_table for more information about the metric.
566 uint64_t
567 metaslab_class_fragmentation(metaslab_class_t *mc)
569 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
570 uint64_t fragmentation = 0;
572 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
574 for (int c = 0; c < rvd->vdev_children; c++) {
575 vdev_t *tvd = rvd->vdev_child[c];
576 metaslab_group_t *mg = tvd->vdev_mg;
579 * Skip any holes, uninitialized top-levels,
580 * or vdevs that are not in this metalab class.
582 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
583 mg->mg_class != mc) {
584 continue;
588 * If a metaslab group does not contain a fragmentation
589 * metric then just bail out.
591 if (mg->mg_fragmentation == ZFS_FRAG_INVALID) {
592 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
593 return (ZFS_FRAG_INVALID);
597 * Determine how much this metaslab_group is contributing
598 * to the overall pool fragmentation metric.
600 fragmentation += mg->mg_fragmentation *
601 metaslab_group_get_space(mg);
603 fragmentation /= metaslab_class_get_space(mc);
605 ASSERT3U(fragmentation, <=, 100);
606 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
607 return (fragmentation);
611 * Calculate the amount of expandable space that is available in
612 * this metaslab class. If a device is expanded then its expandable
613 * space will be the amount of allocatable space that is currently not
614 * part of this metaslab class.
616 uint64_t
617 metaslab_class_expandable_space(metaslab_class_t *mc)
619 vdev_t *rvd = mc->mc_spa->spa_root_vdev;
620 uint64_t space = 0;
622 spa_config_enter(mc->mc_spa, SCL_VDEV, FTAG, RW_READER);
623 for (int c = 0; c < rvd->vdev_children; c++) {
624 vdev_t *tvd = rvd->vdev_child[c];
625 metaslab_group_t *mg = tvd->vdev_mg;
627 if (!vdev_is_concrete(tvd) || tvd->vdev_ms_shift == 0 ||
628 mg->mg_class != mc) {
629 continue;
633 * Calculate if we have enough space to add additional
634 * metaslabs. We report the expandable space in terms
635 * of the metaslab size since that's the unit of expansion.
637 space += P2ALIGN(tvd->vdev_max_asize - tvd->vdev_asize,
638 1ULL << tvd->vdev_ms_shift);
640 spa_config_exit(mc->mc_spa, SCL_VDEV, FTAG);
641 return (space);
644 void
645 metaslab_class_evict_old(metaslab_class_t *mc, uint64_t txg)
647 multilist_t *ml = &mc->mc_metaslab_txg_list;
648 for (int i = 0; i < multilist_get_num_sublists(ml); i++) {
649 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
650 metaslab_t *msp = multilist_sublist_head(mls);
651 multilist_sublist_unlock(mls);
652 while (msp != NULL) {
653 mutex_enter(&msp->ms_lock);
656 * If the metaslab has been removed from the list
657 * (which could happen if we were at the memory limit
658 * and it was evicted during this loop), then we can't
659 * proceed and we should restart the sublist.
661 if (!multilist_link_active(&msp->ms_class_txg_node)) {
662 mutex_exit(&msp->ms_lock);
663 i--;
664 break;
666 mls = multilist_sublist_lock(ml, i);
667 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
668 multilist_sublist_unlock(mls);
669 if (txg >
670 msp->ms_selected_txg + metaslab_unload_delay &&
671 gethrtime() > msp->ms_selected_time +
672 (uint64_t)MSEC2NSEC(metaslab_unload_delay_ms)) {
673 metaslab_evict(msp, txg);
674 } else {
676 * Once we've hit a metaslab selected too
677 * recently to evict, we're done evicting for
678 * now.
680 mutex_exit(&msp->ms_lock);
681 break;
683 mutex_exit(&msp->ms_lock);
684 msp = next_msp;
689 static int
690 metaslab_compare(const void *x1, const void *x2)
692 const metaslab_t *m1 = (const metaslab_t *)x1;
693 const metaslab_t *m2 = (const metaslab_t *)x2;
695 int sort1 = 0;
696 int sort2 = 0;
697 if (m1->ms_allocator != -1 && m1->ms_primary)
698 sort1 = 1;
699 else if (m1->ms_allocator != -1 && !m1->ms_primary)
700 sort1 = 2;
701 if (m2->ms_allocator != -1 && m2->ms_primary)
702 sort2 = 1;
703 else if (m2->ms_allocator != -1 && !m2->ms_primary)
704 sort2 = 2;
707 * Sort inactive metaslabs first, then primaries, then secondaries. When
708 * selecting a metaslab to allocate from, an allocator first tries its
709 * primary, then secondary active metaslab. If it doesn't have active
710 * metaslabs, or can't allocate from them, it searches for an inactive
711 * metaslab to activate. If it can't find a suitable one, it will steal
712 * a primary or secondary metaslab from another allocator.
714 if (sort1 < sort2)
715 return (-1);
716 if (sort1 > sort2)
717 return (1);
719 int cmp = TREE_CMP(m2->ms_weight, m1->ms_weight);
720 if (likely(cmp))
721 return (cmp);
723 IMPLY(TREE_CMP(m1->ms_start, m2->ms_start) == 0, m1 == m2);
725 return (TREE_CMP(m1->ms_start, m2->ms_start));
729 * ==========================================================================
730 * Metaslab groups
731 * ==========================================================================
734 * Update the allocatable flag and the metaslab group's capacity.
735 * The allocatable flag is set to true if the capacity is below
736 * the zfs_mg_noalloc_threshold or has a fragmentation value that is
737 * greater than zfs_mg_fragmentation_threshold. If a metaslab group
738 * transitions from allocatable to non-allocatable or vice versa then the
739 * metaslab group's class is updated to reflect the transition.
741 static void
742 metaslab_group_alloc_update(metaslab_group_t *mg)
744 vdev_t *vd = mg->mg_vd;
745 metaslab_class_t *mc = mg->mg_class;
746 vdev_stat_t *vs = &vd->vdev_stat;
747 boolean_t was_allocatable;
748 boolean_t was_initialized;
750 ASSERT(vd == vd->vdev_top);
751 ASSERT3U(spa_config_held(mc->mc_spa, SCL_ALLOC, RW_READER), ==,
752 SCL_ALLOC);
754 mutex_enter(&mg->mg_lock);
755 was_allocatable = mg->mg_allocatable;
756 was_initialized = mg->mg_initialized;
758 mg->mg_free_capacity = ((vs->vs_space - vs->vs_alloc) * 100) /
759 (vs->vs_space + 1);
761 mutex_enter(&mc->mc_lock);
764 * If the metaslab group was just added then it won't
765 * have any space until we finish syncing out this txg.
766 * At that point we will consider it initialized and available
767 * for allocations. We also don't consider non-activated
768 * metaslab groups (e.g. vdevs that are in the middle of being removed)
769 * to be initialized, because they can't be used for allocation.
771 mg->mg_initialized = metaslab_group_initialized(mg);
772 if (!was_initialized && mg->mg_initialized) {
773 mc->mc_groups++;
774 } else if (was_initialized && !mg->mg_initialized) {
775 ASSERT3U(mc->mc_groups, >, 0);
776 mc->mc_groups--;
778 if (mg->mg_initialized)
779 mg->mg_no_free_space = B_FALSE;
782 * A metaslab group is considered allocatable if it has plenty
783 * of free space or is not heavily fragmented. We only take
784 * fragmentation into account if the metaslab group has a valid
785 * fragmentation metric (i.e. a value between 0 and 100).
787 mg->mg_allocatable = (mg->mg_activation_count > 0 &&
788 mg->mg_free_capacity > zfs_mg_noalloc_threshold &&
789 (mg->mg_fragmentation == ZFS_FRAG_INVALID ||
790 mg->mg_fragmentation <= zfs_mg_fragmentation_threshold));
793 * The mc_alloc_groups maintains a count of the number of
794 * groups in this metaslab class that are still above the
795 * zfs_mg_noalloc_threshold. This is used by the allocating
796 * threads to determine if they should avoid allocations to
797 * a given group. The allocator will avoid allocations to a group
798 * if that group has reached or is below the zfs_mg_noalloc_threshold
799 * and there are still other groups that are above the threshold.
800 * When a group transitions from allocatable to non-allocatable or
801 * vice versa we update the metaslab class to reflect that change.
802 * When the mc_alloc_groups value drops to 0 that means that all
803 * groups have reached the zfs_mg_noalloc_threshold making all groups
804 * eligible for allocations. This effectively means that all devices
805 * are balanced again.
807 if (was_allocatable && !mg->mg_allocatable)
808 mc->mc_alloc_groups--;
809 else if (!was_allocatable && mg->mg_allocatable)
810 mc->mc_alloc_groups++;
811 mutex_exit(&mc->mc_lock);
813 mutex_exit(&mg->mg_lock);
817 metaslab_sort_by_flushed(const void *va, const void *vb)
819 const metaslab_t *a = va;
820 const metaslab_t *b = vb;
822 int cmp = TREE_CMP(a->ms_unflushed_txg, b->ms_unflushed_txg);
823 if (likely(cmp))
824 return (cmp);
826 uint64_t a_vdev_id = a->ms_group->mg_vd->vdev_id;
827 uint64_t b_vdev_id = b->ms_group->mg_vd->vdev_id;
828 cmp = TREE_CMP(a_vdev_id, b_vdev_id);
829 if (cmp)
830 return (cmp);
832 return (TREE_CMP(a->ms_id, b->ms_id));
835 metaslab_group_t *
836 metaslab_group_create(metaslab_class_t *mc, vdev_t *vd, int allocators)
838 metaslab_group_t *mg;
840 mg = kmem_zalloc(offsetof(metaslab_group_t,
841 mg_allocator[allocators]), KM_SLEEP);
842 mutex_init(&mg->mg_lock, NULL, MUTEX_DEFAULT, NULL);
843 mutex_init(&mg->mg_ms_disabled_lock, NULL, MUTEX_DEFAULT, NULL);
844 cv_init(&mg->mg_ms_disabled_cv, NULL, CV_DEFAULT, NULL);
845 avl_create(&mg->mg_metaslab_tree, metaslab_compare,
846 sizeof (metaslab_t), offsetof(metaslab_t, ms_group_node));
847 mg->mg_vd = vd;
848 mg->mg_class = mc;
849 mg->mg_activation_count = 0;
850 mg->mg_initialized = B_FALSE;
851 mg->mg_no_free_space = B_TRUE;
852 mg->mg_allocators = allocators;
854 for (int i = 0; i < allocators; i++) {
855 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
856 zfs_refcount_create_tracked(&mga->mga_alloc_queue_depth);
859 mg->mg_taskq = taskq_create("metaslab_group_taskq", metaslab_load_pct,
860 maxclsyspri, 10, INT_MAX, TASKQ_THREADS_CPU_PCT | TASKQ_DYNAMIC);
862 return (mg);
865 void
866 metaslab_group_destroy(metaslab_group_t *mg)
868 ASSERT(mg->mg_prev == NULL);
869 ASSERT(mg->mg_next == NULL);
871 * We may have gone below zero with the activation count
872 * either because we never activated in the first place or
873 * because we're done, and possibly removing the vdev.
875 ASSERT(mg->mg_activation_count <= 0);
877 taskq_destroy(mg->mg_taskq);
878 avl_destroy(&mg->mg_metaslab_tree);
879 mutex_destroy(&mg->mg_lock);
880 mutex_destroy(&mg->mg_ms_disabled_lock);
881 cv_destroy(&mg->mg_ms_disabled_cv);
883 for (int i = 0; i < mg->mg_allocators; i++) {
884 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
885 zfs_refcount_destroy(&mga->mga_alloc_queue_depth);
887 kmem_free(mg, offsetof(metaslab_group_t,
888 mg_allocator[mg->mg_allocators]));
891 void
892 metaslab_group_activate(metaslab_group_t *mg)
894 metaslab_class_t *mc = mg->mg_class;
895 spa_t *spa = mc->mc_spa;
896 metaslab_group_t *mgprev, *mgnext;
898 ASSERT3U(spa_config_held(spa, SCL_ALLOC, RW_WRITER), !=, 0);
900 ASSERT(mg->mg_prev == NULL);
901 ASSERT(mg->mg_next == NULL);
902 ASSERT(mg->mg_activation_count <= 0);
904 if (++mg->mg_activation_count <= 0)
905 return;
907 mg->mg_aliquot = metaslab_aliquot * MAX(1,
908 vdev_get_ndisks(mg->mg_vd) - vdev_get_nparity(mg->mg_vd));
909 metaslab_group_alloc_update(mg);
911 if ((mgprev = mc->mc_allocator[0].mca_rotor) == NULL) {
912 mg->mg_prev = mg;
913 mg->mg_next = mg;
914 } else {
915 mgnext = mgprev->mg_next;
916 mg->mg_prev = mgprev;
917 mg->mg_next = mgnext;
918 mgprev->mg_next = mg;
919 mgnext->mg_prev = mg;
921 for (int i = 0; i < spa->spa_alloc_count; i++) {
922 mc->mc_allocator[i].mca_rotor = mg;
923 mg = mg->mg_next;
928 * Passivate a metaslab group and remove it from the allocation rotor.
929 * Callers must hold both the SCL_ALLOC and SCL_ZIO lock prior to passivating
930 * a metaslab group. This function will momentarily drop spa_config_locks
931 * that are lower than the SCL_ALLOC lock (see comment below).
933 void
934 metaslab_group_passivate(metaslab_group_t *mg)
936 metaslab_class_t *mc = mg->mg_class;
937 spa_t *spa = mc->mc_spa;
938 metaslab_group_t *mgprev, *mgnext;
939 int locks = spa_config_held(spa, SCL_ALL, RW_WRITER);
941 ASSERT3U(spa_config_held(spa, SCL_ALLOC | SCL_ZIO, RW_WRITER), ==,
942 (SCL_ALLOC | SCL_ZIO));
944 if (--mg->mg_activation_count != 0) {
945 for (int i = 0; i < spa->spa_alloc_count; i++)
946 ASSERT(mc->mc_allocator[i].mca_rotor != mg);
947 ASSERT(mg->mg_prev == NULL);
948 ASSERT(mg->mg_next == NULL);
949 ASSERT(mg->mg_activation_count < 0);
950 return;
954 * The spa_config_lock is an array of rwlocks, ordered as
955 * follows (from highest to lowest):
956 * SCL_CONFIG > SCL_STATE > SCL_L2ARC > SCL_ALLOC >
957 * SCL_ZIO > SCL_FREE > SCL_VDEV
958 * (For more information about the spa_config_lock see spa_misc.c)
959 * The higher the lock, the broader its coverage. When we passivate
960 * a metaslab group, we must hold both the SCL_ALLOC and the SCL_ZIO
961 * config locks. However, the metaslab group's taskq might be trying
962 * to preload metaslabs so we must drop the SCL_ZIO lock and any
963 * lower locks to allow the I/O to complete. At a minimum,
964 * we continue to hold the SCL_ALLOC lock, which prevents any future
965 * allocations from taking place and any changes to the vdev tree.
967 spa_config_exit(spa, locks & ~(SCL_ZIO - 1), spa);
968 taskq_wait_outstanding(mg->mg_taskq, 0);
969 spa_config_enter(spa, locks & ~(SCL_ZIO - 1), spa, RW_WRITER);
970 metaslab_group_alloc_update(mg);
971 for (int i = 0; i < mg->mg_allocators; i++) {
972 metaslab_group_allocator_t *mga = &mg->mg_allocator[i];
973 metaslab_t *msp = mga->mga_primary;
974 if (msp != NULL) {
975 mutex_enter(&msp->ms_lock);
976 metaslab_passivate(msp,
977 metaslab_weight_from_range_tree(msp));
978 mutex_exit(&msp->ms_lock);
980 msp = mga->mga_secondary;
981 if (msp != NULL) {
982 mutex_enter(&msp->ms_lock);
983 metaslab_passivate(msp,
984 metaslab_weight_from_range_tree(msp));
985 mutex_exit(&msp->ms_lock);
989 mgprev = mg->mg_prev;
990 mgnext = mg->mg_next;
992 if (mg == mgnext) {
993 mgnext = NULL;
994 } else {
995 mgprev->mg_next = mgnext;
996 mgnext->mg_prev = mgprev;
998 for (int i = 0; i < spa->spa_alloc_count; i++) {
999 if (mc->mc_allocator[i].mca_rotor == mg)
1000 mc->mc_allocator[i].mca_rotor = mgnext;
1003 mg->mg_prev = NULL;
1004 mg->mg_next = NULL;
1007 boolean_t
1008 metaslab_group_initialized(metaslab_group_t *mg)
1010 vdev_t *vd = mg->mg_vd;
1011 vdev_stat_t *vs = &vd->vdev_stat;
1013 return (vs->vs_space != 0 && mg->mg_activation_count > 0);
1016 uint64_t
1017 metaslab_group_get_space(metaslab_group_t *mg)
1020 * Note that the number of nodes in mg_metaslab_tree may be one less
1021 * than vdev_ms_count, due to the embedded log metaslab.
1023 mutex_enter(&mg->mg_lock);
1024 uint64_t ms_count = avl_numnodes(&mg->mg_metaslab_tree);
1025 mutex_exit(&mg->mg_lock);
1026 return ((1ULL << mg->mg_vd->vdev_ms_shift) * ms_count);
1029 void
1030 metaslab_group_histogram_verify(metaslab_group_t *mg)
1032 uint64_t *mg_hist;
1033 avl_tree_t *t = &mg->mg_metaslab_tree;
1034 uint64_t ashift = mg->mg_vd->vdev_ashift;
1036 if ((zfs_flags & ZFS_DEBUG_HISTOGRAM_VERIFY) == 0)
1037 return;
1039 mg_hist = kmem_zalloc(sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE,
1040 KM_SLEEP);
1042 ASSERT3U(RANGE_TREE_HISTOGRAM_SIZE, >=,
1043 SPACE_MAP_HISTOGRAM_SIZE + ashift);
1045 mutex_enter(&mg->mg_lock);
1046 for (metaslab_t *msp = avl_first(t);
1047 msp != NULL; msp = AVL_NEXT(t, msp)) {
1048 VERIFY3P(msp->ms_group, ==, mg);
1049 /* skip if not active */
1050 if (msp->ms_sm == NULL)
1051 continue;
1053 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1054 mg_hist[i + ashift] +=
1055 msp->ms_sm->sm_phys->smp_histogram[i];
1059 for (int i = 0; i < RANGE_TREE_HISTOGRAM_SIZE; i ++)
1060 VERIFY3U(mg_hist[i], ==, mg->mg_histogram[i]);
1062 mutex_exit(&mg->mg_lock);
1064 kmem_free(mg_hist, sizeof (uint64_t) * RANGE_TREE_HISTOGRAM_SIZE);
1067 static void
1068 metaslab_group_histogram_add(metaslab_group_t *mg, metaslab_t *msp)
1070 metaslab_class_t *mc = mg->mg_class;
1071 uint64_t ashift = mg->mg_vd->vdev_ashift;
1073 ASSERT(MUTEX_HELD(&msp->ms_lock));
1074 if (msp->ms_sm == NULL)
1075 return;
1077 mutex_enter(&mg->mg_lock);
1078 mutex_enter(&mc->mc_lock);
1079 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1080 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1081 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1082 mg->mg_histogram[i + ashift] +=
1083 msp->ms_sm->sm_phys->smp_histogram[i];
1084 mc->mc_histogram[i + ashift] +=
1085 msp->ms_sm->sm_phys->smp_histogram[i];
1087 mutex_exit(&mc->mc_lock);
1088 mutex_exit(&mg->mg_lock);
1091 void
1092 metaslab_group_histogram_remove(metaslab_group_t *mg, metaslab_t *msp)
1094 metaslab_class_t *mc = mg->mg_class;
1095 uint64_t ashift = mg->mg_vd->vdev_ashift;
1097 ASSERT(MUTEX_HELD(&msp->ms_lock));
1098 if (msp->ms_sm == NULL)
1099 return;
1101 mutex_enter(&mg->mg_lock);
1102 mutex_enter(&mc->mc_lock);
1103 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
1104 ASSERT3U(mg->mg_histogram[i + ashift], >=,
1105 msp->ms_sm->sm_phys->smp_histogram[i]);
1106 ASSERT3U(mc->mc_histogram[i + ashift], >=,
1107 msp->ms_sm->sm_phys->smp_histogram[i]);
1108 IMPLY(mg == mg->mg_vd->vdev_log_mg,
1109 mc == spa_embedded_log_class(mg->mg_vd->vdev_spa));
1111 mg->mg_histogram[i + ashift] -=
1112 msp->ms_sm->sm_phys->smp_histogram[i];
1113 mc->mc_histogram[i + ashift] -=
1114 msp->ms_sm->sm_phys->smp_histogram[i];
1116 mutex_exit(&mc->mc_lock);
1117 mutex_exit(&mg->mg_lock);
1120 static void
1121 metaslab_group_add(metaslab_group_t *mg, metaslab_t *msp)
1123 ASSERT(msp->ms_group == NULL);
1124 mutex_enter(&mg->mg_lock);
1125 msp->ms_group = mg;
1126 msp->ms_weight = 0;
1127 avl_add(&mg->mg_metaslab_tree, msp);
1128 mutex_exit(&mg->mg_lock);
1130 mutex_enter(&msp->ms_lock);
1131 metaslab_group_histogram_add(mg, msp);
1132 mutex_exit(&msp->ms_lock);
1135 static void
1136 metaslab_group_remove(metaslab_group_t *mg, metaslab_t *msp)
1138 mutex_enter(&msp->ms_lock);
1139 metaslab_group_histogram_remove(mg, msp);
1140 mutex_exit(&msp->ms_lock);
1142 mutex_enter(&mg->mg_lock);
1143 ASSERT(msp->ms_group == mg);
1144 avl_remove(&mg->mg_metaslab_tree, msp);
1146 metaslab_class_t *mc = msp->ms_group->mg_class;
1147 multilist_sublist_t *mls =
1148 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
1149 if (multilist_link_active(&msp->ms_class_txg_node))
1150 multilist_sublist_remove(mls, msp);
1151 multilist_sublist_unlock(mls);
1153 msp->ms_group = NULL;
1154 mutex_exit(&mg->mg_lock);
1157 static void
1158 metaslab_group_sort_impl(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1160 ASSERT(MUTEX_HELD(&msp->ms_lock));
1161 ASSERT(MUTEX_HELD(&mg->mg_lock));
1162 ASSERT(msp->ms_group == mg);
1164 avl_remove(&mg->mg_metaslab_tree, msp);
1165 msp->ms_weight = weight;
1166 avl_add(&mg->mg_metaslab_tree, msp);
1170 static void
1171 metaslab_group_sort(metaslab_group_t *mg, metaslab_t *msp, uint64_t weight)
1174 * Although in principle the weight can be any value, in
1175 * practice we do not use values in the range [1, 511].
1177 ASSERT(weight >= SPA_MINBLOCKSIZE || weight == 0);
1178 ASSERT(MUTEX_HELD(&msp->ms_lock));
1180 mutex_enter(&mg->mg_lock);
1181 metaslab_group_sort_impl(mg, msp, weight);
1182 mutex_exit(&mg->mg_lock);
1186 * Calculate the fragmentation for a given metaslab group. We can use
1187 * a simple average here since all metaslabs within the group must have
1188 * the same size. The return value will be a value between 0 and 100
1189 * (inclusive), or ZFS_FRAG_INVALID if less than half of the metaslab in this
1190 * group have a fragmentation metric.
1192 uint64_t
1193 metaslab_group_fragmentation(metaslab_group_t *mg)
1195 vdev_t *vd = mg->mg_vd;
1196 uint64_t fragmentation = 0;
1197 uint64_t valid_ms = 0;
1199 for (int m = 0; m < vd->vdev_ms_count; m++) {
1200 metaslab_t *msp = vd->vdev_ms[m];
1202 if (msp->ms_fragmentation == ZFS_FRAG_INVALID)
1203 continue;
1204 if (msp->ms_group != mg)
1205 continue;
1207 valid_ms++;
1208 fragmentation += msp->ms_fragmentation;
1211 if (valid_ms <= mg->mg_vd->vdev_ms_count / 2)
1212 return (ZFS_FRAG_INVALID);
1214 fragmentation /= valid_ms;
1215 ASSERT3U(fragmentation, <=, 100);
1216 return (fragmentation);
1220 * Determine if a given metaslab group should skip allocations. A metaslab
1221 * group should avoid allocations if its free capacity is less than the
1222 * zfs_mg_noalloc_threshold or its fragmentation metric is greater than
1223 * zfs_mg_fragmentation_threshold and there is at least one metaslab group
1224 * that can still handle allocations. If the allocation throttle is enabled
1225 * then we skip allocations to devices that have reached their maximum
1226 * allocation queue depth unless the selected metaslab group is the only
1227 * eligible group remaining.
1229 static boolean_t
1230 metaslab_group_allocatable(metaslab_group_t *mg, metaslab_group_t *rotor,
1231 int flags, uint64_t psize, int allocator, int d)
1233 spa_t *spa = mg->mg_vd->vdev_spa;
1234 metaslab_class_t *mc = mg->mg_class;
1237 * We can only consider skipping this metaslab group if it's
1238 * in the normal metaslab class and there are other metaslab
1239 * groups to select from. Otherwise, we always consider it eligible
1240 * for allocations.
1242 if ((mc != spa_normal_class(spa) &&
1243 mc != spa_special_class(spa) &&
1244 mc != spa_dedup_class(spa)) ||
1245 mc->mc_groups <= 1)
1246 return (B_TRUE);
1249 * If the metaslab group's mg_allocatable flag is set (see comments
1250 * in metaslab_group_alloc_update() for more information) and
1251 * the allocation throttle is disabled then allow allocations to this
1252 * device. However, if the allocation throttle is enabled then
1253 * check if we have reached our allocation limit (mga_alloc_queue_depth)
1254 * to determine if we should allow allocations to this metaslab group.
1255 * If all metaslab groups are no longer considered allocatable
1256 * (mc_alloc_groups == 0) or we're trying to allocate the smallest
1257 * gang block size then we allow allocations on this metaslab group
1258 * regardless of the mg_allocatable or throttle settings.
1260 if (mg->mg_allocatable) {
1261 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
1262 int64_t qdepth;
1263 uint64_t qmax = mga->mga_cur_max_alloc_queue_depth;
1265 if (!mc->mc_alloc_throttle_enabled)
1266 return (B_TRUE);
1269 * If this metaslab group does not have any free space, then
1270 * there is no point in looking further.
1272 if (mg->mg_no_free_space)
1273 return (B_FALSE);
1276 * Some allocations (e.g., those coming from device removal
1277 * where the * allocations are not even counted in the
1278 * metaslab * allocation queues) are allowed to bypass
1279 * the throttle.
1281 if (flags & METASLAB_DONT_THROTTLE)
1282 return (B_TRUE);
1285 * Relax allocation throttling for ditto blocks. Due to
1286 * random imbalances in allocation it tends to push copies
1287 * to one vdev, that looks a bit better at the moment.
1289 qmax = qmax * (4 + d) / 4;
1291 qdepth = zfs_refcount_count(&mga->mga_alloc_queue_depth);
1294 * If this metaslab group is below its qmax or it's
1295 * the only allocatable metaslab group, then attempt
1296 * to allocate from it.
1298 if (qdepth < qmax || mc->mc_alloc_groups == 1)
1299 return (B_TRUE);
1300 ASSERT3U(mc->mc_alloc_groups, >, 1);
1303 * Since this metaslab group is at or over its qmax, we
1304 * need to determine if there are metaslab groups after this
1305 * one that might be able to handle this allocation. This is
1306 * racy since we can't hold the locks for all metaslab
1307 * groups at the same time when we make this check.
1309 for (metaslab_group_t *mgp = mg->mg_next;
1310 mgp != rotor; mgp = mgp->mg_next) {
1311 metaslab_group_allocator_t *mgap =
1312 &mgp->mg_allocator[allocator];
1313 qmax = mgap->mga_cur_max_alloc_queue_depth;
1314 qmax = qmax * (4 + d) / 4;
1315 qdepth =
1316 zfs_refcount_count(&mgap->mga_alloc_queue_depth);
1319 * If there is another metaslab group that
1320 * might be able to handle the allocation, then
1321 * we return false so that we skip this group.
1323 if (qdepth < qmax && !mgp->mg_no_free_space)
1324 return (B_FALSE);
1328 * We didn't find another group to handle the allocation
1329 * so we can't skip this metaslab group even though
1330 * we are at or over our qmax.
1332 return (B_TRUE);
1334 } else if (mc->mc_alloc_groups == 0 || psize == SPA_MINBLOCKSIZE) {
1335 return (B_TRUE);
1337 return (B_FALSE);
1341 * ==========================================================================
1342 * Range tree callbacks
1343 * ==========================================================================
1347 * Comparison function for the private size-ordered tree using 32-bit
1348 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1350 __attribute__((always_inline)) inline
1351 static int
1352 metaslab_rangesize32_compare(const void *x1, const void *x2)
1354 const range_seg32_t *r1 = x1;
1355 const range_seg32_t *r2 = x2;
1357 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1358 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1360 int cmp = TREE_CMP(rs_size1, rs_size2);
1362 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1366 * Comparison function for the private size-ordered tree using 64-bit
1367 * ranges. Tree is sorted by size, larger sizes at the end of the tree.
1369 __attribute__((always_inline)) inline
1370 static int
1371 metaslab_rangesize64_compare(const void *x1, const void *x2)
1373 const range_seg64_t *r1 = x1;
1374 const range_seg64_t *r2 = x2;
1376 uint64_t rs_size1 = r1->rs_end - r1->rs_start;
1377 uint64_t rs_size2 = r2->rs_end - r2->rs_start;
1379 int cmp = TREE_CMP(rs_size1, rs_size2);
1381 return (cmp + !cmp * TREE_CMP(r1->rs_start, r2->rs_start));
1384 typedef struct metaslab_rt_arg {
1385 zfs_btree_t *mra_bt;
1386 uint32_t mra_floor_shift;
1387 } metaslab_rt_arg_t;
1389 struct mssa_arg {
1390 range_tree_t *rt;
1391 metaslab_rt_arg_t *mra;
1394 static void
1395 metaslab_size_sorted_add(void *arg, uint64_t start, uint64_t size)
1397 struct mssa_arg *mssap = arg;
1398 range_tree_t *rt = mssap->rt;
1399 metaslab_rt_arg_t *mrap = mssap->mra;
1400 range_seg_max_t seg = {0};
1401 rs_set_start(&seg, rt, start);
1402 rs_set_end(&seg, rt, start + size);
1403 metaslab_rt_add(rt, &seg, mrap);
1406 static void
1407 metaslab_size_tree_full_load(range_tree_t *rt)
1409 metaslab_rt_arg_t *mrap = rt->rt_arg;
1410 METASLABSTAT_BUMP(metaslabstat_reload_tree);
1411 ASSERT0(zfs_btree_numnodes(mrap->mra_bt));
1412 mrap->mra_floor_shift = 0;
1413 struct mssa_arg arg = {0};
1414 arg.rt = rt;
1415 arg.mra = mrap;
1416 range_tree_walk(rt, metaslab_size_sorted_add, &arg);
1420 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize32_in_buf,
1421 range_seg32_t, metaslab_rangesize32_compare)
1423 ZFS_BTREE_FIND_IN_BUF_FUNC(metaslab_rt_find_rangesize64_in_buf,
1424 range_seg64_t, metaslab_rangesize64_compare)
1427 * Create any block allocator specific components. The current allocators
1428 * rely on using both a size-ordered range_tree_t and an array of uint64_t's.
1430 static void
1431 metaslab_rt_create(range_tree_t *rt, void *arg)
1433 metaslab_rt_arg_t *mrap = arg;
1434 zfs_btree_t *size_tree = mrap->mra_bt;
1436 size_t size;
1437 int (*compare) (const void *, const void *);
1438 bt_find_in_buf_f bt_find;
1439 switch (rt->rt_type) {
1440 case RANGE_SEG32:
1441 size = sizeof (range_seg32_t);
1442 compare = metaslab_rangesize32_compare;
1443 bt_find = metaslab_rt_find_rangesize32_in_buf;
1444 break;
1445 case RANGE_SEG64:
1446 size = sizeof (range_seg64_t);
1447 compare = metaslab_rangesize64_compare;
1448 bt_find = metaslab_rt_find_rangesize64_in_buf;
1449 break;
1450 default:
1451 panic("Invalid range seg type %d", rt->rt_type);
1453 zfs_btree_create(size_tree, compare, bt_find, size);
1454 mrap->mra_floor_shift = metaslab_by_size_min_shift;
1457 static void
1458 metaslab_rt_destroy(range_tree_t *rt, void *arg)
1460 (void) rt;
1461 metaslab_rt_arg_t *mrap = arg;
1462 zfs_btree_t *size_tree = mrap->mra_bt;
1464 zfs_btree_destroy(size_tree);
1465 kmem_free(mrap, sizeof (*mrap));
1468 static void
1469 metaslab_rt_add(range_tree_t *rt, range_seg_t *rs, void *arg)
1471 metaslab_rt_arg_t *mrap = arg;
1472 zfs_btree_t *size_tree = mrap->mra_bt;
1474 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) <
1475 (1ULL << mrap->mra_floor_shift))
1476 return;
1478 zfs_btree_add(size_tree, rs);
1481 static void
1482 metaslab_rt_remove(range_tree_t *rt, range_seg_t *rs, void *arg)
1484 metaslab_rt_arg_t *mrap = arg;
1485 zfs_btree_t *size_tree = mrap->mra_bt;
1487 if (rs_get_end(rs, rt) - rs_get_start(rs, rt) < (1ULL <<
1488 mrap->mra_floor_shift))
1489 return;
1491 zfs_btree_remove(size_tree, rs);
1494 static void
1495 metaslab_rt_vacate(range_tree_t *rt, void *arg)
1497 metaslab_rt_arg_t *mrap = arg;
1498 zfs_btree_t *size_tree = mrap->mra_bt;
1499 zfs_btree_clear(size_tree);
1500 zfs_btree_destroy(size_tree);
1502 metaslab_rt_create(rt, arg);
1505 static const range_tree_ops_t metaslab_rt_ops = {
1506 .rtop_create = metaslab_rt_create,
1507 .rtop_destroy = metaslab_rt_destroy,
1508 .rtop_add = metaslab_rt_add,
1509 .rtop_remove = metaslab_rt_remove,
1510 .rtop_vacate = metaslab_rt_vacate
1514 * ==========================================================================
1515 * Common allocator routines
1516 * ==========================================================================
1520 * Return the maximum contiguous segment within the metaslab.
1522 uint64_t
1523 metaslab_largest_allocatable(metaslab_t *msp)
1525 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1526 range_seg_t *rs;
1528 if (t == NULL)
1529 return (0);
1530 if (zfs_btree_numnodes(t) == 0)
1531 metaslab_size_tree_full_load(msp->ms_allocatable);
1533 rs = zfs_btree_last(t, NULL);
1534 if (rs == NULL)
1535 return (0);
1537 return (rs_get_end(rs, msp->ms_allocatable) - rs_get_start(rs,
1538 msp->ms_allocatable));
1542 * Return the maximum contiguous segment within the unflushed frees of this
1543 * metaslab.
1545 static uint64_t
1546 metaslab_largest_unflushed_free(metaslab_t *msp)
1548 ASSERT(MUTEX_HELD(&msp->ms_lock));
1550 if (msp->ms_unflushed_frees == NULL)
1551 return (0);
1553 if (zfs_btree_numnodes(&msp->ms_unflushed_frees_by_size) == 0)
1554 metaslab_size_tree_full_load(msp->ms_unflushed_frees);
1555 range_seg_t *rs = zfs_btree_last(&msp->ms_unflushed_frees_by_size,
1556 NULL);
1557 if (rs == NULL)
1558 return (0);
1561 * When a range is freed from the metaslab, that range is added to
1562 * both the unflushed frees and the deferred frees. While the block
1563 * will eventually be usable, if the metaslab were loaded the range
1564 * would not be added to the ms_allocatable tree until TXG_DEFER_SIZE
1565 * txgs had passed. As a result, when attempting to estimate an upper
1566 * bound for the largest currently-usable free segment in the
1567 * metaslab, we need to not consider any ranges currently in the defer
1568 * trees. This algorithm approximates the largest available chunk in
1569 * the largest range in the unflushed_frees tree by taking the first
1570 * chunk. While this may be a poor estimate, it should only remain so
1571 * briefly and should eventually self-correct as frees are no longer
1572 * deferred. Similar logic applies to the ms_freed tree. See
1573 * metaslab_load() for more details.
1575 * There are two primary sources of inaccuracy in this estimate. Both
1576 * are tolerated for performance reasons. The first source is that we
1577 * only check the largest segment for overlaps. Smaller segments may
1578 * have more favorable overlaps with the other trees, resulting in
1579 * larger usable chunks. Second, we only look at the first chunk in
1580 * the largest segment; there may be other usable chunks in the
1581 * largest segment, but we ignore them.
1583 uint64_t rstart = rs_get_start(rs, msp->ms_unflushed_frees);
1584 uint64_t rsize = rs_get_end(rs, msp->ms_unflushed_frees) - rstart;
1585 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
1586 uint64_t start = 0;
1587 uint64_t size = 0;
1588 boolean_t found = range_tree_find_in(msp->ms_defer[t], rstart,
1589 rsize, &start, &size);
1590 if (found) {
1591 if (rstart == start)
1592 return (0);
1593 rsize = start - rstart;
1597 uint64_t start = 0;
1598 uint64_t size = 0;
1599 boolean_t found = range_tree_find_in(msp->ms_freed, rstart,
1600 rsize, &start, &size);
1601 if (found)
1602 rsize = start - rstart;
1604 return (rsize);
1607 static range_seg_t *
1608 metaslab_block_find(zfs_btree_t *t, range_tree_t *rt, uint64_t start,
1609 uint64_t size, zfs_btree_index_t *where)
1611 range_seg_t *rs;
1612 range_seg_max_t rsearch;
1614 rs_set_start(&rsearch, rt, start);
1615 rs_set_end(&rsearch, rt, start + size);
1617 rs = zfs_btree_find(t, &rsearch, where);
1618 if (rs == NULL) {
1619 rs = zfs_btree_next(t, where, where);
1622 return (rs);
1625 #if defined(WITH_DF_BLOCK_ALLOCATOR) || \
1626 defined(WITH_CF_BLOCK_ALLOCATOR)
1629 * This is a helper function that can be used by the allocator to find a
1630 * suitable block to allocate. This will search the specified B-tree looking
1631 * for a block that matches the specified criteria.
1633 static uint64_t
1634 metaslab_block_picker(range_tree_t *rt, uint64_t *cursor, uint64_t size,
1635 uint64_t max_search)
1637 if (*cursor == 0)
1638 *cursor = rt->rt_start;
1639 zfs_btree_t *bt = &rt->rt_root;
1640 zfs_btree_index_t where;
1641 range_seg_t *rs = metaslab_block_find(bt, rt, *cursor, size, &where);
1642 uint64_t first_found;
1643 int count_searched = 0;
1645 if (rs != NULL)
1646 first_found = rs_get_start(rs, rt);
1648 while (rs != NULL && (rs_get_start(rs, rt) - first_found <=
1649 max_search || count_searched < metaslab_min_search_count)) {
1650 uint64_t offset = rs_get_start(rs, rt);
1651 if (offset + size <= rs_get_end(rs, rt)) {
1652 *cursor = offset + size;
1653 return (offset);
1655 rs = zfs_btree_next(bt, &where, &where);
1656 count_searched++;
1659 *cursor = 0;
1660 return (-1ULL);
1662 #endif /* WITH_DF/CF_BLOCK_ALLOCATOR */
1664 #if defined(WITH_DF_BLOCK_ALLOCATOR)
1666 * ==========================================================================
1667 * Dynamic Fit (df) block allocator
1669 * Search for a free chunk of at least this size, starting from the last
1670 * offset (for this alignment of block) looking for up to
1671 * metaslab_df_max_search bytes (16MB). If a large enough free chunk is not
1672 * found within 16MB, then return a free chunk of exactly the requested size (or
1673 * larger).
1675 * If it seems like searching from the last offset will be unproductive, skip
1676 * that and just return a free chunk of exactly the requested size (or larger).
1677 * This is based on metaslab_df_alloc_threshold and metaslab_df_free_pct. This
1678 * mechanism is probably not very useful and may be removed in the future.
1680 * The behavior when not searching can be changed to return the largest free
1681 * chunk, instead of a free chunk of exactly the requested size, by setting
1682 * metaslab_df_use_largest_segment.
1683 * ==========================================================================
1685 static uint64_t
1686 metaslab_df_alloc(metaslab_t *msp, uint64_t size)
1689 * Find the largest power of 2 block size that evenly divides the
1690 * requested size. This is used to try to allocate blocks with similar
1691 * alignment from the same area of the metaslab (i.e. same cursor
1692 * bucket) but it does not guarantee that other allocations sizes
1693 * may exist in the same region.
1695 uint64_t align = size & -size;
1696 uint64_t *cursor = &msp->ms_lbas[highbit64(align) - 1];
1697 range_tree_t *rt = msp->ms_allocatable;
1698 uint_t free_pct = range_tree_space(rt) * 100 / msp->ms_size;
1699 uint64_t offset;
1701 ASSERT(MUTEX_HELD(&msp->ms_lock));
1704 * If we're running low on space, find a segment based on size,
1705 * rather than iterating based on offset.
1707 if (metaslab_largest_allocatable(msp) < metaslab_df_alloc_threshold ||
1708 free_pct < metaslab_df_free_pct) {
1709 offset = -1;
1710 } else {
1711 offset = metaslab_block_picker(rt,
1712 cursor, size, metaslab_df_max_search);
1715 if (offset == -1) {
1716 range_seg_t *rs;
1717 if (zfs_btree_numnodes(&msp->ms_allocatable_by_size) == 0)
1718 metaslab_size_tree_full_load(msp->ms_allocatable);
1720 if (metaslab_df_use_largest_segment) {
1721 /* use largest free segment */
1722 rs = zfs_btree_last(&msp->ms_allocatable_by_size, NULL);
1723 } else {
1724 zfs_btree_index_t where;
1725 /* use segment of this size, or next largest */
1726 rs = metaslab_block_find(&msp->ms_allocatable_by_size,
1727 rt, msp->ms_start, size, &where);
1729 if (rs != NULL && rs_get_start(rs, rt) + size <= rs_get_end(rs,
1730 rt)) {
1731 offset = rs_get_start(rs, rt);
1732 *cursor = offset + size;
1736 return (offset);
1739 const metaslab_ops_t zfs_metaslab_ops = {
1740 metaslab_df_alloc
1742 #endif /* WITH_DF_BLOCK_ALLOCATOR */
1744 #if defined(WITH_CF_BLOCK_ALLOCATOR)
1746 * ==========================================================================
1747 * Cursor fit block allocator -
1748 * Select the largest region in the metaslab, set the cursor to the beginning
1749 * of the range and the cursor_end to the end of the range. As allocations
1750 * are made advance the cursor. Continue allocating from the cursor until
1751 * the range is exhausted and then find a new range.
1752 * ==========================================================================
1754 static uint64_t
1755 metaslab_cf_alloc(metaslab_t *msp, uint64_t size)
1757 range_tree_t *rt = msp->ms_allocatable;
1758 zfs_btree_t *t = &msp->ms_allocatable_by_size;
1759 uint64_t *cursor = &msp->ms_lbas[0];
1760 uint64_t *cursor_end = &msp->ms_lbas[1];
1761 uint64_t offset = 0;
1763 ASSERT(MUTEX_HELD(&msp->ms_lock));
1765 ASSERT3U(*cursor_end, >=, *cursor);
1767 if ((*cursor + size) > *cursor_end) {
1768 range_seg_t *rs;
1770 if (zfs_btree_numnodes(t) == 0)
1771 metaslab_size_tree_full_load(msp->ms_allocatable);
1772 rs = zfs_btree_last(t, NULL);
1773 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) <
1774 size)
1775 return (-1ULL);
1777 *cursor = rs_get_start(rs, rt);
1778 *cursor_end = rs_get_end(rs, rt);
1781 offset = *cursor;
1782 *cursor += size;
1784 return (offset);
1787 const metaslab_ops_t zfs_metaslab_ops = {
1788 metaslab_cf_alloc
1790 #endif /* WITH_CF_BLOCK_ALLOCATOR */
1792 #if defined(WITH_NDF_BLOCK_ALLOCATOR)
1794 * ==========================================================================
1795 * New dynamic fit allocator -
1796 * Select a region that is large enough to allocate 2^metaslab_ndf_clump_shift
1797 * contiguous blocks. If no region is found then just use the largest segment
1798 * that remains.
1799 * ==========================================================================
1803 * Determines desired number of contiguous blocks (2^metaslab_ndf_clump_shift)
1804 * to request from the allocator.
1806 uint64_t metaslab_ndf_clump_shift = 4;
1808 static uint64_t
1809 metaslab_ndf_alloc(metaslab_t *msp, uint64_t size)
1811 zfs_btree_t *t = &msp->ms_allocatable->rt_root;
1812 range_tree_t *rt = msp->ms_allocatable;
1813 zfs_btree_index_t where;
1814 range_seg_t *rs;
1815 range_seg_max_t rsearch;
1816 uint64_t hbit = highbit64(size);
1817 uint64_t *cursor = &msp->ms_lbas[hbit - 1];
1818 uint64_t max_size = metaslab_largest_allocatable(msp);
1820 ASSERT(MUTEX_HELD(&msp->ms_lock));
1822 if (max_size < size)
1823 return (-1ULL);
1825 rs_set_start(&rsearch, rt, *cursor);
1826 rs_set_end(&rsearch, rt, *cursor + size);
1828 rs = zfs_btree_find(t, &rsearch, &where);
1829 if (rs == NULL || (rs_get_end(rs, rt) - rs_get_start(rs, rt)) < size) {
1830 t = &msp->ms_allocatable_by_size;
1832 rs_set_start(&rsearch, rt, 0);
1833 rs_set_end(&rsearch, rt, MIN(max_size, 1ULL << (hbit +
1834 metaslab_ndf_clump_shift)));
1836 rs = zfs_btree_find(t, &rsearch, &where);
1837 if (rs == NULL)
1838 rs = zfs_btree_next(t, &where, &where);
1839 ASSERT(rs != NULL);
1842 if ((rs_get_end(rs, rt) - rs_get_start(rs, rt)) >= size) {
1843 *cursor = rs_get_start(rs, rt) + size;
1844 return (rs_get_start(rs, rt));
1846 return (-1ULL);
1849 const metaslab_ops_t zfs_metaslab_ops = {
1850 metaslab_ndf_alloc
1852 #endif /* WITH_NDF_BLOCK_ALLOCATOR */
1856 * ==========================================================================
1857 * Metaslabs
1858 * ==========================================================================
1862 * Wait for any in-progress metaslab loads to complete.
1864 static void
1865 metaslab_load_wait(metaslab_t *msp)
1867 ASSERT(MUTEX_HELD(&msp->ms_lock));
1869 while (msp->ms_loading) {
1870 ASSERT(!msp->ms_loaded);
1871 cv_wait(&msp->ms_load_cv, &msp->ms_lock);
1876 * Wait for any in-progress flushing to complete.
1878 static void
1879 metaslab_flush_wait(metaslab_t *msp)
1881 ASSERT(MUTEX_HELD(&msp->ms_lock));
1883 while (msp->ms_flushing)
1884 cv_wait(&msp->ms_flush_cv, &msp->ms_lock);
1887 static unsigned int
1888 metaslab_idx_func(multilist_t *ml, void *arg)
1890 metaslab_t *msp = arg;
1893 * ms_id values are allocated sequentially, so full 64bit
1894 * division would be a waste of time, so limit it to 32 bits.
1896 return ((unsigned int)msp->ms_id % multilist_get_num_sublists(ml));
1899 uint64_t
1900 metaslab_allocated_space(metaslab_t *msp)
1902 return (msp->ms_allocated_space);
1906 * Verify that the space accounting on disk matches the in-core range_trees.
1908 static void
1909 metaslab_verify_space(metaslab_t *msp, uint64_t txg)
1911 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
1912 uint64_t allocating = 0;
1913 uint64_t sm_free_space, msp_free_space;
1915 ASSERT(MUTEX_HELD(&msp->ms_lock));
1916 ASSERT(!msp->ms_condensing);
1918 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
1919 return;
1922 * We can only verify the metaslab space when we're called
1923 * from syncing context with a loaded metaslab that has an
1924 * allocated space map. Calling this in non-syncing context
1925 * does not provide a consistent view of the metaslab since
1926 * we're performing allocations in the future.
1928 if (txg != spa_syncing_txg(spa) || msp->ms_sm == NULL ||
1929 !msp->ms_loaded)
1930 return;
1933 * Even though the smp_alloc field can get negative,
1934 * when it comes to a metaslab's space map, that should
1935 * never be the case.
1937 ASSERT3S(space_map_allocated(msp->ms_sm), >=, 0);
1939 ASSERT3U(space_map_allocated(msp->ms_sm), >=,
1940 range_tree_space(msp->ms_unflushed_frees));
1942 ASSERT3U(metaslab_allocated_space(msp), ==,
1943 space_map_allocated(msp->ms_sm) +
1944 range_tree_space(msp->ms_unflushed_allocs) -
1945 range_tree_space(msp->ms_unflushed_frees));
1947 sm_free_space = msp->ms_size - metaslab_allocated_space(msp);
1950 * Account for future allocations since we would have
1951 * already deducted that space from the ms_allocatable.
1953 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
1954 allocating +=
1955 range_tree_space(msp->ms_allocating[(txg + t) & TXG_MASK]);
1957 ASSERT3U(allocating + msp->ms_allocated_this_txg, ==,
1958 msp->ms_allocating_total);
1960 ASSERT3U(msp->ms_deferspace, ==,
1961 range_tree_space(msp->ms_defer[0]) +
1962 range_tree_space(msp->ms_defer[1]));
1964 msp_free_space = range_tree_space(msp->ms_allocatable) + allocating +
1965 msp->ms_deferspace + range_tree_space(msp->ms_freed);
1967 VERIFY3U(sm_free_space, ==, msp_free_space);
1970 static void
1971 metaslab_aux_histograms_clear(metaslab_t *msp)
1974 * Auxiliary histograms are only cleared when resetting them,
1975 * which can only happen while the metaslab is loaded.
1977 ASSERT(msp->ms_loaded);
1979 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
1980 for (int t = 0; t < TXG_DEFER_SIZE; t++)
1981 memset(msp->ms_deferhist[t], 0, sizeof (msp->ms_deferhist[t]));
1984 static void
1985 metaslab_aux_histogram_add(uint64_t *histogram, uint64_t shift,
1986 range_tree_t *rt)
1989 * This is modeled after space_map_histogram_add(), so refer to that
1990 * function for implementation details. We want this to work like
1991 * the space map histogram, and not the range tree histogram, as we
1992 * are essentially constructing a delta that will be later subtracted
1993 * from the space map histogram.
1995 int idx = 0;
1996 for (int i = shift; i < RANGE_TREE_HISTOGRAM_SIZE; i++) {
1997 ASSERT3U(i, >=, idx + shift);
1998 histogram[idx] += rt->rt_histogram[i] << (i - idx - shift);
2000 if (idx < SPACE_MAP_HISTOGRAM_SIZE - 1) {
2001 ASSERT3U(idx + shift, ==, i);
2002 idx++;
2003 ASSERT3U(idx, <, SPACE_MAP_HISTOGRAM_SIZE);
2009 * Called at every sync pass that the metaslab gets synced.
2011 * The reason is that we want our auxiliary histograms to be updated
2012 * wherever the metaslab's space map histogram is updated. This way
2013 * we stay consistent on which parts of the metaslab space map's
2014 * histogram are currently not available for allocations (e.g because
2015 * they are in the defer, freed, and freeing trees).
2017 static void
2018 metaslab_aux_histograms_update(metaslab_t *msp)
2020 space_map_t *sm = msp->ms_sm;
2021 ASSERT(sm != NULL);
2024 * This is similar to the metaslab's space map histogram updates
2025 * that take place in metaslab_sync(). The only difference is that
2026 * we only care about segments that haven't made it into the
2027 * ms_allocatable tree yet.
2029 if (msp->ms_loaded) {
2030 metaslab_aux_histograms_clear(msp);
2032 metaslab_aux_histogram_add(msp->ms_synchist,
2033 sm->sm_shift, msp->ms_freed);
2035 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2036 metaslab_aux_histogram_add(msp->ms_deferhist[t],
2037 sm->sm_shift, msp->ms_defer[t]);
2041 metaslab_aux_histogram_add(msp->ms_synchist,
2042 sm->sm_shift, msp->ms_freeing);
2046 * Called every time we are done syncing (writing to) the metaslab,
2047 * i.e. at the end of each sync pass.
2048 * [see the comment in metaslab_impl.h for ms_synchist, ms_deferhist]
2050 static void
2051 metaslab_aux_histograms_update_done(metaslab_t *msp, boolean_t defer_allowed)
2053 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2054 space_map_t *sm = msp->ms_sm;
2056 if (sm == NULL) {
2058 * We came here from metaslab_init() when creating/opening a
2059 * pool, looking at a metaslab that hasn't had any allocations
2060 * yet.
2062 return;
2066 * This is similar to the actions that we take for the ms_freed
2067 * and ms_defer trees in metaslab_sync_done().
2069 uint64_t hist_index = spa_syncing_txg(spa) % TXG_DEFER_SIZE;
2070 if (defer_allowed) {
2071 memcpy(msp->ms_deferhist[hist_index], msp->ms_synchist,
2072 sizeof (msp->ms_synchist));
2073 } else {
2074 memset(msp->ms_deferhist[hist_index], 0,
2075 sizeof (msp->ms_deferhist[hist_index]));
2077 memset(msp->ms_synchist, 0, sizeof (msp->ms_synchist));
2081 * Ensure that the metaslab's weight and fragmentation are consistent
2082 * with the contents of the histogram (either the range tree's histogram
2083 * or the space map's depending whether the metaslab is loaded).
2085 static void
2086 metaslab_verify_weight_and_frag(metaslab_t *msp)
2088 ASSERT(MUTEX_HELD(&msp->ms_lock));
2090 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
2091 return;
2094 * We can end up here from vdev_remove_complete(), in which case we
2095 * cannot do these assertions because we hold spa config locks and
2096 * thus we are not allowed to read from the DMU.
2098 * We check if the metaslab group has been removed and if that's
2099 * the case we return immediately as that would mean that we are
2100 * here from the aforementioned code path.
2102 if (msp->ms_group == NULL)
2103 return;
2106 * Devices being removed always return a weight of 0 and leave
2107 * fragmentation and ms_max_size as is - there is nothing for
2108 * us to verify here.
2110 vdev_t *vd = msp->ms_group->mg_vd;
2111 if (vd->vdev_removing)
2112 return;
2115 * If the metaslab is dirty it probably means that we've done
2116 * some allocations or frees that have changed our histograms
2117 * and thus the weight.
2119 for (int t = 0; t < TXG_SIZE; t++) {
2120 if (txg_list_member(&vd->vdev_ms_list, msp, t))
2121 return;
2125 * This verification checks that our in-memory state is consistent
2126 * with what's on disk. If the pool is read-only then there aren't
2127 * any changes and we just have the initially-loaded state.
2129 if (!spa_writeable(msp->ms_group->mg_vd->vdev_spa))
2130 return;
2132 /* some extra verification for in-core tree if you can */
2133 if (msp->ms_loaded) {
2134 range_tree_stat_verify(msp->ms_allocatable);
2135 VERIFY(space_map_histogram_verify(msp->ms_sm,
2136 msp->ms_allocatable));
2139 uint64_t weight = msp->ms_weight;
2140 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
2141 boolean_t space_based = WEIGHT_IS_SPACEBASED(msp->ms_weight);
2142 uint64_t frag = msp->ms_fragmentation;
2143 uint64_t max_segsize = msp->ms_max_size;
2145 msp->ms_weight = 0;
2146 msp->ms_fragmentation = 0;
2149 * This function is used for verification purposes and thus should
2150 * not introduce any side-effects/mutations on the system's state.
2152 * Regardless of whether metaslab_weight() thinks this metaslab
2153 * should be active or not, we want to ensure that the actual weight
2154 * (and therefore the value of ms_weight) would be the same if it
2155 * was to be recalculated at this point.
2157 * In addition we set the nodirty flag so metaslab_weight() does
2158 * not dirty the metaslab for future TXGs (e.g. when trying to
2159 * force condensing to upgrade the metaslab spacemaps).
2161 msp->ms_weight = metaslab_weight(msp, B_TRUE) | was_active;
2163 VERIFY3U(max_segsize, ==, msp->ms_max_size);
2166 * If the weight type changed then there is no point in doing
2167 * verification. Revert fields to their original values.
2169 if ((space_based && !WEIGHT_IS_SPACEBASED(msp->ms_weight)) ||
2170 (!space_based && WEIGHT_IS_SPACEBASED(msp->ms_weight))) {
2171 msp->ms_fragmentation = frag;
2172 msp->ms_weight = weight;
2173 return;
2176 VERIFY3U(msp->ms_fragmentation, ==, frag);
2177 VERIFY3U(msp->ms_weight, ==, weight);
2181 * If we're over the zfs_metaslab_mem_limit, select the loaded metaslab from
2182 * this class that was used longest ago, and attempt to unload it. We don't
2183 * want to spend too much time in this loop to prevent performance
2184 * degradation, and we expect that most of the time this operation will
2185 * succeed. Between that and the normal unloading processing during txg sync,
2186 * we expect this to keep the metaslab memory usage under control.
2188 static void
2189 metaslab_potentially_evict(metaslab_class_t *mc)
2191 #ifdef _KERNEL
2192 uint64_t allmem = arc_all_memory();
2193 uint64_t inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2194 uint64_t size = spl_kmem_cache_entry_size(zfs_btree_leaf_cache);
2195 uint_t tries = 0;
2196 for (; allmem * zfs_metaslab_mem_limit / 100 < inuse * size &&
2197 tries < multilist_get_num_sublists(&mc->mc_metaslab_txg_list) * 2;
2198 tries++) {
2199 unsigned int idx = multilist_get_random_index(
2200 &mc->mc_metaslab_txg_list);
2201 multilist_sublist_t *mls =
2202 multilist_sublist_lock(&mc->mc_metaslab_txg_list, idx);
2203 metaslab_t *msp = multilist_sublist_head(mls);
2204 multilist_sublist_unlock(mls);
2205 while (msp != NULL && allmem * zfs_metaslab_mem_limit / 100 <
2206 inuse * size) {
2207 VERIFY3P(mls, ==, multilist_sublist_lock(
2208 &mc->mc_metaslab_txg_list, idx));
2209 ASSERT3U(idx, ==,
2210 metaslab_idx_func(&mc->mc_metaslab_txg_list, msp));
2212 if (!multilist_link_active(&msp->ms_class_txg_node)) {
2213 multilist_sublist_unlock(mls);
2214 break;
2216 metaslab_t *next_msp = multilist_sublist_next(mls, msp);
2217 multilist_sublist_unlock(mls);
2219 * If the metaslab is currently loading there are two
2220 * cases. If it's the metaslab we're evicting, we
2221 * can't continue on or we'll panic when we attempt to
2222 * recursively lock the mutex. If it's another
2223 * metaslab that's loading, it can be safely skipped,
2224 * since we know it's very new and therefore not a
2225 * good eviction candidate. We check later once the
2226 * lock is held that the metaslab is fully loaded
2227 * before actually unloading it.
2229 if (msp->ms_loading) {
2230 msp = next_msp;
2231 inuse =
2232 spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2233 continue;
2236 * We can't unload metaslabs with no spacemap because
2237 * they're not ready to be unloaded yet. We can't
2238 * unload metaslabs with outstanding allocations
2239 * because doing so could cause the metaslab's weight
2240 * to decrease while it's unloaded, which violates an
2241 * invariant that we use to prevent unnecessary
2242 * loading. We also don't unload metaslabs that are
2243 * currently active because they are high-weight
2244 * metaslabs that are likely to be used in the near
2245 * future.
2247 mutex_enter(&msp->ms_lock);
2248 if (msp->ms_allocator == -1 && msp->ms_sm != NULL &&
2249 msp->ms_allocating_total == 0) {
2250 metaslab_unload(msp);
2252 mutex_exit(&msp->ms_lock);
2253 msp = next_msp;
2254 inuse = spl_kmem_cache_inuse(zfs_btree_leaf_cache);
2257 #else
2258 (void) mc, (void) zfs_metaslab_mem_limit;
2259 #endif
2262 static int
2263 metaslab_load_impl(metaslab_t *msp)
2265 int error = 0;
2267 ASSERT(MUTEX_HELD(&msp->ms_lock));
2268 ASSERT(msp->ms_loading);
2269 ASSERT(!msp->ms_condensing);
2272 * We temporarily drop the lock to unblock other operations while we
2273 * are reading the space map. Therefore, metaslab_sync() and
2274 * metaslab_sync_done() can run at the same time as we do.
2276 * If we are using the log space maps, metaslab_sync() can't write to
2277 * the metaslab's space map while we are loading as we only write to
2278 * it when we are flushing the metaslab, and that can't happen while
2279 * we are loading it.
2281 * If we are not using log space maps though, metaslab_sync() can
2282 * append to the space map while we are loading. Therefore we load
2283 * only entries that existed when we started the load. Additionally,
2284 * metaslab_sync_done() has to wait for the load to complete because
2285 * there are potential races like metaslab_load() loading parts of the
2286 * space map that are currently being appended by metaslab_sync(). If
2287 * we didn't, the ms_allocatable would have entries that
2288 * metaslab_sync_done() would try to re-add later.
2290 * That's why before dropping the lock we remember the synced length
2291 * of the metaslab and read up to that point of the space map,
2292 * ignoring entries appended by metaslab_sync() that happen after we
2293 * drop the lock.
2295 uint64_t length = msp->ms_synced_length;
2296 mutex_exit(&msp->ms_lock);
2298 hrtime_t load_start = gethrtime();
2299 metaslab_rt_arg_t *mrap;
2300 if (msp->ms_allocatable->rt_arg == NULL) {
2301 mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2302 } else {
2303 mrap = msp->ms_allocatable->rt_arg;
2304 msp->ms_allocatable->rt_ops = NULL;
2305 msp->ms_allocatable->rt_arg = NULL;
2307 mrap->mra_bt = &msp->ms_allocatable_by_size;
2308 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2310 if (msp->ms_sm != NULL) {
2311 error = space_map_load_length(msp->ms_sm, msp->ms_allocatable,
2312 SM_FREE, length);
2314 /* Now, populate the size-sorted tree. */
2315 metaslab_rt_create(msp->ms_allocatable, mrap);
2316 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2317 msp->ms_allocatable->rt_arg = mrap;
2319 struct mssa_arg arg = {0};
2320 arg.rt = msp->ms_allocatable;
2321 arg.mra = mrap;
2322 range_tree_walk(msp->ms_allocatable, metaslab_size_sorted_add,
2323 &arg);
2324 } else {
2326 * Add the size-sorted tree first, since we don't need to load
2327 * the metaslab from the spacemap.
2329 metaslab_rt_create(msp->ms_allocatable, mrap);
2330 msp->ms_allocatable->rt_ops = &metaslab_rt_ops;
2331 msp->ms_allocatable->rt_arg = mrap;
2333 * The space map has not been allocated yet, so treat
2334 * all the space in the metaslab as free and add it to the
2335 * ms_allocatable tree.
2337 range_tree_add(msp->ms_allocatable,
2338 msp->ms_start, msp->ms_size);
2340 if (msp->ms_new) {
2342 * If the ms_sm doesn't exist, this means that this
2343 * metaslab hasn't gone through metaslab_sync() and
2344 * thus has never been dirtied. So we shouldn't
2345 * expect any unflushed allocs or frees from previous
2346 * TXGs.
2348 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
2349 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
2354 * We need to grab the ms_sync_lock to prevent metaslab_sync() from
2355 * changing the ms_sm (or log_sm) and the metaslab's range trees
2356 * while we are about to use them and populate the ms_allocatable.
2357 * The ms_lock is insufficient for this because metaslab_sync() doesn't
2358 * hold the ms_lock while writing the ms_checkpointing tree to disk.
2360 mutex_enter(&msp->ms_sync_lock);
2361 mutex_enter(&msp->ms_lock);
2363 ASSERT(!msp->ms_condensing);
2364 ASSERT(!msp->ms_flushing);
2366 if (error != 0) {
2367 mutex_exit(&msp->ms_sync_lock);
2368 return (error);
2371 ASSERT3P(msp->ms_group, !=, NULL);
2372 msp->ms_loaded = B_TRUE;
2375 * Apply all the unflushed changes to ms_allocatable right
2376 * away so any manipulations we do below have a clear view
2377 * of what is allocated and what is free.
2379 range_tree_walk(msp->ms_unflushed_allocs,
2380 range_tree_remove, msp->ms_allocatable);
2381 range_tree_walk(msp->ms_unflushed_frees,
2382 range_tree_add, msp->ms_allocatable);
2384 ASSERT3P(msp->ms_group, !=, NULL);
2385 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2386 if (spa_syncing_log_sm(spa) != NULL) {
2387 ASSERT(spa_feature_is_enabled(spa,
2388 SPA_FEATURE_LOG_SPACEMAP));
2391 * If we use a log space map we add all the segments
2392 * that are in ms_unflushed_frees so they are available
2393 * for allocation.
2395 * ms_allocatable needs to contain all free segments
2396 * that are ready for allocations (thus not segments
2397 * from ms_freeing, ms_freed, and the ms_defer trees).
2398 * But if we grab the lock in this code path at a sync
2399 * pass later that 1, then it also contains the
2400 * segments of ms_freed (they were added to it earlier
2401 * in this path through ms_unflushed_frees). So we
2402 * need to remove all the segments that exist in
2403 * ms_freed from ms_allocatable as they will be added
2404 * later in metaslab_sync_done().
2406 * When there's no log space map, the ms_allocatable
2407 * correctly doesn't contain any segments that exist
2408 * in ms_freed [see ms_synced_length].
2410 range_tree_walk(msp->ms_freed,
2411 range_tree_remove, msp->ms_allocatable);
2415 * If we are not using the log space map, ms_allocatable
2416 * contains the segments that exist in the ms_defer trees
2417 * [see ms_synced_length]. Thus we need to remove them
2418 * from ms_allocatable as they will be added again in
2419 * metaslab_sync_done().
2421 * If we are using the log space map, ms_allocatable still
2422 * contains the segments that exist in the ms_defer trees.
2423 * Not because it read them through the ms_sm though. But
2424 * because these segments are part of ms_unflushed_frees
2425 * whose segments we add to ms_allocatable earlier in this
2426 * code path.
2428 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2429 range_tree_walk(msp->ms_defer[t],
2430 range_tree_remove, msp->ms_allocatable);
2434 * Call metaslab_recalculate_weight_and_sort() now that the
2435 * metaslab is loaded so we get the metaslab's real weight.
2437 * Unless this metaslab was created with older software and
2438 * has not yet been converted to use segment-based weight, we
2439 * expect the new weight to be better or equal to the weight
2440 * that the metaslab had while it was not loaded. This is
2441 * because the old weight does not take into account the
2442 * consolidation of adjacent segments between TXGs. [see
2443 * comment for ms_synchist and ms_deferhist[] for more info]
2445 uint64_t weight = msp->ms_weight;
2446 uint64_t max_size = msp->ms_max_size;
2447 metaslab_recalculate_weight_and_sort(msp);
2448 if (!WEIGHT_IS_SPACEBASED(weight))
2449 ASSERT3U(weight, <=, msp->ms_weight);
2450 msp->ms_max_size = metaslab_largest_allocatable(msp);
2451 ASSERT3U(max_size, <=, msp->ms_max_size);
2452 hrtime_t load_end = gethrtime();
2453 msp->ms_load_time = load_end;
2454 zfs_dbgmsg("metaslab_load: txg %llu, spa %s, vdev_id %llu, "
2455 "ms_id %llu, smp_length %llu, "
2456 "unflushed_allocs %llu, unflushed_frees %llu, "
2457 "freed %llu, defer %llu + %llu, unloaded time %llu ms, "
2458 "loading_time %lld ms, ms_max_size %llu, "
2459 "max size error %lld, "
2460 "old_weight %llx, new_weight %llx",
2461 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2462 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2463 (u_longlong_t)msp->ms_id,
2464 (u_longlong_t)space_map_length(msp->ms_sm),
2465 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
2466 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
2467 (u_longlong_t)range_tree_space(msp->ms_freed),
2468 (u_longlong_t)range_tree_space(msp->ms_defer[0]),
2469 (u_longlong_t)range_tree_space(msp->ms_defer[1]),
2470 (longlong_t)((load_start - msp->ms_unload_time) / 1000000),
2471 (longlong_t)((load_end - load_start) / 1000000),
2472 (u_longlong_t)msp->ms_max_size,
2473 (u_longlong_t)msp->ms_max_size - max_size,
2474 (u_longlong_t)weight, (u_longlong_t)msp->ms_weight);
2476 metaslab_verify_space(msp, spa_syncing_txg(spa));
2477 mutex_exit(&msp->ms_sync_lock);
2478 return (0);
2482 metaslab_load(metaslab_t *msp)
2484 ASSERT(MUTEX_HELD(&msp->ms_lock));
2487 * There may be another thread loading the same metaslab, if that's
2488 * the case just wait until the other thread is done and return.
2490 metaslab_load_wait(msp);
2491 if (msp->ms_loaded)
2492 return (0);
2493 VERIFY(!msp->ms_loading);
2494 ASSERT(!msp->ms_condensing);
2497 * We set the loading flag BEFORE potentially dropping the lock to
2498 * wait for an ongoing flush (see ms_flushing below). This way other
2499 * threads know that there is already a thread that is loading this
2500 * metaslab.
2502 msp->ms_loading = B_TRUE;
2505 * Wait for any in-progress flushing to finish as we drop the ms_lock
2506 * both here (during space_map_load()) and in metaslab_flush() (when
2507 * we flush our changes to the ms_sm).
2509 if (msp->ms_flushing)
2510 metaslab_flush_wait(msp);
2513 * In the possibility that we were waiting for the metaslab to be
2514 * flushed (where we temporarily dropped the ms_lock), ensure that
2515 * no one else loaded the metaslab somehow.
2517 ASSERT(!msp->ms_loaded);
2520 * If we're loading a metaslab in the normal class, consider evicting
2521 * another one to keep our memory usage under the limit defined by the
2522 * zfs_metaslab_mem_limit tunable.
2524 if (spa_normal_class(msp->ms_group->mg_class->mc_spa) ==
2525 msp->ms_group->mg_class) {
2526 metaslab_potentially_evict(msp->ms_group->mg_class);
2529 int error = metaslab_load_impl(msp);
2531 ASSERT(MUTEX_HELD(&msp->ms_lock));
2532 msp->ms_loading = B_FALSE;
2533 cv_broadcast(&msp->ms_load_cv);
2535 return (error);
2538 void
2539 metaslab_unload(metaslab_t *msp)
2541 ASSERT(MUTEX_HELD(&msp->ms_lock));
2544 * This can happen if a metaslab is selected for eviction (in
2545 * metaslab_potentially_evict) and then unloaded during spa_sync (via
2546 * metaslab_class_evict_old).
2548 if (!msp->ms_loaded)
2549 return;
2551 range_tree_vacate(msp->ms_allocatable, NULL, NULL);
2552 msp->ms_loaded = B_FALSE;
2553 msp->ms_unload_time = gethrtime();
2555 msp->ms_activation_weight = 0;
2556 msp->ms_weight &= ~METASLAB_ACTIVE_MASK;
2558 if (msp->ms_group != NULL) {
2559 metaslab_class_t *mc = msp->ms_group->mg_class;
2560 multilist_sublist_t *mls =
2561 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2562 if (multilist_link_active(&msp->ms_class_txg_node))
2563 multilist_sublist_remove(mls, msp);
2564 multilist_sublist_unlock(mls);
2566 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2567 zfs_dbgmsg("metaslab_unload: txg %llu, spa %s, vdev_id %llu, "
2568 "ms_id %llu, weight %llx, "
2569 "selected txg %llu (%llu ms ago), alloc_txg %llu, "
2570 "loaded %llu ms ago, max_size %llu",
2571 (u_longlong_t)spa_syncing_txg(spa), spa_name(spa),
2572 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
2573 (u_longlong_t)msp->ms_id,
2574 (u_longlong_t)msp->ms_weight,
2575 (u_longlong_t)msp->ms_selected_txg,
2576 (u_longlong_t)(msp->ms_unload_time -
2577 msp->ms_selected_time) / 1000 / 1000,
2578 (u_longlong_t)msp->ms_alloc_txg,
2579 (u_longlong_t)(msp->ms_unload_time -
2580 msp->ms_load_time) / 1000 / 1000,
2581 (u_longlong_t)msp->ms_max_size);
2585 * We explicitly recalculate the metaslab's weight based on its space
2586 * map (as it is now not loaded). We want unload metaslabs to always
2587 * have their weights calculated from the space map histograms, while
2588 * loaded ones have it calculated from their in-core range tree
2589 * [see metaslab_load()]. This way, the weight reflects the information
2590 * available in-core, whether it is loaded or not.
2592 * If ms_group == NULL means that we came here from metaslab_fini(),
2593 * at which point it doesn't make sense for us to do the recalculation
2594 * and the sorting.
2596 if (msp->ms_group != NULL)
2597 metaslab_recalculate_weight_and_sort(msp);
2601 * We want to optimize the memory use of the per-metaslab range
2602 * trees. To do this, we store the segments in the range trees in
2603 * units of sectors, zero-indexing from the start of the metaslab. If
2604 * the vdev_ms_shift - the vdev_ashift is less than 32, we can store
2605 * the ranges using two uint32_ts, rather than two uint64_ts.
2607 range_seg_type_t
2608 metaslab_calculate_range_tree_type(vdev_t *vdev, metaslab_t *msp,
2609 uint64_t *start, uint64_t *shift)
2611 if (vdev->vdev_ms_shift - vdev->vdev_ashift < 32 &&
2612 !zfs_metaslab_force_large_segs) {
2613 *shift = vdev->vdev_ashift;
2614 *start = msp->ms_start;
2615 return (RANGE_SEG32);
2616 } else {
2617 *shift = 0;
2618 *start = 0;
2619 return (RANGE_SEG64);
2623 void
2624 metaslab_set_selected_txg(metaslab_t *msp, uint64_t txg)
2626 ASSERT(MUTEX_HELD(&msp->ms_lock));
2627 metaslab_class_t *mc = msp->ms_group->mg_class;
2628 multilist_sublist_t *mls =
2629 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
2630 if (multilist_link_active(&msp->ms_class_txg_node))
2631 multilist_sublist_remove(mls, msp);
2632 msp->ms_selected_txg = txg;
2633 msp->ms_selected_time = gethrtime();
2634 multilist_sublist_insert_tail(mls, msp);
2635 multilist_sublist_unlock(mls);
2638 void
2639 metaslab_space_update(vdev_t *vd, metaslab_class_t *mc, int64_t alloc_delta,
2640 int64_t defer_delta, int64_t space_delta)
2642 vdev_space_update(vd, alloc_delta, defer_delta, space_delta);
2644 ASSERT3P(vd->vdev_spa->spa_root_vdev, ==, vd->vdev_parent);
2645 ASSERT(vd->vdev_ms_count != 0);
2647 metaslab_class_space_update(mc, alloc_delta, defer_delta, space_delta,
2648 vdev_deflated_space(vd, space_delta));
2652 metaslab_init(metaslab_group_t *mg, uint64_t id, uint64_t object,
2653 uint64_t txg, metaslab_t **msp)
2655 vdev_t *vd = mg->mg_vd;
2656 spa_t *spa = vd->vdev_spa;
2657 objset_t *mos = spa->spa_meta_objset;
2658 metaslab_t *ms;
2659 int error;
2661 ms = kmem_zalloc(sizeof (metaslab_t), KM_SLEEP);
2662 mutex_init(&ms->ms_lock, NULL, MUTEX_DEFAULT, NULL);
2663 mutex_init(&ms->ms_sync_lock, NULL, MUTEX_DEFAULT, NULL);
2664 cv_init(&ms->ms_load_cv, NULL, CV_DEFAULT, NULL);
2665 cv_init(&ms->ms_flush_cv, NULL, CV_DEFAULT, NULL);
2666 multilist_link_init(&ms->ms_class_txg_node);
2668 ms->ms_id = id;
2669 ms->ms_start = id << vd->vdev_ms_shift;
2670 ms->ms_size = 1ULL << vd->vdev_ms_shift;
2671 ms->ms_allocator = -1;
2672 ms->ms_new = B_TRUE;
2674 vdev_ops_t *ops = vd->vdev_ops;
2675 if (ops->vdev_op_metaslab_init != NULL)
2676 ops->vdev_op_metaslab_init(vd, &ms->ms_start, &ms->ms_size);
2679 * We only open space map objects that already exist. All others
2680 * will be opened when we finally allocate an object for it. For
2681 * readonly pools there is no need to open the space map object.
2683 * Note:
2684 * When called from vdev_expand(), we can't call into the DMU as
2685 * we are holding the spa_config_lock as a writer and we would
2686 * deadlock [see relevant comment in vdev_metaslab_init()]. in
2687 * that case, the object parameter is zero though, so we won't
2688 * call into the DMU.
2690 if (object != 0 && !(spa->spa_mode == SPA_MODE_READ &&
2691 !spa->spa_read_spacemaps)) {
2692 error = space_map_open(&ms->ms_sm, mos, object, ms->ms_start,
2693 ms->ms_size, vd->vdev_ashift);
2695 if (error != 0) {
2696 kmem_free(ms, sizeof (metaslab_t));
2697 return (error);
2700 ASSERT(ms->ms_sm != NULL);
2701 ms->ms_allocated_space = space_map_allocated(ms->ms_sm);
2704 uint64_t shift, start;
2705 range_seg_type_t type =
2706 metaslab_calculate_range_tree_type(vd, ms, &start, &shift);
2708 ms->ms_allocatable = range_tree_create(NULL, type, NULL, start, shift);
2709 for (int t = 0; t < TXG_SIZE; t++) {
2710 ms->ms_allocating[t] = range_tree_create(NULL, type,
2711 NULL, start, shift);
2713 ms->ms_freeing = range_tree_create(NULL, type, NULL, start, shift);
2714 ms->ms_freed = range_tree_create(NULL, type, NULL, start, shift);
2715 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2716 ms->ms_defer[t] = range_tree_create(NULL, type, NULL,
2717 start, shift);
2719 ms->ms_checkpointing =
2720 range_tree_create(NULL, type, NULL, start, shift);
2721 ms->ms_unflushed_allocs =
2722 range_tree_create(NULL, type, NULL, start, shift);
2724 metaslab_rt_arg_t *mrap = kmem_zalloc(sizeof (*mrap), KM_SLEEP);
2725 mrap->mra_bt = &ms->ms_unflushed_frees_by_size;
2726 mrap->mra_floor_shift = metaslab_by_size_min_shift;
2727 ms->ms_unflushed_frees = range_tree_create(&metaslab_rt_ops,
2728 type, mrap, start, shift);
2730 ms->ms_trim = range_tree_create(NULL, type, NULL, start, shift);
2732 metaslab_group_add(mg, ms);
2733 metaslab_set_fragmentation(ms, B_FALSE);
2736 * If we're opening an existing pool (txg == 0) or creating
2737 * a new one (txg == TXG_INITIAL), all space is available now.
2738 * If we're adding space to an existing pool, the new space
2739 * does not become available until after this txg has synced.
2740 * The metaslab's weight will also be initialized when we sync
2741 * out this txg. This ensures that we don't attempt to allocate
2742 * from it before we have initialized it completely.
2744 if (txg <= TXG_INITIAL) {
2745 metaslab_sync_done(ms, 0);
2746 metaslab_space_update(vd, mg->mg_class,
2747 metaslab_allocated_space(ms), 0, 0);
2750 if (txg != 0) {
2751 vdev_dirty(vd, 0, NULL, txg);
2752 vdev_dirty(vd, VDD_METASLAB, ms, txg);
2755 *msp = ms;
2757 return (0);
2760 static void
2761 metaslab_fini_flush_data(metaslab_t *msp)
2763 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2765 if (metaslab_unflushed_txg(msp) == 0) {
2766 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL),
2767 ==, NULL);
2768 return;
2770 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
2772 mutex_enter(&spa->spa_flushed_ms_lock);
2773 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
2774 mutex_exit(&spa->spa_flushed_ms_lock);
2776 spa_log_sm_decrement_mscount(spa, metaslab_unflushed_txg(msp));
2777 spa_log_summary_decrement_mscount(spa, metaslab_unflushed_txg(msp),
2778 metaslab_unflushed_dirty(msp));
2781 uint64_t
2782 metaslab_unflushed_changes_memused(metaslab_t *ms)
2784 return ((range_tree_numsegs(ms->ms_unflushed_allocs) +
2785 range_tree_numsegs(ms->ms_unflushed_frees)) *
2786 ms->ms_unflushed_allocs->rt_root.bt_elem_size);
2789 void
2790 metaslab_fini(metaslab_t *msp)
2792 metaslab_group_t *mg = msp->ms_group;
2793 vdev_t *vd = mg->mg_vd;
2794 spa_t *spa = vd->vdev_spa;
2796 metaslab_fini_flush_data(msp);
2798 metaslab_group_remove(mg, msp);
2800 mutex_enter(&msp->ms_lock);
2801 VERIFY(msp->ms_group == NULL);
2804 * If this metaslab hasn't been through metaslab_sync_done() yet its
2805 * space hasn't been accounted for in its vdev and doesn't need to be
2806 * subtracted.
2808 if (!msp->ms_new) {
2809 metaslab_space_update(vd, mg->mg_class,
2810 -metaslab_allocated_space(msp), 0, -msp->ms_size);
2813 space_map_close(msp->ms_sm);
2814 msp->ms_sm = NULL;
2816 metaslab_unload(msp);
2818 range_tree_destroy(msp->ms_allocatable);
2819 range_tree_destroy(msp->ms_freeing);
2820 range_tree_destroy(msp->ms_freed);
2822 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
2823 metaslab_unflushed_changes_memused(msp));
2824 spa->spa_unflushed_stats.sus_memused -=
2825 metaslab_unflushed_changes_memused(msp);
2826 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
2827 range_tree_destroy(msp->ms_unflushed_allocs);
2828 range_tree_destroy(msp->ms_checkpointing);
2829 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
2830 range_tree_destroy(msp->ms_unflushed_frees);
2832 for (int t = 0; t < TXG_SIZE; t++) {
2833 range_tree_destroy(msp->ms_allocating[t]);
2835 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
2836 range_tree_destroy(msp->ms_defer[t]);
2838 ASSERT0(msp->ms_deferspace);
2840 for (int t = 0; t < TXG_SIZE; t++)
2841 ASSERT(!txg_list_member(&vd->vdev_ms_list, msp, t));
2843 range_tree_vacate(msp->ms_trim, NULL, NULL);
2844 range_tree_destroy(msp->ms_trim);
2846 mutex_exit(&msp->ms_lock);
2847 cv_destroy(&msp->ms_load_cv);
2848 cv_destroy(&msp->ms_flush_cv);
2849 mutex_destroy(&msp->ms_lock);
2850 mutex_destroy(&msp->ms_sync_lock);
2851 ASSERT3U(msp->ms_allocator, ==, -1);
2853 kmem_free(msp, sizeof (metaslab_t));
2856 #define FRAGMENTATION_TABLE_SIZE 17
2859 * This table defines a segment size based fragmentation metric that will
2860 * allow each metaslab to derive its own fragmentation value. This is done
2861 * by calculating the space in each bucket of the spacemap histogram and
2862 * multiplying that by the fragmentation metric in this table. Doing
2863 * this for all buckets and dividing it by the total amount of free
2864 * space in this metaslab (i.e. the total free space in all buckets) gives
2865 * us the fragmentation metric. This means that a high fragmentation metric
2866 * equates to most of the free space being comprised of small segments.
2867 * Conversely, if the metric is low, then most of the free space is in
2868 * large segments. A 10% change in fragmentation equates to approximately
2869 * double the number of segments.
2871 * This table defines 0% fragmented space using 16MB segments. Testing has
2872 * shown that segments that are greater than or equal to 16MB do not suffer
2873 * from drastic performance problems. Using this value, we derive the rest
2874 * of the table. Since the fragmentation value is never stored on disk, it
2875 * is possible to change these calculations in the future.
2877 static const int zfs_frag_table[FRAGMENTATION_TABLE_SIZE] = {
2878 100, /* 512B */
2879 100, /* 1K */
2880 98, /* 2K */
2881 95, /* 4K */
2882 90, /* 8K */
2883 80, /* 16K */
2884 70, /* 32K */
2885 60, /* 64K */
2886 50, /* 128K */
2887 40, /* 256K */
2888 30, /* 512K */
2889 20, /* 1M */
2890 15, /* 2M */
2891 10, /* 4M */
2892 5, /* 8M */
2893 0 /* 16M */
2897 * Calculate the metaslab's fragmentation metric and set ms_fragmentation.
2898 * Setting this value to ZFS_FRAG_INVALID means that the metaslab has not
2899 * been upgraded and does not support this metric. Otherwise, the return
2900 * value should be in the range [0, 100].
2902 static void
2903 metaslab_set_fragmentation(metaslab_t *msp, boolean_t nodirty)
2905 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
2906 uint64_t fragmentation = 0;
2907 uint64_t total = 0;
2908 boolean_t feature_enabled = spa_feature_is_enabled(spa,
2909 SPA_FEATURE_SPACEMAP_HISTOGRAM);
2911 if (!feature_enabled) {
2912 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2913 return;
2917 * A null space map means that the entire metaslab is free
2918 * and thus is not fragmented.
2920 if (msp->ms_sm == NULL) {
2921 msp->ms_fragmentation = 0;
2922 return;
2926 * If this metaslab's space map has not been upgraded, flag it
2927 * so that we upgrade next time we encounter it.
2929 if (msp->ms_sm->sm_dbuf->db_size != sizeof (space_map_phys_t)) {
2930 uint64_t txg = spa_syncing_txg(spa);
2931 vdev_t *vd = msp->ms_group->mg_vd;
2934 * If we've reached the final dirty txg, then we must
2935 * be shutting down the pool. We don't want to dirty
2936 * any data past this point so skip setting the condense
2937 * flag. We can retry this action the next time the pool
2938 * is imported. We also skip marking this metaslab for
2939 * condensing if the caller has explicitly set nodirty.
2941 if (!nodirty &&
2942 spa_writeable(spa) && txg < spa_final_dirty_txg(spa)) {
2943 msp->ms_condense_wanted = B_TRUE;
2944 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
2945 zfs_dbgmsg("txg %llu, requesting force condense: "
2946 "ms_id %llu, vdev_id %llu", (u_longlong_t)txg,
2947 (u_longlong_t)msp->ms_id,
2948 (u_longlong_t)vd->vdev_id);
2950 msp->ms_fragmentation = ZFS_FRAG_INVALID;
2951 return;
2954 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
2955 uint64_t space = 0;
2956 uint8_t shift = msp->ms_sm->sm_shift;
2958 int idx = MIN(shift - SPA_MINBLOCKSHIFT + i,
2959 FRAGMENTATION_TABLE_SIZE - 1);
2961 if (msp->ms_sm->sm_phys->smp_histogram[i] == 0)
2962 continue;
2964 space = msp->ms_sm->sm_phys->smp_histogram[i] << (i + shift);
2965 total += space;
2967 ASSERT3U(idx, <, FRAGMENTATION_TABLE_SIZE);
2968 fragmentation += space * zfs_frag_table[idx];
2971 if (total > 0)
2972 fragmentation /= total;
2973 ASSERT3U(fragmentation, <=, 100);
2975 msp->ms_fragmentation = fragmentation;
2979 * Compute a weight -- a selection preference value -- for the given metaslab.
2980 * This is based on the amount of free space, the level of fragmentation,
2981 * the LBA range, and whether the metaslab is loaded.
2983 static uint64_t
2984 metaslab_space_weight(metaslab_t *msp)
2986 metaslab_group_t *mg = msp->ms_group;
2987 vdev_t *vd = mg->mg_vd;
2988 uint64_t weight, space;
2990 ASSERT(MUTEX_HELD(&msp->ms_lock));
2993 * The baseline weight is the metaslab's free space.
2995 space = msp->ms_size - metaslab_allocated_space(msp);
2997 if (metaslab_fragmentation_factor_enabled &&
2998 msp->ms_fragmentation != ZFS_FRAG_INVALID) {
3000 * Use the fragmentation information to inversely scale
3001 * down the baseline weight. We need to ensure that we
3002 * don't exclude this metaslab completely when it's 100%
3003 * fragmented. To avoid this we reduce the fragmented value
3004 * by 1.
3006 space = (space * (100 - (msp->ms_fragmentation - 1))) / 100;
3009 * If space < SPA_MINBLOCKSIZE, then we will not allocate from
3010 * this metaslab again. The fragmentation metric may have
3011 * decreased the space to something smaller than
3012 * SPA_MINBLOCKSIZE, so reset the space to SPA_MINBLOCKSIZE
3013 * so that we can consume any remaining space.
3015 if (space > 0 && space < SPA_MINBLOCKSIZE)
3016 space = SPA_MINBLOCKSIZE;
3018 weight = space;
3021 * Modern disks have uniform bit density and constant angular velocity.
3022 * Therefore, the outer recording zones are faster (higher bandwidth)
3023 * than the inner zones by the ratio of outer to inner track diameter,
3024 * which is typically around 2:1. We account for this by assigning
3025 * higher weight to lower metaslabs (multiplier ranging from 2x to 1x).
3026 * In effect, this means that we'll select the metaslab with the most
3027 * free bandwidth rather than simply the one with the most free space.
3029 if (!vd->vdev_nonrot && metaslab_lba_weighting_enabled) {
3030 weight = 2 * weight - (msp->ms_id * weight) / vd->vdev_ms_count;
3031 ASSERT(weight >= space && weight <= 2 * space);
3035 * If this metaslab is one we're actively using, adjust its
3036 * weight to make it preferable to any inactive metaslab so
3037 * we'll polish it off. If the fragmentation on this metaslab
3038 * has exceed our threshold, then don't mark it active.
3040 if (msp->ms_loaded && msp->ms_fragmentation != ZFS_FRAG_INVALID &&
3041 msp->ms_fragmentation <= zfs_metaslab_fragmentation_threshold) {
3042 weight |= (msp->ms_weight & METASLAB_ACTIVE_MASK);
3045 WEIGHT_SET_SPACEBASED(weight);
3046 return (weight);
3050 * Return the weight of the specified metaslab, according to the segment-based
3051 * weighting algorithm. The metaslab must be loaded. This function can
3052 * be called within a sync pass since it relies only on the metaslab's
3053 * range tree which is always accurate when the metaslab is loaded.
3055 static uint64_t
3056 metaslab_weight_from_range_tree(metaslab_t *msp)
3058 uint64_t weight = 0;
3059 uint32_t segments = 0;
3061 ASSERT(msp->ms_loaded);
3063 for (int i = RANGE_TREE_HISTOGRAM_SIZE - 1; i >= SPA_MINBLOCKSHIFT;
3064 i--) {
3065 uint8_t shift = msp->ms_group->mg_vd->vdev_ashift;
3066 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3068 segments <<= 1;
3069 segments += msp->ms_allocatable->rt_histogram[i];
3072 * The range tree provides more precision than the space map
3073 * and must be downgraded so that all values fit within the
3074 * space map's histogram. This allows us to compare loaded
3075 * vs. unloaded metaslabs to determine which metaslab is
3076 * considered "best".
3078 if (i > max_idx)
3079 continue;
3081 if (segments != 0) {
3082 WEIGHT_SET_COUNT(weight, segments);
3083 WEIGHT_SET_INDEX(weight, i);
3084 WEIGHT_SET_ACTIVE(weight, 0);
3085 break;
3088 return (weight);
3092 * Calculate the weight based on the on-disk histogram. Should be applied
3093 * only to unloaded metaslabs (i.e no incoming allocations) in-order to
3094 * give results consistent with the on-disk state
3096 static uint64_t
3097 metaslab_weight_from_spacemap(metaslab_t *msp)
3099 space_map_t *sm = msp->ms_sm;
3100 ASSERT(!msp->ms_loaded);
3101 ASSERT(sm != NULL);
3102 ASSERT3U(space_map_object(sm), !=, 0);
3103 ASSERT3U(sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3106 * Create a joint histogram from all the segments that have made
3107 * it to the metaslab's space map histogram, that are not yet
3108 * available for allocation because they are still in the freeing
3109 * pipeline (e.g. freeing, freed, and defer trees). Then subtract
3110 * these segments from the space map's histogram to get a more
3111 * accurate weight.
3113 uint64_t deferspace_histogram[SPACE_MAP_HISTOGRAM_SIZE] = {0};
3114 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++)
3115 deferspace_histogram[i] += msp->ms_synchist[i];
3116 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3117 for (int i = 0; i < SPACE_MAP_HISTOGRAM_SIZE; i++) {
3118 deferspace_histogram[i] += msp->ms_deferhist[t][i];
3122 uint64_t weight = 0;
3123 for (int i = SPACE_MAP_HISTOGRAM_SIZE - 1; i >= 0; i--) {
3124 ASSERT3U(sm->sm_phys->smp_histogram[i], >=,
3125 deferspace_histogram[i]);
3126 uint64_t count =
3127 sm->sm_phys->smp_histogram[i] - deferspace_histogram[i];
3128 if (count != 0) {
3129 WEIGHT_SET_COUNT(weight, count);
3130 WEIGHT_SET_INDEX(weight, i + sm->sm_shift);
3131 WEIGHT_SET_ACTIVE(weight, 0);
3132 break;
3135 return (weight);
3139 * Compute a segment-based weight for the specified metaslab. The weight
3140 * is determined by highest bucket in the histogram. The information
3141 * for the highest bucket is encoded into the weight value.
3143 static uint64_t
3144 metaslab_segment_weight(metaslab_t *msp)
3146 metaslab_group_t *mg = msp->ms_group;
3147 uint64_t weight = 0;
3148 uint8_t shift = mg->mg_vd->vdev_ashift;
3150 ASSERT(MUTEX_HELD(&msp->ms_lock));
3153 * The metaslab is completely free.
3155 if (metaslab_allocated_space(msp) == 0) {
3156 int idx = highbit64(msp->ms_size) - 1;
3157 int max_idx = SPACE_MAP_HISTOGRAM_SIZE + shift - 1;
3159 if (idx < max_idx) {
3160 WEIGHT_SET_COUNT(weight, 1ULL);
3161 WEIGHT_SET_INDEX(weight, idx);
3162 } else {
3163 WEIGHT_SET_COUNT(weight, 1ULL << (idx - max_idx));
3164 WEIGHT_SET_INDEX(weight, max_idx);
3166 WEIGHT_SET_ACTIVE(weight, 0);
3167 ASSERT(!WEIGHT_IS_SPACEBASED(weight));
3168 return (weight);
3171 ASSERT3U(msp->ms_sm->sm_dbuf->db_size, ==, sizeof (space_map_phys_t));
3174 * If the metaslab is fully allocated then just make the weight 0.
3176 if (metaslab_allocated_space(msp) == msp->ms_size)
3177 return (0);
3179 * If the metaslab is already loaded, then use the range tree to
3180 * determine the weight. Otherwise, we rely on the space map information
3181 * to generate the weight.
3183 if (msp->ms_loaded) {
3184 weight = metaslab_weight_from_range_tree(msp);
3185 } else {
3186 weight = metaslab_weight_from_spacemap(msp);
3190 * If the metaslab was active the last time we calculated its weight
3191 * then keep it active. We want to consume the entire region that
3192 * is associated with this weight.
3194 if (msp->ms_activation_weight != 0 && weight != 0)
3195 WEIGHT_SET_ACTIVE(weight, WEIGHT_GET_ACTIVE(msp->ms_weight));
3196 return (weight);
3200 * Determine if we should attempt to allocate from this metaslab. If the
3201 * metaslab is loaded, then we can determine if the desired allocation
3202 * can be satisfied by looking at the size of the maximum free segment
3203 * on that metaslab. Otherwise, we make our decision based on the metaslab's
3204 * weight. For segment-based weighting we can determine the maximum
3205 * allocation based on the index encoded in its value. For space-based
3206 * weights we rely on the entire weight (excluding the weight-type bit).
3208 static boolean_t
3209 metaslab_should_allocate(metaslab_t *msp, uint64_t asize, boolean_t try_hard)
3212 * If the metaslab is loaded, ms_max_size is definitive and we can use
3213 * the fast check. If it's not, the ms_max_size is a lower bound (once
3214 * set), and we should use the fast check as long as we're not in
3215 * try_hard and it's been less than zfs_metaslab_max_size_cache_sec
3216 * seconds since the metaslab was unloaded.
3218 if (msp->ms_loaded ||
3219 (msp->ms_max_size != 0 && !try_hard && gethrtime() <
3220 msp->ms_unload_time + SEC2NSEC(zfs_metaslab_max_size_cache_sec)))
3221 return (msp->ms_max_size >= asize);
3223 boolean_t should_allocate;
3224 if (!WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
3226 * The metaslab segment weight indicates segments in the
3227 * range [2^i, 2^(i+1)), where i is the index in the weight.
3228 * Since the asize might be in the middle of the range, we
3229 * should attempt the allocation if asize < 2^(i+1).
3231 should_allocate = (asize <
3232 1ULL << (WEIGHT_GET_INDEX(msp->ms_weight) + 1));
3233 } else {
3234 should_allocate = (asize <=
3235 (msp->ms_weight & ~METASLAB_WEIGHT_TYPE));
3238 return (should_allocate);
3241 static uint64_t
3242 metaslab_weight(metaslab_t *msp, boolean_t nodirty)
3244 vdev_t *vd = msp->ms_group->mg_vd;
3245 spa_t *spa = vd->vdev_spa;
3246 uint64_t weight;
3248 ASSERT(MUTEX_HELD(&msp->ms_lock));
3250 metaslab_set_fragmentation(msp, nodirty);
3253 * Update the maximum size. If the metaslab is loaded, this will
3254 * ensure that we get an accurate maximum size if newly freed space
3255 * has been added back into the free tree. If the metaslab is
3256 * unloaded, we check if there's a larger free segment in the
3257 * unflushed frees. This is a lower bound on the largest allocatable
3258 * segment size. Coalescing of adjacent entries may reveal larger
3259 * allocatable segments, but we aren't aware of those until loading
3260 * the space map into a range tree.
3262 if (msp->ms_loaded) {
3263 msp->ms_max_size = metaslab_largest_allocatable(msp);
3264 } else {
3265 msp->ms_max_size = MAX(msp->ms_max_size,
3266 metaslab_largest_unflushed_free(msp));
3270 * Segment-based weighting requires space map histogram support.
3272 if (zfs_metaslab_segment_weight_enabled &&
3273 spa_feature_is_enabled(spa, SPA_FEATURE_SPACEMAP_HISTOGRAM) &&
3274 (msp->ms_sm == NULL || msp->ms_sm->sm_dbuf->db_size ==
3275 sizeof (space_map_phys_t))) {
3276 weight = metaslab_segment_weight(msp);
3277 } else {
3278 weight = metaslab_space_weight(msp);
3280 return (weight);
3283 void
3284 metaslab_recalculate_weight_and_sort(metaslab_t *msp)
3286 ASSERT(MUTEX_HELD(&msp->ms_lock));
3288 /* note: we preserve the mask (e.g. indication of primary, etc..) */
3289 uint64_t was_active = msp->ms_weight & METASLAB_ACTIVE_MASK;
3290 metaslab_group_sort(msp->ms_group, msp,
3291 metaslab_weight(msp, B_FALSE) | was_active);
3294 static int
3295 metaslab_activate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3296 int allocator, uint64_t activation_weight)
3298 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
3299 ASSERT(MUTEX_HELD(&msp->ms_lock));
3302 * If we're activating for the claim code, we don't want to actually
3303 * set the metaslab up for a specific allocator.
3305 if (activation_weight == METASLAB_WEIGHT_CLAIM) {
3306 ASSERT0(msp->ms_activation_weight);
3307 msp->ms_activation_weight = msp->ms_weight;
3308 metaslab_group_sort(mg, msp, msp->ms_weight |
3309 activation_weight);
3310 return (0);
3313 metaslab_t **mspp = (activation_weight == METASLAB_WEIGHT_PRIMARY ?
3314 &mga->mga_primary : &mga->mga_secondary);
3316 mutex_enter(&mg->mg_lock);
3317 if (*mspp != NULL) {
3318 mutex_exit(&mg->mg_lock);
3319 return (EEXIST);
3322 *mspp = msp;
3323 ASSERT3S(msp->ms_allocator, ==, -1);
3324 msp->ms_allocator = allocator;
3325 msp->ms_primary = (activation_weight == METASLAB_WEIGHT_PRIMARY);
3327 ASSERT0(msp->ms_activation_weight);
3328 msp->ms_activation_weight = msp->ms_weight;
3329 metaslab_group_sort_impl(mg, msp,
3330 msp->ms_weight | activation_weight);
3331 mutex_exit(&mg->mg_lock);
3333 return (0);
3336 static int
3337 metaslab_activate(metaslab_t *msp, int allocator, uint64_t activation_weight)
3339 ASSERT(MUTEX_HELD(&msp->ms_lock));
3342 * The current metaslab is already activated for us so there
3343 * is nothing to do. Already activated though, doesn't mean
3344 * that this metaslab is activated for our allocator nor our
3345 * requested activation weight. The metaslab could have started
3346 * as an active one for our allocator but changed allocators
3347 * while we were waiting to grab its ms_lock or we stole it
3348 * [see find_valid_metaslab()]. This means that there is a
3349 * possibility of passivating a metaslab of another allocator
3350 * or from a different activation mask, from this thread.
3352 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3353 ASSERT(msp->ms_loaded);
3354 return (0);
3357 int error = metaslab_load(msp);
3358 if (error != 0) {
3359 metaslab_group_sort(msp->ms_group, msp, 0);
3360 return (error);
3364 * When entering metaslab_load() we may have dropped the
3365 * ms_lock because we were loading this metaslab, or we
3366 * were waiting for another thread to load it for us. In
3367 * that scenario, we recheck the weight of the metaslab
3368 * to see if it was activated by another thread.
3370 * If the metaslab was activated for another allocator or
3371 * it was activated with a different activation weight (e.g.
3372 * we wanted to make it a primary but it was activated as
3373 * secondary) we return error (EBUSY).
3375 * If the metaslab was activated for the same allocator
3376 * and requested activation mask, skip activating it.
3378 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) != 0) {
3379 if (msp->ms_allocator != allocator)
3380 return (EBUSY);
3382 if ((msp->ms_weight & activation_weight) == 0)
3383 return (SET_ERROR(EBUSY));
3385 EQUIV((activation_weight == METASLAB_WEIGHT_PRIMARY),
3386 msp->ms_primary);
3387 return (0);
3391 * If the metaslab has literally 0 space, it will have weight 0. In
3392 * that case, don't bother activating it. This can happen if the
3393 * metaslab had space during find_valid_metaslab, but another thread
3394 * loaded it and used all that space while we were waiting to grab the
3395 * lock.
3397 if (msp->ms_weight == 0) {
3398 ASSERT0(range_tree_space(msp->ms_allocatable));
3399 return (SET_ERROR(ENOSPC));
3402 if ((error = metaslab_activate_allocator(msp->ms_group, msp,
3403 allocator, activation_weight)) != 0) {
3404 return (error);
3407 ASSERT(msp->ms_loaded);
3408 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
3410 return (0);
3413 static void
3414 metaslab_passivate_allocator(metaslab_group_t *mg, metaslab_t *msp,
3415 uint64_t weight)
3417 ASSERT(MUTEX_HELD(&msp->ms_lock));
3418 ASSERT(msp->ms_loaded);
3420 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
3421 metaslab_group_sort(mg, msp, weight);
3422 return;
3425 mutex_enter(&mg->mg_lock);
3426 ASSERT3P(msp->ms_group, ==, mg);
3427 ASSERT3S(0, <=, msp->ms_allocator);
3428 ASSERT3U(msp->ms_allocator, <, mg->mg_allocators);
3430 metaslab_group_allocator_t *mga = &mg->mg_allocator[msp->ms_allocator];
3431 if (msp->ms_primary) {
3432 ASSERT3P(mga->mga_primary, ==, msp);
3433 ASSERT(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
3434 mga->mga_primary = NULL;
3435 } else {
3436 ASSERT3P(mga->mga_secondary, ==, msp);
3437 ASSERT(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
3438 mga->mga_secondary = NULL;
3440 msp->ms_allocator = -1;
3441 metaslab_group_sort_impl(mg, msp, weight);
3442 mutex_exit(&mg->mg_lock);
3445 static void
3446 metaslab_passivate(metaslab_t *msp, uint64_t weight)
3448 uint64_t size __maybe_unused = weight & ~METASLAB_WEIGHT_TYPE;
3451 * If size < SPA_MINBLOCKSIZE, then we will not allocate from
3452 * this metaslab again. In that case, it had better be empty,
3453 * or we would be leaving space on the table.
3455 ASSERT(!WEIGHT_IS_SPACEBASED(msp->ms_weight) ||
3456 size >= SPA_MINBLOCKSIZE ||
3457 range_tree_space(msp->ms_allocatable) == 0);
3458 ASSERT0(weight & METASLAB_ACTIVE_MASK);
3460 ASSERT(msp->ms_activation_weight != 0);
3461 msp->ms_activation_weight = 0;
3462 metaslab_passivate_allocator(msp->ms_group, msp, weight);
3463 ASSERT0(msp->ms_weight & METASLAB_ACTIVE_MASK);
3467 * Segment-based metaslabs are activated once and remain active until
3468 * we either fail an allocation attempt (similar to space-based metaslabs)
3469 * or have exhausted the free space in zfs_metaslab_switch_threshold
3470 * buckets since the metaslab was activated. This function checks to see
3471 * if we've exhausted the zfs_metaslab_switch_threshold buckets in the
3472 * metaslab and passivates it proactively. This will allow us to select a
3473 * metaslab with a larger contiguous region, if any, remaining within this
3474 * metaslab group. If we're in sync pass > 1, then we continue using this
3475 * metaslab so that we don't dirty more block and cause more sync passes.
3477 static void
3478 metaslab_segment_may_passivate(metaslab_t *msp)
3480 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3482 if (WEIGHT_IS_SPACEBASED(msp->ms_weight) || spa_sync_pass(spa) > 1)
3483 return;
3486 * Since we are in the middle of a sync pass, the most accurate
3487 * information that is accessible to us is the in-core range tree
3488 * histogram; calculate the new weight based on that information.
3490 uint64_t weight = metaslab_weight_from_range_tree(msp);
3491 int activation_idx = WEIGHT_GET_INDEX(msp->ms_activation_weight);
3492 int current_idx = WEIGHT_GET_INDEX(weight);
3494 if (current_idx <= activation_idx - zfs_metaslab_switch_threshold)
3495 metaslab_passivate(msp, weight);
3498 static void
3499 metaslab_preload(void *arg)
3501 metaslab_t *msp = arg;
3502 metaslab_class_t *mc = msp->ms_group->mg_class;
3503 spa_t *spa = mc->mc_spa;
3504 fstrans_cookie_t cookie = spl_fstrans_mark();
3506 ASSERT(!MUTEX_HELD(&msp->ms_group->mg_lock));
3508 mutex_enter(&msp->ms_lock);
3509 (void) metaslab_load(msp);
3510 metaslab_set_selected_txg(msp, spa_syncing_txg(spa));
3511 mutex_exit(&msp->ms_lock);
3512 spl_fstrans_unmark(cookie);
3515 static void
3516 metaslab_group_preload(metaslab_group_t *mg)
3518 spa_t *spa = mg->mg_vd->vdev_spa;
3519 metaslab_t *msp;
3520 avl_tree_t *t = &mg->mg_metaslab_tree;
3521 int m = 0;
3523 if (spa_shutting_down(spa) || !metaslab_preload_enabled) {
3524 taskq_wait_outstanding(mg->mg_taskq, 0);
3525 return;
3528 mutex_enter(&mg->mg_lock);
3531 * Load the next potential metaslabs
3533 for (msp = avl_first(t); msp != NULL; msp = AVL_NEXT(t, msp)) {
3534 ASSERT3P(msp->ms_group, ==, mg);
3537 * We preload only the maximum number of metaslabs specified
3538 * by metaslab_preload_limit. If a metaslab is being forced
3539 * to condense then we preload it too. This will ensure
3540 * that force condensing happens in the next txg.
3542 if (++m > metaslab_preload_limit && !msp->ms_condense_wanted) {
3543 continue;
3546 VERIFY(taskq_dispatch(mg->mg_taskq, metaslab_preload,
3547 msp, TQ_SLEEP) != TASKQID_INVALID);
3549 mutex_exit(&mg->mg_lock);
3553 * Determine if the space map's on-disk footprint is past our tolerance for
3554 * inefficiency. We would like to use the following criteria to make our
3555 * decision:
3557 * 1. Do not condense if the size of the space map object would dramatically
3558 * increase as a result of writing out the free space range tree.
3560 * 2. Condense if the on on-disk space map representation is at least
3561 * zfs_condense_pct/100 times the size of the optimal representation
3562 * (i.e. zfs_condense_pct = 110 and in-core = 1MB, optimal = 1.1MB).
3564 * 3. Do not condense if the on-disk size of the space map does not actually
3565 * decrease.
3567 * Unfortunately, we cannot compute the on-disk size of the space map in this
3568 * context because we cannot accurately compute the effects of compression, etc.
3569 * Instead, we apply the heuristic described in the block comment for
3570 * zfs_metaslab_condense_block_threshold - we only condense if the space used
3571 * is greater than a threshold number of blocks.
3573 static boolean_t
3574 metaslab_should_condense(metaslab_t *msp)
3576 space_map_t *sm = msp->ms_sm;
3577 vdev_t *vd = msp->ms_group->mg_vd;
3578 uint64_t vdev_blocksize = 1ULL << vd->vdev_ashift;
3580 ASSERT(MUTEX_HELD(&msp->ms_lock));
3581 ASSERT(msp->ms_loaded);
3582 ASSERT(sm != NULL);
3583 ASSERT3U(spa_sync_pass(vd->vdev_spa), ==, 1);
3586 * We always condense metaslabs that are empty and metaslabs for
3587 * which a condense request has been made.
3589 if (range_tree_numsegs(msp->ms_allocatable) == 0 ||
3590 msp->ms_condense_wanted)
3591 return (B_TRUE);
3593 uint64_t record_size = MAX(sm->sm_blksz, vdev_blocksize);
3594 uint64_t object_size = space_map_length(sm);
3595 uint64_t optimal_size = space_map_estimate_optimal_size(sm,
3596 msp->ms_allocatable, SM_NO_VDEVID);
3598 return (object_size >= (optimal_size * zfs_condense_pct / 100) &&
3599 object_size > zfs_metaslab_condense_block_threshold * record_size);
3603 * Condense the on-disk space map representation to its minimized form.
3604 * The minimized form consists of a small number of allocations followed
3605 * by the entries of the free range tree (ms_allocatable). The condensed
3606 * spacemap contains all the entries of previous TXGs (including those in
3607 * the pool-wide log spacemaps; thus this is effectively a superset of
3608 * metaslab_flush()), but this TXG's entries still need to be written.
3610 static void
3611 metaslab_condense(metaslab_t *msp, dmu_tx_t *tx)
3613 range_tree_t *condense_tree;
3614 space_map_t *sm = msp->ms_sm;
3615 uint64_t txg = dmu_tx_get_txg(tx);
3616 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3618 ASSERT(MUTEX_HELD(&msp->ms_lock));
3619 ASSERT(msp->ms_loaded);
3620 ASSERT(msp->ms_sm != NULL);
3623 * In order to condense the space map, we need to change it so it
3624 * only describes which segments are currently allocated and free.
3626 * All the current free space resides in the ms_allocatable, all
3627 * the ms_defer trees, and all the ms_allocating trees. We ignore
3628 * ms_freed because it is empty because we're in sync pass 1. We
3629 * ignore ms_freeing because these changes are not yet reflected
3630 * in the spacemap (they will be written later this txg).
3632 * So to truncate the space map to represent all the entries of
3633 * previous TXGs we do the following:
3635 * 1] We create a range tree (condense tree) that is 100% empty.
3636 * 2] We add to it all segments found in the ms_defer trees
3637 * as those segments are marked as free in the original space
3638 * map. We do the same with the ms_allocating trees for the same
3639 * reason. Adding these segments should be a relatively
3640 * inexpensive operation since we expect these trees to have a
3641 * small number of nodes.
3642 * 3] We vacate any unflushed allocs, since they are not frees we
3643 * need to add to the condense tree. Then we vacate any
3644 * unflushed frees as they should already be part of ms_allocatable.
3645 * 4] At this point, we would ideally like to add all segments
3646 * in the ms_allocatable tree from the condense tree. This way
3647 * we would write all the entries of the condense tree as the
3648 * condensed space map, which would only contain freed
3649 * segments with everything else assumed to be allocated.
3651 * Doing so can be prohibitively expensive as ms_allocatable can
3652 * be large, and therefore computationally expensive to add to
3653 * the condense_tree. Instead we first sync out an entry marking
3654 * everything as allocated, then the condense_tree and then the
3655 * ms_allocatable, in the condensed space map. While this is not
3656 * optimal, it is typically close to optimal and more importantly
3657 * much cheaper to compute.
3659 * 5] Finally, as both of the unflushed trees were written to our
3660 * new and condensed metaslab space map, we basically flushed
3661 * all the unflushed changes to disk, thus we call
3662 * metaslab_flush_update().
3664 ASSERT3U(spa_sync_pass(spa), ==, 1);
3665 ASSERT(range_tree_is_empty(msp->ms_freed)); /* since it is pass 1 */
3667 zfs_dbgmsg("condensing: txg %llu, msp[%llu] %px, vdev id %llu, "
3668 "spa %s, smp size %llu, segments %llu, forcing condense=%s",
3669 (u_longlong_t)txg, (u_longlong_t)msp->ms_id, msp,
3670 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3671 spa->spa_name, (u_longlong_t)space_map_length(msp->ms_sm),
3672 (u_longlong_t)range_tree_numsegs(msp->ms_allocatable),
3673 msp->ms_condense_wanted ? "TRUE" : "FALSE");
3675 msp->ms_condense_wanted = B_FALSE;
3677 range_seg_type_t type;
3678 uint64_t shift, start;
3679 type = metaslab_calculate_range_tree_type(msp->ms_group->mg_vd, msp,
3680 &start, &shift);
3682 condense_tree = range_tree_create(NULL, type, NULL, start, shift);
3684 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3685 range_tree_walk(msp->ms_defer[t],
3686 range_tree_add, condense_tree);
3689 for (int t = 0; t < TXG_CONCURRENT_STATES; t++) {
3690 range_tree_walk(msp->ms_allocating[(txg + t) & TXG_MASK],
3691 range_tree_add, condense_tree);
3694 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3695 metaslab_unflushed_changes_memused(msp));
3696 spa->spa_unflushed_stats.sus_memused -=
3697 metaslab_unflushed_changes_memused(msp);
3698 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3699 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3702 * We're about to drop the metaslab's lock thus allowing other
3703 * consumers to change it's content. Set the metaslab's ms_condensing
3704 * flag to ensure that allocations on this metaslab do not occur
3705 * while we're in the middle of committing it to disk. This is only
3706 * critical for ms_allocatable as all other range trees use per TXG
3707 * views of their content.
3709 msp->ms_condensing = B_TRUE;
3711 mutex_exit(&msp->ms_lock);
3712 uint64_t object = space_map_object(msp->ms_sm);
3713 space_map_truncate(sm,
3714 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
3715 zfs_metaslab_sm_blksz_with_log : zfs_metaslab_sm_blksz_no_log, tx);
3718 * space_map_truncate() may have reallocated the spacemap object.
3719 * If so, update the vdev_ms_array.
3721 if (space_map_object(msp->ms_sm) != object) {
3722 object = space_map_object(msp->ms_sm);
3723 dmu_write(spa->spa_meta_objset,
3724 msp->ms_group->mg_vd->vdev_ms_array, sizeof (uint64_t) *
3725 msp->ms_id, sizeof (uint64_t), &object, tx);
3729 * Note:
3730 * When the log space map feature is enabled, each space map will
3731 * always have ALLOCS followed by FREES for each sync pass. This is
3732 * typically true even when the log space map feature is disabled,
3733 * except from the case where a metaslab goes through metaslab_sync()
3734 * and gets condensed. In that case the metaslab's space map will have
3735 * ALLOCS followed by FREES (due to condensing) followed by ALLOCS
3736 * followed by FREES (due to space_map_write() in metaslab_sync()) for
3737 * sync pass 1.
3739 range_tree_t *tmp_tree = range_tree_create(NULL, type, NULL, start,
3740 shift);
3741 range_tree_add(tmp_tree, msp->ms_start, msp->ms_size);
3742 space_map_write(sm, tmp_tree, SM_ALLOC, SM_NO_VDEVID, tx);
3743 space_map_write(sm, msp->ms_allocatable, SM_FREE, SM_NO_VDEVID, tx);
3744 space_map_write(sm, condense_tree, SM_FREE, SM_NO_VDEVID, tx);
3746 range_tree_vacate(condense_tree, NULL, NULL);
3747 range_tree_destroy(condense_tree);
3748 range_tree_vacate(tmp_tree, NULL, NULL);
3749 range_tree_destroy(tmp_tree);
3750 mutex_enter(&msp->ms_lock);
3752 msp->ms_condensing = B_FALSE;
3753 metaslab_flush_update(msp, tx);
3756 static void
3757 metaslab_unflushed_add(metaslab_t *msp, dmu_tx_t *tx)
3759 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3760 ASSERT(spa_syncing_log_sm(spa) != NULL);
3761 ASSERT(msp->ms_sm != NULL);
3762 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3763 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3765 mutex_enter(&spa->spa_flushed_ms_lock);
3766 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3767 metaslab_set_unflushed_dirty(msp, B_TRUE);
3768 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3769 mutex_exit(&spa->spa_flushed_ms_lock);
3771 spa_log_sm_increment_current_mscount(spa);
3772 spa_log_summary_add_flushed_metaslab(spa, B_TRUE);
3775 void
3776 metaslab_unflushed_bump(metaslab_t *msp, dmu_tx_t *tx, boolean_t dirty)
3778 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3779 ASSERT(spa_syncing_log_sm(spa) != NULL);
3780 ASSERT(msp->ms_sm != NULL);
3781 ASSERT(metaslab_unflushed_txg(msp) != 0);
3782 ASSERT3P(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL), ==, msp);
3783 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
3784 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
3786 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(spa));
3788 /* update metaslab's position in our flushing tree */
3789 uint64_t ms_prev_flushed_txg = metaslab_unflushed_txg(msp);
3790 boolean_t ms_prev_flushed_dirty = metaslab_unflushed_dirty(msp);
3791 mutex_enter(&spa->spa_flushed_ms_lock);
3792 avl_remove(&spa->spa_metaslabs_by_flushed, msp);
3793 metaslab_set_unflushed_txg(msp, spa_syncing_txg(spa), tx);
3794 metaslab_set_unflushed_dirty(msp, dirty);
3795 avl_add(&spa->spa_metaslabs_by_flushed, msp);
3796 mutex_exit(&spa->spa_flushed_ms_lock);
3798 /* update metaslab counts of spa_log_sm_t nodes */
3799 spa_log_sm_decrement_mscount(spa, ms_prev_flushed_txg);
3800 spa_log_sm_increment_current_mscount(spa);
3802 /* update log space map summary */
3803 spa_log_summary_decrement_mscount(spa, ms_prev_flushed_txg,
3804 ms_prev_flushed_dirty);
3805 spa_log_summary_add_flushed_metaslab(spa, dirty);
3807 /* cleanup obsolete logs if any */
3808 spa_cleanup_old_sm_logs(spa, tx);
3812 * Called when the metaslab has been flushed (its own spacemap now reflects
3813 * all the contents of the pool-wide spacemap log). Updates the metaslab's
3814 * metadata and any pool-wide related log space map data (e.g. summary,
3815 * obsolete logs, etc..) to reflect that.
3817 static void
3818 metaslab_flush_update(metaslab_t *msp, dmu_tx_t *tx)
3820 metaslab_group_t *mg = msp->ms_group;
3821 spa_t *spa = mg->mg_vd->vdev_spa;
3823 ASSERT(MUTEX_HELD(&msp->ms_lock));
3825 ASSERT3U(spa_sync_pass(spa), ==, 1);
3828 * Just because a metaslab got flushed, that doesn't mean that
3829 * it will pass through metaslab_sync_done(). Thus, make sure to
3830 * update ms_synced_length here in case it doesn't.
3832 msp->ms_synced_length = space_map_length(msp->ms_sm);
3835 * We may end up here from metaslab_condense() without the
3836 * feature being active. In that case this is a no-op.
3838 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP) ||
3839 metaslab_unflushed_txg(msp) == 0)
3840 return;
3842 metaslab_unflushed_bump(msp, tx, B_FALSE);
3845 boolean_t
3846 metaslab_flush(metaslab_t *msp, dmu_tx_t *tx)
3848 spa_t *spa = msp->ms_group->mg_vd->vdev_spa;
3850 ASSERT(MUTEX_HELD(&msp->ms_lock));
3851 ASSERT3U(spa_sync_pass(spa), ==, 1);
3852 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
3854 ASSERT(msp->ms_sm != NULL);
3855 ASSERT(metaslab_unflushed_txg(msp) != 0);
3856 ASSERT(avl_find(&spa->spa_metaslabs_by_flushed, msp, NULL) != NULL);
3859 * There is nothing wrong with flushing the same metaslab twice, as
3860 * this codepath should work on that case. However, the current
3861 * flushing scheme makes sure to avoid this situation as we would be
3862 * making all these calls without having anything meaningful to write
3863 * to disk. We assert this behavior here.
3865 ASSERT3U(metaslab_unflushed_txg(msp), <, dmu_tx_get_txg(tx));
3868 * We can not flush while loading, because then we would
3869 * not load the ms_unflushed_{allocs,frees}.
3871 if (msp->ms_loading)
3872 return (B_FALSE);
3874 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3875 metaslab_verify_weight_and_frag(msp);
3878 * Metaslab condensing is effectively flushing. Therefore if the
3879 * metaslab can be condensed we can just condense it instead of
3880 * flushing it.
3882 * Note that metaslab_condense() does call metaslab_flush_update()
3883 * so we can just return immediately after condensing. We also
3884 * don't need to care about setting ms_flushing or broadcasting
3885 * ms_flush_cv, even if we temporarily drop the ms_lock in
3886 * metaslab_condense(), as the metaslab is already loaded.
3888 if (msp->ms_loaded && metaslab_should_condense(msp)) {
3889 metaslab_group_t *mg = msp->ms_group;
3892 * For all histogram operations below refer to the
3893 * comments of metaslab_sync() where we follow a
3894 * similar procedure.
3896 metaslab_group_histogram_verify(mg);
3897 metaslab_class_histogram_verify(mg->mg_class);
3898 metaslab_group_histogram_remove(mg, msp);
3900 metaslab_condense(msp, tx);
3902 space_map_histogram_clear(msp->ms_sm);
3903 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
3904 ASSERT(range_tree_is_empty(msp->ms_freed));
3905 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
3906 space_map_histogram_add(msp->ms_sm,
3907 msp->ms_defer[t], tx);
3909 metaslab_aux_histograms_update(msp);
3911 metaslab_group_histogram_add(mg, msp);
3912 metaslab_group_histogram_verify(mg);
3913 metaslab_class_histogram_verify(mg->mg_class);
3915 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3918 * Since we recreated the histogram (and potentially
3919 * the ms_sm too while condensing) ensure that the
3920 * weight is updated too because we are not guaranteed
3921 * that this metaslab is dirty and will go through
3922 * metaslab_sync_done().
3924 metaslab_recalculate_weight_and_sort(msp);
3925 return (B_TRUE);
3928 msp->ms_flushing = B_TRUE;
3929 uint64_t sm_len_before = space_map_length(msp->ms_sm);
3931 mutex_exit(&msp->ms_lock);
3932 space_map_write(msp->ms_sm, msp->ms_unflushed_allocs, SM_ALLOC,
3933 SM_NO_VDEVID, tx);
3934 space_map_write(msp->ms_sm, msp->ms_unflushed_frees, SM_FREE,
3935 SM_NO_VDEVID, tx);
3936 mutex_enter(&msp->ms_lock);
3938 uint64_t sm_len_after = space_map_length(msp->ms_sm);
3939 if (zfs_flags & ZFS_DEBUG_LOG_SPACEMAP) {
3940 zfs_dbgmsg("flushing: txg %llu, spa %s, vdev_id %llu, "
3941 "ms_id %llu, unflushed_allocs %llu, unflushed_frees %llu, "
3942 "appended %llu bytes", (u_longlong_t)dmu_tx_get_txg(tx),
3943 spa_name(spa),
3944 (u_longlong_t)msp->ms_group->mg_vd->vdev_id,
3945 (u_longlong_t)msp->ms_id,
3946 (u_longlong_t)range_tree_space(msp->ms_unflushed_allocs),
3947 (u_longlong_t)range_tree_space(msp->ms_unflushed_frees),
3948 (u_longlong_t)(sm_len_after - sm_len_before));
3951 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
3952 metaslab_unflushed_changes_memused(msp));
3953 spa->spa_unflushed_stats.sus_memused -=
3954 metaslab_unflushed_changes_memused(msp);
3955 range_tree_vacate(msp->ms_unflushed_allocs, NULL, NULL);
3956 range_tree_vacate(msp->ms_unflushed_frees, NULL, NULL);
3958 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3959 metaslab_verify_weight_and_frag(msp);
3961 metaslab_flush_update(msp, tx);
3963 metaslab_verify_space(msp, dmu_tx_get_txg(tx));
3964 metaslab_verify_weight_and_frag(msp);
3966 msp->ms_flushing = B_FALSE;
3967 cv_broadcast(&msp->ms_flush_cv);
3968 return (B_TRUE);
3972 * Write a metaslab to disk in the context of the specified transaction group.
3974 void
3975 metaslab_sync(metaslab_t *msp, uint64_t txg)
3977 metaslab_group_t *mg = msp->ms_group;
3978 vdev_t *vd = mg->mg_vd;
3979 spa_t *spa = vd->vdev_spa;
3980 objset_t *mos = spa_meta_objset(spa);
3981 range_tree_t *alloctree = msp->ms_allocating[txg & TXG_MASK];
3982 dmu_tx_t *tx;
3984 ASSERT(!vd->vdev_ishole);
3987 * This metaslab has just been added so there's no work to do now.
3989 if (msp->ms_new) {
3990 ASSERT0(range_tree_space(alloctree));
3991 ASSERT0(range_tree_space(msp->ms_freeing));
3992 ASSERT0(range_tree_space(msp->ms_freed));
3993 ASSERT0(range_tree_space(msp->ms_checkpointing));
3994 ASSERT0(range_tree_space(msp->ms_trim));
3995 return;
3999 * Normally, we don't want to process a metaslab if there are no
4000 * allocations or frees to perform. However, if the metaslab is being
4001 * forced to condense, it's loaded and we're not beyond the final
4002 * dirty txg, we need to let it through. Not condensing beyond the
4003 * final dirty txg prevents an issue where metaslabs that need to be
4004 * condensed but were loaded for other reasons could cause a panic
4005 * here. By only checking the txg in that branch of the conditional,
4006 * we preserve the utility of the VERIFY statements in all other
4007 * cases.
4009 if (range_tree_is_empty(alloctree) &&
4010 range_tree_is_empty(msp->ms_freeing) &&
4011 range_tree_is_empty(msp->ms_checkpointing) &&
4012 !(msp->ms_loaded && msp->ms_condense_wanted &&
4013 txg <= spa_final_dirty_txg(spa)))
4014 return;
4017 VERIFY3U(txg, <=, spa_final_dirty_txg(spa));
4020 * The only state that can actually be changing concurrently
4021 * with metaslab_sync() is the metaslab's ms_allocatable. No
4022 * other thread can be modifying this txg's alloc, freeing,
4023 * freed, or space_map_phys_t. We drop ms_lock whenever we
4024 * could call into the DMU, because the DMU can call down to
4025 * us (e.g. via zio_free()) at any time.
4027 * The spa_vdev_remove_thread() can be reading metaslab state
4028 * concurrently, and it is locked out by the ms_sync_lock.
4029 * Note that the ms_lock is insufficient for this, because it
4030 * is dropped by space_map_write().
4032 tx = dmu_tx_create_assigned(spa_get_dsl(spa), txg);
4035 * Generate a log space map if one doesn't exist already.
4037 spa_generate_syncing_log_sm(spa, tx);
4039 if (msp->ms_sm == NULL) {
4040 uint64_t new_object = space_map_alloc(mos,
4041 spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP) ?
4042 zfs_metaslab_sm_blksz_with_log :
4043 zfs_metaslab_sm_blksz_no_log, tx);
4044 VERIFY3U(new_object, !=, 0);
4046 dmu_write(mos, vd->vdev_ms_array, sizeof (uint64_t) *
4047 msp->ms_id, sizeof (uint64_t), &new_object, tx);
4049 VERIFY0(space_map_open(&msp->ms_sm, mos, new_object,
4050 msp->ms_start, msp->ms_size, vd->vdev_ashift));
4051 ASSERT(msp->ms_sm != NULL);
4053 ASSERT(range_tree_is_empty(msp->ms_unflushed_allocs));
4054 ASSERT(range_tree_is_empty(msp->ms_unflushed_frees));
4055 ASSERT0(metaslab_allocated_space(msp));
4058 if (!range_tree_is_empty(msp->ms_checkpointing) &&
4059 vd->vdev_checkpoint_sm == NULL) {
4060 ASSERT(spa_has_checkpoint(spa));
4062 uint64_t new_object = space_map_alloc(mos,
4063 zfs_vdev_standard_sm_blksz, tx);
4064 VERIFY3U(new_object, !=, 0);
4066 VERIFY0(space_map_open(&vd->vdev_checkpoint_sm,
4067 mos, new_object, 0, vd->vdev_asize, vd->vdev_ashift));
4068 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4071 * We save the space map object as an entry in vdev_top_zap
4072 * so it can be retrieved when the pool is reopened after an
4073 * export or through zdb.
4075 VERIFY0(zap_add(vd->vdev_spa->spa_meta_objset,
4076 vd->vdev_top_zap, VDEV_TOP_ZAP_POOL_CHECKPOINT_SM,
4077 sizeof (new_object), 1, &new_object, tx));
4080 mutex_enter(&msp->ms_sync_lock);
4081 mutex_enter(&msp->ms_lock);
4084 * Note: metaslab_condense() clears the space map's histogram.
4085 * Therefore we must verify and remove this histogram before
4086 * condensing.
4088 metaslab_group_histogram_verify(mg);
4089 metaslab_class_histogram_verify(mg->mg_class);
4090 metaslab_group_histogram_remove(mg, msp);
4092 if (spa->spa_sync_pass == 1 && msp->ms_loaded &&
4093 metaslab_should_condense(msp))
4094 metaslab_condense(msp, tx);
4097 * We'll be going to disk to sync our space accounting, thus we
4098 * drop the ms_lock during that time so allocations coming from
4099 * open-context (ZIL) for future TXGs do not block.
4101 mutex_exit(&msp->ms_lock);
4102 space_map_t *log_sm = spa_syncing_log_sm(spa);
4103 if (log_sm != NULL) {
4104 ASSERT(spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4105 if (metaslab_unflushed_txg(msp) == 0)
4106 metaslab_unflushed_add(msp, tx);
4107 else if (!metaslab_unflushed_dirty(msp))
4108 metaslab_unflushed_bump(msp, tx, B_TRUE);
4110 space_map_write(log_sm, alloctree, SM_ALLOC,
4111 vd->vdev_id, tx);
4112 space_map_write(log_sm, msp->ms_freeing, SM_FREE,
4113 vd->vdev_id, tx);
4114 mutex_enter(&msp->ms_lock);
4116 ASSERT3U(spa->spa_unflushed_stats.sus_memused, >=,
4117 metaslab_unflushed_changes_memused(msp));
4118 spa->spa_unflushed_stats.sus_memused -=
4119 metaslab_unflushed_changes_memused(msp);
4120 range_tree_remove_xor_add(alloctree,
4121 msp->ms_unflushed_frees, msp->ms_unflushed_allocs);
4122 range_tree_remove_xor_add(msp->ms_freeing,
4123 msp->ms_unflushed_allocs, msp->ms_unflushed_frees);
4124 spa->spa_unflushed_stats.sus_memused +=
4125 metaslab_unflushed_changes_memused(msp);
4126 } else {
4127 ASSERT(!spa_feature_is_enabled(spa, SPA_FEATURE_LOG_SPACEMAP));
4129 space_map_write(msp->ms_sm, alloctree, SM_ALLOC,
4130 SM_NO_VDEVID, tx);
4131 space_map_write(msp->ms_sm, msp->ms_freeing, SM_FREE,
4132 SM_NO_VDEVID, tx);
4133 mutex_enter(&msp->ms_lock);
4136 msp->ms_allocated_space += range_tree_space(alloctree);
4137 ASSERT3U(msp->ms_allocated_space, >=,
4138 range_tree_space(msp->ms_freeing));
4139 msp->ms_allocated_space -= range_tree_space(msp->ms_freeing);
4141 if (!range_tree_is_empty(msp->ms_checkpointing)) {
4142 ASSERT(spa_has_checkpoint(spa));
4143 ASSERT3P(vd->vdev_checkpoint_sm, !=, NULL);
4146 * Since we are doing writes to disk and the ms_checkpointing
4147 * tree won't be changing during that time, we drop the
4148 * ms_lock while writing to the checkpoint space map, for the
4149 * same reason mentioned above.
4151 mutex_exit(&msp->ms_lock);
4152 space_map_write(vd->vdev_checkpoint_sm,
4153 msp->ms_checkpointing, SM_FREE, SM_NO_VDEVID, tx);
4154 mutex_enter(&msp->ms_lock);
4156 spa->spa_checkpoint_info.sci_dspace +=
4157 range_tree_space(msp->ms_checkpointing);
4158 vd->vdev_stat.vs_checkpoint_space +=
4159 range_tree_space(msp->ms_checkpointing);
4160 ASSERT3U(vd->vdev_stat.vs_checkpoint_space, ==,
4161 -space_map_allocated(vd->vdev_checkpoint_sm));
4163 range_tree_vacate(msp->ms_checkpointing, NULL, NULL);
4166 if (msp->ms_loaded) {
4168 * When the space map is loaded, we have an accurate
4169 * histogram in the range tree. This gives us an opportunity
4170 * to bring the space map's histogram up-to-date so we clear
4171 * it first before updating it.
4173 space_map_histogram_clear(msp->ms_sm);
4174 space_map_histogram_add(msp->ms_sm, msp->ms_allocatable, tx);
4177 * Since we've cleared the histogram we need to add back
4178 * any free space that has already been processed, plus
4179 * any deferred space. This allows the on-disk histogram
4180 * to accurately reflect all free space even if some space
4181 * is not yet available for allocation (i.e. deferred).
4183 space_map_histogram_add(msp->ms_sm, msp->ms_freed, tx);
4186 * Add back any deferred free space that has not been
4187 * added back into the in-core free tree yet. This will
4188 * ensure that we don't end up with a space map histogram
4189 * that is completely empty unless the metaslab is fully
4190 * allocated.
4192 for (int t = 0; t < TXG_DEFER_SIZE; t++) {
4193 space_map_histogram_add(msp->ms_sm,
4194 msp->ms_defer[t], tx);
4199 * Always add the free space from this sync pass to the space
4200 * map histogram. We want to make sure that the on-disk histogram
4201 * accounts for all free space. If the space map is not loaded,
4202 * then we will lose some accuracy but will correct it the next
4203 * time we load the space map.
4205 space_map_histogram_add(msp->ms_sm, msp->ms_freeing, tx);
4206 metaslab_aux_histograms_update(msp);
4208 metaslab_group_histogram_add(mg, msp);
4209 metaslab_group_histogram_verify(mg);
4210 metaslab_class_histogram_verify(mg->mg_class);
4213 * For sync pass 1, we avoid traversing this txg's free range tree
4214 * and instead will just swap the pointers for freeing and freed.
4215 * We can safely do this since the freed_tree is guaranteed to be
4216 * empty on the initial pass.
4218 * Keep in mind that even if we are currently using a log spacemap
4219 * we want current frees to end up in the ms_allocatable (but not
4220 * get appended to the ms_sm) so their ranges can be reused as usual.
4222 if (spa_sync_pass(spa) == 1) {
4223 range_tree_swap(&msp->ms_freeing, &msp->ms_freed);
4224 ASSERT0(msp->ms_allocated_this_txg);
4225 } else {
4226 range_tree_vacate(msp->ms_freeing,
4227 range_tree_add, msp->ms_freed);
4229 msp->ms_allocated_this_txg += range_tree_space(alloctree);
4230 range_tree_vacate(alloctree, NULL, NULL);
4232 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4233 ASSERT0(range_tree_space(msp->ms_allocating[TXG_CLEAN(txg)
4234 & TXG_MASK]));
4235 ASSERT0(range_tree_space(msp->ms_freeing));
4236 ASSERT0(range_tree_space(msp->ms_checkpointing));
4238 mutex_exit(&msp->ms_lock);
4241 * Verify that the space map object ID has been recorded in the
4242 * vdev_ms_array.
4244 uint64_t object;
4245 VERIFY0(dmu_read(mos, vd->vdev_ms_array,
4246 msp->ms_id * sizeof (uint64_t), sizeof (uint64_t), &object, 0));
4247 VERIFY3U(object, ==, space_map_object(msp->ms_sm));
4249 mutex_exit(&msp->ms_sync_lock);
4250 dmu_tx_commit(tx);
4253 static void
4254 metaslab_evict(metaslab_t *msp, uint64_t txg)
4256 if (!msp->ms_loaded || msp->ms_disabled != 0)
4257 return;
4259 for (int t = 1; t < TXG_CONCURRENT_STATES; t++) {
4260 VERIFY0(range_tree_space(
4261 msp->ms_allocating[(txg + t) & TXG_MASK]));
4263 if (msp->ms_allocator != -1)
4264 metaslab_passivate(msp, msp->ms_weight & ~METASLAB_ACTIVE_MASK);
4266 if (!metaslab_debug_unload)
4267 metaslab_unload(msp);
4271 * Called after a transaction group has completely synced to mark
4272 * all of the metaslab's free space as usable.
4274 void
4275 metaslab_sync_done(metaslab_t *msp, uint64_t txg)
4277 metaslab_group_t *mg = msp->ms_group;
4278 vdev_t *vd = mg->mg_vd;
4279 spa_t *spa = vd->vdev_spa;
4280 range_tree_t **defer_tree;
4281 int64_t alloc_delta, defer_delta;
4282 boolean_t defer_allowed = B_TRUE;
4284 ASSERT(!vd->vdev_ishole);
4286 mutex_enter(&msp->ms_lock);
4288 if (msp->ms_new) {
4289 /* this is a new metaslab, add its capacity to the vdev */
4290 metaslab_space_update(vd, mg->mg_class, 0, 0, msp->ms_size);
4292 /* there should be no allocations nor frees at this point */
4293 VERIFY0(msp->ms_allocated_this_txg);
4294 VERIFY0(range_tree_space(msp->ms_freed));
4297 ASSERT0(range_tree_space(msp->ms_freeing));
4298 ASSERT0(range_tree_space(msp->ms_checkpointing));
4300 defer_tree = &msp->ms_defer[txg % TXG_DEFER_SIZE];
4302 uint64_t free_space = metaslab_class_get_space(spa_normal_class(spa)) -
4303 metaslab_class_get_alloc(spa_normal_class(spa));
4304 if (free_space <= spa_get_slop_space(spa) || vd->vdev_removing) {
4305 defer_allowed = B_FALSE;
4308 defer_delta = 0;
4309 alloc_delta = msp->ms_allocated_this_txg -
4310 range_tree_space(msp->ms_freed);
4312 if (defer_allowed) {
4313 defer_delta = range_tree_space(msp->ms_freed) -
4314 range_tree_space(*defer_tree);
4315 } else {
4316 defer_delta -= range_tree_space(*defer_tree);
4318 metaslab_space_update(vd, mg->mg_class, alloc_delta + defer_delta,
4319 defer_delta, 0);
4321 if (spa_syncing_log_sm(spa) == NULL) {
4323 * If there's a metaslab_load() in progress and we don't have
4324 * a log space map, it means that we probably wrote to the
4325 * metaslab's space map. If this is the case, we need to
4326 * make sure that we wait for the load to complete so that we
4327 * have a consistent view at the in-core side of the metaslab.
4329 metaslab_load_wait(msp);
4330 } else {
4331 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
4335 * When auto-trimming is enabled, free ranges which are added to
4336 * ms_allocatable are also be added to ms_trim. The ms_trim tree is
4337 * periodically consumed by the vdev_autotrim_thread() which issues
4338 * trims for all ranges and then vacates the tree. The ms_trim tree
4339 * can be discarded at any time with the sole consequence of recent
4340 * frees not being trimmed.
4342 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON) {
4343 range_tree_walk(*defer_tree, range_tree_add, msp->ms_trim);
4344 if (!defer_allowed) {
4345 range_tree_walk(msp->ms_freed, range_tree_add,
4346 msp->ms_trim);
4348 } else {
4349 range_tree_vacate(msp->ms_trim, NULL, NULL);
4353 * Move the frees from the defer_tree back to the free
4354 * range tree (if it's loaded). Swap the freed_tree and
4355 * the defer_tree -- this is safe to do because we've
4356 * just emptied out the defer_tree.
4358 range_tree_vacate(*defer_tree,
4359 msp->ms_loaded ? range_tree_add : NULL, msp->ms_allocatable);
4360 if (defer_allowed) {
4361 range_tree_swap(&msp->ms_freed, defer_tree);
4362 } else {
4363 range_tree_vacate(msp->ms_freed,
4364 msp->ms_loaded ? range_tree_add : NULL,
4365 msp->ms_allocatable);
4368 msp->ms_synced_length = space_map_length(msp->ms_sm);
4370 msp->ms_deferspace += defer_delta;
4371 ASSERT3S(msp->ms_deferspace, >=, 0);
4372 ASSERT3S(msp->ms_deferspace, <=, msp->ms_size);
4373 if (msp->ms_deferspace != 0) {
4375 * Keep syncing this metaslab until all deferred frees
4376 * are back in circulation.
4378 vdev_dirty(vd, VDD_METASLAB, msp, txg + 1);
4380 metaslab_aux_histograms_update_done(msp, defer_allowed);
4382 if (msp->ms_new) {
4383 msp->ms_new = B_FALSE;
4384 mutex_enter(&mg->mg_lock);
4385 mg->mg_ms_ready++;
4386 mutex_exit(&mg->mg_lock);
4390 * Re-sort metaslab within its group now that we've adjusted
4391 * its allocatable space.
4393 metaslab_recalculate_weight_and_sort(msp);
4395 ASSERT0(range_tree_space(msp->ms_allocating[txg & TXG_MASK]));
4396 ASSERT0(range_tree_space(msp->ms_freeing));
4397 ASSERT0(range_tree_space(msp->ms_freed));
4398 ASSERT0(range_tree_space(msp->ms_checkpointing));
4399 msp->ms_allocating_total -= msp->ms_allocated_this_txg;
4400 msp->ms_allocated_this_txg = 0;
4401 mutex_exit(&msp->ms_lock);
4404 void
4405 metaslab_sync_reassess(metaslab_group_t *mg)
4407 spa_t *spa = mg->mg_class->mc_spa;
4409 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
4410 metaslab_group_alloc_update(mg);
4411 mg->mg_fragmentation = metaslab_group_fragmentation(mg);
4414 * Preload the next potential metaslabs but only on active
4415 * metaslab groups. We can get into a state where the metaslab
4416 * is no longer active since we dirty metaslabs as we remove a
4417 * a device, thus potentially making the metaslab group eligible
4418 * for preloading.
4420 if (mg->mg_activation_count > 0) {
4421 metaslab_group_preload(mg);
4423 spa_config_exit(spa, SCL_ALLOC, FTAG);
4427 * When writing a ditto block (i.e. more than one DVA for a given BP) on
4428 * the same vdev as an existing DVA of this BP, then try to allocate it
4429 * on a different metaslab than existing DVAs (i.e. a unique metaslab).
4431 static boolean_t
4432 metaslab_is_unique(metaslab_t *msp, dva_t *dva)
4434 uint64_t dva_ms_id;
4436 if (DVA_GET_ASIZE(dva) == 0)
4437 return (B_TRUE);
4439 if (msp->ms_group->mg_vd->vdev_id != DVA_GET_VDEV(dva))
4440 return (B_TRUE);
4442 dva_ms_id = DVA_GET_OFFSET(dva) >> msp->ms_group->mg_vd->vdev_ms_shift;
4444 return (msp->ms_id != dva_ms_id);
4448 * ==========================================================================
4449 * Metaslab allocation tracing facility
4450 * ==========================================================================
4454 * Add an allocation trace element to the allocation tracing list.
4456 static void
4457 metaslab_trace_add(zio_alloc_list_t *zal, metaslab_group_t *mg,
4458 metaslab_t *msp, uint64_t psize, uint32_t dva_id, uint64_t offset,
4459 int allocator)
4461 metaslab_alloc_trace_t *mat;
4463 if (!metaslab_trace_enabled)
4464 return;
4467 * When the tracing list reaches its maximum we remove
4468 * the second element in the list before adding a new one.
4469 * By removing the second element we preserve the original
4470 * entry as a clue to what allocations steps have already been
4471 * performed.
4473 if (zal->zal_size == metaslab_trace_max_entries) {
4474 metaslab_alloc_trace_t *mat_next;
4475 #ifdef ZFS_DEBUG
4476 panic("too many entries in allocation list");
4477 #endif
4478 METASLABSTAT_BUMP(metaslabstat_trace_over_limit);
4479 zal->zal_size--;
4480 mat_next = list_next(&zal->zal_list, list_head(&zal->zal_list));
4481 list_remove(&zal->zal_list, mat_next);
4482 kmem_cache_free(metaslab_alloc_trace_cache, mat_next);
4485 mat = kmem_cache_alloc(metaslab_alloc_trace_cache, KM_SLEEP);
4486 list_link_init(&mat->mat_list_node);
4487 mat->mat_mg = mg;
4488 mat->mat_msp = msp;
4489 mat->mat_size = psize;
4490 mat->mat_dva_id = dva_id;
4491 mat->mat_offset = offset;
4492 mat->mat_weight = 0;
4493 mat->mat_allocator = allocator;
4495 if (msp != NULL)
4496 mat->mat_weight = msp->ms_weight;
4499 * The list is part of the zio so locking is not required. Only
4500 * a single thread will perform allocations for a given zio.
4502 list_insert_tail(&zal->zal_list, mat);
4503 zal->zal_size++;
4505 ASSERT3U(zal->zal_size, <=, metaslab_trace_max_entries);
4508 void
4509 metaslab_trace_init(zio_alloc_list_t *zal)
4511 list_create(&zal->zal_list, sizeof (metaslab_alloc_trace_t),
4512 offsetof(metaslab_alloc_trace_t, mat_list_node));
4513 zal->zal_size = 0;
4516 void
4517 metaslab_trace_fini(zio_alloc_list_t *zal)
4519 metaslab_alloc_trace_t *mat;
4521 while ((mat = list_remove_head(&zal->zal_list)) != NULL)
4522 kmem_cache_free(metaslab_alloc_trace_cache, mat);
4523 list_destroy(&zal->zal_list);
4524 zal->zal_size = 0;
4528 * ==========================================================================
4529 * Metaslab block operations
4530 * ==========================================================================
4533 static void
4534 metaslab_group_alloc_increment(spa_t *spa, uint64_t vdev, const void *tag,
4535 int flags, int allocator)
4537 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4538 (flags & METASLAB_DONT_THROTTLE))
4539 return;
4541 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4542 if (!mg->mg_class->mc_alloc_throttle_enabled)
4543 return;
4545 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4546 (void) zfs_refcount_add(&mga->mga_alloc_queue_depth, tag);
4549 static void
4550 metaslab_group_increment_qdepth(metaslab_group_t *mg, int allocator)
4552 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4553 metaslab_class_allocator_t *mca =
4554 &mg->mg_class->mc_allocator[allocator];
4555 uint64_t max = mg->mg_max_alloc_queue_depth;
4556 uint64_t cur = mga->mga_cur_max_alloc_queue_depth;
4557 while (cur < max) {
4558 if (atomic_cas_64(&mga->mga_cur_max_alloc_queue_depth,
4559 cur, cur + 1) == cur) {
4560 atomic_inc_64(&mca->mca_alloc_max_slots);
4561 return;
4563 cur = mga->mga_cur_max_alloc_queue_depth;
4567 void
4568 metaslab_group_alloc_decrement(spa_t *spa, uint64_t vdev, const void *tag,
4569 int flags, int allocator, boolean_t io_complete)
4571 if (!(flags & METASLAB_ASYNC_ALLOC) ||
4572 (flags & METASLAB_DONT_THROTTLE))
4573 return;
4575 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4576 if (!mg->mg_class->mc_alloc_throttle_enabled)
4577 return;
4579 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4580 (void) zfs_refcount_remove(&mga->mga_alloc_queue_depth, tag);
4581 if (io_complete)
4582 metaslab_group_increment_qdepth(mg, allocator);
4585 void
4586 metaslab_group_alloc_verify(spa_t *spa, const blkptr_t *bp, const void *tag,
4587 int allocator)
4589 #ifdef ZFS_DEBUG
4590 const dva_t *dva = bp->blk_dva;
4591 int ndvas = BP_GET_NDVAS(bp);
4593 for (int d = 0; d < ndvas; d++) {
4594 uint64_t vdev = DVA_GET_VDEV(&dva[d]);
4595 metaslab_group_t *mg = vdev_lookup_top(spa, vdev)->vdev_mg;
4596 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4597 VERIFY(zfs_refcount_not_held(&mga->mga_alloc_queue_depth, tag));
4599 #endif
4602 static uint64_t
4603 metaslab_block_alloc(metaslab_t *msp, uint64_t size, uint64_t txg)
4605 uint64_t start;
4606 range_tree_t *rt = msp->ms_allocatable;
4607 metaslab_class_t *mc = msp->ms_group->mg_class;
4609 ASSERT(MUTEX_HELD(&msp->ms_lock));
4610 VERIFY(!msp->ms_condensing);
4611 VERIFY0(msp->ms_disabled);
4613 start = mc->mc_ops->msop_alloc(msp, size);
4614 if (start != -1ULL) {
4615 metaslab_group_t *mg = msp->ms_group;
4616 vdev_t *vd = mg->mg_vd;
4618 VERIFY0(P2PHASE(start, 1ULL << vd->vdev_ashift));
4619 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
4620 VERIFY3U(range_tree_space(rt) - size, <=, msp->ms_size);
4621 range_tree_remove(rt, start, size);
4622 range_tree_clear(msp->ms_trim, start, size);
4624 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
4625 vdev_dirty(mg->mg_vd, VDD_METASLAB, msp, txg);
4627 range_tree_add(msp->ms_allocating[txg & TXG_MASK], start, size);
4628 msp->ms_allocating_total += size;
4630 /* Track the last successful allocation */
4631 msp->ms_alloc_txg = txg;
4632 metaslab_verify_space(msp, txg);
4636 * Now that we've attempted the allocation we need to update the
4637 * metaslab's maximum block size since it may have changed.
4639 msp->ms_max_size = metaslab_largest_allocatable(msp);
4640 return (start);
4644 * Find the metaslab with the highest weight that is less than what we've
4645 * already tried. In the common case, this means that we will examine each
4646 * metaslab at most once. Note that concurrent callers could reorder metaslabs
4647 * by activation/passivation once we have dropped the mg_lock. If a metaslab is
4648 * activated by another thread, and we fail to allocate from the metaslab we
4649 * have selected, we may not try the newly-activated metaslab, and instead
4650 * activate another metaslab. This is not optimal, but generally does not cause
4651 * any problems (a possible exception being if every metaslab is completely full
4652 * except for the newly-activated metaslab which we fail to examine).
4654 static metaslab_t *
4655 find_valid_metaslab(metaslab_group_t *mg, uint64_t activation_weight,
4656 dva_t *dva, int d, boolean_t want_unique, uint64_t asize, int allocator,
4657 boolean_t try_hard, zio_alloc_list_t *zal, metaslab_t *search,
4658 boolean_t *was_active)
4660 avl_index_t idx;
4661 avl_tree_t *t = &mg->mg_metaslab_tree;
4662 metaslab_t *msp = avl_find(t, search, &idx);
4663 if (msp == NULL)
4664 msp = avl_nearest(t, idx, AVL_AFTER);
4666 uint_t tries = 0;
4667 for (; msp != NULL; msp = AVL_NEXT(t, msp)) {
4668 int i;
4670 if (!try_hard && tries > zfs_metaslab_find_max_tries) {
4671 METASLABSTAT_BUMP(metaslabstat_too_many_tries);
4672 return (NULL);
4674 tries++;
4676 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4677 metaslab_trace_add(zal, mg, msp, asize, d,
4678 TRACE_TOO_SMALL, allocator);
4679 continue;
4683 * If the selected metaslab is condensing or disabled,
4684 * skip it.
4686 if (msp->ms_condensing || msp->ms_disabled > 0)
4687 continue;
4689 *was_active = msp->ms_allocator != -1;
4691 * If we're activating as primary, this is our first allocation
4692 * from this disk, so we don't need to check how close we are.
4693 * If the metaslab under consideration was already active,
4694 * we're getting desperate enough to steal another allocator's
4695 * metaslab, so we still don't care about distances.
4697 if (activation_weight == METASLAB_WEIGHT_PRIMARY || *was_active)
4698 break;
4700 for (i = 0; i < d; i++) {
4701 if (want_unique &&
4702 !metaslab_is_unique(msp, &dva[i]))
4703 break; /* try another metaslab */
4705 if (i == d)
4706 break;
4709 if (msp != NULL) {
4710 search->ms_weight = msp->ms_weight;
4711 search->ms_start = msp->ms_start + 1;
4712 search->ms_allocator = msp->ms_allocator;
4713 search->ms_primary = msp->ms_primary;
4715 return (msp);
4718 static void
4719 metaslab_active_mask_verify(metaslab_t *msp)
4721 ASSERT(MUTEX_HELD(&msp->ms_lock));
4723 if ((zfs_flags & ZFS_DEBUG_METASLAB_VERIFY) == 0)
4724 return;
4726 if ((msp->ms_weight & METASLAB_ACTIVE_MASK) == 0)
4727 return;
4729 if (msp->ms_weight & METASLAB_WEIGHT_PRIMARY) {
4730 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4731 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4732 VERIFY3S(msp->ms_allocator, !=, -1);
4733 VERIFY(msp->ms_primary);
4734 return;
4737 if (msp->ms_weight & METASLAB_WEIGHT_SECONDARY) {
4738 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4739 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_CLAIM);
4740 VERIFY3S(msp->ms_allocator, !=, -1);
4741 VERIFY(!msp->ms_primary);
4742 return;
4745 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM) {
4746 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_PRIMARY);
4747 VERIFY0(msp->ms_weight & METASLAB_WEIGHT_SECONDARY);
4748 VERIFY3S(msp->ms_allocator, ==, -1);
4749 return;
4753 static uint64_t
4754 metaslab_group_alloc_normal(metaslab_group_t *mg, zio_alloc_list_t *zal,
4755 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
4756 int allocator, boolean_t try_hard)
4758 metaslab_t *msp = NULL;
4759 uint64_t offset = -1ULL;
4761 uint64_t activation_weight = METASLAB_WEIGHT_PRIMARY;
4762 for (int i = 0; i < d; i++) {
4763 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4764 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4765 activation_weight = METASLAB_WEIGHT_SECONDARY;
4766 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4767 DVA_GET_VDEV(&dva[i]) == mg->mg_vd->vdev_id) {
4768 activation_weight = METASLAB_WEIGHT_CLAIM;
4769 break;
4774 * If we don't have enough metaslabs active to fill the entire array, we
4775 * just use the 0th slot.
4777 if (mg->mg_ms_ready < mg->mg_allocators * 3)
4778 allocator = 0;
4779 metaslab_group_allocator_t *mga = &mg->mg_allocator[allocator];
4781 ASSERT3U(mg->mg_vd->vdev_ms_count, >=, 2);
4783 metaslab_t *search = kmem_alloc(sizeof (*search), KM_SLEEP);
4784 search->ms_weight = UINT64_MAX;
4785 search->ms_start = 0;
4787 * At the end of the metaslab tree are the already-active metaslabs,
4788 * first the primaries, then the secondaries. When we resume searching
4789 * through the tree, we need to consider ms_allocator and ms_primary so
4790 * we start in the location right after where we left off, and don't
4791 * accidentally loop forever considering the same metaslabs.
4793 search->ms_allocator = -1;
4794 search->ms_primary = B_TRUE;
4795 for (;;) {
4796 boolean_t was_active = B_FALSE;
4798 mutex_enter(&mg->mg_lock);
4800 if (activation_weight == METASLAB_WEIGHT_PRIMARY &&
4801 mga->mga_primary != NULL) {
4802 msp = mga->mga_primary;
4805 * Even though we don't hold the ms_lock for the
4806 * primary metaslab, those fields should not
4807 * change while we hold the mg_lock. Thus it is
4808 * safe to make assertions on them.
4810 ASSERT(msp->ms_primary);
4811 ASSERT3S(msp->ms_allocator, ==, allocator);
4812 ASSERT(msp->ms_loaded);
4814 was_active = B_TRUE;
4815 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4816 } else if (activation_weight == METASLAB_WEIGHT_SECONDARY &&
4817 mga->mga_secondary != NULL) {
4818 msp = mga->mga_secondary;
4821 * See comment above about the similar assertions
4822 * for the primary metaslab.
4824 ASSERT(!msp->ms_primary);
4825 ASSERT3S(msp->ms_allocator, ==, allocator);
4826 ASSERT(msp->ms_loaded);
4828 was_active = B_TRUE;
4829 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
4830 } else {
4831 msp = find_valid_metaslab(mg, activation_weight, dva, d,
4832 want_unique, asize, allocator, try_hard, zal,
4833 search, &was_active);
4836 mutex_exit(&mg->mg_lock);
4837 if (msp == NULL) {
4838 kmem_free(search, sizeof (*search));
4839 return (-1ULL);
4841 mutex_enter(&msp->ms_lock);
4843 metaslab_active_mask_verify(msp);
4846 * This code is disabled out because of issues with
4847 * tracepoints in non-gpl kernel modules.
4849 #if 0
4850 DTRACE_PROBE3(ms__activation__attempt,
4851 metaslab_t *, msp, uint64_t, activation_weight,
4852 boolean_t, was_active);
4853 #endif
4856 * Ensure that the metaslab we have selected is still
4857 * capable of handling our request. It's possible that
4858 * another thread may have changed the weight while we
4859 * were blocked on the metaslab lock. We check the
4860 * active status first to see if we need to set_selected_txg
4861 * a new metaslab.
4863 if (was_active && !(msp->ms_weight & METASLAB_ACTIVE_MASK)) {
4864 ASSERT3S(msp->ms_allocator, ==, -1);
4865 mutex_exit(&msp->ms_lock);
4866 continue;
4870 * If the metaslab was activated for another allocator
4871 * while we were waiting in the ms_lock above, or it's
4872 * a primary and we're seeking a secondary (or vice versa),
4873 * we go back and select a new metaslab.
4875 if (!was_active && (msp->ms_weight & METASLAB_ACTIVE_MASK) &&
4876 (msp->ms_allocator != -1) &&
4877 (msp->ms_allocator != allocator || ((activation_weight ==
4878 METASLAB_WEIGHT_PRIMARY) != msp->ms_primary))) {
4879 ASSERT(msp->ms_loaded);
4880 ASSERT((msp->ms_weight & METASLAB_WEIGHT_CLAIM) ||
4881 msp->ms_allocator != -1);
4882 mutex_exit(&msp->ms_lock);
4883 continue;
4887 * This metaslab was used for claiming regions allocated
4888 * by the ZIL during pool import. Once these regions are
4889 * claimed we don't need to keep the CLAIM bit set
4890 * anymore. Passivate this metaslab to zero its activation
4891 * mask.
4893 if (msp->ms_weight & METASLAB_WEIGHT_CLAIM &&
4894 activation_weight != METASLAB_WEIGHT_CLAIM) {
4895 ASSERT(msp->ms_loaded);
4896 ASSERT3S(msp->ms_allocator, ==, -1);
4897 metaslab_passivate(msp, msp->ms_weight &
4898 ~METASLAB_WEIGHT_CLAIM);
4899 mutex_exit(&msp->ms_lock);
4900 continue;
4903 metaslab_set_selected_txg(msp, txg);
4905 int activation_error =
4906 metaslab_activate(msp, allocator, activation_weight);
4907 metaslab_active_mask_verify(msp);
4910 * If the metaslab was activated by another thread for
4911 * another allocator or activation_weight (EBUSY), or it
4912 * failed because another metaslab was assigned as primary
4913 * for this allocator (EEXIST) we continue using this
4914 * metaslab for our allocation, rather than going on to a
4915 * worse metaslab (we waited for that metaslab to be loaded
4916 * after all).
4918 * If the activation failed due to an I/O error or ENOSPC we
4919 * skip to the next metaslab.
4921 boolean_t activated;
4922 if (activation_error == 0) {
4923 activated = B_TRUE;
4924 } else if (activation_error == EBUSY ||
4925 activation_error == EEXIST) {
4926 activated = B_FALSE;
4927 } else {
4928 mutex_exit(&msp->ms_lock);
4929 continue;
4931 ASSERT(msp->ms_loaded);
4934 * Now that we have the lock, recheck to see if we should
4935 * continue to use this metaslab for this allocation. The
4936 * the metaslab is now loaded so metaslab_should_allocate()
4937 * can accurately determine if the allocation attempt should
4938 * proceed.
4940 if (!metaslab_should_allocate(msp, asize, try_hard)) {
4941 /* Passivate this metaslab and select a new one. */
4942 metaslab_trace_add(zal, mg, msp, asize, d,
4943 TRACE_TOO_SMALL, allocator);
4944 goto next;
4948 * If this metaslab is currently condensing then pick again
4949 * as we can't manipulate this metaslab until it's committed
4950 * to disk. If this metaslab is being initialized, we shouldn't
4951 * allocate from it since the allocated region might be
4952 * overwritten after allocation.
4954 if (msp->ms_condensing) {
4955 metaslab_trace_add(zal, mg, msp, asize, d,
4956 TRACE_CONDENSING, allocator);
4957 if (activated) {
4958 metaslab_passivate(msp, msp->ms_weight &
4959 ~METASLAB_ACTIVE_MASK);
4961 mutex_exit(&msp->ms_lock);
4962 continue;
4963 } else if (msp->ms_disabled > 0) {
4964 metaslab_trace_add(zal, mg, msp, asize, d,
4965 TRACE_DISABLED, allocator);
4966 if (activated) {
4967 metaslab_passivate(msp, msp->ms_weight &
4968 ~METASLAB_ACTIVE_MASK);
4970 mutex_exit(&msp->ms_lock);
4971 continue;
4974 offset = metaslab_block_alloc(msp, asize, txg);
4975 metaslab_trace_add(zal, mg, msp, asize, d, offset, allocator);
4977 if (offset != -1ULL) {
4978 /* Proactively passivate the metaslab, if needed */
4979 if (activated)
4980 metaslab_segment_may_passivate(msp);
4981 break;
4983 next:
4984 ASSERT(msp->ms_loaded);
4987 * This code is disabled out because of issues with
4988 * tracepoints in non-gpl kernel modules.
4990 #if 0
4991 DTRACE_PROBE2(ms__alloc__failure, metaslab_t *, msp,
4992 uint64_t, asize);
4993 #endif
4996 * We were unable to allocate from this metaslab so determine
4997 * a new weight for this metaslab. Now that we have loaded
4998 * the metaslab we can provide a better hint to the metaslab
4999 * selector.
5001 * For space-based metaslabs, we use the maximum block size.
5002 * This information is only available when the metaslab
5003 * is loaded and is more accurate than the generic free
5004 * space weight that was calculated by metaslab_weight().
5005 * This information allows us to quickly compare the maximum
5006 * available allocation in the metaslab to the allocation
5007 * size being requested.
5009 * For segment-based metaslabs, determine the new weight
5010 * based on the highest bucket in the range tree. We
5011 * explicitly use the loaded segment weight (i.e. the range
5012 * tree histogram) since it contains the space that is
5013 * currently available for allocation and is accurate
5014 * even within a sync pass.
5016 uint64_t weight;
5017 if (WEIGHT_IS_SPACEBASED(msp->ms_weight)) {
5018 weight = metaslab_largest_allocatable(msp);
5019 WEIGHT_SET_SPACEBASED(weight);
5020 } else {
5021 weight = metaslab_weight_from_range_tree(msp);
5024 if (activated) {
5025 metaslab_passivate(msp, weight);
5026 } else {
5028 * For the case where we use the metaslab that is
5029 * active for another allocator we want to make
5030 * sure that we retain the activation mask.
5032 * Note that we could attempt to use something like
5033 * metaslab_recalculate_weight_and_sort() that
5034 * retains the activation mask here. That function
5035 * uses metaslab_weight() to set the weight though
5036 * which is not as accurate as the calculations
5037 * above.
5039 weight |= msp->ms_weight & METASLAB_ACTIVE_MASK;
5040 metaslab_group_sort(mg, msp, weight);
5042 metaslab_active_mask_verify(msp);
5045 * We have just failed an allocation attempt, check
5046 * that metaslab_should_allocate() agrees. Otherwise,
5047 * we may end up in an infinite loop retrying the same
5048 * metaslab.
5050 ASSERT(!metaslab_should_allocate(msp, asize, try_hard));
5052 mutex_exit(&msp->ms_lock);
5054 mutex_exit(&msp->ms_lock);
5055 kmem_free(search, sizeof (*search));
5056 return (offset);
5059 static uint64_t
5060 metaslab_group_alloc(metaslab_group_t *mg, zio_alloc_list_t *zal,
5061 uint64_t asize, uint64_t txg, boolean_t want_unique, dva_t *dva, int d,
5062 int allocator, boolean_t try_hard)
5064 uint64_t offset;
5065 ASSERT(mg->mg_initialized);
5067 offset = metaslab_group_alloc_normal(mg, zal, asize, txg, want_unique,
5068 dva, d, allocator, try_hard);
5070 mutex_enter(&mg->mg_lock);
5071 if (offset == -1ULL) {
5072 mg->mg_failed_allocations++;
5073 metaslab_trace_add(zal, mg, NULL, asize, d,
5074 TRACE_GROUP_FAILURE, allocator);
5075 if (asize == SPA_GANGBLOCKSIZE) {
5077 * This metaslab group was unable to allocate
5078 * the minimum gang block size so it must be out of
5079 * space. We must notify the allocation throttle
5080 * to start skipping allocation attempts to this
5081 * metaslab group until more space becomes available.
5082 * Note: this failure cannot be caused by the
5083 * allocation throttle since the allocation throttle
5084 * is only responsible for skipping devices and
5085 * not failing block allocations.
5087 mg->mg_no_free_space = B_TRUE;
5090 mg->mg_allocations++;
5091 mutex_exit(&mg->mg_lock);
5092 return (offset);
5096 * Allocate a block for the specified i/o.
5099 metaslab_alloc_dva(spa_t *spa, metaslab_class_t *mc, uint64_t psize,
5100 dva_t *dva, int d, dva_t *hintdva, uint64_t txg, int flags,
5101 zio_alloc_list_t *zal, int allocator)
5103 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5104 metaslab_group_t *mg, *rotor;
5105 vdev_t *vd;
5106 boolean_t try_hard = B_FALSE;
5108 ASSERT(!DVA_IS_VALID(&dva[d]));
5111 * For testing, make some blocks above a certain size be gang blocks.
5112 * This will result in more split blocks when using device removal,
5113 * and a large number of split blocks coupled with ztest-induced
5114 * damage can result in extremely long reconstruction times. This
5115 * will also test spilling from special to normal.
5117 if (psize >= metaslab_force_ganging &&
5118 metaslab_force_ganging_pct > 0 &&
5119 (random_in_range(100) < MIN(metaslab_force_ganging_pct, 100))) {
5120 metaslab_trace_add(zal, NULL, NULL, psize, d, TRACE_FORCE_GANG,
5121 allocator);
5122 return (SET_ERROR(ENOSPC));
5126 * Start at the rotor and loop through all mgs until we find something.
5127 * Note that there's no locking on mca_rotor or mca_aliquot because
5128 * nothing actually breaks if we miss a few updates -- we just won't
5129 * allocate quite as evenly. It all balances out over time.
5131 * If we are doing ditto or log blocks, try to spread them across
5132 * consecutive vdevs. If we're forced to reuse a vdev before we've
5133 * allocated all of our ditto blocks, then try and spread them out on
5134 * that vdev as much as possible. If it turns out to not be possible,
5135 * gradually lower our standards until anything becomes acceptable.
5136 * Also, allocating on consecutive vdevs (as opposed to random vdevs)
5137 * gives us hope of containing our fault domains to something we're
5138 * able to reason about. Otherwise, any two top-level vdev failures
5139 * will guarantee the loss of data. With consecutive allocation,
5140 * only two adjacent top-level vdev failures will result in data loss.
5142 * If we are doing gang blocks (hintdva is non-NULL), try to keep
5143 * ourselves on the same vdev as our gang block header. That
5144 * way, we can hope for locality in vdev_cache, plus it makes our
5145 * fault domains something tractable.
5147 if (hintdva) {
5148 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&hintdva[d]));
5151 * It's possible the vdev we're using as the hint no
5152 * longer exists or its mg has been closed (e.g. by
5153 * device removal). Consult the rotor when
5154 * all else fails.
5156 if (vd != NULL && vd->vdev_mg != NULL) {
5157 mg = vdev_get_mg(vd, mc);
5159 if (flags & METASLAB_HINTBP_AVOID)
5160 mg = mg->mg_next;
5161 } else {
5162 mg = mca->mca_rotor;
5164 } else if (d != 0) {
5165 vd = vdev_lookup_top(spa, DVA_GET_VDEV(&dva[d - 1]));
5166 mg = vd->vdev_mg->mg_next;
5167 } else {
5168 ASSERT(mca->mca_rotor != NULL);
5169 mg = mca->mca_rotor;
5173 * If the hint put us into the wrong metaslab class, or into a
5174 * metaslab group that has been passivated, just follow the rotor.
5176 if (mg->mg_class != mc || mg->mg_activation_count <= 0)
5177 mg = mca->mca_rotor;
5179 rotor = mg;
5180 top:
5181 do {
5182 boolean_t allocatable;
5184 ASSERT(mg->mg_activation_count == 1);
5185 vd = mg->mg_vd;
5188 * Don't allocate from faulted devices.
5190 if (try_hard) {
5191 spa_config_enter(spa, SCL_ZIO, FTAG, RW_READER);
5192 allocatable = vdev_allocatable(vd);
5193 spa_config_exit(spa, SCL_ZIO, FTAG);
5194 } else {
5195 allocatable = vdev_allocatable(vd);
5199 * Determine if the selected metaslab group is eligible
5200 * for allocations. If we're ganging then don't allow
5201 * this metaslab group to skip allocations since that would
5202 * inadvertently return ENOSPC and suspend the pool
5203 * even though space is still available.
5205 if (allocatable && !GANG_ALLOCATION(flags) && !try_hard) {
5206 allocatable = metaslab_group_allocatable(mg, rotor,
5207 flags, psize, allocator, d);
5210 if (!allocatable) {
5211 metaslab_trace_add(zal, mg, NULL, psize, d,
5212 TRACE_NOT_ALLOCATABLE, allocator);
5213 goto next;
5216 ASSERT(mg->mg_initialized);
5219 * Avoid writing single-copy data to an unhealthy,
5220 * non-redundant vdev, unless we've already tried all
5221 * other vdevs.
5223 if (vd->vdev_state < VDEV_STATE_HEALTHY &&
5224 d == 0 && !try_hard && vd->vdev_children == 0) {
5225 metaslab_trace_add(zal, mg, NULL, psize, d,
5226 TRACE_VDEV_ERROR, allocator);
5227 goto next;
5230 ASSERT(mg->mg_class == mc);
5232 uint64_t asize = vdev_psize_to_asize(vd, psize);
5233 ASSERT(P2PHASE(asize, 1ULL << vd->vdev_ashift) == 0);
5236 * If we don't need to try hard, then require that the
5237 * block be on a different metaslab from any other DVAs
5238 * in this BP (unique=true). If we are trying hard, then
5239 * allow any metaslab to be used (unique=false).
5241 uint64_t offset = metaslab_group_alloc(mg, zal, asize, txg,
5242 !try_hard, dva, d, allocator, try_hard);
5244 if (offset != -1ULL) {
5246 * If we've just selected this metaslab group,
5247 * figure out whether the corresponding vdev is
5248 * over- or under-used relative to the pool,
5249 * and set an allocation bias to even it out.
5251 * Bias is also used to compensate for unequally
5252 * sized vdevs so that space is allocated fairly.
5254 if (mca->mca_aliquot == 0 && metaslab_bias_enabled) {
5255 vdev_stat_t *vs = &vd->vdev_stat;
5256 int64_t vs_free = vs->vs_space - vs->vs_alloc;
5257 int64_t mc_free = mc->mc_space - mc->mc_alloc;
5258 int64_t ratio;
5261 * Calculate how much more or less we should
5262 * try to allocate from this device during
5263 * this iteration around the rotor.
5265 * This basically introduces a zero-centered
5266 * bias towards the devices with the most
5267 * free space, while compensating for vdev
5268 * size differences.
5270 * Examples:
5271 * vdev V1 = 16M/128M
5272 * vdev V2 = 16M/128M
5273 * ratio(V1) = 100% ratio(V2) = 100%
5275 * vdev V1 = 16M/128M
5276 * vdev V2 = 64M/128M
5277 * ratio(V1) = 127% ratio(V2) = 72%
5279 * vdev V1 = 16M/128M
5280 * vdev V2 = 64M/512M
5281 * ratio(V1) = 40% ratio(V2) = 160%
5283 ratio = (vs_free * mc->mc_alloc_groups * 100) /
5284 (mc_free + 1);
5285 mg->mg_bias = ((ratio - 100) *
5286 (int64_t)mg->mg_aliquot) / 100;
5287 } else if (!metaslab_bias_enabled) {
5288 mg->mg_bias = 0;
5291 if ((flags & METASLAB_ZIL) ||
5292 atomic_add_64_nv(&mca->mca_aliquot, asize) >=
5293 mg->mg_aliquot + mg->mg_bias) {
5294 mca->mca_rotor = mg->mg_next;
5295 mca->mca_aliquot = 0;
5298 DVA_SET_VDEV(&dva[d], vd->vdev_id);
5299 DVA_SET_OFFSET(&dva[d], offset);
5300 DVA_SET_GANG(&dva[d],
5301 ((flags & METASLAB_GANG_HEADER) ? 1 : 0));
5302 DVA_SET_ASIZE(&dva[d], asize);
5304 return (0);
5306 next:
5307 mca->mca_rotor = mg->mg_next;
5308 mca->mca_aliquot = 0;
5309 } while ((mg = mg->mg_next) != rotor);
5312 * If we haven't tried hard, perhaps do so now.
5314 if (!try_hard && (zfs_metaslab_try_hard_before_gang ||
5315 GANG_ALLOCATION(flags) || (flags & METASLAB_ZIL) != 0 ||
5316 psize <= 1 << spa->spa_min_ashift)) {
5317 METASLABSTAT_BUMP(metaslabstat_try_hard);
5318 try_hard = B_TRUE;
5319 goto top;
5322 memset(&dva[d], 0, sizeof (dva_t));
5324 metaslab_trace_add(zal, rotor, NULL, psize, d, TRACE_ENOSPC, allocator);
5325 return (SET_ERROR(ENOSPC));
5328 void
5329 metaslab_free_concrete(vdev_t *vd, uint64_t offset, uint64_t asize,
5330 boolean_t checkpoint)
5332 metaslab_t *msp;
5333 spa_t *spa = vd->vdev_spa;
5335 ASSERT(vdev_is_concrete(vd));
5336 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5337 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5339 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5341 VERIFY(!msp->ms_condensing);
5342 VERIFY3U(offset, >=, msp->ms_start);
5343 VERIFY3U(offset + asize, <=, msp->ms_start + msp->ms_size);
5344 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5345 VERIFY0(P2PHASE(asize, 1ULL << vd->vdev_ashift));
5347 metaslab_check_free_impl(vd, offset, asize);
5349 mutex_enter(&msp->ms_lock);
5350 if (range_tree_is_empty(msp->ms_freeing) &&
5351 range_tree_is_empty(msp->ms_checkpointing)) {
5352 vdev_dirty(vd, VDD_METASLAB, msp, spa_syncing_txg(spa));
5355 if (checkpoint) {
5356 ASSERT(spa_has_checkpoint(spa));
5357 range_tree_add(msp->ms_checkpointing, offset, asize);
5358 } else {
5359 range_tree_add(msp->ms_freeing, offset, asize);
5361 mutex_exit(&msp->ms_lock);
5364 void
5365 metaslab_free_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5366 uint64_t size, void *arg)
5368 (void) inner_offset;
5369 boolean_t *checkpoint = arg;
5371 ASSERT3P(checkpoint, !=, NULL);
5373 if (vd->vdev_ops->vdev_op_remap != NULL)
5374 vdev_indirect_mark_obsolete(vd, offset, size);
5375 else
5376 metaslab_free_impl(vd, offset, size, *checkpoint);
5379 static void
5380 metaslab_free_impl(vdev_t *vd, uint64_t offset, uint64_t size,
5381 boolean_t checkpoint)
5383 spa_t *spa = vd->vdev_spa;
5385 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5387 if (spa_syncing_txg(spa) > spa_freeze_txg(spa))
5388 return;
5390 if (spa->spa_vdev_removal != NULL &&
5391 spa->spa_vdev_removal->svr_vdev_id == vd->vdev_id &&
5392 vdev_is_concrete(vd)) {
5394 * Note: we check if the vdev is concrete because when
5395 * we complete the removal, we first change the vdev to be
5396 * an indirect vdev (in open context), and then (in syncing
5397 * context) clear spa_vdev_removal.
5399 free_from_removing_vdev(vd, offset, size);
5400 } else if (vd->vdev_ops->vdev_op_remap != NULL) {
5401 vdev_indirect_mark_obsolete(vd, offset, size);
5402 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5403 metaslab_free_impl_cb, &checkpoint);
5404 } else {
5405 metaslab_free_concrete(vd, offset, size, checkpoint);
5409 typedef struct remap_blkptr_cb_arg {
5410 blkptr_t *rbca_bp;
5411 spa_remap_cb_t rbca_cb;
5412 vdev_t *rbca_remap_vd;
5413 uint64_t rbca_remap_offset;
5414 void *rbca_cb_arg;
5415 } remap_blkptr_cb_arg_t;
5417 static void
5418 remap_blkptr_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5419 uint64_t size, void *arg)
5421 remap_blkptr_cb_arg_t *rbca = arg;
5422 blkptr_t *bp = rbca->rbca_bp;
5424 /* We can not remap split blocks. */
5425 if (size != DVA_GET_ASIZE(&bp->blk_dva[0]))
5426 return;
5427 ASSERT0(inner_offset);
5429 if (rbca->rbca_cb != NULL) {
5431 * At this point we know that we are not handling split
5432 * blocks and we invoke the callback on the previous
5433 * vdev which must be indirect.
5435 ASSERT3P(rbca->rbca_remap_vd->vdev_ops, ==, &vdev_indirect_ops);
5437 rbca->rbca_cb(rbca->rbca_remap_vd->vdev_id,
5438 rbca->rbca_remap_offset, size, rbca->rbca_cb_arg);
5440 /* set up remap_blkptr_cb_arg for the next call */
5441 rbca->rbca_remap_vd = vd;
5442 rbca->rbca_remap_offset = offset;
5446 * The phys birth time is that of dva[0]. This ensures that we know
5447 * when each dva was written, so that resilver can determine which
5448 * blocks need to be scrubbed (i.e. those written during the time
5449 * the vdev was offline). It also ensures that the key used in
5450 * the ARC hash table is unique (i.e. dva[0] + phys_birth). If
5451 * we didn't change the phys_birth, a lookup in the ARC for a
5452 * remapped BP could find the data that was previously stored at
5453 * this vdev + offset.
5455 vdev_t *oldvd = vdev_lookup_top(vd->vdev_spa,
5456 DVA_GET_VDEV(&bp->blk_dva[0]));
5457 vdev_indirect_births_t *vib = oldvd->vdev_indirect_births;
5458 bp->blk_phys_birth = vdev_indirect_births_physbirth(vib,
5459 DVA_GET_OFFSET(&bp->blk_dva[0]), DVA_GET_ASIZE(&bp->blk_dva[0]));
5461 DVA_SET_VDEV(&bp->blk_dva[0], vd->vdev_id);
5462 DVA_SET_OFFSET(&bp->blk_dva[0], offset);
5466 * If the block pointer contains any indirect DVAs, modify them to refer to
5467 * concrete DVAs. Note that this will sometimes not be possible, leaving
5468 * the indirect DVA in place. This happens if the indirect DVA spans multiple
5469 * segments in the mapping (i.e. it is a "split block").
5471 * If the BP was remapped, calls the callback on the original dva (note the
5472 * callback can be called multiple times if the original indirect DVA refers
5473 * to another indirect DVA, etc).
5475 * Returns TRUE if the BP was remapped.
5477 boolean_t
5478 spa_remap_blkptr(spa_t *spa, blkptr_t *bp, spa_remap_cb_t callback, void *arg)
5480 remap_blkptr_cb_arg_t rbca;
5482 if (!zfs_remap_blkptr_enable)
5483 return (B_FALSE);
5485 if (!spa_feature_is_enabled(spa, SPA_FEATURE_OBSOLETE_COUNTS))
5486 return (B_FALSE);
5489 * Dedup BP's can not be remapped, because ddt_phys_select() depends
5490 * on DVA[0] being the same in the BP as in the DDT (dedup table).
5492 if (BP_GET_DEDUP(bp))
5493 return (B_FALSE);
5496 * Gang blocks can not be remapped, because
5497 * zio_checksum_gang_verifier() depends on the DVA[0] that's in
5498 * the BP used to read the gang block header (GBH) being the same
5499 * as the DVA[0] that we allocated for the GBH.
5501 if (BP_IS_GANG(bp))
5502 return (B_FALSE);
5505 * Embedded BP's have no DVA to remap.
5507 if (BP_GET_NDVAS(bp) < 1)
5508 return (B_FALSE);
5511 * Note: we only remap dva[0]. If we remapped other dvas, we
5512 * would no longer know what their phys birth txg is.
5514 dva_t *dva = &bp->blk_dva[0];
5516 uint64_t offset = DVA_GET_OFFSET(dva);
5517 uint64_t size = DVA_GET_ASIZE(dva);
5518 vdev_t *vd = vdev_lookup_top(spa, DVA_GET_VDEV(dva));
5520 if (vd->vdev_ops->vdev_op_remap == NULL)
5521 return (B_FALSE);
5523 rbca.rbca_bp = bp;
5524 rbca.rbca_cb = callback;
5525 rbca.rbca_remap_vd = vd;
5526 rbca.rbca_remap_offset = offset;
5527 rbca.rbca_cb_arg = arg;
5530 * remap_blkptr_cb() will be called in order for each level of
5531 * indirection, until a concrete vdev is reached or a split block is
5532 * encountered. old_vd and old_offset are updated within the callback
5533 * as we go from the one indirect vdev to the next one (either concrete
5534 * or indirect again) in that order.
5536 vd->vdev_ops->vdev_op_remap(vd, offset, size, remap_blkptr_cb, &rbca);
5538 /* Check if the DVA wasn't remapped because it is a split block */
5539 if (DVA_GET_VDEV(&rbca.rbca_bp->blk_dva[0]) == vd->vdev_id)
5540 return (B_FALSE);
5542 return (B_TRUE);
5546 * Undo the allocation of a DVA which happened in the given transaction group.
5548 void
5549 metaslab_unalloc_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5551 metaslab_t *msp;
5552 vdev_t *vd;
5553 uint64_t vdev = DVA_GET_VDEV(dva);
5554 uint64_t offset = DVA_GET_OFFSET(dva);
5555 uint64_t size = DVA_GET_ASIZE(dva);
5557 ASSERT(DVA_IS_VALID(dva));
5558 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5560 if (txg > spa_freeze_txg(spa))
5561 return;
5563 if ((vd = vdev_lookup_top(spa, vdev)) == NULL || !DVA_IS_VALID(dva) ||
5564 (offset >> vd->vdev_ms_shift) >= vd->vdev_ms_count) {
5565 zfs_panic_recover("metaslab_free_dva(): bad DVA %llu:%llu:%llu",
5566 (u_longlong_t)vdev, (u_longlong_t)offset,
5567 (u_longlong_t)size);
5568 return;
5571 ASSERT(!vd->vdev_removing);
5572 ASSERT(vdev_is_concrete(vd));
5573 ASSERT0(vd->vdev_indirect_config.vic_mapping_object);
5574 ASSERT3P(vd->vdev_indirect_mapping, ==, NULL);
5576 if (DVA_GET_GANG(dva))
5577 size = vdev_gang_header_asize(vd);
5579 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5581 mutex_enter(&msp->ms_lock);
5582 range_tree_remove(msp->ms_allocating[txg & TXG_MASK],
5583 offset, size);
5584 msp->ms_allocating_total -= size;
5586 VERIFY(!msp->ms_condensing);
5587 VERIFY3U(offset, >=, msp->ms_start);
5588 VERIFY3U(offset + size, <=, msp->ms_start + msp->ms_size);
5589 VERIFY3U(range_tree_space(msp->ms_allocatable) + size, <=,
5590 msp->ms_size);
5591 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5592 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5593 range_tree_add(msp->ms_allocatable, offset, size);
5594 mutex_exit(&msp->ms_lock);
5598 * Free the block represented by the given DVA.
5600 void
5601 metaslab_free_dva(spa_t *spa, const dva_t *dva, boolean_t checkpoint)
5603 uint64_t vdev = DVA_GET_VDEV(dva);
5604 uint64_t offset = DVA_GET_OFFSET(dva);
5605 uint64_t size = DVA_GET_ASIZE(dva);
5606 vdev_t *vd = vdev_lookup_top(spa, vdev);
5608 ASSERT(DVA_IS_VALID(dva));
5609 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5611 if (DVA_GET_GANG(dva)) {
5612 size = vdev_gang_header_asize(vd);
5615 metaslab_free_impl(vd, offset, size, checkpoint);
5619 * Reserve some allocation slots. The reservation system must be called
5620 * before we call into the allocator. If there aren't any available slots
5621 * then the I/O will be throttled until an I/O completes and its slots are
5622 * freed up. The function returns true if it was successful in placing
5623 * the reservation.
5625 boolean_t
5626 metaslab_class_throttle_reserve(metaslab_class_t *mc, int slots, int allocator,
5627 zio_t *zio, int flags)
5629 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5630 uint64_t max = mca->mca_alloc_max_slots;
5632 ASSERT(mc->mc_alloc_throttle_enabled);
5633 if (GANG_ALLOCATION(flags) || (flags & METASLAB_MUST_RESERVE) ||
5634 zfs_refcount_count(&mca->mca_alloc_slots) + slots <= max) {
5636 * The potential race between _count() and _add() is covered
5637 * by the allocator lock in most cases, or irrelevant due to
5638 * GANG_ALLOCATION() or METASLAB_MUST_RESERVE set in others.
5639 * But even if we assume some other non-existing scenario, the
5640 * worst that can happen is few more I/Os get to allocation
5641 * earlier, that is not a problem.
5643 * We reserve the slots individually so that we can unreserve
5644 * them individually when an I/O completes.
5646 zfs_refcount_add_few(&mca->mca_alloc_slots, slots, zio);
5647 zio->io_flags |= ZIO_FLAG_IO_ALLOCATING;
5648 return (B_TRUE);
5650 return (B_FALSE);
5653 void
5654 metaslab_class_throttle_unreserve(metaslab_class_t *mc, int slots,
5655 int allocator, zio_t *zio)
5657 metaslab_class_allocator_t *mca = &mc->mc_allocator[allocator];
5659 ASSERT(mc->mc_alloc_throttle_enabled);
5660 zfs_refcount_remove_few(&mca->mca_alloc_slots, slots, zio);
5663 static int
5664 metaslab_claim_concrete(vdev_t *vd, uint64_t offset, uint64_t size,
5665 uint64_t txg)
5667 metaslab_t *msp;
5668 spa_t *spa = vd->vdev_spa;
5669 int error = 0;
5671 if (offset >> vd->vdev_ms_shift >= vd->vdev_ms_count)
5672 return (SET_ERROR(ENXIO));
5674 ASSERT3P(vd->vdev_ms, !=, NULL);
5675 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5677 mutex_enter(&msp->ms_lock);
5679 if ((txg != 0 && spa_writeable(spa)) || !msp->ms_loaded) {
5680 error = metaslab_activate(msp, 0, METASLAB_WEIGHT_CLAIM);
5681 if (error == EBUSY) {
5682 ASSERT(msp->ms_loaded);
5683 ASSERT(msp->ms_weight & METASLAB_ACTIVE_MASK);
5684 error = 0;
5688 if (error == 0 &&
5689 !range_tree_contains(msp->ms_allocatable, offset, size))
5690 error = SET_ERROR(ENOENT);
5692 if (error || txg == 0) { /* txg == 0 indicates dry run */
5693 mutex_exit(&msp->ms_lock);
5694 return (error);
5697 VERIFY(!msp->ms_condensing);
5698 VERIFY0(P2PHASE(offset, 1ULL << vd->vdev_ashift));
5699 VERIFY0(P2PHASE(size, 1ULL << vd->vdev_ashift));
5700 VERIFY3U(range_tree_space(msp->ms_allocatable) - size, <=,
5701 msp->ms_size);
5702 range_tree_remove(msp->ms_allocatable, offset, size);
5703 range_tree_clear(msp->ms_trim, offset, size);
5705 if (spa_writeable(spa)) { /* don't dirty if we're zdb(8) */
5706 metaslab_class_t *mc = msp->ms_group->mg_class;
5707 multilist_sublist_t *mls =
5708 multilist_sublist_lock_obj(&mc->mc_metaslab_txg_list, msp);
5709 if (!multilist_link_active(&msp->ms_class_txg_node)) {
5710 msp->ms_selected_txg = txg;
5711 multilist_sublist_insert_head(mls, msp);
5713 multilist_sublist_unlock(mls);
5715 if (range_tree_is_empty(msp->ms_allocating[txg & TXG_MASK]))
5716 vdev_dirty(vd, VDD_METASLAB, msp, txg);
5717 range_tree_add(msp->ms_allocating[txg & TXG_MASK],
5718 offset, size);
5719 msp->ms_allocating_total += size;
5722 mutex_exit(&msp->ms_lock);
5724 return (0);
5727 typedef struct metaslab_claim_cb_arg_t {
5728 uint64_t mcca_txg;
5729 int mcca_error;
5730 } metaslab_claim_cb_arg_t;
5732 static void
5733 metaslab_claim_impl_cb(uint64_t inner_offset, vdev_t *vd, uint64_t offset,
5734 uint64_t size, void *arg)
5736 (void) inner_offset;
5737 metaslab_claim_cb_arg_t *mcca_arg = arg;
5739 if (mcca_arg->mcca_error == 0) {
5740 mcca_arg->mcca_error = metaslab_claim_concrete(vd, offset,
5741 size, mcca_arg->mcca_txg);
5746 metaslab_claim_impl(vdev_t *vd, uint64_t offset, uint64_t size, uint64_t txg)
5748 if (vd->vdev_ops->vdev_op_remap != NULL) {
5749 metaslab_claim_cb_arg_t arg;
5752 * Only zdb(8) can claim on indirect vdevs. This is used
5753 * to detect leaks of mapped space (that are not accounted
5754 * for in the obsolete counts, spacemap, or bpobj).
5756 ASSERT(!spa_writeable(vd->vdev_spa));
5757 arg.mcca_error = 0;
5758 arg.mcca_txg = txg;
5760 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5761 metaslab_claim_impl_cb, &arg);
5763 if (arg.mcca_error == 0) {
5764 arg.mcca_error = metaslab_claim_concrete(vd,
5765 offset, size, txg);
5767 return (arg.mcca_error);
5768 } else {
5769 return (metaslab_claim_concrete(vd, offset, size, txg));
5774 * Intent log support: upon opening the pool after a crash, notify the SPA
5775 * of blocks that the intent log has allocated for immediate write, but
5776 * which are still considered free by the SPA because the last transaction
5777 * group didn't commit yet.
5779 static int
5780 metaslab_claim_dva(spa_t *spa, const dva_t *dva, uint64_t txg)
5782 uint64_t vdev = DVA_GET_VDEV(dva);
5783 uint64_t offset = DVA_GET_OFFSET(dva);
5784 uint64_t size = DVA_GET_ASIZE(dva);
5785 vdev_t *vd;
5787 if ((vd = vdev_lookup_top(spa, vdev)) == NULL) {
5788 return (SET_ERROR(ENXIO));
5791 ASSERT(DVA_IS_VALID(dva));
5793 if (DVA_GET_GANG(dva))
5794 size = vdev_gang_header_asize(vd);
5796 return (metaslab_claim_impl(vd, offset, size, txg));
5800 metaslab_alloc(spa_t *spa, metaslab_class_t *mc, uint64_t psize, blkptr_t *bp,
5801 int ndvas, uint64_t txg, blkptr_t *hintbp, int flags,
5802 zio_alloc_list_t *zal, zio_t *zio, int allocator)
5804 dva_t *dva = bp->blk_dva;
5805 dva_t *hintdva = (hintbp != NULL) ? hintbp->blk_dva : NULL;
5806 int error = 0;
5808 ASSERT(bp->blk_birth == 0);
5809 ASSERT(BP_PHYSICAL_BIRTH(bp) == 0);
5811 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5813 if (mc->mc_allocator[allocator].mca_rotor == NULL) {
5814 /* no vdevs in this class */
5815 spa_config_exit(spa, SCL_ALLOC, FTAG);
5816 return (SET_ERROR(ENOSPC));
5819 ASSERT(ndvas > 0 && ndvas <= spa_max_replication(spa));
5820 ASSERT(BP_GET_NDVAS(bp) == 0);
5821 ASSERT(hintbp == NULL || ndvas <= BP_GET_NDVAS(hintbp));
5822 ASSERT3P(zal, !=, NULL);
5824 for (int d = 0; d < ndvas; d++) {
5825 error = metaslab_alloc_dva(spa, mc, psize, dva, d, hintdva,
5826 txg, flags, zal, allocator);
5827 if (error != 0) {
5828 for (d--; d >= 0; d--) {
5829 metaslab_unalloc_dva(spa, &dva[d], txg);
5830 metaslab_group_alloc_decrement(spa,
5831 DVA_GET_VDEV(&dva[d]), zio, flags,
5832 allocator, B_FALSE);
5833 memset(&dva[d], 0, sizeof (dva_t));
5835 spa_config_exit(spa, SCL_ALLOC, FTAG);
5836 return (error);
5837 } else {
5839 * Update the metaslab group's queue depth
5840 * based on the newly allocated dva.
5842 metaslab_group_alloc_increment(spa,
5843 DVA_GET_VDEV(&dva[d]), zio, flags, allocator);
5846 ASSERT(error == 0);
5847 ASSERT(BP_GET_NDVAS(bp) == ndvas);
5849 spa_config_exit(spa, SCL_ALLOC, FTAG);
5851 BP_SET_BIRTH(bp, txg, 0);
5853 return (0);
5856 void
5857 metaslab_free(spa_t *spa, const blkptr_t *bp, uint64_t txg, boolean_t now)
5859 const dva_t *dva = bp->blk_dva;
5860 int ndvas = BP_GET_NDVAS(bp);
5862 ASSERT(!BP_IS_HOLE(bp));
5863 ASSERT(!now || bp->blk_birth >= spa_syncing_txg(spa));
5866 * If we have a checkpoint for the pool we need to make sure that
5867 * the blocks that we free that are part of the checkpoint won't be
5868 * reused until the checkpoint is discarded or we revert to it.
5870 * The checkpoint flag is passed down the metaslab_free code path
5871 * and is set whenever we want to add a block to the checkpoint's
5872 * accounting. That is, we "checkpoint" blocks that existed at the
5873 * time the checkpoint was created and are therefore referenced by
5874 * the checkpointed uberblock.
5876 * Note that, we don't checkpoint any blocks if the current
5877 * syncing txg <= spa_checkpoint_txg. We want these frees to sync
5878 * normally as they will be referenced by the checkpointed uberblock.
5880 boolean_t checkpoint = B_FALSE;
5881 if (bp->blk_birth <= spa->spa_checkpoint_txg &&
5882 spa_syncing_txg(spa) > spa->spa_checkpoint_txg) {
5884 * At this point, if the block is part of the checkpoint
5885 * there is no way it was created in the current txg.
5887 ASSERT(!now);
5888 ASSERT3U(spa_syncing_txg(spa), ==, txg);
5889 checkpoint = B_TRUE;
5892 spa_config_enter(spa, SCL_FREE, FTAG, RW_READER);
5894 for (int d = 0; d < ndvas; d++) {
5895 if (now) {
5896 metaslab_unalloc_dva(spa, &dva[d], txg);
5897 } else {
5898 ASSERT3U(txg, ==, spa_syncing_txg(spa));
5899 metaslab_free_dva(spa, &dva[d], checkpoint);
5903 spa_config_exit(spa, SCL_FREE, FTAG);
5907 metaslab_claim(spa_t *spa, const blkptr_t *bp, uint64_t txg)
5909 const dva_t *dva = bp->blk_dva;
5910 int ndvas = BP_GET_NDVAS(bp);
5911 int error = 0;
5913 ASSERT(!BP_IS_HOLE(bp));
5915 if (txg != 0) {
5917 * First do a dry run to make sure all DVAs are claimable,
5918 * so we don't have to unwind from partial failures below.
5920 if ((error = metaslab_claim(spa, bp, 0)) != 0)
5921 return (error);
5924 spa_config_enter(spa, SCL_ALLOC, FTAG, RW_READER);
5926 for (int d = 0; d < ndvas; d++) {
5927 error = metaslab_claim_dva(spa, &dva[d], txg);
5928 if (error != 0)
5929 break;
5932 spa_config_exit(spa, SCL_ALLOC, FTAG);
5934 ASSERT(error == 0 || txg == 0);
5936 return (error);
5939 static void
5940 metaslab_check_free_impl_cb(uint64_t inner, vdev_t *vd, uint64_t offset,
5941 uint64_t size, void *arg)
5943 (void) inner, (void) arg;
5945 if (vd->vdev_ops == &vdev_indirect_ops)
5946 return;
5948 metaslab_check_free_impl(vd, offset, size);
5951 static void
5952 metaslab_check_free_impl(vdev_t *vd, uint64_t offset, uint64_t size)
5954 metaslab_t *msp;
5955 spa_t *spa __maybe_unused = vd->vdev_spa;
5957 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
5958 return;
5960 if (vd->vdev_ops->vdev_op_remap != NULL) {
5961 vd->vdev_ops->vdev_op_remap(vd, offset, size,
5962 metaslab_check_free_impl_cb, NULL);
5963 return;
5966 ASSERT(vdev_is_concrete(vd));
5967 ASSERT3U(offset >> vd->vdev_ms_shift, <, vd->vdev_ms_count);
5968 ASSERT3U(spa_config_held(spa, SCL_ALL, RW_READER), !=, 0);
5970 msp = vd->vdev_ms[offset >> vd->vdev_ms_shift];
5972 mutex_enter(&msp->ms_lock);
5973 if (msp->ms_loaded) {
5974 range_tree_verify_not_present(msp->ms_allocatable,
5975 offset, size);
5979 * Check all segments that currently exist in the freeing pipeline.
5981 * It would intuitively make sense to also check the current allocating
5982 * tree since metaslab_unalloc_dva() exists for extents that are
5983 * allocated and freed in the same sync pass within the same txg.
5984 * Unfortunately there are places (e.g. the ZIL) where we allocate a
5985 * segment but then we free part of it within the same txg
5986 * [see zil_sync()]. Thus, we don't call range_tree_verify() in the
5987 * current allocating tree.
5989 range_tree_verify_not_present(msp->ms_freeing, offset, size);
5990 range_tree_verify_not_present(msp->ms_checkpointing, offset, size);
5991 range_tree_verify_not_present(msp->ms_freed, offset, size);
5992 for (int j = 0; j < TXG_DEFER_SIZE; j++)
5993 range_tree_verify_not_present(msp->ms_defer[j], offset, size);
5994 range_tree_verify_not_present(msp->ms_trim, offset, size);
5995 mutex_exit(&msp->ms_lock);
5998 void
5999 metaslab_check_free(spa_t *spa, const blkptr_t *bp)
6001 if ((zfs_flags & ZFS_DEBUG_ZIO_FREE) == 0)
6002 return;
6004 spa_config_enter(spa, SCL_VDEV, FTAG, RW_READER);
6005 for (int i = 0; i < BP_GET_NDVAS(bp); i++) {
6006 uint64_t vdev = DVA_GET_VDEV(&bp->blk_dva[i]);
6007 vdev_t *vd = vdev_lookup_top(spa, vdev);
6008 uint64_t offset = DVA_GET_OFFSET(&bp->blk_dva[i]);
6009 uint64_t size = DVA_GET_ASIZE(&bp->blk_dva[i]);
6011 if (DVA_GET_GANG(&bp->blk_dva[i]))
6012 size = vdev_gang_header_asize(vd);
6014 ASSERT3P(vd, !=, NULL);
6016 metaslab_check_free_impl(vd, offset, size);
6018 spa_config_exit(spa, SCL_VDEV, FTAG);
6021 static void
6022 metaslab_group_disable_wait(metaslab_group_t *mg)
6024 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6025 while (mg->mg_disabled_updating) {
6026 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6030 static void
6031 metaslab_group_disabled_increment(metaslab_group_t *mg)
6033 ASSERT(MUTEX_HELD(&mg->mg_ms_disabled_lock));
6034 ASSERT(mg->mg_disabled_updating);
6036 while (mg->mg_ms_disabled >= max_disabled_ms) {
6037 cv_wait(&mg->mg_ms_disabled_cv, &mg->mg_ms_disabled_lock);
6039 mg->mg_ms_disabled++;
6040 ASSERT3U(mg->mg_ms_disabled, <=, max_disabled_ms);
6044 * Mark the metaslab as disabled to prevent any allocations on this metaslab.
6045 * We must also track how many metaslabs are currently disabled within a
6046 * metaslab group and limit them to prevent allocation failures from
6047 * occurring because all metaslabs are disabled.
6049 void
6050 metaslab_disable(metaslab_t *msp)
6052 ASSERT(!MUTEX_HELD(&msp->ms_lock));
6053 metaslab_group_t *mg = msp->ms_group;
6055 mutex_enter(&mg->mg_ms_disabled_lock);
6058 * To keep an accurate count of how many threads have disabled
6059 * a specific metaslab group, we only allow one thread to mark
6060 * the metaslab group at a time. This ensures that the value of
6061 * ms_disabled will be accurate when we decide to mark a metaslab
6062 * group as disabled. To do this we force all other threads
6063 * to wait till the metaslab's mg_disabled_updating flag is no
6064 * longer set.
6066 metaslab_group_disable_wait(mg);
6067 mg->mg_disabled_updating = B_TRUE;
6068 if (msp->ms_disabled == 0) {
6069 metaslab_group_disabled_increment(mg);
6071 mutex_enter(&msp->ms_lock);
6072 msp->ms_disabled++;
6073 mutex_exit(&msp->ms_lock);
6075 mg->mg_disabled_updating = B_FALSE;
6076 cv_broadcast(&mg->mg_ms_disabled_cv);
6077 mutex_exit(&mg->mg_ms_disabled_lock);
6080 void
6081 metaslab_enable(metaslab_t *msp, boolean_t sync, boolean_t unload)
6083 metaslab_group_t *mg = msp->ms_group;
6084 spa_t *spa = mg->mg_vd->vdev_spa;
6087 * Wait for the outstanding IO to be synced to prevent newly
6088 * allocated blocks from being overwritten. This used by
6089 * initialize and TRIM which are modifying unallocated space.
6091 if (sync)
6092 txg_wait_synced(spa_get_dsl(spa), 0);
6094 mutex_enter(&mg->mg_ms_disabled_lock);
6095 mutex_enter(&msp->ms_lock);
6096 if (--msp->ms_disabled == 0) {
6097 mg->mg_ms_disabled--;
6098 cv_broadcast(&mg->mg_ms_disabled_cv);
6099 if (unload)
6100 metaslab_unload(msp);
6102 mutex_exit(&msp->ms_lock);
6103 mutex_exit(&mg->mg_ms_disabled_lock);
6106 void
6107 metaslab_set_unflushed_dirty(metaslab_t *ms, boolean_t dirty)
6109 ms->ms_unflushed_dirty = dirty;
6112 static void
6113 metaslab_update_ondisk_flush_data(metaslab_t *ms, dmu_tx_t *tx)
6115 vdev_t *vd = ms->ms_group->mg_vd;
6116 spa_t *spa = vd->vdev_spa;
6117 objset_t *mos = spa_meta_objset(spa);
6119 ASSERT(spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP));
6121 metaslab_unflushed_phys_t entry = {
6122 .msp_unflushed_txg = metaslab_unflushed_txg(ms),
6124 uint64_t entry_size = sizeof (entry);
6125 uint64_t entry_offset = ms->ms_id * entry_size;
6127 uint64_t object = 0;
6128 int err = zap_lookup(mos, vd->vdev_top_zap,
6129 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6130 &object);
6131 if (err == ENOENT) {
6132 object = dmu_object_alloc(mos, DMU_OTN_UINT64_METADATA,
6133 SPA_OLD_MAXBLOCKSIZE, DMU_OT_NONE, 0, tx);
6134 VERIFY0(zap_add(mos, vd->vdev_top_zap,
6135 VDEV_TOP_ZAP_MS_UNFLUSHED_PHYS_TXGS, sizeof (uint64_t), 1,
6136 &object, tx));
6137 } else {
6138 VERIFY0(err);
6141 dmu_write(spa_meta_objset(spa), object, entry_offset, entry_size,
6142 &entry, tx);
6145 void
6146 metaslab_set_unflushed_txg(metaslab_t *ms, uint64_t txg, dmu_tx_t *tx)
6148 ms->ms_unflushed_txg = txg;
6149 metaslab_update_ondisk_flush_data(ms, tx);
6152 boolean_t
6153 metaslab_unflushed_dirty(metaslab_t *ms)
6155 return (ms->ms_unflushed_dirty);
6158 uint64_t
6159 metaslab_unflushed_txg(metaslab_t *ms)
6161 return (ms->ms_unflushed_txg);
6164 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, aliquot, U64, ZMOD_RW,
6165 "Allocation granularity (a.k.a. stripe size)");
6167 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_load, INT, ZMOD_RW,
6168 "Load all metaslabs when pool is first opened");
6170 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, debug_unload, INT, ZMOD_RW,
6171 "Prevent metaslabs from being unloaded");
6173 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_enabled, INT, ZMOD_RW,
6174 "Preload potential metaslabs during reassessment");
6176 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay, UINT, ZMOD_RW,
6177 "Delay in txgs after metaslab was last used before unloading");
6179 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, unload_delay_ms, UINT, ZMOD_RW,
6180 "Delay in milliseconds after metaslab was last used before unloading");
6182 /* BEGIN CSTYLED */
6183 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, noalloc_threshold, UINT, ZMOD_RW,
6184 "Percentage of metaslab group size that should be free to make it "
6185 "eligible for allocation");
6187 ZFS_MODULE_PARAM(zfs_mg, zfs_mg_, fragmentation_threshold, UINT, ZMOD_RW,
6188 "Percentage of metaslab group size that should be considered eligible "
6189 "for allocations unless all metaslab groups within the metaslab class "
6190 "have also crossed this threshold");
6192 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, fragmentation_factor_enabled, INT,
6193 ZMOD_RW,
6194 "Use the fragmentation metric to prefer less fragmented metaslabs");
6195 /* END CSTYLED */
6197 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, fragmentation_threshold, UINT,
6198 ZMOD_RW, "Fragmentation for metaslab to allow allocation");
6200 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, lba_weighting_enabled, INT, ZMOD_RW,
6201 "Prefer metaslabs with lower LBAs");
6203 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, bias_enabled, INT, ZMOD_RW,
6204 "Enable metaslab group biasing");
6206 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, segment_weight_enabled, INT,
6207 ZMOD_RW, "Enable segment-based metaslab selection");
6209 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, switch_threshold, INT, ZMOD_RW,
6210 "Segment-based metaslab selection maximum buckets before switching");
6212 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging, U64, ZMOD_RW,
6213 "Blocks larger than this size are sometimes forced to be gang blocks");
6215 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, force_ganging_pct, UINT, ZMOD_RW,
6216 "Percentage of large blocks that will be forced to be gang blocks");
6218 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_max_search, UINT, ZMOD_RW,
6219 "Max distance (bytes) to search forward before using size tree");
6221 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, df_use_largest_segment, INT, ZMOD_RW,
6222 "When looking in size tree, use largest segment instead of exact fit");
6224 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, max_size_cache_sec, U64,
6225 ZMOD_RW, "How long to trust the cached max chunk size of a metaslab");
6227 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, mem_limit, UINT, ZMOD_RW,
6228 "Percentage of memory that can be used to store metaslab range trees");
6230 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, try_hard_before_gang, INT,
6231 ZMOD_RW, "Try hard to allocate before ganging");
6233 ZFS_MODULE_PARAM(zfs_metaslab, zfs_metaslab_, find_max_tries, UINT, ZMOD_RW,
6234 "Normally only consider this many of the best metaslabs in each vdev");