4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
28 #include <sys/types.h>
29 #include <sys/param.h>
31 #include <sys/sysmacros.h>
33 #include <sys/vnode.h>
38 #include <sys/cmn_err.h>
39 #include <sys/errno.h>
40 #include <sys/fs/zfs.h>
41 #include <sys/policy.h>
42 #include <sys/zfs_znode.h>
43 #include <sys/zfs_fuid.h>
44 #include <sys/zfs_acl.h>
45 #include <sys/zfs_dir.h>
46 #include <sys/zfs_quota.h>
47 #include <sys/zfs_vfsops.h>
49 #include <sys/dnode.h>
52 #include <sys/trace_acl.h>
55 #define ALLOW ACE_ACCESS_ALLOWED_ACE_TYPE
56 #define DENY ACE_ACCESS_DENIED_ACE_TYPE
57 #define MAX_ACE_TYPE ACE_SYSTEM_ALARM_CALLBACK_OBJECT_ACE_TYPE
58 #define MIN_ACE_TYPE ALLOW
60 #define OWNING_GROUP (ACE_GROUP|ACE_IDENTIFIER_GROUP)
61 #define EVERYONE_ALLOW_MASK (ACE_READ_ACL|ACE_READ_ATTRIBUTES | \
62 ACE_READ_NAMED_ATTRS|ACE_SYNCHRONIZE)
63 #define EVERYONE_DENY_MASK (ACE_WRITE_ACL|ACE_WRITE_OWNER | \
64 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
65 #define OWNER_ALLOW_MASK (ACE_WRITE_ACL | ACE_WRITE_OWNER | \
66 ACE_WRITE_ATTRIBUTES|ACE_WRITE_NAMED_ATTRS)
68 #define ZFS_CHECKED_MASKS (ACE_READ_ACL|ACE_READ_ATTRIBUTES|ACE_READ_DATA| \
69 ACE_READ_NAMED_ATTRS|ACE_WRITE_DATA|ACE_WRITE_ATTRIBUTES| \
70 ACE_WRITE_NAMED_ATTRS|ACE_APPEND_DATA|ACE_EXECUTE|ACE_WRITE_OWNER| \
71 ACE_WRITE_ACL|ACE_DELETE|ACE_DELETE_CHILD|ACE_SYNCHRONIZE)
73 #define WRITE_MASK_DATA (ACE_WRITE_DATA|ACE_APPEND_DATA|ACE_WRITE_NAMED_ATTRS)
74 #define WRITE_MASK_ATTRS (ACE_WRITE_ACL|ACE_WRITE_OWNER|ACE_WRITE_ATTRIBUTES| \
75 ACE_DELETE|ACE_DELETE_CHILD)
76 #define WRITE_MASK (WRITE_MASK_DATA|WRITE_MASK_ATTRS)
78 #define OGE_CLEAR (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
79 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
81 #define OKAY_MASK_BITS (ACE_READ_DATA|ACE_LIST_DIRECTORY|ACE_WRITE_DATA| \
82 ACE_ADD_FILE|ACE_APPEND_DATA|ACE_ADD_SUBDIRECTORY|ACE_EXECUTE)
84 #define ALL_INHERIT (ACE_FILE_INHERIT_ACE|ACE_DIRECTORY_INHERIT_ACE | \
85 ACE_NO_PROPAGATE_INHERIT_ACE|ACE_INHERIT_ONLY_ACE|ACE_INHERITED_ACE)
87 #define RESTRICTED_CLEAR (ACE_WRITE_ACL|ACE_WRITE_OWNER)
89 #define V4_ACL_WIDE_FLAGS (ZFS_ACL_AUTO_INHERIT|ZFS_ACL_DEFAULTED|\
92 #define ZFS_ACL_WIDE_FLAGS (V4_ACL_WIDE_FLAGS|ZFS_ACL_TRIVIAL|ZFS_INHERIT_ACE|\
95 #define ALL_MODE_EXECS (S_IXUSR | S_IXGRP | S_IXOTH)
97 #define IDMAP_WK_CREATOR_OWNER_UID 2147483648U
100 zfs_ace_v0_get_type(void *acep
)
102 return (((zfs_oldace_t
*)acep
)->z_type
);
106 zfs_ace_v0_get_flags(void *acep
)
108 return (((zfs_oldace_t
*)acep
)->z_flags
);
112 zfs_ace_v0_get_mask(void *acep
)
114 return (((zfs_oldace_t
*)acep
)->z_access_mask
);
118 zfs_ace_v0_get_who(void *acep
)
120 return (((zfs_oldace_t
*)acep
)->z_fuid
);
124 zfs_ace_v0_set_type(void *acep
, uint16_t type
)
126 ((zfs_oldace_t
*)acep
)->z_type
= type
;
130 zfs_ace_v0_set_flags(void *acep
, uint16_t flags
)
132 ((zfs_oldace_t
*)acep
)->z_flags
= flags
;
136 zfs_ace_v0_set_mask(void *acep
, uint32_t mask
)
138 ((zfs_oldace_t
*)acep
)->z_access_mask
= mask
;
142 zfs_ace_v0_set_who(void *acep
, uint64_t who
)
144 ((zfs_oldace_t
*)acep
)->z_fuid
= who
;
148 zfs_ace_v0_size(void *acep
)
151 return (sizeof (zfs_oldace_t
));
155 zfs_ace_v0_abstract_size(void)
157 return (sizeof (zfs_oldace_t
));
161 zfs_ace_v0_mask_off(void)
163 return (offsetof(zfs_oldace_t
, z_access_mask
));
167 zfs_ace_v0_data(void *acep
, void **datap
)
174 static const acl_ops_t zfs_acl_v0_ops
= {
175 .ace_mask_get
= zfs_ace_v0_get_mask
,
176 .ace_mask_set
= zfs_ace_v0_set_mask
,
177 .ace_flags_get
= zfs_ace_v0_get_flags
,
178 .ace_flags_set
= zfs_ace_v0_set_flags
,
179 .ace_type_get
= zfs_ace_v0_get_type
,
180 .ace_type_set
= zfs_ace_v0_set_type
,
181 .ace_who_get
= zfs_ace_v0_get_who
,
182 .ace_who_set
= zfs_ace_v0_set_who
,
183 .ace_size
= zfs_ace_v0_size
,
184 .ace_abstract_size
= zfs_ace_v0_abstract_size
,
185 .ace_mask_off
= zfs_ace_v0_mask_off
,
186 .ace_data
= zfs_ace_v0_data
190 zfs_ace_fuid_get_type(void *acep
)
192 return (((zfs_ace_hdr_t
*)acep
)->z_type
);
196 zfs_ace_fuid_get_flags(void *acep
)
198 return (((zfs_ace_hdr_t
*)acep
)->z_flags
);
202 zfs_ace_fuid_get_mask(void *acep
)
204 return (((zfs_ace_hdr_t
*)acep
)->z_access_mask
);
208 zfs_ace_fuid_get_who(void *args
)
211 zfs_ace_t
*acep
= args
;
213 entry_type
= acep
->z_hdr
.z_flags
& ACE_TYPE_FLAGS
;
215 if (entry_type
== ACE_OWNER
|| entry_type
== OWNING_GROUP
||
216 entry_type
== ACE_EVERYONE
)
218 return (((zfs_ace_t
*)acep
)->z_fuid
);
222 zfs_ace_fuid_set_type(void *acep
, uint16_t type
)
224 ((zfs_ace_hdr_t
*)acep
)->z_type
= type
;
228 zfs_ace_fuid_set_flags(void *acep
, uint16_t flags
)
230 ((zfs_ace_hdr_t
*)acep
)->z_flags
= flags
;
234 zfs_ace_fuid_set_mask(void *acep
, uint32_t mask
)
236 ((zfs_ace_hdr_t
*)acep
)->z_access_mask
= mask
;
240 zfs_ace_fuid_set_who(void *arg
, uint64_t who
)
242 zfs_ace_t
*acep
= arg
;
244 uint16_t entry_type
= acep
->z_hdr
.z_flags
& ACE_TYPE_FLAGS
;
246 if (entry_type
== ACE_OWNER
|| entry_type
== OWNING_GROUP
||
247 entry_type
== ACE_EVERYONE
)
253 zfs_ace_fuid_size(void *acep
)
255 zfs_ace_hdr_t
*zacep
= acep
;
258 switch (zacep
->z_type
) {
259 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE
:
260 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE
:
261 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE
:
262 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE
:
263 return (sizeof (zfs_object_ace_t
));
267 (((zfs_ace_hdr_t
*)acep
)->z_flags
& ACE_TYPE_FLAGS
);
268 if (entry_type
== ACE_OWNER
||
269 entry_type
== OWNING_GROUP
||
270 entry_type
== ACE_EVERYONE
)
271 return (sizeof (zfs_ace_hdr_t
));
274 return (sizeof (zfs_ace_t
));
279 zfs_ace_fuid_abstract_size(void)
281 return (sizeof (zfs_ace_hdr_t
));
285 zfs_ace_fuid_mask_off(void)
287 return (offsetof(zfs_ace_hdr_t
, z_access_mask
));
291 zfs_ace_fuid_data(void *acep
, void **datap
)
293 zfs_ace_t
*zacep
= acep
;
294 zfs_object_ace_t
*zobjp
;
296 switch (zacep
->z_hdr
.z_type
) {
297 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE
:
298 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE
:
299 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE
:
300 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE
:
302 *datap
= (caddr_t
)zobjp
+ sizeof (zfs_ace_t
);
303 return (sizeof (zfs_object_ace_t
) - sizeof (zfs_ace_t
));
310 static const acl_ops_t zfs_acl_fuid_ops
= {
311 .ace_mask_get
= zfs_ace_fuid_get_mask
,
312 .ace_mask_set
= zfs_ace_fuid_set_mask
,
313 .ace_flags_get
= zfs_ace_fuid_get_flags
,
314 .ace_flags_set
= zfs_ace_fuid_set_flags
,
315 .ace_type_get
= zfs_ace_fuid_get_type
,
316 .ace_type_set
= zfs_ace_fuid_set_type
,
317 .ace_who_get
= zfs_ace_fuid_get_who
,
318 .ace_who_set
= zfs_ace_fuid_set_who
,
319 .ace_size
= zfs_ace_fuid_size
,
320 .ace_abstract_size
= zfs_ace_fuid_abstract_size
,
321 .ace_mask_off
= zfs_ace_fuid_mask_off
,
322 .ace_data
= zfs_ace_fuid_data
326 * The following three functions are provided for compatibility with
327 * older ZPL version in order to determine if the file use to have
328 * an external ACL and what version of ACL previously existed on the
329 * file. Would really be nice to not need this, sigh.
332 zfs_external_acl(znode_t
*zp
)
334 zfs_acl_phys_t acl_phys
;
341 * Need to deal with a potential
342 * race where zfs_sa_upgrade could cause
343 * z_isa_sa to change.
345 * If the lookup fails then the state of z_is_sa should have
349 if ((error
= sa_lookup(zp
->z_sa_hdl
, SA_ZPL_ZNODE_ACL(ZTOZSB(zp
)),
350 &acl_phys
, sizeof (acl_phys
))) == 0)
351 return (acl_phys
.z_acl_extern_obj
);
354 * after upgrade the SA_ZPL_ZNODE_ACL should have been
357 VERIFY(zp
->z_is_sa
&& error
== ENOENT
);
363 * Determine size of ACL in bytes
365 * This is more complicated than it should be since we have to deal
366 * with old external ACLs.
369 zfs_acl_znode_info(znode_t
*zp
, int *aclsize
, int *aclcount
,
370 zfs_acl_phys_t
*aclphys
)
372 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
377 ASSERT(MUTEX_HELD(&zp
->z_acl_lock
));
379 if ((error
= sa_size(zp
->z_sa_hdl
, SA_ZPL_DACL_ACES(zfsvfs
),
383 if ((error
= sa_lookup(zp
->z_sa_hdl
, SA_ZPL_DACL_COUNT(zfsvfs
),
384 &acl_count
, sizeof (acl_count
))) != 0)
386 *aclcount
= acl_count
;
388 if ((error
= sa_lookup(zp
->z_sa_hdl
, SA_ZPL_ZNODE_ACL(zfsvfs
),
389 aclphys
, sizeof (*aclphys
))) != 0)
392 if (aclphys
->z_acl_version
== ZFS_ACL_VERSION_INITIAL
) {
393 *aclsize
= ZFS_ACL_SIZE(aclphys
->z_acl_size
);
394 *aclcount
= aclphys
->z_acl_size
;
396 *aclsize
= aclphys
->z_acl_size
;
397 *aclcount
= aclphys
->z_acl_count
;
404 zfs_znode_acl_version(znode_t
*zp
)
406 zfs_acl_phys_t acl_phys
;
409 return (ZFS_ACL_VERSION_FUID
);
414 * Need to deal with a potential
415 * race where zfs_sa_upgrade could cause
416 * z_isa_sa to change.
418 * If the lookup fails then the state of z_is_sa should have
421 if ((error
= sa_lookup(zp
->z_sa_hdl
,
422 SA_ZPL_ZNODE_ACL(ZTOZSB(zp
)),
423 &acl_phys
, sizeof (acl_phys
))) == 0)
424 return (acl_phys
.z_acl_version
);
427 * After upgrade SA_ZPL_ZNODE_ACL should have
430 VERIFY(zp
->z_is_sa
&& error
== ENOENT
);
431 return (ZFS_ACL_VERSION_FUID
);
437 zfs_acl_version(int version
)
439 if (version
< ZPL_VERSION_FUID
)
440 return (ZFS_ACL_VERSION_INITIAL
);
442 return (ZFS_ACL_VERSION_FUID
);
446 zfs_acl_version_zp(znode_t
*zp
)
448 return (zfs_acl_version(ZTOZSB(zp
)->z_version
));
452 zfs_acl_alloc(int vers
)
456 aclp
= kmem_zalloc(sizeof (zfs_acl_t
), KM_SLEEP
);
457 list_create(&aclp
->z_acl
, sizeof (zfs_acl_node_t
),
458 offsetof(zfs_acl_node_t
, z_next
));
459 aclp
->z_version
= vers
;
460 if (vers
== ZFS_ACL_VERSION_FUID
)
461 aclp
->z_ops
= &zfs_acl_fuid_ops
;
463 aclp
->z_ops
= &zfs_acl_v0_ops
;
468 zfs_acl_node_alloc(size_t bytes
)
470 zfs_acl_node_t
*aclnode
;
472 aclnode
= kmem_zalloc(sizeof (zfs_acl_node_t
), KM_SLEEP
);
474 aclnode
->z_acldata
= kmem_alloc(bytes
, KM_SLEEP
);
475 aclnode
->z_allocdata
= aclnode
->z_acldata
;
476 aclnode
->z_allocsize
= bytes
;
477 aclnode
->z_size
= bytes
;
484 zfs_acl_node_free(zfs_acl_node_t
*aclnode
)
486 if (aclnode
->z_allocsize
)
487 kmem_free(aclnode
->z_allocdata
, aclnode
->z_allocsize
);
488 kmem_free(aclnode
, sizeof (zfs_acl_node_t
));
492 zfs_acl_release_nodes(zfs_acl_t
*aclp
)
494 zfs_acl_node_t
*aclnode
;
496 while ((aclnode
= list_head(&aclp
->z_acl
))) {
497 list_remove(&aclp
->z_acl
, aclnode
);
498 zfs_acl_node_free(aclnode
);
500 aclp
->z_acl_count
= 0;
501 aclp
->z_acl_bytes
= 0;
505 zfs_acl_free(zfs_acl_t
*aclp
)
507 zfs_acl_release_nodes(aclp
);
508 list_destroy(&aclp
->z_acl
);
509 kmem_free(aclp
, sizeof (zfs_acl_t
));
513 zfs_acl_valid_ace_type(uint_t type
, uint_t flags
)
520 case ACE_SYSTEM_AUDIT_ACE_TYPE
:
521 case ACE_SYSTEM_ALARM_ACE_TYPE
:
522 entry_type
= flags
& ACE_TYPE_FLAGS
;
523 return (entry_type
== ACE_OWNER
||
524 entry_type
== OWNING_GROUP
||
525 entry_type
== ACE_EVERYONE
|| entry_type
== 0 ||
526 entry_type
== ACE_IDENTIFIER_GROUP
);
528 if (type
>= MIN_ACE_TYPE
&& type
<= MAX_ACE_TYPE
)
535 zfs_ace_valid(umode_t obj_mode
, zfs_acl_t
*aclp
, uint16_t type
, uint16_t iflags
)
538 * first check type of entry
541 if (!zfs_acl_valid_ace_type(type
, iflags
))
545 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE
:
546 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE
:
547 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE
:
548 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE
:
549 if (aclp
->z_version
< ZFS_ACL_VERSION_FUID
)
551 aclp
->z_hints
|= ZFS_ACL_OBJ_ACE
;
555 * next check inheritance level flags
558 if (S_ISDIR(obj_mode
) &&
559 (iflags
& (ACE_FILE_INHERIT_ACE
|ACE_DIRECTORY_INHERIT_ACE
)))
560 aclp
->z_hints
|= ZFS_INHERIT_ACE
;
562 if (iflags
& (ACE_INHERIT_ONLY_ACE
|ACE_NO_PROPAGATE_INHERIT_ACE
)) {
563 if ((iflags
& (ACE_FILE_INHERIT_ACE
|
564 ACE_DIRECTORY_INHERIT_ACE
)) == 0) {
573 zfs_acl_next_ace(zfs_acl_t
*aclp
, void *start
, uint64_t *who
,
574 uint32_t *access_mask
, uint16_t *iflags
, uint16_t *type
)
576 zfs_acl_node_t
*aclnode
;
581 aclnode
= list_head(&aclp
->z_acl
);
585 aclp
->z_next_ace
= aclnode
->z_acldata
;
586 aclp
->z_curr_node
= aclnode
;
587 aclnode
->z_ace_idx
= 0;
590 aclnode
= aclp
->z_curr_node
;
595 if (aclnode
->z_ace_idx
>= aclnode
->z_ace_count
) {
596 aclnode
= list_next(&aclp
->z_acl
, aclnode
);
600 aclp
->z_curr_node
= aclnode
;
601 aclnode
->z_ace_idx
= 0;
602 aclp
->z_next_ace
= aclnode
->z_acldata
;
606 if (aclnode
->z_ace_idx
< aclnode
->z_ace_count
) {
607 void *acep
= aclp
->z_next_ace
;
611 * Make sure we don't overstep our bounds
613 ace_size
= aclp
->z_ops
->ace_size(acep
);
615 if (((caddr_t
)acep
+ ace_size
) >
616 ((caddr_t
)aclnode
->z_acldata
+ aclnode
->z_size
)) {
620 *iflags
= aclp
->z_ops
->ace_flags_get(acep
);
621 *type
= aclp
->z_ops
->ace_type_get(acep
);
622 *access_mask
= aclp
->z_ops
->ace_mask_get(acep
);
623 *who
= aclp
->z_ops
->ace_who_get(acep
);
624 aclp
->z_next_ace
= (caddr_t
)aclp
->z_next_ace
+ ace_size
;
625 aclnode
->z_ace_idx
++;
627 return ((void *)acep
);
633 zfs_ace_walk(void *datap
, uint64_t cookie
, int aclcnt
,
634 uint16_t *flags
, uint16_t *type
, uint32_t *mask
)
637 zfs_acl_t
*aclp
= datap
;
638 zfs_ace_hdr_t
*acep
= (zfs_ace_hdr_t
*)(uintptr_t)cookie
;
641 acep
= zfs_acl_next_ace(aclp
, acep
, &who
, mask
,
643 return ((uint64_t)(uintptr_t)acep
);
647 * Copy ACE to internal ZFS format.
648 * While processing the ACL each ACE will be validated for correctness.
649 * ACE FUIDs will be created later.
652 zfs_copy_ace_2_fuid(zfsvfs_t
*zfsvfs
, umode_t obj_mode
, zfs_acl_t
*aclp
,
653 void *datap
, zfs_ace_t
*z_acl
, uint64_t aclcnt
, size_t *size
,
654 zfs_fuid_info_t
**fuidp
, cred_t
*cr
)
658 zfs_ace_t
*aceptr
= z_acl
;
660 zfs_object_ace_t
*zobjacep
;
661 ace_object_t
*aceobjp
;
663 for (i
= 0; i
!= aclcnt
; i
++) {
664 aceptr
->z_hdr
.z_access_mask
= acep
->a_access_mask
;
665 aceptr
->z_hdr
.z_flags
= acep
->a_flags
;
666 aceptr
->z_hdr
.z_type
= acep
->a_type
;
667 entry_type
= aceptr
->z_hdr
.z_flags
& ACE_TYPE_FLAGS
;
668 if (entry_type
!= ACE_OWNER
&& entry_type
!= OWNING_GROUP
&&
669 entry_type
!= ACE_EVERYONE
) {
670 aceptr
->z_fuid
= zfs_fuid_create(zfsvfs
, acep
->a_who
,
671 cr
, (entry_type
== 0) ?
672 ZFS_ACE_USER
: ZFS_ACE_GROUP
, fuidp
);
676 * Make sure ACE is valid
678 if (zfs_ace_valid(obj_mode
, aclp
, aceptr
->z_hdr
.z_type
,
679 aceptr
->z_hdr
.z_flags
) != B_TRUE
)
680 return (SET_ERROR(EINVAL
));
682 switch (acep
->a_type
) {
683 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE
:
684 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE
:
685 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE
:
686 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE
:
687 zobjacep
= (zfs_object_ace_t
*)aceptr
;
688 aceobjp
= (ace_object_t
*)acep
;
690 memcpy(zobjacep
->z_object_type
, aceobjp
->a_obj_type
,
691 sizeof (aceobjp
->a_obj_type
));
692 memcpy(zobjacep
->z_inherit_type
,
693 aceobjp
->a_inherit_obj_type
,
694 sizeof (aceobjp
->a_inherit_obj_type
));
695 acep
= (ace_t
*)((caddr_t
)acep
+ sizeof (ace_object_t
));
698 acep
= (ace_t
*)((caddr_t
)acep
+ sizeof (ace_t
));
701 aceptr
= (zfs_ace_t
*)((caddr_t
)aceptr
+
702 aclp
->z_ops
->ace_size(aceptr
));
705 *size
= (caddr_t
)aceptr
- (caddr_t
)z_acl
;
711 * Copy ZFS ACEs to fixed size ace_t layout
714 zfs_copy_fuid_2_ace(zfsvfs_t
*zfsvfs
, zfs_acl_t
*aclp
, cred_t
*cr
,
715 void *datap
, int filter
)
718 uint32_t access_mask
;
719 uint16_t iflags
, type
;
720 zfs_ace_hdr_t
*zacep
= NULL
;
722 ace_object_t
*objacep
;
723 zfs_object_ace_t
*zobjacep
;
727 while ((zacep
= zfs_acl_next_ace(aclp
, zacep
,
728 &who
, &access_mask
, &iflags
, &type
))) {
731 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE
:
732 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE
:
733 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE
:
734 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE
:
738 zobjacep
= (zfs_object_ace_t
*)zacep
;
739 objacep
= (ace_object_t
*)acep
;
740 memcpy(objacep
->a_obj_type
,
741 zobjacep
->z_object_type
,
742 sizeof (zobjacep
->z_object_type
));
743 memcpy(objacep
->a_inherit_obj_type
,
744 zobjacep
->z_inherit_type
,
745 sizeof (zobjacep
->z_inherit_type
));
746 ace_size
= sizeof (ace_object_t
);
749 ace_size
= sizeof (ace_t
);
753 entry_type
= (iflags
& ACE_TYPE_FLAGS
);
754 if ((entry_type
!= ACE_OWNER
&&
755 entry_type
!= OWNING_GROUP
&&
756 entry_type
!= ACE_EVERYONE
)) {
757 acep
->a_who
= zfs_fuid_map_id(zfsvfs
, who
,
758 cr
, (entry_type
& ACE_IDENTIFIER_GROUP
) ?
759 ZFS_ACE_GROUP
: ZFS_ACE_USER
);
761 acep
->a_who
= (uid_t
)(int64_t)who
;
763 acep
->a_access_mask
= access_mask
;
764 acep
->a_flags
= iflags
;
766 acep
= (ace_t
*)((caddr_t
)acep
+ ace_size
);
771 zfs_copy_ace_2_oldace(umode_t obj_mode
, zfs_acl_t
*aclp
, ace_t
*acep
,
772 zfs_oldace_t
*z_acl
, int aclcnt
, size_t *size
)
775 zfs_oldace_t
*aceptr
= z_acl
;
777 for (i
= 0; i
!= aclcnt
; i
++, aceptr
++) {
778 aceptr
->z_access_mask
= acep
[i
].a_access_mask
;
779 aceptr
->z_type
= acep
[i
].a_type
;
780 aceptr
->z_flags
= acep
[i
].a_flags
;
781 aceptr
->z_fuid
= acep
[i
].a_who
;
783 * Make sure ACE is valid
785 if (zfs_ace_valid(obj_mode
, aclp
, aceptr
->z_type
,
786 aceptr
->z_flags
) != B_TRUE
)
787 return (SET_ERROR(EINVAL
));
789 *size
= (caddr_t
)aceptr
- (caddr_t
)z_acl
;
794 * convert old ACL format to new
797 zfs_acl_xform(znode_t
*zp
, zfs_acl_t
*aclp
, cred_t
*cr
)
799 zfs_oldace_t
*oldaclp
;
801 uint16_t type
, iflags
;
802 uint32_t access_mask
;
805 zfs_acl_node_t
*newaclnode
;
807 ASSERT(aclp
->z_version
== ZFS_ACL_VERSION_INITIAL
);
809 * First create the ACE in a contiguous piece of memory
810 * for zfs_copy_ace_2_fuid().
812 * We only convert an ACL once, so this won't happen
815 oldaclp
= kmem_alloc(sizeof (zfs_oldace_t
) * aclp
->z_acl_count
,
818 while ((cookie
= zfs_acl_next_ace(aclp
, cookie
, &who
,
819 &access_mask
, &iflags
, &type
))) {
820 oldaclp
[i
].z_flags
= iflags
;
821 oldaclp
[i
].z_type
= type
;
822 oldaclp
[i
].z_fuid
= who
;
823 oldaclp
[i
++].z_access_mask
= access_mask
;
826 newaclnode
= zfs_acl_node_alloc(aclp
->z_acl_count
*
827 sizeof (zfs_object_ace_t
));
828 aclp
->z_ops
= &zfs_acl_fuid_ops
;
829 VERIFY(zfs_copy_ace_2_fuid(ZTOZSB(zp
), ZTOI(zp
)->i_mode
,
830 aclp
, oldaclp
, newaclnode
->z_acldata
, aclp
->z_acl_count
,
831 &newaclnode
->z_size
, NULL
, cr
) == 0);
832 newaclnode
->z_ace_count
= aclp
->z_acl_count
;
833 aclp
->z_version
= ZFS_ACL_VERSION
;
834 kmem_free(oldaclp
, aclp
->z_acl_count
* sizeof (zfs_oldace_t
));
837 * Release all previous ACL nodes
840 zfs_acl_release_nodes(aclp
);
842 list_insert_head(&aclp
->z_acl
, newaclnode
);
844 aclp
->z_acl_bytes
= newaclnode
->z_size
;
845 aclp
->z_acl_count
= newaclnode
->z_ace_count
;
850 * Convert unix access mask to v4 access mask
853 zfs_unix_to_v4(uint32_t access_mask
)
855 uint32_t new_mask
= 0;
857 if (access_mask
& S_IXOTH
)
858 new_mask
|= ACE_EXECUTE
;
859 if (access_mask
& S_IWOTH
)
860 new_mask
|= ACE_WRITE_DATA
;
861 if (access_mask
& S_IROTH
)
862 new_mask
|= ACE_READ_DATA
;
868 zfs_v4_to_unix(uint32_t access_mask
, int *unmapped
)
872 *unmapped
= access_mask
&
873 (ACE_WRITE_OWNER
| ACE_WRITE_ACL
| ACE_DELETE
);
875 if (access_mask
& WRITE_MASK
)
877 if (access_mask
& ACE_READ_DATA
)
879 if (access_mask
& ACE_EXECUTE
)
887 zfs_set_ace(zfs_acl_t
*aclp
, void *acep
, uint32_t access_mask
,
888 uint16_t access_type
, uint64_t fuid
, uint16_t entry_type
)
890 uint16_t type
= entry_type
& ACE_TYPE_FLAGS
;
892 aclp
->z_ops
->ace_mask_set(acep
, access_mask
);
893 aclp
->z_ops
->ace_type_set(acep
, access_type
);
894 aclp
->z_ops
->ace_flags_set(acep
, entry_type
);
895 if ((type
!= ACE_OWNER
&& type
!= OWNING_GROUP
&&
896 type
!= ACE_EVERYONE
))
897 aclp
->z_ops
->ace_who_set(acep
, fuid
);
901 * Determine mode of file based on ACL.
904 zfs_mode_compute(uint64_t fmode
, zfs_acl_t
*aclp
,
905 uint64_t *pflags
, uint64_t fuid
, uint64_t fgid
)
910 zfs_ace_hdr_t
*acep
= NULL
;
912 uint16_t iflags
, type
;
913 uint32_t access_mask
;
914 boolean_t an_exec_denied
= B_FALSE
;
916 mode
= (fmode
& (S_IFMT
| S_ISUID
| S_ISGID
| S_ISVTX
));
918 while ((acep
= zfs_acl_next_ace(aclp
, acep
, &who
,
919 &access_mask
, &iflags
, &type
))) {
921 if (!zfs_acl_valid_ace_type(type
, iflags
))
924 entry_type
= (iflags
& ACE_TYPE_FLAGS
);
927 * Skip over any inherit_only ACEs
929 if (iflags
& ACE_INHERIT_ONLY_ACE
)
932 if (entry_type
== ACE_OWNER
|| (entry_type
== 0 &&
934 if ((access_mask
& ACE_READ_DATA
) &&
935 (!(seen
& S_IRUSR
))) {
941 if ((access_mask
& ACE_WRITE_DATA
) &&
942 (!(seen
& S_IWUSR
))) {
948 if ((access_mask
& ACE_EXECUTE
) &&
949 (!(seen
& S_IXUSR
))) {
955 } else if (entry_type
== OWNING_GROUP
||
956 (entry_type
== ACE_IDENTIFIER_GROUP
&& who
== fgid
)) {
957 if ((access_mask
& ACE_READ_DATA
) &&
958 (!(seen
& S_IRGRP
))) {
964 if ((access_mask
& ACE_WRITE_DATA
) &&
965 (!(seen
& S_IWGRP
))) {
971 if ((access_mask
& ACE_EXECUTE
) &&
972 (!(seen
& S_IXGRP
))) {
978 } else if (entry_type
== ACE_EVERYONE
) {
979 if ((access_mask
& ACE_READ_DATA
)) {
980 if (!(seen
& S_IRUSR
)) {
986 if (!(seen
& S_IRGRP
)) {
992 if (!(seen
& S_IROTH
)) {
999 if ((access_mask
& ACE_WRITE_DATA
)) {
1000 if (!(seen
& S_IWUSR
)) {
1002 if (type
== ALLOW
) {
1006 if (!(seen
& S_IWGRP
)) {
1008 if (type
== ALLOW
) {
1012 if (!(seen
& S_IWOTH
)) {
1014 if (type
== ALLOW
) {
1019 if ((access_mask
& ACE_EXECUTE
)) {
1020 if (!(seen
& S_IXUSR
)) {
1022 if (type
== ALLOW
) {
1026 if (!(seen
& S_IXGRP
)) {
1028 if (type
== ALLOW
) {
1032 if (!(seen
& S_IXOTH
)) {
1034 if (type
== ALLOW
) {
1041 * Only care if this IDENTIFIER_GROUP or
1042 * USER ACE denies execute access to someone,
1043 * mode is not affected
1045 if ((access_mask
& ACE_EXECUTE
) && type
== DENY
)
1046 an_exec_denied
= B_TRUE
;
1051 * Failure to allow is effectively a deny, so execute permission
1052 * is denied if it was never mentioned or if we explicitly
1053 * weren't allowed it.
1055 if (!an_exec_denied
&&
1056 ((seen
& ALL_MODE_EXECS
) != ALL_MODE_EXECS
||
1057 (mode
& ALL_MODE_EXECS
) != ALL_MODE_EXECS
))
1058 an_exec_denied
= B_TRUE
;
1061 *pflags
&= ~ZFS_NO_EXECS_DENIED
;
1063 *pflags
|= ZFS_NO_EXECS_DENIED
;
1069 * Read an external acl object. If the intent is to modify, always
1070 * create a new acl and leave any cached acl in place.
1073 zfs_acl_node_read(struct znode
*zp
, boolean_t have_lock
, zfs_acl_t
**aclpp
,
1074 boolean_t will_modify
)
1079 zfs_acl_node_t
*aclnode
;
1080 zfs_acl_phys_t znode_acl
;
1083 boolean_t drop_lock
= B_FALSE
;
1085 ASSERT(MUTEX_HELD(&zp
->z_acl_lock
));
1087 if (zp
->z_acl_cached
&& !will_modify
) {
1088 *aclpp
= zp
->z_acl_cached
;
1093 * close race where znode could be upgrade while trying to
1094 * read the znode attributes.
1096 * But this could only happen if the file isn't already an SA
1099 if (!zp
->z_is_sa
&& !have_lock
) {
1100 mutex_enter(&zp
->z_lock
);
1103 version
= zfs_znode_acl_version(zp
);
1105 if ((error
= zfs_acl_znode_info(zp
, &aclsize
,
1106 &acl_count
, &znode_acl
)) != 0) {
1110 aclp
= zfs_acl_alloc(version
);
1112 aclp
->z_acl_count
= acl_count
;
1113 aclp
->z_acl_bytes
= aclsize
;
1115 aclnode
= zfs_acl_node_alloc(aclsize
);
1116 aclnode
->z_ace_count
= aclp
->z_acl_count
;
1117 aclnode
->z_size
= aclsize
;
1120 if (znode_acl
.z_acl_extern_obj
) {
1121 error
= dmu_read(ZTOZSB(zp
)->z_os
,
1122 znode_acl
.z_acl_extern_obj
, 0, aclnode
->z_size
,
1123 aclnode
->z_acldata
, DMU_READ_PREFETCH
);
1125 memcpy(aclnode
->z_acldata
, znode_acl
.z_ace_data
,
1129 error
= sa_lookup(zp
->z_sa_hdl
, SA_ZPL_DACL_ACES(ZTOZSB(zp
)),
1130 aclnode
->z_acldata
, aclnode
->z_size
);
1135 zfs_acl_node_free(aclnode
);
1136 /* convert checksum errors into IO errors */
1137 if (error
== ECKSUM
)
1138 error
= SET_ERROR(EIO
);
1142 list_insert_head(&aclp
->z_acl
, aclnode
);
1146 zp
->z_acl_cached
= aclp
;
1149 mutex_exit(&zp
->z_lock
);
1154 zfs_acl_data_locator(void **dataptr
, uint32_t *length
, uint32_t buflen
,
1155 boolean_t start
, void *userdata
)
1158 zfs_acl_locator_cb_t
*cb
= (zfs_acl_locator_cb_t
*)userdata
;
1161 cb
->cb_acl_node
= list_head(&cb
->cb_aclp
->z_acl
);
1163 cb
->cb_acl_node
= list_next(&cb
->cb_aclp
->z_acl
,
1166 *dataptr
= cb
->cb_acl_node
->z_acldata
;
1167 *length
= cb
->cb_acl_node
->z_size
;
1171 zfs_acl_chown_setattr(znode_t
*zp
)
1176 if (ZTOZSB(zp
)->z_acl_type
== ZFS_ACLTYPE_POSIX
)
1179 ASSERT(MUTEX_HELD(&zp
->z_lock
));
1180 ASSERT(MUTEX_HELD(&zp
->z_acl_lock
));
1182 error
= zfs_acl_node_read(zp
, B_TRUE
, &aclp
, B_FALSE
);
1183 if (error
== 0 && aclp
->z_acl_count
> 0)
1184 zp
->z_mode
= ZTOI(zp
)->i_mode
=
1185 zfs_mode_compute(zp
->z_mode
, aclp
,
1186 &zp
->z_pflags
, KUID_TO_SUID(ZTOI(zp
)->i_uid
),
1187 KGID_TO_SGID(ZTOI(zp
)->i_gid
));
1190 * Some ZFS implementations (ZEVO) create neither a ZNODE_ACL
1191 * nor a DACL_ACES SA in which case ENOENT is returned from
1192 * zfs_acl_node_read() when the SA can't be located.
1193 * Allow chown/chgrp to succeed in these cases rather than
1194 * returning an error that makes no sense in the context of
1197 if (error
== ENOENT
)
1203 typedef struct trivial_acl
{
1204 uint32_t allow0
; /* allow mask for bits only in owner */
1205 uint32_t deny1
; /* deny mask for bits not in owner */
1206 uint32_t deny2
; /* deny mask for bits not in group */
1207 uint32_t owner
; /* allow mask matching mode */
1208 uint32_t group
; /* allow mask matching mode */
1209 uint32_t everyone
; /* allow mask matching mode */
1213 acl_trivial_access_masks(mode_t mode
, boolean_t isdir
, trivial_acl_t
*masks
)
1215 uint32_t read_mask
= ACE_READ_DATA
;
1216 uint32_t write_mask
= ACE_WRITE_DATA
|ACE_APPEND_DATA
;
1217 uint32_t execute_mask
= ACE_EXECUTE
;
1220 write_mask
|= ACE_DELETE_CHILD
;
1224 if (!(mode
& S_IRUSR
) && (mode
& (S_IRGRP
|S_IROTH
)))
1225 masks
->deny1
|= read_mask
;
1226 if (!(mode
& S_IWUSR
) && (mode
& (S_IWGRP
|S_IWOTH
)))
1227 masks
->deny1
|= write_mask
;
1228 if (!(mode
& S_IXUSR
) && (mode
& (S_IXGRP
|S_IXOTH
)))
1229 masks
->deny1
|= execute_mask
;
1232 if (!(mode
& S_IRGRP
) && (mode
& S_IROTH
))
1233 masks
->deny2
|= read_mask
;
1234 if (!(mode
& S_IWGRP
) && (mode
& S_IWOTH
))
1235 masks
->deny2
|= write_mask
;
1236 if (!(mode
& S_IXGRP
) && (mode
& S_IXOTH
))
1237 masks
->deny2
|= execute_mask
;
1240 if ((mode
& S_IRUSR
) && (!(mode
& S_IRGRP
) && (mode
& S_IROTH
)))
1241 masks
->allow0
|= read_mask
;
1242 if ((mode
& S_IWUSR
) && (!(mode
& S_IWGRP
) && (mode
& S_IWOTH
)))
1243 masks
->allow0
|= write_mask
;
1244 if ((mode
& S_IXUSR
) && (!(mode
& S_IXGRP
) && (mode
& S_IXOTH
)))
1245 masks
->allow0
|= execute_mask
;
1247 masks
->owner
= ACE_WRITE_ATTRIBUTES
|ACE_WRITE_OWNER
|ACE_WRITE_ACL
|
1248 ACE_WRITE_NAMED_ATTRS
|ACE_READ_ACL
|ACE_READ_ATTRIBUTES
|
1249 ACE_READ_NAMED_ATTRS
|ACE_SYNCHRONIZE
;
1251 masks
->owner
|= read_mask
;
1253 masks
->owner
|= write_mask
;
1255 masks
->owner
|= execute_mask
;
1257 masks
->group
= ACE_READ_ACL
|ACE_READ_ATTRIBUTES
|ACE_READ_NAMED_ATTRS
|
1260 masks
->group
|= read_mask
;
1262 masks
->group
|= write_mask
;
1264 masks
->group
|= execute_mask
;
1266 masks
->everyone
= ACE_READ_ACL
|ACE_READ_ATTRIBUTES
|ACE_READ_NAMED_ATTRS
|
1269 masks
->everyone
|= read_mask
;
1271 masks
->everyone
|= write_mask
;
1273 masks
->everyone
|= execute_mask
;
1278 * determine whether an ace_t acl is trivial
1280 * Trivialness implies that the acl is composed of only
1281 * owner, group, everyone entries. ACL can't
1282 * have read_acl denied, and write_owner/write_acl/write_attributes
1283 * can only be owner@ entry.
1286 ace_trivial_common(void *acep
, int aclcnt
,
1287 uint64_t (*walk
)(void *, uint64_t, int aclcnt
,
1288 uint16_t *, uint16_t *, uint32_t *))
1293 uint64_t cookie
= 0;
1295 while ((cookie
= walk(acep
, cookie
, aclcnt
, &flags
, &type
, &mask
))) {
1296 switch (flags
& ACE_TYPE_FLAGS
) {
1298 case ACE_GROUP
|ACE_IDENTIFIER_GROUP
:
1305 if (flags
& (ACE_FILE_INHERIT_ACE
|
1306 ACE_DIRECTORY_INHERIT_ACE
|ACE_NO_PROPAGATE_INHERIT_ACE
|
1307 ACE_INHERIT_ONLY_ACE
))
1311 * Special check for some special bits
1313 * Don't allow anybody to deny reading basic
1314 * attributes or a files ACL.
1316 if ((mask
& (ACE_READ_ACL
|ACE_READ_ATTRIBUTES
)) &&
1317 (type
== ACE_ACCESS_DENIED_ACE_TYPE
))
1321 * Delete permission is never set by default
1323 if (mask
& ACE_DELETE
)
1327 * Child delete permission should be accompanied by write
1329 if ((mask
& ACE_DELETE_CHILD
) && !(mask
& ACE_WRITE_DATA
))
1333 * only allow owner@ to have
1334 * write_acl/write_owner/write_attributes/write_xattr/
1336 if (type
== ACE_ACCESS_ALLOWED_ACE_TYPE
&&
1337 (!(flags
& ACE_OWNER
) && (mask
&
1338 (ACE_WRITE_OWNER
|ACE_WRITE_ACL
| ACE_WRITE_ATTRIBUTES
|
1339 ACE_WRITE_NAMED_ATTRS
))))
1348 * common code for setting ACLs.
1350 * This function is called from zfs_mode_update, zfs_perm_init, and zfs_setacl.
1351 * zfs_setacl passes a non-NULL inherit pointer (ihp) to indicate that it's
1352 * already checked the acl and knows whether to inherit.
1355 zfs_aclset_common(znode_t
*zp
, zfs_acl_t
*aclp
, cred_t
*cr
, dmu_tx_t
*tx
)
1358 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
1359 dmu_object_type_t otype
;
1360 zfs_acl_locator_cb_t locate
= { 0 };
1362 sa_bulk_attr_t bulk
[5];
1365 zfs_acl_phys_t acl_phys
;
1369 mode
= zfs_mode_compute(mode
, aclp
, &zp
->z_pflags
,
1370 KUID_TO_SUID(ZTOI(zp
)->i_uid
), KGID_TO_SGID(ZTOI(zp
)->i_gid
));
1372 zp
->z_mode
= ZTOI(zp
)->i_mode
= mode
;
1373 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_MODE(zfsvfs
), NULL
,
1374 &mode
, sizeof (mode
));
1375 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_FLAGS(zfsvfs
), NULL
,
1376 &zp
->z_pflags
, sizeof (zp
->z_pflags
));
1377 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_CTIME(zfsvfs
), NULL
,
1378 &ctime
, sizeof (ctime
));
1380 if (zp
->z_acl_cached
) {
1381 zfs_acl_free(zp
->z_acl_cached
);
1382 zp
->z_acl_cached
= NULL
;
1388 if (!zfsvfs
->z_use_fuids
) {
1389 otype
= DMU_OT_OLDACL
;
1391 if ((aclp
->z_version
== ZFS_ACL_VERSION_INITIAL
) &&
1392 (zfsvfs
->z_version
>= ZPL_VERSION_FUID
))
1393 zfs_acl_xform(zp
, aclp
, cr
);
1394 ASSERT(aclp
->z_version
>= ZFS_ACL_VERSION_FUID
);
1399 * Arrgh, we have to handle old on disk format
1400 * as well as newer (preferred) SA format.
1403 if (zp
->z_is_sa
) { /* the easy case, just update the ACL attribute */
1404 locate
.cb_aclp
= aclp
;
1405 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_DACL_ACES(zfsvfs
),
1406 zfs_acl_data_locator
, &locate
, aclp
->z_acl_bytes
);
1407 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_DACL_COUNT(zfsvfs
),
1408 NULL
, &aclp
->z_acl_count
, sizeof (uint64_t));
1409 } else { /* Painful legacy way */
1410 zfs_acl_node_t
*aclnode
;
1414 if ((error
= sa_lookup(zp
->z_sa_hdl
, SA_ZPL_ZNODE_ACL(zfsvfs
),
1415 &acl_phys
, sizeof (acl_phys
))) != 0)
1418 aoid
= acl_phys
.z_acl_extern_obj
;
1420 if (aclp
->z_acl_bytes
> ZFS_ACE_SPACE
) {
1422 * If ACL was previously external and we are now
1423 * converting to new ACL format then release old
1424 * ACL object and create a new one.
1427 aclp
->z_version
!= acl_phys
.z_acl_version
) {
1428 error
= dmu_object_free(zfsvfs
->z_os
, aoid
, tx
);
1434 aoid
= dmu_object_alloc(zfsvfs
->z_os
,
1435 otype
, aclp
->z_acl_bytes
,
1436 otype
== DMU_OT_ACL
?
1437 DMU_OT_SYSACL
: DMU_OT_NONE
,
1438 otype
== DMU_OT_ACL
?
1439 DN_OLD_MAX_BONUSLEN
: 0, tx
);
1441 (void) dmu_object_set_blocksize(zfsvfs
->z_os
,
1442 aoid
, aclp
->z_acl_bytes
, 0, tx
);
1444 acl_phys
.z_acl_extern_obj
= aoid
;
1445 for (aclnode
= list_head(&aclp
->z_acl
); aclnode
;
1446 aclnode
= list_next(&aclp
->z_acl
, aclnode
)) {
1447 if (aclnode
->z_ace_count
== 0)
1449 dmu_write(zfsvfs
->z_os
, aoid
, off
,
1450 aclnode
->z_size
, aclnode
->z_acldata
, tx
);
1451 off
+= aclnode
->z_size
;
1454 void *start
= acl_phys
.z_ace_data
;
1456 * Migrating back embedded?
1458 if (acl_phys
.z_acl_extern_obj
) {
1459 error
= dmu_object_free(zfsvfs
->z_os
,
1460 acl_phys
.z_acl_extern_obj
, tx
);
1463 acl_phys
.z_acl_extern_obj
= 0;
1466 for (aclnode
= list_head(&aclp
->z_acl
); aclnode
;
1467 aclnode
= list_next(&aclp
->z_acl
, aclnode
)) {
1468 if (aclnode
->z_ace_count
== 0)
1470 memcpy(start
, aclnode
->z_acldata
,
1472 start
= (caddr_t
)start
+ aclnode
->z_size
;
1476 * If Old version then swap count/bytes to match old
1477 * layout of znode_acl_phys_t.
1479 if (aclp
->z_version
== ZFS_ACL_VERSION_INITIAL
) {
1480 acl_phys
.z_acl_size
= aclp
->z_acl_count
;
1481 acl_phys
.z_acl_count
= aclp
->z_acl_bytes
;
1483 acl_phys
.z_acl_size
= aclp
->z_acl_bytes
;
1484 acl_phys
.z_acl_count
= aclp
->z_acl_count
;
1486 acl_phys
.z_acl_version
= aclp
->z_version
;
1488 SA_ADD_BULK_ATTR(bulk
, count
, SA_ZPL_ZNODE_ACL(zfsvfs
), NULL
,
1489 &acl_phys
, sizeof (acl_phys
));
1493 * Replace ACL wide bits, but first clear them.
1495 zp
->z_pflags
&= ~ZFS_ACL_WIDE_FLAGS
;
1497 zp
->z_pflags
|= aclp
->z_hints
;
1499 if (ace_trivial_common(aclp
, 0, zfs_ace_walk
) == 0)
1500 zp
->z_pflags
|= ZFS_ACL_TRIVIAL
;
1502 zfs_tstamp_update_setup(zp
, STATE_CHANGED
, NULL
, ctime
);
1503 return (sa_bulk_update(zp
->z_sa_hdl
, bulk
, count
, tx
));
1507 zfs_acl_chmod(boolean_t isdir
, uint64_t mode
, boolean_t split
, boolean_t trim
,
1512 int new_count
, new_bytes
;
1515 uint16_t iflags
, type
;
1516 uint32_t access_mask
;
1517 zfs_acl_node_t
*newnode
;
1518 size_t abstract_size
= aclp
->z_ops
->ace_abstract_size();
1520 trivial_acl_t masks
;
1522 new_count
= new_bytes
= 0;
1524 acl_trivial_access_masks((mode_t
)mode
, isdir
, &masks
);
1526 newnode
= zfs_acl_node_alloc((abstract_size
* 6) + aclp
->z_acl_bytes
);
1528 zacep
= newnode
->z_acldata
;
1530 zfs_set_ace(aclp
, zacep
, masks
.allow0
, ALLOW
, -1, ACE_OWNER
);
1531 zacep
= (void *)((uintptr_t)zacep
+ abstract_size
);
1533 new_bytes
+= abstract_size
;
1536 zfs_set_ace(aclp
, zacep
, masks
.deny1
, DENY
, -1, ACE_OWNER
);
1537 zacep
= (void *)((uintptr_t)zacep
+ abstract_size
);
1539 new_bytes
+= abstract_size
;
1542 zfs_set_ace(aclp
, zacep
, masks
.deny2
, DENY
, -1, OWNING_GROUP
);
1543 zacep
= (void *)((uintptr_t)zacep
+ abstract_size
);
1545 new_bytes
+= abstract_size
;
1548 while ((acep
= zfs_acl_next_ace(aclp
, acep
, &who
, &access_mask
,
1550 entry_type
= (iflags
& ACE_TYPE_FLAGS
);
1552 * ACEs used to represent the file mode may be divided
1553 * into an equivalent pair of inherit-only and regular
1554 * ACEs, if they are inheritable.
1555 * Skip regular ACEs, which are replaced by the new mode.
1557 if (split
&& (entry_type
== ACE_OWNER
||
1558 entry_type
== OWNING_GROUP
||
1559 entry_type
== ACE_EVERYONE
)) {
1560 if (!isdir
|| !(iflags
&
1561 (ACE_FILE_INHERIT_ACE
|ACE_DIRECTORY_INHERIT_ACE
)))
1564 * We preserve owner@, group@, or @everyone
1565 * permissions, if they are inheritable, by
1566 * copying them to inherit_only ACEs. This
1567 * prevents inheritable permissions from being
1568 * altered along with the file mode.
1570 iflags
|= ACE_INHERIT_ONLY_ACE
;
1574 * If this ACL has any inheritable ACEs, mark that in
1575 * the hints (which are later masked into the pflags)
1576 * so create knows to do inheritance.
1578 if (isdir
&& (iflags
&
1579 (ACE_FILE_INHERIT_ACE
|ACE_DIRECTORY_INHERIT_ACE
)))
1580 aclp
->z_hints
|= ZFS_INHERIT_ACE
;
1582 if ((type
!= ALLOW
&& type
!= DENY
) ||
1583 (iflags
& ACE_INHERIT_ONLY_ACE
)) {
1585 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE
:
1586 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE
:
1587 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE
:
1588 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE
:
1589 aclp
->z_hints
|= ZFS_ACL_OBJ_ACE
;
1594 * Limit permissions to be no greater than
1595 * group permissions.
1596 * The "aclinherit" and "aclmode" properties
1597 * affect policy for create and chmod(2),
1600 if ((type
== ALLOW
) && trim
)
1601 access_mask
&= masks
.group
;
1603 zfs_set_ace(aclp
, zacep
, access_mask
, type
, who
, iflags
);
1604 ace_size
= aclp
->z_ops
->ace_size(acep
);
1605 zacep
= (void *)((uintptr_t)zacep
+ ace_size
);
1607 new_bytes
+= ace_size
;
1609 zfs_set_ace(aclp
, zacep
, masks
.owner
, ALLOW
, -1, ACE_OWNER
);
1610 zacep
= (void *)((uintptr_t)zacep
+ abstract_size
);
1611 zfs_set_ace(aclp
, zacep
, masks
.group
, ALLOW
, -1, OWNING_GROUP
);
1612 zacep
= (void *)((uintptr_t)zacep
+ abstract_size
);
1613 zfs_set_ace(aclp
, zacep
, masks
.everyone
, ALLOW
, -1, ACE_EVERYONE
);
1616 new_bytes
+= abstract_size
* 3;
1617 zfs_acl_release_nodes(aclp
);
1618 aclp
->z_acl_count
= new_count
;
1619 aclp
->z_acl_bytes
= new_bytes
;
1620 newnode
->z_ace_count
= new_count
;
1621 newnode
->z_size
= new_bytes
;
1622 list_insert_tail(&aclp
->z_acl
, newnode
);
1626 zfs_acl_chmod_setattr(znode_t
*zp
, zfs_acl_t
**aclp
, uint64_t mode
)
1630 mutex_enter(&zp
->z_acl_lock
);
1631 mutex_enter(&zp
->z_lock
);
1632 if (ZTOZSB(zp
)->z_acl_mode
== ZFS_ACL_DISCARD
)
1633 *aclp
= zfs_acl_alloc(zfs_acl_version_zp(zp
));
1635 error
= zfs_acl_node_read(zp
, B_TRUE
, aclp
, B_TRUE
);
1638 (*aclp
)->z_hints
= zp
->z_pflags
& V4_ACL_WIDE_FLAGS
;
1639 zfs_acl_chmod(S_ISDIR(ZTOI(zp
)->i_mode
), mode
, B_TRUE
,
1640 (ZTOZSB(zp
)->z_acl_mode
== ZFS_ACL_GROUPMASK
), *aclp
);
1642 mutex_exit(&zp
->z_lock
);
1643 mutex_exit(&zp
->z_acl_lock
);
1649 * Should ACE be inherited?
1652 zfs_ace_can_use(umode_t obj_mode
, uint16_t acep_flags
)
1654 int iflags
= (acep_flags
& 0xf);
1656 if (S_ISDIR(obj_mode
) && (iflags
& ACE_DIRECTORY_INHERIT_ACE
))
1658 else if (iflags
& ACE_FILE_INHERIT_ACE
)
1659 return (!(S_ISDIR(obj_mode
) &&
1660 (iflags
& ACE_NO_PROPAGATE_INHERIT_ACE
)));
1665 * inherit inheritable ACEs from parent
1668 zfs_acl_inherit(zfsvfs_t
*zfsvfs
, umode_t va_mode
, zfs_acl_t
*paclp
,
1669 uint64_t mode
, boolean_t
*need_chmod
)
1673 zfs_acl_node_t
*aclnode
;
1674 zfs_acl_t
*aclp
= NULL
;
1676 uint32_t access_mask
;
1677 uint16_t iflags
, newflags
, type
;
1679 void *data1
, *data2
;
1680 size_t data1sz
, data2sz
;
1682 boolean_t isdir
= S_ISDIR(va_mode
);
1683 boolean_t isreg
= S_ISREG(va_mode
);
1685 *need_chmod
= B_TRUE
;
1687 aclp
= zfs_acl_alloc(paclp
->z_version
);
1688 aclinherit
= zfsvfs
->z_acl_inherit
;
1689 if (aclinherit
== ZFS_ACL_DISCARD
|| S_ISLNK(va_mode
))
1692 while ((pacep
= zfs_acl_next_ace(paclp
, pacep
, &who
,
1693 &access_mask
, &iflags
, &type
))) {
1696 * don't inherit bogus ACEs
1698 if (!zfs_acl_valid_ace_type(type
, iflags
))
1702 * Check if ACE is inheritable by this vnode
1704 if ((aclinherit
== ZFS_ACL_NOALLOW
&& type
== ALLOW
) ||
1705 !zfs_ace_can_use(va_mode
, iflags
))
1709 * If owner@, group@, or everyone@ inheritable
1710 * then zfs_acl_chmod() isn't needed.
1712 if ((aclinherit
== ZFS_ACL_PASSTHROUGH
||
1713 aclinherit
== ZFS_ACL_PASSTHROUGH_X
) &&
1714 ((iflags
& (ACE_OWNER
|ACE_EVERYONE
)) ||
1715 ((iflags
& OWNING_GROUP
) == OWNING_GROUP
)) &&
1716 (isreg
|| (isdir
&& (iflags
& ACE_DIRECTORY_INHERIT_ACE
))))
1717 *need_chmod
= B_FALSE
;
1720 * Strip inherited execute permission from file if
1723 if (aclinherit
== ZFS_ACL_PASSTHROUGH_X
&& type
== ALLOW
&&
1724 !isdir
&& ((mode
& (S_IXUSR
|S_IXGRP
|S_IXOTH
)) == 0)) {
1725 access_mask
&= ~ACE_EXECUTE
;
1729 * Strip write_acl and write_owner from permissions
1730 * when inheriting an ACE
1732 if (aclinherit
== ZFS_ACL_RESTRICTED
&& type
== ALLOW
) {
1733 access_mask
&= ~RESTRICTED_CLEAR
;
1736 ace_size
= aclp
->z_ops
->ace_size(pacep
);
1737 aclnode
= zfs_acl_node_alloc(ace_size
);
1738 list_insert_tail(&aclp
->z_acl
, aclnode
);
1739 acep
= aclnode
->z_acldata
;
1741 zfs_set_ace(aclp
, acep
, access_mask
, type
,
1742 who
, iflags
|ACE_INHERITED_ACE
);
1745 * Copy special opaque data if any
1747 if ((data1sz
= paclp
->z_ops
->ace_data(pacep
, &data1
)) != 0) {
1748 VERIFY((data2sz
= aclp
->z_ops
->ace_data(acep
,
1749 &data2
)) == data1sz
);
1750 memcpy(data2
, data1
, data2sz
);
1753 aclp
->z_acl_count
++;
1754 aclnode
->z_ace_count
++;
1755 aclp
->z_acl_bytes
+= aclnode
->z_size
;
1756 newflags
= aclp
->z_ops
->ace_flags_get(acep
);
1759 * If ACE is not to be inherited further, or if the vnode is
1760 * not a directory, remove all inheritance flags
1762 if (!isdir
|| (iflags
& ACE_NO_PROPAGATE_INHERIT_ACE
)) {
1763 newflags
&= ~ALL_INHERIT
;
1764 aclp
->z_ops
->ace_flags_set(acep
,
1765 newflags
|ACE_INHERITED_ACE
);
1770 * This directory has an inheritable ACE
1772 aclp
->z_hints
|= ZFS_INHERIT_ACE
;
1775 * If only FILE_INHERIT is set then turn on
1778 if ((iflags
& (ACE_FILE_INHERIT_ACE
|
1779 ACE_DIRECTORY_INHERIT_ACE
)) == ACE_FILE_INHERIT_ACE
) {
1780 newflags
|= ACE_INHERIT_ONLY_ACE
;
1781 aclp
->z_ops
->ace_flags_set(acep
,
1782 newflags
|ACE_INHERITED_ACE
);
1784 newflags
&= ~ACE_INHERIT_ONLY_ACE
;
1785 aclp
->z_ops
->ace_flags_set(acep
,
1786 newflags
|ACE_INHERITED_ACE
);
1789 if (zfsvfs
->z_acl_mode
== ZFS_ACL_RESTRICTED
&&
1790 aclp
->z_acl_count
!= 0) {
1791 *need_chmod
= B_FALSE
;
1798 * Create file system object initial permissions
1799 * including inheritable ACEs.
1800 * Also, create FUIDs for owner and group.
1803 zfs_acl_ids_create(znode_t
*dzp
, int flag
, vattr_t
*vap
, cred_t
*cr
,
1804 vsecattr_t
*vsecp
, zfs_acl_ids_t
*acl_ids
)
1807 zfsvfs_t
*zfsvfs
= ZTOZSB(dzp
);
1809 gid_t gid
= vap
->va_gid
;
1810 boolean_t need_chmod
= B_TRUE
;
1811 boolean_t trim
= B_FALSE
;
1812 boolean_t inherited
= B_FALSE
;
1814 memset(acl_ids
, 0, sizeof (zfs_acl_ids_t
));
1815 acl_ids
->z_mode
= vap
->va_mode
;
1818 if ((error
= zfs_vsec_2_aclp(zfsvfs
, vap
->va_mode
, vsecp
,
1819 cr
, &acl_ids
->z_fuidp
, &acl_ids
->z_aclp
)) != 0)
1822 acl_ids
->z_fuid
= vap
->va_uid
;
1823 acl_ids
->z_fgid
= vap
->va_gid
;
1826 * Determine uid and gid.
1828 if ((flag
& IS_ROOT_NODE
) || zfsvfs
->z_replay
||
1829 ((flag
& IS_XATTR
) && (S_ISDIR(vap
->va_mode
)))) {
1830 acl_ids
->z_fuid
= zfs_fuid_create(zfsvfs
, (uint64_t)vap
->va_uid
,
1831 cr
, ZFS_OWNER
, &acl_ids
->z_fuidp
);
1832 acl_ids
->z_fgid
= zfs_fuid_create(zfsvfs
, (uint64_t)vap
->va_gid
,
1833 cr
, ZFS_GROUP
, &acl_ids
->z_fuidp
);
1836 acl_ids
->z_fuid
= zfs_fuid_create_cred(zfsvfs
, ZFS_OWNER
,
1837 cr
, &acl_ids
->z_fuidp
);
1838 acl_ids
->z_fgid
= 0;
1839 if (vap
->va_mask
& AT_GID
) {
1840 acl_ids
->z_fgid
= zfs_fuid_create(zfsvfs
,
1841 (uint64_t)vap
->va_gid
,
1842 cr
, ZFS_GROUP
, &acl_ids
->z_fuidp
);
1844 if (acl_ids
->z_fgid
!= KGID_TO_SGID(ZTOI(dzp
)->i_gid
) &&
1845 !groupmember(vap
->va_gid
, cr
) &&
1846 secpolicy_vnode_create_gid(cr
) != 0)
1847 acl_ids
->z_fgid
= 0;
1849 if (acl_ids
->z_fgid
== 0) {
1850 if (dzp
->z_mode
& S_ISGID
) {
1854 acl_ids
->z_fgid
= KGID_TO_SGID(
1856 gid
= zfs_fuid_map_id(zfsvfs
, acl_ids
->z_fgid
,
1859 if (zfsvfs
->z_use_fuids
&&
1860 IS_EPHEMERAL(acl_ids
->z_fgid
)) {
1861 domain
= zfs_fuid_idx_domain(
1862 &zfsvfs
->z_fuid_idx
,
1863 FUID_INDEX(acl_ids
->z_fgid
));
1864 rid
= FUID_RID(acl_ids
->z_fgid
);
1865 zfs_fuid_node_add(&acl_ids
->z_fuidp
,
1867 FUID_INDEX(acl_ids
->z_fgid
),
1868 acl_ids
->z_fgid
, ZFS_GROUP
);
1871 acl_ids
->z_fgid
= zfs_fuid_create_cred(zfsvfs
,
1872 ZFS_GROUP
, cr
, &acl_ids
->z_fuidp
);
1877 #endif /* HAVE_KSID */
1880 * If we're creating a directory, and the parent directory has the
1881 * set-GID bit set, set in on the new directory.
1882 * Otherwise, if the user is neither privileged nor a member of the
1883 * file's new group, clear the file's set-GID bit.
1886 if (!(flag
& IS_ROOT_NODE
) && (dzp
->z_mode
& S_ISGID
) &&
1887 (S_ISDIR(vap
->va_mode
))) {
1888 acl_ids
->z_mode
|= S_ISGID
;
1890 if ((acl_ids
->z_mode
& S_ISGID
) &&
1891 secpolicy_vnode_setids_setgids(cr
, gid
) != 0)
1892 acl_ids
->z_mode
&= ~S_ISGID
;
1895 if (acl_ids
->z_aclp
== NULL
) {
1896 mutex_enter(&dzp
->z_acl_lock
);
1897 mutex_enter(&dzp
->z_lock
);
1898 if (!(flag
& IS_ROOT_NODE
) &&
1899 (dzp
->z_pflags
& ZFS_INHERIT_ACE
) &&
1900 !(dzp
->z_pflags
& ZFS_XATTR
)) {
1901 VERIFY(0 == zfs_acl_node_read(dzp
, B_TRUE
,
1903 acl_ids
->z_aclp
= zfs_acl_inherit(zfsvfs
,
1904 vap
->va_mode
, paclp
, acl_ids
->z_mode
, &need_chmod
);
1908 zfs_acl_alloc(zfs_acl_version_zp(dzp
));
1909 acl_ids
->z_aclp
->z_hints
|= ZFS_ACL_TRIVIAL
;
1911 mutex_exit(&dzp
->z_lock
);
1912 mutex_exit(&dzp
->z_acl_lock
);
1915 if (S_ISDIR(vap
->va_mode
))
1916 acl_ids
->z_aclp
->z_hints
|=
1917 ZFS_ACL_AUTO_INHERIT
;
1919 if (zfsvfs
->z_acl_mode
== ZFS_ACL_GROUPMASK
&&
1920 zfsvfs
->z_acl_inherit
!= ZFS_ACL_PASSTHROUGH
&&
1921 zfsvfs
->z_acl_inherit
!= ZFS_ACL_PASSTHROUGH_X
)
1923 zfs_acl_chmod(vap
->va_mode
, acl_ids
->z_mode
, B_FALSE
,
1924 trim
, acl_ids
->z_aclp
);
1928 if (inherited
|| vsecp
) {
1929 acl_ids
->z_mode
= zfs_mode_compute(acl_ids
->z_mode
,
1930 acl_ids
->z_aclp
, &acl_ids
->z_aclp
->z_hints
,
1931 acl_ids
->z_fuid
, acl_ids
->z_fgid
);
1932 if (ace_trivial_common(acl_ids
->z_aclp
, 0, zfs_ace_walk
) == 0)
1933 acl_ids
->z_aclp
->z_hints
|= ZFS_ACL_TRIVIAL
;
1940 * Free ACL and fuid_infop, but not the acl_ids structure
1943 zfs_acl_ids_free(zfs_acl_ids_t
*acl_ids
)
1945 if (acl_ids
->z_aclp
)
1946 zfs_acl_free(acl_ids
->z_aclp
);
1947 if (acl_ids
->z_fuidp
)
1948 zfs_fuid_info_free(acl_ids
->z_fuidp
);
1949 acl_ids
->z_aclp
= NULL
;
1950 acl_ids
->z_fuidp
= NULL
;
1954 zfs_acl_ids_overquota(zfsvfs_t
*zv
, zfs_acl_ids_t
*acl_ids
, uint64_t projid
)
1956 return (zfs_id_overquota(zv
, DMU_USERUSED_OBJECT
, acl_ids
->z_fuid
) ||
1957 zfs_id_overquota(zv
, DMU_GROUPUSED_OBJECT
, acl_ids
->z_fgid
) ||
1958 (projid
!= ZFS_DEFAULT_PROJID
&& projid
!= ZFS_INVALID_PROJID
&&
1959 zfs_id_overquota(zv
, DMU_PROJECTUSED_OBJECT
, projid
)));
1963 * Retrieve a file's ACL
1966 zfs_getacl(znode_t
*zp
, vsecattr_t
*vsecp
, boolean_t skipaclchk
, cred_t
*cr
)
1974 mask
= vsecp
->vsa_mask
& (VSA_ACE
| VSA_ACECNT
|
1975 VSA_ACE_ACLFLAGS
| VSA_ACE_ALLTYPES
);
1978 return (SET_ERROR(ENOSYS
));
1980 if ((error
= zfs_zaccess(zp
, ACE_READ_ACL
, 0, skipaclchk
, cr
)))
1983 mutex_enter(&zp
->z_acl_lock
);
1985 error
= zfs_acl_node_read(zp
, B_FALSE
, &aclp
, B_FALSE
);
1987 mutex_exit(&zp
->z_acl_lock
);
1992 * Scan ACL to determine number of ACEs
1994 if ((zp
->z_pflags
& ZFS_ACL_OBJ_ACE
) && !(mask
& VSA_ACE_ALLTYPES
)) {
1997 uint32_t access_mask
;
1998 uint16_t type
, iflags
;
2000 while ((zacep
= zfs_acl_next_ace(aclp
, zacep
,
2001 &who
, &access_mask
, &iflags
, &type
))) {
2003 case ACE_ACCESS_ALLOWED_OBJECT_ACE_TYPE
:
2004 case ACE_ACCESS_DENIED_OBJECT_ACE_TYPE
:
2005 case ACE_SYSTEM_AUDIT_OBJECT_ACE_TYPE
:
2006 case ACE_SYSTEM_ALARM_OBJECT_ACE_TYPE
:
2013 vsecp
->vsa_aclcnt
= count
;
2015 count
= (int)aclp
->z_acl_count
;
2017 if (mask
& VSA_ACECNT
) {
2018 vsecp
->vsa_aclcnt
= count
;
2021 if (mask
& VSA_ACE
) {
2024 aclsz
= count
* sizeof (ace_t
) +
2025 sizeof (ace_object_t
) * largeace
;
2027 vsecp
->vsa_aclentp
= kmem_alloc(aclsz
, KM_SLEEP
);
2028 vsecp
->vsa_aclentsz
= aclsz
;
2030 if (aclp
->z_version
== ZFS_ACL_VERSION_FUID
)
2031 zfs_copy_fuid_2_ace(ZTOZSB(zp
), aclp
, cr
,
2032 vsecp
->vsa_aclentp
, !(mask
& VSA_ACE_ALLTYPES
));
2034 zfs_acl_node_t
*aclnode
;
2035 void *start
= vsecp
->vsa_aclentp
;
2037 for (aclnode
= list_head(&aclp
->z_acl
); aclnode
;
2038 aclnode
= list_next(&aclp
->z_acl
, aclnode
)) {
2039 memcpy(start
, aclnode
->z_acldata
,
2041 start
= (caddr_t
)start
+ aclnode
->z_size
;
2043 ASSERT((caddr_t
)start
- (caddr_t
)vsecp
->vsa_aclentp
==
2047 if (mask
& VSA_ACE_ACLFLAGS
) {
2048 vsecp
->vsa_aclflags
= 0;
2049 if (zp
->z_pflags
& ZFS_ACL_DEFAULTED
)
2050 vsecp
->vsa_aclflags
|= ACL_DEFAULTED
;
2051 if (zp
->z_pflags
& ZFS_ACL_PROTECTED
)
2052 vsecp
->vsa_aclflags
|= ACL_PROTECTED
;
2053 if (zp
->z_pflags
& ZFS_ACL_AUTO_INHERIT
)
2054 vsecp
->vsa_aclflags
|= ACL_AUTO_INHERIT
;
2057 mutex_exit(&zp
->z_acl_lock
);
2063 zfs_vsec_2_aclp(zfsvfs_t
*zfsvfs
, umode_t obj_mode
,
2064 vsecattr_t
*vsecp
, cred_t
*cr
, zfs_fuid_info_t
**fuidp
, zfs_acl_t
**zaclp
)
2067 zfs_acl_node_t
*aclnode
;
2068 int aclcnt
= vsecp
->vsa_aclcnt
;
2071 if (vsecp
->vsa_aclcnt
> MAX_ACL_ENTRIES
|| vsecp
->vsa_aclcnt
<= 0)
2072 return (SET_ERROR(EINVAL
));
2074 aclp
= zfs_acl_alloc(zfs_acl_version(zfsvfs
->z_version
));
2077 aclnode
= zfs_acl_node_alloc(aclcnt
* sizeof (zfs_object_ace_t
));
2078 if (aclp
->z_version
== ZFS_ACL_VERSION_INITIAL
) {
2079 if ((error
= zfs_copy_ace_2_oldace(obj_mode
, aclp
,
2080 (ace_t
*)vsecp
->vsa_aclentp
, aclnode
->z_acldata
,
2081 aclcnt
, &aclnode
->z_size
)) != 0) {
2083 zfs_acl_node_free(aclnode
);
2087 if ((error
= zfs_copy_ace_2_fuid(zfsvfs
, obj_mode
, aclp
,
2088 vsecp
->vsa_aclentp
, aclnode
->z_acldata
, aclcnt
,
2089 &aclnode
->z_size
, fuidp
, cr
)) != 0) {
2091 zfs_acl_node_free(aclnode
);
2095 aclp
->z_acl_bytes
= aclnode
->z_size
;
2096 aclnode
->z_ace_count
= aclcnt
;
2097 aclp
->z_acl_count
= aclcnt
;
2098 list_insert_head(&aclp
->z_acl
, aclnode
);
2101 * If flags are being set then add them to z_hints
2103 if (vsecp
->vsa_mask
& VSA_ACE_ACLFLAGS
) {
2104 if (vsecp
->vsa_aclflags
& ACL_PROTECTED
)
2105 aclp
->z_hints
|= ZFS_ACL_PROTECTED
;
2106 if (vsecp
->vsa_aclflags
& ACL_DEFAULTED
)
2107 aclp
->z_hints
|= ZFS_ACL_DEFAULTED
;
2108 if (vsecp
->vsa_aclflags
& ACL_AUTO_INHERIT
)
2109 aclp
->z_hints
|= ZFS_ACL_AUTO_INHERIT
;
2121 zfs_setacl(znode_t
*zp
, vsecattr_t
*vsecp
, boolean_t skipaclchk
, cred_t
*cr
)
2123 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
2124 zilog_t
*zilog
= zfsvfs
->z_log
;
2125 ulong_t mask
= vsecp
->vsa_mask
& (VSA_ACE
| VSA_ACECNT
);
2129 zfs_fuid_info_t
*fuidp
= NULL
;
2130 boolean_t fuid_dirtied
;
2134 return (SET_ERROR(ENOSYS
));
2136 if (zp
->z_pflags
& ZFS_IMMUTABLE
)
2137 return (SET_ERROR(EPERM
));
2139 if ((error
= zfs_zaccess(zp
, ACE_WRITE_ACL
, 0, skipaclchk
, cr
)))
2142 error
= zfs_vsec_2_aclp(zfsvfs
, ZTOI(zp
)->i_mode
, vsecp
, cr
, &fuidp
,
2148 * If ACL wide flags aren't being set then preserve any
2151 if (!(vsecp
->vsa_mask
& VSA_ACE_ACLFLAGS
)) {
2153 (zp
->z_pflags
& V4_ACL_WIDE_FLAGS
);
2156 mutex_enter(&zp
->z_acl_lock
);
2157 mutex_enter(&zp
->z_lock
);
2159 tx
= dmu_tx_create(zfsvfs
->z_os
);
2161 dmu_tx_hold_sa(tx
, zp
->z_sa_hdl
, B_TRUE
);
2163 fuid_dirtied
= zfsvfs
->z_fuid_dirty
;
2165 zfs_fuid_txhold(zfsvfs
, tx
);
2168 * If old version and ACL won't fit in bonus and we aren't
2169 * upgrading then take out necessary DMU holds
2172 if ((acl_obj
= zfs_external_acl(zp
)) != 0) {
2173 if (zfsvfs
->z_version
>= ZPL_VERSION_FUID
&&
2174 zfs_znode_acl_version(zp
) <= ZFS_ACL_VERSION_INITIAL
) {
2175 dmu_tx_hold_free(tx
, acl_obj
, 0,
2177 dmu_tx_hold_write(tx
, DMU_NEW_OBJECT
, 0,
2180 dmu_tx_hold_write(tx
, acl_obj
, 0, aclp
->z_acl_bytes
);
2182 } else if (!zp
->z_is_sa
&& aclp
->z_acl_bytes
> ZFS_ACE_SPACE
) {
2183 dmu_tx_hold_write(tx
, DMU_NEW_OBJECT
, 0, aclp
->z_acl_bytes
);
2186 zfs_sa_upgrade_txholds(tx
, zp
);
2187 error
= dmu_tx_assign(tx
, TXG_NOWAIT
);
2189 mutex_exit(&zp
->z_acl_lock
);
2190 mutex_exit(&zp
->z_lock
);
2192 if (error
== ERESTART
) {
2202 error
= zfs_aclset_common(zp
, aclp
, cr
, tx
);
2204 ASSERT(zp
->z_acl_cached
== NULL
);
2205 zp
->z_acl_cached
= aclp
;
2208 zfs_fuid_sync(zfsvfs
, tx
);
2210 zfs_log_acl(zilog
, tx
, zp
, vsecp
, fuidp
);
2213 zfs_fuid_info_free(fuidp
);
2216 mutex_exit(&zp
->z_lock
);
2217 mutex_exit(&zp
->z_acl_lock
);
2223 * Check accesses of interest (AoI) against attributes of the dataset
2224 * such as read-only. Returns zero if no AoI conflict with dataset
2225 * attributes, otherwise an appropriate errno is returned.
2228 zfs_zaccess_dataset_check(znode_t
*zp
, uint32_t v4_mode
)
2230 if ((v4_mode
& WRITE_MASK
) && (zfs_is_readonly(ZTOZSB(zp
))) &&
2231 (!Z_ISDEV(ZTOI(zp
)->i_mode
) ||
2232 (Z_ISDEV(ZTOI(zp
)->i_mode
) && (v4_mode
& WRITE_MASK_ATTRS
)))) {
2233 return (SET_ERROR(EROFS
));
2237 * Intentionally allow ZFS_READONLY through here.
2238 * See zfs_zaccess_common().
2240 if ((v4_mode
& WRITE_MASK_DATA
) &&
2241 (zp
->z_pflags
& ZFS_IMMUTABLE
)) {
2242 return (SET_ERROR(EPERM
));
2245 if ((v4_mode
& (ACE_DELETE
| ACE_DELETE_CHILD
)) &&
2246 (zp
->z_pflags
& ZFS_NOUNLINK
)) {
2247 return (SET_ERROR(EPERM
));
2250 if (((v4_mode
& (ACE_READ_DATA
|ACE_EXECUTE
)) &&
2251 (zp
->z_pflags
& ZFS_AV_QUARANTINED
))) {
2252 return (SET_ERROR(EACCES
));
2259 * The primary usage of this function is to loop through all of the
2260 * ACEs in the znode, determining what accesses of interest (AoI) to
2261 * the caller are allowed or denied. The AoI are expressed as bits in
2262 * the working_mode parameter. As each ACE is processed, bits covered
2263 * by that ACE are removed from the working_mode. This removal
2264 * facilitates two things. The first is that when the working mode is
2265 * empty (= 0), we know we've looked at all the AoI. The second is
2266 * that the ACE interpretation rules don't allow a later ACE to undo
2267 * something granted or denied by an earlier ACE. Removing the
2268 * discovered access or denial enforces this rule. At the end of
2269 * processing the ACEs, all AoI that were found to be denied are
2270 * placed into the working_mode, giving the caller a mask of denied
2271 * accesses. Returns:
2272 * 0 if all AoI granted
2273 * EACCES if the denied mask is non-zero
2274 * other error if abnormal failure (e.g., IO error)
2276 * A secondary usage of the function is to determine if any of the
2277 * AoI are granted. If an ACE grants any access in
2278 * the working_mode, we immediately short circuit out of the function.
2279 * This mode is chosen by setting anyaccess to B_TRUE. The
2280 * working_mode is not a denied access mask upon exit if the function
2281 * is used in this manner.
2284 zfs_zaccess_aces_check(znode_t
*zp
, uint32_t *working_mode
,
2285 boolean_t anyaccess
, cred_t
*cr
)
2287 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
2290 uid_t uid
= crgetuid(cr
);
2292 uint16_t type
, iflags
;
2293 uint16_t entry_type
;
2294 uint32_t access_mask
;
2295 uint32_t deny_mask
= 0;
2296 zfs_ace_hdr_t
*acep
= NULL
;
2301 zfs_fuid_map_ids(zp
, cr
, &fowner
, &gowner
);
2303 mutex_enter(&zp
->z_acl_lock
);
2305 error
= zfs_acl_node_read(zp
, B_FALSE
, &aclp
, B_FALSE
);
2307 mutex_exit(&zp
->z_acl_lock
);
2311 ASSERT(zp
->z_acl_cached
);
2313 while ((acep
= zfs_acl_next_ace(aclp
, acep
, &who
, &access_mask
,
2315 uint32_t mask_matched
;
2317 if (!zfs_acl_valid_ace_type(type
, iflags
))
2320 if (S_ISDIR(ZTOI(zp
)->i_mode
) &&
2321 (iflags
& ACE_INHERIT_ONLY_ACE
))
2324 /* Skip ACE if it does not affect any AoI */
2325 mask_matched
= (access_mask
& *working_mode
);
2329 entry_type
= (iflags
& ACE_TYPE_FLAGS
);
2333 switch (entry_type
) {
2341 case ACE_IDENTIFIER_GROUP
:
2342 checkit
= zfs_groupmember(zfsvfs
, who
, cr
);
2350 if (entry_type
== 0) {
2353 newid
= zfs_fuid_map_id(zfsvfs
, who
, cr
,
2355 if (newid
!= IDMAP_WK_CREATOR_OWNER_UID
&&
2360 mutex_exit(&zp
->z_acl_lock
);
2361 return (SET_ERROR(EIO
));
2367 DTRACE_PROBE3(zfs__ace__denies
,
2369 zfs_ace_hdr_t
*, acep
,
2370 uint32_t, mask_matched
);
2371 deny_mask
|= mask_matched
;
2373 DTRACE_PROBE3(zfs__ace__allows
,
2375 zfs_ace_hdr_t
*, acep
,
2376 uint32_t, mask_matched
);
2378 mutex_exit(&zp
->z_acl_lock
);
2382 *working_mode
&= ~mask_matched
;
2386 if (*working_mode
== 0)
2390 mutex_exit(&zp
->z_acl_lock
);
2392 /* Put the found 'denies' back on the working mode */
2394 *working_mode
|= deny_mask
;
2395 return (SET_ERROR(EACCES
));
2396 } else if (*working_mode
) {
2404 * Return true if any access whatsoever granted, we don't actually
2405 * care what access is granted.
2408 zfs_has_access(znode_t
*zp
, cred_t
*cr
)
2410 uint32_t have
= ACE_ALL_PERMS
;
2412 if (zfs_zaccess_aces_check(zp
, &have
, B_TRUE
, cr
) != 0) {
2415 owner
= zfs_fuid_map_id(ZTOZSB(zp
),
2416 KUID_TO_SUID(ZTOI(zp
)->i_uid
), cr
, ZFS_OWNER
);
2417 return (secpolicy_vnode_any_access(cr
, ZTOI(zp
), owner
) == 0);
2423 * Simplified access check for case where ACL is known to not contain
2424 * information beyond what is defined in the mode. In this case, we
2425 * can pass along to the kernel / vfs generic_permission() check, which
2426 * evaluates the mode and POSIX ACL.
2428 * NFSv4 ACLs allow granting permissions that are usually relegated only
2429 * to the file owner or superuser. Examples are ACE_WRITE_OWNER (chown),
2430 * ACE_WRITE_ACL(chmod), and ACE_DELETE. ACE_DELETE requests must fail
2431 * because with conventional posix permissions, right to delete file
2432 * is determined by write bit on the parent dir.
2434 * If unmappable perms are requested, then we must return EPERM
2435 * and include those bits in the working_mode so that the caller of
2436 * zfs_zaccess_common() can decide whether to perform additional
2437 * policy / capability checks. EACCES is used in zfs_zaccess_aces_check()
2438 * to indicate access check failed due to explicit DENY entry, and so
2439 * we want to avoid that here.
2442 zfs_zaccess_trivial(znode_t
*zp
, uint32_t *working_mode
, cred_t
*cr
)
2447 ASSERT(zp
->z_pflags
& ZFS_ACL_TRIVIAL
);
2449 mask
= zfs_v4_to_unix(*working_mode
, &unmapped
);
2450 if (mask
== 0 || unmapped
) {
2451 *working_mode
= unmapped
;
2452 return (unmapped
? SET_ERROR(EPERM
) : 0);
2455 #if defined(HAVE_IOPS_PERMISSION_USERNS)
2456 err
= generic_permission(cr
->user_ns
, ZTOI(zp
), mask
);
2458 err
= generic_permission(ZTOI(zp
), mask
);
2461 return (SET_ERROR(EPERM
));
2464 *working_mode
= unmapped
;
2470 zfs_zaccess_common(znode_t
*zp
, uint32_t v4_mode
, uint32_t *working_mode
,
2471 boolean_t
*check_privs
, boolean_t skipaclchk
, cred_t
*cr
)
2473 zfsvfs_t
*zfsvfs
= ZTOZSB(zp
);
2476 *working_mode
= v4_mode
;
2477 *check_privs
= B_TRUE
;
2480 * Short circuit empty requests
2482 if (v4_mode
== 0 || zfsvfs
->z_replay
) {
2487 if ((err
= zfs_zaccess_dataset_check(zp
, v4_mode
)) != 0) {
2488 *check_privs
= B_FALSE
;
2493 * The caller requested that the ACL check be skipped. This
2494 * would only happen if the caller checked VOP_ACCESS() with a
2495 * 32 bit ACE mask and already had the appropriate permissions.
2503 * Note: ZFS_READONLY represents the "DOS R/O" attribute.
2504 * When that flag is set, we should behave as if write access
2505 * were not granted by anything in the ACL. In particular:
2506 * We _must_ allow writes after opening the file r/w, then
2507 * setting the DOS R/O attribute, and writing some more.
2508 * (Similar to how you can write after fchmod(fd, 0444).)
2510 * Therefore ZFS_READONLY is ignored in the dataset check
2511 * above, and checked here as if part of the ACL check.
2512 * Also note: DOS R/O is ignored for directories.
2514 if ((v4_mode
& WRITE_MASK_DATA
) &&
2515 S_ISDIR(ZTOI(zp
)->i_mode
) &&
2516 (zp
->z_pflags
& ZFS_READONLY
)) {
2517 return (SET_ERROR(EPERM
));
2520 if (zp
->z_pflags
& ZFS_ACL_TRIVIAL
)
2521 return (zfs_zaccess_trivial(zp
, working_mode
, cr
));
2523 return (zfs_zaccess_aces_check(zp
, working_mode
, B_FALSE
, cr
));
2527 zfs_zaccess_append(znode_t
*zp
, uint32_t *working_mode
, boolean_t
*check_privs
,
2530 if (*working_mode
!= ACE_WRITE_DATA
)
2531 return (SET_ERROR(EACCES
));
2533 return (zfs_zaccess_common(zp
, ACE_APPEND_DATA
, working_mode
,
2534 check_privs
, B_FALSE
, cr
));
2538 zfs_fastaccesschk_execute(znode_t
*zdp
, cred_t
*cr
)
2540 boolean_t owner
= B_FALSE
;
2541 boolean_t groupmbr
= B_FALSE
;
2543 uid_t uid
= crgetuid(cr
);
2546 if (zdp
->z_pflags
& ZFS_AV_QUARANTINED
)
2547 return (SET_ERROR(EACCES
));
2549 is_attr
= ((zdp
->z_pflags
& ZFS_XATTR
) &&
2550 (S_ISDIR(ZTOI(zdp
)->i_mode
)));
2555 mutex_enter(&zdp
->z_acl_lock
);
2557 if (zdp
->z_pflags
& ZFS_NO_EXECS_DENIED
) {
2558 mutex_exit(&zdp
->z_acl_lock
);
2562 if (KUID_TO_SUID(ZTOI(zdp
)->i_uid
) != 0 ||
2563 KGID_TO_SGID(ZTOI(zdp
)->i_gid
) != 0) {
2564 mutex_exit(&zdp
->z_acl_lock
);
2568 if (uid
== KUID_TO_SUID(ZTOI(zdp
)->i_uid
)) {
2570 if (zdp
->z_mode
& S_IXUSR
) {
2571 mutex_exit(&zdp
->z_acl_lock
);
2574 mutex_exit(&zdp
->z_acl_lock
);
2578 if (groupmember(KGID_TO_SGID(ZTOI(zdp
)->i_gid
), cr
)) {
2580 if (zdp
->z_mode
& S_IXGRP
) {
2581 mutex_exit(&zdp
->z_acl_lock
);
2584 mutex_exit(&zdp
->z_acl_lock
);
2588 if (!owner
&& !groupmbr
) {
2589 if (zdp
->z_mode
& S_IXOTH
) {
2590 mutex_exit(&zdp
->z_acl_lock
);
2595 mutex_exit(&zdp
->z_acl_lock
);
2598 DTRACE_PROBE(zfs__fastpath__execute__access__miss
);
2599 ZFS_ENTER(ZTOZSB(zdp
));
2600 error
= zfs_zaccess(zdp
, ACE_EXECUTE
, 0, B_FALSE
, cr
);
2601 ZFS_EXIT(ZTOZSB(zdp
));
2606 * Determine whether Access should be granted/denied.
2608 * The least priv subsystem is always consulted as a basic privilege
2609 * can define any form of access.
2612 zfs_zaccess(znode_t
*zp
, int mode
, int flags
, boolean_t skipaclchk
, cred_t
*cr
)
2614 uint32_t working_mode
;
2617 boolean_t check_privs
;
2619 znode_t
*check_zp
= zp
;
2623 is_attr
= ((zp
->z_pflags
& ZFS_XATTR
) && S_ISDIR(ZTOI(zp
)->i_mode
));
2626 * If attribute then validate against base file
2629 if ((error
= zfs_zget(ZTOZSB(zp
),
2630 zp
->z_xattr_parent
, &xzp
)) != 0) {
2637 * fixup mode to map to xattr perms
2640 if (mode
& (ACE_WRITE_DATA
|ACE_APPEND_DATA
)) {
2641 mode
&= ~(ACE_WRITE_DATA
|ACE_APPEND_DATA
);
2642 mode
|= ACE_WRITE_NAMED_ATTRS
;
2645 if (mode
& (ACE_READ_DATA
|ACE_EXECUTE
)) {
2646 mode
&= ~(ACE_READ_DATA
|ACE_EXECUTE
);
2647 mode
|= ACE_READ_NAMED_ATTRS
;
2651 owner
= zfs_fuid_map_id(ZTOZSB(zp
), KUID_TO_SUID(ZTOI(zp
)->i_uid
),
2654 * Map the bits required to the standard inode flags
2655 * S_IRUSR|S_IWUSR|S_IXUSR in the needed_bits. Map the bits
2656 * mapped by working_mode (currently missing) in missing_bits.
2657 * Call secpolicy_vnode_access2() with (needed_bits & ~checkmode),
2662 working_mode
= mode
;
2663 if ((working_mode
& (ACE_READ_ACL
|ACE_READ_ATTRIBUTES
)) &&
2664 owner
== crgetuid(cr
))
2665 working_mode
&= ~(ACE_READ_ACL
|ACE_READ_ATTRIBUTES
);
2667 if (working_mode
& (ACE_READ_DATA
|ACE_READ_NAMED_ATTRS
|
2668 ACE_READ_ACL
|ACE_READ_ATTRIBUTES
|ACE_SYNCHRONIZE
))
2669 needed_bits
|= S_IRUSR
;
2670 if (working_mode
& (ACE_WRITE_DATA
|ACE_WRITE_NAMED_ATTRS
|
2671 ACE_APPEND_DATA
|ACE_WRITE_ATTRIBUTES
|ACE_SYNCHRONIZE
))
2672 needed_bits
|= S_IWUSR
;
2673 if (working_mode
& ACE_EXECUTE
)
2674 needed_bits
|= S_IXUSR
;
2676 if ((error
= zfs_zaccess_common(check_zp
, mode
, &working_mode
,
2677 &check_privs
, skipaclchk
, cr
)) == 0) {
2680 return (secpolicy_vnode_access2(cr
, ZTOI(zp
), owner
,
2681 needed_bits
, needed_bits
));
2684 if (error
&& !check_privs
) {
2690 if (error
&& (flags
& V_APPEND
)) {
2691 error
= zfs_zaccess_append(zp
, &working_mode
, &check_privs
, cr
);
2694 if (error
&& check_privs
) {
2695 mode_t checkmode
= 0;
2698 * First check for implicit owner permission on
2699 * read_acl/read_attributes
2703 ASSERT(working_mode
!= 0);
2705 if ((working_mode
& (ACE_READ_ACL
|ACE_READ_ATTRIBUTES
) &&
2706 owner
== crgetuid(cr
)))
2707 working_mode
&= ~(ACE_READ_ACL
|ACE_READ_ATTRIBUTES
);
2709 if (working_mode
& (ACE_READ_DATA
|ACE_READ_NAMED_ATTRS
|
2710 ACE_READ_ACL
|ACE_READ_ATTRIBUTES
|ACE_SYNCHRONIZE
))
2711 checkmode
|= S_IRUSR
;
2712 if (working_mode
& (ACE_WRITE_DATA
|ACE_WRITE_NAMED_ATTRS
|
2713 ACE_APPEND_DATA
|ACE_WRITE_ATTRIBUTES
|ACE_SYNCHRONIZE
))
2714 checkmode
|= S_IWUSR
;
2715 if (working_mode
& ACE_EXECUTE
)
2716 checkmode
|= S_IXUSR
;
2718 error
= secpolicy_vnode_access2(cr
, ZTOI(check_zp
), owner
,
2719 needed_bits
& ~checkmode
, needed_bits
);
2721 if (error
== 0 && (working_mode
& ACE_WRITE_OWNER
))
2722 error
= secpolicy_vnode_chown(cr
, owner
);
2723 if (error
== 0 && (working_mode
& ACE_WRITE_ACL
))
2724 error
= secpolicy_vnode_setdac(cr
, owner
);
2726 if (error
== 0 && (working_mode
&
2727 (ACE_DELETE
|ACE_DELETE_CHILD
)))
2728 error
= secpolicy_vnode_remove(cr
);
2730 if (error
== 0 && (working_mode
& ACE_SYNCHRONIZE
)) {
2731 error
= secpolicy_vnode_chown(cr
, owner
);
2735 * See if any bits other than those already checked
2736 * for are still present. If so then return EACCES
2738 if (working_mode
& ~(ZFS_CHECKED_MASKS
)) {
2739 error
= SET_ERROR(EACCES
);
2742 } else if (error
== 0) {
2743 error
= secpolicy_vnode_access2(cr
, ZTOI(zp
), owner
,
2744 needed_bits
, needed_bits
);
2754 * Translate traditional unix S_IRUSR/S_IWUSR/S_IXUSR mode into
2755 * NFSv4-style ZFS ACL format and call zfs_zaccess()
2758 zfs_zaccess_rwx(znode_t
*zp
, mode_t mode
, int flags
, cred_t
*cr
)
2760 return (zfs_zaccess(zp
, zfs_unix_to_v4(mode
>> 6), flags
, B_FALSE
, cr
));
2764 * Access function for secpolicy_vnode_setattr
2767 zfs_zaccess_unix(znode_t
*zp
, mode_t mode
, cred_t
*cr
)
2769 int v4_mode
= zfs_unix_to_v4(mode
>> 6);
2771 return (zfs_zaccess(zp
, v4_mode
, 0, B_FALSE
, cr
));
2774 /* See zfs_zaccess_delete() */
2775 static const boolean_t zfs_write_implies_delete_child
= B_TRUE
;
2778 * Determine whether delete access should be granted.
2780 * The following chart outlines how we handle delete permissions which is
2781 * how recent versions of windows (Windows 2008) handles it. The efficiency
2782 * comes from not having to check the parent ACL where the object itself grants
2785 * -------------------------------------------------------
2786 * | Parent Dir | Target Object Permissions |
2788 * -------------------------------------------------------
2789 * | | ACL Allows | ACL Denies| Delete |
2790 * | | Delete | Delete | unspecified|
2791 * -------------------------------------------------------
2792 * | ACL Allows | Permit | Deny * | Permit |
2793 * | DELETE_CHILD | | | |
2794 * -------------------------------------------------------
2795 * | ACL Denies | Permit | Deny | Deny |
2796 * | DELETE_CHILD | | | |
2797 * -------------------------------------------------------
2798 * | ACL specifies | | | |
2799 * | only allow | Permit | Deny * | Permit |
2800 * | write and | | | |
2802 * -------------------------------------------------------
2803 * | ACL denies | | | |
2804 * | write and | Permit | Deny | Deny |
2806 * -------------------------------------------------------
2809 * Re. execute permission on the directory: if that's missing,
2810 * the vnode lookup of the target will fail before we get here.
2812 * Re [*] in the table above: NFSv4 would normally Permit delete for
2813 * these two cells of the matrix.
2814 * See acl.h for notes on which ACE_... flags should be checked for which
2815 * operations. Specifically, the NFSv4 committee recommendation is in
2816 * conflict with the Windows interpretation of DENY ACEs, where DENY ACEs
2817 * should take precedence ahead of ALLOW ACEs.
2819 * This implementation always consults the target object's ACL first.
2820 * If a DENY ACE is present on the target object that specifies ACE_DELETE,
2821 * delete access is denied. If an ALLOW ACE with ACE_DELETE is present on
2822 * the target object, access is allowed. If and only if no entries with
2823 * ACE_DELETE are present in the object's ACL, check the container's ACL
2824 * for entries with ACE_DELETE_CHILD.
2826 * A summary of the logic implemented from the table above is as follows:
2828 * First check for DENY ACEs that apply.
2829 * If either target or container has a deny, EACCES.
2831 * Delete access can then be summarized as follows:
2832 * 1: The object to be deleted grants ACE_DELETE, or
2833 * 2: The containing directory grants ACE_DELETE_CHILD.
2834 * In a Windows system, that would be the end of the story.
2835 * In this system, (2) has some complications...
2836 * 2a: "sticky" bit on a directory adds restrictions, and
2837 * 2b: existing ACEs from previous versions of ZFS may
2838 * not carry ACE_DELETE_CHILD where they should, so we
2839 * also allow delete when ACE_WRITE_DATA is granted.
2841 * Note: 2b is technically a work-around for a prior bug,
2842 * which hopefully can go away some day. For those who
2843 * no longer need the work around, and for testing, this
2844 * work-around is made conditional via the tunable:
2845 * zfs_write_implies_delete_child
2848 zfs_zaccess_delete(znode_t
*dzp
, znode_t
*zp
, cred_t
*cr
)
2850 uint32_t wanted_dirperms
;
2851 uint32_t dzp_working_mode
= 0;
2852 uint32_t zp_working_mode
= 0;
2853 int dzp_error
, zp_error
;
2854 boolean_t dzpcheck_privs
;
2855 boolean_t zpcheck_privs
;
2857 if (zp
->z_pflags
& (ZFS_IMMUTABLE
| ZFS_NOUNLINK
))
2858 return (SET_ERROR(EPERM
));
2862 * If target object grants ACE_DELETE then we are done. This is
2863 * indicated by a return value of 0. For this case we don't worry
2864 * about the sticky bit because sticky only applies to the parent
2865 * directory and this is the child access result.
2867 * If we encounter a DENY ACE here, we're also done (EACCES).
2868 * Note that if we hit a DENY ACE here (on the target) it should
2869 * take precedence over a DENY ACE on the container, so that when
2870 * we have more complete auditing support we will be able to
2871 * report an access failure against the specific target.
2872 * (This is part of why we're checking the target first.)
2874 zp_error
= zfs_zaccess_common(zp
, ACE_DELETE
, &zp_working_mode
,
2875 &zpcheck_privs
, B_FALSE
, cr
);
2876 if (zp_error
== EACCES
) {
2877 /* We hit a DENY ACE. */
2879 return (SET_ERROR(zp_error
));
2880 return (secpolicy_vnode_remove(cr
));
2888 * If the containing directory grants ACE_DELETE_CHILD,
2889 * or we're in backward compatibility mode and the
2890 * containing directory has ACE_WRITE_DATA, allow.
2891 * Case 2b is handled with wanted_dirperms.
2893 wanted_dirperms
= ACE_DELETE_CHILD
;
2894 if (zfs_write_implies_delete_child
)
2895 wanted_dirperms
|= ACE_WRITE_DATA
;
2896 dzp_error
= zfs_zaccess_common(dzp
, wanted_dirperms
,
2897 &dzp_working_mode
, &dzpcheck_privs
, B_FALSE
, cr
);
2898 if (dzp_error
== EACCES
) {
2899 /* We hit a DENY ACE. */
2900 if (!dzpcheck_privs
)
2901 return (SET_ERROR(dzp_error
));
2902 return (secpolicy_vnode_remove(cr
));
2906 * Cases 2a, 2b (continued)
2908 * Note: dzp_working_mode now contains any permissions
2909 * that were NOT granted. Therefore, if any of the
2910 * wanted_dirperms WERE granted, we will have:
2911 * dzp_working_mode != wanted_dirperms
2912 * We're really asking if ANY of those permissions
2913 * were granted, and if so, grant delete access.
2915 if (dzp_working_mode
!= wanted_dirperms
)
2919 * dzp_error is 0 if the container granted us permissions to "modify".
2920 * If we do not have permission via one or more ACEs, our current
2921 * privileges may still permit us to modify the container.
2923 * dzpcheck_privs is false when i.e. the FS is read-only.
2924 * Otherwise, do privilege checks for the container.
2926 if (dzp_error
!= 0 && dzpcheck_privs
) {
2930 * The secpolicy call needs the requested access and
2931 * the current access mode of the container, but it
2932 * only knows about Unix-style modes (VEXEC, VWRITE),
2933 * so this must condense the fine-grained ACE bits into
2936 * The VEXEC flag is easy, because we know that has
2937 * always been checked before we get here (during the
2938 * lookup of the target vnode). The container has not
2939 * granted us permissions to "modify", so we do not set
2940 * the VWRITE flag in the current access mode.
2942 owner
= zfs_fuid_map_id(ZTOZSB(dzp
),
2943 KUID_TO_SUID(ZTOI(dzp
)->i_uid
), cr
, ZFS_OWNER
);
2944 dzp_error
= secpolicy_vnode_access2(cr
, ZTOI(dzp
),
2945 owner
, S_IXUSR
, S_IWUSR
|S_IXUSR
);
2947 if (dzp_error
!= 0) {
2949 * Note: We may have dzp_error = -1 here (from
2950 * zfs_zacess_common). Don't return that.
2952 return (SET_ERROR(EACCES
));
2957 * At this point, we know that the directory permissions allow
2958 * us to modify, but we still need to check for the additional
2959 * restrictions that apply when the "sticky bit" is set.
2961 * Yes, zfs_sticky_remove_access() also checks this bit, but
2962 * checking it here and skipping the call below is nice when
2963 * you're watching all of this with dtrace.
2965 if ((dzp
->z_mode
& S_ISVTX
) == 0)
2969 * zfs_sticky_remove_access will succeed if:
2970 * 1. The sticky bit is absent.
2971 * 2. We pass the sticky bit restrictions.
2972 * 3. We have privileges that always allow file removal.
2974 return (zfs_sticky_remove_access(dzp
, zp
, cr
));
2978 zfs_zaccess_rename(znode_t
*sdzp
, znode_t
*szp
, znode_t
*tdzp
,
2979 znode_t
*tzp
, cred_t
*cr
)
2984 if (szp
->z_pflags
& ZFS_AV_QUARANTINED
)
2985 return (SET_ERROR(EACCES
));
2987 add_perm
= S_ISDIR(ZTOI(szp
)->i_mode
) ?
2988 ACE_ADD_SUBDIRECTORY
: ACE_ADD_FILE
;
2991 * Rename permissions are combination of delete permission +
2992 * add file/subdir permission.
2996 * first make sure we do the delete portion.
2998 * If that succeeds then check for add_file/add_subdir permissions
3001 if ((error
= zfs_zaccess_delete(sdzp
, szp
, cr
)))
3005 * If we have a tzp, see if we can delete it?
3008 if ((error
= zfs_zaccess_delete(tdzp
, tzp
, cr
)))
3013 * Now check for add permissions
3015 error
= zfs_zaccess(tdzp
, add_perm
, 0, B_FALSE
, cr
);