zed: Allow autoreplace and fault LEDs for removed vdevs
[zfs.git] / module / zfs / zvol.c
blob53dcb4dee44862f673bed375f78a8df4536bc694
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
25 * LLNL-CODE-403049.
27 * ZFS volume emulation driver.
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
32 * /dev/<pool_name>/<dataset_name>
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
43 * Note on locking of zvol state structures.
45 * These structures are used to maintain internal state used to emulate block
46 * devices on top of zvols. In particular, management of device minor number
47 * operations - create, remove, rename, and set_snapdev - involves access to
48 * these structures. The zvol_state_lock is primarily used to protect the
49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50 * of the zvol_state_t structures, as well as to make sure that when the
51 * time comes to remove the structure from the list, it is not in use, and
52 * therefore, it can be taken off zvol_state_list and freed.
54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55 * e.g. for the duration of receive and rollback operations. This lock can be
56 * held for significant periods of time. Given that it is undesirable to hold
57 * mutexes for long periods of time, the following lock ordering applies:
58 * - take zvol_state_lock if necessary, to protect zvol_state_list
59 * - take zv_suspend_lock if necessary, by the code path in question
60 * - take zv_state_lock to protect zvol_state_t
62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63 * single-threaded (to preserve order of minor operations), and are executed
64 * through the zvol_task_cb that dispatches the specific operations. Therefore,
65 * these operations are serialized per pool. Consequently, we can be certain
66 * that for a given zvol, there is only one operation at a time in progress.
67 * That is why one can be sure that first, zvol_state_t for a given zvol is
68 * allocated and placed on zvol_state_list, and then other minor operations
69 * for this zvol are going to proceed in the order of issue.
73 #include <sys/dataset_kstats.h>
74 #include <sys/dbuf.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
79 #include <sys/zap.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
83 #include <sys/zio.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
86 #include <sys/zvol.h>
87 #include <sys/zvol_impl.h>
89 unsigned int zvol_inhibit_dev = 0;
90 unsigned int zvol_volmode = ZFS_VOLMODE_GEOM;
92 struct hlist_head *zvol_htable;
93 static list_t zvol_state_list;
94 krwlock_t zvol_state_lock;
96 typedef enum {
97 ZVOL_ASYNC_REMOVE_MINORS,
98 ZVOL_ASYNC_RENAME_MINORS,
99 ZVOL_ASYNC_SET_SNAPDEV,
100 ZVOL_ASYNC_SET_VOLMODE,
101 ZVOL_ASYNC_MAX
102 } zvol_async_op_t;
104 typedef struct {
105 zvol_async_op_t op;
106 char name1[MAXNAMELEN];
107 char name2[MAXNAMELEN];
108 uint64_t value;
109 } zvol_task_t;
111 uint64_t
112 zvol_name_hash(const char *name)
114 int i;
115 uint64_t crc = -1ULL;
116 const uint8_t *p = (const uint8_t *)name;
117 ASSERT(zfs_crc64_table[128] == ZFS_CRC64_POLY);
118 for (i = 0; i < MAXNAMELEN - 1 && *p; i++, p++) {
119 crc = (crc >> 8) ^ zfs_crc64_table[(crc ^ (*p)) & 0xFF];
121 return (crc);
125 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
126 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
127 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
128 * before zv_state_lock. The mode argument indicates the mode (including none)
129 * for zv_suspend_lock to be taken.
131 zvol_state_t *
132 zvol_find_by_name_hash(const char *name, uint64_t hash, int mode)
134 zvol_state_t *zv;
135 struct hlist_node *p = NULL;
137 rw_enter(&zvol_state_lock, RW_READER);
138 hlist_for_each(p, ZVOL_HT_HEAD(hash)) {
139 zv = hlist_entry(p, zvol_state_t, zv_hlink);
140 mutex_enter(&zv->zv_state_lock);
141 if (zv->zv_hash == hash &&
142 strncmp(zv->zv_name, name, MAXNAMELEN) == 0) {
144 * this is the right zvol, take the locks in the
145 * right order
147 if (mode != RW_NONE &&
148 !rw_tryenter(&zv->zv_suspend_lock, mode)) {
149 mutex_exit(&zv->zv_state_lock);
150 rw_enter(&zv->zv_suspend_lock, mode);
151 mutex_enter(&zv->zv_state_lock);
153 * zvol cannot be renamed as we continue
154 * to hold zvol_state_lock
156 ASSERT(zv->zv_hash == hash &&
157 strncmp(zv->zv_name, name, MAXNAMELEN)
158 == 0);
160 rw_exit(&zvol_state_lock);
161 return (zv);
163 mutex_exit(&zv->zv_state_lock);
165 rw_exit(&zvol_state_lock);
167 return (NULL);
171 * Find a zvol_state_t given the name.
172 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
173 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
174 * before zv_state_lock. The mode argument indicates the mode (including none)
175 * for zv_suspend_lock to be taken.
177 static zvol_state_t *
178 zvol_find_by_name(const char *name, int mode)
180 return (zvol_find_by_name_hash(name, zvol_name_hash(name), mode));
184 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
186 void
187 zvol_create_cb(objset_t *os, void *arg, cred_t *cr, dmu_tx_t *tx)
189 zfs_creat_t *zct = arg;
190 nvlist_t *nvprops = zct->zct_props;
191 int error;
192 uint64_t volblocksize, volsize;
194 VERIFY(nvlist_lookup_uint64(nvprops,
195 zfs_prop_to_name(ZFS_PROP_VOLSIZE), &volsize) == 0);
196 if (nvlist_lookup_uint64(nvprops,
197 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE), &volblocksize) != 0)
198 volblocksize = zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE);
201 * These properties must be removed from the list so the generic
202 * property setting step won't apply to them.
204 VERIFY(nvlist_remove_all(nvprops,
205 zfs_prop_to_name(ZFS_PROP_VOLSIZE)) == 0);
206 (void) nvlist_remove_all(nvprops,
207 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE));
209 error = dmu_object_claim(os, ZVOL_OBJ, DMU_OT_ZVOL, volblocksize,
210 DMU_OT_NONE, 0, tx);
211 ASSERT(error == 0);
213 error = zap_create_claim(os, ZVOL_ZAP_OBJ, DMU_OT_ZVOL_PROP,
214 DMU_OT_NONE, 0, tx);
215 ASSERT(error == 0);
217 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize, tx);
218 ASSERT(error == 0);
222 * ZFS_IOC_OBJSET_STATS entry point.
225 zvol_get_stats(objset_t *os, nvlist_t *nv)
227 int error;
228 dmu_object_info_t *doi;
229 uint64_t val;
231 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &val);
232 if (error)
233 return (SET_ERROR(error));
235 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLSIZE, val);
236 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
237 error = dmu_object_info(os, ZVOL_OBJ, doi);
239 if (error == 0) {
240 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_VOLBLOCKSIZE,
241 doi->doi_data_block_size);
244 kmem_free(doi, sizeof (dmu_object_info_t));
246 return (SET_ERROR(error));
250 * Sanity check volume size.
253 zvol_check_volsize(uint64_t volsize, uint64_t blocksize)
255 if (volsize == 0)
256 return (SET_ERROR(EINVAL));
258 if (volsize % blocksize != 0)
259 return (SET_ERROR(EINVAL));
261 #ifdef _ILP32
262 if (volsize - 1 > SPEC_MAXOFFSET_T)
263 return (SET_ERROR(EOVERFLOW));
264 #endif
265 return (0);
269 * Ensure the zap is flushed then inform the VFS of the capacity change.
271 static int
272 zvol_update_volsize(uint64_t volsize, objset_t *os)
274 dmu_tx_t *tx;
275 int error;
276 uint64_t txg;
278 tx = dmu_tx_create(os);
279 dmu_tx_hold_zap(tx, ZVOL_ZAP_OBJ, TRUE, NULL);
280 dmu_tx_mark_netfree(tx);
281 error = dmu_tx_assign(tx, TXG_WAIT);
282 if (error) {
283 dmu_tx_abort(tx);
284 return (SET_ERROR(error));
286 txg = dmu_tx_get_txg(tx);
288 error = zap_update(os, ZVOL_ZAP_OBJ, "size", 8, 1,
289 &volsize, tx);
290 dmu_tx_commit(tx);
292 txg_wait_synced(dmu_objset_pool(os), txg);
294 if (error == 0)
295 error = dmu_free_long_range(os,
296 ZVOL_OBJ, volsize, DMU_OBJECT_END);
298 return (error);
302 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
303 * size will result in a udev "change" event being generated.
306 zvol_set_volsize(const char *name, uint64_t volsize)
308 objset_t *os = NULL;
309 uint64_t readonly;
310 int error;
311 boolean_t owned = B_FALSE;
313 error = dsl_prop_get_integer(name,
314 zfs_prop_to_name(ZFS_PROP_READONLY), &readonly, NULL);
315 if (error != 0)
316 return (SET_ERROR(error));
317 if (readonly)
318 return (SET_ERROR(EROFS));
320 zvol_state_t *zv = zvol_find_by_name(name, RW_READER);
322 ASSERT(zv == NULL || (MUTEX_HELD(&zv->zv_state_lock) &&
323 RW_READ_HELD(&zv->zv_suspend_lock)));
325 if (zv == NULL || zv->zv_objset == NULL) {
326 if (zv != NULL)
327 rw_exit(&zv->zv_suspend_lock);
328 if ((error = dmu_objset_own(name, DMU_OST_ZVOL, B_FALSE, B_TRUE,
329 FTAG, &os)) != 0) {
330 if (zv != NULL)
331 mutex_exit(&zv->zv_state_lock);
332 return (SET_ERROR(error));
334 owned = B_TRUE;
335 if (zv != NULL)
336 zv->zv_objset = os;
337 } else {
338 os = zv->zv_objset;
341 dmu_object_info_t *doi = kmem_alloc(sizeof (*doi), KM_SLEEP);
343 if ((error = dmu_object_info(os, ZVOL_OBJ, doi)) ||
344 (error = zvol_check_volsize(volsize, doi->doi_data_block_size)))
345 goto out;
347 error = zvol_update_volsize(volsize, os);
348 if (error == 0 && zv != NULL) {
349 zv->zv_volsize = volsize;
350 zv->zv_changed = 1;
352 out:
353 kmem_free(doi, sizeof (dmu_object_info_t));
355 if (owned) {
356 dmu_objset_disown(os, B_TRUE, FTAG);
357 if (zv != NULL)
358 zv->zv_objset = NULL;
359 } else {
360 rw_exit(&zv->zv_suspend_lock);
363 if (zv != NULL)
364 mutex_exit(&zv->zv_state_lock);
366 if (error == 0 && zv != NULL)
367 zvol_os_update_volsize(zv, volsize);
369 return (SET_ERROR(error));
373 * Sanity check volume block size.
376 zvol_check_volblocksize(const char *name, uint64_t volblocksize)
378 /* Record sizes above 128k need the feature to be enabled */
379 if (volblocksize > SPA_OLD_MAXBLOCKSIZE) {
380 spa_t *spa;
381 int error;
383 if ((error = spa_open(name, &spa, FTAG)) != 0)
384 return (error);
386 if (!spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
387 spa_close(spa, FTAG);
388 return (SET_ERROR(ENOTSUP));
392 * We don't allow setting the property above 1MB,
393 * unless the tunable has been changed.
395 if (volblocksize > zfs_max_recordsize)
396 return (SET_ERROR(EDOM));
398 spa_close(spa, FTAG);
401 if (volblocksize < SPA_MINBLOCKSIZE ||
402 volblocksize > SPA_MAXBLOCKSIZE ||
403 !ISP2(volblocksize))
404 return (SET_ERROR(EDOM));
406 return (0);
410 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
411 * implement DKIOCFREE/free-long-range.
413 static int
414 zvol_replay_truncate(void *arg1, void *arg2, boolean_t byteswap)
416 zvol_state_t *zv = arg1;
417 lr_truncate_t *lr = arg2;
418 uint64_t offset, length;
420 if (byteswap)
421 byteswap_uint64_array(lr, sizeof (*lr));
423 offset = lr->lr_offset;
424 length = lr->lr_length;
426 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
427 dmu_tx_mark_netfree(tx);
428 int error = dmu_tx_assign(tx, TXG_WAIT);
429 if (error != 0) {
430 dmu_tx_abort(tx);
431 } else {
432 (void) zil_replaying(zv->zv_zilog, tx);
433 dmu_tx_commit(tx);
434 error = dmu_free_long_range(zv->zv_objset, ZVOL_OBJ, offset,
435 length);
438 return (error);
442 * Replay a TX_WRITE ZIL transaction that didn't get committed
443 * after a system failure
445 static int
446 zvol_replay_write(void *arg1, void *arg2, boolean_t byteswap)
448 zvol_state_t *zv = arg1;
449 lr_write_t *lr = arg2;
450 objset_t *os = zv->zv_objset;
451 char *data = (char *)(lr + 1); /* data follows lr_write_t */
452 uint64_t offset, length;
453 dmu_tx_t *tx;
454 int error;
456 if (byteswap)
457 byteswap_uint64_array(lr, sizeof (*lr));
459 offset = lr->lr_offset;
460 length = lr->lr_length;
462 /* If it's a dmu_sync() block, write the whole block */
463 if (lr->lr_common.lrc_reclen == sizeof (lr_write_t)) {
464 uint64_t blocksize = BP_GET_LSIZE(&lr->lr_blkptr);
465 if (length < blocksize) {
466 offset -= offset % blocksize;
467 length = blocksize;
471 tx = dmu_tx_create(os);
472 dmu_tx_hold_write(tx, ZVOL_OBJ, offset, length);
473 error = dmu_tx_assign(tx, TXG_WAIT);
474 if (error) {
475 dmu_tx_abort(tx);
476 } else {
477 dmu_write(os, ZVOL_OBJ, offset, length, data, tx);
478 (void) zil_replaying(zv->zv_zilog, tx);
479 dmu_tx_commit(tx);
482 return (error);
486 * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
487 * after a system failure.
489 * TODO: For now we drop block cloning transations for ZVOLs as they are
490 * unsupported, but we still need to inform BRT about that as we
491 * claimed them during pool import.
492 * This situation can occur when we try to import a pool from a ZFS
493 * version supporting block cloning for ZVOLs into a system that
494 * has this ZFS version, that doesn't support block cloning for ZVOLs.
496 static int
497 zvol_replay_clone_range(void *arg1, void *arg2, boolean_t byteswap)
499 char name[ZFS_MAX_DATASET_NAME_LEN];
500 zvol_state_t *zv = arg1;
501 objset_t *os = zv->zv_objset;
502 lr_clone_range_t *lr = arg2;
503 blkptr_t *bp;
504 dmu_tx_t *tx;
505 spa_t *spa;
506 uint_t ii;
507 int error;
509 dmu_objset_name(os, name);
510 cmn_err(CE_WARN, "ZFS dropping block cloning transaction for %s.",
511 name);
513 if (byteswap)
514 byteswap_uint64_array(lr, sizeof (*lr));
516 tx = dmu_tx_create(os);
517 error = dmu_tx_assign(tx, TXG_WAIT);
518 if (error) {
519 dmu_tx_abort(tx);
520 return (error);
523 spa = os->os_spa;
525 for (ii = 0; ii < lr->lr_nbps; ii++) {
526 bp = &lr->lr_bps[ii];
528 if (!BP_IS_HOLE(bp)) {
529 zio_free(spa, dmu_tx_get_txg(tx), bp);
533 (void) zil_replaying(zv->zv_zilog, tx);
534 dmu_tx_commit(tx);
536 return (0);
539 static int
540 zvol_replay_err(void *arg1, void *arg2, boolean_t byteswap)
542 (void) arg1, (void) arg2, (void) byteswap;
543 return (SET_ERROR(ENOTSUP));
547 * Callback vectors for replaying records.
548 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
550 zil_replay_func_t *const zvol_replay_vector[TX_MAX_TYPE] = {
551 zvol_replay_err, /* no such transaction type */
552 zvol_replay_err, /* TX_CREATE */
553 zvol_replay_err, /* TX_MKDIR */
554 zvol_replay_err, /* TX_MKXATTR */
555 zvol_replay_err, /* TX_SYMLINK */
556 zvol_replay_err, /* TX_REMOVE */
557 zvol_replay_err, /* TX_RMDIR */
558 zvol_replay_err, /* TX_LINK */
559 zvol_replay_err, /* TX_RENAME */
560 zvol_replay_write, /* TX_WRITE */
561 zvol_replay_truncate, /* TX_TRUNCATE */
562 zvol_replay_err, /* TX_SETATTR */
563 zvol_replay_err, /* TX_ACL */
564 zvol_replay_err, /* TX_CREATE_ATTR */
565 zvol_replay_err, /* TX_CREATE_ACL_ATTR */
566 zvol_replay_err, /* TX_MKDIR_ACL */
567 zvol_replay_err, /* TX_MKDIR_ATTR */
568 zvol_replay_err, /* TX_MKDIR_ACL_ATTR */
569 zvol_replay_err, /* TX_WRITE2 */
570 zvol_replay_err, /* TX_SETSAXATTR */
571 zvol_replay_err, /* TX_RENAME_EXCHANGE */
572 zvol_replay_err, /* TX_RENAME_WHITEOUT */
573 zvol_replay_clone_range /* TX_CLONE_RANGE */
577 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
579 * We store data in the log buffers if it's small enough.
580 * Otherwise we will later flush the data out via dmu_sync().
582 static const ssize_t zvol_immediate_write_sz = 32768;
584 void
585 zvol_log_write(zvol_state_t *zv, dmu_tx_t *tx, uint64_t offset,
586 uint64_t size, int sync)
588 uint32_t blocksize = zv->zv_volblocksize;
589 zilog_t *zilog = zv->zv_zilog;
590 itx_wr_state_t write_state;
591 uint64_t sz = size;
593 if (zil_replaying(zilog, tx))
594 return;
596 if (zilog->zl_logbias == ZFS_LOGBIAS_THROUGHPUT)
597 write_state = WR_INDIRECT;
598 else if (!spa_has_slogs(zilog->zl_spa) &&
599 size >= blocksize && blocksize > zvol_immediate_write_sz)
600 write_state = WR_INDIRECT;
601 else if (sync)
602 write_state = WR_COPIED;
603 else
604 write_state = WR_NEED_COPY;
606 while (size) {
607 itx_t *itx;
608 lr_write_t *lr;
609 itx_wr_state_t wr_state = write_state;
610 ssize_t len = size;
612 if (wr_state == WR_COPIED && size > zil_max_copied_data(zilog))
613 wr_state = WR_NEED_COPY;
614 else if (wr_state == WR_INDIRECT)
615 len = MIN(blocksize - P2PHASE(offset, blocksize), size);
617 itx = zil_itx_create(TX_WRITE, sizeof (*lr) +
618 (wr_state == WR_COPIED ? len : 0));
619 lr = (lr_write_t *)&itx->itx_lr;
620 if (wr_state == WR_COPIED && dmu_read_by_dnode(zv->zv_dn,
621 offset, len, lr+1, DMU_READ_NO_PREFETCH) != 0) {
622 zil_itx_destroy(itx);
623 itx = zil_itx_create(TX_WRITE, sizeof (*lr));
624 lr = (lr_write_t *)&itx->itx_lr;
625 wr_state = WR_NEED_COPY;
628 itx->itx_wr_state = wr_state;
629 lr->lr_foid = ZVOL_OBJ;
630 lr->lr_offset = offset;
631 lr->lr_length = len;
632 lr->lr_blkoff = 0;
633 BP_ZERO(&lr->lr_blkptr);
635 itx->itx_private = zv;
636 itx->itx_sync = sync;
638 (void) zil_itx_assign(zilog, itx, tx);
640 offset += len;
641 size -= len;
644 if (write_state == WR_COPIED || write_state == WR_NEED_COPY) {
645 dsl_pool_wrlog_count(zilog->zl_dmu_pool, sz, tx->tx_txg);
650 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
652 void
653 zvol_log_truncate(zvol_state_t *zv, dmu_tx_t *tx, uint64_t off, uint64_t len,
654 boolean_t sync)
656 itx_t *itx;
657 lr_truncate_t *lr;
658 zilog_t *zilog = zv->zv_zilog;
660 if (zil_replaying(zilog, tx))
661 return;
663 itx = zil_itx_create(TX_TRUNCATE, sizeof (*lr));
664 lr = (lr_truncate_t *)&itx->itx_lr;
665 lr->lr_foid = ZVOL_OBJ;
666 lr->lr_offset = off;
667 lr->lr_length = len;
669 itx->itx_sync = sync;
670 zil_itx_assign(zilog, itx, tx);
674 static void
675 zvol_get_done(zgd_t *zgd, int error)
677 (void) error;
678 if (zgd->zgd_db)
679 dmu_buf_rele(zgd->zgd_db, zgd);
681 zfs_rangelock_exit(zgd->zgd_lr);
683 kmem_free(zgd, sizeof (zgd_t));
687 * Get data to generate a TX_WRITE intent log record.
690 zvol_get_data(void *arg, uint64_t arg2, lr_write_t *lr, char *buf,
691 struct lwb *lwb, zio_t *zio)
693 zvol_state_t *zv = arg;
694 uint64_t offset = lr->lr_offset;
695 uint64_t size = lr->lr_length;
696 dmu_buf_t *db;
697 zgd_t *zgd;
698 int error;
700 ASSERT3P(lwb, !=, NULL);
701 ASSERT3U(size, !=, 0);
703 zgd = kmem_zalloc(sizeof (zgd_t), KM_SLEEP);
704 zgd->zgd_lwb = lwb;
707 * Write records come in two flavors: immediate and indirect.
708 * For small writes it's cheaper to store the data with the
709 * log record (immediate); for large writes it's cheaper to
710 * sync the data and get a pointer to it (indirect) so that
711 * we don't have to write the data twice.
713 if (buf != NULL) { /* immediate write */
714 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
715 size, RL_READER);
716 error = dmu_read_by_dnode(zv->zv_dn, offset, size, buf,
717 DMU_READ_NO_PREFETCH);
718 } else { /* indirect write */
719 ASSERT3P(zio, !=, NULL);
721 * Have to lock the whole block to ensure when it's written out
722 * and its checksum is being calculated that no one can change
723 * the data. Contrarily to zfs_get_data we need not re-check
724 * blocksize after we get the lock because it cannot be changed.
726 size = zv->zv_volblocksize;
727 offset = P2ALIGN_TYPED(offset, size, uint64_t);
728 zgd->zgd_lr = zfs_rangelock_enter(&zv->zv_rangelock, offset,
729 size, RL_READER);
730 error = dmu_buf_hold_noread_by_dnode(zv->zv_dn, offset, zgd,
731 &db);
732 if (error == 0) {
733 blkptr_t *bp = &lr->lr_blkptr;
735 zgd->zgd_db = db;
736 zgd->zgd_bp = bp;
738 ASSERT(db != NULL);
739 ASSERT(db->db_offset == offset);
740 ASSERT(db->db_size == size);
742 error = dmu_sync(zio, lr->lr_common.lrc_txg,
743 zvol_get_done, zgd);
745 if (error == 0)
746 return (0);
750 zvol_get_done(zgd, error);
752 return (SET_ERROR(error));
756 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
759 void
760 zvol_insert(zvol_state_t *zv)
762 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
763 list_insert_head(&zvol_state_list, zv);
764 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
768 * Simply remove the zvol from to list of zvols.
770 static void
771 zvol_remove(zvol_state_t *zv)
773 ASSERT(RW_WRITE_HELD(&zvol_state_lock));
774 list_remove(&zvol_state_list, zv);
775 hlist_del(&zv->zv_hlink);
779 * Setup zv after we just own the zv->objset
781 static int
782 zvol_setup_zv(zvol_state_t *zv)
784 uint64_t volsize;
785 int error;
786 uint64_t ro;
787 objset_t *os = zv->zv_objset;
789 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
790 ASSERT(RW_LOCK_HELD(&zv->zv_suspend_lock));
792 zv->zv_zilog = NULL;
793 zv->zv_flags &= ~ZVOL_WRITTEN_TO;
795 error = dsl_prop_get_integer(zv->zv_name, "readonly", &ro, NULL);
796 if (error)
797 return (SET_ERROR(error));
799 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
800 if (error)
801 return (SET_ERROR(error));
803 error = dnode_hold(os, ZVOL_OBJ, zv, &zv->zv_dn);
804 if (error)
805 return (SET_ERROR(error));
807 zvol_os_set_capacity(zv, volsize >> 9);
808 zv->zv_volsize = volsize;
810 if (ro || dmu_objset_is_snapshot(os) ||
811 !spa_writeable(dmu_objset_spa(os))) {
812 zvol_os_set_disk_ro(zv, 1);
813 zv->zv_flags |= ZVOL_RDONLY;
814 } else {
815 zvol_os_set_disk_ro(zv, 0);
816 zv->zv_flags &= ~ZVOL_RDONLY;
818 return (0);
822 * Shutdown every zv_objset related stuff except zv_objset itself.
823 * The is the reverse of zvol_setup_zv.
825 static void
826 zvol_shutdown_zv(zvol_state_t *zv)
828 ASSERT(MUTEX_HELD(&zv->zv_state_lock) &&
829 RW_LOCK_HELD(&zv->zv_suspend_lock));
831 if (zv->zv_flags & ZVOL_WRITTEN_TO) {
832 ASSERT(zv->zv_zilog != NULL);
833 zil_close(zv->zv_zilog);
836 zv->zv_zilog = NULL;
838 dnode_rele(zv->zv_dn, zv);
839 zv->zv_dn = NULL;
842 * Evict cached data. We must write out any dirty data before
843 * disowning the dataset.
845 if (zv->zv_flags & ZVOL_WRITTEN_TO)
846 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
847 (void) dmu_objset_evict_dbufs(zv->zv_objset);
851 * return the proper tag for rollback and recv
853 void *
854 zvol_tag(zvol_state_t *zv)
856 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
857 return (zv->zv_open_count > 0 ? zv : NULL);
861 * Suspend the zvol for recv and rollback.
863 zvol_state_t *
864 zvol_suspend(const char *name)
866 zvol_state_t *zv;
868 zv = zvol_find_by_name(name, RW_WRITER);
870 if (zv == NULL)
871 return (NULL);
873 /* block all I/O, release in zvol_resume. */
874 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
875 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
877 atomic_inc(&zv->zv_suspend_ref);
879 if (zv->zv_open_count > 0)
880 zvol_shutdown_zv(zv);
883 * do not hold zv_state_lock across suspend/resume to
884 * avoid locking up zvol lookups
886 mutex_exit(&zv->zv_state_lock);
888 /* zv_suspend_lock is released in zvol_resume() */
889 return (zv);
893 zvol_resume(zvol_state_t *zv)
895 int error = 0;
897 ASSERT(RW_WRITE_HELD(&zv->zv_suspend_lock));
899 mutex_enter(&zv->zv_state_lock);
901 if (zv->zv_open_count > 0) {
902 VERIFY0(dmu_objset_hold(zv->zv_name, zv, &zv->zv_objset));
903 VERIFY3P(zv->zv_objset->os_dsl_dataset->ds_owner, ==, zv);
904 VERIFY(dsl_dataset_long_held(zv->zv_objset->os_dsl_dataset));
905 dmu_objset_rele(zv->zv_objset, zv);
907 error = zvol_setup_zv(zv);
910 mutex_exit(&zv->zv_state_lock);
912 rw_exit(&zv->zv_suspend_lock);
914 * We need this because we don't hold zvol_state_lock while releasing
915 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
916 * zv_suspend_lock to determine it is safe to free because rwlock is
917 * not inherent atomic.
919 atomic_dec(&zv->zv_suspend_ref);
921 return (SET_ERROR(error));
925 zvol_first_open(zvol_state_t *zv, boolean_t readonly)
927 objset_t *os;
928 int error;
930 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
931 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
932 ASSERT(mutex_owned(&spa_namespace_lock));
934 boolean_t ro = (readonly || (strchr(zv->zv_name, '@') != NULL));
935 error = dmu_objset_own(zv->zv_name, DMU_OST_ZVOL, ro, B_TRUE, zv, &os);
936 if (error)
937 return (SET_ERROR(error));
939 zv->zv_objset = os;
941 error = zvol_setup_zv(zv);
942 if (error) {
943 dmu_objset_disown(os, 1, zv);
944 zv->zv_objset = NULL;
947 return (error);
950 void
951 zvol_last_close(zvol_state_t *zv)
953 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
954 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
956 zvol_shutdown_zv(zv);
958 dmu_objset_disown(zv->zv_objset, 1, zv);
959 zv->zv_objset = NULL;
962 typedef struct minors_job {
963 list_t *list;
964 list_node_t link;
965 /* input */
966 char *name;
967 /* output */
968 int error;
969 } minors_job_t;
972 * Prefetch zvol dnodes for the minors_job
974 static void
975 zvol_prefetch_minors_impl(void *arg)
977 minors_job_t *job = arg;
978 char *dsname = job->name;
979 objset_t *os = NULL;
981 job->error = dmu_objset_own(dsname, DMU_OST_ZVOL, B_TRUE, B_TRUE,
982 FTAG, &os);
983 if (job->error == 0) {
984 dmu_prefetch(os, ZVOL_OBJ, 0, 0, 0, ZIO_PRIORITY_SYNC_READ);
985 dmu_objset_disown(os, B_TRUE, FTAG);
990 * Mask errors to continue dmu_objset_find() traversal
992 static int
993 zvol_create_snap_minor_cb(const char *dsname, void *arg)
995 minors_job_t *j = arg;
996 list_t *minors_list = j->list;
997 const char *name = j->name;
999 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1001 /* skip the designated dataset */
1002 if (name && strcmp(dsname, name) == 0)
1003 return (0);
1005 /* at this point, the dsname should name a snapshot */
1006 if (strchr(dsname, '@') == 0) {
1007 dprintf("zvol_create_snap_minor_cb(): "
1008 "%s is not a snapshot name\n", dsname);
1009 } else {
1010 minors_job_t *job;
1011 char *n = kmem_strdup(dsname);
1012 if (n == NULL)
1013 return (0);
1015 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1016 job->name = n;
1017 job->list = minors_list;
1018 job->error = 0;
1019 list_insert_tail(minors_list, job);
1020 /* don't care if dispatch fails, because job->error is 0 */
1021 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1022 TQ_SLEEP);
1025 return (0);
1029 * If spa_keystore_load_wkey() is called for an encrypted zvol,
1030 * we need to look for any clones also using the key. This function
1031 * is "best effort" - so we just skip over it if there are failures.
1033 static void
1034 zvol_add_clones(const char *dsname, list_t *minors_list)
1036 /* Also check if it has clones */
1037 dsl_dir_t *dd = NULL;
1038 dsl_pool_t *dp = NULL;
1040 if (dsl_pool_hold(dsname, FTAG, &dp) != 0)
1041 return;
1043 if (!spa_feature_is_enabled(dp->dp_spa,
1044 SPA_FEATURE_ENCRYPTION))
1045 goto out;
1047 if (dsl_dir_hold(dp, dsname, FTAG, &dd, NULL) != 0)
1048 goto out;
1050 if (dsl_dir_phys(dd)->dd_clones == 0)
1051 goto out;
1053 zap_cursor_t *zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
1054 zap_attribute_t *za = kmem_alloc(sizeof (zap_attribute_t), KM_SLEEP);
1055 objset_t *mos = dd->dd_pool->dp_meta_objset;
1057 for (zap_cursor_init(zc, mos, dsl_dir_phys(dd)->dd_clones);
1058 zap_cursor_retrieve(zc, za) == 0;
1059 zap_cursor_advance(zc)) {
1060 dsl_dataset_t *clone;
1061 minors_job_t *job;
1063 if (dsl_dataset_hold_obj(dd->dd_pool,
1064 za->za_first_integer, FTAG, &clone) == 0) {
1066 char name[ZFS_MAX_DATASET_NAME_LEN];
1067 dsl_dataset_name(clone, name);
1069 char *n = kmem_strdup(name);
1070 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1071 job->name = n;
1072 job->list = minors_list;
1073 job->error = 0;
1074 list_insert_tail(minors_list, job);
1076 dsl_dataset_rele(clone, FTAG);
1079 zap_cursor_fini(zc);
1080 kmem_free(za, sizeof (zap_attribute_t));
1081 kmem_free(zc, sizeof (zap_cursor_t));
1083 out:
1084 if (dd != NULL)
1085 dsl_dir_rele(dd, FTAG);
1086 dsl_pool_rele(dp, FTAG);
1090 * Mask errors to continue dmu_objset_find() traversal
1092 static int
1093 zvol_create_minors_cb(const char *dsname, void *arg)
1095 uint64_t snapdev;
1096 int error;
1097 list_t *minors_list = arg;
1099 ASSERT0(MUTEX_HELD(&spa_namespace_lock));
1101 error = dsl_prop_get_integer(dsname, "snapdev", &snapdev, NULL);
1102 if (error)
1103 return (0);
1106 * Given the name and the 'snapdev' property, create device minor nodes
1107 * with the linkages to zvols/snapshots as needed.
1108 * If the name represents a zvol, create a minor node for the zvol, then
1109 * check if its snapshots are 'visible', and if so, iterate over the
1110 * snapshots and create device minor nodes for those.
1112 if (strchr(dsname, '@') == 0) {
1113 minors_job_t *job;
1114 char *n = kmem_strdup(dsname);
1115 if (n == NULL)
1116 return (0);
1118 job = kmem_alloc(sizeof (minors_job_t), KM_SLEEP);
1119 job->name = n;
1120 job->list = minors_list;
1121 job->error = 0;
1122 list_insert_tail(minors_list, job);
1123 /* don't care if dispatch fails, because job->error is 0 */
1124 taskq_dispatch(system_taskq, zvol_prefetch_minors_impl, job,
1125 TQ_SLEEP);
1127 zvol_add_clones(dsname, minors_list);
1129 if (snapdev == ZFS_SNAPDEV_VISIBLE) {
1131 * traverse snapshots only, do not traverse children,
1132 * and skip the 'dsname'
1134 (void) dmu_objset_find(dsname,
1135 zvol_create_snap_minor_cb, (void *)job,
1136 DS_FIND_SNAPSHOTS);
1138 } else {
1139 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1140 dsname);
1143 return (0);
1147 * Create minors for the specified dataset, including children and snapshots.
1148 * Pay attention to the 'snapdev' property and iterate over the snapshots
1149 * only if they are 'visible'. This approach allows one to assure that the
1150 * snapshot metadata is read from disk only if it is needed.
1152 * The name can represent a dataset to be recursively scanned for zvols and
1153 * their snapshots, or a single zvol snapshot. If the name represents a
1154 * dataset, the scan is performed in two nested stages:
1155 * - scan the dataset for zvols, and
1156 * - for each zvol, create a minor node, then check if the zvol's snapshots
1157 * are 'visible', and only then iterate over the snapshots if needed
1159 * If the name represents a snapshot, a check is performed if the snapshot is
1160 * 'visible' (which also verifies that the parent is a zvol), and if so,
1161 * a minor node for that snapshot is created.
1163 void
1164 zvol_create_minors_recursive(const char *name)
1166 list_t minors_list;
1167 minors_job_t *job;
1169 if (zvol_inhibit_dev)
1170 return;
1173 * This is the list for prefetch jobs. Whenever we found a match
1174 * during dmu_objset_find, we insert a minors_job to the list and do
1175 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1176 * any lock because all list operation is done on the current thread.
1178 * We will use this list to do zvol_os_create_minor after prefetch
1179 * so we don't have to traverse using dmu_objset_find again.
1181 list_create(&minors_list, sizeof (minors_job_t),
1182 offsetof(minors_job_t, link));
1185 if (strchr(name, '@') != NULL) {
1186 uint64_t snapdev;
1188 int error = dsl_prop_get_integer(name, "snapdev",
1189 &snapdev, NULL);
1191 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1192 (void) zvol_os_create_minor(name);
1193 } else {
1194 fstrans_cookie_t cookie = spl_fstrans_mark();
1195 (void) dmu_objset_find(name, zvol_create_minors_cb,
1196 &minors_list, DS_FIND_CHILDREN);
1197 spl_fstrans_unmark(cookie);
1200 taskq_wait_outstanding(system_taskq, 0);
1203 * Prefetch is completed, we can do zvol_os_create_minor
1204 * sequentially.
1206 while ((job = list_remove_head(&minors_list)) != NULL) {
1207 if (!job->error)
1208 (void) zvol_os_create_minor(job->name);
1209 kmem_strfree(job->name);
1210 kmem_free(job, sizeof (minors_job_t));
1213 list_destroy(&minors_list);
1216 void
1217 zvol_create_minor(const char *name)
1220 * Note: the dsl_pool_config_lock must not be held.
1221 * Minor node creation needs to obtain the zvol_state_lock.
1222 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1223 * config lock. Therefore, we can't have the config lock now if
1224 * we are going to wait for the zvol_state_lock, because it
1225 * would be a lock order inversion which could lead to deadlock.
1228 if (zvol_inhibit_dev)
1229 return;
1231 if (strchr(name, '@') != NULL) {
1232 uint64_t snapdev;
1234 int error = dsl_prop_get_integer(name,
1235 "snapdev", &snapdev, NULL);
1237 if (error == 0 && snapdev == ZFS_SNAPDEV_VISIBLE)
1238 (void) zvol_os_create_minor(name);
1239 } else {
1240 (void) zvol_os_create_minor(name);
1245 * Remove minors for specified dataset including children and snapshots.
1248 static void
1249 zvol_free_task(void *arg)
1251 zvol_os_free(arg);
1254 void
1255 zvol_remove_minors_impl(const char *name)
1257 zvol_state_t *zv, *zv_next;
1258 int namelen = ((name) ? strlen(name) : 0);
1259 taskqid_t t;
1260 list_t free_list;
1262 if (zvol_inhibit_dev)
1263 return;
1265 list_create(&free_list, sizeof (zvol_state_t),
1266 offsetof(zvol_state_t, zv_next));
1268 rw_enter(&zvol_state_lock, RW_WRITER);
1270 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1271 zv_next = list_next(&zvol_state_list, zv);
1273 mutex_enter(&zv->zv_state_lock);
1274 if (name == NULL || strcmp(zv->zv_name, name) == 0 ||
1275 (strncmp(zv->zv_name, name, namelen) == 0 &&
1276 (zv->zv_name[namelen] == '/' ||
1277 zv->zv_name[namelen] == '@'))) {
1279 * By holding zv_state_lock here, we guarantee that no
1280 * one is currently using this zv
1283 /* If in use, leave alone */
1284 if (zv->zv_open_count > 0 ||
1285 atomic_read(&zv->zv_suspend_ref)) {
1286 mutex_exit(&zv->zv_state_lock);
1287 continue;
1290 zvol_remove(zv);
1293 * Cleared while holding zvol_state_lock as a writer
1294 * which will prevent zvol_open() from opening it.
1296 zvol_os_clear_private(zv);
1298 /* Drop zv_state_lock before zvol_free() */
1299 mutex_exit(&zv->zv_state_lock);
1301 /* Try parallel zv_free, if failed do it in place */
1302 t = taskq_dispatch(system_taskq, zvol_free_task, zv,
1303 TQ_SLEEP);
1304 if (t == TASKQID_INVALID)
1305 list_insert_head(&free_list, zv);
1306 } else {
1307 mutex_exit(&zv->zv_state_lock);
1310 rw_exit(&zvol_state_lock);
1312 /* Drop zvol_state_lock before calling zvol_free() */
1313 while ((zv = list_remove_head(&free_list)) != NULL)
1314 zvol_os_free(zv);
1317 /* Remove minor for this specific volume only */
1318 static void
1319 zvol_remove_minor_impl(const char *name)
1321 zvol_state_t *zv = NULL, *zv_next;
1323 if (zvol_inhibit_dev)
1324 return;
1326 rw_enter(&zvol_state_lock, RW_WRITER);
1328 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1329 zv_next = list_next(&zvol_state_list, zv);
1331 mutex_enter(&zv->zv_state_lock);
1332 if (strcmp(zv->zv_name, name) == 0) {
1334 * By holding zv_state_lock here, we guarantee that no
1335 * one is currently using this zv
1338 /* If in use, leave alone */
1339 if (zv->zv_open_count > 0 ||
1340 atomic_read(&zv->zv_suspend_ref)) {
1341 mutex_exit(&zv->zv_state_lock);
1342 continue;
1344 zvol_remove(zv);
1346 zvol_os_clear_private(zv);
1347 mutex_exit(&zv->zv_state_lock);
1348 break;
1349 } else {
1350 mutex_exit(&zv->zv_state_lock);
1354 /* Drop zvol_state_lock before calling zvol_free() */
1355 rw_exit(&zvol_state_lock);
1357 if (zv != NULL)
1358 zvol_os_free(zv);
1362 * Rename minors for specified dataset including children and snapshots.
1364 static void
1365 zvol_rename_minors_impl(const char *oldname, const char *newname)
1367 zvol_state_t *zv, *zv_next;
1368 int oldnamelen;
1370 if (zvol_inhibit_dev)
1371 return;
1373 oldnamelen = strlen(oldname);
1375 rw_enter(&zvol_state_lock, RW_READER);
1377 for (zv = list_head(&zvol_state_list); zv != NULL; zv = zv_next) {
1378 zv_next = list_next(&zvol_state_list, zv);
1380 mutex_enter(&zv->zv_state_lock);
1382 if (strcmp(zv->zv_name, oldname) == 0) {
1383 zvol_os_rename_minor(zv, newname);
1384 } else if (strncmp(zv->zv_name, oldname, oldnamelen) == 0 &&
1385 (zv->zv_name[oldnamelen] == '/' ||
1386 zv->zv_name[oldnamelen] == '@')) {
1387 char *name = kmem_asprintf("%s%c%s", newname,
1388 zv->zv_name[oldnamelen],
1389 zv->zv_name + oldnamelen + 1);
1390 zvol_os_rename_minor(zv, name);
1391 kmem_strfree(name);
1394 mutex_exit(&zv->zv_state_lock);
1397 rw_exit(&zvol_state_lock);
1400 typedef struct zvol_snapdev_cb_arg {
1401 uint64_t snapdev;
1402 } zvol_snapdev_cb_arg_t;
1404 static int
1405 zvol_set_snapdev_cb(const char *dsname, void *param)
1407 zvol_snapdev_cb_arg_t *arg = param;
1409 if (strchr(dsname, '@') == NULL)
1410 return (0);
1412 switch (arg->snapdev) {
1413 case ZFS_SNAPDEV_VISIBLE:
1414 (void) zvol_os_create_minor(dsname);
1415 break;
1416 case ZFS_SNAPDEV_HIDDEN:
1417 (void) zvol_remove_minor_impl(dsname);
1418 break;
1421 return (0);
1424 static void
1425 zvol_set_snapdev_impl(char *name, uint64_t snapdev)
1427 zvol_snapdev_cb_arg_t arg = {snapdev};
1428 fstrans_cookie_t cookie = spl_fstrans_mark();
1430 * The zvol_set_snapdev_sync() sets snapdev appropriately
1431 * in the dataset hierarchy. Here, we only scan snapshots.
1433 dmu_objset_find(name, zvol_set_snapdev_cb, &arg, DS_FIND_SNAPSHOTS);
1434 spl_fstrans_unmark(cookie);
1437 static void
1438 zvol_set_volmode_impl(char *name, uint64_t volmode)
1440 fstrans_cookie_t cookie;
1441 uint64_t old_volmode;
1442 zvol_state_t *zv;
1444 if (strchr(name, '@') != NULL)
1445 return;
1448 * It's unfortunate we need to remove minors before we create new ones:
1449 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1450 * could be different when we set, for instance, volmode from "geom"
1451 * to "dev" (or vice versa).
1453 zv = zvol_find_by_name(name, RW_NONE);
1454 if (zv == NULL && volmode == ZFS_VOLMODE_NONE)
1455 return;
1456 if (zv != NULL) {
1457 old_volmode = zv->zv_volmode;
1458 mutex_exit(&zv->zv_state_lock);
1459 if (old_volmode == volmode)
1460 return;
1461 zvol_wait_close(zv);
1463 cookie = spl_fstrans_mark();
1464 switch (volmode) {
1465 case ZFS_VOLMODE_NONE:
1466 (void) zvol_remove_minor_impl(name);
1467 break;
1468 case ZFS_VOLMODE_GEOM:
1469 case ZFS_VOLMODE_DEV:
1470 (void) zvol_remove_minor_impl(name);
1471 (void) zvol_os_create_minor(name);
1472 break;
1473 case ZFS_VOLMODE_DEFAULT:
1474 (void) zvol_remove_minor_impl(name);
1475 if (zvol_volmode == ZFS_VOLMODE_NONE)
1476 break;
1477 else /* if zvol_volmode is invalid defaults to "geom" */
1478 (void) zvol_os_create_minor(name);
1479 break;
1481 spl_fstrans_unmark(cookie);
1484 static zvol_task_t *
1485 zvol_task_alloc(zvol_async_op_t op, const char *name1, const char *name2,
1486 uint64_t value)
1488 zvol_task_t *task;
1490 /* Never allow tasks on hidden names. */
1491 if (name1[0] == '$')
1492 return (NULL);
1494 task = kmem_zalloc(sizeof (zvol_task_t), KM_SLEEP);
1495 task->op = op;
1496 task->value = value;
1498 strlcpy(task->name1, name1, MAXNAMELEN);
1499 if (name2 != NULL)
1500 strlcpy(task->name2, name2, MAXNAMELEN);
1502 return (task);
1505 static void
1506 zvol_task_free(zvol_task_t *task)
1508 kmem_free(task, sizeof (zvol_task_t));
1512 * The worker thread function performed asynchronously.
1514 static void
1515 zvol_task_cb(void *arg)
1517 zvol_task_t *task = arg;
1519 switch (task->op) {
1520 case ZVOL_ASYNC_REMOVE_MINORS:
1521 zvol_remove_minors_impl(task->name1);
1522 break;
1523 case ZVOL_ASYNC_RENAME_MINORS:
1524 zvol_rename_minors_impl(task->name1, task->name2);
1525 break;
1526 case ZVOL_ASYNC_SET_SNAPDEV:
1527 zvol_set_snapdev_impl(task->name1, task->value);
1528 break;
1529 case ZVOL_ASYNC_SET_VOLMODE:
1530 zvol_set_volmode_impl(task->name1, task->value);
1531 break;
1532 default:
1533 VERIFY(0);
1534 break;
1537 zvol_task_free(task);
1540 typedef struct zvol_set_prop_int_arg {
1541 const char *zsda_name;
1542 uint64_t zsda_value;
1543 zprop_source_t zsda_source;
1544 dmu_tx_t *zsda_tx;
1545 } zvol_set_prop_int_arg_t;
1548 * Sanity check the dataset for safe use by the sync task. No additional
1549 * conditions are imposed.
1551 static int
1552 zvol_set_snapdev_check(void *arg, dmu_tx_t *tx)
1554 zvol_set_prop_int_arg_t *zsda = arg;
1555 dsl_pool_t *dp = dmu_tx_pool(tx);
1556 dsl_dir_t *dd;
1557 int error;
1559 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1560 if (error != 0)
1561 return (error);
1563 dsl_dir_rele(dd, FTAG);
1565 return (error);
1568 static int
1569 zvol_set_snapdev_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1571 (void) arg;
1572 char dsname[MAXNAMELEN];
1573 zvol_task_t *task;
1574 uint64_t snapdev;
1576 dsl_dataset_name(ds, dsname);
1577 if (dsl_prop_get_int_ds(ds, "snapdev", &snapdev) != 0)
1578 return (0);
1579 task = zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV, dsname, NULL, snapdev);
1580 if (task == NULL)
1581 return (0);
1583 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1584 task, TQ_SLEEP);
1585 return (0);
1589 * Traverse all child datasets and apply snapdev appropriately.
1590 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1591 * dataset and read the effective "snapdev" on every child in the callback
1592 * function: this is because the value is not guaranteed to be the same in the
1593 * whole dataset hierarchy.
1595 static void
1596 zvol_set_snapdev_sync(void *arg, dmu_tx_t *tx)
1598 zvol_set_prop_int_arg_t *zsda = arg;
1599 dsl_pool_t *dp = dmu_tx_pool(tx);
1600 dsl_dir_t *dd;
1601 dsl_dataset_t *ds;
1602 int error;
1604 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1605 zsda->zsda_tx = tx;
1607 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1608 if (error == 0) {
1609 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_SNAPDEV),
1610 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1611 &zsda->zsda_value, zsda->zsda_tx);
1612 dsl_dataset_rele(ds, FTAG);
1614 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_snapdev_sync_cb,
1615 zsda, DS_FIND_CHILDREN);
1617 dsl_dir_rele(dd, FTAG);
1621 zvol_set_snapdev(const char *ddname, zprop_source_t source, uint64_t snapdev)
1623 zvol_set_prop_int_arg_t zsda;
1625 zsda.zsda_name = ddname;
1626 zsda.zsda_source = source;
1627 zsda.zsda_value = snapdev;
1629 return (dsl_sync_task(ddname, zvol_set_snapdev_check,
1630 zvol_set_snapdev_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1634 * Sanity check the dataset for safe use by the sync task. No additional
1635 * conditions are imposed.
1637 static int
1638 zvol_set_volmode_check(void *arg, dmu_tx_t *tx)
1640 zvol_set_prop_int_arg_t *zsda = arg;
1641 dsl_pool_t *dp = dmu_tx_pool(tx);
1642 dsl_dir_t *dd;
1643 int error;
1645 error = dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL);
1646 if (error != 0)
1647 return (error);
1649 dsl_dir_rele(dd, FTAG);
1651 return (error);
1654 static int
1655 zvol_set_volmode_sync_cb(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1657 (void) arg;
1658 char dsname[MAXNAMELEN];
1659 zvol_task_t *task;
1660 uint64_t volmode;
1662 dsl_dataset_name(ds, dsname);
1663 if (dsl_prop_get_int_ds(ds, "volmode", &volmode) != 0)
1664 return (0);
1665 task = zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE, dsname, NULL, volmode);
1666 if (task == NULL)
1667 return (0);
1669 (void) taskq_dispatch(dp->dp_spa->spa_zvol_taskq, zvol_task_cb,
1670 task, TQ_SLEEP);
1671 return (0);
1675 * Traverse all child datasets and apply volmode appropriately.
1676 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1677 * dataset and read the effective "volmode" on every child in the callback
1678 * function: this is because the value is not guaranteed to be the same in the
1679 * whole dataset hierarchy.
1681 static void
1682 zvol_set_volmode_sync(void *arg, dmu_tx_t *tx)
1684 zvol_set_prop_int_arg_t *zsda = arg;
1685 dsl_pool_t *dp = dmu_tx_pool(tx);
1686 dsl_dir_t *dd;
1687 dsl_dataset_t *ds;
1688 int error;
1690 VERIFY0(dsl_dir_hold(dp, zsda->zsda_name, FTAG, &dd, NULL));
1691 zsda->zsda_tx = tx;
1693 error = dsl_dataset_hold(dp, zsda->zsda_name, FTAG, &ds);
1694 if (error == 0) {
1695 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_VOLMODE),
1696 zsda->zsda_source, sizeof (zsda->zsda_value), 1,
1697 &zsda->zsda_value, zsda->zsda_tx);
1698 dsl_dataset_rele(ds, FTAG);
1701 dmu_objset_find_dp(dp, dd->dd_object, zvol_set_volmode_sync_cb,
1702 zsda, DS_FIND_CHILDREN);
1704 dsl_dir_rele(dd, FTAG);
1708 zvol_set_volmode(const char *ddname, zprop_source_t source, uint64_t volmode)
1710 zvol_set_prop_int_arg_t zsda;
1712 zsda.zsda_name = ddname;
1713 zsda.zsda_source = source;
1714 zsda.zsda_value = volmode;
1716 return (dsl_sync_task(ddname, zvol_set_volmode_check,
1717 zvol_set_volmode_sync, &zsda, 0, ZFS_SPACE_CHECK_NONE));
1720 void
1721 zvol_remove_minors(spa_t *spa, const char *name, boolean_t async)
1723 zvol_task_t *task;
1724 taskqid_t id;
1726 task = zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS, name, NULL, ~0ULL);
1727 if (task == NULL)
1728 return;
1730 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1731 if ((async == B_FALSE) && (id != TASKQID_INVALID))
1732 taskq_wait_id(spa->spa_zvol_taskq, id);
1735 void
1736 zvol_rename_minors(spa_t *spa, const char *name1, const char *name2,
1737 boolean_t async)
1739 zvol_task_t *task;
1740 taskqid_t id;
1742 task = zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS, name1, name2, ~0ULL);
1743 if (task == NULL)
1744 return;
1746 id = taskq_dispatch(spa->spa_zvol_taskq, zvol_task_cb, task, TQ_SLEEP);
1747 if ((async == B_FALSE) && (id != TASKQID_INVALID))
1748 taskq_wait_id(spa->spa_zvol_taskq, id);
1751 boolean_t
1752 zvol_is_zvol(const char *name)
1755 return (zvol_os_is_zvol(name));
1759 zvol_init_impl(void)
1761 int i;
1763 list_create(&zvol_state_list, sizeof (zvol_state_t),
1764 offsetof(zvol_state_t, zv_next));
1765 rw_init(&zvol_state_lock, NULL, RW_DEFAULT, NULL);
1767 zvol_htable = kmem_alloc(ZVOL_HT_SIZE * sizeof (struct hlist_head),
1768 KM_SLEEP);
1769 for (i = 0; i < ZVOL_HT_SIZE; i++)
1770 INIT_HLIST_HEAD(&zvol_htable[i]);
1772 return (0);
1775 void
1776 zvol_fini_impl(void)
1778 zvol_remove_minors_impl(NULL);
1781 * The call to "zvol_remove_minors_impl" may dispatch entries to
1782 * the system_taskq, but it doesn't wait for those entries to
1783 * complete before it returns. Thus, we must wait for all of the
1784 * removals to finish, before we can continue.
1786 taskq_wait_outstanding(system_taskq, 0);
1788 kmem_free(zvol_htable, ZVOL_HT_SIZE * sizeof (struct hlist_head));
1789 list_destroy(&zvol_state_list);
1790 rw_destroy(&zvol_state_lock);