Fix O_APPEND for Linux 3.15 and older kernels
[zfs.git] / module / os / linux / zfs / zfs_vfsops.c
blob81a059651e8aca21627186da666eaea841022db5
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26 /* Portions Copyright 2010 Robert Milkowski */
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/mntent.h>
36 #include <sys/cmn_err.h>
37 #include <sys/zfs_znode.h>
38 #include <sys/zfs_vnops.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/sa.h>
49 #include <sys/sa_impl.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/zfs_quota.h>
56 #include <sys/sunddi.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/spa_boot.h>
60 #include <sys/objlist.h>
61 #include <sys/zpl.h>
62 #include <linux/vfs_compat.h>
63 #include "zfs_comutil.h"
65 enum {
66 TOKEN_RO,
67 TOKEN_RW,
68 TOKEN_SETUID,
69 TOKEN_NOSETUID,
70 TOKEN_EXEC,
71 TOKEN_NOEXEC,
72 TOKEN_DEVICES,
73 TOKEN_NODEVICES,
74 TOKEN_DIRXATTR,
75 TOKEN_SAXATTR,
76 TOKEN_XATTR,
77 TOKEN_NOXATTR,
78 TOKEN_ATIME,
79 TOKEN_NOATIME,
80 TOKEN_RELATIME,
81 TOKEN_NORELATIME,
82 TOKEN_NBMAND,
83 TOKEN_NONBMAND,
84 TOKEN_MNTPOINT,
85 TOKEN_LAST,
88 static const match_table_t zpl_tokens = {
89 { TOKEN_RO, MNTOPT_RO },
90 { TOKEN_RW, MNTOPT_RW },
91 { TOKEN_SETUID, MNTOPT_SETUID },
92 { TOKEN_NOSETUID, MNTOPT_NOSETUID },
93 { TOKEN_EXEC, MNTOPT_EXEC },
94 { TOKEN_NOEXEC, MNTOPT_NOEXEC },
95 { TOKEN_DEVICES, MNTOPT_DEVICES },
96 { TOKEN_NODEVICES, MNTOPT_NODEVICES },
97 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
98 { TOKEN_SAXATTR, MNTOPT_SAXATTR },
99 { TOKEN_XATTR, MNTOPT_XATTR },
100 { TOKEN_NOXATTR, MNTOPT_NOXATTR },
101 { TOKEN_ATIME, MNTOPT_ATIME },
102 { TOKEN_NOATIME, MNTOPT_NOATIME },
103 { TOKEN_RELATIME, MNTOPT_RELATIME },
104 { TOKEN_NORELATIME, MNTOPT_NORELATIME },
105 { TOKEN_NBMAND, MNTOPT_NBMAND },
106 { TOKEN_NONBMAND, MNTOPT_NONBMAND },
107 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
108 { TOKEN_LAST, NULL },
111 static void
112 zfsvfs_vfs_free(vfs_t *vfsp)
114 if (vfsp != NULL) {
115 if (vfsp->vfs_mntpoint != NULL)
116 kmem_strfree(vfsp->vfs_mntpoint);
118 kmem_free(vfsp, sizeof (vfs_t));
122 static int
123 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
125 switch (token) {
126 case TOKEN_RO:
127 vfsp->vfs_readonly = B_TRUE;
128 vfsp->vfs_do_readonly = B_TRUE;
129 break;
130 case TOKEN_RW:
131 vfsp->vfs_readonly = B_FALSE;
132 vfsp->vfs_do_readonly = B_TRUE;
133 break;
134 case TOKEN_SETUID:
135 vfsp->vfs_setuid = B_TRUE;
136 vfsp->vfs_do_setuid = B_TRUE;
137 break;
138 case TOKEN_NOSETUID:
139 vfsp->vfs_setuid = B_FALSE;
140 vfsp->vfs_do_setuid = B_TRUE;
141 break;
142 case TOKEN_EXEC:
143 vfsp->vfs_exec = B_TRUE;
144 vfsp->vfs_do_exec = B_TRUE;
145 break;
146 case TOKEN_NOEXEC:
147 vfsp->vfs_exec = B_FALSE;
148 vfsp->vfs_do_exec = B_TRUE;
149 break;
150 case TOKEN_DEVICES:
151 vfsp->vfs_devices = B_TRUE;
152 vfsp->vfs_do_devices = B_TRUE;
153 break;
154 case TOKEN_NODEVICES:
155 vfsp->vfs_devices = B_FALSE;
156 vfsp->vfs_do_devices = B_TRUE;
157 break;
158 case TOKEN_DIRXATTR:
159 vfsp->vfs_xattr = ZFS_XATTR_DIR;
160 vfsp->vfs_do_xattr = B_TRUE;
161 break;
162 case TOKEN_SAXATTR:
163 vfsp->vfs_xattr = ZFS_XATTR_SA;
164 vfsp->vfs_do_xattr = B_TRUE;
165 break;
166 case TOKEN_XATTR:
167 vfsp->vfs_xattr = ZFS_XATTR_DIR;
168 vfsp->vfs_do_xattr = B_TRUE;
169 break;
170 case TOKEN_NOXATTR:
171 vfsp->vfs_xattr = ZFS_XATTR_OFF;
172 vfsp->vfs_do_xattr = B_TRUE;
173 break;
174 case TOKEN_ATIME:
175 vfsp->vfs_atime = B_TRUE;
176 vfsp->vfs_do_atime = B_TRUE;
177 break;
178 case TOKEN_NOATIME:
179 vfsp->vfs_atime = B_FALSE;
180 vfsp->vfs_do_atime = B_TRUE;
181 break;
182 case TOKEN_RELATIME:
183 vfsp->vfs_relatime = B_TRUE;
184 vfsp->vfs_do_relatime = B_TRUE;
185 break;
186 case TOKEN_NORELATIME:
187 vfsp->vfs_relatime = B_FALSE;
188 vfsp->vfs_do_relatime = B_TRUE;
189 break;
190 case TOKEN_NBMAND:
191 vfsp->vfs_nbmand = B_TRUE;
192 vfsp->vfs_do_nbmand = B_TRUE;
193 break;
194 case TOKEN_NONBMAND:
195 vfsp->vfs_nbmand = B_FALSE;
196 vfsp->vfs_do_nbmand = B_TRUE;
197 break;
198 case TOKEN_MNTPOINT:
199 vfsp->vfs_mntpoint = match_strdup(&args[0]);
200 if (vfsp->vfs_mntpoint == NULL)
201 return (SET_ERROR(ENOMEM));
203 break;
204 default:
205 break;
208 return (0);
212 * Parse the raw mntopts and return a vfs_t describing the options.
214 static int
215 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
217 vfs_t *tmp_vfsp;
218 int error;
220 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
222 if (mntopts != NULL) {
223 substring_t args[MAX_OPT_ARGS];
224 char *tmp_mntopts, *p, *t;
225 int token;
227 tmp_mntopts = t = kmem_strdup(mntopts);
228 if (tmp_mntopts == NULL)
229 return (SET_ERROR(ENOMEM));
231 while ((p = strsep(&t, ",")) != NULL) {
232 if (!*p)
233 continue;
235 args[0].to = args[0].from = NULL;
236 token = match_token(p, zpl_tokens, args);
237 error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
238 if (error) {
239 kmem_strfree(tmp_mntopts);
240 zfsvfs_vfs_free(tmp_vfsp);
241 return (error);
245 kmem_strfree(tmp_mntopts);
248 *vfsp = tmp_vfsp;
250 return (0);
253 boolean_t
254 zfs_is_readonly(zfsvfs_t *zfsvfs)
256 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
260 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
262 (void) cr;
263 zfsvfs_t *zfsvfs = sb->s_fs_info;
266 * Semantically, the only requirement is that the sync be initiated.
267 * The DMU syncs out txgs frequently, so there's nothing to do.
269 if (!wait)
270 return (0);
272 if (zfsvfs != NULL) {
274 * Sync a specific filesystem.
276 dsl_pool_t *dp;
278 ZFS_ENTER(zfsvfs);
279 dp = dmu_objset_pool(zfsvfs->z_os);
282 * If the system is shutting down, then skip any
283 * filesystems which may exist on a suspended pool.
285 if (spa_suspended(dp->dp_spa)) {
286 ZFS_EXIT(zfsvfs);
287 return (0);
290 if (zfsvfs->z_log != NULL)
291 zil_commit(zfsvfs->z_log, 0);
293 ZFS_EXIT(zfsvfs);
294 } else {
296 * Sync all ZFS filesystems. This is what happens when you
297 * run sync(1). Unlike other filesystems, ZFS honors the
298 * request by waiting for all pools to commit all dirty data.
300 spa_sync_allpools();
303 return (0);
306 static void
307 atime_changed_cb(void *arg, uint64_t newval)
309 zfsvfs_t *zfsvfs = arg;
310 struct super_block *sb = zfsvfs->z_sb;
312 if (sb == NULL)
313 return;
315 * Update SB_NOATIME bit in VFS super block. Since atime update is
316 * determined by atime_needs_update(), atime_needs_update() needs to
317 * return false if atime is turned off, and not unconditionally return
318 * false if atime is turned on.
320 if (newval)
321 sb->s_flags &= ~SB_NOATIME;
322 else
323 sb->s_flags |= SB_NOATIME;
326 static void
327 relatime_changed_cb(void *arg, uint64_t newval)
329 ((zfsvfs_t *)arg)->z_relatime = newval;
332 static void
333 xattr_changed_cb(void *arg, uint64_t newval)
335 zfsvfs_t *zfsvfs = arg;
337 if (newval == ZFS_XATTR_OFF) {
338 zfsvfs->z_flags &= ~ZSB_XATTR;
339 } else {
340 zfsvfs->z_flags |= ZSB_XATTR;
342 if (newval == ZFS_XATTR_SA)
343 zfsvfs->z_xattr_sa = B_TRUE;
344 else
345 zfsvfs->z_xattr_sa = B_FALSE;
349 static void
350 acltype_changed_cb(void *arg, uint64_t newval)
352 zfsvfs_t *zfsvfs = arg;
354 switch (newval) {
355 case ZFS_ACLTYPE_NFSV4:
356 case ZFS_ACLTYPE_OFF:
357 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
358 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
359 break;
360 case ZFS_ACLTYPE_POSIX:
361 #ifdef CONFIG_FS_POSIX_ACL
362 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
363 zfsvfs->z_sb->s_flags |= SB_POSIXACL;
364 #else
365 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
366 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
367 #endif /* CONFIG_FS_POSIX_ACL */
368 break;
369 default:
370 break;
374 static void
375 blksz_changed_cb(void *arg, uint64_t newval)
377 zfsvfs_t *zfsvfs = arg;
378 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
379 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
380 ASSERT(ISP2(newval));
382 zfsvfs->z_max_blksz = newval;
385 static void
386 readonly_changed_cb(void *arg, uint64_t newval)
388 zfsvfs_t *zfsvfs = arg;
389 struct super_block *sb = zfsvfs->z_sb;
391 if (sb == NULL)
392 return;
394 if (newval)
395 sb->s_flags |= SB_RDONLY;
396 else
397 sb->s_flags &= ~SB_RDONLY;
400 static void
401 devices_changed_cb(void *arg, uint64_t newval)
405 static void
406 setuid_changed_cb(void *arg, uint64_t newval)
410 static void
411 exec_changed_cb(void *arg, uint64_t newval)
415 static void
416 nbmand_changed_cb(void *arg, uint64_t newval)
418 zfsvfs_t *zfsvfs = arg;
419 struct super_block *sb = zfsvfs->z_sb;
421 if (sb == NULL)
422 return;
424 if (newval == TRUE)
425 sb->s_flags |= SB_MANDLOCK;
426 else
427 sb->s_flags &= ~SB_MANDLOCK;
430 static void
431 snapdir_changed_cb(void *arg, uint64_t newval)
433 ((zfsvfs_t *)arg)->z_show_ctldir = newval;
436 static void
437 acl_mode_changed_cb(void *arg, uint64_t newval)
439 zfsvfs_t *zfsvfs = arg;
441 zfsvfs->z_acl_mode = newval;
444 static void
445 acl_inherit_changed_cb(void *arg, uint64_t newval)
447 ((zfsvfs_t *)arg)->z_acl_inherit = newval;
450 static int
451 zfs_register_callbacks(vfs_t *vfsp)
453 struct dsl_dataset *ds = NULL;
454 objset_t *os = NULL;
455 zfsvfs_t *zfsvfs = NULL;
456 int error = 0;
458 ASSERT(vfsp);
459 zfsvfs = vfsp->vfs_data;
460 ASSERT(zfsvfs);
461 os = zfsvfs->z_os;
464 * The act of registering our callbacks will destroy any mount
465 * options we may have. In order to enable temporary overrides
466 * of mount options, we stash away the current values and
467 * restore them after we register the callbacks.
469 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
470 vfsp->vfs_do_readonly = B_TRUE;
471 vfsp->vfs_readonly = B_TRUE;
475 * Register property callbacks.
477 * It would probably be fine to just check for i/o error from
478 * the first prop_register(), but I guess I like to go
479 * overboard...
481 ds = dmu_objset_ds(os);
482 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
483 error = dsl_prop_register(ds,
484 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
485 error = error ? error : dsl_prop_register(ds,
486 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
487 error = error ? error : dsl_prop_register(ds,
488 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
489 error = error ? error : dsl_prop_register(ds,
490 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
491 error = error ? error : dsl_prop_register(ds,
492 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
493 error = error ? error : dsl_prop_register(ds,
494 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
495 error = error ? error : dsl_prop_register(ds,
496 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
497 error = error ? error : dsl_prop_register(ds,
498 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
499 error = error ? error : dsl_prop_register(ds,
500 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
501 error = error ? error : dsl_prop_register(ds,
502 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
503 error = error ? error : dsl_prop_register(ds,
504 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
505 error = error ? error : dsl_prop_register(ds,
506 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
507 zfsvfs);
508 error = error ? error : dsl_prop_register(ds,
509 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
510 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
511 if (error)
512 goto unregister;
515 * Invoke our callbacks to restore temporary mount options.
517 if (vfsp->vfs_do_readonly)
518 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
519 if (vfsp->vfs_do_setuid)
520 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
521 if (vfsp->vfs_do_exec)
522 exec_changed_cb(zfsvfs, vfsp->vfs_exec);
523 if (vfsp->vfs_do_devices)
524 devices_changed_cb(zfsvfs, vfsp->vfs_devices);
525 if (vfsp->vfs_do_xattr)
526 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
527 if (vfsp->vfs_do_atime)
528 atime_changed_cb(zfsvfs, vfsp->vfs_atime);
529 if (vfsp->vfs_do_relatime)
530 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
531 if (vfsp->vfs_do_nbmand)
532 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
534 return (0);
536 unregister:
537 dsl_prop_unregister_all(ds, zfsvfs);
538 return (error);
542 * Takes a dataset, a property, a value and that value's setpoint as
543 * found in the ZAP. Checks if the property has been changed in the vfs.
544 * If so, val and setpoint will be overwritten with updated content.
545 * Otherwise, they are left unchanged.
548 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
549 char *setpoint)
551 int error;
552 zfsvfs_t *zfvp;
553 vfs_t *vfsp;
554 objset_t *os;
555 uint64_t tmp = *val;
557 error = dmu_objset_from_ds(ds, &os);
558 if (error != 0)
559 return (error);
561 if (dmu_objset_type(os) != DMU_OST_ZFS)
562 return (EINVAL);
564 mutex_enter(&os->os_user_ptr_lock);
565 zfvp = dmu_objset_get_user(os);
566 mutex_exit(&os->os_user_ptr_lock);
567 if (zfvp == NULL)
568 return (ESRCH);
570 vfsp = zfvp->z_vfs;
572 switch (zfs_prop) {
573 case ZFS_PROP_ATIME:
574 if (vfsp->vfs_do_atime)
575 tmp = vfsp->vfs_atime;
576 break;
577 case ZFS_PROP_RELATIME:
578 if (vfsp->vfs_do_relatime)
579 tmp = vfsp->vfs_relatime;
580 break;
581 case ZFS_PROP_DEVICES:
582 if (vfsp->vfs_do_devices)
583 tmp = vfsp->vfs_devices;
584 break;
585 case ZFS_PROP_EXEC:
586 if (vfsp->vfs_do_exec)
587 tmp = vfsp->vfs_exec;
588 break;
589 case ZFS_PROP_SETUID:
590 if (vfsp->vfs_do_setuid)
591 tmp = vfsp->vfs_setuid;
592 break;
593 case ZFS_PROP_READONLY:
594 if (vfsp->vfs_do_readonly)
595 tmp = vfsp->vfs_readonly;
596 break;
597 case ZFS_PROP_XATTR:
598 if (vfsp->vfs_do_xattr)
599 tmp = vfsp->vfs_xattr;
600 break;
601 case ZFS_PROP_NBMAND:
602 if (vfsp->vfs_do_nbmand)
603 tmp = vfsp->vfs_nbmand;
604 break;
605 default:
606 return (ENOENT);
609 if (tmp != *val) {
610 (void) strcpy(setpoint, "temporary");
611 *val = tmp;
613 return (0);
617 * Associate this zfsvfs with the given objset, which must be owned.
618 * This will cache a bunch of on-disk state from the objset in the
619 * zfsvfs.
621 static int
622 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
624 int error;
625 uint64_t val;
627 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
628 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
629 zfsvfs->z_os = os;
631 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
632 if (error != 0)
633 return (error);
634 if (zfsvfs->z_version >
635 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
636 (void) printk("Can't mount a version %lld file system "
637 "on a version %lld pool\n. Pool must be upgraded to mount "
638 "this file system.\n", (u_longlong_t)zfsvfs->z_version,
639 (u_longlong_t)spa_version(dmu_objset_spa(os)));
640 return (SET_ERROR(ENOTSUP));
642 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
643 if (error != 0)
644 return (error);
645 zfsvfs->z_norm = (int)val;
647 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
648 if (error != 0)
649 return (error);
650 zfsvfs->z_utf8 = (val != 0);
652 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
653 if (error != 0)
654 return (error);
655 zfsvfs->z_case = (uint_t)val;
657 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
658 return (error);
659 zfsvfs->z_acl_type = (uint_t)val;
662 * Fold case on file systems that are always or sometimes case
663 * insensitive.
665 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
666 zfsvfs->z_case == ZFS_CASE_MIXED)
667 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
669 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
670 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
672 uint64_t sa_obj = 0;
673 if (zfsvfs->z_use_sa) {
674 /* should either have both of these objects or none */
675 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
676 &sa_obj);
677 if (error != 0)
678 return (error);
680 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
681 if ((error == 0) && (val == ZFS_XATTR_SA))
682 zfsvfs->z_xattr_sa = B_TRUE;
685 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
686 &zfsvfs->z_root);
687 if (error != 0)
688 return (error);
689 ASSERT(zfsvfs->z_root != 0);
691 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
692 &zfsvfs->z_unlinkedobj);
693 if (error != 0)
694 return (error);
696 error = zap_lookup(os, MASTER_NODE_OBJ,
697 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
698 8, 1, &zfsvfs->z_userquota_obj);
699 if (error == ENOENT)
700 zfsvfs->z_userquota_obj = 0;
701 else if (error != 0)
702 return (error);
704 error = zap_lookup(os, MASTER_NODE_OBJ,
705 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
706 8, 1, &zfsvfs->z_groupquota_obj);
707 if (error == ENOENT)
708 zfsvfs->z_groupquota_obj = 0;
709 else if (error != 0)
710 return (error);
712 error = zap_lookup(os, MASTER_NODE_OBJ,
713 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
714 8, 1, &zfsvfs->z_projectquota_obj);
715 if (error == ENOENT)
716 zfsvfs->z_projectquota_obj = 0;
717 else if (error != 0)
718 return (error);
720 error = zap_lookup(os, MASTER_NODE_OBJ,
721 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
722 8, 1, &zfsvfs->z_userobjquota_obj);
723 if (error == ENOENT)
724 zfsvfs->z_userobjquota_obj = 0;
725 else if (error != 0)
726 return (error);
728 error = zap_lookup(os, MASTER_NODE_OBJ,
729 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
730 8, 1, &zfsvfs->z_groupobjquota_obj);
731 if (error == ENOENT)
732 zfsvfs->z_groupobjquota_obj = 0;
733 else if (error != 0)
734 return (error);
736 error = zap_lookup(os, MASTER_NODE_OBJ,
737 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
738 8, 1, &zfsvfs->z_projectobjquota_obj);
739 if (error == ENOENT)
740 zfsvfs->z_projectobjquota_obj = 0;
741 else if (error != 0)
742 return (error);
744 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
745 &zfsvfs->z_fuid_obj);
746 if (error == ENOENT)
747 zfsvfs->z_fuid_obj = 0;
748 else if (error != 0)
749 return (error);
751 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
752 &zfsvfs->z_shares_dir);
753 if (error == ENOENT)
754 zfsvfs->z_shares_dir = 0;
755 else if (error != 0)
756 return (error);
758 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
759 &zfsvfs->z_attr_table);
760 if (error != 0)
761 return (error);
763 if (zfsvfs->z_version >= ZPL_VERSION_SA)
764 sa_register_update_callback(os, zfs_sa_upgrade);
766 return (0);
770 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
772 objset_t *os;
773 zfsvfs_t *zfsvfs;
774 int error;
775 boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
777 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
779 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
780 if (error != 0) {
781 kmem_free(zfsvfs, sizeof (zfsvfs_t));
782 return (error);
785 error = zfsvfs_create_impl(zfvp, zfsvfs, os);
786 if (error != 0) {
787 dmu_objset_disown(os, B_TRUE, zfsvfs);
789 return (error);
794 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
795 * on a failure. Do not pass in a statically allocated zfsvfs.
798 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
800 int error;
802 zfsvfs->z_vfs = NULL;
803 zfsvfs->z_sb = NULL;
804 zfsvfs->z_parent = zfsvfs;
806 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
807 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
808 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
809 offsetof(znode_t, z_link_node));
810 ZFS_TEARDOWN_INIT(zfsvfs);
811 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
812 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
814 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
815 ZFS_OBJ_MTX_MAX);
816 zfsvfs->z_hold_size = size;
817 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
818 KM_SLEEP);
819 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
820 for (int i = 0; i != size; i++) {
821 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
822 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
823 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
826 error = zfsvfs_init(zfsvfs, os);
827 if (error != 0) {
828 *zfvp = NULL;
829 zfsvfs_free(zfsvfs);
830 return (error);
833 zfsvfs->z_drain_task = TASKQID_INVALID;
834 zfsvfs->z_draining = B_FALSE;
835 zfsvfs->z_drain_cancel = B_TRUE;
837 *zfvp = zfsvfs;
838 return (0);
841 static int
842 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
844 int error;
845 boolean_t readonly = zfs_is_readonly(zfsvfs);
847 error = zfs_register_callbacks(zfsvfs->z_vfs);
848 if (error)
849 return (error);
851 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data);
854 * If we are not mounting (ie: online recv), then we don't
855 * have to worry about replaying the log as we blocked all
856 * operations out since we closed the ZIL.
858 if (mounting) {
859 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
860 dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
863 * During replay we remove the read only flag to
864 * allow replays to succeed.
866 if (readonly != 0) {
867 readonly_changed_cb(zfsvfs, B_FALSE);
868 } else {
869 zap_stats_t zs;
870 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
871 &zs) == 0) {
872 dataset_kstats_update_nunlinks_kstat(
873 &zfsvfs->z_kstat, zs.zs_num_entries);
874 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
875 "num_entries in unlinked set: %llu",
876 zs.zs_num_entries);
878 zfs_unlinked_drain(zfsvfs);
879 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
880 dd->dd_activity_cancelled = B_FALSE;
884 * Parse and replay the intent log.
886 * Because of ziltest, this must be done after
887 * zfs_unlinked_drain(). (Further note: ziltest
888 * doesn't use readonly mounts, where
889 * zfs_unlinked_drain() isn't called.) This is because
890 * ziltest causes spa_sync() to think it's committed,
891 * but actually it is not, so the intent log contains
892 * many txg's worth of changes.
894 * In particular, if object N is in the unlinked set in
895 * the last txg to actually sync, then it could be
896 * actually freed in a later txg and then reallocated
897 * in a yet later txg. This would write a "create
898 * object N" record to the intent log. Normally, this
899 * would be fine because the spa_sync() would have
900 * written out the fact that object N is free, before
901 * we could write the "create object N" intent log
902 * record.
904 * But when we are in ziltest mode, we advance the "open
905 * txg" without actually spa_sync()-ing the changes to
906 * disk. So we would see that object N is still
907 * allocated and in the unlinked set, and there is an
908 * intent log record saying to allocate it.
910 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
911 if (zil_replay_disable) {
912 zil_destroy(zfsvfs->z_log, B_FALSE);
913 } else {
914 zfsvfs->z_replay = B_TRUE;
915 zil_replay(zfsvfs->z_os, zfsvfs,
916 zfs_replay_vector);
917 zfsvfs->z_replay = B_FALSE;
921 /* restore readonly bit */
922 if (readonly != 0)
923 readonly_changed_cb(zfsvfs, B_TRUE);
927 * Set the objset user_ptr to track its zfsvfs.
929 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
930 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
931 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
933 return (0);
936 void
937 zfsvfs_free(zfsvfs_t *zfsvfs)
939 int i, size = zfsvfs->z_hold_size;
941 zfs_fuid_destroy(zfsvfs);
943 mutex_destroy(&zfsvfs->z_znodes_lock);
944 mutex_destroy(&zfsvfs->z_lock);
945 list_destroy(&zfsvfs->z_all_znodes);
946 ZFS_TEARDOWN_DESTROY(zfsvfs);
947 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
948 rw_destroy(&zfsvfs->z_fuid_lock);
949 for (i = 0; i != size; i++) {
950 avl_destroy(&zfsvfs->z_hold_trees[i]);
951 mutex_destroy(&zfsvfs->z_hold_locks[i]);
953 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
954 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
955 zfsvfs_vfs_free(zfsvfs->z_vfs);
956 dataset_kstats_destroy(&zfsvfs->z_kstat);
957 kmem_free(zfsvfs, sizeof (zfsvfs_t));
960 static void
961 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
963 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
964 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
967 static void
968 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
970 objset_t *os = zfsvfs->z_os;
972 if (!dmu_objset_is_snapshot(os))
973 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
976 #ifdef HAVE_MLSLABEL
978 * Check that the hex label string is appropriate for the dataset being
979 * mounted into the global_zone proper.
981 * Return an error if the hex label string is not default or
982 * admin_low/admin_high. For admin_low labels, the corresponding
983 * dataset must be readonly.
986 zfs_check_global_label(const char *dsname, const char *hexsl)
988 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
989 return (0);
990 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
991 return (0);
992 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
993 /* must be readonly */
994 uint64_t rdonly;
996 if (dsl_prop_get_integer(dsname,
997 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
998 return (SET_ERROR(EACCES));
999 return (rdonly ? 0 : SET_ERROR(EACCES));
1001 return (SET_ERROR(EACCES));
1003 #endif /* HAVE_MLSLABEL */
1005 static int
1006 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1007 uint32_t bshift)
1009 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1010 uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1011 uint64_t quota;
1012 uint64_t used;
1013 int err;
1015 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1016 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1017 sizeof (buf) - offset, B_FALSE);
1018 if (err)
1019 return (err);
1021 if (zfsvfs->z_projectquota_obj == 0)
1022 goto objs;
1024 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1025 buf + offset, 8, 1, &quota);
1026 if (err == ENOENT)
1027 goto objs;
1028 else if (err)
1029 return (err);
1031 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1032 buf + offset, 8, 1, &used);
1033 if (unlikely(err == ENOENT)) {
1034 uint32_t blksize;
1035 u_longlong_t nblocks;
1038 * Quota accounting is async, so it is possible race case.
1039 * There is at least one object with the given project ID.
1041 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1042 if (unlikely(zp->z_blksz == 0))
1043 blksize = zfsvfs->z_max_blksz;
1045 used = blksize * nblocks;
1046 } else if (err) {
1047 return (err);
1050 statp->f_blocks = quota >> bshift;
1051 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1052 statp->f_bavail = statp->f_bfree;
1054 objs:
1055 if (zfsvfs->z_projectobjquota_obj == 0)
1056 return (0);
1058 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1059 buf + offset, 8, 1, &quota);
1060 if (err == ENOENT)
1061 return (0);
1062 else if (err)
1063 return (err);
1065 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1066 buf, 8, 1, &used);
1067 if (unlikely(err == ENOENT)) {
1069 * Quota accounting is async, so it is possible race case.
1070 * There is at least one object with the given project ID.
1072 used = 1;
1073 } else if (err) {
1074 return (err);
1077 statp->f_files = quota;
1078 statp->f_ffree = (quota > used) ? (quota - used) : 0;
1080 return (0);
1084 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1086 zfsvfs_t *zfsvfs = ITOZSB(ip);
1087 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1088 int err = 0;
1090 ZFS_ENTER(zfsvfs);
1092 dmu_objset_space(zfsvfs->z_os,
1093 &refdbytes, &availbytes, &usedobjs, &availobjs);
1095 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1097 * The underlying storage pool actually uses multiple block
1098 * size. Under Solaris frsize (fragment size) is reported as
1099 * the smallest block size we support, and bsize (block size)
1100 * as the filesystem's maximum block size. Unfortunately,
1101 * under Linux the fragment size and block size are often used
1102 * interchangeably. Thus we are forced to report both of them
1103 * as the filesystem's maximum block size.
1105 statp->f_frsize = zfsvfs->z_max_blksz;
1106 statp->f_bsize = zfsvfs->z_max_blksz;
1107 uint32_t bshift = fls(statp->f_bsize) - 1;
1110 * The following report "total" blocks of various kinds in
1111 * the file system, but reported in terms of f_bsize - the
1112 * "preferred" size.
1115 /* Round up so we never have a filesystem using 0 blocks. */
1116 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1117 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1118 statp->f_bfree = availbytes >> bshift;
1119 statp->f_bavail = statp->f_bfree; /* no root reservation */
1122 * statvfs() should really be called statufs(), because it assumes
1123 * static metadata. ZFS doesn't preallocate files, so the best
1124 * we can do is report the max that could possibly fit in f_files,
1125 * and that minus the number actually used in f_ffree.
1126 * For f_ffree, report the smaller of the number of objects available
1127 * and the number of blocks (each object will take at least a block).
1129 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1130 statp->f_files = statp->f_ffree + usedobjs;
1131 statp->f_fsid.val[0] = (uint32_t)fsid;
1132 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1133 statp->f_type = ZFS_SUPER_MAGIC;
1134 statp->f_namelen = MAXNAMELEN - 1;
1137 * We have all of 40 characters to stuff a string here.
1138 * Is there anything useful we could/should provide?
1140 memset(statp->f_spare, 0, sizeof (statp->f_spare));
1142 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1143 dmu_objset_projectquota_present(zfsvfs->z_os)) {
1144 znode_t *zp = ITOZ(ip);
1146 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1147 zpl_is_valid_projid(zp->z_projid))
1148 err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1151 ZFS_EXIT(zfsvfs);
1152 return (err);
1155 static int
1156 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1158 znode_t *rootzp;
1159 int error;
1161 ZFS_ENTER(zfsvfs);
1163 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1164 if (error == 0)
1165 *ipp = ZTOI(rootzp);
1167 ZFS_EXIT(zfsvfs);
1168 return (error);
1172 * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1173 * To accommodate this we must improvise and manually walk the list of znodes
1174 * attempting to prune dentries in order to be able to drop the inodes.
1176 * To avoid scanning the same znodes multiple times they are always rotated
1177 * to the end of the z_all_znodes list. New znodes are inserted at the
1178 * end of the list so we're always scanning the oldest znodes first.
1180 static int
1181 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1183 znode_t **zp_array, *zp;
1184 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1185 int objects = 0;
1186 int i = 0, j = 0;
1188 zp_array = kmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1190 mutex_enter(&zfsvfs->z_znodes_lock);
1191 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1193 if ((i++ > nr_to_scan) || (j >= max_array))
1194 break;
1196 ASSERT(list_link_active(&zp->z_link_node));
1197 list_remove(&zfsvfs->z_all_znodes, zp);
1198 list_insert_tail(&zfsvfs->z_all_znodes, zp);
1200 /* Skip active znodes and .zfs entries */
1201 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1202 continue;
1204 if (igrab(ZTOI(zp)) == NULL)
1205 continue;
1207 zp_array[j] = zp;
1208 j++;
1210 mutex_exit(&zfsvfs->z_znodes_lock);
1212 for (i = 0; i < j; i++) {
1213 zp = zp_array[i];
1215 ASSERT3P(zp, !=, NULL);
1216 d_prune_aliases(ZTOI(zp));
1218 if (atomic_read(&ZTOI(zp)->i_count) == 1)
1219 objects++;
1221 zrele(zp);
1224 kmem_free(zp_array, max_array * sizeof (znode_t *));
1226 return (objects);
1230 * The ARC has requested that the filesystem drop entries from the dentry
1231 * and inode caches. This can occur when the ARC needs to free meta data
1232 * blocks but can't because they are all pinned by entries in these caches.
1235 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1237 zfsvfs_t *zfsvfs = sb->s_fs_info;
1238 int error = 0;
1239 struct shrinker *shrinker = &sb->s_shrink;
1240 struct shrink_control sc = {
1241 .nr_to_scan = nr_to_scan,
1242 .gfp_mask = GFP_KERNEL,
1245 ZFS_ENTER(zfsvfs);
1247 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1248 defined(SHRINK_CONTROL_HAS_NID) && \
1249 defined(SHRINKER_NUMA_AWARE)
1250 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
1251 *objects = 0;
1252 for_each_online_node(sc.nid) {
1253 *objects += (*shrinker->scan_objects)(shrinker, &sc);
1255 * reset sc.nr_to_scan, modified by
1256 * scan_objects == super_cache_scan
1258 sc.nr_to_scan = nr_to_scan;
1260 } else {
1261 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1264 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1265 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1266 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
1267 *objects = (*shrinker->shrink)(shrinker, &sc);
1268 #elif defined(HAVE_D_PRUNE_ALIASES)
1269 #define D_PRUNE_ALIASES_IS_DEFAULT
1270 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1271 #else
1272 #error "No available dentry and inode cache pruning mechanism."
1273 #endif
1275 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1276 #undef D_PRUNE_ALIASES_IS_DEFAULT
1278 * Fall back to zfs_prune_aliases if the kernel's per-superblock
1279 * shrinker couldn't free anything, possibly due to the inodes being
1280 * allocated in a different memcg.
1282 if (*objects == 0)
1283 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1284 #endif
1286 ZFS_EXIT(zfsvfs);
1288 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1289 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1290 nr_to_scan, *objects, error);
1292 return (error);
1296 * Teardown the zfsvfs_t.
1298 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1299 * and 'z_teardown_inactive_lock' held.
1301 static int
1302 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1304 znode_t *zp;
1306 zfs_unlinked_drain_stop_wait(zfsvfs);
1309 * If someone has not already unmounted this file system,
1310 * drain the zrele_taskq to ensure all active references to the
1311 * zfsvfs_t have been handled only then can it be safely destroyed.
1313 if (zfsvfs->z_os) {
1315 * If we're unmounting we have to wait for the list to
1316 * drain completely.
1318 * If we're not unmounting there's no guarantee the list
1319 * will drain completely, but iputs run from the taskq
1320 * may add the parents of dir-based xattrs to the taskq
1321 * so we want to wait for these.
1323 * We can safely read z_nr_znodes without locking because the
1324 * VFS has already blocked operations which add to the
1325 * z_all_znodes list and thus increment z_nr_znodes.
1327 int round = 0;
1328 while (zfsvfs->z_nr_znodes > 0) {
1329 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1330 dmu_objset_pool(zfsvfs->z_os)), 0);
1331 if (++round > 1 && !unmounting)
1332 break;
1336 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1338 if (!unmounting) {
1340 * We purge the parent filesystem's super block as the
1341 * parent filesystem and all of its snapshots have their
1342 * inode's super block set to the parent's filesystem's
1343 * super block. Note, 'z_parent' is self referential
1344 * for non-snapshots.
1346 shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1350 * Close the zil. NB: Can't close the zil while zfs_inactive
1351 * threads are blocked as zil_close can call zfs_inactive.
1353 if (zfsvfs->z_log) {
1354 zil_close(zfsvfs->z_log);
1355 zfsvfs->z_log = NULL;
1358 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1361 * If we are not unmounting (ie: online recv) and someone already
1362 * unmounted this file system while we were doing the switcheroo,
1363 * or a reopen of z_os failed then just bail out now.
1365 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1366 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1367 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1368 return (SET_ERROR(EIO));
1372 * At this point there are no VFS ops active, and any new VFS ops
1373 * will fail with EIO since we have z_teardown_lock for writer (only
1374 * relevant for forced unmount).
1376 * Release all holds on dbufs. We also grab an extra reference to all
1377 * the remaining inodes so that the kernel does not attempt to free
1378 * any inodes of a suspended fs. This can cause deadlocks since the
1379 * zfs_resume_fs() process may involve starting threads, which might
1380 * attempt to free unreferenced inodes to free up memory for the new
1381 * thread.
1383 if (!unmounting) {
1384 mutex_enter(&zfsvfs->z_znodes_lock);
1385 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1386 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1387 if (zp->z_sa_hdl)
1388 zfs_znode_dmu_fini(zp);
1389 if (igrab(ZTOI(zp)) != NULL)
1390 zp->z_suspended = B_TRUE;
1393 mutex_exit(&zfsvfs->z_znodes_lock);
1397 * If we are unmounting, set the unmounted flag and let new VFS ops
1398 * unblock. zfs_inactive will have the unmounted behavior, and all
1399 * other VFS ops will fail with EIO.
1401 if (unmounting) {
1402 zfsvfs->z_unmounted = B_TRUE;
1403 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1404 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1408 * z_os will be NULL if there was an error in attempting to reopen
1409 * zfsvfs, so just return as the properties had already been
1411 * unregistered and cached data had been evicted before.
1413 if (zfsvfs->z_os == NULL)
1414 return (0);
1417 * Unregister properties.
1419 zfs_unregister_callbacks(zfsvfs);
1422 * Evict cached data. We must write out any dirty data before
1423 * disowning the dataset.
1425 objset_t *os = zfsvfs->z_os;
1426 boolean_t os_dirty = B_FALSE;
1427 for (int t = 0; t < TXG_SIZE; t++) {
1428 if (dmu_objset_is_dirty(os, t)) {
1429 os_dirty = B_TRUE;
1430 break;
1433 if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1434 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1436 dmu_objset_evict_dbufs(zfsvfs->z_os);
1437 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1438 dsl_dir_cancel_waiters(dd);
1440 return (0);
1443 #if defined(HAVE_SUPER_SETUP_BDI_NAME)
1444 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1445 #endif
1448 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1450 const char *osname = zm->mnt_osname;
1451 struct inode *root_inode = NULL;
1452 uint64_t recordsize;
1453 int error = 0;
1454 zfsvfs_t *zfsvfs = NULL;
1455 vfs_t *vfs = NULL;
1457 ASSERT(zm);
1458 ASSERT(osname);
1460 error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1461 if (error)
1462 return (error);
1464 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1465 if (error) {
1466 zfsvfs_vfs_free(vfs);
1467 goto out;
1470 if ((error = dsl_prop_get_integer(osname, "recordsize",
1471 &recordsize, NULL))) {
1472 zfsvfs_vfs_free(vfs);
1473 goto out;
1476 vfs->vfs_data = zfsvfs;
1477 zfsvfs->z_vfs = vfs;
1478 zfsvfs->z_sb = sb;
1479 sb->s_fs_info = zfsvfs;
1480 sb->s_magic = ZFS_SUPER_MAGIC;
1481 sb->s_maxbytes = MAX_LFS_FILESIZE;
1482 sb->s_time_gran = 1;
1483 sb->s_blocksize = recordsize;
1484 sb->s_blocksize_bits = ilog2(recordsize);
1486 error = -zpl_bdi_setup(sb, "zfs");
1487 if (error)
1488 goto out;
1490 sb->s_bdi->ra_pages = 0;
1492 /* Set callback operations for the file system. */
1493 sb->s_op = &zpl_super_operations;
1494 sb->s_xattr = zpl_xattr_handlers;
1495 sb->s_export_op = &zpl_export_operations;
1496 sb->s_d_op = &zpl_dentry_operations;
1498 /* Set features for file system. */
1499 zfs_set_fuid_feature(zfsvfs);
1501 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1502 uint64_t pval;
1504 atime_changed_cb(zfsvfs, B_FALSE);
1505 readonly_changed_cb(zfsvfs, B_TRUE);
1506 if ((error = dsl_prop_get_integer(osname,
1507 "xattr", &pval, NULL)))
1508 goto out;
1509 xattr_changed_cb(zfsvfs, pval);
1510 if ((error = dsl_prop_get_integer(osname,
1511 "acltype", &pval, NULL)))
1512 goto out;
1513 acltype_changed_cb(zfsvfs, pval);
1514 zfsvfs->z_issnap = B_TRUE;
1515 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1516 zfsvfs->z_snap_defer_time = jiffies;
1518 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1519 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1520 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1521 } else {
1522 if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1523 goto out;
1526 /* Allocate a root inode for the filesystem. */
1527 error = zfs_root(zfsvfs, &root_inode);
1528 if (error) {
1529 (void) zfs_umount(sb);
1530 goto out;
1533 /* Allocate a root dentry for the filesystem */
1534 sb->s_root = d_make_root(root_inode);
1535 if (sb->s_root == NULL) {
1536 (void) zfs_umount(sb);
1537 error = SET_ERROR(ENOMEM);
1538 goto out;
1541 if (!zfsvfs->z_issnap)
1542 zfsctl_create(zfsvfs);
1544 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1545 out:
1546 if (error) {
1547 if (zfsvfs != NULL) {
1548 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1549 zfsvfs_free(zfsvfs);
1552 * make sure we don't have dangling sb->s_fs_info which
1553 * zfs_preumount will use.
1555 sb->s_fs_info = NULL;
1558 return (error);
1562 * Called when an unmount is requested and certain sanity checks have
1563 * already passed. At this point no dentries or inodes have been reclaimed
1564 * from their respective caches. We drop the extra reference on the .zfs
1565 * control directory to allow everything to be reclaimed. All snapshots
1566 * must already have been unmounted to reach this point.
1568 void
1569 zfs_preumount(struct super_block *sb)
1571 zfsvfs_t *zfsvfs = sb->s_fs_info;
1573 /* zfsvfs is NULL when zfs_domount fails during mount */
1574 if (zfsvfs) {
1575 zfs_unlinked_drain_stop_wait(zfsvfs);
1576 zfsctl_destroy(sb->s_fs_info);
1578 * Wait for zrele_async before entering evict_inodes in
1579 * generic_shutdown_super. The reason we must finish before
1580 * evict_inodes is when lazytime is on, or when zfs_purgedir
1581 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1582 * would race with the i_count check in evict_inodes. This means
1583 * it could destroy the inode while we are still using it.
1585 * We wait for two passes. xattr directories in the first pass
1586 * may add xattr entries in zfs_purgedir, so in the second pass
1587 * we wait for them. We don't use taskq_wait here because it is
1588 * a pool wide taskq. Other mounted filesystems can constantly
1589 * do zrele_async and there's no guarantee when taskq will be
1590 * empty.
1592 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1593 dmu_objset_pool(zfsvfs->z_os)), 0);
1594 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1595 dmu_objset_pool(zfsvfs->z_os)), 0);
1600 * Called once all other unmount released tear down has occurred.
1601 * It is our responsibility to release any remaining infrastructure.
1604 zfs_umount(struct super_block *sb)
1606 zfsvfs_t *zfsvfs = sb->s_fs_info;
1607 objset_t *os;
1609 if (zfsvfs->z_arc_prune != NULL)
1610 arc_remove_prune_callback(zfsvfs->z_arc_prune);
1611 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1612 os = zfsvfs->z_os;
1613 zpl_bdi_destroy(sb);
1616 * z_os will be NULL if there was an error in
1617 * attempting to reopen zfsvfs.
1619 if (os != NULL) {
1621 * Unset the objset user_ptr.
1623 mutex_enter(&os->os_user_ptr_lock);
1624 dmu_objset_set_user(os, NULL);
1625 mutex_exit(&os->os_user_ptr_lock);
1628 * Finally release the objset
1630 dmu_objset_disown(os, B_TRUE, zfsvfs);
1633 zfsvfs_free(zfsvfs);
1634 return (0);
1638 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1640 zfsvfs_t *zfsvfs = sb->s_fs_info;
1641 vfs_t *vfsp;
1642 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1643 int error;
1645 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1646 !(*flags & SB_RDONLY)) {
1647 *flags |= SB_RDONLY;
1648 return (EROFS);
1651 error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1652 if (error)
1653 return (error);
1655 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1656 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1658 zfs_unregister_callbacks(zfsvfs);
1659 zfsvfs_vfs_free(zfsvfs->z_vfs);
1661 vfsp->vfs_data = zfsvfs;
1662 zfsvfs->z_vfs = vfsp;
1663 if (!issnap)
1664 (void) zfs_register_callbacks(vfsp);
1666 return (error);
1670 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1672 zfsvfs_t *zfsvfs = sb->s_fs_info;
1673 znode_t *zp;
1674 uint64_t object = 0;
1675 uint64_t fid_gen = 0;
1676 uint64_t gen_mask;
1677 uint64_t zp_gen;
1678 int i, err;
1680 *ipp = NULL;
1682 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1683 zfid_short_t *zfid = (zfid_short_t *)fidp;
1685 for (i = 0; i < sizeof (zfid->zf_object); i++)
1686 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1688 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1689 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1690 } else {
1691 return (SET_ERROR(EINVAL));
1694 /* LONG_FID_LEN means snapdirs */
1695 if (fidp->fid_len == LONG_FID_LEN) {
1696 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1697 uint64_t objsetid = 0;
1698 uint64_t setgen = 0;
1700 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1701 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1703 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1704 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1706 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1707 dprintf("snapdir fid: objsetid (%llu) != "
1708 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1709 objsetid, ZFSCTL_INO_SNAPDIRS, object);
1711 return (SET_ERROR(EINVAL));
1714 if (fid_gen > 1 || setgen != 0) {
1715 dprintf("snapdir fid: fid_gen (%llu) and setgen "
1716 "(%llu)\n", fid_gen, setgen);
1717 return (SET_ERROR(EINVAL));
1720 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1723 ZFS_ENTER(zfsvfs);
1724 /* A zero fid_gen means we are in the .zfs control directories */
1725 if (fid_gen == 0 &&
1726 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1727 *ipp = zfsvfs->z_ctldir;
1728 ASSERT(*ipp != NULL);
1729 if (object == ZFSCTL_INO_SNAPDIR) {
1730 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1731 0, kcred, NULL, NULL) == 0);
1732 } else {
1734 * Must have an existing ref, so igrab()
1735 * cannot return NULL
1737 VERIFY3P(igrab(*ipp), !=, NULL);
1739 ZFS_EXIT(zfsvfs);
1740 return (0);
1743 gen_mask = -1ULL >> (64 - 8 * i);
1745 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1746 if ((err = zfs_zget(zfsvfs, object, &zp))) {
1747 ZFS_EXIT(zfsvfs);
1748 return (err);
1751 /* Don't export xattr stuff */
1752 if (zp->z_pflags & ZFS_XATTR) {
1753 zrele(zp);
1754 ZFS_EXIT(zfsvfs);
1755 return (SET_ERROR(ENOENT));
1758 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1759 sizeof (uint64_t));
1760 zp_gen = zp_gen & gen_mask;
1761 if (zp_gen == 0)
1762 zp_gen = 1;
1763 if ((fid_gen == 0) && (zfsvfs->z_root == object))
1764 fid_gen = zp_gen;
1765 if (zp->z_unlinked || zp_gen != fid_gen) {
1766 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1767 fid_gen);
1768 zrele(zp);
1769 ZFS_EXIT(zfsvfs);
1770 return (SET_ERROR(ENOENT));
1773 *ipp = ZTOI(zp);
1774 if (*ipp)
1775 zfs_znode_update_vfs(ITOZ(*ipp));
1777 ZFS_EXIT(zfsvfs);
1778 return (0);
1782 * Block out VFS ops and close zfsvfs_t
1784 * Note, if successful, then we return with the 'z_teardown_lock' and
1785 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1786 * dataset and objset intact so that they can be atomically handed off during
1787 * a subsequent rollback or recv operation and the resume thereafter.
1790 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1792 int error;
1794 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1795 return (error);
1797 return (0);
1801 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
1802 * is an invariant across any of the operations that can be performed while the
1803 * filesystem was suspended. Whether it succeeded or failed, the preconditions
1804 * are the same: the relevant objset and associated dataset are owned by
1805 * zfsvfs, held, and long held on entry.
1808 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1810 int err, err2;
1811 znode_t *zp;
1813 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1814 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1817 * We already own this, so just update the objset_t, as the one we
1818 * had before may have been evicted.
1820 objset_t *os;
1821 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1822 VERIFY(dsl_dataset_long_held(ds));
1823 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1824 dsl_pool_config_enter(dp, FTAG);
1825 VERIFY0(dmu_objset_from_ds(ds, &os));
1826 dsl_pool_config_exit(dp, FTAG);
1828 err = zfsvfs_init(zfsvfs, os);
1829 if (err != 0)
1830 goto bail;
1832 ds->ds_dir->dd_activity_cancelled = B_FALSE;
1833 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1835 zfs_set_fuid_feature(zfsvfs);
1836 zfsvfs->z_rollback_time = jiffies;
1839 * Attempt to re-establish all the active inodes with their
1840 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1841 * and mark it stale. This prevents a collision if a new
1842 * inode/object is created which must use the same inode
1843 * number. The stale inode will be be released when the
1844 * VFS prunes the dentry holding the remaining references
1845 * on the stale inode.
1847 mutex_enter(&zfsvfs->z_znodes_lock);
1848 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1849 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1850 err2 = zfs_rezget(zp);
1851 if (err2) {
1852 remove_inode_hash(ZTOI(zp));
1853 zp->z_is_stale = B_TRUE;
1856 /* see comment in zfs_suspend_fs() */
1857 if (zp->z_suspended) {
1858 zfs_zrele_async(zp);
1859 zp->z_suspended = B_FALSE;
1862 mutex_exit(&zfsvfs->z_znodes_lock);
1864 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1866 * zfs_suspend_fs() could have interrupted freeing
1867 * of dnodes. We need to restart this freeing so
1868 * that we don't "leak" the space.
1870 zfs_unlinked_drain(zfsvfs);
1874 * Most of the time zfs_suspend_fs is used for changing the contents
1875 * of the underlying dataset. ZFS rollback and receive operations
1876 * might create files for which negative dentries are present in
1877 * the cache. Since walking the dcache would require a lot of GPL-only
1878 * code duplication, it's much easier on these rather rare occasions
1879 * just to flush the whole dcache for the given dataset/filesystem.
1881 shrink_dcache_sb(zfsvfs->z_sb);
1883 bail:
1884 if (err != 0)
1885 zfsvfs->z_unmounted = B_TRUE;
1887 /* release the VFS ops */
1888 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1889 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1891 if (err != 0) {
1893 * Since we couldn't setup the sa framework, try to force
1894 * unmount this file system.
1896 if (zfsvfs->z_os)
1897 (void) zfs_umount(zfsvfs->z_sb);
1899 return (err);
1903 * Release VOPs and unmount a suspended filesystem.
1906 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1908 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1909 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1912 * We already own this, so just hold and rele it to update the
1913 * objset_t, as the one we had before may have been evicted.
1915 objset_t *os;
1916 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1917 VERIFY(dsl_dataset_long_held(ds));
1918 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1919 dsl_pool_config_enter(dp, FTAG);
1920 VERIFY0(dmu_objset_from_ds(ds, &os));
1921 dsl_pool_config_exit(dp, FTAG);
1922 zfsvfs->z_os = os;
1924 /* release the VOPs */
1925 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1926 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1929 * Try to force unmount this file system.
1931 (void) zfs_umount(zfsvfs->z_sb);
1932 zfsvfs->z_unmounted = B_TRUE;
1933 return (0);
1937 * Automounted snapshots rely on periodic revalidation
1938 * to defer snapshots from being automatically unmounted.
1941 inline void
1942 zfs_exit_fs(zfsvfs_t *zfsvfs)
1944 if (!zfsvfs->z_issnap)
1945 return;
1947 if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1948 MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1949 zfsvfs->z_snap_defer_time = jiffies;
1950 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1951 dmu_objset_id(zfsvfs->z_os),
1952 zfs_expire_snapshot);
1957 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1959 int error;
1960 objset_t *os = zfsvfs->z_os;
1961 dmu_tx_t *tx;
1963 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1964 return (SET_ERROR(EINVAL));
1966 if (newvers < zfsvfs->z_version)
1967 return (SET_ERROR(EINVAL));
1969 if (zfs_spa_version_map(newvers) >
1970 spa_version(dmu_objset_spa(zfsvfs->z_os)))
1971 return (SET_ERROR(ENOTSUP));
1973 tx = dmu_tx_create(os);
1974 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
1975 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1976 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
1977 ZFS_SA_ATTRS);
1978 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1980 error = dmu_tx_assign(tx, TXG_WAIT);
1981 if (error) {
1982 dmu_tx_abort(tx);
1983 return (error);
1986 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
1987 8, 1, &newvers, tx);
1989 if (error) {
1990 dmu_tx_commit(tx);
1991 return (error);
1994 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
1995 uint64_t sa_obj;
1997 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
1998 SPA_VERSION_SA);
1999 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2000 DMU_OT_NONE, 0, tx);
2002 error = zap_add(os, MASTER_NODE_OBJ,
2003 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2004 ASSERT0(error);
2006 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2007 sa_register_update_callback(os, zfs_sa_upgrade);
2010 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2011 "from %llu to %llu", zfsvfs->z_version, newvers);
2013 dmu_tx_commit(tx);
2015 zfsvfs->z_version = newvers;
2016 os->os_version = newvers;
2018 zfs_set_fuid_feature(zfsvfs);
2020 return (0);
2024 * Read a property stored within the master node.
2027 zfs_get_zplprop(objset_t *os, zfs_prop_t prop, uint64_t *value)
2029 uint64_t *cached_copy = NULL;
2032 * Figure out where in the objset_t the cached copy would live, if it
2033 * is available for the requested property.
2035 if (os != NULL) {
2036 switch (prop) {
2037 case ZFS_PROP_VERSION:
2038 cached_copy = &os->os_version;
2039 break;
2040 case ZFS_PROP_NORMALIZE:
2041 cached_copy = &os->os_normalization;
2042 break;
2043 case ZFS_PROP_UTF8ONLY:
2044 cached_copy = &os->os_utf8only;
2045 break;
2046 case ZFS_PROP_CASE:
2047 cached_copy = &os->os_casesensitivity;
2048 break;
2049 default:
2050 break;
2053 if (cached_copy != NULL && *cached_copy != OBJSET_PROP_UNINITIALIZED) {
2054 *value = *cached_copy;
2055 return (0);
2059 * If the property wasn't cached, look up the file system's value for
2060 * the property. For the version property, we look up a slightly
2061 * different string.
2063 const char *pname;
2064 int error = ENOENT;
2065 if (prop == ZFS_PROP_VERSION)
2066 pname = ZPL_VERSION_STR;
2067 else
2068 pname = zfs_prop_to_name(prop);
2070 if (os != NULL) {
2071 ASSERT3U(os->os_phys->os_type, ==, DMU_OST_ZFS);
2072 error = zap_lookup(os, MASTER_NODE_OBJ, pname, 8, 1, value);
2075 if (error == ENOENT) {
2076 /* No value set, use the default value */
2077 switch (prop) {
2078 case ZFS_PROP_VERSION:
2079 *value = ZPL_VERSION;
2080 break;
2081 case ZFS_PROP_NORMALIZE:
2082 case ZFS_PROP_UTF8ONLY:
2083 *value = 0;
2084 break;
2085 case ZFS_PROP_CASE:
2086 *value = ZFS_CASE_SENSITIVE;
2087 break;
2088 case ZFS_PROP_ACLTYPE:
2089 *value = ZFS_ACLTYPE_OFF;
2090 break;
2091 default:
2092 return (error);
2094 error = 0;
2098 * If one of the methods for getting the property value above worked,
2099 * copy it into the objset_t's cache.
2101 if (error == 0 && cached_copy != NULL) {
2102 *cached_copy = *value;
2105 return (error);
2109 * Return true if the corresponding vfs's unmounted flag is set.
2110 * Otherwise return false.
2111 * If this function returns true we know VFS unmount has been initiated.
2113 boolean_t
2114 zfs_get_vfs_flag_unmounted(objset_t *os)
2116 zfsvfs_t *zfvp;
2117 boolean_t unmounted = B_FALSE;
2119 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2121 mutex_enter(&os->os_user_ptr_lock);
2122 zfvp = dmu_objset_get_user(os);
2123 if (zfvp != NULL && zfvp->z_unmounted)
2124 unmounted = B_TRUE;
2125 mutex_exit(&os->os_user_ptr_lock);
2127 return (unmounted);
2130 void
2131 zfsvfs_update_fromname(const char *oldname, const char *newname)
2134 * We don't need to do anything here, the devname is always current by
2135 * virtue of zfsvfs->z_sb->s_op->show_devname.
2137 (void) oldname, (void) newname;
2140 void
2141 zfs_init(void)
2143 zfsctl_init();
2144 zfs_znode_init();
2145 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2146 register_filesystem(&zpl_fs_type);
2149 void
2150 zfs_fini(void)
2153 * we don't use outstanding because zpl_posix_acl_free might add more.
2155 taskq_wait(system_delay_taskq);
2156 taskq_wait(system_taskq);
2157 unregister_filesystem(&zpl_fs_type);
2158 zfs_znode_fini();
2159 zfsctl_fini();
2162 #if defined(_KERNEL)
2163 EXPORT_SYMBOL(zfs_suspend_fs);
2164 EXPORT_SYMBOL(zfs_resume_fs);
2165 EXPORT_SYMBOL(zfs_set_version);
2166 EXPORT_SYMBOL(zfsvfs_create);
2167 EXPORT_SYMBOL(zfsvfs_free);
2168 EXPORT_SYMBOL(zfs_is_readonly);
2169 EXPORT_SYMBOL(zfs_domount);
2170 EXPORT_SYMBOL(zfs_preumount);
2171 EXPORT_SYMBOL(zfs_umount);
2172 EXPORT_SYMBOL(zfs_remount);
2173 EXPORT_SYMBOL(zfs_statvfs);
2174 EXPORT_SYMBOL(zfs_vget);
2175 EXPORT_SYMBOL(zfs_prune);
2176 #endif