CI: Automate some GitHub PR status labels manipulations
[zfs.git] / module / os / freebsd / spl / spl_taskq.c
blobaf32c0ee2e5c9ae48c2bb66781e91a8556e29316
1 /*
2 * Copyright (c) 2009 Pawel Jakub Dawidek <pjd@FreeBSD.org>
3 * All rights reserved.
5 * Copyright (c) 2012 Spectra Logic Corporation. All rights reserved.
7 * Redistribution and use in source and binary forms, with or without
8 * modification, are permitted provided that the following conditions
9 * are met:
10 * 1. Redistributions of source code must retain the above copyright
11 * notice, this list of conditions and the following disclaimer.
12 * 2. Redistributions in binary form must reproduce the above copyright
13 * notice, this list of conditions and the following disclaimer in the
14 * documentation and/or other materials provided with the distribution.
16 * THIS SOFTWARE IS PROVIDED BY THE AUTHORS AND CONTRIBUTORS ``AS IS'' AND
17 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
18 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
19 * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHORS OR CONTRIBUTORS BE LIABLE
20 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
21 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
22 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
23 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
24 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
25 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
26 * SUCH DAMAGE.
29 #include <sys/param.h>
30 #include <sys/kernel.h>
31 #include <sys/kmem.h>
32 #include <sys/lock.h>
33 #include <sys/mutex.h>
34 #include <sys/queue.h>
35 #include <sys/taskq.h>
36 #include <sys/taskqueue.h>
37 #include <sys/zfs_context.h>
39 #if defined(__i386__) || defined(__amd64__) || defined(__aarch64__)
40 #include <machine/pcb.h>
41 #endif
43 #include <vm/uma.h>
45 static uint_t taskq_tsd;
46 static uma_zone_t taskq_zone;
49 * Global system-wide dynamic task queue available for all consumers. This
50 * taskq is not intended for long-running tasks; instead, a dedicated taskq
51 * should be created.
53 taskq_t *system_taskq = NULL;
54 taskq_t *system_delay_taskq = NULL;
55 taskq_t *dynamic_taskq = NULL;
57 proc_t *system_proc;
59 static MALLOC_DEFINE(M_TASKQ, "taskq", "taskq structures");
61 static LIST_HEAD(tqenthashhead, taskq_ent) *tqenthashtbl;
62 static unsigned long tqenthash;
63 static unsigned long tqenthashlock;
64 static struct sx *tqenthashtbl_lock;
66 static taskqid_t tqidnext;
68 #define TQIDHASH(tqid) (&tqenthashtbl[(tqid) & tqenthash])
69 #define TQIDHASHLOCK(tqid) (&tqenthashtbl_lock[((tqid) & tqenthashlock)])
71 #define NORMAL_TASK 0
72 #define TIMEOUT_TASK 1
74 static void
75 system_taskq_init(void *arg)
77 int i;
79 tsd_create(&taskq_tsd, NULL);
80 tqenthashtbl = hashinit(mp_ncpus * 8, M_TASKQ, &tqenthash);
81 tqenthashlock = (tqenthash + 1) / 8;
82 if (tqenthashlock > 0)
83 tqenthashlock--;
84 tqenthashtbl_lock =
85 malloc(sizeof (*tqenthashtbl_lock) * (tqenthashlock + 1),
86 M_TASKQ, M_WAITOK | M_ZERO);
87 for (i = 0; i < tqenthashlock + 1; i++)
88 sx_init_flags(&tqenthashtbl_lock[i], "tqenthash", SX_DUPOK);
89 taskq_zone = uma_zcreate("taskq_zone", sizeof (taskq_ent_t),
90 NULL, NULL, NULL, NULL,
91 UMA_ALIGN_CACHE, 0);
92 system_taskq = taskq_create("system_taskq", mp_ncpus, minclsyspri,
93 0, 0, 0);
94 system_delay_taskq = taskq_create("system_delay_taskq", mp_ncpus,
95 minclsyspri, 0, 0, 0);
97 SYSINIT(system_taskq_init, SI_SUB_CONFIGURE, SI_ORDER_ANY, system_taskq_init,
98 NULL);
100 static void
101 system_taskq_fini(void *arg)
103 int i;
105 taskq_destroy(system_delay_taskq);
106 taskq_destroy(system_taskq);
107 uma_zdestroy(taskq_zone);
108 tsd_destroy(&taskq_tsd);
109 for (i = 0; i < tqenthashlock + 1; i++)
110 sx_destroy(&tqenthashtbl_lock[i]);
111 for (i = 0; i < tqenthash + 1; i++)
112 VERIFY(LIST_EMPTY(&tqenthashtbl[i]));
113 free(tqenthashtbl_lock, M_TASKQ);
114 free(tqenthashtbl, M_TASKQ);
116 SYSUNINIT(system_taskq_fini, SI_SUB_CONFIGURE, SI_ORDER_ANY, system_taskq_fini,
117 NULL);
119 #ifdef __LP64__
120 static taskqid_t
121 __taskq_genid(void)
123 taskqid_t tqid;
126 * Assume a 64-bit counter will not wrap in practice.
128 tqid = atomic_add_64_nv(&tqidnext, 1);
129 VERIFY(tqid);
130 return (tqid);
132 #else
133 static taskqid_t
134 __taskq_genid(void)
136 taskqid_t tqid;
138 for (;;) {
139 tqid = atomic_add_32_nv(&tqidnext, 1);
140 if (__predict_true(tqid != 0))
141 break;
143 VERIFY(tqid);
144 return (tqid);
146 #endif
148 static taskq_ent_t *
149 taskq_lookup(taskqid_t tqid)
151 taskq_ent_t *ent = NULL;
153 if (tqid == 0)
154 return (NULL);
155 sx_slock(TQIDHASHLOCK(tqid));
156 LIST_FOREACH(ent, TQIDHASH(tqid), tqent_hash) {
157 if (ent->tqent_id == tqid)
158 break;
160 if (ent != NULL)
161 refcount_acquire(&ent->tqent_rc);
162 sx_sunlock(TQIDHASHLOCK(tqid));
163 return (ent);
166 static taskqid_t
167 taskq_insert(taskq_ent_t *ent)
169 taskqid_t tqid = __taskq_genid();
171 ent->tqent_id = tqid;
172 sx_xlock(TQIDHASHLOCK(tqid));
173 LIST_INSERT_HEAD(TQIDHASH(tqid), ent, tqent_hash);
174 sx_xunlock(TQIDHASHLOCK(tqid));
175 return (tqid);
178 static void
179 taskq_remove(taskq_ent_t *ent)
181 taskqid_t tqid = ent->tqent_id;
183 if (tqid == 0)
184 return;
185 sx_xlock(TQIDHASHLOCK(tqid));
186 if (ent->tqent_id != 0) {
187 LIST_REMOVE(ent, tqent_hash);
188 ent->tqent_id = 0;
190 sx_xunlock(TQIDHASHLOCK(tqid));
193 static void
194 taskq_tsd_set(void *context)
196 taskq_t *tq = context;
198 #if defined(__amd64__) || defined(__i386__) || defined(__aarch64__)
199 if (context != NULL && tsd_get(taskq_tsd) == NULL)
200 fpu_kern_thread(FPU_KERN_NORMAL);
201 #endif
202 tsd_set(taskq_tsd, tq);
205 static taskq_t *
206 taskq_create_impl(const char *name, int nthreads, pri_t pri,
207 proc_t *proc __maybe_unused, uint_t flags)
209 taskq_t *tq;
211 if ((flags & TASKQ_THREADS_CPU_PCT) != 0)
212 nthreads = MAX((mp_ncpus * nthreads) / 100, 1);
214 tq = kmem_alloc(sizeof (*tq), KM_SLEEP);
215 tq->tq_nthreads = nthreads;
216 tq->tq_queue = taskqueue_create(name, M_WAITOK,
217 taskqueue_thread_enqueue, &tq->tq_queue);
218 taskqueue_set_callback(tq->tq_queue, TASKQUEUE_CALLBACK_TYPE_INIT,
219 taskq_tsd_set, tq);
220 taskqueue_set_callback(tq->tq_queue, TASKQUEUE_CALLBACK_TYPE_SHUTDOWN,
221 taskq_tsd_set, NULL);
222 (void) taskqueue_start_threads_in_proc(&tq->tq_queue, nthreads, pri,
223 proc, "%s", name);
225 return ((taskq_t *)tq);
228 taskq_t *
229 taskq_create(const char *name, int nthreads, pri_t pri, int minalloc __unused,
230 int maxalloc __unused, uint_t flags)
232 return (taskq_create_impl(name, nthreads, pri, system_proc, flags));
235 taskq_t *
236 taskq_create_proc(const char *name, int nthreads, pri_t pri,
237 int minalloc __unused, int maxalloc __unused, proc_t *proc, uint_t flags)
239 return (taskq_create_impl(name, nthreads, pri, proc, flags));
242 void
243 taskq_destroy(taskq_t *tq)
246 taskqueue_free(tq->tq_queue);
247 kmem_free(tq, sizeof (*tq));
250 static void taskq_sync_assign(void *arg);
252 typedef struct taskq_sync_arg {
253 kthread_t *tqa_thread;
254 kcondvar_t tqa_cv;
255 kmutex_t tqa_lock;
256 int tqa_ready;
257 } taskq_sync_arg_t;
259 static void
260 taskq_sync_assign(void *arg)
262 taskq_sync_arg_t *tqa = arg;
264 mutex_enter(&tqa->tqa_lock);
265 tqa->tqa_thread = curthread;
266 tqa->tqa_ready = 1;
267 cv_signal(&tqa->tqa_cv);
268 while (tqa->tqa_ready == 1)
269 cv_wait(&tqa->tqa_cv, &tqa->tqa_lock);
270 mutex_exit(&tqa->tqa_lock);
274 * Create a taskq with a specified number of pool threads. Allocate
275 * and return an array of nthreads kthread_t pointers, one for each
276 * thread in the pool. The array is not ordered and must be freed
277 * by the caller.
279 taskq_t *
280 taskq_create_synced(const char *name, int nthreads, pri_t pri,
281 int minalloc, int maxalloc, uint_t flags, kthread_t ***ktpp)
283 taskq_t *tq;
284 taskq_sync_arg_t *tqs = kmem_zalloc(sizeof (*tqs) * nthreads, KM_SLEEP);
285 kthread_t **kthreads = kmem_zalloc(sizeof (*kthreads) * nthreads,
286 KM_SLEEP);
288 flags &= ~(TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT | TASKQ_DC_BATCH);
290 tq = taskq_create(name, nthreads, minclsyspri, nthreads, INT_MAX,
291 flags | TASKQ_PREPOPULATE);
292 VERIFY(tq != NULL);
293 VERIFY(tq->tq_nthreads == nthreads);
295 /* spawn all syncthreads */
296 for (int i = 0; i < nthreads; i++) {
297 cv_init(&tqs[i].tqa_cv, NULL, CV_DEFAULT, NULL);
298 mutex_init(&tqs[i].tqa_lock, NULL, MUTEX_DEFAULT, NULL);
299 (void) taskq_dispatch(tq, taskq_sync_assign,
300 &tqs[i], TQ_FRONT);
303 /* wait on all syncthreads to start */
304 for (int i = 0; i < nthreads; i++) {
305 mutex_enter(&tqs[i].tqa_lock);
306 while (tqs[i].tqa_ready == 0)
307 cv_wait(&tqs[i].tqa_cv, &tqs[i].tqa_lock);
308 mutex_exit(&tqs[i].tqa_lock);
311 /* let all syncthreads resume, finish */
312 for (int i = 0; i < nthreads; i++) {
313 mutex_enter(&tqs[i].tqa_lock);
314 tqs[i].tqa_ready = 2;
315 cv_broadcast(&tqs[i].tqa_cv);
316 mutex_exit(&tqs[i].tqa_lock);
318 taskq_wait(tq);
320 for (int i = 0; i < nthreads; i++) {
321 kthreads[i] = tqs[i].tqa_thread;
322 mutex_destroy(&tqs[i].tqa_lock);
323 cv_destroy(&tqs[i].tqa_cv);
325 kmem_free(tqs, sizeof (*tqs) * nthreads);
327 *ktpp = kthreads;
328 return (tq);
332 taskq_member(taskq_t *tq, kthread_t *thread)
335 return (taskqueue_member(tq->tq_queue, thread));
338 taskq_t *
339 taskq_of_curthread(void)
341 return (tsd_get(taskq_tsd));
344 static void
345 taskq_free(taskq_ent_t *task)
347 taskq_remove(task);
348 if (refcount_release(&task->tqent_rc))
349 uma_zfree(taskq_zone, task);
353 taskq_cancel_id(taskq_t *tq, taskqid_t tid)
355 uint32_t pend;
356 int rc;
357 taskq_ent_t *ent;
359 if ((ent = taskq_lookup(tid)) == NULL)
360 return (ENOENT);
362 if (ent->tqent_type == NORMAL_TASK) {
363 rc = taskqueue_cancel(tq->tq_queue, &ent->tqent_task, &pend);
364 if (rc == EBUSY)
365 taskqueue_drain(tq->tq_queue, &ent->tqent_task);
366 } else {
367 rc = taskqueue_cancel_timeout(tq->tq_queue,
368 &ent->tqent_timeout_task, &pend);
369 if (rc == EBUSY) {
370 taskqueue_drain_timeout(tq->tq_queue,
371 &ent->tqent_timeout_task);
374 if (pend) {
376 * Tasks normally free themselves when run, but here the task
377 * was cancelled so it did not free itself.
379 taskq_free(ent);
381 /* Free the extra reference we added with taskq_lookup. */
382 taskq_free(ent);
383 return (pend ? 0 : ENOENT);
386 static void
387 taskq_run(void *arg, int pending)
389 taskq_ent_t *task = arg;
391 if (pending == 0)
392 return;
393 task->tqent_func(task->tqent_arg);
394 taskq_free(task);
397 taskqid_t
398 taskq_dispatch_delay(taskq_t *tq, task_func_t func, void *arg,
399 uint_t flags, clock_t expire_time)
401 taskq_ent_t *task;
402 taskqid_t tqid;
403 clock_t timo;
404 int mflag;
406 timo = expire_time - ddi_get_lbolt();
407 if (timo <= 0)
408 return (taskq_dispatch(tq, func, arg, flags));
410 if ((flags & (TQ_SLEEP | TQ_NOQUEUE)) == TQ_SLEEP)
411 mflag = M_WAITOK;
412 else
413 mflag = M_NOWAIT;
415 task = uma_zalloc(taskq_zone, mflag);
416 if (task == NULL)
417 return (0);
418 task->tqent_func = func;
419 task->tqent_arg = arg;
420 task->tqent_type = TIMEOUT_TASK;
421 refcount_init(&task->tqent_rc, 1);
422 tqid = taskq_insert(task);
423 TIMEOUT_TASK_INIT(tq->tq_queue, &task->tqent_timeout_task, 0,
424 taskq_run, task);
426 taskqueue_enqueue_timeout(tq->tq_queue, &task->tqent_timeout_task,
427 timo);
428 return (tqid);
431 taskqid_t
432 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
434 taskq_ent_t *task;
435 int mflag, prio;
436 taskqid_t tqid;
438 if ((flags & (TQ_SLEEP | TQ_NOQUEUE)) == TQ_SLEEP)
439 mflag = M_WAITOK;
440 else
441 mflag = M_NOWAIT;
443 * If TQ_FRONT is given, we want higher priority for this task, so it
444 * can go at the front of the queue.
446 prio = !!(flags & TQ_FRONT);
448 task = uma_zalloc(taskq_zone, mflag);
449 if (task == NULL)
450 return (0);
451 refcount_init(&task->tqent_rc, 1);
452 task->tqent_func = func;
453 task->tqent_arg = arg;
454 task->tqent_type = NORMAL_TASK;
455 tqid = taskq_insert(task);
456 TASK_INIT(&task->tqent_task, prio, taskq_run, task);
457 taskqueue_enqueue(tq->tq_queue, &task->tqent_task);
458 return (tqid);
461 static void
462 taskq_run_ent(void *arg, int pending)
464 taskq_ent_t *task = arg;
466 if (pending == 0)
467 return;
468 task->tqent_func(task->tqent_arg);
471 void
472 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint32_t flags,
473 taskq_ent_t *task)
476 * If TQ_FRONT is given, we want higher priority for this task, so it
477 * can go at the front of the queue.
479 task->tqent_task.ta_priority = !!(flags & TQ_FRONT);
480 task->tqent_func = func;
481 task->tqent_arg = arg;
482 taskqueue_enqueue(tq->tq_queue, &task->tqent_task);
485 void
486 taskq_init_ent(taskq_ent_t *task)
488 TASK_INIT(&task->tqent_task, 0, taskq_run_ent, task);
489 task->tqent_func = NULL;
490 task->tqent_arg = NULL;
491 task->tqent_id = 0;
492 task->tqent_type = NORMAL_TASK;
493 task->tqent_rc = 0;
497 taskq_empty_ent(taskq_ent_t *task)
499 return (task->tqent_task.ta_pending == 0);
502 void
503 taskq_wait(taskq_t *tq)
505 taskqueue_quiesce(tq->tq_queue);
508 void
509 taskq_wait_id(taskq_t *tq, taskqid_t tid)
511 taskq_ent_t *ent;
513 if ((ent = taskq_lookup(tid)) == NULL)
514 return;
516 if (ent->tqent_type == NORMAL_TASK)
517 taskqueue_drain(tq->tq_queue, &ent->tqent_task);
518 else
519 taskqueue_drain_timeout(tq->tq_queue, &ent->tqent_timeout_task);
520 taskq_free(ent);
523 void
524 taskq_wait_outstanding(taskq_t *tq, taskqid_t id __unused)
526 taskqueue_drain_all(tq->tq_queue);