4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26 /* Portions Copyright 2010 Robert Milkowski */
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
35 #include <sys/mntent.h>
36 #include <sys/cmn_err.h>
37 #include <sys/zfs_znode.h>
38 #include <sys/zfs_vnops.h>
39 #include <sys/zfs_dir.h>
41 #include <sys/fs/zfs.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
49 #include <sys/sa_impl.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/zfs_quota.h>
56 #include <sys/sunddi.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/objlist.h>
61 #include <linux/vfs_compat.h>
62 #include "zfs_comutil.h"
87 static const match_table_t zpl_tokens
= {
88 { TOKEN_RO
, MNTOPT_RO
},
89 { TOKEN_RW
, MNTOPT_RW
},
90 { TOKEN_SETUID
, MNTOPT_SETUID
},
91 { TOKEN_NOSETUID
, MNTOPT_NOSETUID
},
92 { TOKEN_EXEC
, MNTOPT_EXEC
},
93 { TOKEN_NOEXEC
, MNTOPT_NOEXEC
},
94 { TOKEN_DEVICES
, MNTOPT_DEVICES
},
95 { TOKEN_NODEVICES
, MNTOPT_NODEVICES
},
96 { TOKEN_DIRXATTR
, MNTOPT_DIRXATTR
},
97 { TOKEN_SAXATTR
, MNTOPT_SAXATTR
},
98 { TOKEN_XATTR
, MNTOPT_XATTR
},
99 { TOKEN_NOXATTR
, MNTOPT_NOXATTR
},
100 { TOKEN_ATIME
, MNTOPT_ATIME
},
101 { TOKEN_NOATIME
, MNTOPT_NOATIME
},
102 { TOKEN_RELATIME
, MNTOPT_RELATIME
},
103 { TOKEN_NORELATIME
, MNTOPT_NORELATIME
},
104 { TOKEN_NBMAND
, MNTOPT_NBMAND
},
105 { TOKEN_NONBMAND
, MNTOPT_NONBMAND
},
106 { TOKEN_MNTPOINT
, MNTOPT_MNTPOINT
"=%s" },
107 { TOKEN_LAST
, NULL
},
111 zfsvfs_vfs_free(vfs_t
*vfsp
)
114 if (vfsp
->vfs_mntpoint
!= NULL
)
115 kmem_strfree(vfsp
->vfs_mntpoint
);
117 kmem_free(vfsp
, sizeof (vfs_t
));
122 zfsvfs_parse_option(char *option
, int token
, substring_t
*args
, vfs_t
*vfsp
)
126 vfsp
->vfs_readonly
= B_TRUE
;
127 vfsp
->vfs_do_readonly
= B_TRUE
;
130 vfsp
->vfs_readonly
= B_FALSE
;
131 vfsp
->vfs_do_readonly
= B_TRUE
;
134 vfsp
->vfs_setuid
= B_TRUE
;
135 vfsp
->vfs_do_setuid
= B_TRUE
;
138 vfsp
->vfs_setuid
= B_FALSE
;
139 vfsp
->vfs_do_setuid
= B_TRUE
;
142 vfsp
->vfs_exec
= B_TRUE
;
143 vfsp
->vfs_do_exec
= B_TRUE
;
146 vfsp
->vfs_exec
= B_FALSE
;
147 vfsp
->vfs_do_exec
= B_TRUE
;
150 vfsp
->vfs_devices
= B_TRUE
;
151 vfsp
->vfs_do_devices
= B_TRUE
;
153 case TOKEN_NODEVICES
:
154 vfsp
->vfs_devices
= B_FALSE
;
155 vfsp
->vfs_do_devices
= B_TRUE
;
158 vfsp
->vfs_xattr
= ZFS_XATTR_DIR
;
159 vfsp
->vfs_do_xattr
= B_TRUE
;
162 vfsp
->vfs_xattr
= ZFS_XATTR_SA
;
163 vfsp
->vfs_do_xattr
= B_TRUE
;
166 vfsp
->vfs_xattr
= ZFS_XATTR_DIR
;
167 vfsp
->vfs_do_xattr
= B_TRUE
;
170 vfsp
->vfs_xattr
= ZFS_XATTR_OFF
;
171 vfsp
->vfs_do_xattr
= B_TRUE
;
174 vfsp
->vfs_atime
= B_TRUE
;
175 vfsp
->vfs_do_atime
= B_TRUE
;
178 vfsp
->vfs_atime
= B_FALSE
;
179 vfsp
->vfs_do_atime
= B_TRUE
;
182 vfsp
->vfs_relatime
= B_TRUE
;
183 vfsp
->vfs_do_relatime
= B_TRUE
;
185 case TOKEN_NORELATIME
:
186 vfsp
->vfs_relatime
= B_FALSE
;
187 vfsp
->vfs_do_relatime
= B_TRUE
;
190 vfsp
->vfs_nbmand
= B_TRUE
;
191 vfsp
->vfs_do_nbmand
= B_TRUE
;
194 vfsp
->vfs_nbmand
= B_FALSE
;
195 vfsp
->vfs_do_nbmand
= B_TRUE
;
198 vfsp
->vfs_mntpoint
= match_strdup(&args
[0]);
199 if (vfsp
->vfs_mntpoint
== NULL
)
200 return (SET_ERROR(ENOMEM
));
211 * Parse the raw mntopts and return a vfs_t describing the options.
214 zfsvfs_parse_options(char *mntopts
, vfs_t
**vfsp
)
219 tmp_vfsp
= kmem_zalloc(sizeof (vfs_t
), KM_SLEEP
);
221 if (mntopts
!= NULL
) {
222 substring_t args
[MAX_OPT_ARGS
];
223 char *tmp_mntopts
, *p
, *t
;
226 tmp_mntopts
= t
= kmem_strdup(mntopts
);
227 if (tmp_mntopts
== NULL
)
228 return (SET_ERROR(ENOMEM
));
230 while ((p
= strsep(&t
, ",")) != NULL
) {
234 args
[0].to
= args
[0].from
= NULL
;
235 token
= match_token(p
, zpl_tokens
, args
);
236 error
= zfsvfs_parse_option(p
, token
, args
, tmp_vfsp
);
238 kmem_strfree(tmp_mntopts
);
239 zfsvfs_vfs_free(tmp_vfsp
);
244 kmem_strfree(tmp_mntopts
);
253 zfs_is_readonly(zfsvfs_t
*zfsvfs
)
255 return (!!(zfsvfs
->z_sb
->s_flags
& SB_RDONLY
));
259 zfs_sync(struct super_block
*sb
, int wait
, cred_t
*cr
)
262 zfsvfs_t
*zfsvfs
= sb
->s_fs_info
;
265 * Semantically, the only requirement is that the sync be initiated.
266 * The DMU syncs out txgs frequently, so there's nothing to do.
271 if (zfsvfs
!= NULL
) {
273 * Sync a specific filesystem.
278 if ((error
= zfs_enter(zfsvfs
, FTAG
)) != 0)
280 dp
= dmu_objset_pool(zfsvfs
->z_os
);
283 * If the system is shutting down, then skip any
284 * filesystems which may exist on a suspended pool.
286 if (spa_suspended(dp
->dp_spa
)) {
287 zfs_exit(zfsvfs
, FTAG
);
291 if (zfsvfs
->z_log
!= NULL
)
292 zil_commit(zfsvfs
->z_log
, 0);
294 zfs_exit(zfsvfs
, FTAG
);
297 * Sync all ZFS filesystems. This is what happens when you
298 * run sync(1). Unlike other filesystems, ZFS honors the
299 * request by waiting for all pools to commit all dirty data.
308 atime_changed_cb(void *arg
, uint64_t newval
)
310 zfsvfs_t
*zfsvfs
= arg
;
311 struct super_block
*sb
= zfsvfs
->z_sb
;
316 * Update SB_NOATIME bit in VFS super block. Since atime update is
317 * determined by atime_needs_update(), atime_needs_update() needs to
318 * return false if atime is turned off, and not unconditionally return
319 * false if atime is turned on.
322 sb
->s_flags
&= ~SB_NOATIME
;
324 sb
->s_flags
|= SB_NOATIME
;
328 relatime_changed_cb(void *arg
, uint64_t newval
)
330 ((zfsvfs_t
*)arg
)->z_relatime
= newval
;
334 xattr_changed_cb(void *arg
, uint64_t newval
)
336 zfsvfs_t
*zfsvfs
= arg
;
338 if (newval
== ZFS_XATTR_OFF
) {
339 zfsvfs
->z_flags
&= ~ZSB_XATTR
;
341 zfsvfs
->z_flags
|= ZSB_XATTR
;
343 if (newval
== ZFS_XATTR_SA
)
344 zfsvfs
->z_xattr_sa
= B_TRUE
;
346 zfsvfs
->z_xattr_sa
= B_FALSE
;
351 acltype_changed_cb(void *arg
, uint64_t newval
)
353 zfsvfs_t
*zfsvfs
= arg
;
356 case ZFS_ACLTYPE_NFSV4
:
357 case ZFS_ACLTYPE_OFF
:
358 zfsvfs
->z_acl_type
= ZFS_ACLTYPE_OFF
;
359 zfsvfs
->z_sb
->s_flags
&= ~SB_POSIXACL
;
361 case ZFS_ACLTYPE_POSIX
:
362 #ifdef CONFIG_FS_POSIX_ACL
363 zfsvfs
->z_acl_type
= ZFS_ACLTYPE_POSIX
;
364 zfsvfs
->z_sb
->s_flags
|= SB_POSIXACL
;
366 zfsvfs
->z_acl_type
= ZFS_ACLTYPE_OFF
;
367 zfsvfs
->z_sb
->s_flags
&= ~SB_POSIXACL
;
368 #endif /* CONFIG_FS_POSIX_ACL */
376 blksz_changed_cb(void *arg
, uint64_t newval
)
378 zfsvfs_t
*zfsvfs
= arg
;
379 ASSERT3U(newval
, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs
->z_os
)));
380 ASSERT3U(newval
, >=, SPA_MINBLOCKSIZE
);
381 ASSERT(ISP2(newval
));
383 zfsvfs
->z_max_blksz
= newval
;
387 readonly_changed_cb(void *arg
, uint64_t newval
)
389 zfsvfs_t
*zfsvfs
= arg
;
390 struct super_block
*sb
= zfsvfs
->z_sb
;
396 sb
->s_flags
|= SB_RDONLY
;
398 sb
->s_flags
&= ~SB_RDONLY
;
402 devices_changed_cb(void *arg
, uint64_t newval
)
407 setuid_changed_cb(void *arg
, uint64_t newval
)
412 exec_changed_cb(void *arg
, uint64_t newval
)
417 nbmand_changed_cb(void *arg
, uint64_t newval
)
419 zfsvfs_t
*zfsvfs
= arg
;
420 struct super_block
*sb
= zfsvfs
->z_sb
;
426 sb
->s_flags
|= SB_MANDLOCK
;
428 sb
->s_flags
&= ~SB_MANDLOCK
;
432 snapdir_changed_cb(void *arg
, uint64_t newval
)
434 ((zfsvfs_t
*)arg
)->z_show_ctldir
= newval
;
438 acl_mode_changed_cb(void *arg
, uint64_t newval
)
440 zfsvfs_t
*zfsvfs
= arg
;
442 zfsvfs
->z_acl_mode
= newval
;
446 acl_inherit_changed_cb(void *arg
, uint64_t newval
)
448 ((zfsvfs_t
*)arg
)->z_acl_inherit
= newval
;
452 zfs_register_callbacks(vfs_t
*vfsp
)
454 struct dsl_dataset
*ds
= NULL
;
456 zfsvfs_t
*zfsvfs
= NULL
;
460 zfsvfs
= vfsp
->vfs_data
;
465 * The act of registering our callbacks will destroy any mount
466 * options we may have. In order to enable temporary overrides
467 * of mount options, we stash away the current values and
468 * restore them after we register the callbacks.
470 if (zfs_is_readonly(zfsvfs
) || !spa_writeable(dmu_objset_spa(os
))) {
471 vfsp
->vfs_do_readonly
= B_TRUE
;
472 vfsp
->vfs_readonly
= B_TRUE
;
476 * Register property callbacks.
478 * It would probably be fine to just check for i/o error from
479 * the first prop_register(), but I guess I like to go
482 ds
= dmu_objset_ds(os
);
483 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
484 error
= dsl_prop_register(ds
,
485 zfs_prop_to_name(ZFS_PROP_ATIME
), atime_changed_cb
, zfsvfs
);
486 error
= error
? error
: dsl_prop_register(ds
,
487 zfs_prop_to_name(ZFS_PROP_RELATIME
), relatime_changed_cb
, zfsvfs
);
488 error
= error
? error
: dsl_prop_register(ds
,
489 zfs_prop_to_name(ZFS_PROP_XATTR
), xattr_changed_cb
, zfsvfs
);
490 error
= error
? error
: dsl_prop_register(ds
,
491 zfs_prop_to_name(ZFS_PROP_RECORDSIZE
), blksz_changed_cb
, zfsvfs
);
492 error
= error
? error
: dsl_prop_register(ds
,
493 zfs_prop_to_name(ZFS_PROP_READONLY
), readonly_changed_cb
, zfsvfs
);
494 error
= error
? error
: dsl_prop_register(ds
,
495 zfs_prop_to_name(ZFS_PROP_DEVICES
), devices_changed_cb
, zfsvfs
);
496 error
= error
? error
: dsl_prop_register(ds
,
497 zfs_prop_to_name(ZFS_PROP_SETUID
), setuid_changed_cb
, zfsvfs
);
498 error
= error
? error
: dsl_prop_register(ds
,
499 zfs_prop_to_name(ZFS_PROP_EXEC
), exec_changed_cb
, zfsvfs
);
500 error
= error
? error
: dsl_prop_register(ds
,
501 zfs_prop_to_name(ZFS_PROP_SNAPDIR
), snapdir_changed_cb
, zfsvfs
);
502 error
= error
? error
: dsl_prop_register(ds
,
503 zfs_prop_to_name(ZFS_PROP_ACLTYPE
), acltype_changed_cb
, zfsvfs
);
504 error
= error
? error
: dsl_prop_register(ds
,
505 zfs_prop_to_name(ZFS_PROP_ACLMODE
), acl_mode_changed_cb
, zfsvfs
);
506 error
= error
? error
: dsl_prop_register(ds
,
507 zfs_prop_to_name(ZFS_PROP_ACLINHERIT
), acl_inherit_changed_cb
,
509 error
= error
? error
: dsl_prop_register(ds
,
510 zfs_prop_to_name(ZFS_PROP_NBMAND
), nbmand_changed_cb
, zfsvfs
);
511 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
516 * Invoke our callbacks to restore temporary mount options.
518 if (vfsp
->vfs_do_readonly
)
519 readonly_changed_cb(zfsvfs
, vfsp
->vfs_readonly
);
520 if (vfsp
->vfs_do_setuid
)
521 setuid_changed_cb(zfsvfs
, vfsp
->vfs_setuid
);
522 if (vfsp
->vfs_do_exec
)
523 exec_changed_cb(zfsvfs
, vfsp
->vfs_exec
);
524 if (vfsp
->vfs_do_devices
)
525 devices_changed_cb(zfsvfs
, vfsp
->vfs_devices
);
526 if (vfsp
->vfs_do_xattr
)
527 xattr_changed_cb(zfsvfs
, vfsp
->vfs_xattr
);
528 if (vfsp
->vfs_do_atime
)
529 atime_changed_cb(zfsvfs
, vfsp
->vfs_atime
);
530 if (vfsp
->vfs_do_relatime
)
531 relatime_changed_cb(zfsvfs
, vfsp
->vfs_relatime
);
532 if (vfsp
->vfs_do_nbmand
)
533 nbmand_changed_cb(zfsvfs
, vfsp
->vfs_nbmand
);
538 dsl_prop_unregister_all(ds
, zfsvfs
);
543 * Takes a dataset, a property, a value and that value's setpoint as
544 * found in the ZAP. Checks if the property has been changed in the vfs.
545 * If so, val and setpoint will be overwritten with updated content.
546 * Otherwise, they are left unchanged.
549 zfs_get_temporary_prop(dsl_dataset_t
*ds
, zfs_prop_t zfs_prop
, uint64_t *val
,
558 error
= dmu_objset_from_ds(ds
, &os
);
562 if (dmu_objset_type(os
) != DMU_OST_ZFS
)
565 mutex_enter(&os
->os_user_ptr_lock
);
566 zfvp
= dmu_objset_get_user(os
);
567 mutex_exit(&os
->os_user_ptr_lock
);
575 if (vfsp
->vfs_do_atime
)
576 tmp
= vfsp
->vfs_atime
;
578 case ZFS_PROP_RELATIME
:
579 if (vfsp
->vfs_do_relatime
)
580 tmp
= vfsp
->vfs_relatime
;
582 case ZFS_PROP_DEVICES
:
583 if (vfsp
->vfs_do_devices
)
584 tmp
= vfsp
->vfs_devices
;
587 if (vfsp
->vfs_do_exec
)
588 tmp
= vfsp
->vfs_exec
;
590 case ZFS_PROP_SETUID
:
591 if (vfsp
->vfs_do_setuid
)
592 tmp
= vfsp
->vfs_setuid
;
594 case ZFS_PROP_READONLY
:
595 if (vfsp
->vfs_do_readonly
)
596 tmp
= vfsp
->vfs_readonly
;
599 if (vfsp
->vfs_do_xattr
)
600 tmp
= vfsp
->vfs_xattr
;
602 case ZFS_PROP_NBMAND
:
603 if (vfsp
->vfs_do_nbmand
)
604 tmp
= vfsp
->vfs_nbmand
;
611 (void) strcpy(setpoint
, "temporary");
618 * Associate this zfsvfs with the given objset, which must be owned.
619 * This will cache a bunch of on-disk state from the objset in the
623 zfsvfs_init(zfsvfs_t
*zfsvfs
, objset_t
*os
)
628 zfsvfs
->z_max_blksz
= SPA_OLD_MAXBLOCKSIZE
;
629 zfsvfs
->z_show_ctldir
= ZFS_SNAPDIR_VISIBLE
;
632 error
= zfs_get_zplprop(os
, ZFS_PROP_VERSION
, &zfsvfs
->z_version
);
635 if (zfsvfs
->z_version
>
636 zfs_zpl_version_map(spa_version(dmu_objset_spa(os
)))) {
637 (void) printk("Can't mount a version %lld file system "
638 "on a version %lld pool\n. Pool must be upgraded to mount "
639 "this file system.\n", (u_longlong_t
)zfsvfs
->z_version
,
640 (u_longlong_t
)spa_version(dmu_objset_spa(os
)));
641 return (SET_ERROR(ENOTSUP
));
643 error
= zfs_get_zplprop(os
, ZFS_PROP_NORMALIZE
, &val
);
646 zfsvfs
->z_norm
= (int)val
;
648 error
= zfs_get_zplprop(os
, ZFS_PROP_UTF8ONLY
, &val
);
651 zfsvfs
->z_utf8
= (val
!= 0);
653 error
= zfs_get_zplprop(os
, ZFS_PROP_CASE
, &val
);
656 zfsvfs
->z_case
= (uint_t
)val
;
658 if ((error
= zfs_get_zplprop(os
, ZFS_PROP_ACLTYPE
, &val
)) != 0)
660 zfsvfs
->z_acl_type
= (uint_t
)val
;
663 * Fold case on file systems that are always or sometimes case
666 if (zfsvfs
->z_case
== ZFS_CASE_INSENSITIVE
||
667 zfsvfs
->z_case
== ZFS_CASE_MIXED
)
668 zfsvfs
->z_norm
|= U8_TEXTPREP_TOUPPER
;
670 zfsvfs
->z_use_fuids
= USE_FUIDS(zfsvfs
->z_version
, zfsvfs
->z_os
);
671 zfsvfs
->z_use_sa
= USE_SA(zfsvfs
->z_version
, zfsvfs
->z_os
);
674 if (zfsvfs
->z_use_sa
) {
675 /* should either have both of these objects or none */
676 error
= zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_SA_ATTRS
, 8, 1,
681 error
= zfs_get_zplprop(os
, ZFS_PROP_XATTR
, &val
);
682 if ((error
== 0) && (val
== ZFS_XATTR_SA
))
683 zfsvfs
->z_xattr_sa
= B_TRUE
;
686 error
= zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_ROOT_OBJ
, 8, 1,
690 ASSERT(zfsvfs
->z_root
!= 0);
692 error
= zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_UNLINKED_SET
, 8, 1,
693 &zfsvfs
->z_unlinkedobj
);
697 error
= zap_lookup(os
, MASTER_NODE_OBJ
,
698 zfs_userquota_prop_prefixes
[ZFS_PROP_USERQUOTA
],
699 8, 1, &zfsvfs
->z_userquota_obj
);
701 zfsvfs
->z_userquota_obj
= 0;
705 error
= zap_lookup(os
, MASTER_NODE_OBJ
,
706 zfs_userquota_prop_prefixes
[ZFS_PROP_GROUPQUOTA
],
707 8, 1, &zfsvfs
->z_groupquota_obj
);
709 zfsvfs
->z_groupquota_obj
= 0;
713 error
= zap_lookup(os
, MASTER_NODE_OBJ
,
714 zfs_userquota_prop_prefixes
[ZFS_PROP_PROJECTQUOTA
],
715 8, 1, &zfsvfs
->z_projectquota_obj
);
717 zfsvfs
->z_projectquota_obj
= 0;
721 error
= zap_lookup(os
, MASTER_NODE_OBJ
,
722 zfs_userquota_prop_prefixes
[ZFS_PROP_USEROBJQUOTA
],
723 8, 1, &zfsvfs
->z_userobjquota_obj
);
725 zfsvfs
->z_userobjquota_obj
= 0;
729 error
= zap_lookup(os
, MASTER_NODE_OBJ
,
730 zfs_userquota_prop_prefixes
[ZFS_PROP_GROUPOBJQUOTA
],
731 8, 1, &zfsvfs
->z_groupobjquota_obj
);
733 zfsvfs
->z_groupobjquota_obj
= 0;
737 error
= zap_lookup(os
, MASTER_NODE_OBJ
,
738 zfs_userquota_prop_prefixes
[ZFS_PROP_PROJECTOBJQUOTA
],
739 8, 1, &zfsvfs
->z_projectobjquota_obj
);
741 zfsvfs
->z_projectobjquota_obj
= 0;
745 error
= zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_FUID_TABLES
, 8, 1,
746 &zfsvfs
->z_fuid_obj
);
748 zfsvfs
->z_fuid_obj
= 0;
752 error
= zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_SHARES_DIR
, 8, 1,
753 &zfsvfs
->z_shares_dir
);
755 zfsvfs
->z_shares_dir
= 0;
759 error
= sa_setup(os
, sa_obj
, zfs_attr_table
, ZPL_END
,
760 &zfsvfs
->z_attr_table
);
764 if (zfsvfs
->z_version
>= ZPL_VERSION_SA
)
765 sa_register_update_callback(os
, zfs_sa_upgrade
);
771 zfsvfs_create(const char *osname
, boolean_t readonly
, zfsvfs_t
**zfvp
)
776 boolean_t ro
= (readonly
|| (strchr(osname
, '@') != NULL
));
778 zfsvfs
= kmem_zalloc(sizeof (zfsvfs_t
), KM_SLEEP
);
780 error
= dmu_objset_own(osname
, DMU_OST_ZFS
, ro
, B_TRUE
, zfsvfs
, &os
);
782 kmem_free(zfsvfs
, sizeof (zfsvfs_t
));
786 error
= zfsvfs_create_impl(zfvp
, zfsvfs
, os
);
793 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
794 * on a failure. Do not pass in a statically allocated zfsvfs.
797 zfsvfs_create_impl(zfsvfs_t
**zfvp
, zfsvfs_t
*zfsvfs
, objset_t
*os
)
801 zfsvfs
->z_vfs
= NULL
;
803 zfsvfs
->z_parent
= zfsvfs
;
805 mutex_init(&zfsvfs
->z_znodes_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
806 mutex_init(&zfsvfs
->z_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
807 list_create(&zfsvfs
->z_all_znodes
, sizeof (znode_t
),
808 offsetof(znode_t
, z_link_node
));
809 ZFS_TEARDOWN_INIT(zfsvfs
);
810 rw_init(&zfsvfs
->z_teardown_inactive_lock
, NULL
, RW_DEFAULT
, NULL
);
811 rw_init(&zfsvfs
->z_fuid_lock
, NULL
, RW_DEFAULT
, NULL
);
813 int size
= MIN(1 << (highbit64(zfs_object_mutex_size
) - 1),
815 zfsvfs
->z_hold_size
= size
;
816 zfsvfs
->z_hold_trees
= vmem_zalloc(sizeof (avl_tree_t
) * size
,
818 zfsvfs
->z_hold_locks
= vmem_zalloc(sizeof (kmutex_t
) * size
, KM_SLEEP
);
819 for (int i
= 0; i
!= size
; i
++) {
820 avl_create(&zfsvfs
->z_hold_trees
[i
], zfs_znode_hold_compare
,
821 sizeof (znode_hold_t
), offsetof(znode_hold_t
, zh_node
));
822 mutex_init(&zfsvfs
->z_hold_locks
[i
], NULL
, MUTEX_DEFAULT
, NULL
);
825 error
= zfsvfs_init(zfsvfs
, os
);
827 dmu_objset_disown(os
, B_TRUE
, zfsvfs
);
833 zfsvfs
->z_drain_task
= TASKQID_INVALID
;
834 zfsvfs
->z_draining
= B_FALSE
;
835 zfsvfs
->z_drain_cancel
= B_TRUE
;
842 zfsvfs_setup(zfsvfs_t
*zfsvfs
, boolean_t mounting
)
845 boolean_t readonly
= zfs_is_readonly(zfsvfs
);
847 error
= zfs_register_callbacks(zfsvfs
->z_vfs
);
852 * If we are not mounting (ie: online recv), then we don't
853 * have to worry about replaying the log as we blocked all
854 * operations out since we closed the ZIL.
857 ASSERT3P(zfsvfs
->z_kstat
.dk_kstats
, ==, NULL
);
858 error
= dataset_kstats_create(&zfsvfs
->z_kstat
, zfsvfs
->z_os
);
861 zfsvfs
->z_log
= zil_open(zfsvfs
->z_os
, zfs_get_data
,
862 &zfsvfs
->z_kstat
.dk_zil_sums
);
865 * During replay we remove the read only flag to
866 * allow replays to succeed.
869 readonly_changed_cb(zfsvfs
, B_FALSE
);
872 if (zap_get_stats(zfsvfs
->z_os
, zfsvfs
->z_unlinkedobj
,
874 dataset_kstats_update_nunlinks_kstat(
875 &zfsvfs
->z_kstat
, zs
.zs_num_entries
);
876 dprintf_ds(zfsvfs
->z_os
->os_dsl_dataset
,
877 "num_entries in unlinked set: %llu",
880 zfs_unlinked_drain(zfsvfs
);
881 dsl_dir_t
*dd
= zfsvfs
->z_os
->os_dsl_dataset
->ds_dir
;
882 dd
->dd_activity_cancelled
= B_FALSE
;
886 * Parse and replay the intent log.
888 * Because of ziltest, this must be done after
889 * zfs_unlinked_drain(). (Further note: ziltest
890 * doesn't use readonly mounts, where
891 * zfs_unlinked_drain() isn't called.) This is because
892 * ziltest causes spa_sync() to think it's committed,
893 * but actually it is not, so the intent log contains
894 * many txg's worth of changes.
896 * In particular, if object N is in the unlinked set in
897 * the last txg to actually sync, then it could be
898 * actually freed in a later txg and then reallocated
899 * in a yet later txg. This would write a "create
900 * object N" record to the intent log. Normally, this
901 * would be fine because the spa_sync() would have
902 * written out the fact that object N is free, before
903 * we could write the "create object N" intent log
906 * But when we are in ziltest mode, we advance the "open
907 * txg" without actually spa_sync()-ing the changes to
908 * disk. So we would see that object N is still
909 * allocated and in the unlinked set, and there is an
910 * intent log record saying to allocate it.
912 if (spa_writeable(dmu_objset_spa(zfsvfs
->z_os
))) {
913 if (zil_replay_disable
) {
914 zil_destroy(zfsvfs
->z_log
, B_FALSE
);
916 zfsvfs
->z_replay
= B_TRUE
;
917 zil_replay(zfsvfs
->z_os
, zfsvfs
,
919 zfsvfs
->z_replay
= B_FALSE
;
923 /* restore readonly bit */
925 readonly_changed_cb(zfsvfs
, B_TRUE
);
927 ASSERT3P(zfsvfs
->z_kstat
.dk_kstats
, !=, NULL
);
928 zfsvfs
->z_log
= zil_open(zfsvfs
->z_os
, zfs_get_data
,
929 &zfsvfs
->z_kstat
.dk_zil_sums
);
933 * Set the objset user_ptr to track its zfsvfs.
935 mutex_enter(&zfsvfs
->z_os
->os_user_ptr_lock
);
936 dmu_objset_set_user(zfsvfs
->z_os
, zfsvfs
);
937 mutex_exit(&zfsvfs
->z_os
->os_user_ptr_lock
);
943 zfsvfs_free(zfsvfs_t
*zfsvfs
)
945 int i
, size
= zfsvfs
->z_hold_size
;
947 zfs_fuid_destroy(zfsvfs
);
949 mutex_destroy(&zfsvfs
->z_znodes_lock
);
950 mutex_destroy(&zfsvfs
->z_lock
);
951 list_destroy(&zfsvfs
->z_all_znodes
);
952 ZFS_TEARDOWN_DESTROY(zfsvfs
);
953 rw_destroy(&zfsvfs
->z_teardown_inactive_lock
);
954 rw_destroy(&zfsvfs
->z_fuid_lock
);
955 for (i
= 0; i
!= size
; i
++) {
956 avl_destroy(&zfsvfs
->z_hold_trees
[i
]);
957 mutex_destroy(&zfsvfs
->z_hold_locks
[i
]);
959 vmem_free(zfsvfs
->z_hold_trees
, sizeof (avl_tree_t
) * size
);
960 vmem_free(zfsvfs
->z_hold_locks
, sizeof (kmutex_t
) * size
);
961 zfsvfs_vfs_free(zfsvfs
->z_vfs
);
962 dataset_kstats_destroy(&zfsvfs
->z_kstat
);
963 kmem_free(zfsvfs
, sizeof (zfsvfs_t
));
967 zfs_set_fuid_feature(zfsvfs_t
*zfsvfs
)
969 zfsvfs
->z_use_fuids
= USE_FUIDS(zfsvfs
->z_version
, zfsvfs
->z_os
);
970 zfsvfs
->z_use_sa
= USE_SA(zfsvfs
->z_version
, zfsvfs
->z_os
);
974 zfs_unregister_callbacks(zfsvfs_t
*zfsvfs
)
976 objset_t
*os
= zfsvfs
->z_os
;
978 if (!dmu_objset_is_snapshot(os
))
979 dsl_prop_unregister_all(dmu_objset_ds(os
), zfsvfs
);
984 * Check that the hex label string is appropriate for the dataset being
985 * mounted into the global_zone proper.
987 * Return an error if the hex label string is not default or
988 * admin_low/admin_high. For admin_low labels, the corresponding
989 * dataset must be readonly.
992 zfs_check_global_label(const char *dsname
, const char *hexsl
)
994 if (strcasecmp(hexsl
, ZFS_MLSLABEL_DEFAULT
) == 0)
996 if (strcasecmp(hexsl
, ADMIN_HIGH
) == 0)
998 if (strcasecmp(hexsl
, ADMIN_LOW
) == 0) {
999 /* must be readonly */
1002 if (dsl_prop_get_integer(dsname
,
1003 zfs_prop_to_name(ZFS_PROP_READONLY
), &rdonly
, NULL
))
1004 return (SET_ERROR(EACCES
));
1005 return (rdonly
? 0 : SET_ERROR(EACCES
));
1007 return (SET_ERROR(EACCES
));
1009 #endif /* HAVE_MLSLABEL */
1012 zfs_statfs_project(zfsvfs_t
*zfsvfs
, znode_t
*zp
, struct kstatfs
*statp
,
1015 char buf
[20 + DMU_OBJACCT_PREFIX_LEN
];
1016 uint64_t offset
= DMU_OBJACCT_PREFIX_LEN
;
1021 strlcpy(buf
, DMU_OBJACCT_PREFIX
, DMU_OBJACCT_PREFIX_LEN
+ 1);
1022 err
= zfs_id_to_fuidstr(zfsvfs
, NULL
, zp
->z_projid
, buf
+ offset
,
1023 sizeof (buf
) - offset
, B_FALSE
);
1027 if (zfsvfs
->z_projectquota_obj
== 0)
1030 err
= zap_lookup(zfsvfs
->z_os
, zfsvfs
->z_projectquota_obj
,
1031 buf
+ offset
, 8, 1, "a
);
1037 err
= zap_lookup(zfsvfs
->z_os
, DMU_PROJECTUSED_OBJECT
,
1038 buf
+ offset
, 8, 1, &used
);
1039 if (unlikely(err
== ENOENT
)) {
1041 u_longlong_t nblocks
;
1044 * Quota accounting is async, so it is possible race case.
1045 * There is at least one object with the given project ID.
1047 sa_object_size(zp
->z_sa_hdl
, &blksize
, &nblocks
);
1048 if (unlikely(zp
->z_blksz
== 0))
1049 blksize
= zfsvfs
->z_max_blksz
;
1051 used
= blksize
* nblocks
;
1056 statp
->f_blocks
= quota
>> bshift
;
1057 statp
->f_bfree
= (quota
> used
) ? ((quota
- used
) >> bshift
) : 0;
1058 statp
->f_bavail
= statp
->f_bfree
;
1061 if (zfsvfs
->z_projectobjquota_obj
== 0)
1064 err
= zap_lookup(zfsvfs
->z_os
, zfsvfs
->z_projectobjquota_obj
,
1065 buf
+ offset
, 8, 1, "a
);
1071 err
= zap_lookup(zfsvfs
->z_os
, DMU_PROJECTUSED_OBJECT
,
1073 if (unlikely(err
== ENOENT
)) {
1075 * Quota accounting is async, so it is possible race case.
1076 * There is at least one object with the given project ID.
1083 statp
->f_files
= quota
;
1084 statp
->f_ffree
= (quota
> used
) ? (quota
- used
) : 0;
1090 zfs_statvfs(struct inode
*ip
, struct kstatfs
*statp
)
1092 zfsvfs_t
*zfsvfs
= ITOZSB(ip
);
1093 uint64_t refdbytes
, availbytes
, usedobjs
, availobjs
;
1096 if ((err
= zfs_enter(zfsvfs
, FTAG
)) != 0)
1099 dmu_objset_space(zfsvfs
->z_os
,
1100 &refdbytes
, &availbytes
, &usedobjs
, &availobjs
);
1102 uint64_t fsid
= dmu_objset_fsid_guid(zfsvfs
->z_os
);
1104 * The underlying storage pool actually uses multiple block
1105 * size. Under Solaris frsize (fragment size) is reported as
1106 * the smallest block size we support, and bsize (block size)
1107 * as the filesystem's maximum block size. Unfortunately,
1108 * under Linux the fragment size and block size are often used
1109 * interchangeably. Thus we are forced to report both of them
1110 * as the filesystem's maximum block size.
1112 statp
->f_frsize
= zfsvfs
->z_max_blksz
;
1113 statp
->f_bsize
= zfsvfs
->z_max_blksz
;
1114 uint32_t bshift
= fls(statp
->f_bsize
) - 1;
1117 * The following report "total" blocks of various kinds in
1118 * the file system, but reported in terms of f_bsize - the
1122 /* Round up so we never have a filesystem using 0 blocks. */
1123 refdbytes
= P2ROUNDUP(refdbytes
, statp
->f_bsize
);
1124 statp
->f_blocks
= (refdbytes
+ availbytes
) >> bshift
;
1125 statp
->f_bfree
= availbytes
>> bshift
;
1126 statp
->f_bavail
= statp
->f_bfree
; /* no root reservation */
1129 * statvfs() should really be called statufs(), because it assumes
1130 * static metadata. ZFS doesn't preallocate files, so the best
1131 * we can do is report the max that could possibly fit in f_files,
1132 * and that minus the number actually used in f_ffree.
1133 * For f_ffree, report the smaller of the number of objects available
1134 * and the number of blocks (each object will take at least a block).
1136 statp
->f_ffree
= MIN(availobjs
, availbytes
>> DNODE_SHIFT
);
1137 statp
->f_files
= statp
->f_ffree
+ usedobjs
;
1138 statp
->f_fsid
.val
[0] = (uint32_t)fsid
;
1139 statp
->f_fsid
.val
[1] = (uint32_t)(fsid
>> 32);
1140 statp
->f_type
= ZFS_SUPER_MAGIC
;
1141 statp
->f_namelen
= MAXNAMELEN
- 1;
1144 * We have all of 40 characters to stuff a string here.
1145 * Is there anything useful we could/should provide?
1147 memset(statp
->f_spare
, 0, sizeof (statp
->f_spare
));
1149 if (dmu_objset_projectquota_enabled(zfsvfs
->z_os
) &&
1150 dmu_objset_projectquota_present(zfsvfs
->z_os
)) {
1151 znode_t
*zp
= ITOZ(ip
);
1153 if (zp
->z_pflags
& ZFS_PROJINHERIT
&& zp
->z_projid
&&
1154 zpl_is_valid_projid(zp
->z_projid
))
1155 err
= zfs_statfs_project(zfsvfs
, zp
, statp
, bshift
);
1158 zfs_exit(zfsvfs
, FTAG
);
1163 zfs_root(zfsvfs_t
*zfsvfs
, struct inode
**ipp
)
1168 if ((error
= zfs_enter(zfsvfs
, FTAG
)) != 0)
1171 error
= zfs_zget(zfsvfs
, zfsvfs
->z_root
, &rootzp
);
1173 *ipp
= ZTOI(rootzp
);
1175 zfs_exit(zfsvfs
, FTAG
);
1180 * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1181 * To accommodate this we must improvise and manually walk the list of znodes
1182 * attempting to prune dentries in order to be able to drop the inodes.
1184 * To avoid scanning the same znodes multiple times they are always rotated
1185 * to the end of the z_all_znodes list. New znodes are inserted at the
1186 * end of the list so we're always scanning the oldest znodes first.
1189 zfs_prune_aliases(zfsvfs_t
*zfsvfs
, unsigned long nr_to_scan
)
1191 znode_t
**zp_array
, *zp
;
1192 int max_array
= MIN(nr_to_scan
, PAGE_SIZE
* 8 / sizeof (znode_t
*));
1196 zp_array
= kmem_zalloc(max_array
* sizeof (znode_t
*), KM_SLEEP
);
1198 mutex_enter(&zfsvfs
->z_znodes_lock
);
1199 while ((zp
= list_head(&zfsvfs
->z_all_znodes
)) != NULL
) {
1201 if ((i
++ > nr_to_scan
) || (j
>= max_array
))
1204 ASSERT(list_link_active(&zp
->z_link_node
));
1205 list_remove(&zfsvfs
->z_all_znodes
, zp
);
1206 list_insert_tail(&zfsvfs
->z_all_znodes
, zp
);
1208 /* Skip active znodes and .zfs entries */
1209 if (MUTEX_HELD(&zp
->z_lock
) || zp
->z_is_ctldir
)
1212 if (igrab(ZTOI(zp
)) == NULL
)
1218 mutex_exit(&zfsvfs
->z_znodes_lock
);
1220 for (i
= 0; i
< j
; i
++) {
1223 ASSERT3P(zp
, !=, NULL
);
1224 d_prune_aliases(ZTOI(zp
));
1226 if (atomic_read(&ZTOI(zp
)->i_count
) == 1)
1232 kmem_free(zp_array
, max_array
* sizeof (znode_t
*));
1238 * The ARC has requested that the filesystem drop entries from the dentry
1239 * and inode caches. This can occur when the ARC needs to free meta data
1240 * blocks but can't because they are all pinned by entries in these caches.
1243 zfs_prune(struct super_block
*sb
, unsigned long nr_to_scan
, int *objects
)
1245 zfsvfs_t
*zfsvfs
= sb
->s_fs_info
;
1247 struct shrinker
*shrinker
= &sb
->s_shrink
;
1248 struct shrink_control sc
= {
1249 .nr_to_scan
= nr_to_scan
,
1250 .gfp_mask
= GFP_KERNEL
,
1253 if ((error
= zfs_enter(zfsvfs
, FTAG
)) != 0)
1256 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1257 defined(SHRINK_CONTROL_HAS_NID) && \
1258 defined(SHRINKER_NUMA_AWARE)
1259 if (sb
->s_shrink
.flags
& SHRINKER_NUMA_AWARE
) {
1261 for_each_online_node(sc
.nid
) {
1262 *objects
+= (*shrinker
->scan_objects
)(shrinker
, &sc
);
1264 * reset sc.nr_to_scan, modified by
1265 * scan_objects == super_cache_scan
1267 sc
.nr_to_scan
= nr_to_scan
;
1270 *objects
= (*shrinker
->scan_objects
)(shrinker
, &sc
);
1273 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1274 *objects
= (*shrinker
->scan_objects
)(shrinker
, &sc
);
1275 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
1276 *objects
= (*shrinker
->shrink
)(shrinker
, &sc
);
1277 #elif defined(HAVE_D_PRUNE_ALIASES)
1278 #define D_PRUNE_ALIASES_IS_DEFAULT
1279 *objects
= zfs_prune_aliases(zfsvfs
, nr_to_scan
);
1281 #error "No available dentry and inode cache pruning mechanism."
1284 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1285 #undef D_PRUNE_ALIASES_IS_DEFAULT
1287 * Fall back to zfs_prune_aliases if the kernel's per-superblock
1288 * shrinker couldn't free anything, possibly due to the inodes being
1289 * allocated in a different memcg.
1292 *objects
= zfs_prune_aliases(zfsvfs
, nr_to_scan
);
1295 zfs_exit(zfsvfs
, FTAG
);
1297 dprintf_ds(zfsvfs
->z_os
->os_dsl_dataset
,
1298 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1299 nr_to_scan
, *objects
, error
);
1305 * Teardown the zfsvfs_t.
1307 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1308 * and 'z_teardown_inactive_lock' held.
1311 zfsvfs_teardown(zfsvfs_t
*zfsvfs
, boolean_t unmounting
)
1315 zfs_unlinked_drain_stop_wait(zfsvfs
);
1318 * If someone has not already unmounted this file system,
1319 * drain the zrele_taskq to ensure all active references to the
1320 * zfsvfs_t have been handled only then can it be safely destroyed.
1324 * If we're unmounting we have to wait for the list to
1327 * If we're not unmounting there's no guarantee the list
1328 * will drain completely, but iputs run from the taskq
1329 * may add the parents of dir-based xattrs to the taskq
1330 * so we want to wait for these.
1332 * We can safely read z_nr_znodes without locking because the
1333 * VFS has already blocked operations which add to the
1334 * z_all_znodes list and thus increment z_nr_znodes.
1337 while (zfsvfs
->z_nr_znodes
> 0) {
1338 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1339 dmu_objset_pool(zfsvfs
->z_os
)), 0);
1340 if (++round
> 1 && !unmounting
)
1345 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs
, FTAG
);
1349 * We purge the parent filesystem's super block as the
1350 * parent filesystem and all of its snapshots have their
1351 * inode's super block set to the parent's filesystem's
1352 * super block. Note, 'z_parent' is self referential
1353 * for non-snapshots.
1355 shrink_dcache_sb(zfsvfs
->z_parent
->z_sb
);
1359 * Close the zil. NB: Can't close the zil while zfs_inactive
1360 * threads are blocked as zil_close can call zfs_inactive.
1362 if (zfsvfs
->z_log
) {
1363 zil_close(zfsvfs
->z_log
);
1364 zfsvfs
->z_log
= NULL
;
1367 rw_enter(&zfsvfs
->z_teardown_inactive_lock
, RW_WRITER
);
1370 * If we are not unmounting (ie: online recv) and someone already
1371 * unmounted this file system while we were doing the switcheroo,
1372 * or a reopen of z_os failed then just bail out now.
1374 if (!unmounting
&& (zfsvfs
->z_unmounted
|| zfsvfs
->z_os
== NULL
)) {
1375 rw_exit(&zfsvfs
->z_teardown_inactive_lock
);
1376 ZFS_TEARDOWN_EXIT(zfsvfs
, FTAG
);
1377 return (SET_ERROR(EIO
));
1381 * At this point there are no VFS ops active, and any new VFS ops
1382 * will fail with EIO since we have z_teardown_lock for writer (only
1383 * relevant for forced unmount).
1385 * Release all holds on dbufs. We also grab an extra reference to all
1386 * the remaining inodes so that the kernel does not attempt to free
1387 * any inodes of a suspended fs. This can cause deadlocks since the
1388 * zfs_resume_fs() process may involve starting threads, which might
1389 * attempt to free unreferenced inodes to free up memory for the new
1393 mutex_enter(&zfsvfs
->z_znodes_lock
);
1394 for (zp
= list_head(&zfsvfs
->z_all_znodes
); zp
!= NULL
;
1395 zp
= list_next(&zfsvfs
->z_all_znodes
, zp
)) {
1397 zfs_znode_dmu_fini(zp
);
1398 if (igrab(ZTOI(zp
)) != NULL
)
1399 zp
->z_suspended
= B_TRUE
;
1402 mutex_exit(&zfsvfs
->z_znodes_lock
);
1406 * If we are unmounting, set the unmounted flag and let new VFS ops
1407 * unblock. zfs_inactive will have the unmounted behavior, and all
1408 * other VFS ops will fail with EIO.
1411 zfsvfs
->z_unmounted
= B_TRUE
;
1412 rw_exit(&zfsvfs
->z_teardown_inactive_lock
);
1413 ZFS_TEARDOWN_EXIT(zfsvfs
, FTAG
);
1417 * z_os will be NULL if there was an error in attempting to reopen
1418 * zfsvfs, so just return as the properties had already been
1420 * unregistered and cached data had been evicted before.
1422 if (zfsvfs
->z_os
== NULL
)
1426 * Unregister properties.
1428 zfs_unregister_callbacks(zfsvfs
);
1431 * Evict cached data. We must write out any dirty data before
1432 * disowning the dataset.
1434 objset_t
*os
= zfsvfs
->z_os
;
1435 boolean_t os_dirty
= B_FALSE
;
1436 for (int t
= 0; t
< TXG_SIZE
; t
++) {
1437 if (dmu_objset_is_dirty(os
, t
)) {
1442 if (!zfs_is_readonly(zfsvfs
) && os_dirty
) {
1443 txg_wait_synced(dmu_objset_pool(zfsvfs
->z_os
), 0);
1445 dmu_objset_evict_dbufs(zfsvfs
->z_os
);
1446 dsl_dir_t
*dd
= os
->os_dsl_dataset
->ds_dir
;
1447 dsl_dir_cancel_waiters(dd
);
1452 #if defined(HAVE_SUPER_SETUP_BDI_NAME)
1453 atomic_long_t zfs_bdi_seq
= ATOMIC_LONG_INIT(0);
1457 zfs_domount(struct super_block
*sb
, zfs_mnt_t
*zm
, int silent
)
1459 const char *osname
= zm
->mnt_osname
;
1460 struct inode
*root_inode
= NULL
;
1461 uint64_t recordsize
;
1463 zfsvfs_t
*zfsvfs
= NULL
;
1466 int dataset_visible_zone
;
1471 dataset_visible_zone
= zone_dataset_visible(osname
, &canwrite
);
1474 * Refuse to mount a filesystem if we are in a namespace and the
1475 * dataset is not visible or writable in that namespace.
1477 if (!INGLOBALZONE(curproc
) &&
1478 (!dataset_visible_zone
|| !canwrite
)) {
1479 return (SET_ERROR(EPERM
));
1482 error
= zfsvfs_parse_options(zm
->mnt_data
, &vfs
);
1487 * If a non-writable filesystem is being mounted without the
1488 * read-only flag, pretend it was set, as done for snapshots.
1491 vfs
->vfs_readonly
= true;
1493 error
= zfsvfs_create(osname
, vfs
->vfs_readonly
, &zfsvfs
);
1495 zfsvfs_vfs_free(vfs
);
1499 if ((error
= dsl_prop_get_integer(osname
, "recordsize",
1500 &recordsize
, NULL
))) {
1501 zfsvfs_vfs_free(vfs
);
1505 vfs
->vfs_data
= zfsvfs
;
1506 zfsvfs
->z_vfs
= vfs
;
1508 sb
->s_fs_info
= zfsvfs
;
1509 sb
->s_magic
= ZFS_SUPER_MAGIC
;
1510 sb
->s_maxbytes
= MAX_LFS_FILESIZE
;
1511 sb
->s_time_gran
= 1;
1512 sb
->s_blocksize
= recordsize
;
1513 sb
->s_blocksize_bits
= ilog2(recordsize
);
1515 error
= -zpl_bdi_setup(sb
, "zfs");
1519 sb
->s_bdi
->ra_pages
= 0;
1521 /* Set callback operations for the file system. */
1522 sb
->s_op
= &zpl_super_operations
;
1523 sb
->s_xattr
= zpl_xattr_handlers
;
1524 sb
->s_export_op
= &zpl_export_operations
;
1525 sb
->s_d_op
= &zpl_dentry_operations
;
1527 /* Set features for file system. */
1528 zfs_set_fuid_feature(zfsvfs
);
1530 if (dmu_objset_is_snapshot(zfsvfs
->z_os
)) {
1533 atime_changed_cb(zfsvfs
, B_FALSE
);
1534 readonly_changed_cb(zfsvfs
, B_TRUE
);
1535 if ((error
= dsl_prop_get_integer(osname
,
1536 "xattr", &pval
, NULL
)))
1538 xattr_changed_cb(zfsvfs
, pval
);
1539 if ((error
= dsl_prop_get_integer(osname
,
1540 "acltype", &pval
, NULL
)))
1542 acltype_changed_cb(zfsvfs
, pval
);
1543 zfsvfs
->z_issnap
= B_TRUE
;
1544 zfsvfs
->z_os
->os_sync
= ZFS_SYNC_DISABLED
;
1545 zfsvfs
->z_snap_defer_time
= jiffies
;
1547 mutex_enter(&zfsvfs
->z_os
->os_user_ptr_lock
);
1548 dmu_objset_set_user(zfsvfs
->z_os
, zfsvfs
);
1549 mutex_exit(&zfsvfs
->z_os
->os_user_ptr_lock
);
1551 if ((error
= zfsvfs_setup(zfsvfs
, B_TRUE
)))
1555 /* Allocate a root inode for the filesystem. */
1556 error
= zfs_root(zfsvfs
, &root_inode
);
1558 (void) zfs_umount(sb
);
1562 /* Allocate a root dentry for the filesystem */
1563 sb
->s_root
= d_make_root(root_inode
);
1564 if (sb
->s_root
== NULL
) {
1565 (void) zfs_umount(sb
);
1566 error
= SET_ERROR(ENOMEM
);
1570 if (!zfsvfs
->z_issnap
)
1571 zfsctl_create(zfsvfs
);
1573 zfsvfs
->z_arc_prune
= arc_add_prune_callback(zpl_prune_sb
, sb
);
1576 if (zfsvfs
!= NULL
) {
1577 dmu_objset_disown(zfsvfs
->z_os
, B_TRUE
, zfsvfs
);
1578 zfsvfs_free(zfsvfs
);
1581 * make sure we don't have dangling sb->s_fs_info which
1582 * zfs_preumount will use.
1584 sb
->s_fs_info
= NULL
;
1591 * Called when an unmount is requested and certain sanity checks have
1592 * already passed. At this point no dentries or inodes have been reclaimed
1593 * from their respective caches. We drop the extra reference on the .zfs
1594 * control directory to allow everything to be reclaimed. All snapshots
1595 * must already have been unmounted to reach this point.
1598 zfs_preumount(struct super_block
*sb
)
1600 zfsvfs_t
*zfsvfs
= sb
->s_fs_info
;
1602 /* zfsvfs is NULL when zfs_domount fails during mount */
1604 zfs_unlinked_drain_stop_wait(zfsvfs
);
1605 zfsctl_destroy(sb
->s_fs_info
);
1607 * Wait for zrele_async before entering evict_inodes in
1608 * generic_shutdown_super. The reason we must finish before
1609 * evict_inodes is when lazytime is on, or when zfs_purgedir
1610 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1611 * would race with the i_count check in evict_inodes. This means
1612 * it could destroy the inode while we are still using it.
1614 * We wait for two passes. xattr directories in the first pass
1615 * may add xattr entries in zfs_purgedir, so in the second pass
1616 * we wait for them. We don't use taskq_wait here because it is
1617 * a pool wide taskq. Other mounted filesystems can constantly
1618 * do zrele_async and there's no guarantee when taskq will be
1621 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1622 dmu_objset_pool(zfsvfs
->z_os
)), 0);
1623 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1624 dmu_objset_pool(zfsvfs
->z_os
)), 0);
1629 * Called once all other unmount released tear down has occurred.
1630 * It is our responsibility to release any remaining infrastructure.
1633 zfs_umount(struct super_block
*sb
)
1635 zfsvfs_t
*zfsvfs
= sb
->s_fs_info
;
1638 if (zfsvfs
->z_arc_prune
!= NULL
)
1639 arc_remove_prune_callback(zfsvfs
->z_arc_prune
);
1640 VERIFY(zfsvfs_teardown(zfsvfs
, B_TRUE
) == 0);
1642 zpl_bdi_destroy(sb
);
1645 * z_os will be NULL if there was an error in
1646 * attempting to reopen zfsvfs.
1650 * Unset the objset user_ptr.
1652 mutex_enter(&os
->os_user_ptr_lock
);
1653 dmu_objset_set_user(os
, NULL
);
1654 mutex_exit(&os
->os_user_ptr_lock
);
1657 * Finally release the objset
1659 dmu_objset_disown(os
, B_TRUE
, zfsvfs
);
1662 zfsvfs_free(zfsvfs
);
1667 zfs_remount(struct super_block
*sb
, int *flags
, zfs_mnt_t
*zm
)
1669 zfsvfs_t
*zfsvfs
= sb
->s_fs_info
;
1671 boolean_t issnap
= dmu_objset_is_snapshot(zfsvfs
->z_os
);
1674 if ((issnap
|| !spa_writeable(dmu_objset_spa(zfsvfs
->z_os
))) &&
1675 !(*flags
& SB_RDONLY
)) {
1676 *flags
|= SB_RDONLY
;
1680 error
= zfsvfs_parse_options(zm
->mnt_data
, &vfsp
);
1684 if (!zfs_is_readonly(zfsvfs
) && (*flags
& SB_RDONLY
))
1685 txg_wait_synced(dmu_objset_pool(zfsvfs
->z_os
), 0);
1687 zfs_unregister_callbacks(zfsvfs
);
1688 zfsvfs_vfs_free(zfsvfs
->z_vfs
);
1690 vfsp
->vfs_data
= zfsvfs
;
1691 zfsvfs
->z_vfs
= vfsp
;
1693 (void) zfs_register_callbacks(vfsp
);
1699 zfs_vget(struct super_block
*sb
, struct inode
**ipp
, fid_t
*fidp
)
1701 zfsvfs_t
*zfsvfs
= sb
->s_fs_info
;
1703 uint64_t object
= 0;
1704 uint64_t fid_gen
= 0;
1711 if (fidp
->fid_len
== SHORT_FID_LEN
|| fidp
->fid_len
== LONG_FID_LEN
) {
1712 zfid_short_t
*zfid
= (zfid_short_t
*)fidp
;
1714 for (i
= 0; i
< sizeof (zfid
->zf_object
); i
++)
1715 object
|= ((uint64_t)zfid
->zf_object
[i
]) << (8 * i
);
1717 for (i
= 0; i
< sizeof (zfid
->zf_gen
); i
++)
1718 fid_gen
|= ((uint64_t)zfid
->zf_gen
[i
]) << (8 * i
);
1720 return (SET_ERROR(EINVAL
));
1723 /* LONG_FID_LEN means snapdirs */
1724 if (fidp
->fid_len
== LONG_FID_LEN
) {
1725 zfid_long_t
*zlfid
= (zfid_long_t
*)fidp
;
1726 uint64_t objsetid
= 0;
1727 uint64_t setgen
= 0;
1729 for (i
= 0; i
< sizeof (zlfid
->zf_setid
); i
++)
1730 objsetid
|= ((uint64_t)zlfid
->zf_setid
[i
]) << (8 * i
);
1732 for (i
= 0; i
< sizeof (zlfid
->zf_setgen
); i
++)
1733 setgen
|= ((uint64_t)zlfid
->zf_setgen
[i
]) << (8 * i
);
1735 if (objsetid
!= ZFSCTL_INO_SNAPDIRS
- object
) {
1736 dprintf("snapdir fid: objsetid (%llu) != "
1737 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1738 objsetid
, ZFSCTL_INO_SNAPDIRS
, object
);
1740 return (SET_ERROR(EINVAL
));
1743 if (fid_gen
> 1 || setgen
!= 0) {
1744 dprintf("snapdir fid: fid_gen (%llu) and setgen "
1745 "(%llu)\n", fid_gen
, setgen
);
1746 return (SET_ERROR(EINVAL
));
1749 return (zfsctl_snapdir_vget(sb
, objsetid
, fid_gen
, ipp
));
1752 if ((err
= zfs_enter(zfsvfs
, FTAG
)) != 0)
1754 /* A zero fid_gen means we are in the .zfs control directories */
1756 (object
== ZFSCTL_INO_ROOT
|| object
== ZFSCTL_INO_SNAPDIR
)) {
1757 *ipp
= zfsvfs
->z_ctldir
;
1758 ASSERT(*ipp
!= NULL
);
1759 if (object
== ZFSCTL_INO_SNAPDIR
) {
1760 VERIFY(zfsctl_root_lookup(*ipp
, "snapshot", ipp
,
1761 0, kcred
, NULL
, NULL
) == 0);
1764 * Must have an existing ref, so igrab()
1765 * cannot return NULL
1767 VERIFY3P(igrab(*ipp
), !=, NULL
);
1769 zfs_exit(zfsvfs
, FTAG
);
1773 gen_mask
= -1ULL >> (64 - 8 * i
);
1775 dprintf("getting %llu [%llu mask %llx]\n", object
, fid_gen
, gen_mask
);
1776 if ((err
= zfs_zget(zfsvfs
, object
, &zp
))) {
1777 zfs_exit(zfsvfs
, FTAG
);
1781 /* Don't export xattr stuff */
1782 if (zp
->z_pflags
& ZFS_XATTR
) {
1784 zfs_exit(zfsvfs
, FTAG
);
1785 return (SET_ERROR(ENOENT
));
1788 (void) sa_lookup(zp
->z_sa_hdl
, SA_ZPL_GEN(zfsvfs
), &zp_gen
,
1790 zp_gen
= zp_gen
& gen_mask
;
1793 if ((fid_gen
== 0) && (zfsvfs
->z_root
== object
))
1795 if (zp
->z_unlinked
|| zp_gen
!= fid_gen
) {
1796 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen
,
1799 zfs_exit(zfsvfs
, FTAG
);
1800 return (SET_ERROR(ENOENT
));
1805 zfs_znode_update_vfs(ITOZ(*ipp
));
1807 zfs_exit(zfsvfs
, FTAG
);
1812 * Block out VFS ops and close zfsvfs_t
1814 * Note, if successful, then we return with the 'z_teardown_lock' and
1815 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1816 * dataset and objset intact so that they can be atomically handed off during
1817 * a subsequent rollback or recv operation and the resume thereafter.
1820 zfs_suspend_fs(zfsvfs_t
*zfsvfs
)
1824 if ((error
= zfsvfs_teardown(zfsvfs
, B_FALSE
)) != 0)
1831 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
1832 * is an invariant across any of the operations that can be performed while the
1833 * filesystem was suspended. Whether it succeeded or failed, the preconditions
1834 * are the same: the relevant objset and associated dataset are owned by
1835 * zfsvfs, held, and long held on entry.
1838 zfs_resume_fs(zfsvfs_t
*zfsvfs
, dsl_dataset_t
*ds
)
1843 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs
));
1844 ASSERT(RW_WRITE_HELD(&zfsvfs
->z_teardown_inactive_lock
));
1847 * We already own this, so just update the objset_t, as the one we
1848 * had before may have been evicted.
1851 VERIFY3P(ds
->ds_owner
, ==, zfsvfs
);
1852 VERIFY(dsl_dataset_long_held(ds
));
1853 dsl_pool_t
*dp
= spa_get_dsl(dsl_dataset_get_spa(ds
));
1854 dsl_pool_config_enter(dp
, FTAG
);
1855 VERIFY0(dmu_objset_from_ds(ds
, &os
));
1856 dsl_pool_config_exit(dp
, FTAG
);
1858 err
= zfsvfs_init(zfsvfs
, os
);
1862 ds
->ds_dir
->dd_activity_cancelled
= B_FALSE
;
1863 VERIFY(zfsvfs_setup(zfsvfs
, B_FALSE
) == 0);
1865 zfs_set_fuid_feature(zfsvfs
);
1866 zfsvfs
->z_rollback_time
= jiffies
;
1869 * Attempt to re-establish all the active inodes with their
1870 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1871 * and mark it stale. This prevents a collision if a new
1872 * inode/object is created which must use the same inode
1873 * number. The stale inode will be be released when the
1874 * VFS prunes the dentry holding the remaining references
1875 * on the stale inode.
1877 mutex_enter(&zfsvfs
->z_znodes_lock
);
1878 for (zp
= list_head(&zfsvfs
->z_all_znodes
); zp
;
1879 zp
= list_next(&zfsvfs
->z_all_znodes
, zp
)) {
1880 err2
= zfs_rezget(zp
);
1882 remove_inode_hash(ZTOI(zp
));
1883 zp
->z_is_stale
= B_TRUE
;
1886 /* see comment in zfs_suspend_fs() */
1887 if (zp
->z_suspended
) {
1888 zfs_zrele_async(zp
);
1889 zp
->z_suspended
= B_FALSE
;
1892 mutex_exit(&zfsvfs
->z_znodes_lock
);
1894 if (!zfs_is_readonly(zfsvfs
) && !zfsvfs
->z_unmounted
) {
1896 * zfs_suspend_fs() could have interrupted freeing
1897 * of dnodes. We need to restart this freeing so
1898 * that we don't "leak" the space.
1900 zfs_unlinked_drain(zfsvfs
);
1904 * Most of the time zfs_suspend_fs is used for changing the contents
1905 * of the underlying dataset. ZFS rollback and receive operations
1906 * might create files for which negative dentries are present in
1907 * the cache. Since walking the dcache would require a lot of GPL-only
1908 * code duplication, it's much easier on these rather rare occasions
1909 * just to flush the whole dcache for the given dataset/filesystem.
1911 shrink_dcache_sb(zfsvfs
->z_sb
);
1915 zfsvfs
->z_unmounted
= B_TRUE
;
1917 /* release the VFS ops */
1918 rw_exit(&zfsvfs
->z_teardown_inactive_lock
);
1919 ZFS_TEARDOWN_EXIT(zfsvfs
, FTAG
);
1923 * Since we couldn't setup the sa framework, try to force
1924 * unmount this file system.
1927 (void) zfs_umount(zfsvfs
->z_sb
);
1933 * Release VOPs and unmount a suspended filesystem.
1936 zfs_end_fs(zfsvfs_t
*zfsvfs
, dsl_dataset_t
*ds
)
1938 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs
));
1939 ASSERT(RW_WRITE_HELD(&zfsvfs
->z_teardown_inactive_lock
));
1942 * We already own this, so just hold and rele it to update the
1943 * objset_t, as the one we had before may have been evicted.
1946 VERIFY3P(ds
->ds_owner
, ==, zfsvfs
);
1947 VERIFY(dsl_dataset_long_held(ds
));
1948 dsl_pool_t
*dp
= spa_get_dsl(dsl_dataset_get_spa(ds
));
1949 dsl_pool_config_enter(dp
, FTAG
);
1950 VERIFY0(dmu_objset_from_ds(ds
, &os
));
1951 dsl_pool_config_exit(dp
, FTAG
);
1954 /* release the VOPs */
1955 rw_exit(&zfsvfs
->z_teardown_inactive_lock
);
1956 ZFS_TEARDOWN_EXIT(zfsvfs
, FTAG
);
1959 * Try to force unmount this file system.
1961 (void) zfs_umount(zfsvfs
->z_sb
);
1962 zfsvfs
->z_unmounted
= B_TRUE
;
1967 * Automounted snapshots rely on periodic revalidation
1968 * to defer snapshots from being automatically unmounted.
1972 zfs_exit_fs(zfsvfs_t
*zfsvfs
)
1974 if (!zfsvfs
->z_issnap
)
1977 if (time_after(jiffies
, zfsvfs
->z_snap_defer_time
+
1978 MAX(zfs_expire_snapshot
* HZ
/ 2, HZ
))) {
1979 zfsvfs
->z_snap_defer_time
= jiffies
;
1980 zfsctl_snapshot_unmount_delay(zfsvfs
->z_os
->os_spa
,
1981 dmu_objset_id(zfsvfs
->z_os
),
1982 zfs_expire_snapshot
);
1987 zfs_set_version(zfsvfs_t
*zfsvfs
, uint64_t newvers
)
1990 objset_t
*os
= zfsvfs
->z_os
;
1993 if (newvers
< ZPL_VERSION_INITIAL
|| newvers
> ZPL_VERSION
)
1994 return (SET_ERROR(EINVAL
));
1996 if (newvers
< zfsvfs
->z_version
)
1997 return (SET_ERROR(EINVAL
));
1999 if (zfs_spa_version_map(newvers
) >
2000 spa_version(dmu_objset_spa(zfsvfs
->z_os
)))
2001 return (SET_ERROR(ENOTSUP
));
2003 tx
= dmu_tx_create(os
);
2004 dmu_tx_hold_zap(tx
, MASTER_NODE_OBJ
, B_FALSE
, ZPL_VERSION_STR
);
2005 if (newvers
>= ZPL_VERSION_SA
&& !zfsvfs
->z_use_sa
) {
2006 dmu_tx_hold_zap(tx
, MASTER_NODE_OBJ
, B_TRUE
,
2008 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, FALSE
, NULL
);
2010 error
= dmu_tx_assign(tx
, TXG_WAIT
);
2016 error
= zap_update(os
, MASTER_NODE_OBJ
, ZPL_VERSION_STR
,
2017 8, 1, &newvers
, tx
);
2024 if (newvers
>= ZPL_VERSION_SA
&& !zfsvfs
->z_use_sa
) {
2027 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs
->z_os
)), >=,
2029 sa_obj
= zap_create(os
, DMU_OT_SA_MASTER_NODE
,
2030 DMU_OT_NONE
, 0, tx
);
2032 error
= zap_add(os
, MASTER_NODE_OBJ
,
2033 ZFS_SA_ATTRS
, 8, 1, &sa_obj
, tx
);
2036 VERIFY(0 == sa_set_sa_object(os
, sa_obj
));
2037 sa_register_update_callback(os
, zfs_sa_upgrade
);
2040 spa_history_log_internal_ds(dmu_objset_ds(os
), "upgrade", tx
,
2041 "from %llu to %llu", zfsvfs
->z_version
, newvers
);
2045 zfsvfs
->z_version
= newvers
;
2046 os
->os_version
= newvers
;
2048 zfs_set_fuid_feature(zfsvfs
);
2054 * Read a property stored within the master node.
2057 zfs_get_zplprop(objset_t
*os
, zfs_prop_t prop
, uint64_t *value
)
2059 uint64_t *cached_copy
= NULL
;
2062 * Figure out where in the objset_t the cached copy would live, if it
2063 * is available for the requested property.
2067 case ZFS_PROP_VERSION
:
2068 cached_copy
= &os
->os_version
;
2070 case ZFS_PROP_NORMALIZE
:
2071 cached_copy
= &os
->os_normalization
;
2073 case ZFS_PROP_UTF8ONLY
:
2074 cached_copy
= &os
->os_utf8only
;
2077 cached_copy
= &os
->os_casesensitivity
;
2083 if (cached_copy
!= NULL
&& *cached_copy
!= OBJSET_PROP_UNINITIALIZED
) {
2084 *value
= *cached_copy
;
2089 * If the property wasn't cached, look up the file system's value for
2090 * the property. For the version property, we look up a slightly
2095 if (prop
== ZFS_PROP_VERSION
)
2096 pname
= ZPL_VERSION_STR
;
2098 pname
= zfs_prop_to_name(prop
);
2101 ASSERT3U(os
->os_phys
->os_type
, ==, DMU_OST_ZFS
);
2102 error
= zap_lookup(os
, MASTER_NODE_OBJ
, pname
, 8, 1, value
);
2105 if (error
== ENOENT
) {
2106 /* No value set, use the default value */
2108 case ZFS_PROP_VERSION
:
2109 *value
= ZPL_VERSION
;
2111 case ZFS_PROP_NORMALIZE
:
2112 case ZFS_PROP_UTF8ONLY
:
2116 *value
= ZFS_CASE_SENSITIVE
;
2118 case ZFS_PROP_ACLTYPE
:
2119 *value
= ZFS_ACLTYPE_OFF
;
2128 * If one of the methods for getting the property value above worked,
2129 * copy it into the objset_t's cache.
2131 if (error
== 0 && cached_copy
!= NULL
) {
2132 *cached_copy
= *value
;
2139 * Return true if the corresponding vfs's unmounted flag is set.
2140 * Otherwise return false.
2141 * If this function returns true we know VFS unmount has been initiated.
2144 zfs_get_vfs_flag_unmounted(objset_t
*os
)
2147 boolean_t unmounted
= B_FALSE
;
2149 ASSERT(dmu_objset_type(os
) == DMU_OST_ZFS
);
2151 mutex_enter(&os
->os_user_ptr_lock
);
2152 zfvp
= dmu_objset_get_user(os
);
2153 if (zfvp
!= NULL
&& zfvp
->z_unmounted
)
2155 mutex_exit(&os
->os_user_ptr_lock
);
2161 zfsvfs_update_fromname(const char *oldname
, const char *newname
)
2164 * We don't need to do anything here, the devname is always current by
2165 * virtue of zfsvfs->z_sb->s_op->show_devname.
2167 (void) oldname
, (void) newname
;
2175 dmu_objset_register_type(DMU_OST_ZFS
, zpl_get_file_info
);
2176 register_filesystem(&zpl_fs_type
);
2183 * we don't use outstanding because zpl_posix_acl_free might add more.
2185 taskq_wait(system_delay_taskq
);
2186 taskq_wait(system_taskq
);
2187 unregister_filesystem(&zpl_fs_type
);
2192 #if defined(_KERNEL)
2193 EXPORT_SYMBOL(zfs_suspend_fs
);
2194 EXPORT_SYMBOL(zfs_resume_fs
);
2195 EXPORT_SYMBOL(zfs_set_version
);
2196 EXPORT_SYMBOL(zfsvfs_create
);
2197 EXPORT_SYMBOL(zfsvfs_free
);
2198 EXPORT_SYMBOL(zfs_is_readonly
);
2199 EXPORT_SYMBOL(zfs_domount
);
2200 EXPORT_SYMBOL(zfs_preumount
);
2201 EXPORT_SYMBOL(zfs_umount
);
2202 EXPORT_SYMBOL(zfs_remount
);
2203 EXPORT_SYMBOL(zfs_statvfs
);
2204 EXPORT_SYMBOL(zfs_vget
);
2205 EXPORT_SYMBOL(zfs_prune
);