Fix regression in dmu_buf_will_fill()
[zfs.git] / module / os / freebsd / zfs / zio_crypt.c
blobfeaca93fb9330d1f48049ee5c3718443475751f8
1 /*
2 * CDDL HEADER START
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
13 * CDDL HEADER END
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
20 #include <sys/zio_crypt.h>
21 #include <sys/dmu.h>
22 #include <sys/dmu_objset.h>
23 #include <sys/dnode.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zil.h>
27 #include <sys/sha2.h>
28 #include <sys/hkdf.h>
31 * This file is responsible for handling all of the details of generating
32 * encryption parameters and performing encryption and authentication.
34 * BLOCK ENCRYPTION PARAMETERS:
35 * Encryption /Authentication Algorithm Suite (crypt):
36 * The encryption algorithm, mode, and key length we are going to use. We
37 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
38 * keys. All authentication is currently done with SHA512-HMAC.
40 * Plaintext:
41 * The unencrypted data that we want to encrypt.
43 * Initialization Vector (IV):
44 * An initialization vector for the encryption algorithms. This is used to
45 * "tweak" the encryption algorithms so that two blocks of the same data are
46 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
47 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
48 * never reused with the same encryption key. This value is stored unencrypted
49 * and must simply be provided to the decryption function. We use a 96 bit IV
50 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
51 * derive the IV randomly. The first 64 bits of the IV are stored in the second
52 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
53 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
54 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
55 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
56 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
57 * format supports at most 2^15 slots per L0 dnode block, because the maximum
58 * block size is 16MB (2^24). In either case, for level 0 blocks this number
59 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
60 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
61 * for the dnode code.
63 * Master key:
64 * This is the most important secret data of an encrypted dataset. It is used
65 * along with the salt to generate that actual encryption keys via HKDF. We
66 * do not use the master key to directly encrypt any data because there are
67 * theoretical limits on how much data can actually be safely encrypted with
68 * any encryption mode. The master key is stored encrypted on disk with the
69 * user's wrapping key. Its length is determined by the encryption algorithm.
70 * For details on how this is stored see the block comment in dsl_crypt.c
72 * Salt:
73 * Used as an input to the HKDF function, along with the master key. We use a
74 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
75 * can be used for encrypting many blocks, so we cache the current salt and the
76 * associated derived key in zio_crypt_t so we do not need to derive it again
77 * needlessly.
79 * Encryption Key:
80 * A secret binary key, generated from an HKDF function used to encrypt and
81 * decrypt data.
83 * Message Authentication Code (MAC)
84 * The MAC is an output of authenticated encryption modes such as AES-GCM and
85 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
86 * data on disk and return garbage to the application. Effectively, it is a
87 * checksum that can not be reproduced by an attacker. We store the MAC in the
88 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
89 * regular checksum of the ciphertext which can be used for scrubbing.
91 * OBJECT AUTHENTICATION:
92 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
93 * they contain some info that always needs to be readable. To prevent this
94 * data from being altered, we authenticate this data using SHA512-HMAC. This
95 * will produce a MAC (similar to the one produced via encryption) which can
96 * be used to verify the object was not modified. HMACs do not require key
97 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
98 * data.
100 * ZIL ENCRYPTION:
101 * ZIL blocks have their bp written to disk ahead of the associated data, so we
102 * cannot store the MAC there as we normally do. For these blocks the MAC is
103 * stored in the embedded checksum within the zil_chain_t header. The salt and
104 * IV are generated for the block on bp allocation instead of at encryption
105 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
106 * for claiming even though all of the sensitive user data still needs to be
107 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
108 * pieces of the block need to be encrypted. All data that is not encrypted is
109 * authenticated using the AAD mechanisms that the supported encryption modes
110 * provide for. In order to preserve the semantics of the ZIL for encrypted
111 * datasets, the ZIL is not protected at the objset level as described below.
113 * DNODE ENCRYPTION:
114 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
115 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
116 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
117 * which pieces of the block need to be encrypted. For more details about
118 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
120 * OBJECT SET AUTHENTICATION:
121 * Up to this point, everything we have encrypted and authenticated has been
122 * at level 0 (or -2 for the ZIL). If we did not do any further work the
123 * on-disk format would be susceptible to attacks that deleted or rearranged
124 * the order of level 0 blocks. Ideally, the cleanest solution would be to
125 * maintain a tree of authentication MACs going up the bp tree. However, this
126 * presents a problem for raw sends. Send files do not send information about
127 * indirect blocks so there would be no convenient way to transfer the MACs and
128 * they cannot be recalculated on the receive side without the master key which
129 * would defeat one of the purposes of raw sends in the first place. Instead,
130 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
131 * from the level below. We also include some portable fields from blk_prop such
132 * as the lsize and compression algorithm to prevent the data from being
133 * misinterpreted.
135 * At the objset level, we maintain 2 separate 256 bit MACs in the
136 * objset_phys_t. The first one is "portable" and is the logical root of the
137 * MAC tree maintained in the metadnode's bps. The second, is "local" and is
138 * used as the root MAC for the user accounting objects, which are also not
139 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
140 * of the send file. The useraccounting code ensures that the useraccounting
141 * info is not present upon a receive, so the local MAC can simply be cleared
142 * out at that time. For more info about objset_phys_t authentication, see
143 * zio_crypt_do_objset_hmacs().
145 * CONSIDERATIONS FOR DEDUP:
146 * In order for dedup to work, blocks that we want to dedup with one another
147 * need to use the same IV and encryption key, so that they will have the same
148 * ciphertext. Normally, one should never reuse an IV with the same encryption
149 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
150 * blocks. In this case, however, since we are using the same plaintext as
151 * well all that we end up with is a duplicate of the original ciphertext we
152 * already had. As a result, an attacker with read access to the raw disk will
153 * be able to tell which blocks are the same but this information is given away
154 * by dedup anyway. In order to get the same IVs and encryption keys for
155 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
156 * here so that a reproducible checksum of the plaintext is never available to
157 * the attacker. The HMAC key is kept alongside the master key, encrypted on
158 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
159 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
160 * will only work within a clone family since encrypted dedup requires use of
161 * the same master and HMAC keys.
165 * After encrypting many blocks with the same key we may start to run up
166 * against the theoretical limits of how much data can securely be encrypted
167 * with a single key using the supported encryption modes. The most obvious
168 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
169 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
170 * This risk actually grows surprisingly quickly over time according to the
171 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
172 * generated n IVs with a cryptographically secure RNG, the approximate
173 * probability p(n) of a collision is given as:
175 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
177 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
179 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
180 * we must not write more than 398,065,730 blocks with the same encryption key.
181 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
182 * generating a new random 64 bit salt for our HKDF encryption key generation
183 * function.
185 #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000
186 #define ZFS_CURRENT_MAX_SALT_USES \
187 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
188 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
190 typedef struct blkptr_auth_buf {
191 uint64_t bab_prop; /* blk_prop - portable mask */
192 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */
193 uint64_t bab_pad; /* reserved for future use */
194 } blkptr_auth_buf_t;
196 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
197 {"", ZC_TYPE_NONE, 0, "inherit"},
198 {"", ZC_TYPE_NONE, 0, "on"},
199 {"", ZC_TYPE_NONE, 0, "off"},
200 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"},
201 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"},
202 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"},
203 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"},
204 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"},
205 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"}
208 static void
209 zio_crypt_key_destroy_early(zio_crypt_key_t *key)
211 rw_destroy(&key->zk_salt_lock);
213 /* free crypto templates */
214 memset(&key->zk_session, 0, sizeof (key->zk_session));
216 /* zero out sensitive data */
217 memset(key, 0, sizeof (zio_crypt_key_t));
220 void
221 zio_crypt_key_destroy(zio_crypt_key_t *key)
224 freebsd_crypt_freesession(&key->zk_session);
225 zio_crypt_key_destroy_early(key);
229 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
231 int ret;
232 crypto_mechanism_t mech __unused;
233 uint_t keydata_len;
234 const zio_crypt_info_t *ci = NULL;
236 ASSERT3P(key, !=, NULL);
237 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
239 ci = &zio_crypt_table[crypt];
240 if (ci->ci_crypt_type != ZC_TYPE_GCM &&
241 ci->ci_crypt_type != ZC_TYPE_CCM)
242 return (ENOTSUP);
244 keydata_len = zio_crypt_table[crypt].ci_keylen;
245 memset(key, 0, sizeof (zio_crypt_key_t));
246 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
248 /* fill keydata buffers and salt with random data */
249 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
250 if (ret != 0)
251 goto error;
253 ret = random_get_bytes(key->zk_master_keydata, keydata_len);
254 if (ret != 0)
255 goto error;
257 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
258 if (ret != 0)
259 goto error;
261 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
262 if (ret != 0)
263 goto error;
265 /* derive the current key from the master key */
266 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
267 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
268 keydata_len);
269 if (ret != 0)
270 goto error;
272 /* initialize keys for the ICP */
273 key->zk_current_key.ck_data = key->zk_current_keydata;
274 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
276 key->zk_hmac_key.ck_data = &key->zk_hmac_key;
277 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
279 ci = &zio_crypt_table[crypt];
280 if (ci->ci_crypt_type != ZC_TYPE_GCM &&
281 ci->ci_crypt_type != ZC_TYPE_CCM)
282 return (ENOTSUP);
284 ret = freebsd_crypt_newsession(&key->zk_session, ci,
285 &key->zk_current_key);
286 if (ret)
287 goto error;
289 key->zk_crypt = crypt;
290 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
291 key->zk_salt_count = 0;
293 return (0);
295 error:
296 zio_crypt_key_destroy_early(key);
297 return (ret);
300 static int
301 zio_crypt_key_change_salt(zio_crypt_key_t *key)
303 int ret = 0;
304 uint8_t salt[ZIO_DATA_SALT_LEN];
305 crypto_mechanism_t mech __unused;
307 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
309 /* generate a new salt */
310 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
311 if (ret != 0)
312 goto error;
314 rw_enter(&key->zk_salt_lock, RW_WRITER);
316 /* someone beat us to the salt rotation, just unlock and return */
317 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
318 goto out_unlock;
320 /* derive the current key from the master key and the new salt */
321 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
322 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
323 if (ret != 0)
324 goto out_unlock;
326 /* assign the salt and reset the usage count */
327 memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
328 key->zk_salt_count = 0;
330 freebsd_crypt_freesession(&key->zk_session);
331 ret = freebsd_crypt_newsession(&key->zk_session,
332 &zio_crypt_table[key->zk_crypt], &key->zk_current_key);
333 if (ret != 0)
334 goto out_unlock;
336 rw_exit(&key->zk_salt_lock);
338 return (0);
340 out_unlock:
341 rw_exit(&key->zk_salt_lock);
342 error:
343 return (ret);
346 /* See comment above zfs_key_max_salt_uses definition for details */
348 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
350 int ret;
351 boolean_t salt_change;
353 rw_enter(&key->zk_salt_lock, RW_READER);
355 memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
356 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
357 ZFS_CURRENT_MAX_SALT_USES);
359 rw_exit(&key->zk_salt_lock);
361 if (salt_change) {
362 ret = zio_crypt_key_change_salt(key);
363 if (ret != 0)
364 goto error;
367 return (0);
369 error:
370 return (ret);
373 void *failed_decrypt_buf;
374 int failed_decrypt_size;
377 * This function handles all encryption and decryption in zfs. When
378 * encrypting it expects puio to reference the plaintext and cuio to
379 * reference the ciphertext. cuio must have enough space for the
380 * ciphertext + room for a MAC. datalen should be the length of the
381 * plaintext / ciphertext alone.
384 * The implementation for FreeBSD's OpenCrypto.
386 * The big difference between ICP and FOC is that FOC uses a single
387 * buffer for input and output. This means that (for AES-GCM, the
388 * only one supported right now) the source must be copied into the
389 * destination, and the destination must have the AAD, and the tag/MAC,
390 * already associated with it. (Both implementations can use a uio.)
392 * Since the auth data is part of the iovec array, all we need to know
393 * is the length: 0 means there's no AAD.
396 static int
397 zio_do_crypt_uio_opencrypto(boolean_t encrypt, freebsd_crypt_session_t *sess,
398 uint64_t crypt, crypto_key_t *key, uint8_t *ivbuf, uint_t datalen,
399 zfs_uio_t *uio, uint_t auth_len)
401 const zio_crypt_info_t *ci = &zio_crypt_table[crypt];
402 if (ci->ci_crypt_type != ZC_TYPE_GCM &&
403 ci->ci_crypt_type != ZC_TYPE_CCM)
404 return (ENOTSUP);
407 int ret = freebsd_crypt_uio(encrypt, sess, ci, uio, key, ivbuf,
408 datalen, auth_len);
409 if (ret != 0) {
410 #ifdef FCRYPTO_DEBUG
411 printf("%s(%d): Returning error %s\n",
412 __FUNCTION__, __LINE__, encrypt ? "EIO" : "ECKSUM");
413 #endif
414 ret = SET_ERROR(encrypt ? EIO : ECKSUM);
417 return (ret);
421 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
422 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
424 int ret;
425 uint64_t aad[3];
427 * With OpenCrypto in FreeBSD, the same buffer is used for
428 * input and output. Also, the AAD (for AES-GMC at least)
429 * needs to logically go in front.
431 zfs_uio_t cuio;
432 struct uio cuio_s;
433 iovec_t iovecs[4];
434 uint64_t crypt = key->zk_crypt;
435 uint_t enc_len, keydata_len, aad_len;
437 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
439 zfs_uio_init(&cuio, &cuio_s);
441 keydata_len = zio_crypt_table[crypt].ci_keylen;
443 /* generate iv for wrapping the master and hmac key */
444 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
445 if (ret != 0)
446 goto error;
449 * Since we only support one buffer, we need to copy
450 * the plain text (source) to the cipher buffer (dest).
451 * We set iovecs[0] -- the authentication data -- below.
453 memcpy(keydata_out, key->zk_master_keydata, keydata_len);
454 memcpy(hmac_keydata_out, key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
455 iovecs[1].iov_base = keydata_out;
456 iovecs[1].iov_len = keydata_len;
457 iovecs[2].iov_base = hmac_keydata_out;
458 iovecs[2].iov_len = SHA512_HMAC_KEYLEN;
459 iovecs[3].iov_base = mac;
460 iovecs[3].iov_len = WRAPPING_MAC_LEN;
463 * Although we don't support writing to the old format, we do
464 * support rewrapping the key so that the user can move and
465 * quarantine datasets on the old format.
467 if (key->zk_version == 0) {
468 aad_len = sizeof (uint64_t);
469 aad[0] = LE_64(key->zk_guid);
470 } else {
471 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
472 aad_len = sizeof (uint64_t) * 3;
473 aad[0] = LE_64(key->zk_guid);
474 aad[1] = LE_64(crypt);
475 aad[2] = LE_64(key->zk_version);
478 iovecs[0].iov_base = aad;
479 iovecs[0].iov_len = aad_len;
480 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
482 GET_UIO_STRUCT(&cuio)->uio_iov = iovecs;
483 zfs_uio_iovcnt(&cuio) = 4;
484 zfs_uio_segflg(&cuio) = UIO_SYSSPACE;
486 /* encrypt the keys and store the resulting ciphertext and mac */
487 ret = zio_do_crypt_uio_opencrypto(B_TRUE, NULL, crypt, cwkey,
488 iv, enc_len, &cuio, aad_len);
489 if (ret != 0)
490 goto error;
492 return (0);
494 error:
495 return (ret);
499 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
500 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
501 uint8_t *mac, zio_crypt_key_t *key)
503 int ret;
504 uint64_t aad[3];
506 * With OpenCrypto in FreeBSD, the same buffer is used for
507 * input and output. Also, the AAD (for AES-GMC at least)
508 * needs to logically go in front.
510 zfs_uio_t cuio;
511 struct uio cuio_s;
512 iovec_t iovecs[4];
513 void *src, *dst;
514 uint_t enc_len, keydata_len, aad_len;
516 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
518 keydata_len = zio_crypt_table[crypt].ci_keylen;
519 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
521 zfs_uio_init(&cuio, &cuio_s);
524 * Since we only support one buffer, we need to copy
525 * the encrypted buffer (source) to the plain buffer
526 * (dest). We set iovecs[0] -- the authentication data --
527 * below.
529 dst = key->zk_master_keydata;
530 src = keydata;
531 memcpy(dst, src, keydata_len);
533 dst = key->zk_hmac_keydata;
534 src = hmac_keydata;
535 memcpy(dst, src, SHA512_HMAC_KEYLEN);
537 iovecs[1].iov_base = key->zk_master_keydata;
538 iovecs[1].iov_len = keydata_len;
539 iovecs[2].iov_base = key->zk_hmac_keydata;
540 iovecs[2].iov_len = SHA512_HMAC_KEYLEN;
541 iovecs[3].iov_base = mac;
542 iovecs[3].iov_len = WRAPPING_MAC_LEN;
544 if (version == 0) {
545 aad_len = sizeof (uint64_t);
546 aad[0] = LE_64(guid);
547 } else {
548 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
549 aad_len = sizeof (uint64_t) * 3;
550 aad[0] = LE_64(guid);
551 aad[1] = LE_64(crypt);
552 aad[2] = LE_64(version);
555 enc_len = keydata_len + SHA512_HMAC_KEYLEN;
556 iovecs[0].iov_base = aad;
557 iovecs[0].iov_len = aad_len;
559 GET_UIO_STRUCT(&cuio)->uio_iov = iovecs;
560 zfs_uio_iovcnt(&cuio) = 4;
561 zfs_uio_segflg(&cuio) = UIO_SYSSPACE;
563 /* decrypt the keys and store the result in the output buffers */
564 ret = zio_do_crypt_uio_opencrypto(B_FALSE, NULL, crypt, cwkey,
565 iv, enc_len, &cuio, aad_len);
567 if (ret != 0)
568 goto error;
570 /* generate a fresh salt */
571 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
572 if (ret != 0)
573 goto error;
575 /* derive the current key from the master key */
576 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
577 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
578 keydata_len);
579 if (ret != 0)
580 goto error;
582 /* initialize keys for ICP */
583 key->zk_current_key.ck_data = key->zk_current_keydata;
584 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
586 key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
587 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
589 ret = freebsd_crypt_newsession(&key->zk_session,
590 &zio_crypt_table[crypt], &key->zk_current_key);
591 if (ret != 0)
592 goto error;
594 key->zk_crypt = crypt;
595 key->zk_version = version;
596 key->zk_guid = guid;
597 key->zk_salt_count = 0;
599 return (0);
601 error:
602 zio_crypt_key_destroy_early(key);
603 return (ret);
607 zio_crypt_generate_iv(uint8_t *ivbuf)
609 int ret;
611 /* randomly generate the IV */
612 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
613 if (ret != 0)
614 goto error;
616 return (0);
618 error:
619 memset(ivbuf, 0, ZIO_DATA_IV_LEN);
620 return (ret);
624 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
625 uint8_t *digestbuf, uint_t digestlen)
627 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
629 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
631 crypto_mac(&key->zk_hmac_key, data, datalen,
632 raw_digestbuf, SHA512_DIGEST_LENGTH);
634 memcpy(digestbuf, raw_digestbuf, digestlen);
636 return (0);
640 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
641 uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
643 int ret;
644 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
646 ret = zio_crypt_do_hmac(key, data, datalen,
647 digestbuf, SHA512_DIGEST_LENGTH);
648 if (ret != 0)
649 return (ret);
651 memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
652 memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
654 return (0);
658 * The following functions are used to encode and decode encryption parameters
659 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
660 * byte strings, which normally means that these strings would not need to deal
661 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
662 * byteswapped by lower layers and so we must "undo" that byteswap here upon
663 * decoding and encoding in a non-native byteorder. These functions require
664 * that the byteorder bit is correct before being called.
666 void
667 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
669 uint64_t val64;
670 uint32_t val32;
672 ASSERT(BP_IS_ENCRYPTED(bp));
674 if (!BP_SHOULD_BYTESWAP(bp)) {
675 memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
676 memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
677 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
678 BP_SET_IV2(bp, val32);
679 } else {
680 memcpy(&val64, salt, sizeof (uint64_t));
681 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
683 memcpy(&val64, iv, sizeof (uint64_t));
684 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
686 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
687 BP_SET_IV2(bp, BSWAP_32(val32));
691 void
692 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
694 uint64_t val64;
695 uint32_t val32;
697 ASSERT(BP_IS_PROTECTED(bp));
699 /* for convenience, so callers don't need to check */
700 if (BP_IS_AUTHENTICATED(bp)) {
701 memset(salt, 0, ZIO_DATA_SALT_LEN);
702 memset(iv, 0, ZIO_DATA_IV_LEN);
703 return;
706 if (!BP_SHOULD_BYTESWAP(bp)) {
707 memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
708 memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
710 val32 = (uint32_t)BP_GET_IV2(bp);
711 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
712 } else {
713 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
714 memcpy(salt, &val64, sizeof (uint64_t));
716 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
717 memcpy(iv, &val64, sizeof (uint64_t));
719 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
720 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
724 void
725 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
727 uint64_t val64;
729 ASSERT(BP_USES_CRYPT(bp));
730 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
732 if (!BP_SHOULD_BYTESWAP(bp)) {
733 memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
734 memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
735 sizeof (uint64_t));
736 } else {
737 memcpy(&val64, mac, sizeof (uint64_t));
738 bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
740 memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
741 bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
745 void
746 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
748 uint64_t val64;
750 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
752 /* for convenience, so callers don't need to check */
753 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
754 memset(mac, 0, ZIO_DATA_MAC_LEN);
755 return;
758 if (!BP_SHOULD_BYTESWAP(bp)) {
759 memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
760 memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
761 sizeof (uint64_t));
762 } else {
763 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
764 memcpy(mac, &val64, sizeof (uint64_t));
766 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
767 memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
771 void
772 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
774 zil_chain_t *zilc = data;
776 memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
777 memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
778 sizeof (uint64_t));
781 void
782 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
785 * The ZIL MAC is embedded in the block it protects, which will
786 * not have been byteswapped by the time this function has been called.
787 * As a result, we don't need to worry about byteswapping the MAC.
789 const zil_chain_t *zilc = data;
791 memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
792 memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
793 sizeof (uint64_t));
797 * This routine takes a block of dnodes (src_abd) and copies only the bonus
798 * buffers to the same offsets in the dst buffer. datalen should be the size
799 * of both the src_abd and the dst buffer (not just the length of the bonus
800 * buffers).
802 void
803 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
805 uint_t i, max_dnp = datalen >> DNODE_SHIFT;
806 uint8_t *src;
807 dnode_phys_t *dnp, *sdnp, *ddnp;
809 src = abd_borrow_buf_copy(src_abd, datalen);
811 sdnp = (dnode_phys_t *)src;
812 ddnp = (dnode_phys_t *)dst;
814 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
815 dnp = &sdnp[i];
816 if (dnp->dn_type != DMU_OT_NONE &&
817 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
818 dnp->dn_bonuslen != 0) {
819 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
820 DN_MAX_BONUS_LEN(dnp));
824 abd_return_buf(src_abd, src, datalen);
828 * This function decides what fields from blk_prop are included in
829 * the on-disk various MAC algorithms.
831 static void
832 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
834 int avoidlint = SPA_MINBLOCKSIZE;
836 * Version 0 did not properly zero out all non-portable fields
837 * as it should have done. We maintain this code so that we can
838 * do read-only imports of pools on this version.
840 if (version == 0) {
841 BP_SET_DEDUP(bp, 0);
842 BP_SET_CHECKSUM(bp, 0);
843 BP_SET_PSIZE(bp, avoidlint);
844 return;
847 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
850 * The hole_birth feature might set these fields even if this bp
851 * is a hole. We zero them out here to guarantee that raw sends
852 * will function with or without the feature.
854 if (BP_IS_HOLE(bp)) {
855 bp->blk_prop = 0ULL;
856 return;
860 * At L0 we want to verify these fields to ensure that data blocks
861 * can not be reinterpreted. For instance, we do not want an attacker
862 * to trick us into returning raw lz4 compressed data to the user
863 * by modifying the compression bits. At higher levels, we cannot
864 * enforce this policy since raw sends do not convey any information
865 * about indirect blocks, so these values might be different on the
866 * receive side. Fortunately, this does not open any new attack
867 * vectors, since any alterations that can be made to a higher level
868 * bp must still verify the correct order of the layer below it.
870 if (BP_GET_LEVEL(bp) != 0) {
871 BP_SET_BYTEORDER(bp, 0);
872 BP_SET_COMPRESS(bp, 0);
875 * psize cannot be set to zero or it will trigger
876 * asserts, but the value doesn't really matter as
877 * long as it is constant.
879 BP_SET_PSIZE(bp, avoidlint);
882 BP_SET_DEDUP(bp, 0);
883 BP_SET_CHECKSUM(bp, 0);
886 static void
887 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
888 blkptr_auth_buf_t *bab, uint_t *bab_len)
890 blkptr_t tmpbp = *bp;
892 if (should_bswap)
893 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
895 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
896 ASSERT0(BP_IS_EMBEDDED(&tmpbp));
898 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
901 * We always MAC blk_prop in LE to ensure portability. This
902 * must be done after decoding the mac, since the endianness
903 * will get zero'd out here.
905 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
906 bab->bab_prop = LE_64(tmpbp.blk_prop);
907 bab->bab_pad = 0ULL;
909 /* version 0 did not include the padding */
910 *bab_len = sizeof (blkptr_auth_buf_t);
911 if (version == 0)
912 *bab_len -= sizeof (uint64_t);
915 static int
916 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
917 boolean_t should_bswap, blkptr_t *bp)
919 uint_t bab_len;
920 blkptr_auth_buf_t bab;
922 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
923 crypto_mac_update(ctx, &bab, bab_len);
925 return (0);
928 static void
929 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
930 boolean_t should_bswap, blkptr_t *bp)
932 uint_t bab_len;
933 blkptr_auth_buf_t bab;
935 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
936 SHA2Update(ctx, &bab, bab_len);
939 static void
940 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
941 boolean_t should_bswap, blkptr_t *bp)
943 uint_t bab_len;
944 blkptr_auth_buf_t bab;
946 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
947 memcpy(*aadp, &bab, bab_len);
948 *aadp += bab_len;
949 *aad_len += bab_len;
952 static int
953 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
954 boolean_t should_bswap, dnode_phys_t *dnp)
956 int ret, i;
957 dnode_phys_t *adnp;
958 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
959 uint8_t tmp_dncore[offsetof(dnode_phys_t, dn_blkptr)];
961 /* authenticate the core dnode (masking out non-portable bits) */
962 memcpy(tmp_dncore, dnp, sizeof (tmp_dncore));
963 adnp = (dnode_phys_t *)tmp_dncore;
964 if (le_bswap) {
965 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
966 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
967 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
968 adnp->dn_used = BSWAP_64(adnp->dn_used);
970 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
971 adnp->dn_used = 0;
973 crypto_mac_update(ctx, adnp, sizeof (tmp_dncore));
975 for (i = 0; i < dnp->dn_nblkptr; i++) {
976 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
977 should_bswap, &dnp->dn_blkptr[i]);
978 if (ret != 0)
979 goto error;
982 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
983 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
984 should_bswap, DN_SPILL_BLKPTR(dnp));
985 if (ret != 0)
986 goto error;
989 return (0);
991 error:
992 return (ret);
996 * objset_phys_t blocks introduce a number of exceptions to the normal
997 * authentication process. objset_phys_t's contain 2 separate HMACS for
998 * protecting the integrity of their data. The portable_mac protects the
999 * metadnode. This MAC can be sent with a raw send and protects against
1000 * reordering of data within the metadnode. The local_mac protects the user
1001 * accounting objects which are not sent from one system to another.
1003 * In addition, objset blocks are the only blocks that can be modified and
1004 * written to disk without the key loaded under certain circumstances. During
1005 * zil_claim() we need to be able to update the zil_header_t to complete
1006 * claiming log blocks and during raw receives we need to write out the
1007 * portable_mac from the send file. Both of these actions are possible
1008 * because these fields are not protected by either MAC so neither one will
1009 * need to modify the MACs without the key. However, when the modified blocks
1010 * are written out they will be byteswapped into the host machine's native
1011 * endianness which will modify fields protected by the MAC. As a result, MAC
1012 * calculation for objset blocks works slightly differently from other block
1013 * types. Where other block types MAC the data in whatever endianness is
1014 * written to disk, objset blocks always MAC little endian version of their
1015 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1016 * and le_bswap indicates whether a byteswap is needed to get this block
1017 * into little endian format.
1020 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1021 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1023 int ret;
1024 struct hmac_ctx hash_ctx;
1025 struct hmac_ctx *ctx = &hash_ctx;
1026 objset_phys_t *osp = data;
1027 uint64_t intval;
1028 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1029 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1030 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1033 /* calculate the portable MAC from the portable fields and metadnode */
1034 crypto_mac_init(ctx, &key->zk_hmac_key);
1036 /* add in the os_type */
1037 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1038 crypto_mac_update(ctx, &intval, sizeof (uint64_t));
1040 /* add in the portable os_flags */
1041 intval = osp->os_flags;
1042 if (should_bswap)
1043 intval = BSWAP_64(intval);
1044 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1045 if (!ZFS_HOST_BYTEORDER)
1046 intval = BSWAP_64(intval);
1048 crypto_mac_update(ctx, &intval, sizeof (uint64_t));
1050 /* add in fields from the metadnode */
1051 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1052 should_bswap, &osp->os_meta_dnode);
1053 if (ret)
1054 goto error;
1056 crypto_mac_final(ctx, raw_portable_mac, SHA512_DIGEST_LENGTH);
1058 memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
1061 * This is necessary here as we check next whether
1062 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
1063 * decide if the local_mac should be zeroed out. That flag will always
1064 * be set by dmu_objset_id_quota_upgrade_cb() and
1065 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
1066 * completed.
1068 intval = osp->os_flags;
1069 if (should_bswap)
1070 intval = BSWAP_64(intval);
1071 boolean_t uacct_incomplete =
1072 !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
1075 * The local MAC protects the user, group and project accounting.
1076 * If these objects are not present, the local MAC is zeroed out.
1078 if (uacct_incomplete ||
1079 (datalen >= OBJSET_PHYS_SIZE_V3 &&
1080 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1081 osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1082 osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1083 (datalen >= OBJSET_PHYS_SIZE_V2 &&
1084 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1085 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1086 (datalen <= OBJSET_PHYS_SIZE_V1)) {
1087 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1088 return (0);
1091 /* calculate the local MAC from the userused and groupused dnodes */
1092 crypto_mac_init(ctx, &key->zk_hmac_key);
1094 /* add in the non-portable os_flags */
1095 intval = osp->os_flags;
1096 if (should_bswap)
1097 intval = BSWAP_64(intval);
1098 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1099 if (!ZFS_HOST_BYTEORDER)
1100 intval = BSWAP_64(intval);
1102 crypto_mac_update(ctx, &intval, sizeof (uint64_t));
1104 /* XXX check dnode type ... */
1105 /* add in fields from the user accounting dnodes */
1106 if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1107 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1108 should_bswap, &osp->os_userused_dnode);
1109 if (ret)
1110 goto error;
1113 if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1114 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1115 should_bswap, &osp->os_groupused_dnode);
1116 if (ret)
1117 goto error;
1120 if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1121 datalen >= OBJSET_PHYS_SIZE_V3) {
1122 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1123 should_bswap, &osp->os_projectused_dnode);
1124 if (ret)
1125 goto error;
1128 crypto_mac_final(ctx, raw_local_mac, SHA512_DIGEST_LENGTH);
1130 memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
1132 return (0);
1134 error:
1135 memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
1136 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1137 return (ret);
1140 static void
1141 zio_crypt_destroy_uio(zfs_uio_t *uio)
1143 if (GET_UIO_STRUCT(uio)->uio_iov)
1144 kmem_free(GET_UIO_STRUCT(uio)->uio_iov,
1145 zfs_uio_iovcnt(uio) * sizeof (iovec_t));
1149 * This function parses an uncompressed indirect block and returns a checksum
1150 * of all the portable fields from all of the contained bps. The portable
1151 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1152 * checksum, and psize bits. For an explanation of the purpose of this, see
1153 * the comment block on object set authentication.
1155 static int
1156 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1157 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1159 blkptr_t *bp;
1160 int i, epb = datalen >> SPA_BLKPTRSHIFT;
1161 SHA2_CTX ctx;
1162 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1164 /* checksum all of the MACs from the layer below */
1165 SHA2Init(SHA512, &ctx);
1166 for (i = 0, bp = buf; i < epb; i++, bp++) {
1167 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1168 byteswap, bp);
1170 SHA2Final(digestbuf, &ctx);
1172 if (generate) {
1173 memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
1174 return (0);
1177 if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0) {
1178 #ifdef FCRYPTO_DEBUG
1179 printf("%s(%d): Setting ECKSUM\n", __FUNCTION__, __LINE__);
1180 #endif
1181 return (SET_ERROR(ECKSUM));
1183 return (0);
1187 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1188 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1190 int ret;
1193 * Unfortunately, callers of this function will not always have
1194 * easy access to the on-disk format version. This info is
1195 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1196 * is expected to be verifiable even when the key isn't loaded.
1197 * Here, instead of doing a ZAP lookup for the version for each
1198 * zio, we simply try both existing formats.
1200 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1201 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1202 if (ret == ECKSUM) {
1203 ASSERT(!generate);
1204 ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1205 buf, datalen, 0, byteswap, cksum);
1208 return (ret);
1212 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1213 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1215 int ret;
1216 void *buf;
1218 buf = abd_borrow_buf_copy(abd, datalen);
1219 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1220 byteswap, cksum);
1221 abd_return_buf(abd, buf, datalen);
1223 return (ret);
1227 * Special case handling routine for encrypting / decrypting ZIL blocks.
1228 * We do not check for the older ZIL chain because the encryption feature
1229 * was not available before the newer ZIL chain was introduced. The goal
1230 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1231 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1234 * The OpenCrypto used in FreeBSD does not use separate source and
1235 * destination buffers; instead, the same buffer is used. Further, to
1236 * accommodate some of the drivers, the authbuf needs to be logically before
1237 * the data. This means that we need to copy the source to the destination,
1238 * and set up an extra iovec_t at the beginning to handle the authbuf.
1239 * It also means we'll only return one zfs_uio_t.
1242 static int
1243 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1244 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
1245 zfs_uio_t *out_uio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1246 boolean_t *no_crypt)
1248 (void) puio;
1249 uint8_t *aadbuf = zio_buf_alloc(datalen);
1250 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1251 iovec_t *dst_iovecs;
1252 zil_chain_t *zilc;
1253 lr_t *lr;
1254 uint64_t txtype, lr_len, nused;
1255 uint_t crypt_len, nr_iovecs, vec;
1256 uint_t aad_len = 0, total_len = 0;
1258 if (encrypt) {
1259 src = plainbuf;
1260 dst = cipherbuf;
1261 } else {
1262 src = cipherbuf;
1263 dst = plainbuf;
1265 memcpy(dst, src, datalen);
1267 /* Find the start and end record of the log block. */
1268 zilc = (zil_chain_t *)src;
1269 slrp = src + sizeof (zil_chain_t);
1270 aadp = aadbuf;
1271 nused = ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1272 ASSERT3U(nused, >=, sizeof (zil_chain_t));
1273 ASSERT3U(nused, <=, datalen);
1274 blkend = src + nused;
1277 * Calculate the number of encrypted iovecs we will need.
1280 /* We need at least two iovecs -- one for the AAD, one for the MAC. */
1281 nr_iovecs = 2;
1283 for (; slrp < blkend; slrp += lr_len) {
1284 lr = (lr_t *)slrp;
1286 if (byteswap) {
1287 txtype = BSWAP_64(lr->lrc_txtype);
1288 lr_len = BSWAP_64(lr->lrc_reclen);
1289 } else {
1290 txtype = lr->lrc_txtype;
1291 lr_len = lr->lrc_reclen;
1293 ASSERT3U(lr_len, >=, sizeof (lr_t));
1294 ASSERT3U(lr_len, <=, blkend - slrp);
1296 nr_iovecs++;
1297 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1298 nr_iovecs++;
1301 dst_iovecs = kmem_alloc(nr_iovecs * sizeof (iovec_t), KM_SLEEP);
1304 * Copy the plain zil header over and authenticate everything except
1305 * the checksum that will store our MAC. If we are writing the data
1306 * the embedded checksum will not have been calculated yet, so we don't
1307 * authenticate that.
1309 memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1310 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1311 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1313 slrp = src + sizeof (zil_chain_t);
1314 dlrp = dst + sizeof (zil_chain_t);
1317 * Loop over records again, filling in iovecs.
1320 /* The first iovec will contain the authbuf. */
1321 vec = 1;
1323 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1324 lr = (lr_t *)slrp;
1326 if (!byteswap) {
1327 txtype = lr->lrc_txtype;
1328 lr_len = lr->lrc_reclen;
1329 } else {
1330 txtype = BSWAP_64(lr->lrc_txtype);
1331 lr_len = BSWAP_64(lr->lrc_reclen);
1334 /* copy the common lr_t */
1335 memcpy(dlrp, slrp, sizeof (lr_t));
1336 memcpy(aadp, slrp, sizeof (lr_t));
1337 aadp += sizeof (lr_t);
1338 aad_len += sizeof (lr_t);
1341 * If this is a TX_WRITE record we want to encrypt everything
1342 * except the bp if exists. If the bp does exist we want to
1343 * authenticate it.
1345 if (txtype == TX_WRITE) {
1346 const size_t o = offsetof(lr_write_t, lr_blkptr);
1347 crypt_len = o - sizeof (lr_t);
1348 dst_iovecs[vec].iov_base = (char *)dlrp + sizeof (lr_t);
1349 dst_iovecs[vec].iov_len = crypt_len;
1351 /* copy the bp now since it will not be encrypted */
1352 memcpy(dlrp + o, slrp + o, sizeof (blkptr_t));
1353 memcpy(aadp, slrp + o, sizeof (blkptr_t));
1354 aadp += sizeof (blkptr_t);
1355 aad_len += sizeof (blkptr_t);
1356 vec++;
1357 total_len += crypt_len;
1359 if (lr_len != sizeof (lr_write_t)) {
1360 crypt_len = lr_len - sizeof (lr_write_t);
1361 dst_iovecs[vec].iov_base = (char *)
1362 dlrp + sizeof (lr_write_t);
1363 dst_iovecs[vec].iov_len = crypt_len;
1364 vec++;
1365 total_len += crypt_len;
1367 } else if (txtype == TX_CLONE_RANGE) {
1368 const size_t o = offsetof(lr_clone_range_t, lr_nbps);
1369 crypt_len = o - sizeof (lr_t);
1370 dst_iovecs[vec].iov_base = (char *)dlrp + sizeof (lr_t);
1371 dst_iovecs[vec].iov_len = crypt_len;
1373 /* copy the bps now since they will not be encrypted */
1374 memcpy(dlrp + o, slrp + o, lr_len - o);
1375 memcpy(aadp, slrp + o, lr_len - o);
1376 aadp += lr_len - o;
1377 aad_len += lr_len - o;
1378 vec++;
1379 total_len += crypt_len;
1380 } else {
1381 crypt_len = lr_len - sizeof (lr_t);
1382 dst_iovecs[vec].iov_base = (char *)dlrp + sizeof (lr_t);
1383 dst_iovecs[vec].iov_len = crypt_len;
1384 vec++;
1385 total_len += crypt_len;
1389 /* The last iovec will contain the MAC. */
1390 ASSERT3U(vec, ==, nr_iovecs - 1);
1392 /* AAD */
1393 dst_iovecs[0].iov_base = aadbuf;
1394 dst_iovecs[0].iov_len = aad_len;
1395 /* MAC */
1396 dst_iovecs[vec].iov_base = 0;
1397 dst_iovecs[vec].iov_len = 0;
1399 *no_crypt = (vec == 1);
1400 *enc_len = total_len;
1401 *authbuf = aadbuf;
1402 *auth_len = aad_len;
1403 GET_UIO_STRUCT(out_uio)->uio_iov = dst_iovecs;
1404 zfs_uio_iovcnt(out_uio) = nr_iovecs;
1406 return (0);
1410 * Special case handling routine for encrypting / decrypting dnode blocks.
1412 static int
1413 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1414 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1415 zfs_uio_t *puio, zfs_uio_t *out_uio, uint_t *enc_len, uint8_t **authbuf,
1416 uint_t *auth_len, boolean_t *no_crypt)
1418 uint8_t *aadbuf = zio_buf_alloc(datalen);
1419 uint8_t *src, *dst, *aadp;
1420 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1421 iovec_t *dst_iovecs;
1422 uint_t nr_iovecs, crypt_len, vec;
1423 uint_t aad_len = 0, total_len = 0;
1424 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1426 if (encrypt) {
1427 src = plainbuf;
1428 dst = cipherbuf;
1429 } else {
1430 src = cipherbuf;
1431 dst = plainbuf;
1433 memcpy(dst, src, datalen);
1435 sdnp = (dnode_phys_t *)src;
1436 ddnp = (dnode_phys_t *)dst;
1437 aadp = aadbuf;
1440 * Count the number of iovecs we will need to do the encryption by
1441 * counting the number of bonus buffers that need to be encrypted.
1444 /* We need at least two iovecs -- one for the AAD, one for the MAC. */
1445 nr_iovecs = 2;
1447 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1449 * This block may still be byteswapped. However, all of the
1450 * values we use are either uint8_t's (for which byteswapping
1451 * is a noop) or a * != 0 check, which will work regardless
1452 * of whether or not we byteswap.
1454 if (sdnp[i].dn_type != DMU_OT_NONE &&
1455 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1456 sdnp[i].dn_bonuslen != 0) {
1457 nr_iovecs++;
1461 dst_iovecs = kmem_alloc(nr_iovecs * sizeof (iovec_t), KM_SLEEP);
1464 * Iterate through the dnodes again, this time filling in the uios
1465 * we allocated earlier. We also concatenate any data we want to
1466 * authenticate onto aadbuf.
1469 /* The first iovec will contain the authbuf. */
1470 vec = 1;
1472 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1473 dnp = &sdnp[i];
1475 /* copy over the core fields and blkptrs (kept as plaintext) */
1476 memcpy(&ddnp[i], dnp,
1477 (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1479 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1480 memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
1481 sizeof (blkptr_t));
1485 * Handle authenticated data. We authenticate everything in
1486 * the dnode that can be brought over when we do a raw send.
1487 * This includes all of the core fields as well as the MACs
1488 * stored in the bp checksums and all of the portable bits
1489 * from blk_prop. We include the dnode padding here in case it
1490 * ever gets used in the future. Some dn_flags and dn_used are
1491 * not portable so we mask those out values out of the
1492 * authenticated data.
1494 crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1495 memcpy(aadp, dnp, crypt_len);
1496 adnp = (dnode_phys_t *)aadp;
1497 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1498 adnp->dn_used = 0;
1499 aadp += crypt_len;
1500 aad_len += crypt_len;
1502 for (j = 0; j < dnp->dn_nblkptr; j++) {
1503 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1504 version, byteswap, &dnp->dn_blkptr[j]);
1507 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1508 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1509 version, byteswap, DN_SPILL_BLKPTR(dnp));
1513 * If this bonus buffer needs to be encrypted, we prepare an
1514 * iovec_t. The encryption / decryption functions will fill
1515 * this in for us with the encrypted or decrypted data.
1516 * Otherwise we add the bonus buffer to the authenticated
1517 * data buffer and copy it over to the destination. The
1518 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1519 * we can guarantee alignment with the AES block size
1520 * (128 bits).
1522 crypt_len = DN_MAX_BONUS_LEN(dnp);
1523 if (dnp->dn_type != DMU_OT_NONE &&
1524 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1525 dnp->dn_bonuslen != 0) {
1526 dst_iovecs[vec].iov_base = DN_BONUS(&ddnp[i]);
1527 dst_iovecs[vec].iov_len = crypt_len;
1529 vec++;
1530 total_len += crypt_len;
1531 } else {
1532 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
1533 memcpy(aadp, DN_BONUS(dnp), crypt_len);
1534 aadp += crypt_len;
1535 aad_len += crypt_len;
1539 /* The last iovec will contain the MAC. */
1540 ASSERT3U(vec, ==, nr_iovecs - 1);
1542 /* AAD */
1543 dst_iovecs[0].iov_base = aadbuf;
1544 dst_iovecs[0].iov_len = aad_len;
1545 /* MAC */
1546 dst_iovecs[vec].iov_base = 0;
1547 dst_iovecs[vec].iov_len = 0;
1549 *no_crypt = (vec == 1);
1550 *enc_len = total_len;
1551 *authbuf = aadbuf;
1552 *auth_len = aad_len;
1553 GET_UIO_STRUCT(out_uio)->uio_iov = dst_iovecs;
1554 zfs_uio_iovcnt(out_uio) = nr_iovecs;
1556 return (0);
1559 static int
1560 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1561 uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *out_uio,
1562 uint_t *enc_len)
1564 (void) puio;
1565 int ret;
1566 uint_t nr_plain = 1, nr_cipher = 2;
1567 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1568 void *src, *dst;
1570 cipher_iovecs = kmem_zalloc(nr_cipher * sizeof (iovec_t),
1571 KM_SLEEP);
1572 if (!cipher_iovecs) {
1573 ret = SET_ERROR(ENOMEM);
1574 goto error;
1577 if (encrypt) {
1578 src = plainbuf;
1579 dst = cipherbuf;
1580 } else {
1581 src = cipherbuf;
1582 dst = plainbuf;
1584 memcpy(dst, src, datalen);
1585 cipher_iovecs[0].iov_base = dst;
1586 cipher_iovecs[0].iov_len = datalen;
1588 *enc_len = datalen;
1589 GET_UIO_STRUCT(out_uio)->uio_iov = cipher_iovecs;
1590 zfs_uio_iovcnt(out_uio) = nr_cipher;
1592 return (0);
1594 error:
1595 if (plain_iovecs != NULL)
1596 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1597 if (cipher_iovecs != NULL)
1598 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1600 *enc_len = 0;
1601 GET_UIO_STRUCT(out_uio)->uio_iov = NULL;
1602 zfs_uio_iovcnt(out_uio) = 0;
1604 return (ret);
1608 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1609 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1610 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1611 * requiring special handling to parse out pieces that are to be encrypted. The
1612 * authbuf is used by these special cases to store additional authenticated
1613 * data (AAD) for the encryption modes.
1615 static int
1616 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1617 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1618 uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
1619 uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
1621 int ret;
1622 iovec_t *mac_iov;
1624 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1626 /* route to handler */
1627 switch (ot) {
1628 case DMU_OT_INTENT_LOG:
1629 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1630 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1631 no_crypt);
1632 break;
1633 case DMU_OT_DNODE:
1634 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1635 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1636 auth_len, no_crypt);
1637 break;
1638 default:
1639 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1640 datalen, puio, cuio, enc_len);
1641 *authbuf = NULL;
1642 *auth_len = 0;
1643 *no_crypt = B_FALSE;
1644 break;
1647 if (ret != 0)
1648 goto error;
1650 /* populate the uios */
1651 zfs_uio_segflg(cuio) = UIO_SYSSPACE;
1653 mac_iov =
1654 ((iovec_t *)&(GET_UIO_STRUCT(cuio)->
1655 uio_iov[zfs_uio_iovcnt(cuio) - 1]));
1656 mac_iov->iov_base = (void *)mac;
1657 mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1659 return (0);
1661 error:
1662 return (ret);
1665 void *failed_decrypt_buf;
1666 int faile_decrypt_size;
1669 * Primary encryption / decryption entrypoint for zio data.
1672 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1673 dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1674 uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1675 boolean_t *no_crypt)
1677 int ret;
1678 boolean_t locked = B_FALSE;
1679 uint64_t crypt = key->zk_crypt;
1680 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1681 uint_t enc_len, auth_len;
1682 zfs_uio_t puio, cuio;
1683 struct uio puio_s, cuio_s;
1684 uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1685 crypto_key_t tmp_ckey, *ckey = NULL;
1686 freebsd_crypt_session_t *tmpl = NULL;
1687 uint8_t *authbuf = NULL;
1689 memset(&puio_s, 0, sizeof (puio_s));
1690 memset(&cuio_s, 0, sizeof (cuio_s));
1691 zfs_uio_init(&puio, &puio_s);
1692 zfs_uio_init(&cuio, &cuio_s);
1694 #ifdef FCRYPTO_DEBUG
1695 printf("%s(%s, %p, %p, %d, %p, %p, %u, %s, %p, %p, %p)\n",
1696 __FUNCTION__,
1697 encrypt ? "encrypt" : "decrypt",
1698 key, salt, ot, iv, mac, datalen,
1699 byteswap ? "byteswap" : "native_endian", plainbuf,
1700 cipherbuf, no_crypt);
1702 printf("\tkey = {");
1703 for (int i = 0; i < key->zk_current_key.ck_length/8; i++)
1704 printf("%02x ", ((uint8_t *)key->zk_current_key.ck_data)[i]);
1705 printf("}\n");
1706 #endif
1707 /* create uios for encryption */
1708 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1709 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1710 &authbuf, &auth_len, no_crypt);
1711 if (ret != 0)
1712 return (ret);
1715 * If the needed key is the current one, just use it. Otherwise we
1716 * need to generate a temporary one from the given salt + master key.
1717 * If we are encrypting, we must return a copy of the current salt
1718 * so that it can be stored in the blkptr_t.
1720 rw_enter(&key->zk_salt_lock, RW_READER);
1721 locked = B_TRUE;
1723 if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1724 ckey = &key->zk_current_key;
1725 tmpl = &key->zk_session;
1726 } else {
1727 rw_exit(&key->zk_salt_lock);
1728 locked = B_FALSE;
1730 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1731 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1732 if (ret != 0)
1733 goto error;
1734 tmp_ckey.ck_data = enc_keydata;
1735 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1737 ckey = &tmp_ckey;
1738 tmpl = NULL;
1741 /* perform the encryption / decryption */
1742 ret = zio_do_crypt_uio_opencrypto(encrypt, tmpl, key->zk_crypt,
1743 ckey, iv, enc_len, &cuio, auth_len);
1744 if (ret != 0)
1745 goto error;
1746 if (locked) {
1747 rw_exit(&key->zk_salt_lock);
1750 if (authbuf != NULL)
1751 zio_buf_free(authbuf, datalen);
1752 if (ckey == &tmp_ckey)
1753 memset(enc_keydata, 0, keydata_len);
1754 zio_crypt_destroy_uio(&puio);
1755 zio_crypt_destroy_uio(&cuio);
1757 return (0);
1759 error:
1760 if (!encrypt) {
1761 if (failed_decrypt_buf != NULL)
1762 kmem_free(failed_decrypt_buf, failed_decrypt_size);
1763 failed_decrypt_buf = kmem_alloc(datalen, KM_SLEEP);
1764 failed_decrypt_size = datalen;
1765 memcpy(failed_decrypt_buf, cipherbuf, datalen);
1767 if (locked)
1768 rw_exit(&key->zk_salt_lock);
1769 if (authbuf != NULL)
1770 zio_buf_free(authbuf, datalen);
1771 if (ckey == &tmp_ckey)
1772 memset(enc_keydata, 0, keydata_len);
1773 zio_crypt_destroy_uio(&puio);
1774 zio_crypt_destroy_uio(&cuio);
1775 return (SET_ERROR(ret));
1779 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
1780 * linear buffers.
1783 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
1784 boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
1785 uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
1787 int ret;
1788 void *ptmp, *ctmp;
1790 if (encrypt) {
1791 ptmp = abd_borrow_buf_copy(pabd, datalen);
1792 ctmp = abd_borrow_buf(cabd, datalen);
1793 } else {
1794 ptmp = abd_borrow_buf(pabd, datalen);
1795 ctmp = abd_borrow_buf_copy(cabd, datalen);
1798 ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
1799 datalen, ptmp, ctmp, no_crypt);
1800 if (ret != 0)
1801 goto error;
1803 if (encrypt) {
1804 abd_return_buf(pabd, ptmp, datalen);
1805 abd_return_buf_copy(cabd, ctmp, datalen);
1806 } else {
1807 abd_return_buf_copy(pabd, ptmp, datalen);
1808 abd_return_buf(cabd, ctmp, datalen);
1811 return (0);
1813 error:
1814 if (encrypt) {
1815 abd_return_buf(pabd, ptmp, datalen);
1816 abd_return_buf_copy(cabd, ctmp, datalen);
1817 } else {
1818 abd_return_buf_copy(pabd, ptmp, datalen);
1819 abd_return_buf(cabd, ctmp, datalen);
1822 return (SET_ERROR(ret));
1825 #if defined(_KERNEL) && defined(HAVE_SPL)
1826 /* CSTYLED */
1827 module_param(zfs_key_max_salt_uses, ulong, 0644);
1828 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
1829 "can be used for generating encryption keys before it is rotated");
1830 #endif