4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26 /* Portions Copyright 2007 Jeremy Teo */
28 #include <sys/types.h>
29 #include <sys/param.h>
31 #include <sys/sysmacros.h>
32 #include <sys/mntent.h>
33 #include <sys/u8_textprep.h>
34 #include <sys/dsl_dataset.h>
36 #include <sys/vnode.h>
39 #include <sys/errno.h>
40 #include <sys/atomic.h>
41 #include <sys/zfs_dir.h>
42 #include <sys/zfs_acl.h>
43 #include <sys/zfs_ioctl.h>
44 #include <sys/zfs_rlock.h>
45 #include <sys/zfs_fuid.h>
46 #include <sys/zfs_vnops.h>
47 #include <sys/zfs_ctldir.h>
48 #include <sys/dnode.h>
49 #include <sys/fs/zfs.h>
52 #include <sys/dmu_objset.h>
53 #include <sys/dmu_tx.h>
54 #include <sys/zfs_refcount.h>
57 #include <sys/zfs_znode.h>
59 #include <sys/zfs_sa.h>
60 #include <sys/zfs_stat.h>
61 #include <linux/mm_compat.h>
64 #include "zfs_comutil.h"
66 static kmem_cache_t
*znode_cache
= NULL
;
67 static kmem_cache_t
*znode_hold_cache
= NULL
;
68 unsigned int zfs_object_mutex_size
= ZFS_OBJ_MTX_SZ
;
71 * This is used by the test suite so that it can delay znodes from being
72 * freed in order to inspect the unlinked set.
74 static int zfs_unlink_suspend_progress
= 0;
77 * This callback is invoked when acquiring a RL_WRITER or RL_APPEND lock on
78 * z_rangelock. It will modify the offset and length of the lock to reflect
79 * znode-specific information, and convert RL_APPEND to RL_WRITER. This is
80 * called with the rangelock_t's rl_lock held, which avoids races.
83 zfs_rangelock_cb(zfs_locked_range_t
*new, void *arg
)
88 * If in append mode, convert to writer and lock starting at the
89 * current end of file.
91 if (new->lr_type
== RL_APPEND
) {
92 new->lr_offset
= zp
->z_size
;
93 new->lr_type
= RL_WRITER
;
97 * If we need to grow the block size then lock the whole file range.
99 uint64_t end_size
= MAX(zp
->z_size
, new->lr_offset
+ new->lr_length
);
100 if (end_size
> zp
->z_blksz
&& (!ISP2(zp
->z_blksz
) ||
101 zp
->z_blksz
< ZTOZSB(zp
)->z_max_blksz
)) {
103 new->lr_length
= UINT64_MAX
;
108 zfs_znode_cache_constructor(void *buf
, void *arg
, int kmflags
)
110 (void) arg
, (void) kmflags
;
113 inode_init_once(ZTOI(zp
));
114 list_link_init(&zp
->z_link_node
);
116 mutex_init(&zp
->z_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
117 rw_init(&zp
->z_parent_lock
, NULL
, RW_DEFAULT
, NULL
);
118 rw_init(&zp
->z_name_lock
, NULL
, RW_NOLOCKDEP
, NULL
);
119 mutex_init(&zp
->z_acl_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
120 rw_init(&zp
->z_xattr_lock
, NULL
, RW_DEFAULT
, NULL
);
122 zfs_rangelock_init(&zp
->z_rangelock
, zfs_rangelock_cb
, zp
);
124 zp
->z_dirlocks
= NULL
;
125 zp
->z_acl_cached
= NULL
;
126 zp
->z_xattr_cached
= NULL
;
127 zp
->z_xattr_parent
= 0;
128 zp
->z_sync_writes_cnt
= 0;
129 zp
->z_async_writes_cnt
= 0;
135 zfs_znode_cache_destructor(void *buf
, void *arg
)
140 ASSERT(!list_link_active(&zp
->z_link_node
));
141 mutex_destroy(&zp
->z_lock
);
142 rw_destroy(&zp
->z_parent_lock
);
143 rw_destroy(&zp
->z_name_lock
);
144 mutex_destroy(&zp
->z_acl_lock
);
145 rw_destroy(&zp
->z_xattr_lock
);
146 zfs_rangelock_fini(&zp
->z_rangelock
);
148 ASSERT3P(zp
->z_dirlocks
, ==, NULL
);
149 ASSERT3P(zp
->z_acl_cached
, ==, NULL
);
150 ASSERT3P(zp
->z_xattr_cached
, ==, NULL
);
152 ASSERT0(atomic_load_32(&zp
->z_sync_writes_cnt
));
153 ASSERT0(atomic_load_32(&zp
->z_async_writes_cnt
));
157 zfs_znode_hold_cache_constructor(void *buf
, void *arg
, int kmflags
)
159 (void) arg
, (void) kmflags
;
160 znode_hold_t
*zh
= buf
;
162 mutex_init(&zh
->zh_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
169 zfs_znode_hold_cache_destructor(void *buf
, void *arg
)
172 znode_hold_t
*zh
= buf
;
174 mutex_destroy(&zh
->zh_lock
);
181 * Initialize zcache. The KMC_SLAB hint is used in order that it be
182 * backed by kmalloc() when on the Linux slab in order that any
183 * wait_on_bit() operations on the related inode operate properly.
185 ASSERT(znode_cache
== NULL
);
186 znode_cache
= kmem_cache_create("zfs_znode_cache",
187 sizeof (znode_t
), 0, zfs_znode_cache_constructor
,
188 zfs_znode_cache_destructor
, NULL
, NULL
, NULL
,
189 KMC_SLAB
| KMC_RECLAIMABLE
);
191 ASSERT(znode_hold_cache
== NULL
);
192 znode_hold_cache
= kmem_cache_create("zfs_znode_hold_cache",
193 sizeof (znode_hold_t
), 0, zfs_znode_hold_cache_constructor
,
194 zfs_znode_hold_cache_destructor
, NULL
, NULL
, NULL
, 0);
204 kmem_cache_destroy(znode_cache
);
207 if (znode_hold_cache
)
208 kmem_cache_destroy(znode_hold_cache
);
209 znode_hold_cache
= NULL
;
213 * The zfs_znode_hold_enter() / zfs_znode_hold_exit() functions are used to
214 * serialize access to a znode and its SA buffer while the object is being
215 * created or destroyed. This kind of locking would normally reside in the
216 * znode itself but in this case that's impossible because the znode and SA
217 * buffer may not yet exist. Therefore the locking is handled externally
218 * with an array of mutexes and AVLs trees which contain per-object locks.
220 * In zfs_znode_hold_enter() a per-object lock is created as needed, inserted
221 * in to the correct AVL tree and finally the per-object lock is held. In
222 * zfs_znode_hold_exit() the process is reversed. The per-object lock is
223 * released, removed from the AVL tree and destroyed if there are no waiters.
225 * This scheme has two important properties:
227 * 1) No memory allocations are performed while holding one of the z_hold_locks.
228 * This ensures evict(), which can be called from direct memory reclaim, will
229 * never block waiting on a z_hold_locks which just happens to have hashed
232 * 2) All locks used to serialize access to an object are per-object and never
233 * shared. This minimizes lock contention without creating a large number
234 * of dedicated locks.
236 * On the downside it does require znode_lock_t structures to be frequently
237 * allocated and freed. However, because these are backed by a kmem cache
238 * and very short lived this cost is minimal.
241 zfs_znode_hold_compare(const void *a
, const void *b
)
243 const znode_hold_t
*zh_a
= (const znode_hold_t
*)a
;
244 const znode_hold_t
*zh_b
= (const znode_hold_t
*)b
;
246 return (TREE_CMP(zh_a
->zh_obj
, zh_b
->zh_obj
));
249 static boolean_t __maybe_unused
250 zfs_znode_held(zfsvfs_t
*zfsvfs
, uint64_t obj
)
252 znode_hold_t
*zh
, search
;
253 int i
= ZFS_OBJ_HASH(zfsvfs
, obj
);
258 mutex_enter(&zfsvfs
->z_hold_locks
[i
]);
259 zh
= avl_find(&zfsvfs
->z_hold_trees
[i
], &search
, NULL
);
260 held
= (zh
&& MUTEX_HELD(&zh
->zh_lock
)) ? B_TRUE
: B_FALSE
;
261 mutex_exit(&zfsvfs
->z_hold_locks
[i
]);
267 zfs_znode_hold_enter(zfsvfs_t
*zfsvfs
, uint64_t obj
)
269 znode_hold_t
*zh
, *zh_new
, search
;
270 int i
= ZFS_OBJ_HASH(zfsvfs
, obj
);
271 boolean_t found
= B_FALSE
;
273 zh_new
= kmem_cache_alloc(znode_hold_cache
, KM_SLEEP
);
276 mutex_enter(&zfsvfs
->z_hold_locks
[i
]);
277 zh
= avl_find(&zfsvfs
->z_hold_trees
[i
], &search
, NULL
);
278 if (likely(zh
== NULL
)) {
281 avl_add(&zfsvfs
->z_hold_trees
[i
], zh
);
283 ASSERT3U(zh
->zh_obj
, ==, obj
);
287 ASSERT3S(zh
->zh_refcount
, >, 0);
288 mutex_exit(&zfsvfs
->z_hold_locks
[i
]);
291 kmem_cache_free(znode_hold_cache
, zh_new
);
293 ASSERT(MUTEX_NOT_HELD(&zh
->zh_lock
));
294 mutex_enter(&zh
->zh_lock
);
300 zfs_znode_hold_exit(zfsvfs_t
*zfsvfs
, znode_hold_t
*zh
)
302 int i
= ZFS_OBJ_HASH(zfsvfs
, zh
->zh_obj
);
303 boolean_t remove
= B_FALSE
;
305 ASSERT(zfs_znode_held(zfsvfs
, zh
->zh_obj
));
306 mutex_exit(&zh
->zh_lock
);
308 mutex_enter(&zfsvfs
->z_hold_locks
[i
]);
309 ASSERT3S(zh
->zh_refcount
, >, 0);
310 if (--zh
->zh_refcount
== 0) {
311 avl_remove(&zfsvfs
->z_hold_trees
[i
], zh
);
314 mutex_exit(&zfsvfs
->z_hold_locks
[i
]);
316 if (remove
== B_TRUE
)
317 kmem_cache_free(znode_hold_cache
, zh
);
321 zfs_cmpldev(uint64_t dev
)
327 zfs_znode_sa_init(zfsvfs_t
*zfsvfs
, znode_t
*zp
,
328 dmu_buf_t
*db
, dmu_object_type_t obj_type
, sa_handle_t
*sa_hdl
)
330 ASSERT(zfs_znode_held(zfsvfs
, zp
->z_id
));
332 mutex_enter(&zp
->z_lock
);
334 ASSERT(zp
->z_sa_hdl
== NULL
);
335 ASSERT(zp
->z_acl_cached
== NULL
);
336 if (sa_hdl
== NULL
) {
337 VERIFY(0 == sa_handle_get_from_db(zfsvfs
->z_os
, db
, zp
,
338 SA_HDL_SHARED
, &zp
->z_sa_hdl
));
340 zp
->z_sa_hdl
= sa_hdl
;
341 sa_set_userp(sa_hdl
, zp
);
344 zp
->z_is_sa
= (obj_type
== DMU_OT_SA
) ? B_TRUE
: B_FALSE
;
346 mutex_exit(&zp
->z_lock
);
350 zfs_znode_dmu_fini(znode_t
*zp
)
352 ASSERT(zfs_znode_held(ZTOZSB(zp
), zp
->z_id
) ||
353 RW_WRITE_HELD(&ZTOZSB(zp
)->z_teardown_inactive_lock
));
355 sa_handle_destroy(zp
->z_sa_hdl
);
360 * Called by new_inode() to allocate a new inode.
363 zfs_inode_alloc(struct super_block
*sb
, struct inode
**ip
)
367 zp
= kmem_cache_alloc(znode_cache
, KM_SLEEP
);
374 * Called in multiple places when an inode should be destroyed.
377 zfs_inode_destroy(struct inode
*ip
)
379 znode_t
*zp
= ITOZ(ip
);
380 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
382 mutex_enter(&zfsvfs
->z_znodes_lock
);
383 if (list_link_active(&zp
->z_link_node
)) {
384 list_remove(&zfsvfs
->z_all_znodes
, zp
);
386 mutex_exit(&zfsvfs
->z_znodes_lock
);
388 if (zp
->z_acl_cached
) {
389 zfs_acl_free(zp
->z_acl_cached
);
390 zp
->z_acl_cached
= NULL
;
393 if (zp
->z_xattr_cached
) {
394 nvlist_free(zp
->z_xattr_cached
);
395 zp
->z_xattr_cached
= NULL
;
398 kmem_cache_free(znode_cache
, zp
);
402 zfs_inode_set_ops(zfsvfs_t
*zfsvfs
, struct inode
*ip
)
406 switch (ip
->i_mode
& S_IFMT
) {
408 ip
->i_op
= &zpl_inode_operations
;
409 ip
->i_fop
= &zpl_file_operations
;
410 ip
->i_mapping
->a_ops
= &zpl_address_space_operations
;
414 ip
->i_op
= &zpl_dir_inode_operations
;
415 ip
->i_fop
= &zpl_dir_file_operations
;
416 ITOZ(ip
)->z_zn_prefetch
= B_TRUE
;
420 ip
->i_op
= &zpl_symlink_inode_operations
;
424 * rdev is only stored in a SA only for device files.
428 (void) sa_lookup(ITOZ(ip
)->z_sa_hdl
, SA_ZPL_RDEV(zfsvfs
), &rdev
,
433 init_special_inode(ip
, ip
->i_mode
, rdev
);
434 ip
->i_op
= &zpl_special_inode_operations
;
438 zfs_panic_recover("inode %llu has invalid mode: 0x%x\n",
439 (u_longlong_t
)ip
->i_ino
, ip
->i_mode
);
441 /* Assume the inode is a file and attempt to continue */
442 ip
->i_mode
= S_IFREG
| 0644;
443 ip
->i_op
= &zpl_inode_operations
;
444 ip
->i_fop
= &zpl_file_operations
;
445 ip
->i_mapping
->a_ops
= &zpl_address_space_operations
;
451 zfs_set_inode_flags(znode_t
*zp
, struct inode
*ip
)
454 * Linux and Solaris have different sets of file attributes, so we
455 * restrict this conversion to the intersection of the two.
457 unsigned int flags
= 0;
458 if (zp
->z_pflags
& ZFS_IMMUTABLE
)
459 flags
|= S_IMMUTABLE
;
460 if (zp
->z_pflags
& ZFS_APPENDONLY
)
463 inode_set_flags(ip
, flags
, S_IMMUTABLE
|S_APPEND
);
467 * Update the embedded inode given the znode.
470 zfs_znode_update_vfs(znode_t
*zp
)
474 u_longlong_t i_blocks
;
479 /* Skip .zfs control nodes which do not exist on disk. */
480 if (zfsctl_is_node(ip
))
483 dmu_object_size_from_db(sa_get_db(zp
->z_sa_hdl
), &blksize
, &i_blocks
);
485 spin_lock(&ip
->i_lock
);
486 ip
->i_mode
= zp
->z_mode
;
487 ip
->i_blocks
= i_blocks
;
488 i_size_write(ip
, zp
->z_size
);
489 spin_unlock(&ip
->i_lock
);
494 * Construct a znode+inode and initialize.
496 * This does not do a call to dmu_set_user() that is
497 * up to the caller to do, in case you don't want to
501 zfs_znode_alloc(zfsvfs_t
*zfsvfs
, dmu_buf_t
*db
, int blksz
,
502 dmu_object_type_t obj_type
, sa_handle_t
*hdl
)
510 uint64_t z_uid
, z_gid
;
511 uint64_t atime
[2], mtime
[2], ctime
[2], btime
[2];
512 inode_timespec_t tmp_ts
;
513 uint64_t projid
= ZFS_DEFAULT_PROJID
;
514 sa_bulk_attr_t bulk
[12];
517 ASSERT(zfsvfs
!= NULL
);
519 ip
= new_inode(zfsvfs
->z_sb
);
524 ASSERT(zp
->z_dirlocks
== NULL
);
525 ASSERT3P(zp
->z_acl_cached
, ==, NULL
);
526 ASSERT3P(zp
->z_xattr_cached
, ==, NULL
);
527 zp
->z_unlinked
= B_FALSE
;
528 zp
->z_atime_dirty
= B_FALSE
;
529 zp
->z_is_ctldir
= B_FALSE
;
530 zp
->z_suspended
= B_FALSE
;
533 zp
->z_id
= db
->db_object
;
535 zp
->z_seq
= 0x7A4653;
537 zp
->z_sync_writes_cnt
= 0;
538 zp
->z_async_writes_cnt
= 0;
540 zfs_znode_sa_init(zfsvfs
, zp
, db
, obj_type
, hdl
);
542 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_MODE(zfsvfs
), NULL
, &mode
, 8);
543 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_GEN(zfsvfs
), NULL
, &tmp_gen
, 8);
544 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_SIZE(zfsvfs
), NULL
,
546 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_LINKS(zfsvfs
), NULL
, &links
, 8);
547 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_FLAGS(zfsvfs
), NULL
,
549 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_PARENT(zfsvfs
), NULL
,
551 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_UID(zfsvfs
), NULL
, &z_uid
, 8);
552 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_GID(zfsvfs
), NULL
, &z_gid
, 8);
553 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_ATIME(zfsvfs
), NULL
, &atime
, 16);
554 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_MTIME(zfsvfs
), NULL
, &mtime
, 16);
555 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_CTIME(zfsvfs
), NULL
, &ctime
, 16);
556 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_CRTIME(zfsvfs
), NULL
, &btime
, 16);
558 if (sa_bulk_lookup(zp
->z_sa_hdl
, bulk
, count
) != 0 || tmp_gen
== 0 ||
559 (dmu_objset_projectquota_enabled(zfsvfs
->z_os
) &&
560 (zp
->z_pflags
& ZFS_PROJID
) &&
561 sa_lookup(zp
->z_sa_hdl
, SA_ZPL_PROJID(zfsvfs
), &projid
, 8) != 0)) {
563 sa_handle_destroy(zp
->z_sa_hdl
);
568 zp
->z_projid
= projid
;
569 zp
->z_mode
= ip
->i_mode
= mode
;
570 ip
->i_generation
= (uint32_t)tmp_gen
;
571 ip
->i_blkbits
= SPA_MINBLOCKSHIFT
;
572 set_nlink(ip
, (uint32_t)links
);
573 zfs_uid_write(ip
, z_uid
);
574 zfs_gid_write(ip
, z_gid
);
575 zfs_set_inode_flags(zp
, ip
);
577 /* Cache the xattr parent id */
578 if (zp
->z_pflags
& ZFS_XATTR
)
579 zp
->z_xattr_parent
= parent
;
581 ZFS_TIME_DECODE(&tmp_ts
, atime
);
582 zpl_inode_set_atime_to_ts(ip
, tmp_ts
);
583 ZFS_TIME_DECODE(&tmp_ts
, mtime
);
584 zpl_inode_set_mtime_to_ts(ip
, tmp_ts
);
585 ZFS_TIME_DECODE(&tmp_ts
, ctime
);
586 zpl_inode_set_ctime_to_ts(ip
, tmp_ts
);
587 ZFS_TIME_DECODE(&zp
->z_btime
, btime
);
589 ip
->i_ino
= zp
->z_id
;
590 zfs_znode_update_vfs(zp
);
591 zfs_inode_set_ops(zfsvfs
, ip
);
594 * The only way insert_inode_locked() can fail is if the ip->i_ino
595 * number is already hashed for this super block. This can never
596 * happen because the inode numbers map 1:1 with the object numbers.
598 * Exceptions include rolling back a mounted file system, either
599 * from the zfs rollback or zfs recv command.
601 * Active inodes are unhashed during the rollback, but since zrele
602 * can happen asynchronously, we can't guarantee they've been
603 * unhashed. This can cause hash collisions in unlinked drain
604 * processing so do not hash unlinked znodes.
607 VERIFY3S(insert_inode_locked(ip
), ==, 0);
609 mutex_enter(&zfsvfs
->z_znodes_lock
);
610 list_insert_tail(&zfsvfs
->z_all_znodes
, zp
);
611 mutex_exit(&zfsvfs
->z_znodes_lock
);
614 unlock_new_inode(ip
);
623 * Safely mark an inode dirty. Inodes which are part of a read-only
624 * file system or snapshot may not be dirtied.
627 zfs_mark_inode_dirty(struct inode
*ip
)
629 zfsvfs_t
*zfsvfs
= ITOZSB(ip
);
631 if (zfs_is_readonly(zfsvfs
) || dmu_objset_is_snapshot(zfsvfs
->z_os
))
634 mark_inode_dirty(ip
);
637 static uint64_t empty_xattr
;
638 static uint64_t pad
[4];
639 static zfs_acl_phys_t acl_phys
;
641 * Create a new DMU object to hold a zfs znode.
643 * IN: dzp - parent directory for new znode
644 * vap - file attributes for new znode
645 * tx - dmu transaction id for zap operations
646 * cr - credentials of caller
648 * IS_ROOT_NODE - new object will be root
649 * IS_TMPFILE - new object is of O_TMPFILE
650 * IS_XATTR - new object is an attribute
651 * acl_ids - ACL related attributes
653 * OUT: zpp - allocated znode (set to dzp if IS_ROOT_NODE)
657 zfs_mknode(znode_t
*dzp
, vattr_t
*vap
, dmu_tx_t
*tx
, cred_t
*cr
,
658 uint_t flag
, znode_t
**zpp
, zfs_acl_ids_t
*acl_ids
)
660 uint64_t crtime
[2], atime
[2], mtime
[2], ctime
[2];
661 uint64_t mode
, size
, links
, parent
, pflags
;
662 uint64_t projid
= ZFS_DEFAULT_PROJID
;
664 zfsvfs_t
*zfsvfs
= ZTOZSB(dzp
);
666 inode_timespec_t now
;
671 dmu_object_type_t obj_type
;
672 sa_bulk_attr_t
*sa_attrs
;
674 zfs_acl_locator_cb_t locate
= { 0 };
677 if (zfsvfs
->z_replay
) {
678 obj
= vap
->va_nodeid
;
679 now
= vap
->va_ctime
; /* see zfs_replay_create() */
680 gen
= vap
->va_nblocks
; /* ditto */
681 dnodesize
= vap
->va_fsid
; /* ditto */
685 gen
= dmu_tx_get_txg(tx
);
686 dnodesize
= dmu_objset_dnodesize(zfsvfs
->z_os
);
690 dnodesize
= DNODE_MIN_SIZE
;
692 obj_type
= zfsvfs
->z_use_sa
? DMU_OT_SA
: DMU_OT_ZNODE
;
694 bonuslen
= (obj_type
== DMU_OT_SA
) ?
695 DN_BONUS_SIZE(dnodesize
) : ZFS_OLD_ZNODE_PHYS_SIZE
;
698 * Create a new DMU object.
701 * There's currently no mechanism for pre-reading the blocks that will
702 * be needed to allocate a new object, so we accept the small chance
703 * that there will be an i/o error and we will fail one of the
706 if (S_ISDIR(vap
->va_mode
)) {
707 if (zfsvfs
->z_replay
) {
708 VERIFY0(zap_create_claim_norm_dnsize(zfsvfs
->z_os
, obj
,
709 zfsvfs
->z_norm
, DMU_OT_DIRECTORY_CONTENTS
,
710 obj_type
, bonuslen
, dnodesize
, tx
));
712 obj
= zap_create_norm_dnsize(zfsvfs
->z_os
,
713 zfsvfs
->z_norm
, DMU_OT_DIRECTORY_CONTENTS
,
714 obj_type
, bonuslen
, dnodesize
, tx
);
717 if (zfsvfs
->z_replay
) {
718 VERIFY0(dmu_object_claim_dnsize(zfsvfs
->z_os
, obj
,
719 DMU_OT_PLAIN_FILE_CONTENTS
, 0,
720 obj_type
, bonuslen
, dnodesize
, tx
));
722 obj
= dmu_object_alloc_dnsize(zfsvfs
->z_os
,
723 DMU_OT_PLAIN_FILE_CONTENTS
, 0,
724 obj_type
, bonuslen
, dnodesize
, tx
);
728 zh
= zfs_znode_hold_enter(zfsvfs
, obj
);
729 VERIFY0(sa_buf_hold(zfsvfs
->z_os
, obj
, NULL
, &db
));
732 * If this is the root, fix up the half-initialized parent pointer
733 * to reference the just-allocated physical data area.
735 if (flag
& IS_ROOT_NODE
) {
740 * If parent is an xattr, so am I.
742 if (dzp
->z_pflags
& ZFS_XATTR
) {
746 if (zfsvfs
->z_use_fuids
)
747 pflags
= ZFS_ARCHIVE
| ZFS_AV_MODIFIED
;
751 if (S_ISDIR(vap
->va_mode
)) {
752 size
= 2; /* contents ("." and "..") */
756 links
= (flag
& IS_TMPFILE
) ? 0 : 1;
759 if (S_ISBLK(vap
->va_mode
) || S_ISCHR(vap
->va_mode
))
763 mode
= acl_ids
->z_mode
;
767 if (S_ISREG(vap
->va_mode
) || S_ISDIR(vap
->va_mode
)) {
769 * With ZFS_PROJID flag, we can easily know whether there is
770 * project ID stored on disk or not. See zfs_space_delta_cb().
772 if (obj_type
!= DMU_OT_ZNODE
&&
773 dmu_objset_projectquota_enabled(zfsvfs
->z_os
))
774 pflags
|= ZFS_PROJID
;
777 * Inherit project ID from parent if required.
779 projid
= zfs_inherit_projid(dzp
);
780 if (dzp
->z_pflags
& ZFS_PROJINHERIT
)
781 pflags
|= ZFS_PROJINHERIT
;
785 * No execs denied will be determined when zfs_mode_compute() is called.
787 pflags
|= acl_ids
->z_aclp
->z_hints
&
788 (ZFS_ACL_TRIVIAL
|ZFS_INHERIT_ACE
|ZFS_ACL_AUTO_INHERIT
|
789 ZFS_ACL_DEFAULTED
|ZFS_ACL_PROTECTED
);
791 ZFS_TIME_ENCODE(&now
, crtime
);
792 ZFS_TIME_ENCODE(&now
, ctime
);
794 if (vap
->va_mask
& ATTR_ATIME
) {
795 ZFS_TIME_ENCODE(&vap
->va_atime
, atime
);
797 ZFS_TIME_ENCODE(&now
, atime
);
800 if (vap
->va_mask
& ATTR_MTIME
) {
801 ZFS_TIME_ENCODE(&vap
->va_mtime
, mtime
);
803 ZFS_TIME_ENCODE(&now
, mtime
);
806 /* Now add in all of the "SA" attributes */
807 VERIFY(0 == sa_handle_get_from_db(zfsvfs
->z_os
, db
, NULL
, SA_HDL_SHARED
,
811 * Setup the array of attributes to be replaced/set on the new file
813 * order for DMU_OT_ZNODE is critical since it needs to be constructed
814 * in the old znode_phys_t format. Don't change this ordering
816 sa_attrs
= kmem_alloc(sizeof (sa_bulk_attr_t
) * ZPL_END
, KM_SLEEP
);
818 if (obj_type
== DMU_OT_ZNODE
) {
819 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_ATIME(zfsvfs
),
821 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_MTIME(zfsvfs
),
823 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_CTIME(zfsvfs
),
825 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_CRTIME(zfsvfs
),
827 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_GEN(zfsvfs
),
829 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_MODE(zfsvfs
),
831 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_SIZE(zfsvfs
),
833 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_PARENT(zfsvfs
),
836 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_MODE(zfsvfs
),
838 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_SIZE(zfsvfs
),
840 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_GEN(zfsvfs
),
842 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_UID(zfsvfs
),
843 NULL
, &acl_ids
->z_fuid
, 8);
844 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_GID(zfsvfs
),
845 NULL
, &acl_ids
->z_fgid
, 8);
846 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_PARENT(zfsvfs
),
848 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_FLAGS(zfsvfs
),
850 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_ATIME(zfsvfs
),
852 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_MTIME(zfsvfs
),
854 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_CTIME(zfsvfs
),
856 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_CRTIME(zfsvfs
),
860 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_LINKS(zfsvfs
), NULL
, &links
, 8);
862 if (obj_type
== DMU_OT_ZNODE
) {
863 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_XATTR(zfsvfs
), NULL
,
865 } else if (dmu_objset_projectquota_enabled(zfsvfs
->z_os
) &&
866 pflags
& ZFS_PROJID
) {
867 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_PROJID(zfsvfs
),
870 if (obj_type
== DMU_OT_ZNODE
||
871 (S_ISBLK(vap
->va_mode
) || S_ISCHR(vap
->va_mode
))) {
872 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_RDEV(zfsvfs
),
875 if (obj_type
== DMU_OT_ZNODE
) {
876 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_FLAGS(zfsvfs
),
878 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_UID(zfsvfs
), NULL
,
879 &acl_ids
->z_fuid
, 8);
880 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_GID(zfsvfs
), NULL
,
881 &acl_ids
->z_fgid
, 8);
882 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_PAD(zfsvfs
), NULL
, pad
,
883 sizeof (uint64_t) * 4);
884 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_ZNODE_ACL(zfsvfs
), NULL
,
885 &acl_phys
, sizeof (zfs_acl_phys_t
));
886 } else if (acl_ids
->z_aclp
->z_version
>= ZFS_ACL_VERSION_FUID
) {
887 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_DACL_COUNT(zfsvfs
), NULL
,
888 &acl_ids
->z_aclp
->z_acl_count
, 8);
889 locate
.cb_aclp
= acl_ids
->z_aclp
;
890 SA_ADD_BULK_ATTR(sa_attrs
, cnt
, SA_ZPL_DACL_ACES(zfsvfs
),
891 zfs_acl_data_locator
, &locate
,
892 acl_ids
->z_aclp
->z_acl_bytes
);
893 mode
= zfs_mode_compute(mode
, acl_ids
->z_aclp
, &pflags
,
894 acl_ids
->z_fuid
, acl_ids
->z_fgid
);
897 VERIFY(sa_replace_all_by_template(sa_hdl
, sa_attrs
, cnt
, tx
) == 0);
899 if (!(flag
& IS_ROOT_NODE
)) {
901 * The call to zfs_znode_alloc() may fail if memory is low
902 * via the call path: alloc_inode() -> inode_init_always() ->
903 * security_inode_alloc() -> inode_alloc_security(). Since
904 * the existing code is written such that zfs_mknode() can
905 * not fail retry until sufficient memory has been reclaimed.
908 *zpp
= zfs_znode_alloc(zfsvfs
, db
, 0, obj_type
, sa_hdl
);
909 } while (*zpp
== NULL
);
911 VERIFY(*zpp
!= NULL
);
915 * If we are creating the root node, the "parent" we
916 * passed in is the znode for the root.
920 (*zpp
)->z_sa_hdl
= sa_hdl
;
923 (*zpp
)->z_pflags
= pflags
;
924 (*zpp
)->z_mode
= ZTOI(*zpp
)->i_mode
= mode
;
925 (*zpp
)->z_dnodesize
= dnodesize
;
926 (*zpp
)->z_projid
= projid
;
928 if (obj_type
== DMU_OT_ZNODE
||
929 acl_ids
->z_aclp
->z_version
< ZFS_ACL_VERSION_FUID
) {
930 VERIFY0(zfs_aclset_common(*zpp
, acl_ids
->z_aclp
, cr
, tx
));
932 kmem_free(sa_attrs
, sizeof (sa_bulk_attr_t
) * ZPL_END
);
933 zfs_znode_hold_exit(zfsvfs
, zh
);
937 * Update in-core attributes. It is assumed the caller will be doing an
938 * sa_bulk_update to push the changes out.
941 zfs_xvattr_set(znode_t
*zp
, xvattr_t
*xvap
, dmu_tx_t
*tx
)
944 boolean_t update_inode
= B_FALSE
;
946 xoap
= xva_getxoptattr(xvap
);
949 if (XVA_ISSET_REQ(xvap
, XAT_CREATETIME
)) {
951 ZFS_TIME_ENCODE(&xoap
->xoa_createtime
, times
);
952 (void) sa_update(zp
->z_sa_hdl
, SA_ZPL_CRTIME(ZTOZSB(zp
)),
953 ×
, sizeof (times
), tx
);
954 XVA_SET_RTN(xvap
, XAT_CREATETIME
);
956 if (XVA_ISSET_REQ(xvap
, XAT_READONLY
)) {
957 ZFS_ATTR_SET(zp
, ZFS_READONLY
, xoap
->xoa_readonly
,
959 XVA_SET_RTN(xvap
, XAT_READONLY
);
961 if (XVA_ISSET_REQ(xvap
, XAT_HIDDEN
)) {
962 ZFS_ATTR_SET(zp
, ZFS_HIDDEN
, xoap
->xoa_hidden
,
964 XVA_SET_RTN(xvap
, XAT_HIDDEN
);
966 if (XVA_ISSET_REQ(xvap
, XAT_SYSTEM
)) {
967 ZFS_ATTR_SET(zp
, ZFS_SYSTEM
, xoap
->xoa_system
,
969 XVA_SET_RTN(xvap
, XAT_SYSTEM
);
971 if (XVA_ISSET_REQ(xvap
, XAT_ARCHIVE
)) {
972 ZFS_ATTR_SET(zp
, ZFS_ARCHIVE
, xoap
->xoa_archive
,
974 XVA_SET_RTN(xvap
, XAT_ARCHIVE
);
976 if (XVA_ISSET_REQ(xvap
, XAT_IMMUTABLE
)) {
977 ZFS_ATTR_SET(zp
, ZFS_IMMUTABLE
, xoap
->xoa_immutable
,
979 XVA_SET_RTN(xvap
, XAT_IMMUTABLE
);
981 update_inode
= B_TRUE
;
983 if (XVA_ISSET_REQ(xvap
, XAT_NOUNLINK
)) {
984 ZFS_ATTR_SET(zp
, ZFS_NOUNLINK
, xoap
->xoa_nounlink
,
986 XVA_SET_RTN(xvap
, XAT_NOUNLINK
);
988 if (XVA_ISSET_REQ(xvap
, XAT_APPENDONLY
)) {
989 ZFS_ATTR_SET(zp
, ZFS_APPENDONLY
, xoap
->xoa_appendonly
,
991 XVA_SET_RTN(xvap
, XAT_APPENDONLY
);
993 update_inode
= B_TRUE
;
995 if (XVA_ISSET_REQ(xvap
, XAT_NODUMP
)) {
996 ZFS_ATTR_SET(zp
, ZFS_NODUMP
, xoap
->xoa_nodump
,
998 XVA_SET_RTN(xvap
, XAT_NODUMP
);
1000 if (XVA_ISSET_REQ(xvap
, XAT_OPAQUE
)) {
1001 ZFS_ATTR_SET(zp
, ZFS_OPAQUE
, xoap
->xoa_opaque
,
1003 XVA_SET_RTN(xvap
, XAT_OPAQUE
);
1005 if (XVA_ISSET_REQ(xvap
, XAT_AV_QUARANTINED
)) {
1006 ZFS_ATTR_SET(zp
, ZFS_AV_QUARANTINED
,
1007 xoap
->xoa_av_quarantined
, zp
->z_pflags
, tx
);
1008 XVA_SET_RTN(xvap
, XAT_AV_QUARANTINED
);
1010 if (XVA_ISSET_REQ(xvap
, XAT_AV_MODIFIED
)) {
1011 ZFS_ATTR_SET(zp
, ZFS_AV_MODIFIED
, xoap
->xoa_av_modified
,
1013 XVA_SET_RTN(xvap
, XAT_AV_MODIFIED
);
1015 if (XVA_ISSET_REQ(xvap
, XAT_AV_SCANSTAMP
)) {
1016 zfs_sa_set_scanstamp(zp
, xvap
, tx
);
1017 XVA_SET_RTN(xvap
, XAT_AV_SCANSTAMP
);
1019 if (XVA_ISSET_REQ(xvap
, XAT_REPARSE
)) {
1020 ZFS_ATTR_SET(zp
, ZFS_REPARSE
, xoap
->xoa_reparse
,
1022 XVA_SET_RTN(xvap
, XAT_REPARSE
);
1024 if (XVA_ISSET_REQ(xvap
, XAT_OFFLINE
)) {
1025 ZFS_ATTR_SET(zp
, ZFS_OFFLINE
, xoap
->xoa_offline
,
1027 XVA_SET_RTN(xvap
, XAT_OFFLINE
);
1029 if (XVA_ISSET_REQ(xvap
, XAT_SPARSE
)) {
1030 ZFS_ATTR_SET(zp
, ZFS_SPARSE
, xoap
->xoa_sparse
,
1032 XVA_SET_RTN(xvap
, XAT_SPARSE
);
1034 if (XVA_ISSET_REQ(xvap
, XAT_PROJINHERIT
)) {
1035 ZFS_ATTR_SET(zp
, ZFS_PROJINHERIT
, xoap
->xoa_projinherit
,
1037 XVA_SET_RTN(xvap
, XAT_PROJINHERIT
);
1041 zfs_set_inode_flags(zp
, ZTOI(zp
));
1045 zfs_zget(zfsvfs_t
*zfsvfs
, uint64_t obj_num
, znode_t
**zpp
)
1047 dmu_object_info_t doi
;
1057 zh
= zfs_znode_hold_enter(zfsvfs
, obj_num
);
1059 err
= sa_buf_hold(zfsvfs
->z_os
, obj_num
, NULL
, &db
);
1061 zfs_znode_hold_exit(zfsvfs
, zh
);
1065 dmu_object_info_from_db(db
, &doi
);
1066 if (doi
.doi_bonus_type
!= DMU_OT_SA
&&
1067 (doi
.doi_bonus_type
!= DMU_OT_ZNODE
||
1068 (doi
.doi_bonus_type
== DMU_OT_ZNODE
&&
1069 doi
.doi_bonus_size
< sizeof (znode_phys_t
)))) {
1070 sa_buf_rele(db
, NULL
);
1071 zfs_znode_hold_exit(zfsvfs
, zh
);
1072 return (SET_ERROR(EINVAL
));
1075 hdl
= dmu_buf_get_user(db
);
1077 zp
= sa_get_userdata(hdl
);
1081 * Since "SA" does immediate eviction we
1082 * should never find a sa handle that doesn't
1083 * know about the znode.
1086 ASSERT3P(zp
, !=, NULL
);
1088 mutex_enter(&zp
->z_lock
);
1089 ASSERT3U(zp
->z_id
, ==, obj_num
);
1091 * If zp->z_unlinked is set, the znode is already marked
1092 * for deletion and should not be discovered. Check this
1093 * after checking igrab() due to fsetxattr() & O_TMPFILE.
1095 * If igrab() returns NULL the VFS has independently
1096 * determined the inode should be evicted and has
1097 * called iput_final() to start the eviction process.
1098 * The SA handle is still valid but because the VFS
1099 * requires that the eviction succeed we must drop
1100 * our locks and references to allow the eviction to
1101 * complete. The zfs_zget() may then be retried.
1103 * This unlikely case could be optimized by registering
1104 * a sops->drop_inode() callback. The callback would
1105 * need to detect the active SA hold thereby informing
1106 * the VFS that this inode should not be evicted.
1108 if (igrab(ZTOI(zp
)) == NULL
) {
1110 err
= SET_ERROR(ENOENT
);
1112 err
= SET_ERROR(EAGAIN
);
1118 mutex_exit(&zp
->z_lock
);
1119 sa_buf_rele(db
, NULL
);
1120 zfs_znode_hold_exit(zfsvfs
, zh
);
1122 if (err
== EAGAIN
) {
1123 /* inode might need this to finish evict */
1131 * Not found create new znode/vnode but only if file exists.
1133 * There is a small window where zfs_vget() could
1134 * find this object while a file create is still in
1135 * progress. This is checked for in zfs_znode_alloc()
1137 * if zfs_znode_alloc() fails it will drop the hold on the
1140 zp
= zfs_znode_alloc(zfsvfs
, db
, doi
.doi_data_block_size
,
1141 doi
.doi_bonus_type
, NULL
);
1143 err
= SET_ERROR(ENOENT
);
1147 zfs_znode_hold_exit(zfsvfs
, zh
);
1152 zfs_rezget(znode_t
*zp
)
1154 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
1155 dmu_object_info_t doi
;
1157 uint64_t obj_num
= zp
->z_id
;
1160 sa_bulk_attr_t bulk
[11];
1164 uint64_t z_uid
, z_gid
;
1165 uint64_t atime
[2], mtime
[2], ctime
[2], btime
[2];
1166 inode_timespec_t tmp_ts
;
1167 uint64_t projid
= ZFS_DEFAULT_PROJID
;
1171 * skip ctldir, otherwise they will always get invalidated. This will
1172 * cause funny behaviour for the mounted snapdirs. Especially for
1173 * Linux >= 3.18, d_invalidate will detach the mountpoint and prevent
1174 * anyone automount it again as long as someone is still using the
1177 if (zp
->z_is_ctldir
)
1180 zh
= zfs_znode_hold_enter(zfsvfs
, obj_num
);
1182 mutex_enter(&zp
->z_acl_lock
);
1183 if (zp
->z_acl_cached
) {
1184 zfs_acl_free(zp
->z_acl_cached
);
1185 zp
->z_acl_cached
= NULL
;
1187 mutex_exit(&zp
->z_acl_lock
);
1189 rw_enter(&zp
->z_xattr_lock
, RW_WRITER
);
1190 if (zp
->z_xattr_cached
) {
1191 nvlist_free(zp
->z_xattr_cached
);
1192 zp
->z_xattr_cached
= NULL
;
1194 rw_exit(&zp
->z_xattr_lock
);
1196 ASSERT(zp
->z_sa_hdl
== NULL
);
1197 err
= sa_buf_hold(zfsvfs
->z_os
, obj_num
, NULL
, &db
);
1199 zfs_znode_hold_exit(zfsvfs
, zh
);
1203 dmu_object_info_from_db(db
, &doi
);
1204 if (doi
.doi_bonus_type
!= DMU_OT_SA
&&
1205 (doi
.doi_bonus_type
!= DMU_OT_ZNODE
||
1206 (doi
.doi_bonus_type
== DMU_OT_ZNODE
&&
1207 doi
.doi_bonus_size
< sizeof (znode_phys_t
)))) {
1208 sa_buf_rele(db
, NULL
);
1209 zfs_znode_hold_exit(zfsvfs
, zh
);
1210 return (SET_ERROR(EINVAL
));
1213 zfs_znode_sa_init(zfsvfs
, zp
, db
, doi
.doi_bonus_type
, NULL
);
1215 /* reload cached values */
1216 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_GEN(zfsvfs
), NULL
,
1217 &gen
, sizeof (gen
));
1218 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_SIZE(zfsvfs
), NULL
,
1219 &zp
->z_size
, sizeof (zp
->z_size
));
1220 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_LINKS(zfsvfs
), NULL
,
1221 &links
, sizeof (links
));
1222 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_FLAGS(zfsvfs
), NULL
,
1223 &zp
->z_pflags
, sizeof (zp
->z_pflags
));
1224 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_UID(zfsvfs
), NULL
,
1225 &z_uid
, sizeof (z_uid
));
1226 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_GID(zfsvfs
), NULL
,
1227 &z_gid
, sizeof (z_gid
));
1228 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_MODE(zfsvfs
), NULL
,
1229 &mode
, sizeof (mode
));
1230 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_ATIME(zfsvfs
), NULL
,
1232 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_MTIME(zfsvfs
), NULL
,
1234 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_CTIME(zfsvfs
), NULL
,
1236 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_CRTIME(zfsvfs
), NULL
, &btime
, 16);
1238 if (sa_bulk_lookup(zp
->z_sa_hdl
, bulk
, count
)) {
1239 zfs_znode_dmu_fini(zp
);
1240 zfs_znode_hold_exit(zfsvfs
, zh
);
1241 return (SET_ERROR(EIO
));
1244 if (dmu_objset_projectquota_enabled(zfsvfs
->z_os
)) {
1245 err
= sa_lookup(zp
->z_sa_hdl
, SA_ZPL_PROJID(zfsvfs
),
1247 if (err
!= 0 && err
!= ENOENT
) {
1248 zfs_znode_dmu_fini(zp
);
1249 zfs_znode_hold_exit(zfsvfs
, zh
);
1250 return (SET_ERROR(err
));
1254 zp
->z_projid
= projid
;
1255 zp
->z_mode
= ZTOI(zp
)->i_mode
= mode
;
1256 zfs_uid_write(ZTOI(zp
), z_uid
);
1257 zfs_gid_write(ZTOI(zp
), z_gid
);
1259 ZFS_TIME_DECODE(&tmp_ts
, atime
);
1260 zpl_inode_set_atime_to_ts(ZTOI(zp
), tmp_ts
);
1261 ZFS_TIME_DECODE(&tmp_ts
, mtime
);
1262 zpl_inode_set_mtime_to_ts(ZTOI(zp
), tmp_ts
);
1263 ZFS_TIME_DECODE(&tmp_ts
, ctime
);
1264 zpl_inode_set_ctime_to_ts(ZTOI(zp
), tmp_ts
);
1265 ZFS_TIME_DECODE(&zp
->z_btime
, btime
);
1267 if ((uint32_t)gen
!= ZTOI(zp
)->i_generation
) {
1268 zfs_znode_dmu_fini(zp
);
1269 zfs_znode_hold_exit(zfsvfs
, zh
);
1270 return (SET_ERROR(EIO
));
1273 set_nlink(ZTOI(zp
), (uint32_t)links
);
1274 zfs_set_inode_flags(zp
, ZTOI(zp
));
1276 zp
->z_blksz
= doi
.doi_data_block_size
;
1277 zp
->z_atime_dirty
= B_FALSE
;
1278 zfs_znode_update_vfs(zp
);
1281 * If the file has zero links, then it has been unlinked on the send
1282 * side and it must be in the received unlinked set.
1283 * We call zfs_znode_dmu_fini() now to prevent any accesses to the
1284 * stale data and to prevent automatic removal of the file in
1285 * zfs_zinactive(). The file will be removed either when it is removed
1286 * on the send side and the next incremental stream is received or
1287 * when the unlinked set gets processed.
1289 zp
->z_unlinked
= (ZTOI(zp
)->i_nlink
== 0);
1291 zfs_znode_dmu_fini(zp
);
1293 zfs_znode_hold_exit(zfsvfs
, zh
);
1299 zfs_znode_delete(znode_t
*zp
, dmu_tx_t
*tx
)
1301 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
1302 objset_t
*os
= zfsvfs
->z_os
;
1303 uint64_t obj
= zp
->z_id
;
1304 uint64_t acl_obj
= zfs_external_acl(zp
);
1307 zh
= zfs_znode_hold_enter(zfsvfs
, obj
);
1309 VERIFY(!zp
->z_is_sa
);
1310 VERIFY(0 == dmu_object_free(os
, acl_obj
, tx
));
1312 VERIFY(0 == dmu_object_free(os
, obj
, tx
));
1313 zfs_znode_dmu_fini(zp
);
1314 zfs_znode_hold_exit(zfsvfs
, zh
);
1318 zfs_zinactive(znode_t
*zp
)
1320 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
1321 uint64_t z_id
= zp
->z_id
;
1324 ASSERT(zp
->z_sa_hdl
);
1327 * Don't allow a zfs_zget() while were trying to release this znode.
1329 zh
= zfs_znode_hold_enter(zfsvfs
, z_id
);
1331 mutex_enter(&zp
->z_lock
);
1334 * If this was the last reference to a file with no links, remove
1335 * the file from the file system unless the file system is mounted
1336 * read-only. That can happen, for example, if the file system was
1337 * originally read-write, the file was opened, then unlinked and
1338 * the file system was made read-only before the file was finally
1339 * closed. The file will remain in the unlinked set.
1341 if (zp
->z_unlinked
) {
1342 ASSERT(!zfsvfs
->z_issnap
);
1343 if (!zfs_is_readonly(zfsvfs
) && !zfs_unlink_suspend_progress
) {
1344 mutex_exit(&zp
->z_lock
);
1345 zfs_znode_hold_exit(zfsvfs
, zh
);
1351 mutex_exit(&zp
->z_lock
);
1352 zfs_znode_dmu_fini(zp
);
1354 zfs_znode_hold_exit(zfsvfs
, zh
);
1358 * Determine whether the znode's atime must be updated. The logic mostly
1359 * duplicates the Linux kernel's relatime_need_update() functionality.
1360 * This function is only called if the underlying filesystem actually has
1361 * atime updates enabled.
1364 zfs_relatime_need_update(const struct inode
*ip
)
1366 inode_timespec_t now
, tmp_atime
, tmp_ts
;
1369 tmp_atime
= zpl_inode_get_atime(ip
);
1371 * In relatime mode, only update the atime if the previous atime
1372 * is earlier than either the ctime or mtime or if at least a day
1373 * has passed since the last update of atime.
1375 tmp_ts
= zpl_inode_get_mtime(ip
);
1376 if (timespec64_compare(&tmp_ts
, &tmp_atime
) >= 0)
1379 tmp_ts
= zpl_inode_get_ctime(ip
);
1380 if (timespec64_compare(&tmp_ts
, &tmp_atime
) >= 0)
1383 if ((hrtime_t
)now
.tv_sec
- (hrtime_t
)tmp_atime
.tv_sec
>= 24*60*60)
1390 * Prepare to update znode time stamps.
1392 * IN: zp - znode requiring timestamp update
1393 * flag - ATTR_MTIME, ATTR_CTIME flags
1399 * Note: We don't update atime here, because we rely on Linux VFS to do
1403 zfs_tstamp_update_setup(znode_t
*zp
, uint_t flag
, uint64_t mtime
[2],
1406 inode_timespec_t now
, tmp_ts
;
1412 if (flag
& ATTR_MTIME
) {
1413 ZFS_TIME_ENCODE(&now
, mtime
);
1414 ZFS_TIME_DECODE(&tmp_ts
, mtime
);
1415 zpl_inode_set_mtime_to_ts(ZTOI(zp
), tmp_ts
);
1416 if (ZTOZSB(zp
)->z_use_fuids
) {
1417 zp
->z_pflags
|= (ZFS_ARCHIVE
|
1422 if (flag
& ATTR_CTIME
) {
1423 ZFS_TIME_ENCODE(&now
, ctime
);
1424 ZFS_TIME_DECODE(&tmp_ts
, ctime
);
1425 zpl_inode_set_ctime_to_ts(ZTOI(zp
), tmp_ts
);
1426 if (ZTOZSB(zp
)->z_use_fuids
)
1427 zp
->z_pflags
|= ZFS_ARCHIVE
;
1432 * Grow the block size for a file.
1434 * IN: zp - znode of file to free data in.
1435 * size - requested block size
1436 * tx - open transaction.
1438 * NOTE: this function assumes that the znode is write locked.
1441 zfs_grow_blocksize(znode_t
*zp
, uint64_t size
, dmu_tx_t
*tx
)
1446 if (size
<= zp
->z_blksz
)
1449 * If the file size is already greater than the current blocksize,
1450 * we will not grow. If there is more than one block in a file,
1451 * the blocksize cannot change.
1453 if (zp
->z_blksz
&& zp
->z_size
> zp
->z_blksz
)
1456 error
= dmu_object_set_blocksize(ZTOZSB(zp
)->z_os
, zp
->z_id
,
1459 if (error
== ENOTSUP
)
1463 /* What blocksize did we actually get? */
1464 dmu_object_size_from_db(sa_get_db(zp
->z_sa_hdl
), &zp
->z_blksz
, &dummy
);
1468 * Increase the file length
1470 * IN: zp - znode of file to free data in.
1471 * end - new end-of-file
1473 * RETURN: 0 on success, error code on failure
1476 zfs_extend(znode_t
*zp
, uint64_t end
)
1478 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
1480 zfs_locked_range_t
*lr
;
1485 * We will change zp_size, lock the whole file.
1487 lr
= zfs_rangelock_enter(&zp
->z_rangelock
, 0, UINT64_MAX
, RL_WRITER
);
1490 * Nothing to do if file already at desired length.
1492 if (end
<= zp
->z_size
) {
1493 zfs_rangelock_exit(lr
);
1496 tx
= dmu_tx_create(zfsvfs
->z_os
);
1497 dmu_tx_hold_sa(tx
, zp
->z_sa_hdl
, B_FALSE
);
1498 zfs_sa_upgrade_txholds(tx
, zp
);
1499 if (end
> zp
->z_blksz
&&
1500 (!ISP2(zp
->z_blksz
) || zp
->z_blksz
< zfsvfs
->z_max_blksz
)) {
1502 * We are growing the file past the current block size.
1504 if (zp
->z_blksz
> ZTOZSB(zp
)->z_max_blksz
) {
1506 * File's blocksize is already larger than the
1507 * "recordsize" property. Only let it grow to
1508 * the next power of 2.
1510 ASSERT(!ISP2(zp
->z_blksz
));
1511 newblksz
= MIN(end
, 1 << highbit64(zp
->z_blksz
));
1513 newblksz
= MIN(end
, ZTOZSB(zp
)->z_max_blksz
);
1515 dmu_tx_hold_write(tx
, zp
->z_id
, 0, newblksz
);
1520 error
= dmu_tx_assign(tx
, TXG_WAIT
);
1523 zfs_rangelock_exit(lr
);
1528 zfs_grow_blocksize(zp
, newblksz
, tx
);
1532 VERIFY(0 == sa_update(zp
->z_sa_hdl
, SA_ZPL_SIZE(ZTOZSB(zp
)),
1533 &zp
->z_size
, sizeof (zp
->z_size
), tx
));
1535 zfs_rangelock_exit(lr
);
1543 * zfs_zero_partial_page - Modeled after update_pages() but
1544 * with different arguments and semantics for use by zfs_freesp().
1546 * Zeroes a piece of a single page cache entry for zp at offset
1547 * start and length len.
1549 * Caller must acquire a range lock on the file for the region
1550 * being zeroed in order that the ARC and page cache stay in sync.
1553 zfs_zero_partial_page(znode_t
*zp
, uint64_t start
, uint64_t len
)
1555 struct address_space
*mp
= ZTOI(zp
)->i_mapping
;
1560 ASSERT((start
& PAGE_MASK
) == ((start
+ len
- 1) & PAGE_MASK
));
1562 off
= start
& (PAGE_SIZE
- 1);
1565 pp
= find_lock_page(mp
, start
>> PAGE_SHIFT
);
1567 if (mapping_writably_mapped(mp
))
1568 flush_dcache_page(pp
);
1571 memset(pb
+ off
, 0, len
);
1574 if (mapping_writably_mapped(mp
))
1575 flush_dcache_page(pp
);
1577 mark_page_accessed(pp
);
1578 SetPageUptodate(pp
);
1580 if (!PagePrivate(pp
)) {
1582 * Set private bit so page migration will wait for us to
1583 * finish writeback before calling migrate_folio().
1594 * Free space in a file.
1596 * IN: zp - znode of file to free data in.
1597 * off - start of section to free.
1598 * len - length of section to free.
1600 * RETURN: 0 on success, error code on failure
1603 zfs_free_range(znode_t
*zp
, uint64_t off
, uint64_t len
)
1605 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
1606 zfs_locked_range_t
*lr
;
1610 * Lock the range being freed.
1612 lr
= zfs_rangelock_enter(&zp
->z_rangelock
, off
, len
, RL_WRITER
);
1615 * Nothing to do if file already at desired length.
1617 if (off
>= zp
->z_size
) {
1618 zfs_rangelock_exit(lr
);
1622 if (off
+ len
> zp
->z_size
)
1623 len
= zp
->z_size
- off
;
1625 error
= dmu_free_long_range(zfsvfs
->z_os
, zp
->z_id
, off
, len
);
1628 * Zero partial page cache entries. This must be done under a
1629 * range lock in order to keep the ARC and page cache in sync.
1631 if (zn_has_cached_data(zp
, off
, off
+ len
- 1)) {
1632 loff_t first_page
, last_page
, page_len
;
1633 loff_t first_page_offset
, last_page_offset
;
1635 /* first possible full page in hole */
1636 first_page
= (off
+ PAGE_SIZE
- 1) >> PAGE_SHIFT
;
1637 /* last page of hole */
1638 last_page
= (off
+ len
) >> PAGE_SHIFT
;
1640 /* offset of first_page */
1641 first_page_offset
= first_page
<< PAGE_SHIFT
;
1642 /* offset of last_page */
1643 last_page_offset
= last_page
<< PAGE_SHIFT
;
1645 /* truncate whole pages */
1646 if (last_page_offset
> first_page_offset
) {
1647 truncate_inode_pages_range(ZTOI(zp
)->i_mapping
,
1648 first_page_offset
, last_page_offset
- 1);
1651 /* truncate sub-page ranges */
1652 if (first_page
> last_page
) {
1653 /* entire punched area within a single page */
1654 zfs_zero_partial_page(zp
, off
, len
);
1656 /* beginning of punched area at the end of a page */
1657 page_len
= first_page_offset
- off
;
1659 zfs_zero_partial_page(zp
, off
, page_len
);
1661 /* end of punched area at the beginning of a page */
1662 page_len
= off
+ len
- last_page_offset
;
1664 zfs_zero_partial_page(zp
, last_page_offset
,
1668 zfs_rangelock_exit(lr
);
1676 * IN: zp - znode of file to free data in.
1677 * end - new end-of-file.
1679 * RETURN: 0 on success, error code on failure
1682 zfs_trunc(znode_t
*zp
, uint64_t end
)
1684 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
1686 zfs_locked_range_t
*lr
;
1688 sa_bulk_attr_t bulk
[2];
1692 * We will change zp_size, lock the whole file.
1694 lr
= zfs_rangelock_enter(&zp
->z_rangelock
, 0, UINT64_MAX
, RL_WRITER
);
1697 * Nothing to do if file already at desired length.
1699 if (end
>= zp
->z_size
) {
1700 zfs_rangelock_exit(lr
);
1704 error
= dmu_free_long_range(zfsvfs
->z_os
, zp
->z_id
, end
,
1707 zfs_rangelock_exit(lr
);
1710 tx
= dmu_tx_create(zfsvfs
->z_os
);
1711 dmu_tx_hold_sa(tx
, zp
->z_sa_hdl
, B_FALSE
);
1712 zfs_sa_upgrade_txholds(tx
, zp
);
1713 dmu_tx_mark_netfree(tx
);
1714 error
= dmu_tx_assign(tx
, TXG_WAIT
);
1717 zfs_rangelock_exit(lr
);
1722 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_SIZE(zfsvfs
),
1723 NULL
, &zp
->z_size
, sizeof (zp
->z_size
));
1726 zp
->z_pflags
&= ~ZFS_SPARSE
;
1727 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_FLAGS(zfsvfs
),
1728 NULL
, &zp
->z_pflags
, 8);
1730 VERIFY(sa_bulk_update(zp
->z_sa_hdl
, bulk
, count
, tx
) == 0);
1733 zfs_rangelock_exit(lr
);
1739 * Free space in a file
1741 * IN: zp - znode of file to free data in.
1742 * off - start of range
1743 * len - end of range (0 => EOF)
1744 * flag - current file open mode flags.
1745 * log - TRUE if this action should be logged
1747 * RETURN: 0 on success, error code on failure
1750 zfs_freesp(znode_t
*zp
, uint64_t off
, uint64_t len
, int flag
, boolean_t log
)
1753 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
1754 zilog_t
*zilog
= zfsvfs
->z_log
;
1756 uint64_t mtime
[2], ctime
[2];
1757 sa_bulk_attr_t bulk
[3];
1761 if ((error
= sa_lookup(zp
->z_sa_hdl
, SA_ZPL_MODE(zfsvfs
), &mode
,
1762 sizeof (mode
))) != 0)
1765 if (off
> zp
->z_size
) {
1766 error
= zfs_extend(zp
, off
+len
);
1767 if (error
== 0 && log
)
1773 error
= zfs_trunc(zp
, off
);
1775 if ((error
= zfs_free_range(zp
, off
, len
)) == 0 &&
1776 off
+ len
> zp
->z_size
)
1777 error
= zfs_extend(zp
, off
+len
);
1782 tx
= dmu_tx_create(zfsvfs
->z_os
);
1783 dmu_tx_hold_sa(tx
, zp
->z_sa_hdl
, B_FALSE
);
1784 zfs_sa_upgrade_txholds(tx
, zp
);
1785 error
= dmu_tx_assign(tx
, TXG_WAIT
);
1791 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_MTIME(zfsvfs
), NULL
, mtime
, 16);
1792 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_CTIME(zfsvfs
), NULL
, ctime
, 16);
1793 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_FLAGS(zfsvfs
),
1794 NULL
, &zp
->z_pflags
, 8);
1795 zfs_tstamp_update_setup(zp
, CONTENT_MODIFIED
, mtime
, ctime
);
1796 error
= sa_bulk_update(zp
->z_sa_hdl
, bulk
, count
, tx
);
1799 zfs_log_truncate(zilog
, tx
, TX_TRUNCATE
, zp
, off
, len
);
1803 zfs_znode_update_vfs(zp
);
1808 * Truncate the page cache - for file truncate operations, use
1809 * the purpose-built API for truncations. For punching operations,
1810 * the truncation is handled under a range lock in zfs_free_range.
1813 truncate_setsize(ZTOI(zp
), off
);
1818 zfs_create_fs(objset_t
*os
, cred_t
*cr
, nvlist_t
*zplprops
, dmu_tx_t
*tx
)
1820 struct super_block
*sb
;
1822 uint64_t moid
, obj
, sa_obj
, version
;
1823 uint64_t sense
= ZFS_CASE_SENSITIVE
;
1829 znode_t
*rootzp
= NULL
;
1832 zfs_acl_ids_t acl_ids
;
1835 * First attempt to create master node.
1838 * In an empty objset, there are no blocks to read and thus
1839 * there can be no i/o errors (which we assert below).
1841 moid
= MASTER_NODE_OBJ
;
1842 error
= zap_create_claim(os
, moid
, DMU_OT_MASTER_NODE
,
1843 DMU_OT_NONE
, 0, tx
);
1847 * Set starting attributes.
1849 version
= zfs_zpl_version_map(spa_version(dmu_objset_spa(os
)));
1851 while ((elem
= nvlist_next_nvpair(zplprops
, elem
)) != NULL
) {
1852 /* For the moment we expect all zpl props to be uint64_ts */
1856 ASSERT(nvpair_type(elem
) == DATA_TYPE_UINT64
);
1857 VERIFY(nvpair_value_uint64(elem
, &val
) == 0);
1858 name
= nvpair_name(elem
);
1859 if (strcmp(name
, zfs_prop_to_name(ZFS_PROP_VERSION
)) == 0) {
1863 error
= zap_update(os
, moid
, name
, 8, 1, &val
, tx
);
1866 if (strcmp(name
, zfs_prop_to_name(ZFS_PROP_NORMALIZE
)) == 0)
1868 else if (strcmp(name
, zfs_prop_to_name(ZFS_PROP_CASE
)) == 0)
1871 ASSERT(version
!= 0);
1872 error
= zap_update(os
, moid
, ZPL_VERSION_STR
, 8, 1, &version
, tx
);
1876 * Create zap object used for SA attribute registration
1879 if (version
>= ZPL_VERSION_SA
) {
1880 sa_obj
= zap_create(os
, DMU_OT_SA_MASTER_NODE
,
1881 DMU_OT_NONE
, 0, tx
);
1882 error
= zap_add(os
, moid
, ZFS_SA_ATTRS
, 8, 1, &sa_obj
, tx
);
1888 * Create a delete queue.
1890 obj
= zap_create(os
, DMU_OT_UNLINKED_SET
, DMU_OT_NONE
, 0, tx
);
1892 error
= zap_add(os
, moid
, ZFS_UNLINKED_SET
, 8, 1, &obj
, tx
);
1896 * Create root znode. Create minimal znode/inode/zfsvfs/sb
1897 * to allow zfs_mknode to work.
1899 vattr
.va_mask
= ATTR_MODE
|ATTR_UID
|ATTR_GID
;
1900 vattr
.va_mode
= S_IFDIR
|0755;
1901 vattr
.va_uid
= crgetuid(cr
);
1902 vattr
.va_gid
= crgetgid(cr
);
1904 rootzp
= kmem_cache_alloc(znode_cache
, KM_SLEEP
);
1905 rootzp
->z_unlinked
= B_FALSE
;
1906 rootzp
->z_atime_dirty
= B_FALSE
;
1907 rootzp
->z_is_sa
= USE_SA(version
, os
);
1908 rootzp
->z_pflags
= 0;
1910 zfsvfs
= kmem_zalloc(sizeof (zfsvfs_t
), KM_SLEEP
);
1912 zfsvfs
->z_parent
= zfsvfs
;
1913 zfsvfs
->z_version
= version
;
1914 zfsvfs
->z_use_fuids
= USE_FUIDS(version
, os
);
1915 zfsvfs
->z_use_sa
= USE_SA(version
, os
);
1916 zfsvfs
->z_norm
= norm
;
1918 sb
= kmem_zalloc(sizeof (struct super_block
), KM_SLEEP
);
1919 sb
->s_fs_info
= zfsvfs
;
1921 ZTOI(rootzp
)->i_sb
= sb
;
1923 error
= sa_setup(os
, sa_obj
, zfs_attr_table
, ZPL_END
,
1924 &zfsvfs
->z_attr_table
);
1929 * Fold case on file systems that are always or sometimes case
1932 if (sense
== ZFS_CASE_INSENSITIVE
|| sense
== ZFS_CASE_MIXED
)
1933 zfsvfs
->z_norm
|= U8_TEXTPREP_TOUPPER
;
1935 mutex_init(&zfsvfs
->z_znodes_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1936 list_create(&zfsvfs
->z_all_znodes
, sizeof (znode_t
),
1937 offsetof(znode_t
, z_link_node
));
1939 size
= MIN(1 << (highbit64(zfs_object_mutex_size
)-1), ZFS_OBJ_MTX_MAX
);
1940 zfsvfs
->z_hold_size
= size
;
1941 zfsvfs
->z_hold_trees
= vmem_zalloc(sizeof (avl_tree_t
) * size
,
1943 zfsvfs
->z_hold_locks
= vmem_zalloc(sizeof (kmutex_t
) * size
, KM_SLEEP
);
1944 for (i
= 0; i
!= size
; i
++) {
1945 avl_create(&zfsvfs
->z_hold_trees
[i
], zfs_znode_hold_compare
,
1946 sizeof (znode_hold_t
), offsetof(znode_hold_t
, zh_node
));
1947 mutex_init(&zfsvfs
->z_hold_locks
[i
], NULL
, MUTEX_DEFAULT
, NULL
);
1950 VERIFY(0 == zfs_acl_ids_create(rootzp
, IS_ROOT_NODE
, &vattr
,
1951 cr
, NULL
, &acl_ids
, zfs_init_idmap
));
1952 zfs_mknode(rootzp
, &vattr
, tx
, cr
, IS_ROOT_NODE
, &zp
, &acl_ids
);
1953 ASSERT3P(zp
, ==, rootzp
);
1954 error
= zap_add(os
, moid
, ZFS_ROOT_OBJ
, 8, 1, &rootzp
->z_id
, tx
);
1956 zfs_acl_ids_free(&acl_ids
);
1958 atomic_set(&ZTOI(rootzp
)->i_count
, 0);
1959 sa_handle_destroy(rootzp
->z_sa_hdl
);
1960 kmem_cache_free(znode_cache
, rootzp
);
1962 for (i
= 0; i
!= size
; i
++) {
1963 avl_destroy(&zfsvfs
->z_hold_trees
[i
]);
1964 mutex_destroy(&zfsvfs
->z_hold_locks
[i
]);
1967 mutex_destroy(&zfsvfs
->z_znodes_lock
);
1969 vmem_free(zfsvfs
->z_hold_trees
, sizeof (avl_tree_t
) * size
);
1970 vmem_free(zfsvfs
->z_hold_locks
, sizeof (kmutex_t
) * size
);
1971 kmem_free(sb
, sizeof (struct super_block
));
1972 kmem_free(zfsvfs
, sizeof (zfsvfs_t
));
1975 EXPORT_SYMBOL(zfs_create_fs
);
1976 EXPORT_SYMBOL(zfs_obj_to_path
);
1979 module_param(zfs_object_mutex_size
, uint
, 0644);
1980 MODULE_PARM_DESC(zfs_object_mutex_size
, "Size of znode hold array");
1981 module_param(zfs_unlink_suspend_progress
, int, 0644);
1982 MODULE_PARM_DESC(zfs_unlink_suspend_progress
, "Set to prevent async unlinks "
1983 "(debug - leaks space into the unlinked set)");