4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (C) 2008-2010 Lawrence Livermore National Security, LLC.
23 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
24 * Rewritten for Linux by Brian Behlendorf <behlendorf1@llnl.gov>.
27 * ZFS volume emulation driver.
29 * Makes a DMU object look like a volume of arbitrary size, up to 2^64 bytes.
30 * Volumes are accessed through the symbolic links named:
32 * /dev/<pool_name>/<dataset_name>
34 * Volumes are persistent through reboot and module load. No user command
35 * needs to be run before opening and using a device.
37 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
38 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
39 * Copyright (c) 2012, 2019 by Delphix. All rights reserved.
43 * Note on locking of zvol state structures.
45 * These structures are used to maintain internal state used to emulate block
46 * devices on top of zvols. In particular, management of device minor number
47 * operations - create, remove, rename, and set_snapdev - involves access to
48 * these structures. The zvol_state_lock is primarily used to protect the
49 * zvol_state_list. The zv->zv_state_lock is used to protect the contents
50 * of the zvol_state_t structures, as well as to make sure that when the
51 * time comes to remove the structure from the list, it is not in use, and
52 * therefore, it can be taken off zvol_state_list and freed.
54 * The zv_suspend_lock was introduced to allow for suspending I/O to a zvol,
55 * e.g. for the duration of receive and rollback operations. This lock can be
56 * held for significant periods of time. Given that it is undesirable to hold
57 * mutexes for long periods of time, the following lock ordering applies:
58 * - take zvol_state_lock if necessary, to protect zvol_state_list
59 * - take zv_suspend_lock if necessary, by the code path in question
60 * - take zv_state_lock to protect zvol_state_t
62 * The minor operations are issued to spa->spa_zvol_taskq queues, that are
63 * single-threaded (to preserve order of minor operations), and are executed
64 * through the zvol_task_cb that dispatches the specific operations. Therefore,
65 * these operations are serialized per pool. Consequently, we can be certain
66 * that for a given zvol, there is only one operation at a time in progress.
67 * That is why one can be sure that first, zvol_state_t for a given zvol is
68 * allocated and placed on zvol_state_list, and then other minor operations
69 * for this zvol are going to proceed in the order of issue.
73 #include <sys/dataset_kstats.h>
75 #include <sys/dmu_traverse.h>
76 #include <sys/dsl_dataset.h>
77 #include <sys/dsl_prop.h>
78 #include <sys/dsl_dir.h>
80 #include <sys/zfeature.h>
81 #include <sys/zil_impl.h>
82 #include <sys/dmu_tx.h>
84 #include <sys/zfs_rlock.h>
85 #include <sys/spa_impl.h>
87 #include <sys/zvol_impl.h>
89 unsigned int zvol_inhibit_dev
= 0;
90 unsigned int zvol_volmode
= ZFS_VOLMODE_GEOM
;
92 struct hlist_head
*zvol_htable
;
93 static list_t zvol_state_list
;
94 krwlock_t zvol_state_lock
;
97 ZVOL_ASYNC_REMOVE_MINORS
,
98 ZVOL_ASYNC_RENAME_MINORS
,
99 ZVOL_ASYNC_SET_SNAPDEV
,
100 ZVOL_ASYNC_SET_VOLMODE
,
106 char name1
[MAXNAMELEN
];
107 char name2
[MAXNAMELEN
];
112 zvol_name_hash(const char *name
)
115 uint64_t crc
= -1ULL;
116 const uint8_t *p
= (const uint8_t *)name
;
117 ASSERT(zfs_crc64_table
[128] == ZFS_CRC64_POLY
);
118 for (i
= 0; i
< MAXNAMELEN
- 1 && *p
; i
++, p
++) {
119 crc
= (crc
>> 8) ^ zfs_crc64_table
[(crc
^ (*p
)) & 0xFF];
125 * Find a zvol_state_t given the name and hash generated by zvol_name_hash.
126 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
127 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
128 * before zv_state_lock. The mode argument indicates the mode (including none)
129 * for zv_suspend_lock to be taken.
132 zvol_find_by_name_hash(const char *name
, uint64_t hash
, int mode
)
135 struct hlist_node
*p
= NULL
;
137 rw_enter(&zvol_state_lock
, RW_READER
);
138 hlist_for_each(p
, ZVOL_HT_HEAD(hash
)) {
139 zv
= hlist_entry(p
, zvol_state_t
, zv_hlink
);
140 mutex_enter(&zv
->zv_state_lock
);
141 if (zv
->zv_hash
== hash
&&
142 strncmp(zv
->zv_name
, name
, MAXNAMELEN
) == 0) {
144 * this is the right zvol, take the locks in the
147 if (mode
!= RW_NONE
&&
148 !rw_tryenter(&zv
->zv_suspend_lock
, mode
)) {
149 mutex_exit(&zv
->zv_state_lock
);
150 rw_enter(&zv
->zv_suspend_lock
, mode
);
151 mutex_enter(&zv
->zv_state_lock
);
153 * zvol cannot be renamed as we continue
154 * to hold zvol_state_lock
156 ASSERT(zv
->zv_hash
== hash
&&
157 strncmp(zv
->zv_name
, name
, MAXNAMELEN
)
160 rw_exit(&zvol_state_lock
);
163 mutex_exit(&zv
->zv_state_lock
);
165 rw_exit(&zvol_state_lock
);
171 * Find a zvol_state_t given the name.
172 * If found, return with zv_suspend_lock and zv_state_lock taken, otherwise,
173 * return (NULL) without the taking locks. The zv_suspend_lock is always taken
174 * before zv_state_lock. The mode argument indicates the mode (including none)
175 * for zv_suspend_lock to be taken.
177 static zvol_state_t
*
178 zvol_find_by_name(const char *name
, int mode
)
180 return (zvol_find_by_name_hash(name
, zvol_name_hash(name
), mode
));
184 * ZFS_IOC_CREATE callback handles dmu zvol and zap object creation.
187 zvol_create_cb(objset_t
*os
, void *arg
, cred_t
*cr
, dmu_tx_t
*tx
)
189 zfs_creat_t
*zct
= arg
;
190 nvlist_t
*nvprops
= zct
->zct_props
;
192 uint64_t volblocksize
, volsize
;
194 VERIFY(nvlist_lookup_uint64(nvprops
,
195 zfs_prop_to_name(ZFS_PROP_VOLSIZE
), &volsize
) == 0);
196 if (nvlist_lookup_uint64(nvprops
,
197 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE
), &volblocksize
) != 0)
198 volblocksize
= zfs_prop_default_numeric(ZFS_PROP_VOLBLOCKSIZE
);
201 * These properties must be removed from the list so the generic
202 * property setting step won't apply to them.
204 VERIFY(nvlist_remove_all(nvprops
,
205 zfs_prop_to_name(ZFS_PROP_VOLSIZE
)) == 0);
206 (void) nvlist_remove_all(nvprops
,
207 zfs_prop_to_name(ZFS_PROP_VOLBLOCKSIZE
));
209 error
= dmu_object_claim(os
, ZVOL_OBJ
, DMU_OT_ZVOL
, volblocksize
,
213 error
= zap_create_claim(os
, ZVOL_ZAP_OBJ
, DMU_OT_ZVOL_PROP
,
217 error
= zap_update(os
, ZVOL_ZAP_OBJ
, "size", 8, 1, &volsize
, tx
);
222 * ZFS_IOC_OBJSET_STATS entry point.
225 zvol_get_stats(objset_t
*os
, nvlist_t
*nv
)
228 dmu_object_info_t
*doi
;
231 error
= zap_lookup(os
, ZVOL_ZAP_OBJ
, "size", 8, 1, &val
);
233 return (SET_ERROR(error
));
235 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_VOLSIZE
, val
);
236 doi
= kmem_alloc(sizeof (dmu_object_info_t
), KM_SLEEP
);
237 error
= dmu_object_info(os
, ZVOL_OBJ
, doi
);
240 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_VOLBLOCKSIZE
,
241 doi
->doi_data_block_size
);
244 kmem_free(doi
, sizeof (dmu_object_info_t
));
246 return (SET_ERROR(error
));
250 * Sanity check volume size.
253 zvol_check_volsize(uint64_t volsize
, uint64_t blocksize
)
256 return (SET_ERROR(EINVAL
));
258 if (volsize
% blocksize
!= 0)
259 return (SET_ERROR(EINVAL
));
262 if (volsize
- 1 > SPEC_MAXOFFSET_T
)
263 return (SET_ERROR(EOVERFLOW
));
269 * Ensure the zap is flushed then inform the VFS of the capacity change.
272 zvol_update_volsize(uint64_t volsize
, objset_t
*os
)
278 tx
= dmu_tx_create(os
);
279 dmu_tx_hold_zap(tx
, ZVOL_ZAP_OBJ
, TRUE
, NULL
);
280 dmu_tx_mark_netfree(tx
);
281 error
= dmu_tx_assign(tx
, TXG_WAIT
);
284 return (SET_ERROR(error
));
286 txg
= dmu_tx_get_txg(tx
);
288 error
= zap_update(os
, ZVOL_ZAP_OBJ
, "size", 8, 1,
292 txg_wait_synced(dmu_objset_pool(os
), txg
);
295 error
= dmu_free_long_range(os
,
296 ZVOL_OBJ
, volsize
, DMU_OBJECT_END
);
302 * Set ZFS_PROP_VOLSIZE set entry point. Note that modifying the volume
303 * size will result in a udev "change" event being generated.
306 zvol_set_volsize(const char *name
, uint64_t volsize
)
311 boolean_t owned
= B_FALSE
;
313 error
= dsl_prop_get_integer(name
,
314 zfs_prop_to_name(ZFS_PROP_READONLY
), &readonly
, NULL
);
316 return (SET_ERROR(error
));
318 return (SET_ERROR(EROFS
));
320 zvol_state_t
*zv
= zvol_find_by_name(name
, RW_READER
);
322 ASSERT(zv
== NULL
|| (MUTEX_HELD(&zv
->zv_state_lock
) &&
323 RW_READ_HELD(&zv
->zv_suspend_lock
)));
325 if (zv
== NULL
|| zv
->zv_objset
== NULL
) {
327 rw_exit(&zv
->zv_suspend_lock
);
328 if ((error
= dmu_objset_own(name
, DMU_OST_ZVOL
, B_FALSE
, B_TRUE
,
331 mutex_exit(&zv
->zv_state_lock
);
332 return (SET_ERROR(error
));
341 dmu_object_info_t
*doi
= kmem_alloc(sizeof (*doi
), KM_SLEEP
);
343 if ((error
= dmu_object_info(os
, ZVOL_OBJ
, doi
)) ||
344 (error
= zvol_check_volsize(volsize
, doi
->doi_data_block_size
)))
347 error
= zvol_update_volsize(volsize
, os
);
348 if (error
== 0 && zv
!= NULL
) {
349 zv
->zv_volsize
= volsize
;
353 kmem_free(doi
, sizeof (dmu_object_info_t
));
356 dmu_objset_disown(os
, B_TRUE
, FTAG
);
358 zv
->zv_objset
= NULL
;
360 rw_exit(&zv
->zv_suspend_lock
);
364 mutex_exit(&zv
->zv_state_lock
);
366 if (error
== 0 && zv
!= NULL
)
367 zvol_os_update_volsize(zv
, volsize
);
369 return (SET_ERROR(error
));
373 * Sanity check volume block size.
376 zvol_check_volblocksize(const char *name
, uint64_t volblocksize
)
378 /* Record sizes above 128k need the feature to be enabled */
379 if (volblocksize
> SPA_OLD_MAXBLOCKSIZE
) {
383 if ((error
= spa_open(name
, &spa
, FTAG
)) != 0)
386 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_LARGE_BLOCKS
)) {
387 spa_close(spa
, FTAG
);
388 return (SET_ERROR(ENOTSUP
));
392 * We don't allow setting the property above 1MB,
393 * unless the tunable has been changed.
395 if (volblocksize
> zfs_max_recordsize
)
396 return (SET_ERROR(EDOM
));
398 spa_close(spa
, FTAG
);
401 if (volblocksize
< SPA_MINBLOCKSIZE
||
402 volblocksize
> SPA_MAXBLOCKSIZE
||
404 return (SET_ERROR(EDOM
));
410 * Replay a TX_TRUNCATE ZIL transaction if asked. TX_TRUNCATE is how we
411 * implement DKIOCFREE/free-long-range.
414 zvol_replay_truncate(void *arg1
, void *arg2
, boolean_t byteswap
)
416 zvol_state_t
*zv
= arg1
;
417 lr_truncate_t
*lr
= arg2
;
418 uint64_t offset
, length
;
421 byteswap_uint64_array(lr
, sizeof (*lr
));
423 offset
= lr
->lr_offset
;
424 length
= lr
->lr_length
;
426 dmu_tx_t
*tx
= dmu_tx_create(zv
->zv_objset
);
427 dmu_tx_mark_netfree(tx
);
428 int error
= dmu_tx_assign(tx
, TXG_WAIT
);
432 (void) zil_replaying(zv
->zv_zilog
, tx
);
434 error
= dmu_free_long_range(zv
->zv_objset
, ZVOL_OBJ
, offset
,
442 * Replay a TX_WRITE ZIL transaction that didn't get committed
443 * after a system failure
446 zvol_replay_write(void *arg1
, void *arg2
, boolean_t byteswap
)
448 zvol_state_t
*zv
= arg1
;
449 lr_write_t
*lr
= arg2
;
450 objset_t
*os
= zv
->zv_objset
;
451 char *data
= (char *)(lr
+ 1); /* data follows lr_write_t */
452 uint64_t offset
, length
;
457 byteswap_uint64_array(lr
, sizeof (*lr
));
459 offset
= lr
->lr_offset
;
460 length
= lr
->lr_length
;
462 /* If it's a dmu_sync() block, write the whole block */
463 if (lr
->lr_common
.lrc_reclen
== sizeof (lr_write_t
)) {
464 uint64_t blocksize
= BP_GET_LSIZE(&lr
->lr_blkptr
);
465 if (length
< blocksize
) {
466 offset
-= offset
% blocksize
;
471 tx
= dmu_tx_create(os
);
472 dmu_tx_hold_write(tx
, ZVOL_OBJ
, offset
, length
);
473 error
= dmu_tx_assign(tx
, TXG_WAIT
);
477 dmu_write(os
, ZVOL_OBJ
, offset
, length
, data
, tx
);
478 (void) zil_replaying(zv
->zv_zilog
, tx
);
486 * Replay a TX_CLONE_RANGE ZIL transaction that didn't get committed
487 * after a system failure.
489 * TODO: For now we drop block cloning transations for ZVOLs as they are
490 * unsupported, but we still need to inform BRT about that as we
491 * claimed them during pool import.
492 * This situation can occur when we try to import a pool from a ZFS
493 * version supporting block cloning for ZVOLs into a system that
494 * has this ZFS version, that doesn't support block cloning for ZVOLs.
497 zvol_replay_clone_range(void *arg1
, void *arg2
, boolean_t byteswap
)
499 char name
[ZFS_MAX_DATASET_NAME_LEN
];
500 zvol_state_t
*zv
= arg1
;
501 objset_t
*os
= zv
->zv_objset
;
502 lr_clone_range_t
*lr
= arg2
;
509 dmu_objset_name(os
, name
);
510 cmn_err(CE_WARN
, "ZFS dropping block cloning transaction for %s.",
514 byteswap_uint64_array(lr
, sizeof (*lr
));
516 tx
= dmu_tx_create(os
);
517 error
= dmu_tx_assign(tx
, TXG_WAIT
);
525 for (ii
= 0; ii
< lr
->lr_nbps
; ii
++) {
526 bp
= &lr
->lr_bps
[ii
];
528 if (!BP_IS_HOLE(bp
)) {
529 zio_free(spa
, dmu_tx_get_txg(tx
), bp
);
533 (void) zil_replaying(zv
->zv_zilog
, tx
);
540 zvol_replay_err(void *arg1
, void *arg2
, boolean_t byteswap
)
542 (void) arg1
, (void) arg2
, (void) byteswap
;
543 return (SET_ERROR(ENOTSUP
));
547 * Callback vectors for replaying records.
548 * Only TX_WRITE and TX_TRUNCATE are needed for zvol.
550 zil_replay_func_t
*const zvol_replay_vector
[TX_MAX_TYPE
] = {
551 zvol_replay_err
, /* no such transaction type */
552 zvol_replay_err
, /* TX_CREATE */
553 zvol_replay_err
, /* TX_MKDIR */
554 zvol_replay_err
, /* TX_MKXATTR */
555 zvol_replay_err
, /* TX_SYMLINK */
556 zvol_replay_err
, /* TX_REMOVE */
557 zvol_replay_err
, /* TX_RMDIR */
558 zvol_replay_err
, /* TX_LINK */
559 zvol_replay_err
, /* TX_RENAME */
560 zvol_replay_write
, /* TX_WRITE */
561 zvol_replay_truncate
, /* TX_TRUNCATE */
562 zvol_replay_err
, /* TX_SETATTR */
563 zvol_replay_err
, /* TX_ACL */
564 zvol_replay_err
, /* TX_CREATE_ATTR */
565 zvol_replay_err
, /* TX_CREATE_ACL_ATTR */
566 zvol_replay_err
, /* TX_MKDIR_ACL */
567 zvol_replay_err
, /* TX_MKDIR_ATTR */
568 zvol_replay_err
, /* TX_MKDIR_ACL_ATTR */
569 zvol_replay_err
, /* TX_WRITE2 */
570 zvol_replay_err
, /* TX_SETSAXATTR */
571 zvol_replay_err
, /* TX_RENAME_EXCHANGE */
572 zvol_replay_err
, /* TX_RENAME_WHITEOUT */
573 zvol_replay_clone_range
/* TX_CLONE_RANGE */
577 * zvol_log_write() handles synchronous writes using TX_WRITE ZIL transactions.
579 * We store data in the log buffers if it's small enough.
580 * Otherwise we will later flush the data out via dmu_sync().
582 static const ssize_t zvol_immediate_write_sz
= 32768;
585 zvol_log_write(zvol_state_t
*zv
, dmu_tx_t
*tx
, uint64_t offset
,
586 uint64_t size
, int sync
)
588 uint32_t blocksize
= zv
->zv_volblocksize
;
589 zilog_t
*zilog
= zv
->zv_zilog
;
590 itx_wr_state_t write_state
;
593 if (zil_replaying(zilog
, tx
))
596 if (zilog
->zl_logbias
== ZFS_LOGBIAS_THROUGHPUT
)
597 write_state
= WR_INDIRECT
;
598 else if (!spa_has_slogs(zilog
->zl_spa
) &&
599 size
>= blocksize
&& blocksize
> zvol_immediate_write_sz
)
600 write_state
= WR_INDIRECT
;
602 write_state
= WR_COPIED
;
604 write_state
= WR_NEED_COPY
;
609 itx_wr_state_t wr_state
= write_state
;
612 if (wr_state
== WR_COPIED
&& size
> zil_max_copied_data(zilog
))
613 wr_state
= WR_NEED_COPY
;
614 else if (wr_state
== WR_INDIRECT
)
615 len
= MIN(blocksize
- P2PHASE(offset
, blocksize
), size
);
617 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
) +
618 (wr_state
== WR_COPIED
? len
: 0));
619 lr
= (lr_write_t
*)&itx
->itx_lr
;
620 if (wr_state
== WR_COPIED
&& dmu_read_by_dnode(zv
->zv_dn
,
621 offset
, len
, lr
+1, DMU_READ_NO_PREFETCH
) != 0) {
622 zil_itx_destroy(itx
);
623 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
));
624 lr
= (lr_write_t
*)&itx
->itx_lr
;
625 wr_state
= WR_NEED_COPY
;
628 itx
->itx_wr_state
= wr_state
;
629 lr
->lr_foid
= ZVOL_OBJ
;
630 lr
->lr_offset
= offset
;
633 BP_ZERO(&lr
->lr_blkptr
);
635 itx
->itx_private
= zv
;
636 itx
->itx_sync
= sync
;
638 (void) zil_itx_assign(zilog
, itx
, tx
);
644 if (write_state
== WR_COPIED
|| write_state
== WR_NEED_COPY
) {
645 dsl_pool_wrlog_count(zilog
->zl_dmu_pool
, sz
, tx
->tx_txg
);
650 * Log a DKIOCFREE/free-long-range to the ZIL with TX_TRUNCATE.
653 zvol_log_truncate(zvol_state_t
*zv
, dmu_tx_t
*tx
, uint64_t off
, uint64_t len
,
658 zilog_t
*zilog
= zv
->zv_zilog
;
660 if (zil_replaying(zilog
, tx
))
663 itx
= zil_itx_create(TX_TRUNCATE
, sizeof (*lr
));
664 lr
= (lr_truncate_t
*)&itx
->itx_lr
;
665 lr
->lr_foid
= ZVOL_OBJ
;
669 itx
->itx_sync
= sync
;
670 zil_itx_assign(zilog
, itx
, tx
);
675 zvol_get_done(zgd_t
*zgd
, int error
)
679 dmu_buf_rele(zgd
->zgd_db
, zgd
);
681 zfs_rangelock_exit(zgd
->zgd_lr
);
683 kmem_free(zgd
, sizeof (zgd_t
));
687 * Get data to generate a TX_WRITE intent log record.
690 zvol_get_data(void *arg
, uint64_t arg2
, lr_write_t
*lr
, char *buf
,
691 struct lwb
*lwb
, zio_t
*zio
)
693 zvol_state_t
*zv
= arg
;
694 uint64_t offset
= lr
->lr_offset
;
695 uint64_t size
= lr
->lr_length
;
700 ASSERT3P(lwb
, !=, NULL
);
701 ASSERT3U(size
, !=, 0);
703 zgd
= kmem_zalloc(sizeof (zgd_t
), KM_SLEEP
);
707 * Write records come in two flavors: immediate and indirect.
708 * For small writes it's cheaper to store the data with the
709 * log record (immediate); for large writes it's cheaper to
710 * sync the data and get a pointer to it (indirect) so that
711 * we don't have to write the data twice.
713 if (buf
!= NULL
) { /* immediate write */
714 zgd
->zgd_lr
= zfs_rangelock_enter(&zv
->zv_rangelock
, offset
,
716 error
= dmu_read_by_dnode(zv
->zv_dn
, offset
, size
, buf
,
717 DMU_READ_NO_PREFETCH
);
718 } else { /* indirect write */
719 ASSERT3P(zio
, !=, NULL
);
721 * Have to lock the whole block to ensure when it's written out
722 * and its checksum is being calculated that no one can change
723 * the data. Contrarily to zfs_get_data we need not re-check
724 * blocksize after we get the lock because it cannot be changed.
726 size
= zv
->zv_volblocksize
;
727 offset
= P2ALIGN_TYPED(offset
, size
, uint64_t);
728 zgd
->zgd_lr
= zfs_rangelock_enter(&zv
->zv_rangelock
, offset
,
730 error
= dmu_buf_hold_noread_by_dnode(zv
->zv_dn
, offset
, zgd
,
733 blkptr_t
*bp
= &lr
->lr_blkptr
;
739 ASSERT(db
->db_offset
== offset
);
740 ASSERT(db
->db_size
== size
);
742 error
= dmu_sync(zio
, lr
->lr_common
.lrc_txg
,
750 zvol_get_done(zgd
, error
);
752 return (SET_ERROR(error
));
756 * The zvol_state_t's are inserted into zvol_state_list and zvol_htable.
760 zvol_insert(zvol_state_t
*zv
)
762 ASSERT(RW_WRITE_HELD(&zvol_state_lock
));
763 list_insert_head(&zvol_state_list
, zv
);
764 hlist_add_head(&zv
->zv_hlink
, ZVOL_HT_HEAD(zv
->zv_hash
));
768 * Simply remove the zvol from to list of zvols.
771 zvol_remove(zvol_state_t
*zv
)
773 ASSERT(RW_WRITE_HELD(&zvol_state_lock
));
774 list_remove(&zvol_state_list
, zv
);
775 hlist_del(&zv
->zv_hlink
);
779 * Setup zv after we just own the zv->objset
782 zvol_setup_zv(zvol_state_t
*zv
)
787 objset_t
*os
= zv
->zv_objset
;
789 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
790 ASSERT(RW_LOCK_HELD(&zv
->zv_suspend_lock
));
793 zv
->zv_flags
&= ~ZVOL_WRITTEN_TO
;
795 error
= dsl_prop_get_integer(zv
->zv_name
, "readonly", &ro
, NULL
);
797 return (SET_ERROR(error
));
799 error
= zap_lookup(os
, ZVOL_ZAP_OBJ
, "size", 8, 1, &volsize
);
801 return (SET_ERROR(error
));
803 error
= dnode_hold(os
, ZVOL_OBJ
, zv
, &zv
->zv_dn
);
805 return (SET_ERROR(error
));
807 zvol_os_set_capacity(zv
, volsize
>> 9);
808 zv
->zv_volsize
= volsize
;
810 if (ro
|| dmu_objset_is_snapshot(os
) ||
811 !spa_writeable(dmu_objset_spa(os
))) {
812 zvol_os_set_disk_ro(zv
, 1);
813 zv
->zv_flags
|= ZVOL_RDONLY
;
815 zvol_os_set_disk_ro(zv
, 0);
816 zv
->zv_flags
&= ~ZVOL_RDONLY
;
822 * Shutdown every zv_objset related stuff except zv_objset itself.
823 * The is the reverse of zvol_setup_zv.
826 zvol_shutdown_zv(zvol_state_t
*zv
)
828 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
) &&
829 RW_LOCK_HELD(&zv
->zv_suspend_lock
));
831 if (zv
->zv_flags
& ZVOL_WRITTEN_TO
) {
832 ASSERT(zv
->zv_zilog
!= NULL
);
833 zil_close(zv
->zv_zilog
);
838 dnode_rele(zv
->zv_dn
, zv
);
842 * Evict cached data. We must write out any dirty data before
843 * disowning the dataset.
845 if (zv
->zv_flags
& ZVOL_WRITTEN_TO
)
846 txg_wait_synced(dmu_objset_pool(zv
->zv_objset
), 0);
847 (void) dmu_objset_evict_dbufs(zv
->zv_objset
);
851 * return the proper tag for rollback and recv
854 zvol_tag(zvol_state_t
*zv
)
856 ASSERT(RW_WRITE_HELD(&zv
->zv_suspend_lock
));
857 return (zv
->zv_open_count
> 0 ? zv
: NULL
);
861 * Suspend the zvol for recv and rollback.
864 zvol_suspend(const char *name
)
868 zv
= zvol_find_by_name(name
, RW_WRITER
);
873 /* block all I/O, release in zvol_resume. */
874 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
875 ASSERT(RW_WRITE_HELD(&zv
->zv_suspend_lock
));
877 atomic_inc(&zv
->zv_suspend_ref
);
879 if (zv
->zv_open_count
> 0)
880 zvol_shutdown_zv(zv
);
883 * do not hold zv_state_lock across suspend/resume to
884 * avoid locking up zvol lookups
886 mutex_exit(&zv
->zv_state_lock
);
888 /* zv_suspend_lock is released in zvol_resume() */
893 zvol_resume(zvol_state_t
*zv
)
897 ASSERT(RW_WRITE_HELD(&zv
->zv_suspend_lock
));
899 mutex_enter(&zv
->zv_state_lock
);
901 if (zv
->zv_open_count
> 0) {
902 VERIFY0(dmu_objset_hold(zv
->zv_name
, zv
, &zv
->zv_objset
));
903 VERIFY3P(zv
->zv_objset
->os_dsl_dataset
->ds_owner
, ==, zv
);
904 VERIFY(dsl_dataset_long_held(zv
->zv_objset
->os_dsl_dataset
));
905 dmu_objset_rele(zv
->zv_objset
, zv
);
907 error
= zvol_setup_zv(zv
);
910 mutex_exit(&zv
->zv_state_lock
);
912 rw_exit(&zv
->zv_suspend_lock
);
914 * We need this because we don't hold zvol_state_lock while releasing
915 * zv_suspend_lock. zvol_remove_minors_impl thus cannot check
916 * zv_suspend_lock to determine it is safe to free because rwlock is
917 * not inherent atomic.
919 atomic_dec(&zv
->zv_suspend_ref
);
921 return (SET_ERROR(error
));
925 zvol_first_open(zvol_state_t
*zv
, boolean_t readonly
)
930 ASSERT(RW_READ_HELD(&zv
->zv_suspend_lock
));
931 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
932 ASSERT(mutex_owned(&spa_namespace_lock
));
934 boolean_t ro
= (readonly
|| (strchr(zv
->zv_name
, '@') != NULL
));
935 error
= dmu_objset_own(zv
->zv_name
, DMU_OST_ZVOL
, ro
, B_TRUE
, zv
, &os
);
937 return (SET_ERROR(error
));
941 error
= zvol_setup_zv(zv
);
943 dmu_objset_disown(os
, 1, zv
);
944 zv
->zv_objset
= NULL
;
951 zvol_last_close(zvol_state_t
*zv
)
953 ASSERT(RW_READ_HELD(&zv
->zv_suspend_lock
));
954 ASSERT(MUTEX_HELD(&zv
->zv_state_lock
));
956 zvol_shutdown_zv(zv
);
958 dmu_objset_disown(zv
->zv_objset
, 1, zv
);
959 zv
->zv_objset
= NULL
;
962 typedef struct minors_job
{
972 * Prefetch zvol dnodes for the minors_job
975 zvol_prefetch_minors_impl(void *arg
)
977 minors_job_t
*job
= arg
;
978 char *dsname
= job
->name
;
981 job
->error
= dmu_objset_own(dsname
, DMU_OST_ZVOL
, B_TRUE
, B_TRUE
,
983 if (job
->error
== 0) {
984 dmu_prefetch(os
, ZVOL_OBJ
, 0, 0, 0, ZIO_PRIORITY_SYNC_READ
);
985 dmu_objset_disown(os
, B_TRUE
, FTAG
);
990 * Mask errors to continue dmu_objset_find() traversal
993 zvol_create_snap_minor_cb(const char *dsname
, void *arg
)
995 minors_job_t
*j
= arg
;
996 list_t
*minors_list
= j
->list
;
997 const char *name
= j
->name
;
999 ASSERT0(MUTEX_HELD(&spa_namespace_lock
));
1001 /* skip the designated dataset */
1002 if (name
&& strcmp(dsname
, name
) == 0)
1005 /* at this point, the dsname should name a snapshot */
1006 if (strchr(dsname
, '@') == 0) {
1007 dprintf("zvol_create_snap_minor_cb(): "
1008 "%s is not a snapshot name\n", dsname
);
1011 char *n
= kmem_strdup(dsname
);
1015 job
= kmem_alloc(sizeof (minors_job_t
), KM_SLEEP
);
1017 job
->list
= minors_list
;
1019 list_insert_tail(minors_list
, job
);
1020 /* don't care if dispatch fails, because job->error is 0 */
1021 taskq_dispatch(system_taskq
, zvol_prefetch_minors_impl
, job
,
1029 * If spa_keystore_load_wkey() is called for an encrypted zvol,
1030 * we need to look for any clones also using the key. This function
1031 * is "best effort" - so we just skip over it if there are failures.
1034 zvol_add_clones(const char *dsname
, list_t
*minors_list
)
1036 /* Also check if it has clones */
1037 dsl_dir_t
*dd
= NULL
;
1038 dsl_pool_t
*dp
= NULL
;
1040 if (dsl_pool_hold(dsname
, FTAG
, &dp
) != 0)
1043 if (!spa_feature_is_enabled(dp
->dp_spa
,
1044 SPA_FEATURE_ENCRYPTION
))
1047 if (dsl_dir_hold(dp
, dsname
, FTAG
, &dd
, NULL
) != 0)
1050 if (dsl_dir_phys(dd
)->dd_clones
== 0)
1053 zap_cursor_t
*zc
= kmem_alloc(sizeof (zap_cursor_t
), KM_SLEEP
);
1054 zap_attribute_t
*za
= kmem_alloc(sizeof (zap_attribute_t
), KM_SLEEP
);
1055 objset_t
*mos
= dd
->dd_pool
->dp_meta_objset
;
1057 for (zap_cursor_init(zc
, mos
, dsl_dir_phys(dd
)->dd_clones
);
1058 zap_cursor_retrieve(zc
, za
) == 0;
1059 zap_cursor_advance(zc
)) {
1060 dsl_dataset_t
*clone
;
1063 if (dsl_dataset_hold_obj(dd
->dd_pool
,
1064 za
->za_first_integer
, FTAG
, &clone
) == 0) {
1066 char name
[ZFS_MAX_DATASET_NAME_LEN
];
1067 dsl_dataset_name(clone
, name
);
1069 char *n
= kmem_strdup(name
);
1070 job
= kmem_alloc(sizeof (minors_job_t
), KM_SLEEP
);
1072 job
->list
= minors_list
;
1074 list_insert_tail(minors_list
, job
);
1076 dsl_dataset_rele(clone
, FTAG
);
1079 zap_cursor_fini(zc
);
1080 kmem_free(za
, sizeof (zap_attribute_t
));
1081 kmem_free(zc
, sizeof (zap_cursor_t
));
1085 dsl_dir_rele(dd
, FTAG
);
1086 dsl_pool_rele(dp
, FTAG
);
1090 * Mask errors to continue dmu_objset_find() traversal
1093 zvol_create_minors_cb(const char *dsname
, void *arg
)
1097 list_t
*minors_list
= arg
;
1099 ASSERT0(MUTEX_HELD(&spa_namespace_lock
));
1101 error
= dsl_prop_get_integer(dsname
, "snapdev", &snapdev
, NULL
);
1106 * Given the name and the 'snapdev' property, create device minor nodes
1107 * with the linkages to zvols/snapshots as needed.
1108 * If the name represents a zvol, create a minor node for the zvol, then
1109 * check if its snapshots are 'visible', and if so, iterate over the
1110 * snapshots and create device minor nodes for those.
1112 if (strchr(dsname
, '@') == 0) {
1114 char *n
= kmem_strdup(dsname
);
1118 job
= kmem_alloc(sizeof (minors_job_t
), KM_SLEEP
);
1120 job
->list
= minors_list
;
1122 list_insert_tail(minors_list
, job
);
1123 /* don't care if dispatch fails, because job->error is 0 */
1124 taskq_dispatch(system_taskq
, zvol_prefetch_minors_impl
, job
,
1127 zvol_add_clones(dsname
, minors_list
);
1129 if (snapdev
== ZFS_SNAPDEV_VISIBLE
) {
1131 * traverse snapshots only, do not traverse children,
1132 * and skip the 'dsname'
1134 (void) dmu_objset_find(dsname
,
1135 zvol_create_snap_minor_cb
, (void *)job
,
1139 dprintf("zvol_create_minors_cb(): %s is not a zvol name\n",
1147 * Create minors for the specified dataset, including children and snapshots.
1148 * Pay attention to the 'snapdev' property and iterate over the snapshots
1149 * only if they are 'visible'. This approach allows one to assure that the
1150 * snapshot metadata is read from disk only if it is needed.
1152 * The name can represent a dataset to be recursively scanned for zvols and
1153 * their snapshots, or a single zvol snapshot. If the name represents a
1154 * dataset, the scan is performed in two nested stages:
1155 * - scan the dataset for zvols, and
1156 * - for each zvol, create a minor node, then check if the zvol's snapshots
1157 * are 'visible', and only then iterate over the snapshots if needed
1159 * If the name represents a snapshot, a check is performed if the snapshot is
1160 * 'visible' (which also verifies that the parent is a zvol), and if so,
1161 * a minor node for that snapshot is created.
1164 zvol_create_minors_recursive(const char *name
)
1169 if (zvol_inhibit_dev
)
1173 * This is the list for prefetch jobs. Whenever we found a match
1174 * during dmu_objset_find, we insert a minors_job to the list and do
1175 * taskq_dispatch to parallel prefetch zvol dnodes. Note we don't need
1176 * any lock because all list operation is done on the current thread.
1178 * We will use this list to do zvol_os_create_minor after prefetch
1179 * so we don't have to traverse using dmu_objset_find again.
1181 list_create(&minors_list
, sizeof (minors_job_t
),
1182 offsetof(minors_job_t
, link
));
1185 if (strchr(name
, '@') != NULL
) {
1188 int error
= dsl_prop_get_integer(name
, "snapdev",
1191 if (error
== 0 && snapdev
== ZFS_SNAPDEV_VISIBLE
)
1192 (void) zvol_os_create_minor(name
);
1194 fstrans_cookie_t cookie
= spl_fstrans_mark();
1195 (void) dmu_objset_find(name
, zvol_create_minors_cb
,
1196 &minors_list
, DS_FIND_CHILDREN
);
1197 spl_fstrans_unmark(cookie
);
1200 taskq_wait_outstanding(system_taskq
, 0);
1203 * Prefetch is completed, we can do zvol_os_create_minor
1206 while ((job
= list_remove_head(&minors_list
)) != NULL
) {
1208 (void) zvol_os_create_minor(job
->name
);
1209 kmem_strfree(job
->name
);
1210 kmem_free(job
, sizeof (minors_job_t
));
1213 list_destroy(&minors_list
);
1217 zvol_create_minor(const char *name
)
1220 * Note: the dsl_pool_config_lock must not be held.
1221 * Minor node creation needs to obtain the zvol_state_lock.
1222 * zvol_open() obtains the zvol_state_lock and then the dsl pool
1223 * config lock. Therefore, we can't have the config lock now if
1224 * we are going to wait for the zvol_state_lock, because it
1225 * would be a lock order inversion which could lead to deadlock.
1228 if (zvol_inhibit_dev
)
1231 if (strchr(name
, '@') != NULL
) {
1234 int error
= dsl_prop_get_integer(name
,
1235 "snapdev", &snapdev
, NULL
);
1237 if (error
== 0 && snapdev
== ZFS_SNAPDEV_VISIBLE
)
1238 (void) zvol_os_create_minor(name
);
1240 (void) zvol_os_create_minor(name
);
1245 * Remove minors for specified dataset including children and snapshots.
1249 zvol_free_task(void *arg
)
1255 zvol_remove_minors_impl(const char *name
)
1257 zvol_state_t
*zv
, *zv_next
;
1258 int namelen
= ((name
) ? strlen(name
) : 0);
1262 if (zvol_inhibit_dev
)
1265 list_create(&free_list
, sizeof (zvol_state_t
),
1266 offsetof(zvol_state_t
, zv_next
));
1268 rw_enter(&zvol_state_lock
, RW_WRITER
);
1270 for (zv
= list_head(&zvol_state_list
); zv
!= NULL
; zv
= zv_next
) {
1271 zv_next
= list_next(&zvol_state_list
, zv
);
1273 mutex_enter(&zv
->zv_state_lock
);
1274 if (name
== NULL
|| strcmp(zv
->zv_name
, name
) == 0 ||
1275 (strncmp(zv
->zv_name
, name
, namelen
) == 0 &&
1276 (zv
->zv_name
[namelen
] == '/' ||
1277 zv
->zv_name
[namelen
] == '@'))) {
1279 * By holding zv_state_lock here, we guarantee that no
1280 * one is currently using this zv
1283 /* If in use, leave alone */
1284 if (zv
->zv_open_count
> 0 ||
1285 atomic_read(&zv
->zv_suspend_ref
)) {
1286 mutex_exit(&zv
->zv_state_lock
);
1293 * Cleared while holding zvol_state_lock as a writer
1294 * which will prevent zvol_open() from opening it.
1296 zvol_os_clear_private(zv
);
1298 /* Drop zv_state_lock before zvol_free() */
1299 mutex_exit(&zv
->zv_state_lock
);
1301 /* Try parallel zv_free, if failed do it in place */
1302 t
= taskq_dispatch(system_taskq
, zvol_free_task
, zv
,
1304 if (t
== TASKQID_INVALID
)
1305 list_insert_head(&free_list
, zv
);
1307 mutex_exit(&zv
->zv_state_lock
);
1310 rw_exit(&zvol_state_lock
);
1312 /* Drop zvol_state_lock before calling zvol_free() */
1313 while ((zv
= list_remove_head(&free_list
)) != NULL
)
1317 /* Remove minor for this specific volume only */
1319 zvol_remove_minor_impl(const char *name
)
1321 zvol_state_t
*zv
= NULL
, *zv_next
;
1323 if (zvol_inhibit_dev
)
1326 rw_enter(&zvol_state_lock
, RW_WRITER
);
1328 for (zv
= list_head(&zvol_state_list
); zv
!= NULL
; zv
= zv_next
) {
1329 zv_next
= list_next(&zvol_state_list
, zv
);
1331 mutex_enter(&zv
->zv_state_lock
);
1332 if (strcmp(zv
->zv_name
, name
) == 0) {
1334 * By holding zv_state_lock here, we guarantee that no
1335 * one is currently using this zv
1338 /* If in use, leave alone */
1339 if (zv
->zv_open_count
> 0 ||
1340 atomic_read(&zv
->zv_suspend_ref
)) {
1341 mutex_exit(&zv
->zv_state_lock
);
1346 zvol_os_clear_private(zv
);
1347 mutex_exit(&zv
->zv_state_lock
);
1350 mutex_exit(&zv
->zv_state_lock
);
1354 /* Drop zvol_state_lock before calling zvol_free() */
1355 rw_exit(&zvol_state_lock
);
1362 * Rename minors for specified dataset including children and snapshots.
1365 zvol_rename_minors_impl(const char *oldname
, const char *newname
)
1367 zvol_state_t
*zv
, *zv_next
;
1370 if (zvol_inhibit_dev
)
1373 oldnamelen
= strlen(oldname
);
1375 rw_enter(&zvol_state_lock
, RW_READER
);
1377 for (zv
= list_head(&zvol_state_list
); zv
!= NULL
; zv
= zv_next
) {
1378 zv_next
= list_next(&zvol_state_list
, zv
);
1380 mutex_enter(&zv
->zv_state_lock
);
1382 if (strcmp(zv
->zv_name
, oldname
) == 0) {
1383 zvol_os_rename_minor(zv
, newname
);
1384 } else if (strncmp(zv
->zv_name
, oldname
, oldnamelen
) == 0 &&
1385 (zv
->zv_name
[oldnamelen
] == '/' ||
1386 zv
->zv_name
[oldnamelen
] == '@')) {
1387 char *name
= kmem_asprintf("%s%c%s", newname
,
1388 zv
->zv_name
[oldnamelen
],
1389 zv
->zv_name
+ oldnamelen
+ 1);
1390 zvol_os_rename_minor(zv
, name
);
1394 mutex_exit(&zv
->zv_state_lock
);
1397 rw_exit(&zvol_state_lock
);
1400 typedef struct zvol_snapdev_cb_arg
{
1402 } zvol_snapdev_cb_arg_t
;
1405 zvol_set_snapdev_cb(const char *dsname
, void *param
)
1407 zvol_snapdev_cb_arg_t
*arg
= param
;
1409 if (strchr(dsname
, '@') == NULL
)
1412 switch (arg
->snapdev
) {
1413 case ZFS_SNAPDEV_VISIBLE
:
1414 (void) zvol_os_create_minor(dsname
);
1416 case ZFS_SNAPDEV_HIDDEN
:
1417 (void) zvol_remove_minor_impl(dsname
);
1425 zvol_set_snapdev_impl(char *name
, uint64_t snapdev
)
1427 zvol_snapdev_cb_arg_t arg
= {snapdev
};
1428 fstrans_cookie_t cookie
= spl_fstrans_mark();
1430 * The zvol_set_snapdev_sync() sets snapdev appropriately
1431 * in the dataset hierarchy. Here, we only scan snapshots.
1433 dmu_objset_find(name
, zvol_set_snapdev_cb
, &arg
, DS_FIND_SNAPSHOTS
);
1434 spl_fstrans_unmark(cookie
);
1438 zvol_set_volmode_impl(char *name
, uint64_t volmode
)
1440 fstrans_cookie_t cookie
;
1441 uint64_t old_volmode
;
1444 if (strchr(name
, '@') != NULL
)
1448 * It's unfortunate we need to remove minors before we create new ones:
1449 * this is necessary because our backing gendisk (zvol_state->zv_disk)
1450 * could be different when we set, for instance, volmode from "geom"
1451 * to "dev" (or vice versa).
1453 zv
= zvol_find_by_name(name
, RW_NONE
);
1454 if (zv
== NULL
&& volmode
== ZFS_VOLMODE_NONE
)
1457 old_volmode
= zv
->zv_volmode
;
1458 mutex_exit(&zv
->zv_state_lock
);
1459 if (old_volmode
== volmode
)
1461 zvol_wait_close(zv
);
1463 cookie
= spl_fstrans_mark();
1465 case ZFS_VOLMODE_NONE
:
1466 (void) zvol_remove_minor_impl(name
);
1468 case ZFS_VOLMODE_GEOM
:
1469 case ZFS_VOLMODE_DEV
:
1470 (void) zvol_remove_minor_impl(name
);
1471 (void) zvol_os_create_minor(name
);
1473 case ZFS_VOLMODE_DEFAULT
:
1474 (void) zvol_remove_minor_impl(name
);
1475 if (zvol_volmode
== ZFS_VOLMODE_NONE
)
1477 else /* if zvol_volmode is invalid defaults to "geom" */
1478 (void) zvol_os_create_minor(name
);
1481 spl_fstrans_unmark(cookie
);
1484 static zvol_task_t
*
1485 zvol_task_alloc(zvol_async_op_t op
, const char *name1
, const char *name2
,
1490 /* Never allow tasks on hidden names. */
1491 if (name1
[0] == '$')
1494 task
= kmem_zalloc(sizeof (zvol_task_t
), KM_SLEEP
);
1496 task
->value
= value
;
1498 strlcpy(task
->name1
, name1
, MAXNAMELEN
);
1500 strlcpy(task
->name2
, name2
, MAXNAMELEN
);
1506 zvol_task_free(zvol_task_t
*task
)
1508 kmem_free(task
, sizeof (zvol_task_t
));
1512 * The worker thread function performed asynchronously.
1515 zvol_task_cb(void *arg
)
1517 zvol_task_t
*task
= arg
;
1520 case ZVOL_ASYNC_REMOVE_MINORS
:
1521 zvol_remove_minors_impl(task
->name1
);
1523 case ZVOL_ASYNC_RENAME_MINORS
:
1524 zvol_rename_minors_impl(task
->name1
, task
->name2
);
1526 case ZVOL_ASYNC_SET_SNAPDEV
:
1527 zvol_set_snapdev_impl(task
->name1
, task
->value
);
1529 case ZVOL_ASYNC_SET_VOLMODE
:
1530 zvol_set_volmode_impl(task
->name1
, task
->value
);
1537 zvol_task_free(task
);
1540 typedef struct zvol_set_prop_int_arg
{
1541 const char *zsda_name
;
1542 uint64_t zsda_value
;
1543 zprop_source_t zsda_source
;
1545 } zvol_set_prop_int_arg_t
;
1548 * Sanity check the dataset for safe use by the sync task. No additional
1549 * conditions are imposed.
1552 zvol_set_snapdev_check(void *arg
, dmu_tx_t
*tx
)
1554 zvol_set_prop_int_arg_t
*zsda
= arg
;
1555 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1559 error
= dsl_dir_hold(dp
, zsda
->zsda_name
, FTAG
, &dd
, NULL
);
1563 dsl_dir_rele(dd
, FTAG
);
1569 zvol_set_snapdev_sync_cb(dsl_pool_t
*dp
, dsl_dataset_t
*ds
, void *arg
)
1572 char dsname
[MAXNAMELEN
];
1576 dsl_dataset_name(ds
, dsname
);
1577 if (dsl_prop_get_int_ds(ds
, "snapdev", &snapdev
) != 0)
1579 task
= zvol_task_alloc(ZVOL_ASYNC_SET_SNAPDEV
, dsname
, NULL
, snapdev
);
1583 (void) taskq_dispatch(dp
->dp_spa
->spa_zvol_taskq
, zvol_task_cb
,
1589 * Traverse all child datasets and apply snapdev appropriately.
1590 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1591 * dataset and read the effective "snapdev" on every child in the callback
1592 * function: this is because the value is not guaranteed to be the same in the
1593 * whole dataset hierarchy.
1596 zvol_set_snapdev_sync(void *arg
, dmu_tx_t
*tx
)
1598 zvol_set_prop_int_arg_t
*zsda
= arg
;
1599 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1604 VERIFY0(dsl_dir_hold(dp
, zsda
->zsda_name
, FTAG
, &dd
, NULL
));
1607 error
= dsl_dataset_hold(dp
, zsda
->zsda_name
, FTAG
, &ds
);
1609 dsl_prop_set_sync_impl(ds
, zfs_prop_to_name(ZFS_PROP_SNAPDEV
),
1610 zsda
->zsda_source
, sizeof (zsda
->zsda_value
), 1,
1611 &zsda
->zsda_value
, zsda
->zsda_tx
);
1612 dsl_dataset_rele(ds
, FTAG
);
1614 dmu_objset_find_dp(dp
, dd
->dd_object
, zvol_set_snapdev_sync_cb
,
1615 zsda
, DS_FIND_CHILDREN
);
1617 dsl_dir_rele(dd
, FTAG
);
1621 zvol_set_snapdev(const char *ddname
, zprop_source_t source
, uint64_t snapdev
)
1623 zvol_set_prop_int_arg_t zsda
;
1625 zsda
.zsda_name
= ddname
;
1626 zsda
.zsda_source
= source
;
1627 zsda
.zsda_value
= snapdev
;
1629 return (dsl_sync_task(ddname
, zvol_set_snapdev_check
,
1630 zvol_set_snapdev_sync
, &zsda
, 0, ZFS_SPACE_CHECK_NONE
));
1634 * Sanity check the dataset for safe use by the sync task. No additional
1635 * conditions are imposed.
1638 zvol_set_volmode_check(void *arg
, dmu_tx_t
*tx
)
1640 zvol_set_prop_int_arg_t
*zsda
= arg
;
1641 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1645 error
= dsl_dir_hold(dp
, zsda
->zsda_name
, FTAG
, &dd
, NULL
);
1649 dsl_dir_rele(dd
, FTAG
);
1655 zvol_set_volmode_sync_cb(dsl_pool_t
*dp
, dsl_dataset_t
*ds
, void *arg
)
1658 char dsname
[MAXNAMELEN
];
1662 dsl_dataset_name(ds
, dsname
);
1663 if (dsl_prop_get_int_ds(ds
, "volmode", &volmode
) != 0)
1665 task
= zvol_task_alloc(ZVOL_ASYNC_SET_VOLMODE
, dsname
, NULL
, volmode
);
1669 (void) taskq_dispatch(dp
->dp_spa
->spa_zvol_taskq
, zvol_task_cb
,
1675 * Traverse all child datasets and apply volmode appropriately.
1676 * We call dsl_prop_set_sync_impl() here to set the value only on the toplevel
1677 * dataset and read the effective "volmode" on every child in the callback
1678 * function: this is because the value is not guaranteed to be the same in the
1679 * whole dataset hierarchy.
1682 zvol_set_volmode_sync(void *arg
, dmu_tx_t
*tx
)
1684 zvol_set_prop_int_arg_t
*zsda
= arg
;
1685 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1690 VERIFY0(dsl_dir_hold(dp
, zsda
->zsda_name
, FTAG
, &dd
, NULL
));
1693 error
= dsl_dataset_hold(dp
, zsda
->zsda_name
, FTAG
, &ds
);
1695 dsl_prop_set_sync_impl(ds
, zfs_prop_to_name(ZFS_PROP_VOLMODE
),
1696 zsda
->zsda_source
, sizeof (zsda
->zsda_value
), 1,
1697 &zsda
->zsda_value
, zsda
->zsda_tx
);
1698 dsl_dataset_rele(ds
, FTAG
);
1701 dmu_objset_find_dp(dp
, dd
->dd_object
, zvol_set_volmode_sync_cb
,
1702 zsda
, DS_FIND_CHILDREN
);
1704 dsl_dir_rele(dd
, FTAG
);
1708 zvol_set_volmode(const char *ddname
, zprop_source_t source
, uint64_t volmode
)
1710 zvol_set_prop_int_arg_t zsda
;
1712 zsda
.zsda_name
= ddname
;
1713 zsda
.zsda_source
= source
;
1714 zsda
.zsda_value
= volmode
;
1716 return (dsl_sync_task(ddname
, zvol_set_volmode_check
,
1717 zvol_set_volmode_sync
, &zsda
, 0, ZFS_SPACE_CHECK_NONE
));
1721 zvol_remove_minors(spa_t
*spa
, const char *name
, boolean_t async
)
1726 task
= zvol_task_alloc(ZVOL_ASYNC_REMOVE_MINORS
, name
, NULL
, ~0ULL);
1730 id
= taskq_dispatch(spa
->spa_zvol_taskq
, zvol_task_cb
, task
, TQ_SLEEP
);
1731 if ((async
== B_FALSE
) && (id
!= TASKQID_INVALID
))
1732 taskq_wait_id(spa
->spa_zvol_taskq
, id
);
1736 zvol_rename_minors(spa_t
*spa
, const char *name1
, const char *name2
,
1742 task
= zvol_task_alloc(ZVOL_ASYNC_RENAME_MINORS
, name1
, name2
, ~0ULL);
1746 id
= taskq_dispatch(spa
->spa_zvol_taskq
, zvol_task_cb
, task
, TQ_SLEEP
);
1747 if ((async
== B_FALSE
) && (id
!= TASKQID_INVALID
))
1748 taskq_wait_id(spa
->spa_zvol_taskq
, id
);
1752 zvol_is_zvol(const char *name
)
1755 return (zvol_os_is_zvol(name
));
1759 zvol_init_impl(void)
1763 list_create(&zvol_state_list
, sizeof (zvol_state_t
),
1764 offsetof(zvol_state_t
, zv_next
));
1765 rw_init(&zvol_state_lock
, NULL
, RW_DEFAULT
, NULL
);
1767 zvol_htable
= kmem_alloc(ZVOL_HT_SIZE
* sizeof (struct hlist_head
),
1769 for (i
= 0; i
< ZVOL_HT_SIZE
; i
++)
1770 INIT_HLIST_HEAD(&zvol_htable
[i
]);
1776 zvol_fini_impl(void)
1778 zvol_remove_minors_impl(NULL
);
1781 * The call to "zvol_remove_minors_impl" may dispatch entries to
1782 * the system_taskq, but it doesn't wait for those entries to
1783 * complete before it returns. Thus, we must wait for all of the
1784 * removals to finish, before we can continue.
1786 taskq_wait_outstanding(system_taskq
, 0);
1788 kmem_free(zvol_htable
, ZVOL_HT_SIZE
* sizeof (struct hlist_head
));
1789 list_destroy(&zvol_state_list
);
1790 rw_destroy(&zvol_state_lock
);