Handle possible null pointers from malloc/strdup/strndup()
[zfs.git] / module / os / linux / zfs / zfs_vnops_os.c
blob1ff88c121a79f5242d5b8218b44b9aecbaf3fb8b
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
26 * Copyright 2017 Nexenta Systems, Inc.
29 /* Portions Copyright 2007 Jeremy Teo */
30 /* Portions Copyright 2010 Robert Milkowski */
33 #include <sys/types.h>
34 #include <sys/param.h>
35 #include <sys/time.h>
36 #include <sys/sysmacros.h>
37 #include <sys/vfs.h>
38 #include <sys/file.h>
39 #include <sys/stat.h>
40 #include <sys/kmem.h>
41 #include <sys/taskq.h>
42 #include <sys/uio.h>
43 #include <sys/vmsystm.h>
44 #include <sys/atomic.h>
45 #include <sys/pathname.h>
46 #include <sys/cmn_err.h>
47 #include <sys/errno.h>
48 #include <sys/zfs_dir.h>
49 #include <sys/zfs_acl.h>
50 #include <sys/zfs_ioctl.h>
51 #include <sys/fs/zfs.h>
52 #include <sys/dmu.h>
53 #include <sys/dmu_objset.h>
54 #include <sys/spa.h>
55 #include <sys/txg.h>
56 #include <sys/dbuf.h>
57 #include <sys/zap.h>
58 #include <sys/sa.h>
59 #include <sys/policy.h>
60 #include <sys/sunddi.h>
61 #include <sys/sid.h>
62 #include <sys/zfs_ctldir.h>
63 #include <sys/zfs_fuid.h>
64 #include <sys/zfs_quota.h>
65 #include <sys/zfs_sa.h>
66 #include <sys/zfs_vnops.h>
67 #include <sys/zfs_rlock.h>
68 #include <sys/cred.h>
69 #include <sys/zpl.h>
70 #include <sys/zil.h>
71 #include <sys/sa_impl.h>
74 * Programming rules.
76 * Each vnode op performs some logical unit of work. To do this, the ZPL must
77 * properly lock its in-core state, create a DMU transaction, do the work,
78 * record this work in the intent log (ZIL), commit the DMU transaction,
79 * and wait for the intent log to commit if it is a synchronous operation.
80 * Moreover, the vnode ops must work in both normal and log replay context.
81 * The ordering of events is important to avoid deadlocks and references
82 * to freed memory. The example below illustrates the following Big Rules:
84 * (1) A check must be made in each zfs thread for a mounted file system.
85 * This is done avoiding races using zfs_enter(zfsvfs).
86 * A zfs_exit(zfsvfs) is needed before all returns. Any znodes
87 * must be checked with zfs_verify_zp(zp). Both of these macros
88 * can return EIO from the calling function.
90 * (2) zrele() should always be the last thing except for zil_commit() (if
91 * necessary) and zfs_exit(). This is for 3 reasons: First, if it's the
92 * last reference, the vnode/znode can be freed, so the zp may point to
93 * freed memory. Second, the last reference will call zfs_zinactive(),
94 * which may induce a lot of work -- pushing cached pages (which acquires
95 * range locks) and syncing out cached atime changes. Third,
96 * zfs_zinactive() may require a new tx, which could deadlock the system
97 * if you were already holding one. This deadlock occurs because the tx
98 * currently being operated on prevents a txg from syncing, which
99 * prevents the new tx from progressing, resulting in a deadlock. If you
100 * must call zrele() within a tx, use zfs_zrele_async(). Note that iput()
101 * is a synonym for zrele().
103 * (3) All range locks must be grabbed before calling dmu_tx_assign(),
104 * as they can span dmu_tx_assign() calls.
106 * (4) If ZPL locks are held, pass TXG_NOWAIT as the second argument to
107 * dmu_tx_assign(). This is critical because we don't want to block
108 * while holding locks.
110 * If no ZPL locks are held (aside from zfs_enter()), use TXG_WAIT. This
111 * reduces lock contention and CPU usage when we must wait (note that if
112 * throughput is constrained by the storage, nearly every transaction
113 * must wait).
115 * Note, in particular, that if a lock is sometimes acquired before
116 * the tx assigns, and sometimes after (e.g. z_lock), then failing
117 * to use a non-blocking assign can deadlock the system. The scenario:
119 * Thread A has grabbed a lock before calling dmu_tx_assign().
120 * Thread B is in an already-assigned tx, and blocks for this lock.
121 * Thread A calls dmu_tx_assign(TXG_WAIT) and blocks in txg_wait_open()
122 * forever, because the previous txg can't quiesce until B's tx commits.
124 * If dmu_tx_assign() returns ERESTART and zfsvfs->z_assign is TXG_NOWAIT,
125 * then drop all locks, call dmu_tx_wait(), and try again. On subsequent
126 * calls to dmu_tx_assign(), pass TXG_NOTHROTTLE in addition to TXG_NOWAIT,
127 * to indicate that this operation has already called dmu_tx_wait().
128 * This will ensure that we don't retry forever, waiting a short bit
129 * each time.
131 * (5) If the operation succeeded, generate the intent log entry for it
132 * before dropping locks. This ensures that the ordering of events
133 * in the intent log matches the order in which they actually occurred.
134 * During ZIL replay the zfs_log_* functions will update the sequence
135 * number to indicate the zil transaction has replayed.
137 * (6) At the end of each vnode op, the DMU tx must always commit,
138 * regardless of whether there were any errors.
140 * (7) After dropping all locks, invoke zil_commit(zilog, foid)
141 * to ensure that synchronous semantics are provided when necessary.
143 * In general, this is how things should be ordered in each vnode op:
145 * zfs_enter(zfsvfs); // exit if unmounted
146 * top:
147 * zfs_dirent_lock(&dl, ...) // lock directory entry (may igrab())
148 * rw_enter(...); // grab any other locks you need
149 * tx = dmu_tx_create(...); // get DMU tx
150 * dmu_tx_hold_*(); // hold each object you might modify
151 * error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
152 * if (error) {
153 * rw_exit(...); // drop locks
154 * zfs_dirent_unlock(dl); // unlock directory entry
155 * zrele(...); // release held znodes
156 * if (error == ERESTART) {
157 * waited = B_TRUE;
158 * dmu_tx_wait(tx);
159 * dmu_tx_abort(tx);
160 * goto top;
162 * dmu_tx_abort(tx); // abort DMU tx
163 * zfs_exit(zfsvfs); // finished in zfs
164 * return (error); // really out of space
166 * error = do_real_work(); // do whatever this VOP does
167 * if (error == 0)
168 * zfs_log_*(...); // on success, make ZIL entry
169 * dmu_tx_commit(tx); // commit DMU tx -- error or not
170 * rw_exit(...); // drop locks
171 * zfs_dirent_unlock(dl); // unlock directory entry
172 * zrele(...); // release held znodes
173 * zil_commit(zilog, foid); // synchronous when necessary
174 * zfs_exit(zfsvfs); // finished in zfs
175 * return (error); // done, report error
178 zfs_open(struct inode *ip, int mode, int flag, cred_t *cr)
180 (void) cr;
181 znode_t *zp = ITOZ(ip);
182 zfsvfs_t *zfsvfs = ITOZSB(ip);
183 int error;
185 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
186 return (error);
188 /* Honor ZFS_APPENDONLY file attribute */
189 if ((mode & FMODE_WRITE) && (zp->z_pflags & ZFS_APPENDONLY) &&
190 ((flag & O_APPEND) == 0)) {
191 zfs_exit(zfsvfs, FTAG);
192 return (SET_ERROR(EPERM));
195 /* Keep a count of the synchronous opens in the znode */
196 if (flag & O_SYNC)
197 atomic_inc_32(&zp->z_sync_cnt);
199 zfs_exit(zfsvfs, FTAG);
200 return (0);
204 zfs_close(struct inode *ip, int flag, cred_t *cr)
206 (void) cr;
207 znode_t *zp = ITOZ(ip);
208 zfsvfs_t *zfsvfs = ITOZSB(ip);
209 int error;
211 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
212 return (error);
214 /* Decrement the synchronous opens in the znode */
215 if (flag & O_SYNC)
216 atomic_dec_32(&zp->z_sync_cnt);
218 zfs_exit(zfsvfs, FTAG);
219 return (0);
222 #if defined(_KERNEL)
224 * When a file is memory mapped, we must keep the IO data synchronized
225 * between the DMU cache and the memory mapped pages. What this means:
227 * On Write: If we find a memory mapped page, we write to *both*
228 * the page and the dmu buffer.
230 void
231 update_pages(znode_t *zp, int64_t start, int len, objset_t *os)
233 struct inode *ip = ZTOI(zp);
234 struct address_space *mp = ip->i_mapping;
235 struct page *pp;
236 uint64_t nbytes;
237 int64_t off;
238 void *pb;
240 off = start & (PAGE_SIZE-1);
241 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
242 nbytes = MIN(PAGE_SIZE - off, len);
244 pp = find_lock_page(mp, start >> PAGE_SHIFT);
245 if (pp) {
246 if (mapping_writably_mapped(mp))
247 flush_dcache_page(pp);
249 pb = kmap(pp);
250 (void) dmu_read(os, zp->z_id, start + off, nbytes,
251 pb + off, DMU_READ_PREFETCH);
252 kunmap(pp);
254 if (mapping_writably_mapped(mp))
255 flush_dcache_page(pp);
257 mark_page_accessed(pp);
258 SetPageUptodate(pp);
259 ClearPageError(pp);
260 unlock_page(pp);
261 put_page(pp);
264 len -= nbytes;
265 off = 0;
270 * When a file is memory mapped, we must keep the IO data synchronized
271 * between the DMU cache and the memory mapped pages. What this means:
273 * On Read: We "read" preferentially from memory mapped pages,
274 * else we default from the dmu buffer.
276 * NOTE: We will always "break up" the IO into PAGESIZE uiomoves when
277 * the file is memory mapped.
280 mappedread(znode_t *zp, int nbytes, zfs_uio_t *uio)
282 struct inode *ip = ZTOI(zp);
283 struct address_space *mp = ip->i_mapping;
284 struct page *pp;
285 int64_t start, off;
286 uint64_t bytes;
287 int len = nbytes;
288 int error = 0;
289 void *pb;
291 start = uio->uio_loffset;
292 off = start & (PAGE_SIZE-1);
293 for (start &= PAGE_MASK; len > 0; start += PAGE_SIZE) {
294 bytes = MIN(PAGE_SIZE - off, len);
296 pp = find_lock_page(mp, start >> PAGE_SHIFT);
297 if (pp) {
298 ASSERT(PageUptodate(pp));
299 unlock_page(pp);
301 pb = kmap(pp);
302 error = zfs_uiomove(pb + off, bytes, UIO_READ, uio);
303 kunmap(pp);
305 if (mapping_writably_mapped(mp))
306 flush_dcache_page(pp);
308 mark_page_accessed(pp);
309 put_page(pp);
310 } else {
311 error = dmu_read_uio_dbuf(sa_get_db(zp->z_sa_hdl),
312 uio, bytes);
315 len -= bytes;
316 off = 0;
317 if (error)
318 break;
320 return (error);
322 #endif /* _KERNEL */
324 static unsigned long zfs_delete_blocks = DMU_MAX_DELETEBLKCNT;
327 * Write the bytes to a file.
329 * IN: zp - znode of file to be written to
330 * data - bytes to write
331 * len - number of bytes to write
332 * pos - offset to start writing at
334 * OUT: resid - remaining bytes to write
336 * RETURN: 0 if success
337 * positive error code if failure. EIO is returned
338 * for a short write when residp isn't provided.
340 * Timestamps:
341 * zp - ctime|mtime updated if byte count > 0
344 zfs_write_simple(znode_t *zp, const void *data, size_t len,
345 loff_t pos, size_t *residp)
347 fstrans_cookie_t cookie;
348 int error;
350 struct iovec iov;
351 iov.iov_base = (void *)data;
352 iov.iov_len = len;
354 zfs_uio_t uio;
355 zfs_uio_iovec_init(&uio, &iov, 1, pos, UIO_SYSSPACE, len, 0);
357 cookie = spl_fstrans_mark();
358 error = zfs_write(zp, &uio, 0, kcred);
359 spl_fstrans_unmark(cookie);
361 if (error == 0) {
362 if (residp != NULL)
363 *residp = zfs_uio_resid(&uio);
364 else if (zfs_uio_resid(&uio) != 0)
365 error = SET_ERROR(EIO);
368 return (error);
371 static void
372 zfs_rele_async_task(void *arg)
374 iput(arg);
377 void
378 zfs_zrele_async(znode_t *zp)
380 struct inode *ip = ZTOI(zp);
381 objset_t *os = ITOZSB(ip)->z_os;
383 ASSERT(atomic_read(&ip->i_count) > 0);
384 ASSERT(os != NULL);
387 * If decrementing the count would put us at 0, we can't do it inline
388 * here, because that would be synchronous. Instead, dispatch an iput
389 * to run later.
391 * For more information on the dangers of a synchronous iput, see the
392 * header comment of this file.
394 if (!atomic_add_unless(&ip->i_count, -1, 1)) {
395 VERIFY(taskq_dispatch(dsl_pool_zrele_taskq(dmu_objset_pool(os)),
396 zfs_rele_async_task, ip, TQ_SLEEP) != TASKQID_INVALID);
402 * Lookup an entry in a directory, or an extended attribute directory.
403 * If it exists, return a held inode reference for it.
405 * IN: zdp - znode of directory to search.
406 * nm - name of entry to lookup.
407 * flags - LOOKUP_XATTR set if looking for an attribute.
408 * cr - credentials of caller.
409 * direntflags - directory lookup flags
410 * realpnp - returned pathname.
412 * OUT: zpp - znode of located entry, NULL if not found.
414 * RETURN: 0 on success, error code on failure.
416 * Timestamps:
417 * NA
420 zfs_lookup(znode_t *zdp, char *nm, znode_t **zpp, int flags, cred_t *cr,
421 int *direntflags, pathname_t *realpnp)
423 zfsvfs_t *zfsvfs = ZTOZSB(zdp);
424 int error = 0;
427 * Fast path lookup, however we must skip DNLC lookup
428 * for case folding or normalizing lookups because the
429 * DNLC code only stores the passed in name. This means
430 * creating 'a' and removing 'A' on a case insensitive
431 * file system would work, but DNLC still thinks 'a'
432 * exists and won't let you create it again on the next
433 * pass through fast path.
435 if (!(flags & (LOOKUP_XATTR | FIGNORECASE))) {
437 if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
438 return (SET_ERROR(ENOTDIR));
439 } else if (zdp->z_sa_hdl == NULL) {
440 return (SET_ERROR(EIO));
443 if (nm[0] == 0 || (nm[0] == '.' && nm[1] == '\0')) {
444 error = zfs_fastaccesschk_execute(zdp, cr);
445 if (!error) {
446 *zpp = zdp;
447 zhold(*zpp);
448 return (0);
450 return (error);
454 if ((error = zfs_enter_verify_zp(zfsvfs, zdp, FTAG)) != 0)
455 return (error);
457 *zpp = NULL;
459 if (flags & LOOKUP_XATTR) {
461 * We don't allow recursive attributes..
462 * Maybe someday we will.
464 if (zdp->z_pflags & ZFS_XATTR) {
465 zfs_exit(zfsvfs, FTAG);
466 return (SET_ERROR(EINVAL));
469 if ((error = zfs_get_xattrdir(zdp, zpp, cr, flags))) {
470 zfs_exit(zfsvfs, FTAG);
471 return (error);
475 * Do we have permission to get into attribute directory?
478 if ((error = zfs_zaccess(*zpp, ACE_EXECUTE, 0,
479 B_TRUE, cr))) {
480 zrele(*zpp);
481 *zpp = NULL;
484 zfs_exit(zfsvfs, FTAG);
485 return (error);
488 if (!S_ISDIR(ZTOI(zdp)->i_mode)) {
489 zfs_exit(zfsvfs, FTAG);
490 return (SET_ERROR(ENOTDIR));
494 * Check accessibility of directory.
497 if ((error = zfs_zaccess(zdp, ACE_EXECUTE, 0, B_FALSE, cr))) {
498 zfs_exit(zfsvfs, FTAG);
499 return (error);
502 if (zfsvfs->z_utf8 && u8_validate(nm, strlen(nm),
503 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
504 zfs_exit(zfsvfs, FTAG);
505 return (SET_ERROR(EILSEQ));
508 error = zfs_dirlook(zdp, nm, zpp, flags, direntflags, realpnp);
509 if ((error == 0) && (*zpp))
510 zfs_znode_update_vfs(*zpp);
512 zfs_exit(zfsvfs, FTAG);
513 return (error);
517 * Attempt to create a new entry in a directory. If the entry
518 * already exists, truncate the file if permissible, else return
519 * an error. Return the ip of the created or trunc'd file.
521 * IN: dzp - znode of directory to put new file entry in.
522 * name - name of new file entry.
523 * vap - attributes of new file.
524 * excl - flag indicating exclusive or non-exclusive mode.
525 * mode - mode to open file with.
526 * cr - credentials of caller.
527 * flag - file flag.
528 * vsecp - ACL to be set
530 * OUT: zpp - znode of created or trunc'd entry.
532 * RETURN: 0 on success, error code on failure.
534 * Timestamps:
535 * dzp - ctime|mtime updated if new entry created
536 * zp - ctime|mtime always, atime if new
539 zfs_create(znode_t *dzp, char *name, vattr_t *vap, int excl,
540 int mode, znode_t **zpp, cred_t *cr, int flag, vsecattr_t *vsecp)
542 znode_t *zp;
543 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
544 zilog_t *zilog;
545 objset_t *os;
546 zfs_dirlock_t *dl;
547 dmu_tx_t *tx;
548 int error;
549 uid_t uid;
550 gid_t gid;
551 zfs_acl_ids_t acl_ids;
552 boolean_t fuid_dirtied;
553 boolean_t have_acl = B_FALSE;
554 boolean_t waited = B_FALSE;
557 * If we have an ephemeral id, ACL, or XVATTR then
558 * make sure file system is at proper version
561 gid = crgetgid(cr);
562 uid = crgetuid(cr);
564 if (zfsvfs->z_use_fuids == B_FALSE &&
565 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
566 return (SET_ERROR(EINVAL));
568 if (name == NULL)
569 return (SET_ERROR(EINVAL));
571 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
572 return (error);
573 os = zfsvfs->z_os;
574 zilog = zfsvfs->z_log;
576 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
577 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
578 zfs_exit(zfsvfs, FTAG);
579 return (SET_ERROR(EILSEQ));
582 if (vap->va_mask & ATTR_XVATTR) {
583 if ((error = secpolicy_xvattr((xvattr_t *)vap,
584 crgetuid(cr), cr, vap->va_mode)) != 0) {
585 zfs_exit(zfsvfs, FTAG);
586 return (error);
590 top:
591 *zpp = NULL;
592 if (*name == '\0') {
594 * Null component name refers to the directory itself.
596 zhold(dzp);
597 zp = dzp;
598 dl = NULL;
599 error = 0;
600 } else {
601 /* possible igrab(zp) */
602 int zflg = 0;
604 if (flag & FIGNORECASE)
605 zflg |= ZCILOOK;
607 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
608 NULL, NULL);
609 if (error) {
610 if (have_acl)
611 zfs_acl_ids_free(&acl_ids);
612 if (strcmp(name, "..") == 0)
613 error = SET_ERROR(EISDIR);
614 zfs_exit(zfsvfs, FTAG);
615 return (error);
619 if (zp == NULL) {
620 uint64_t txtype;
621 uint64_t projid = ZFS_DEFAULT_PROJID;
624 * Create a new file object and update the directory
625 * to reference it.
627 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
628 if (have_acl)
629 zfs_acl_ids_free(&acl_ids);
630 goto out;
634 * We only support the creation of regular files in
635 * extended attribute directories.
638 if ((dzp->z_pflags & ZFS_XATTR) && !S_ISREG(vap->va_mode)) {
639 if (have_acl)
640 zfs_acl_ids_free(&acl_ids);
641 error = SET_ERROR(EINVAL);
642 goto out;
645 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
646 cr, vsecp, &acl_ids)) != 0)
647 goto out;
648 have_acl = B_TRUE;
650 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
651 projid = zfs_inherit_projid(dzp);
652 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
653 zfs_acl_ids_free(&acl_ids);
654 error = SET_ERROR(EDQUOT);
655 goto out;
658 tx = dmu_tx_create(os);
660 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
661 ZFS_SA_BASE_ATTR_SIZE);
663 fuid_dirtied = zfsvfs->z_fuid_dirty;
664 if (fuid_dirtied)
665 zfs_fuid_txhold(zfsvfs, tx);
666 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
667 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
668 if (!zfsvfs->z_use_sa &&
669 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
670 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
671 0, acl_ids.z_aclp->z_acl_bytes);
674 error = dmu_tx_assign(tx,
675 (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
676 if (error) {
677 zfs_dirent_unlock(dl);
678 if (error == ERESTART) {
679 waited = B_TRUE;
680 dmu_tx_wait(tx);
681 dmu_tx_abort(tx);
682 goto top;
684 zfs_acl_ids_free(&acl_ids);
685 dmu_tx_abort(tx);
686 zfs_exit(zfsvfs, FTAG);
687 return (error);
689 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
691 error = zfs_link_create(dl, zp, tx, ZNEW);
692 if (error != 0) {
694 * Since, we failed to add the directory entry for it,
695 * delete the newly created dnode.
697 zfs_znode_delete(zp, tx);
698 remove_inode_hash(ZTOI(zp));
699 zfs_acl_ids_free(&acl_ids);
700 dmu_tx_commit(tx);
701 goto out;
704 if (fuid_dirtied)
705 zfs_fuid_sync(zfsvfs, tx);
707 txtype = zfs_log_create_txtype(Z_FILE, vsecp, vap);
708 if (flag & FIGNORECASE)
709 txtype |= TX_CI;
710 zfs_log_create(zilog, tx, txtype, dzp, zp, name,
711 vsecp, acl_ids.z_fuidp, vap);
712 zfs_acl_ids_free(&acl_ids);
713 dmu_tx_commit(tx);
714 } else {
715 int aflags = (flag & O_APPEND) ? V_APPEND : 0;
717 if (have_acl)
718 zfs_acl_ids_free(&acl_ids);
719 have_acl = B_FALSE;
722 * A directory entry already exists for this name.
725 * Can't truncate an existing file if in exclusive mode.
727 if (excl) {
728 error = SET_ERROR(EEXIST);
729 goto out;
732 * Can't open a directory for writing.
734 if (S_ISDIR(ZTOI(zp)->i_mode)) {
735 error = SET_ERROR(EISDIR);
736 goto out;
739 * Verify requested access to file.
741 if (mode && (error = zfs_zaccess_rwx(zp, mode, aflags, cr))) {
742 goto out;
745 mutex_enter(&dzp->z_lock);
746 dzp->z_seq++;
747 mutex_exit(&dzp->z_lock);
750 * Truncate regular files if requested.
752 if (S_ISREG(ZTOI(zp)->i_mode) &&
753 (vap->va_mask & ATTR_SIZE) && (vap->va_size == 0)) {
754 /* we can't hold any locks when calling zfs_freesp() */
755 if (dl) {
756 zfs_dirent_unlock(dl);
757 dl = NULL;
759 error = zfs_freesp(zp, 0, 0, mode, TRUE);
762 out:
764 if (dl)
765 zfs_dirent_unlock(dl);
767 if (error) {
768 if (zp)
769 zrele(zp);
770 } else {
771 zfs_znode_update_vfs(dzp);
772 zfs_znode_update_vfs(zp);
773 *zpp = zp;
776 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
777 zil_commit(zilog, 0);
779 zfs_exit(zfsvfs, FTAG);
780 return (error);
784 zfs_tmpfile(struct inode *dip, vattr_t *vap, int excl,
785 int mode, struct inode **ipp, cred_t *cr, int flag, vsecattr_t *vsecp)
787 (void) excl, (void) mode, (void) flag;
788 znode_t *zp = NULL, *dzp = ITOZ(dip);
789 zfsvfs_t *zfsvfs = ITOZSB(dip);
790 objset_t *os;
791 dmu_tx_t *tx;
792 int error;
793 uid_t uid;
794 gid_t gid;
795 zfs_acl_ids_t acl_ids;
796 uint64_t projid = ZFS_DEFAULT_PROJID;
797 boolean_t fuid_dirtied;
798 boolean_t have_acl = B_FALSE;
799 boolean_t waited = B_FALSE;
802 * If we have an ephemeral id, ACL, or XVATTR then
803 * make sure file system is at proper version
806 gid = crgetgid(cr);
807 uid = crgetuid(cr);
809 if (zfsvfs->z_use_fuids == B_FALSE &&
810 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
811 return (SET_ERROR(EINVAL));
813 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
814 return (error);
815 os = zfsvfs->z_os;
817 if (vap->va_mask & ATTR_XVATTR) {
818 if ((error = secpolicy_xvattr((xvattr_t *)vap,
819 crgetuid(cr), cr, vap->va_mode)) != 0) {
820 zfs_exit(zfsvfs, FTAG);
821 return (error);
825 top:
826 *ipp = NULL;
829 * Create a new file object and update the directory
830 * to reference it.
832 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
833 if (have_acl)
834 zfs_acl_ids_free(&acl_ids);
835 goto out;
838 if (!have_acl && (error = zfs_acl_ids_create(dzp, 0, vap,
839 cr, vsecp, &acl_ids)) != 0)
840 goto out;
841 have_acl = B_TRUE;
843 if (S_ISREG(vap->va_mode) || S_ISDIR(vap->va_mode))
844 projid = zfs_inherit_projid(dzp);
845 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, projid)) {
846 zfs_acl_ids_free(&acl_ids);
847 error = SET_ERROR(EDQUOT);
848 goto out;
851 tx = dmu_tx_create(os);
853 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
854 ZFS_SA_BASE_ATTR_SIZE);
855 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
857 fuid_dirtied = zfsvfs->z_fuid_dirty;
858 if (fuid_dirtied)
859 zfs_fuid_txhold(zfsvfs, tx);
860 if (!zfsvfs->z_use_sa &&
861 acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
862 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
863 0, acl_ids.z_aclp->z_acl_bytes);
865 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
866 if (error) {
867 if (error == ERESTART) {
868 waited = B_TRUE;
869 dmu_tx_wait(tx);
870 dmu_tx_abort(tx);
871 goto top;
873 zfs_acl_ids_free(&acl_ids);
874 dmu_tx_abort(tx);
875 zfs_exit(zfsvfs, FTAG);
876 return (error);
878 zfs_mknode(dzp, vap, tx, cr, IS_TMPFILE, &zp, &acl_ids);
880 if (fuid_dirtied)
881 zfs_fuid_sync(zfsvfs, tx);
883 /* Add to unlinked set */
884 zp->z_unlinked = B_TRUE;
885 zfs_unlinked_add(zp, tx);
886 zfs_acl_ids_free(&acl_ids);
887 dmu_tx_commit(tx);
888 out:
890 if (error) {
891 if (zp)
892 zrele(zp);
893 } else {
894 zfs_znode_update_vfs(dzp);
895 zfs_znode_update_vfs(zp);
896 *ipp = ZTOI(zp);
899 zfs_exit(zfsvfs, FTAG);
900 return (error);
904 * Remove an entry from a directory.
906 * IN: dzp - znode of directory to remove entry from.
907 * name - name of entry to remove.
908 * cr - credentials of caller.
909 * flags - case flags.
911 * RETURN: 0 if success
912 * error code if failure
914 * Timestamps:
915 * dzp - ctime|mtime
916 * ip - ctime (if nlink > 0)
919 static uint64_t null_xattr = 0;
922 zfs_remove(znode_t *dzp, char *name, cred_t *cr, int flags)
924 znode_t *zp;
925 znode_t *xzp;
926 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
927 zilog_t *zilog;
928 uint64_t acl_obj, xattr_obj;
929 uint64_t xattr_obj_unlinked = 0;
930 uint64_t obj = 0;
931 uint64_t links;
932 zfs_dirlock_t *dl;
933 dmu_tx_t *tx;
934 boolean_t may_delete_now, delete_now = FALSE;
935 boolean_t unlinked, toobig = FALSE;
936 uint64_t txtype;
937 pathname_t *realnmp = NULL;
938 pathname_t realnm;
939 int error;
940 int zflg = ZEXISTS;
941 boolean_t waited = B_FALSE;
943 if (name == NULL)
944 return (SET_ERROR(EINVAL));
946 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
947 return (error);
948 zilog = zfsvfs->z_log;
950 if (flags & FIGNORECASE) {
951 zflg |= ZCILOOK;
952 pn_alloc(&realnm);
953 realnmp = &realnm;
956 top:
957 xattr_obj = 0;
958 xzp = NULL;
960 * Attempt to lock directory; fail if entry doesn't exist.
962 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
963 NULL, realnmp))) {
964 if (realnmp)
965 pn_free(realnmp);
966 zfs_exit(zfsvfs, FTAG);
967 return (error);
970 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
971 goto out;
975 * Need to use rmdir for removing directories.
977 if (S_ISDIR(ZTOI(zp)->i_mode)) {
978 error = SET_ERROR(EPERM);
979 goto out;
982 mutex_enter(&zp->z_lock);
983 may_delete_now = atomic_read(&ZTOI(zp)->i_count) == 1 &&
984 !(zp->z_is_mapped);
985 mutex_exit(&zp->z_lock);
988 * We may delete the znode now, or we may put it in the unlinked set;
989 * it depends on whether we're the last link, and on whether there are
990 * other holds on the inode. So we dmu_tx_hold() the right things to
991 * allow for either case.
993 obj = zp->z_id;
994 tx = dmu_tx_create(zfsvfs->z_os);
995 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
996 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
997 zfs_sa_upgrade_txholds(tx, zp);
998 zfs_sa_upgrade_txholds(tx, dzp);
999 if (may_delete_now) {
1000 toobig = zp->z_size > zp->z_blksz * zfs_delete_blocks;
1001 /* if the file is too big, only hold_free a token amount */
1002 dmu_tx_hold_free(tx, zp->z_id, 0,
1003 (toobig ? DMU_MAX_ACCESS : DMU_OBJECT_END));
1006 /* are there any extended attributes? */
1007 error = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1008 &xattr_obj, sizeof (xattr_obj));
1009 if (error == 0 && xattr_obj) {
1010 error = zfs_zget(zfsvfs, xattr_obj, &xzp);
1011 ASSERT0(error);
1012 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1013 dmu_tx_hold_sa(tx, xzp->z_sa_hdl, B_FALSE);
1016 mutex_enter(&zp->z_lock);
1017 if ((acl_obj = zfs_external_acl(zp)) != 0 && may_delete_now)
1018 dmu_tx_hold_free(tx, acl_obj, 0, DMU_OBJECT_END);
1019 mutex_exit(&zp->z_lock);
1021 /* charge as an update -- would be nice not to charge at all */
1022 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1025 * Mark this transaction as typically resulting in a net free of space
1027 dmu_tx_mark_netfree(tx);
1029 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1030 if (error) {
1031 zfs_dirent_unlock(dl);
1032 if (error == ERESTART) {
1033 waited = B_TRUE;
1034 dmu_tx_wait(tx);
1035 dmu_tx_abort(tx);
1036 zrele(zp);
1037 if (xzp)
1038 zrele(xzp);
1039 goto top;
1041 if (realnmp)
1042 pn_free(realnmp);
1043 dmu_tx_abort(tx);
1044 zrele(zp);
1045 if (xzp)
1046 zrele(xzp);
1047 zfs_exit(zfsvfs, FTAG);
1048 return (error);
1052 * Remove the directory entry.
1054 error = zfs_link_destroy(dl, zp, tx, zflg, &unlinked);
1056 if (error) {
1057 dmu_tx_commit(tx);
1058 goto out;
1061 if (unlinked) {
1063 * Hold z_lock so that we can make sure that the ACL obj
1064 * hasn't changed. Could have been deleted due to
1065 * zfs_sa_upgrade().
1067 mutex_enter(&zp->z_lock);
1068 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
1069 &xattr_obj_unlinked, sizeof (xattr_obj_unlinked));
1070 delete_now = may_delete_now && !toobig &&
1071 atomic_read(&ZTOI(zp)->i_count) == 1 &&
1072 !(zp->z_is_mapped) && xattr_obj == xattr_obj_unlinked &&
1073 zfs_external_acl(zp) == acl_obj;
1076 if (delete_now) {
1077 if (xattr_obj_unlinked) {
1078 ASSERT3U(ZTOI(xzp)->i_nlink, ==, 2);
1079 mutex_enter(&xzp->z_lock);
1080 xzp->z_unlinked = B_TRUE;
1081 clear_nlink(ZTOI(xzp));
1082 links = 0;
1083 error = sa_update(xzp->z_sa_hdl, SA_ZPL_LINKS(zfsvfs),
1084 &links, sizeof (links), tx);
1085 ASSERT3U(error, ==, 0);
1086 mutex_exit(&xzp->z_lock);
1087 zfs_unlinked_add(xzp, tx);
1089 if (zp->z_is_sa)
1090 error = sa_remove(zp->z_sa_hdl,
1091 SA_ZPL_XATTR(zfsvfs), tx);
1092 else
1093 error = sa_update(zp->z_sa_hdl,
1094 SA_ZPL_XATTR(zfsvfs), &null_xattr,
1095 sizeof (uint64_t), tx);
1096 ASSERT0(error);
1099 * Add to the unlinked set because a new reference could be
1100 * taken concurrently resulting in a deferred destruction.
1102 zfs_unlinked_add(zp, tx);
1103 mutex_exit(&zp->z_lock);
1104 } else if (unlinked) {
1105 mutex_exit(&zp->z_lock);
1106 zfs_unlinked_add(zp, tx);
1109 txtype = TX_REMOVE;
1110 if (flags & FIGNORECASE)
1111 txtype |= TX_CI;
1112 zfs_log_remove(zilog, tx, txtype, dzp, name, obj, unlinked);
1114 dmu_tx_commit(tx);
1115 out:
1116 if (realnmp)
1117 pn_free(realnmp);
1119 zfs_dirent_unlock(dl);
1120 zfs_znode_update_vfs(dzp);
1121 zfs_znode_update_vfs(zp);
1123 if (delete_now)
1124 zrele(zp);
1125 else
1126 zfs_zrele_async(zp);
1128 if (xzp) {
1129 zfs_znode_update_vfs(xzp);
1130 zfs_zrele_async(xzp);
1133 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1134 zil_commit(zilog, 0);
1136 zfs_exit(zfsvfs, FTAG);
1137 return (error);
1141 * Create a new directory and insert it into dzp using the name
1142 * provided. Return a pointer to the inserted directory.
1144 * IN: dzp - znode of directory to add subdir to.
1145 * dirname - name of new directory.
1146 * vap - attributes of new directory.
1147 * cr - credentials of caller.
1148 * flags - case flags.
1149 * vsecp - ACL to be set
1151 * OUT: zpp - znode of created directory.
1153 * RETURN: 0 if success
1154 * error code if failure
1156 * Timestamps:
1157 * dzp - ctime|mtime updated
1158 * zpp - ctime|mtime|atime updated
1161 zfs_mkdir(znode_t *dzp, char *dirname, vattr_t *vap, znode_t **zpp,
1162 cred_t *cr, int flags, vsecattr_t *vsecp)
1164 znode_t *zp;
1165 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1166 zilog_t *zilog;
1167 zfs_dirlock_t *dl;
1168 uint64_t txtype;
1169 dmu_tx_t *tx;
1170 int error;
1171 int zf = ZNEW;
1172 uid_t uid;
1173 gid_t gid = crgetgid(cr);
1174 zfs_acl_ids_t acl_ids;
1175 boolean_t fuid_dirtied;
1176 boolean_t waited = B_FALSE;
1178 ASSERT(S_ISDIR(vap->va_mode));
1181 * If we have an ephemeral id, ACL, or XVATTR then
1182 * make sure file system is at proper version
1185 uid = crgetuid(cr);
1186 if (zfsvfs->z_use_fuids == B_FALSE &&
1187 (vsecp || IS_EPHEMERAL(uid) || IS_EPHEMERAL(gid)))
1188 return (SET_ERROR(EINVAL));
1190 if (dirname == NULL)
1191 return (SET_ERROR(EINVAL));
1193 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1194 return (error);
1195 zilog = zfsvfs->z_log;
1197 if (dzp->z_pflags & ZFS_XATTR) {
1198 zfs_exit(zfsvfs, FTAG);
1199 return (SET_ERROR(EINVAL));
1202 if (zfsvfs->z_utf8 && u8_validate(dirname,
1203 strlen(dirname), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
1204 zfs_exit(zfsvfs, FTAG);
1205 return (SET_ERROR(EILSEQ));
1207 if (flags & FIGNORECASE)
1208 zf |= ZCILOOK;
1210 if (vap->va_mask & ATTR_XVATTR) {
1211 if ((error = secpolicy_xvattr((xvattr_t *)vap,
1212 crgetuid(cr), cr, vap->va_mode)) != 0) {
1213 zfs_exit(zfsvfs, FTAG);
1214 return (error);
1218 if ((error = zfs_acl_ids_create(dzp, 0, vap, cr,
1219 vsecp, &acl_ids)) != 0) {
1220 zfs_exit(zfsvfs, FTAG);
1221 return (error);
1224 * First make sure the new directory doesn't exist.
1226 * Existence is checked first to make sure we don't return
1227 * EACCES instead of EEXIST which can cause some applications
1228 * to fail.
1230 top:
1231 *zpp = NULL;
1233 if ((error = zfs_dirent_lock(&dl, dzp, dirname, &zp, zf,
1234 NULL, NULL))) {
1235 zfs_acl_ids_free(&acl_ids);
1236 zfs_exit(zfsvfs, FTAG);
1237 return (error);
1240 if ((error = zfs_zaccess(dzp, ACE_ADD_SUBDIRECTORY, 0, B_FALSE, cr))) {
1241 zfs_acl_ids_free(&acl_ids);
1242 zfs_dirent_unlock(dl);
1243 zfs_exit(zfsvfs, FTAG);
1244 return (error);
1247 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, zfs_inherit_projid(dzp))) {
1248 zfs_acl_ids_free(&acl_ids);
1249 zfs_dirent_unlock(dl);
1250 zfs_exit(zfsvfs, FTAG);
1251 return (SET_ERROR(EDQUOT));
1255 * Add a new entry to the directory.
1257 tx = dmu_tx_create(zfsvfs->z_os);
1258 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, dirname);
1259 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
1260 fuid_dirtied = zfsvfs->z_fuid_dirty;
1261 if (fuid_dirtied)
1262 zfs_fuid_txhold(zfsvfs, tx);
1263 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
1264 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
1265 acl_ids.z_aclp->z_acl_bytes);
1268 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
1269 ZFS_SA_BASE_ATTR_SIZE);
1271 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1272 if (error) {
1273 zfs_dirent_unlock(dl);
1274 if (error == ERESTART) {
1275 waited = B_TRUE;
1276 dmu_tx_wait(tx);
1277 dmu_tx_abort(tx);
1278 goto top;
1280 zfs_acl_ids_free(&acl_ids);
1281 dmu_tx_abort(tx);
1282 zfs_exit(zfsvfs, FTAG);
1283 return (error);
1287 * Create new node.
1289 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
1292 * Now put new name in parent dir.
1294 error = zfs_link_create(dl, zp, tx, ZNEW);
1295 if (error != 0) {
1296 zfs_znode_delete(zp, tx);
1297 remove_inode_hash(ZTOI(zp));
1298 goto out;
1301 if (fuid_dirtied)
1302 zfs_fuid_sync(zfsvfs, tx);
1304 *zpp = zp;
1306 txtype = zfs_log_create_txtype(Z_DIR, vsecp, vap);
1307 if (flags & FIGNORECASE)
1308 txtype |= TX_CI;
1309 zfs_log_create(zilog, tx, txtype, dzp, zp, dirname, vsecp,
1310 acl_ids.z_fuidp, vap);
1312 out:
1313 zfs_acl_ids_free(&acl_ids);
1315 dmu_tx_commit(tx);
1317 zfs_dirent_unlock(dl);
1319 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1320 zil_commit(zilog, 0);
1322 if (error != 0) {
1323 zrele(zp);
1324 } else {
1325 zfs_znode_update_vfs(dzp);
1326 zfs_znode_update_vfs(zp);
1328 zfs_exit(zfsvfs, FTAG);
1329 return (error);
1333 * Remove a directory subdir entry. If the current working
1334 * directory is the same as the subdir to be removed, the
1335 * remove will fail.
1337 * IN: dzp - znode of directory to remove from.
1338 * name - name of directory to be removed.
1339 * cwd - inode of current working directory.
1340 * cr - credentials of caller.
1341 * flags - case flags
1343 * RETURN: 0 on success, error code on failure.
1345 * Timestamps:
1346 * dzp - ctime|mtime updated
1349 zfs_rmdir(znode_t *dzp, char *name, znode_t *cwd, cred_t *cr,
1350 int flags)
1352 znode_t *zp;
1353 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1354 zilog_t *zilog;
1355 zfs_dirlock_t *dl;
1356 dmu_tx_t *tx;
1357 int error;
1358 int zflg = ZEXISTS;
1359 boolean_t waited = B_FALSE;
1361 if (name == NULL)
1362 return (SET_ERROR(EINVAL));
1364 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
1365 return (error);
1366 zilog = zfsvfs->z_log;
1368 if (flags & FIGNORECASE)
1369 zflg |= ZCILOOK;
1370 top:
1371 zp = NULL;
1374 * Attempt to lock directory; fail if entry doesn't exist.
1376 if ((error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg,
1377 NULL, NULL))) {
1378 zfs_exit(zfsvfs, FTAG);
1379 return (error);
1382 if ((error = zfs_zaccess_delete(dzp, zp, cr))) {
1383 goto out;
1386 if (!S_ISDIR(ZTOI(zp)->i_mode)) {
1387 error = SET_ERROR(ENOTDIR);
1388 goto out;
1391 if (zp == cwd) {
1392 error = SET_ERROR(EINVAL);
1393 goto out;
1397 * Grab a lock on the directory to make sure that no one is
1398 * trying to add (or lookup) entries while we are removing it.
1400 rw_enter(&zp->z_name_lock, RW_WRITER);
1403 * Grab a lock on the parent pointer to make sure we play well
1404 * with the treewalk and directory rename code.
1406 rw_enter(&zp->z_parent_lock, RW_WRITER);
1408 tx = dmu_tx_create(zfsvfs->z_os);
1409 dmu_tx_hold_zap(tx, dzp->z_id, FALSE, name);
1410 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1411 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
1412 zfs_sa_upgrade_txholds(tx, zp);
1413 zfs_sa_upgrade_txholds(tx, dzp);
1414 dmu_tx_mark_netfree(tx);
1415 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
1416 if (error) {
1417 rw_exit(&zp->z_parent_lock);
1418 rw_exit(&zp->z_name_lock);
1419 zfs_dirent_unlock(dl);
1420 if (error == ERESTART) {
1421 waited = B_TRUE;
1422 dmu_tx_wait(tx);
1423 dmu_tx_abort(tx);
1424 zrele(zp);
1425 goto top;
1427 dmu_tx_abort(tx);
1428 zrele(zp);
1429 zfs_exit(zfsvfs, FTAG);
1430 return (error);
1433 error = zfs_link_destroy(dl, zp, tx, zflg, NULL);
1435 if (error == 0) {
1436 uint64_t txtype = TX_RMDIR;
1437 if (flags & FIGNORECASE)
1438 txtype |= TX_CI;
1439 zfs_log_remove(zilog, tx, txtype, dzp, name, ZFS_NO_OBJECT,
1440 B_FALSE);
1443 dmu_tx_commit(tx);
1445 rw_exit(&zp->z_parent_lock);
1446 rw_exit(&zp->z_name_lock);
1447 out:
1448 zfs_dirent_unlock(dl);
1450 zfs_znode_update_vfs(dzp);
1451 zfs_znode_update_vfs(zp);
1452 zrele(zp);
1454 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
1455 zil_commit(zilog, 0);
1457 zfs_exit(zfsvfs, FTAG);
1458 return (error);
1462 * Read directory entries from the given directory cursor position and emit
1463 * name and position for each entry.
1465 * IN: ip - inode of directory to read.
1466 * ctx - directory entry context.
1467 * cr - credentials of caller.
1469 * RETURN: 0 if success
1470 * error code if failure
1472 * Timestamps:
1473 * ip - atime updated
1475 * Note that the low 4 bits of the cookie returned by zap is always zero.
1476 * This allows us to use the low range for "special" directory entries:
1477 * We use 0 for '.', and 1 for '..'. If this is the root of the filesystem,
1478 * we use the offset 2 for the '.zfs' directory.
1481 zfs_readdir(struct inode *ip, zpl_dir_context_t *ctx, cred_t *cr)
1483 (void) cr;
1484 znode_t *zp = ITOZ(ip);
1485 zfsvfs_t *zfsvfs = ITOZSB(ip);
1486 objset_t *os;
1487 zap_cursor_t zc;
1488 zap_attribute_t zap;
1489 int error;
1490 uint8_t prefetch;
1491 uint8_t type;
1492 int done = 0;
1493 uint64_t parent;
1494 uint64_t offset; /* must be unsigned; checks for < 1 */
1496 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1497 return (error);
1499 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
1500 &parent, sizeof (parent))) != 0)
1501 goto out;
1504 * Quit if directory has been removed (posix)
1506 if (zp->z_unlinked)
1507 goto out;
1509 error = 0;
1510 os = zfsvfs->z_os;
1511 offset = ctx->pos;
1512 prefetch = zp->z_zn_prefetch;
1515 * Initialize the iterator cursor.
1517 if (offset <= 3) {
1519 * Start iteration from the beginning of the directory.
1521 zap_cursor_init(&zc, os, zp->z_id);
1522 } else {
1524 * The offset is a serialized cursor.
1526 zap_cursor_init_serialized(&zc, os, zp->z_id, offset);
1530 * Transform to file-system independent format
1532 while (!done) {
1533 uint64_t objnum;
1535 * Special case `.', `..', and `.zfs'.
1537 if (offset == 0) {
1538 (void) strcpy(zap.za_name, ".");
1539 zap.za_normalization_conflict = 0;
1540 objnum = zp->z_id;
1541 type = DT_DIR;
1542 } else if (offset == 1) {
1543 (void) strcpy(zap.za_name, "..");
1544 zap.za_normalization_conflict = 0;
1545 objnum = parent;
1546 type = DT_DIR;
1547 } else if (offset == 2 && zfs_show_ctldir(zp)) {
1548 (void) strcpy(zap.za_name, ZFS_CTLDIR_NAME);
1549 zap.za_normalization_conflict = 0;
1550 objnum = ZFSCTL_INO_ROOT;
1551 type = DT_DIR;
1552 } else {
1554 * Grab next entry.
1556 if ((error = zap_cursor_retrieve(&zc, &zap))) {
1557 if (error == ENOENT)
1558 break;
1559 else
1560 goto update;
1564 * Allow multiple entries provided the first entry is
1565 * the object id. Non-zpl consumers may safely make
1566 * use of the additional space.
1568 * XXX: This should be a feature flag for compatibility
1570 if (zap.za_integer_length != 8 ||
1571 zap.za_num_integers == 0) {
1572 cmn_err(CE_WARN, "zap_readdir: bad directory "
1573 "entry, obj = %lld, offset = %lld, "
1574 "length = %d, num = %lld\n",
1575 (u_longlong_t)zp->z_id,
1576 (u_longlong_t)offset,
1577 zap.za_integer_length,
1578 (u_longlong_t)zap.za_num_integers);
1579 error = SET_ERROR(ENXIO);
1580 goto update;
1583 objnum = ZFS_DIRENT_OBJ(zap.za_first_integer);
1584 type = ZFS_DIRENT_TYPE(zap.za_first_integer);
1587 done = !zpl_dir_emit(ctx, zap.za_name, strlen(zap.za_name),
1588 objnum, type);
1589 if (done)
1590 break;
1592 /* Prefetch znode */
1593 if (prefetch) {
1594 dmu_prefetch(os, objnum, 0, 0, 0,
1595 ZIO_PRIORITY_SYNC_READ);
1599 * Move to the next entry, fill in the previous offset.
1601 if (offset > 2 || (offset == 2 && !zfs_show_ctldir(zp))) {
1602 zap_cursor_advance(&zc);
1603 offset = zap_cursor_serialize(&zc);
1604 } else {
1605 offset += 1;
1607 ctx->pos = offset;
1609 zp->z_zn_prefetch = B_FALSE; /* a lookup will re-enable pre-fetching */
1611 update:
1612 zap_cursor_fini(&zc);
1613 if (error == ENOENT)
1614 error = 0;
1615 out:
1616 zfs_exit(zfsvfs, FTAG);
1618 return (error);
1622 * Get the basic file attributes and place them in the provided kstat
1623 * structure. The inode is assumed to be the authoritative source
1624 * for most of the attributes. However, the znode currently has the
1625 * authoritative atime, blksize, and block count.
1627 * IN: ip - inode of file.
1629 * OUT: sp - kstat values.
1631 * RETURN: 0 (always succeeds)
1634 zfs_getattr_fast(struct user_namespace *user_ns, struct inode *ip,
1635 struct kstat *sp)
1637 znode_t *zp = ITOZ(ip);
1638 zfsvfs_t *zfsvfs = ITOZSB(ip);
1639 uint32_t blksize;
1640 u_longlong_t nblocks;
1641 int error;
1643 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1644 return (error);
1646 mutex_enter(&zp->z_lock);
1648 zpl_generic_fillattr(user_ns, ip, sp);
1650 * +1 link count for root inode with visible '.zfs' directory.
1652 if ((zp->z_id == zfsvfs->z_root) && zfs_show_ctldir(zp))
1653 if (sp->nlink < ZFS_LINK_MAX)
1654 sp->nlink++;
1656 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1657 sp->blksize = blksize;
1658 sp->blocks = nblocks;
1660 if (unlikely(zp->z_blksz == 0)) {
1662 * Block size hasn't been set; suggest maximal I/O transfers.
1664 sp->blksize = zfsvfs->z_max_blksz;
1667 mutex_exit(&zp->z_lock);
1670 * Required to prevent NFS client from detecting different inode
1671 * numbers of snapshot root dentry before and after snapshot mount.
1673 if (zfsvfs->z_issnap) {
1674 if (ip->i_sb->s_root->d_inode == ip)
1675 sp->ino = ZFSCTL_INO_SNAPDIRS -
1676 dmu_objset_id(zfsvfs->z_os);
1679 zfs_exit(zfsvfs, FTAG);
1681 return (0);
1685 * For the operation of changing file's user/group/project, we need to
1686 * handle not only the main object that is assigned to the file directly,
1687 * but also the ones that are used by the file via hidden xattr directory.
1689 * Because the xattr directory may contains many EA entries, as to it may
1690 * be impossible to change all of them via the transaction of changing the
1691 * main object's user/group/project attributes. Then we have to change them
1692 * via other multiple independent transactions one by one. It may be not good
1693 * solution, but we have no better idea yet.
1695 static int
1696 zfs_setattr_dir(znode_t *dzp)
1698 struct inode *dxip = ZTOI(dzp);
1699 struct inode *xip = NULL;
1700 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
1701 objset_t *os = zfsvfs->z_os;
1702 zap_cursor_t zc;
1703 zap_attribute_t zap;
1704 zfs_dirlock_t *dl;
1705 znode_t *zp = NULL;
1706 dmu_tx_t *tx = NULL;
1707 uint64_t uid, gid;
1708 sa_bulk_attr_t bulk[4];
1709 int count;
1710 int err;
1712 zap_cursor_init(&zc, os, dzp->z_id);
1713 while ((err = zap_cursor_retrieve(&zc, &zap)) == 0) {
1714 count = 0;
1715 if (zap.za_integer_length != 8 || zap.za_num_integers != 1) {
1716 err = ENXIO;
1717 break;
1720 err = zfs_dirent_lock(&dl, dzp, (char *)zap.za_name, &zp,
1721 ZEXISTS, NULL, NULL);
1722 if (err == ENOENT)
1723 goto next;
1724 if (err)
1725 break;
1727 xip = ZTOI(zp);
1728 if (KUID_TO_SUID(xip->i_uid) == KUID_TO_SUID(dxip->i_uid) &&
1729 KGID_TO_SGID(xip->i_gid) == KGID_TO_SGID(dxip->i_gid) &&
1730 zp->z_projid == dzp->z_projid)
1731 goto next;
1733 tx = dmu_tx_create(os);
1734 if (!(zp->z_pflags & ZFS_PROJID))
1735 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
1736 else
1737 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
1739 err = dmu_tx_assign(tx, TXG_WAIT);
1740 if (err)
1741 break;
1743 mutex_enter(&dzp->z_lock);
1745 if (KUID_TO_SUID(xip->i_uid) != KUID_TO_SUID(dxip->i_uid)) {
1746 xip->i_uid = dxip->i_uid;
1747 uid = zfs_uid_read(dxip);
1748 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
1749 &uid, sizeof (uid));
1752 if (KGID_TO_SGID(xip->i_gid) != KGID_TO_SGID(dxip->i_gid)) {
1753 xip->i_gid = dxip->i_gid;
1754 gid = zfs_gid_read(dxip);
1755 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs), NULL,
1756 &gid, sizeof (gid));
1759 if (zp->z_projid != dzp->z_projid) {
1760 if (!(zp->z_pflags & ZFS_PROJID)) {
1761 zp->z_pflags |= ZFS_PROJID;
1762 SA_ADD_BULK_ATTR(bulk, count,
1763 SA_ZPL_FLAGS(zfsvfs), NULL, &zp->z_pflags,
1764 sizeof (zp->z_pflags));
1767 zp->z_projid = dzp->z_projid;
1768 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_PROJID(zfsvfs),
1769 NULL, &zp->z_projid, sizeof (zp->z_projid));
1772 mutex_exit(&dzp->z_lock);
1774 if (likely(count > 0)) {
1775 err = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
1776 dmu_tx_commit(tx);
1777 } else {
1778 dmu_tx_abort(tx);
1780 tx = NULL;
1781 if (err != 0 && err != ENOENT)
1782 break;
1784 next:
1785 if (zp) {
1786 zrele(zp);
1787 zp = NULL;
1788 zfs_dirent_unlock(dl);
1790 zap_cursor_advance(&zc);
1793 if (tx)
1794 dmu_tx_abort(tx);
1795 if (zp) {
1796 zrele(zp);
1797 zfs_dirent_unlock(dl);
1799 zap_cursor_fini(&zc);
1801 return (err == ENOENT ? 0 : err);
1805 * Set the file attributes to the values contained in the
1806 * vattr structure.
1808 * IN: zp - znode of file to be modified.
1809 * vap - new attribute values.
1810 * If ATTR_XVATTR set, then optional attrs are being set
1811 * flags - ATTR_UTIME set if non-default time values provided.
1812 * - ATTR_NOACLCHECK (CIFS context only).
1813 * cr - credentials of caller.
1815 * RETURN: 0 if success
1816 * error code if failure
1818 * Timestamps:
1819 * ip - ctime updated, mtime updated if size changed.
1822 zfs_setattr(znode_t *zp, vattr_t *vap, int flags, cred_t *cr)
1824 struct inode *ip;
1825 zfsvfs_t *zfsvfs = ZTOZSB(zp);
1826 objset_t *os = zfsvfs->z_os;
1827 zilog_t *zilog;
1828 dmu_tx_t *tx;
1829 vattr_t oldva;
1830 xvattr_t *tmpxvattr;
1831 uint_t mask = vap->va_mask;
1832 uint_t saved_mask = 0;
1833 int trim_mask = 0;
1834 uint64_t new_mode;
1835 uint64_t new_kuid = 0, new_kgid = 0, new_uid, new_gid;
1836 uint64_t xattr_obj;
1837 uint64_t mtime[2], ctime[2], atime[2];
1838 uint64_t projid = ZFS_INVALID_PROJID;
1839 znode_t *attrzp;
1840 int need_policy = FALSE;
1841 int err, err2 = 0;
1842 zfs_fuid_info_t *fuidp = NULL;
1843 xvattr_t *xvap = (xvattr_t *)vap; /* vap may be an xvattr_t * */
1844 xoptattr_t *xoap;
1845 zfs_acl_t *aclp;
1846 boolean_t skipaclchk = (flags & ATTR_NOACLCHECK) ? B_TRUE : B_FALSE;
1847 boolean_t fuid_dirtied = B_FALSE;
1848 boolean_t handle_eadir = B_FALSE;
1849 sa_bulk_attr_t *bulk, *xattr_bulk;
1850 int count = 0, xattr_count = 0, bulks = 8;
1852 if (mask == 0)
1853 return (0);
1855 if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
1856 return (err);
1857 ip = ZTOI(zp);
1860 * If this is a xvattr_t, then get a pointer to the structure of
1861 * optional attributes. If this is NULL, then we have a vattr_t.
1863 xoap = xva_getxoptattr(xvap);
1864 if (xoap != NULL && (mask & ATTR_XVATTR)) {
1865 if (XVA_ISSET_REQ(xvap, XAT_PROJID)) {
1866 if (!dmu_objset_projectquota_enabled(os) ||
1867 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode))) {
1868 zfs_exit(zfsvfs, FTAG);
1869 return (SET_ERROR(ENOTSUP));
1872 projid = xoap->xoa_projid;
1873 if (unlikely(projid == ZFS_INVALID_PROJID)) {
1874 zfs_exit(zfsvfs, FTAG);
1875 return (SET_ERROR(EINVAL));
1878 if (projid == zp->z_projid && zp->z_pflags & ZFS_PROJID)
1879 projid = ZFS_INVALID_PROJID;
1880 else
1881 need_policy = TRUE;
1884 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT) &&
1885 (xoap->xoa_projinherit !=
1886 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) &&
1887 (!dmu_objset_projectquota_enabled(os) ||
1888 (!S_ISREG(ip->i_mode) && !S_ISDIR(ip->i_mode)))) {
1889 zfs_exit(zfsvfs, FTAG);
1890 return (SET_ERROR(ENOTSUP));
1894 zilog = zfsvfs->z_log;
1897 * Make sure that if we have ephemeral uid/gid or xvattr specified
1898 * that file system is at proper version level
1901 if (zfsvfs->z_use_fuids == B_FALSE &&
1902 (((mask & ATTR_UID) && IS_EPHEMERAL(vap->va_uid)) ||
1903 ((mask & ATTR_GID) && IS_EPHEMERAL(vap->va_gid)) ||
1904 (mask & ATTR_XVATTR))) {
1905 zfs_exit(zfsvfs, FTAG);
1906 return (SET_ERROR(EINVAL));
1909 if (mask & ATTR_SIZE && S_ISDIR(ip->i_mode)) {
1910 zfs_exit(zfsvfs, FTAG);
1911 return (SET_ERROR(EISDIR));
1914 if (mask & ATTR_SIZE && !S_ISREG(ip->i_mode) && !S_ISFIFO(ip->i_mode)) {
1915 zfs_exit(zfsvfs, FTAG);
1916 return (SET_ERROR(EINVAL));
1919 tmpxvattr = kmem_alloc(sizeof (xvattr_t), KM_SLEEP);
1920 xva_init(tmpxvattr);
1922 bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1923 xattr_bulk = kmem_alloc(sizeof (sa_bulk_attr_t) * bulks, KM_SLEEP);
1926 * Immutable files can only alter immutable bit and atime
1928 if ((zp->z_pflags & ZFS_IMMUTABLE) &&
1929 ((mask & (ATTR_SIZE|ATTR_UID|ATTR_GID|ATTR_MTIME|ATTR_MODE)) ||
1930 ((mask & ATTR_XVATTR) && XVA_ISSET_REQ(xvap, XAT_CREATETIME)))) {
1931 err = SET_ERROR(EPERM);
1932 goto out3;
1935 if ((mask & ATTR_SIZE) && (zp->z_pflags & ZFS_READONLY)) {
1936 err = SET_ERROR(EPERM);
1937 goto out3;
1941 * Verify timestamps doesn't overflow 32 bits.
1942 * ZFS can handle large timestamps, but 32bit syscalls can't
1943 * handle times greater than 2039. This check should be removed
1944 * once large timestamps are fully supported.
1946 if (mask & (ATTR_ATIME | ATTR_MTIME)) {
1947 if (((mask & ATTR_ATIME) &&
1948 TIMESPEC_OVERFLOW(&vap->va_atime)) ||
1949 ((mask & ATTR_MTIME) &&
1950 TIMESPEC_OVERFLOW(&vap->va_mtime))) {
1951 err = SET_ERROR(EOVERFLOW);
1952 goto out3;
1956 top:
1957 attrzp = NULL;
1958 aclp = NULL;
1960 /* Can this be moved to before the top label? */
1961 if (zfs_is_readonly(zfsvfs)) {
1962 err = SET_ERROR(EROFS);
1963 goto out3;
1967 * First validate permissions
1970 if (mask & ATTR_SIZE) {
1971 err = zfs_zaccess(zp, ACE_WRITE_DATA, 0, skipaclchk, cr);
1972 if (err)
1973 goto out3;
1976 * XXX - Note, we are not providing any open
1977 * mode flags here (like FNDELAY), so we may
1978 * block if there are locks present... this
1979 * should be addressed in openat().
1981 /* XXX - would it be OK to generate a log record here? */
1982 err = zfs_freesp(zp, vap->va_size, 0, 0, FALSE);
1983 if (err)
1984 goto out3;
1987 if (mask & (ATTR_ATIME|ATTR_MTIME) ||
1988 ((mask & ATTR_XVATTR) && (XVA_ISSET_REQ(xvap, XAT_HIDDEN) ||
1989 XVA_ISSET_REQ(xvap, XAT_READONLY) ||
1990 XVA_ISSET_REQ(xvap, XAT_ARCHIVE) ||
1991 XVA_ISSET_REQ(xvap, XAT_OFFLINE) ||
1992 XVA_ISSET_REQ(xvap, XAT_SPARSE) ||
1993 XVA_ISSET_REQ(xvap, XAT_CREATETIME) ||
1994 XVA_ISSET_REQ(xvap, XAT_SYSTEM)))) {
1995 need_policy = zfs_zaccess(zp, ACE_WRITE_ATTRIBUTES, 0,
1996 skipaclchk, cr);
1999 if (mask & (ATTR_UID|ATTR_GID)) {
2000 int idmask = (mask & (ATTR_UID|ATTR_GID));
2001 int take_owner;
2002 int take_group;
2005 * NOTE: even if a new mode is being set,
2006 * we may clear S_ISUID/S_ISGID bits.
2009 if (!(mask & ATTR_MODE))
2010 vap->va_mode = zp->z_mode;
2013 * Take ownership or chgrp to group we are a member of
2016 take_owner = (mask & ATTR_UID) && (vap->va_uid == crgetuid(cr));
2017 take_group = (mask & ATTR_GID) &&
2018 zfs_groupmember(zfsvfs, vap->va_gid, cr);
2021 * If both ATTR_UID and ATTR_GID are set then take_owner and
2022 * take_group must both be set in order to allow taking
2023 * ownership.
2025 * Otherwise, send the check through secpolicy_vnode_setattr()
2029 if (((idmask == (ATTR_UID|ATTR_GID)) &&
2030 take_owner && take_group) ||
2031 ((idmask == ATTR_UID) && take_owner) ||
2032 ((idmask == ATTR_GID) && take_group)) {
2033 if (zfs_zaccess(zp, ACE_WRITE_OWNER, 0,
2034 skipaclchk, cr) == 0) {
2036 * Remove setuid/setgid for non-privileged users
2038 (void) secpolicy_setid_clear(vap, cr);
2039 trim_mask = (mask & (ATTR_UID|ATTR_GID));
2040 } else {
2041 need_policy = TRUE;
2043 } else {
2044 need_policy = TRUE;
2048 mutex_enter(&zp->z_lock);
2049 oldva.va_mode = zp->z_mode;
2050 zfs_fuid_map_ids(zp, cr, &oldva.va_uid, &oldva.va_gid);
2051 if (mask & ATTR_XVATTR) {
2053 * Update xvattr mask to include only those attributes
2054 * that are actually changing.
2056 * the bits will be restored prior to actually setting
2057 * the attributes so the caller thinks they were set.
2059 if (XVA_ISSET_REQ(xvap, XAT_APPENDONLY)) {
2060 if (xoap->xoa_appendonly !=
2061 ((zp->z_pflags & ZFS_APPENDONLY) != 0)) {
2062 need_policy = TRUE;
2063 } else {
2064 XVA_CLR_REQ(xvap, XAT_APPENDONLY);
2065 XVA_SET_REQ(tmpxvattr, XAT_APPENDONLY);
2069 if (XVA_ISSET_REQ(xvap, XAT_PROJINHERIT)) {
2070 if (xoap->xoa_projinherit !=
2071 ((zp->z_pflags & ZFS_PROJINHERIT) != 0)) {
2072 need_policy = TRUE;
2073 } else {
2074 XVA_CLR_REQ(xvap, XAT_PROJINHERIT);
2075 XVA_SET_REQ(tmpxvattr, XAT_PROJINHERIT);
2079 if (XVA_ISSET_REQ(xvap, XAT_NOUNLINK)) {
2080 if (xoap->xoa_nounlink !=
2081 ((zp->z_pflags & ZFS_NOUNLINK) != 0)) {
2082 need_policy = TRUE;
2083 } else {
2084 XVA_CLR_REQ(xvap, XAT_NOUNLINK);
2085 XVA_SET_REQ(tmpxvattr, XAT_NOUNLINK);
2089 if (XVA_ISSET_REQ(xvap, XAT_IMMUTABLE)) {
2090 if (xoap->xoa_immutable !=
2091 ((zp->z_pflags & ZFS_IMMUTABLE) != 0)) {
2092 need_policy = TRUE;
2093 } else {
2094 XVA_CLR_REQ(xvap, XAT_IMMUTABLE);
2095 XVA_SET_REQ(tmpxvattr, XAT_IMMUTABLE);
2099 if (XVA_ISSET_REQ(xvap, XAT_NODUMP)) {
2100 if (xoap->xoa_nodump !=
2101 ((zp->z_pflags & ZFS_NODUMP) != 0)) {
2102 need_policy = TRUE;
2103 } else {
2104 XVA_CLR_REQ(xvap, XAT_NODUMP);
2105 XVA_SET_REQ(tmpxvattr, XAT_NODUMP);
2109 if (XVA_ISSET_REQ(xvap, XAT_AV_MODIFIED)) {
2110 if (xoap->xoa_av_modified !=
2111 ((zp->z_pflags & ZFS_AV_MODIFIED) != 0)) {
2112 need_policy = TRUE;
2113 } else {
2114 XVA_CLR_REQ(xvap, XAT_AV_MODIFIED);
2115 XVA_SET_REQ(tmpxvattr, XAT_AV_MODIFIED);
2119 if (XVA_ISSET_REQ(xvap, XAT_AV_QUARANTINED)) {
2120 if ((!S_ISREG(ip->i_mode) &&
2121 xoap->xoa_av_quarantined) ||
2122 xoap->xoa_av_quarantined !=
2123 ((zp->z_pflags & ZFS_AV_QUARANTINED) != 0)) {
2124 need_policy = TRUE;
2125 } else {
2126 XVA_CLR_REQ(xvap, XAT_AV_QUARANTINED);
2127 XVA_SET_REQ(tmpxvattr, XAT_AV_QUARANTINED);
2131 if (XVA_ISSET_REQ(xvap, XAT_REPARSE)) {
2132 mutex_exit(&zp->z_lock);
2133 err = SET_ERROR(EPERM);
2134 goto out3;
2137 if (need_policy == FALSE &&
2138 (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP) ||
2139 XVA_ISSET_REQ(xvap, XAT_OPAQUE))) {
2140 need_policy = TRUE;
2144 mutex_exit(&zp->z_lock);
2146 if (mask & ATTR_MODE) {
2147 if (zfs_zaccess(zp, ACE_WRITE_ACL, 0, skipaclchk, cr) == 0) {
2148 err = secpolicy_setid_setsticky_clear(ip, vap,
2149 &oldva, cr);
2150 if (err)
2151 goto out3;
2153 trim_mask |= ATTR_MODE;
2154 } else {
2155 need_policy = TRUE;
2159 if (need_policy) {
2161 * If trim_mask is set then take ownership
2162 * has been granted or write_acl is present and user
2163 * has the ability to modify mode. In that case remove
2164 * UID|GID and or MODE from mask so that
2165 * secpolicy_vnode_setattr() doesn't revoke it.
2168 if (trim_mask) {
2169 saved_mask = vap->va_mask;
2170 vap->va_mask &= ~trim_mask;
2172 err = secpolicy_vnode_setattr(cr, ip, vap, &oldva, flags,
2173 (int (*)(void *, int, cred_t *))zfs_zaccess_unix, zp);
2174 if (err)
2175 goto out3;
2177 if (trim_mask)
2178 vap->va_mask |= saved_mask;
2182 * secpolicy_vnode_setattr, or take ownership may have
2183 * changed va_mask
2185 mask = vap->va_mask;
2187 if ((mask & (ATTR_UID | ATTR_GID)) || projid != ZFS_INVALID_PROJID) {
2188 handle_eadir = B_TRUE;
2189 err = sa_lookup(zp->z_sa_hdl, SA_ZPL_XATTR(zfsvfs),
2190 &xattr_obj, sizeof (xattr_obj));
2192 if (err == 0 && xattr_obj) {
2193 err = zfs_zget(ZTOZSB(zp), xattr_obj, &attrzp);
2194 if (err)
2195 goto out2;
2197 if (mask & ATTR_UID) {
2198 new_kuid = zfs_fuid_create(zfsvfs,
2199 (uint64_t)vap->va_uid, cr, ZFS_OWNER, &fuidp);
2200 if (new_kuid != KUID_TO_SUID(ZTOI(zp)->i_uid) &&
2201 zfs_id_overquota(zfsvfs, DMU_USERUSED_OBJECT,
2202 new_kuid)) {
2203 if (attrzp)
2204 zrele(attrzp);
2205 err = SET_ERROR(EDQUOT);
2206 goto out2;
2210 if (mask & ATTR_GID) {
2211 new_kgid = zfs_fuid_create(zfsvfs,
2212 (uint64_t)vap->va_gid, cr, ZFS_GROUP, &fuidp);
2213 if (new_kgid != KGID_TO_SGID(ZTOI(zp)->i_gid) &&
2214 zfs_id_overquota(zfsvfs, DMU_GROUPUSED_OBJECT,
2215 new_kgid)) {
2216 if (attrzp)
2217 zrele(attrzp);
2218 err = SET_ERROR(EDQUOT);
2219 goto out2;
2223 if (projid != ZFS_INVALID_PROJID &&
2224 zfs_id_overquota(zfsvfs, DMU_PROJECTUSED_OBJECT, projid)) {
2225 if (attrzp)
2226 zrele(attrzp);
2227 err = EDQUOT;
2228 goto out2;
2231 tx = dmu_tx_create(os);
2233 if (mask & ATTR_MODE) {
2234 uint64_t pmode = zp->z_mode;
2235 uint64_t acl_obj;
2236 new_mode = (pmode & S_IFMT) | (vap->va_mode & ~S_IFMT);
2238 if (ZTOZSB(zp)->z_acl_mode == ZFS_ACL_RESTRICTED &&
2239 !(zp->z_pflags & ZFS_ACL_TRIVIAL)) {
2240 err = EPERM;
2241 goto out;
2244 if ((err = zfs_acl_chmod_setattr(zp, &aclp, new_mode)))
2245 goto out;
2247 mutex_enter(&zp->z_lock);
2248 if (!zp->z_is_sa && ((acl_obj = zfs_external_acl(zp)) != 0)) {
2250 * Are we upgrading ACL from old V0 format
2251 * to V1 format?
2253 if (zfsvfs->z_version >= ZPL_VERSION_FUID &&
2254 zfs_znode_acl_version(zp) ==
2255 ZFS_ACL_VERSION_INITIAL) {
2256 dmu_tx_hold_free(tx, acl_obj, 0,
2257 DMU_OBJECT_END);
2258 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2259 0, aclp->z_acl_bytes);
2260 } else {
2261 dmu_tx_hold_write(tx, acl_obj, 0,
2262 aclp->z_acl_bytes);
2264 } else if (!zp->z_is_sa && aclp->z_acl_bytes > ZFS_ACE_SPACE) {
2265 dmu_tx_hold_write(tx, DMU_NEW_OBJECT,
2266 0, aclp->z_acl_bytes);
2268 mutex_exit(&zp->z_lock);
2269 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2270 } else {
2271 if (((mask & ATTR_XVATTR) &&
2272 XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP)) ||
2273 (projid != ZFS_INVALID_PROJID &&
2274 !(zp->z_pflags & ZFS_PROJID)))
2275 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_TRUE);
2276 else
2277 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
2280 if (attrzp) {
2281 dmu_tx_hold_sa(tx, attrzp->z_sa_hdl, B_FALSE);
2284 fuid_dirtied = zfsvfs->z_fuid_dirty;
2285 if (fuid_dirtied)
2286 zfs_fuid_txhold(zfsvfs, tx);
2288 zfs_sa_upgrade_txholds(tx, zp);
2290 err = dmu_tx_assign(tx, TXG_WAIT);
2291 if (err)
2292 goto out;
2294 count = 0;
2296 * Set each attribute requested.
2297 * We group settings according to the locks they need to acquire.
2299 * Note: you cannot set ctime directly, although it will be
2300 * updated as a side-effect of calling this function.
2303 if (projid != ZFS_INVALID_PROJID && !(zp->z_pflags & ZFS_PROJID)) {
2305 * For the existed object that is upgraded from old system,
2306 * its on-disk layout has no slot for the project ID attribute.
2307 * But quota accounting logic needs to access related slots by
2308 * offset directly. So we need to adjust old objects' layout
2309 * to make the project ID to some unified and fixed offset.
2311 if (attrzp)
2312 err = sa_add_projid(attrzp->z_sa_hdl, tx, projid);
2313 if (err == 0)
2314 err = sa_add_projid(zp->z_sa_hdl, tx, projid);
2316 if (unlikely(err == EEXIST))
2317 err = 0;
2318 else if (err != 0)
2319 goto out;
2320 else
2321 projid = ZFS_INVALID_PROJID;
2324 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2325 mutex_enter(&zp->z_acl_lock);
2326 mutex_enter(&zp->z_lock);
2328 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_FLAGS(zfsvfs), NULL,
2329 &zp->z_pflags, sizeof (zp->z_pflags));
2331 if (attrzp) {
2332 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2333 mutex_enter(&attrzp->z_acl_lock);
2334 mutex_enter(&attrzp->z_lock);
2335 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2336 SA_ZPL_FLAGS(zfsvfs), NULL, &attrzp->z_pflags,
2337 sizeof (attrzp->z_pflags));
2338 if (projid != ZFS_INVALID_PROJID) {
2339 attrzp->z_projid = projid;
2340 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2341 SA_ZPL_PROJID(zfsvfs), NULL, &attrzp->z_projid,
2342 sizeof (attrzp->z_projid));
2346 if (mask & (ATTR_UID|ATTR_GID)) {
2348 if (mask & ATTR_UID) {
2349 ZTOI(zp)->i_uid = SUID_TO_KUID(new_kuid);
2350 new_uid = zfs_uid_read(ZTOI(zp));
2351 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_UID(zfsvfs), NULL,
2352 &new_uid, sizeof (new_uid));
2353 if (attrzp) {
2354 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2355 SA_ZPL_UID(zfsvfs), NULL, &new_uid,
2356 sizeof (new_uid));
2357 ZTOI(attrzp)->i_uid = SUID_TO_KUID(new_uid);
2361 if (mask & ATTR_GID) {
2362 ZTOI(zp)->i_gid = SGID_TO_KGID(new_kgid);
2363 new_gid = zfs_gid_read(ZTOI(zp));
2364 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_GID(zfsvfs),
2365 NULL, &new_gid, sizeof (new_gid));
2366 if (attrzp) {
2367 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2368 SA_ZPL_GID(zfsvfs), NULL, &new_gid,
2369 sizeof (new_gid));
2370 ZTOI(attrzp)->i_gid = SGID_TO_KGID(new_kgid);
2373 if (!(mask & ATTR_MODE)) {
2374 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs),
2375 NULL, &new_mode, sizeof (new_mode));
2376 new_mode = zp->z_mode;
2378 err = zfs_acl_chown_setattr(zp);
2379 ASSERT(err == 0);
2380 if (attrzp) {
2381 err = zfs_acl_chown_setattr(attrzp);
2382 ASSERT(err == 0);
2386 if (mask & ATTR_MODE) {
2387 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MODE(zfsvfs), NULL,
2388 &new_mode, sizeof (new_mode));
2389 zp->z_mode = ZTOI(zp)->i_mode = new_mode;
2390 ASSERT3P(aclp, !=, NULL);
2391 err = zfs_aclset_common(zp, aclp, cr, tx);
2392 ASSERT0(err);
2393 if (zp->z_acl_cached)
2394 zfs_acl_free(zp->z_acl_cached);
2395 zp->z_acl_cached = aclp;
2396 aclp = NULL;
2399 if ((mask & ATTR_ATIME) || zp->z_atime_dirty) {
2400 zp->z_atime_dirty = B_FALSE;
2401 ZFS_TIME_ENCODE(&ip->i_atime, atime);
2402 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_ATIME(zfsvfs), NULL,
2403 &atime, sizeof (atime));
2406 if (mask & (ATTR_MTIME | ATTR_SIZE)) {
2407 ZFS_TIME_ENCODE(&vap->va_mtime, mtime);
2408 ZTOI(zp)->i_mtime = zpl_inode_timestamp_truncate(
2409 vap->va_mtime, ZTOI(zp));
2411 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_MTIME(zfsvfs), NULL,
2412 mtime, sizeof (mtime));
2415 if (mask & (ATTR_CTIME | ATTR_SIZE)) {
2416 ZFS_TIME_ENCODE(&vap->va_ctime, ctime);
2417 ZTOI(zp)->i_ctime = zpl_inode_timestamp_truncate(vap->va_ctime,
2418 ZTOI(zp));
2419 SA_ADD_BULK_ATTR(bulk, count, SA_ZPL_CTIME(zfsvfs), NULL,
2420 ctime, sizeof (ctime));
2423 if (projid != ZFS_INVALID_PROJID) {
2424 zp->z_projid = projid;
2425 SA_ADD_BULK_ATTR(bulk, count,
2426 SA_ZPL_PROJID(zfsvfs), NULL, &zp->z_projid,
2427 sizeof (zp->z_projid));
2430 if (attrzp && mask) {
2431 SA_ADD_BULK_ATTR(xattr_bulk, xattr_count,
2432 SA_ZPL_CTIME(zfsvfs), NULL, &ctime,
2433 sizeof (ctime));
2437 * Do this after setting timestamps to prevent timestamp
2438 * update from toggling bit
2441 if (xoap && (mask & ATTR_XVATTR)) {
2444 * restore trimmed off masks
2445 * so that return masks can be set for caller.
2448 if (XVA_ISSET_REQ(tmpxvattr, XAT_APPENDONLY)) {
2449 XVA_SET_REQ(xvap, XAT_APPENDONLY);
2451 if (XVA_ISSET_REQ(tmpxvattr, XAT_NOUNLINK)) {
2452 XVA_SET_REQ(xvap, XAT_NOUNLINK);
2454 if (XVA_ISSET_REQ(tmpxvattr, XAT_IMMUTABLE)) {
2455 XVA_SET_REQ(xvap, XAT_IMMUTABLE);
2457 if (XVA_ISSET_REQ(tmpxvattr, XAT_NODUMP)) {
2458 XVA_SET_REQ(xvap, XAT_NODUMP);
2460 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_MODIFIED)) {
2461 XVA_SET_REQ(xvap, XAT_AV_MODIFIED);
2463 if (XVA_ISSET_REQ(tmpxvattr, XAT_AV_QUARANTINED)) {
2464 XVA_SET_REQ(xvap, XAT_AV_QUARANTINED);
2466 if (XVA_ISSET_REQ(tmpxvattr, XAT_PROJINHERIT)) {
2467 XVA_SET_REQ(xvap, XAT_PROJINHERIT);
2470 if (XVA_ISSET_REQ(xvap, XAT_AV_SCANSTAMP))
2471 ASSERT(S_ISREG(ip->i_mode));
2473 zfs_xvattr_set(zp, xvap, tx);
2476 if (fuid_dirtied)
2477 zfs_fuid_sync(zfsvfs, tx);
2479 if (mask != 0)
2480 zfs_log_setattr(zilog, tx, TX_SETATTR, zp, vap, mask, fuidp);
2482 mutex_exit(&zp->z_lock);
2483 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2484 mutex_exit(&zp->z_acl_lock);
2486 if (attrzp) {
2487 if (mask & (ATTR_UID|ATTR_GID|ATTR_MODE))
2488 mutex_exit(&attrzp->z_acl_lock);
2489 mutex_exit(&attrzp->z_lock);
2491 out:
2492 if (err == 0 && xattr_count > 0) {
2493 err2 = sa_bulk_update(attrzp->z_sa_hdl, xattr_bulk,
2494 xattr_count, tx);
2495 ASSERT(err2 == 0);
2498 if (aclp)
2499 zfs_acl_free(aclp);
2501 if (fuidp) {
2502 zfs_fuid_info_free(fuidp);
2503 fuidp = NULL;
2506 if (err) {
2507 dmu_tx_abort(tx);
2508 if (attrzp)
2509 zrele(attrzp);
2510 if (err == ERESTART)
2511 goto top;
2512 } else {
2513 if (count > 0)
2514 err2 = sa_bulk_update(zp->z_sa_hdl, bulk, count, tx);
2515 dmu_tx_commit(tx);
2516 if (attrzp) {
2517 if (err2 == 0 && handle_eadir)
2518 err2 = zfs_setattr_dir(attrzp);
2519 zrele(attrzp);
2521 zfs_znode_update_vfs(zp);
2524 out2:
2525 if (os->os_sync == ZFS_SYNC_ALWAYS)
2526 zil_commit(zilog, 0);
2528 out3:
2529 kmem_free(xattr_bulk, sizeof (sa_bulk_attr_t) * bulks);
2530 kmem_free(bulk, sizeof (sa_bulk_attr_t) * bulks);
2531 kmem_free(tmpxvattr, sizeof (xvattr_t));
2532 zfs_exit(zfsvfs, FTAG);
2533 return (err);
2536 typedef struct zfs_zlock {
2537 krwlock_t *zl_rwlock; /* lock we acquired */
2538 znode_t *zl_znode; /* znode we held */
2539 struct zfs_zlock *zl_next; /* next in list */
2540 } zfs_zlock_t;
2543 * Drop locks and release vnodes that were held by zfs_rename_lock().
2545 static void
2546 zfs_rename_unlock(zfs_zlock_t **zlpp)
2548 zfs_zlock_t *zl;
2550 while ((zl = *zlpp) != NULL) {
2551 if (zl->zl_znode != NULL)
2552 zfs_zrele_async(zl->zl_znode);
2553 rw_exit(zl->zl_rwlock);
2554 *zlpp = zl->zl_next;
2555 kmem_free(zl, sizeof (*zl));
2560 * Search back through the directory tree, using the ".." entries.
2561 * Lock each directory in the chain to prevent concurrent renames.
2562 * Fail any attempt to move a directory into one of its own descendants.
2563 * XXX - z_parent_lock can overlap with map or grow locks
2565 static int
2566 zfs_rename_lock(znode_t *szp, znode_t *tdzp, znode_t *sdzp, zfs_zlock_t **zlpp)
2568 zfs_zlock_t *zl;
2569 znode_t *zp = tdzp;
2570 uint64_t rootid = ZTOZSB(zp)->z_root;
2571 uint64_t oidp = zp->z_id;
2572 krwlock_t *rwlp = &szp->z_parent_lock;
2573 krw_t rw = RW_WRITER;
2576 * First pass write-locks szp and compares to zp->z_id.
2577 * Later passes read-lock zp and compare to zp->z_parent.
2579 do {
2580 if (!rw_tryenter(rwlp, rw)) {
2582 * Another thread is renaming in this path.
2583 * Note that if we are a WRITER, we don't have any
2584 * parent_locks held yet.
2586 if (rw == RW_READER && zp->z_id > szp->z_id) {
2588 * Drop our locks and restart
2590 zfs_rename_unlock(&zl);
2591 *zlpp = NULL;
2592 zp = tdzp;
2593 oidp = zp->z_id;
2594 rwlp = &szp->z_parent_lock;
2595 rw = RW_WRITER;
2596 continue;
2597 } else {
2599 * Wait for other thread to drop its locks
2601 rw_enter(rwlp, rw);
2605 zl = kmem_alloc(sizeof (*zl), KM_SLEEP);
2606 zl->zl_rwlock = rwlp;
2607 zl->zl_znode = NULL;
2608 zl->zl_next = *zlpp;
2609 *zlpp = zl;
2611 if (oidp == szp->z_id) /* We're a descendant of szp */
2612 return (SET_ERROR(EINVAL));
2614 if (oidp == rootid) /* We've hit the top */
2615 return (0);
2617 if (rw == RW_READER) { /* i.e. not the first pass */
2618 int error = zfs_zget(ZTOZSB(zp), oidp, &zp);
2619 if (error)
2620 return (error);
2621 zl->zl_znode = zp;
2623 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_PARENT(ZTOZSB(zp)),
2624 &oidp, sizeof (oidp));
2625 rwlp = &zp->z_parent_lock;
2626 rw = RW_READER;
2628 } while (zp->z_id != sdzp->z_id);
2630 return (0);
2634 * Move an entry from the provided source directory to the target
2635 * directory. Change the entry name as indicated.
2637 * IN: sdzp - Source directory containing the "old entry".
2638 * snm - Old entry name.
2639 * tdzp - Target directory to contain the "new entry".
2640 * tnm - New entry name.
2641 * cr - credentials of caller.
2642 * flags - case flags
2644 * RETURN: 0 on success, error code on failure.
2646 * Timestamps:
2647 * sdzp,tdzp - ctime|mtime updated
2650 zfs_rename(znode_t *sdzp, char *snm, znode_t *tdzp, char *tnm,
2651 cred_t *cr, int flags)
2653 znode_t *szp, *tzp;
2654 zfsvfs_t *zfsvfs = ZTOZSB(sdzp);
2655 zilog_t *zilog;
2656 zfs_dirlock_t *sdl, *tdl;
2657 dmu_tx_t *tx;
2658 zfs_zlock_t *zl;
2659 int cmp, serr, terr;
2660 int error = 0;
2661 int zflg = 0;
2662 boolean_t waited = B_FALSE;
2664 if (snm == NULL || tnm == NULL)
2665 return (SET_ERROR(EINVAL));
2667 if ((error = zfs_enter_verify_zp(zfsvfs, sdzp, FTAG)) != 0)
2668 return (error);
2669 zilog = zfsvfs->z_log;
2671 if ((error = zfs_verify_zp(tdzp)) != 0) {
2672 zfs_exit(zfsvfs, FTAG);
2673 return (error);
2677 * We check i_sb because snapshots and the ctldir must have different
2678 * super blocks.
2680 if (ZTOI(tdzp)->i_sb != ZTOI(sdzp)->i_sb ||
2681 zfsctl_is_node(ZTOI(tdzp))) {
2682 zfs_exit(zfsvfs, FTAG);
2683 return (SET_ERROR(EXDEV));
2686 if (zfsvfs->z_utf8 && u8_validate(tnm,
2687 strlen(tnm), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
2688 zfs_exit(zfsvfs, FTAG);
2689 return (SET_ERROR(EILSEQ));
2692 if (flags & FIGNORECASE)
2693 zflg |= ZCILOOK;
2695 top:
2696 szp = NULL;
2697 tzp = NULL;
2698 zl = NULL;
2701 * This is to prevent the creation of links into attribute space
2702 * by renaming a linked file into/outof an attribute directory.
2703 * See the comment in zfs_link() for why this is considered bad.
2705 if ((tdzp->z_pflags & ZFS_XATTR) != (sdzp->z_pflags & ZFS_XATTR)) {
2706 zfs_exit(zfsvfs, FTAG);
2707 return (SET_ERROR(EINVAL));
2711 * Lock source and target directory entries. To prevent deadlock,
2712 * a lock ordering must be defined. We lock the directory with
2713 * the smallest object id first, or if it's a tie, the one with
2714 * the lexically first name.
2716 if (sdzp->z_id < tdzp->z_id) {
2717 cmp = -1;
2718 } else if (sdzp->z_id > tdzp->z_id) {
2719 cmp = 1;
2720 } else {
2722 * First compare the two name arguments without
2723 * considering any case folding.
2725 int nofold = (zfsvfs->z_norm & ~U8_TEXTPREP_TOUPPER);
2727 cmp = u8_strcmp(snm, tnm, 0, nofold, U8_UNICODE_LATEST, &error);
2728 ASSERT(error == 0 || !zfsvfs->z_utf8);
2729 if (cmp == 0) {
2731 * POSIX: "If the old argument and the new argument
2732 * both refer to links to the same existing file,
2733 * the rename() function shall return successfully
2734 * and perform no other action."
2736 zfs_exit(zfsvfs, FTAG);
2737 return (0);
2740 * If the file system is case-folding, then we may
2741 * have some more checking to do. A case-folding file
2742 * system is either supporting mixed case sensitivity
2743 * access or is completely case-insensitive. Note
2744 * that the file system is always case preserving.
2746 * In mixed sensitivity mode case sensitive behavior
2747 * is the default. FIGNORECASE must be used to
2748 * explicitly request case insensitive behavior.
2750 * If the source and target names provided differ only
2751 * by case (e.g., a request to rename 'tim' to 'Tim'),
2752 * we will treat this as a special case in the
2753 * case-insensitive mode: as long as the source name
2754 * is an exact match, we will allow this to proceed as
2755 * a name-change request.
2757 if ((zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
2758 (zfsvfs->z_case == ZFS_CASE_MIXED &&
2759 flags & FIGNORECASE)) &&
2760 u8_strcmp(snm, tnm, 0, zfsvfs->z_norm, U8_UNICODE_LATEST,
2761 &error) == 0) {
2763 * case preserving rename request, require exact
2764 * name matches
2766 zflg |= ZCIEXACT;
2767 zflg &= ~ZCILOOK;
2772 * If the source and destination directories are the same, we should
2773 * grab the z_name_lock of that directory only once.
2775 if (sdzp == tdzp) {
2776 zflg |= ZHAVELOCK;
2777 rw_enter(&sdzp->z_name_lock, RW_READER);
2780 if (cmp < 0) {
2781 serr = zfs_dirent_lock(&sdl, sdzp, snm, &szp,
2782 ZEXISTS | zflg, NULL, NULL);
2783 terr = zfs_dirent_lock(&tdl,
2784 tdzp, tnm, &tzp, ZRENAMING | zflg, NULL, NULL);
2785 } else {
2786 terr = zfs_dirent_lock(&tdl,
2787 tdzp, tnm, &tzp, zflg, NULL, NULL);
2788 serr = zfs_dirent_lock(&sdl,
2789 sdzp, snm, &szp, ZEXISTS | ZRENAMING | zflg,
2790 NULL, NULL);
2793 if (serr) {
2795 * Source entry invalid or not there.
2797 if (!terr) {
2798 zfs_dirent_unlock(tdl);
2799 if (tzp)
2800 zrele(tzp);
2803 if (sdzp == tdzp)
2804 rw_exit(&sdzp->z_name_lock);
2806 if (strcmp(snm, "..") == 0)
2807 serr = EINVAL;
2808 zfs_exit(zfsvfs, FTAG);
2809 return (serr);
2811 if (terr) {
2812 zfs_dirent_unlock(sdl);
2813 zrele(szp);
2815 if (sdzp == tdzp)
2816 rw_exit(&sdzp->z_name_lock);
2818 if (strcmp(tnm, "..") == 0)
2819 terr = EINVAL;
2820 zfs_exit(zfsvfs, FTAG);
2821 return (terr);
2825 * If we are using project inheritance, means if the directory has
2826 * ZFS_PROJINHERIT set, then its descendant directories will inherit
2827 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
2828 * such case, we only allow renames into our tree when the project
2829 * IDs are the same.
2831 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
2832 tdzp->z_projid != szp->z_projid) {
2833 error = SET_ERROR(EXDEV);
2834 goto out;
2838 * Must have write access at the source to remove the old entry
2839 * and write access at the target to create the new entry.
2840 * Note that if target and source are the same, this can be
2841 * done in a single check.
2844 if ((error = zfs_zaccess_rename(sdzp, szp, tdzp, tzp, cr)))
2845 goto out;
2847 if (S_ISDIR(ZTOI(szp)->i_mode)) {
2849 * Check to make sure rename is valid.
2850 * Can't do a move like this: /usr/a/b to /usr/a/b/c/d
2852 if ((error = zfs_rename_lock(szp, tdzp, sdzp, &zl)))
2853 goto out;
2857 * Does target exist?
2859 if (tzp) {
2861 * Source and target must be the same type.
2863 if (S_ISDIR(ZTOI(szp)->i_mode)) {
2864 if (!S_ISDIR(ZTOI(tzp)->i_mode)) {
2865 error = SET_ERROR(ENOTDIR);
2866 goto out;
2868 } else {
2869 if (S_ISDIR(ZTOI(tzp)->i_mode)) {
2870 error = SET_ERROR(EISDIR);
2871 goto out;
2875 * POSIX dictates that when the source and target
2876 * entries refer to the same file object, rename
2877 * must do nothing and exit without error.
2879 if (szp->z_id == tzp->z_id) {
2880 error = 0;
2881 goto out;
2885 tx = dmu_tx_create(zfsvfs->z_os);
2886 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
2887 dmu_tx_hold_sa(tx, sdzp->z_sa_hdl, B_FALSE);
2888 dmu_tx_hold_zap(tx, sdzp->z_id, FALSE, snm);
2889 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, tnm);
2890 if (sdzp != tdzp) {
2891 dmu_tx_hold_sa(tx, tdzp->z_sa_hdl, B_FALSE);
2892 zfs_sa_upgrade_txholds(tx, tdzp);
2894 if (tzp) {
2895 dmu_tx_hold_sa(tx, tzp->z_sa_hdl, B_FALSE);
2896 zfs_sa_upgrade_txholds(tx, tzp);
2899 zfs_sa_upgrade_txholds(tx, szp);
2900 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
2901 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
2902 if (error) {
2903 if (zl != NULL)
2904 zfs_rename_unlock(&zl);
2905 zfs_dirent_unlock(sdl);
2906 zfs_dirent_unlock(tdl);
2908 if (sdzp == tdzp)
2909 rw_exit(&sdzp->z_name_lock);
2911 if (error == ERESTART) {
2912 waited = B_TRUE;
2913 dmu_tx_wait(tx);
2914 dmu_tx_abort(tx);
2915 zrele(szp);
2916 if (tzp)
2917 zrele(tzp);
2918 goto top;
2920 dmu_tx_abort(tx);
2921 zrele(szp);
2922 if (tzp)
2923 zrele(tzp);
2924 zfs_exit(zfsvfs, FTAG);
2925 return (error);
2928 if (tzp) /* Attempt to remove the existing target */
2929 error = zfs_link_destroy(tdl, tzp, tx, zflg, NULL);
2931 if (error == 0) {
2932 error = zfs_link_create(tdl, szp, tx, ZRENAMING);
2933 if (error == 0) {
2934 szp->z_pflags |= ZFS_AV_MODIFIED;
2935 if (tdzp->z_pflags & ZFS_PROJINHERIT)
2936 szp->z_pflags |= ZFS_PROJINHERIT;
2938 error = sa_update(szp->z_sa_hdl, SA_ZPL_FLAGS(zfsvfs),
2939 (void *)&szp->z_pflags, sizeof (uint64_t), tx);
2940 ASSERT0(error);
2942 error = zfs_link_destroy(sdl, szp, tx, ZRENAMING, NULL);
2943 if (error == 0) {
2944 zfs_log_rename(zilog, tx, TX_RENAME |
2945 (flags & FIGNORECASE ? TX_CI : 0), sdzp,
2946 sdl->dl_name, tdzp, tdl->dl_name, szp);
2947 } else {
2949 * At this point, we have successfully created
2950 * the target name, but have failed to remove
2951 * the source name. Since the create was done
2952 * with the ZRENAMING flag, there are
2953 * complications; for one, the link count is
2954 * wrong. The easiest way to deal with this
2955 * is to remove the newly created target, and
2956 * return the original error. This must
2957 * succeed; fortunately, it is very unlikely to
2958 * fail, since we just created it.
2960 VERIFY3U(zfs_link_destroy(tdl, szp, tx,
2961 ZRENAMING, NULL), ==, 0);
2963 } else {
2965 * If we had removed the existing target, subsequent
2966 * call to zfs_link_create() to add back the same entry
2967 * but, the new dnode (szp) should not fail.
2969 ASSERT(tzp == NULL);
2973 dmu_tx_commit(tx);
2974 out:
2975 if (zl != NULL)
2976 zfs_rename_unlock(&zl);
2978 zfs_dirent_unlock(sdl);
2979 zfs_dirent_unlock(tdl);
2981 zfs_znode_update_vfs(sdzp);
2982 if (sdzp == tdzp)
2983 rw_exit(&sdzp->z_name_lock);
2985 if (sdzp != tdzp)
2986 zfs_znode_update_vfs(tdzp);
2988 zfs_znode_update_vfs(szp);
2989 zrele(szp);
2990 if (tzp) {
2991 zfs_znode_update_vfs(tzp);
2992 zrele(tzp);
2995 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
2996 zil_commit(zilog, 0);
2998 zfs_exit(zfsvfs, FTAG);
2999 return (error);
3003 * Insert the indicated symbolic reference entry into the directory.
3005 * IN: dzp - Directory to contain new symbolic link.
3006 * name - Name of directory entry in dip.
3007 * vap - Attributes of new entry.
3008 * link - Name for new symlink entry.
3009 * cr - credentials of caller.
3010 * flags - case flags
3012 * OUT: zpp - Znode for new symbolic link.
3014 * RETURN: 0 on success, error code on failure.
3016 * Timestamps:
3017 * dip - ctime|mtime updated
3020 zfs_symlink(znode_t *dzp, char *name, vattr_t *vap, char *link,
3021 znode_t **zpp, cred_t *cr, int flags)
3023 znode_t *zp;
3024 zfs_dirlock_t *dl;
3025 dmu_tx_t *tx;
3026 zfsvfs_t *zfsvfs = ZTOZSB(dzp);
3027 zilog_t *zilog;
3028 uint64_t len = strlen(link);
3029 int error;
3030 int zflg = ZNEW;
3031 zfs_acl_ids_t acl_ids;
3032 boolean_t fuid_dirtied;
3033 uint64_t txtype = TX_SYMLINK;
3034 boolean_t waited = B_FALSE;
3036 ASSERT(S_ISLNK(vap->va_mode));
3038 if (name == NULL)
3039 return (SET_ERROR(EINVAL));
3041 if ((error = zfs_enter_verify_zp(zfsvfs, dzp, FTAG)) != 0)
3042 return (error);
3043 zilog = zfsvfs->z_log;
3045 if (zfsvfs->z_utf8 && u8_validate(name, strlen(name),
3046 NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3047 zfs_exit(zfsvfs, FTAG);
3048 return (SET_ERROR(EILSEQ));
3050 if (flags & FIGNORECASE)
3051 zflg |= ZCILOOK;
3053 if (len > MAXPATHLEN) {
3054 zfs_exit(zfsvfs, FTAG);
3055 return (SET_ERROR(ENAMETOOLONG));
3058 if ((error = zfs_acl_ids_create(dzp, 0,
3059 vap, cr, NULL, &acl_ids)) != 0) {
3060 zfs_exit(zfsvfs, FTAG);
3061 return (error);
3063 top:
3064 *zpp = NULL;
3067 * Attempt to lock directory; fail if entry already exists.
3069 error = zfs_dirent_lock(&dl, dzp, name, &zp, zflg, NULL, NULL);
3070 if (error) {
3071 zfs_acl_ids_free(&acl_ids);
3072 zfs_exit(zfsvfs, FTAG);
3073 return (error);
3076 if ((error = zfs_zaccess(dzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3077 zfs_acl_ids_free(&acl_ids);
3078 zfs_dirent_unlock(dl);
3079 zfs_exit(zfsvfs, FTAG);
3080 return (error);
3083 if (zfs_acl_ids_overquota(zfsvfs, &acl_ids, ZFS_DEFAULT_PROJID)) {
3084 zfs_acl_ids_free(&acl_ids);
3085 zfs_dirent_unlock(dl);
3086 zfs_exit(zfsvfs, FTAG);
3087 return (SET_ERROR(EDQUOT));
3089 tx = dmu_tx_create(zfsvfs->z_os);
3090 fuid_dirtied = zfsvfs->z_fuid_dirty;
3091 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0, MAX(1, len));
3092 dmu_tx_hold_zap(tx, dzp->z_id, TRUE, name);
3093 dmu_tx_hold_sa_create(tx, acl_ids.z_aclp->z_acl_bytes +
3094 ZFS_SA_BASE_ATTR_SIZE + len);
3095 dmu_tx_hold_sa(tx, dzp->z_sa_hdl, B_FALSE);
3096 if (!zfsvfs->z_use_sa && acl_ids.z_aclp->z_acl_bytes > ZFS_ACE_SPACE) {
3097 dmu_tx_hold_write(tx, DMU_NEW_OBJECT, 0,
3098 acl_ids.z_aclp->z_acl_bytes);
3100 if (fuid_dirtied)
3101 zfs_fuid_txhold(zfsvfs, tx);
3102 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3103 if (error) {
3104 zfs_dirent_unlock(dl);
3105 if (error == ERESTART) {
3106 waited = B_TRUE;
3107 dmu_tx_wait(tx);
3108 dmu_tx_abort(tx);
3109 goto top;
3111 zfs_acl_ids_free(&acl_ids);
3112 dmu_tx_abort(tx);
3113 zfs_exit(zfsvfs, FTAG);
3114 return (error);
3118 * Create a new object for the symlink.
3119 * for version 4 ZPL datasets the symlink will be an SA attribute
3121 zfs_mknode(dzp, vap, tx, cr, 0, &zp, &acl_ids);
3123 if (fuid_dirtied)
3124 zfs_fuid_sync(zfsvfs, tx);
3126 mutex_enter(&zp->z_lock);
3127 if (zp->z_is_sa)
3128 error = sa_update(zp->z_sa_hdl, SA_ZPL_SYMLINK(zfsvfs),
3129 link, len, tx);
3130 else
3131 zfs_sa_symlink(zp, link, len, tx);
3132 mutex_exit(&zp->z_lock);
3134 zp->z_size = len;
3135 (void) sa_update(zp->z_sa_hdl, SA_ZPL_SIZE(zfsvfs),
3136 &zp->z_size, sizeof (zp->z_size), tx);
3138 * Insert the new object into the directory.
3140 error = zfs_link_create(dl, zp, tx, ZNEW);
3141 if (error != 0) {
3142 zfs_znode_delete(zp, tx);
3143 remove_inode_hash(ZTOI(zp));
3144 } else {
3145 if (flags & FIGNORECASE)
3146 txtype |= TX_CI;
3147 zfs_log_symlink(zilog, tx, txtype, dzp, zp, name, link);
3149 zfs_znode_update_vfs(dzp);
3150 zfs_znode_update_vfs(zp);
3153 zfs_acl_ids_free(&acl_ids);
3155 dmu_tx_commit(tx);
3157 zfs_dirent_unlock(dl);
3159 if (error == 0) {
3160 *zpp = zp;
3162 if (zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3163 zil_commit(zilog, 0);
3164 } else {
3165 zrele(zp);
3168 zfs_exit(zfsvfs, FTAG);
3169 return (error);
3173 * Return, in the buffer contained in the provided uio structure,
3174 * the symbolic path referred to by ip.
3176 * IN: ip - inode of symbolic link
3177 * uio - structure to contain the link path.
3178 * cr - credentials of caller.
3180 * RETURN: 0 if success
3181 * error code if failure
3183 * Timestamps:
3184 * ip - atime updated
3187 zfs_readlink(struct inode *ip, zfs_uio_t *uio, cred_t *cr)
3189 (void) cr;
3190 znode_t *zp = ITOZ(ip);
3191 zfsvfs_t *zfsvfs = ITOZSB(ip);
3192 int error;
3194 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3195 return (error);
3197 mutex_enter(&zp->z_lock);
3198 if (zp->z_is_sa)
3199 error = sa_lookup_uio(zp->z_sa_hdl,
3200 SA_ZPL_SYMLINK(zfsvfs), uio);
3201 else
3202 error = zfs_sa_readlink(zp, uio);
3203 mutex_exit(&zp->z_lock);
3205 zfs_exit(zfsvfs, FTAG);
3206 return (error);
3210 * Insert a new entry into directory tdzp referencing szp.
3212 * IN: tdzp - Directory to contain new entry.
3213 * szp - znode of new entry.
3214 * name - name of new entry.
3215 * cr - credentials of caller.
3216 * flags - case flags.
3218 * RETURN: 0 if success
3219 * error code if failure
3221 * Timestamps:
3222 * tdzp - ctime|mtime updated
3223 * szp - ctime updated
3226 zfs_link(znode_t *tdzp, znode_t *szp, char *name, cred_t *cr,
3227 int flags)
3229 struct inode *sip = ZTOI(szp);
3230 znode_t *tzp;
3231 zfsvfs_t *zfsvfs = ZTOZSB(tdzp);
3232 zilog_t *zilog;
3233 zfs_dirlock_t *dl;
3234 dmu_tx_t *tx;
3235 int error;
3236 int zf = ZNEW;
3237 uint64_t parent;
3238 uid_t owner;
3239 boolean_t waited = B_FALSE;
3240 boolean_t is_tmpfile = 0;
3241 uint64_t txg;
3242 #ifdef HAVE_TMPFILE
3243 is_tmpfile = (sip->i_nlink == 0 && (sip->i_state & I_LINKABLE));
3244 #endif
3245 ASSERT(S_ISDIR(ZTOI(tdzp)->i_mode));
3247 if (name == NULL)
3248 return (SET_ERROR(EINVAL));
3250 if ((error = zfs_enter_verify_zp(zfsvfs, tdzp, FTAG)) != 0)
3251 return (error);
3252 zilog = zfsvfs->z_log;
3255 * POSIX dictates that we return EPERM here.
3256 * Better choices include ENOTSUP or EISDIR.
3258 if (S_ISDIR(sip->i_mode)) {
3259 zfs_exit(zfsvfs, FTAG);
3260 return (SET_ERROR(EPERM));
3263 if ((error = zfs_verify_zp(szp)) != 0) {
3264 zfs_exit(zfsvfs, FTAG);
3265 return (error);
3269 * If we are using project inheritance, means if the directory has
3270 * ZFS_PROJINHERIT set, then its descendant directories will inherit
3271 * not only the project ID, but also the ZFS_PROJINHERIT flag. Under
3272 * such case, we only allow hard link creation in our tree when the
3273 * project IDs are the same.
3275 if (tdzp->z_pflags & ZFS_PROJINHERIT &&
3276 tdzp->z_projid != szp->z_projid) {
3277 zfs_exit(zfsvfs, FTAG);
3278 return (SET_ERROR(EXDEV));
3282 * We check i_sb because snapshots and the ctldir must have different
3283 * super blocks.
3285 if (sip->i_sb != ZTOI(tdzp)->i_sb || zfsctl_is_node(sip)) {
3286 zfs_exit(zfsvfs, FTAG);
3287 return (SET_ERROR(EXDEV));
3290 /* Prevent links to .zfs/shares files */
3292 if ((error = sa_lookup(szp->z_sa_hdl, SA_ZPL_PARENT(zfsvfs),
3293 &parent, sizeof (uint64_t))) != 0) {
3294 zfs_exit(zfsvfs, FTAG);
3295 return (error);
3297 if (parent == zfsvfs->z_shares_dir) {
3298 zfs_exit(zfsvfs, FTAG);
3299 return (SET_ERROR(EPERM));
3302 if (zfsvfs->z_utf8 && u8_validate(name,
3303 strlen(name), NULL, U8_VALIDATE_ENTIRE, &error) < 0) {
3304 zfs_exit(zfsvfs, FTAG);
3305 return (SET_ERROR(EILSEQ));
3307 if (flags & FIGNORECASE)
3308 zf |= ZCILOOK;
3311 * We do not support links between attributes and non-attributes
3312 * because of the potential security risk of creating links
3313 * into "normal" file space in order to circumvent restrictions
3314 * imposed in attribute space.
3316 if ((szp->z_pflags & ZFS_XATTR) != (tdzp->z_pflags & ZFS_XATTR)) {
3317 zfs_exit(zfsvfs, FTAG);
3318 return (SET_ERROR(EINVAL));
3321 owner = zfs_fuid_map_id(zfsvfs, KUID_TO_SUID(sip->i_uid),
3322 cr, ZFS_OWNER);
3323 if (owner != crgetuid(cr) && secpolicy_basic_link(cr) != 0) {
3324 zfs_exit(zfsvfs, FTAG);
3325 return (SET_ERROR(EPERM));
3328 if ((error = zfs_zaccess(tdzp, ACE_ADD_FILE, 0, B_FALSE, cr))) {
3329 zfs_exit(zfsvfs, FTAG);
3330 return (error);
3333 top:
3335 * Attempt to lock directory; fail if entry already exists.
3337 error = zfs_dirent_lock(&dl, tdzp, name, &tzp, zf, NULL, NULL);
3338 if (error) {
3339 zfs_exit(zfsvfs, FTAG);
3340 return (error);
3343 tx = dmu_tx_create(zfsvfs->z_os);
3344 dmu_tx_hold_sa(tx, szp->z_sa_hdl, B_FALSE);
3345 dmu_tx_hold_zap(tx, tdzp->z_id, TRUE, name);
3346 if (is_tmpfile)
3347 dmu_tx_hold_zap(tx, zfsvfs->z_unlinkedobj, FALSE, NULL);
3349 zfs_sa_upgrade_txholds(tx, szp);
3350 zfs_sa_upgrade_txholds(tx, tdzp);
3351 error = dmu_tx_assign(tx, (waited ? TXG_NOTHROTTLE : 0) | TXG_NOWAIT);
3352 if (error) {
3353 zfs_dirent_unlock(dl);
3354 if (error == ERESTART) {
3355 waited = B_TRUE;
3356 dmu_tx_wait(tx);
3357 dmu_tx_abort(tx);
3358 goto top;
3360 dmu_tx_abort(tx);
3361 zfs_exit(zfsvfs, FTAG);
3362 return (error);
3364 /* unmark z_unlinked so zfs_link_create will not reject */
3365 if (is_tmpfile)
3366 szp->z_unlinked = B_FALSE;
3367 error = zfs_link_create(dl, szp, tx, 0);
3369 if (error == 0) {
3370 uint64_t txtype = TX_LINK;
3372 * tmpfile is created to be in z_unlinkedobj, so remove it.
3373 * Also, we don't log in ZIL, because all previous file
3374 * operation on the tmpfile are ignored by ZIL. Instead we
3375 * always wait for txg to sync to make sure all previous
3376 * operation are sync safe.
3378 if (is_tmpfile) {
3379 VERIFY(zap_remove_int(zfsvfs->z_os,
3380 zfsvfs->z_unlinkedobj, szp->z_id, tx) == 0);
3381 } else {
3382 if (flags & FIGNORECASE)
3383 txtype |= TX_CI;
3384 zfs_log_link(zilog, tx, txtype, tdzp, szp, name);
3386 } else if (is_tmpfile) {
3387 /* restore z_unlinked since when linking failed */
3388 szp->z_unlinked = B_TRUE;
3390 txg = dmu_tx_get_txg(tx);
3391 dmu_tx_commit(tx);
3393 zfs_dirent_unlock(dl);
3395 if (!is_tmpfile && zfsvfs->z_os->os_sync == ZFS_SYNC_ALWAYS)
3396 zil_commit(zilog, 0);
3398 if (is_tmpfile && zfsvfs->z_os->os_sync != ZFS_SYNC_DISABLED)
3399 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), txg);
3401 zfs_znode_update_vfs(tdzp);
3402 zfs_znode_update_vfs(szp);
3403 zfs_exit(zfsvfs, FTAG);
3404 return (error);
3407 static void
3408 zfs_putpage_sync_commit_cb(void *arg)
3410 struct page *pp = arg;
3412 ClearPageError(pp);
3413 end_page_writeback(pp);
3416 static void
3417 zfs_putpage_async_commit_cb(void *arg)
3419 struct page *pp = arg;
3420 znode_t *zp = ITOZ(pp->mapping->host);
3422 ClearPageError(pp);
3423 end_page_writeback(pp);
3424 atomic_dec_32(&zp->z_async_writes_cnt);
3428 * Push a page out to disk, once the page is on stable storage the
3429 * registered commit callback will be run as notification of completion.
3431 * IN: ip - page mapped for inode.
3432 * pp - page to push (page is locked)
3433 * wbc - writeback control data
3434 * for_sync - does the caller intend to wait synchronously for the
3435 * page writeback to complete?
3437 * RETURN: 0 if success
3438 * error code if failure
3440 * Timestamps:
3441 * ip - ctime|mtime updated
3444 zfs_putpage(struct inode *ip, struct page *pp, struct writeback_control *wbc,
3445 boolean_t for_sync)
3447 znode_t *zp = ITOZ(ip);
3448 zfsvfs_t *zfsvfs = ITOZSB(ip);
3449 loff_t offset;
3450 loff_t pgoff;
3451 unsigned int pglen;
3452 dmu_tx_t *tx;
3453 caddr_t va;
3454 int err = 0;
3455 uint64_t mtime[2], ctime[2];
3456 sa_bulk_attr_t bulk[3];
3457 int cnt = 0;
3458 struct address_space *mapping;
3460 if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3461 return (err);
3463 ASSERT(PageLocked(pp));
3465 pgoff = page_offset(pp); /* Page byte-offset in file */
3466 offset = i_size_read(ip); /* File length in bytes */
3467 pglen = MIN(PAGE_SIZE, /* Page length in bytes */
3468 P2ROUNDUP(offset, PAGE_SIZE)-pgoff);
3470 /* Page is beyond end of file */
3471 if (pgoff >= offset) {
3472 unlock_page(pp);
3473 zfs_exit(zfsvfs, FTAG);
3474 return (0);
3477 /* Truncate page length to end of file */
3478 if (pgoff + pglen > offset)
3479 pglen = offset - pgoff;
3481 #if 0
3483 * FIXME: Allow mmap writes past its quota. The correct fix
3484 * is to register a page_mkwrite() handler to count the page
3485 * against its quota when it is about to be dirtied.
3487 if (zfs_id_overblockquota(zfsvfs, DMU_USERUSED_OBJECT,
3488 KUID_TO_SUID(ip->i_uid)) ||
3489 zfs_id_overblockquota(zfsvfs, DMU_GROUPUSED_OBJECT,
3490 KGID_TO_SGID(ip->i_gid)) ||
3491 (zp->z_projid != ZFS_DEFAULT_PROJID &&
3492 zfs_id_overblockquota(zfsvfs, DMU_PROJECTUSED_OBJECT,
3493 zp->z_projid))) {
3494 err = EDQUOT;
3496 #endif
3499 * The ordering here is critical and must adhere to the following
3500 * rules in order to avoid deadlocking in either zfs_read() or
3501 * zfs_free_range() due to a lock inversion.
3503 * 1) The page must be unlocked prior to acquiring the range lock.
3504 * This is critical because zfs_read() calls find_lock_page()
3505 * which may block on the page lock while holding the range lock.
3507 * 2) Before setting or clearing write back on a page the range lock
3508 * must be held in order to prevent a lock inversion with the
3509 * zfs_free_range() function.
3511 * This presents a problem because upon entering this function the
3512 * page lock is already held. To safely acquire the range lock the
3513 * page lock must be dropped. This creates a window where another
3514 * process could truncate, invalidate, dirty, or write out the page.
3516 * Therefore, after successfully reacquiring the range and page locks
3517 * the current page state is checked. In the common case everything
3518 * will be as is expected and it can be written out. However, if
3519 * the page state has changed it must be handled accordingly.
3521 mapping = pp->mapping;
3522 redirty_page_for_writepage(wbc, pp);
3523 unlock_page(pp);
3525 zfs_locked_range_t *lr = zfs_rangelock_enter(&zp->z_rangelock,
3526 pgoff, pglen, RL_WRITER);
3527 lock_page(pp);
3529 /* Page mapping changed or it was no longer dirty, we're done */
3530 if (unlikely((mapping != pp->mapping) || !PageDirty(pp))) {
3531 unlock_page(pp);
3532 zfs_rangelock_exit(lr);
3533 zfs_exit(zfsvfs, FTAG);
3534 return (0);
3537 /* Another process started write block if required */
3538 if (PageWriteback(pp)) {
3539 unlock_page(pp);
3540 zfs_rangelock_exit(lr);
3542 if (wbc->sync_mode != WB_SYNC_NONE) {
3544 * Speed up any non-sync page writebacks since
3545 * they may take several seconds to complete.
3546 * Refer to the comment in zpl_fsync() (when
3547 * HAVE_FSYNC_RANGE is defined) for details.
3549 if (atomic_load_32(&zp->z_async_writes_cnt) > 0) {
3550 zil_commit(zfsvfs->z_log, zp->z_id);
3553 if (PageWriteback(pp))
3554 #ifdef HAVE_PAGEMAP_FOLIO_WAIT_BIT
3555 folio_wait_bit(page_folio(pp), PG_writeback);
3556 #else
3557 wait_on_page_bit(pp, PG_writeback);
3558 #endif
3561 zfs_exit(zfsvfs, FTAG);
3562 return (0);
3565 /* Clear the dirty flag the required locks are held */
3566 if (!clear_page_dirty_for_io(pp)) {
3567 unlock_page(pp);
3568 zfs_rangelock_exit(lr);
3569 zfs_exit(zfsvfs, FTAG);
3570 return (0);
3574 * Counterpart for redirty_page_for_writepage() above. This page
3575 * was in fact not skipped and should not be counted as if it were.
3577 wbc->pages_skipped--;
3578 if (!for_sync)
3579 atomic_inc_32(&zp->z_async_writes_cnt);
3580 set_page_writeback(pp);
3581 unlock_page(pp);
3583 tx = dmu_tx_create(zfsvfs->z_os);
3584 dmu_tx_hold_write(tx, zp->z_id, pgoff, pglen);
3585 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3586 zfs_sa_upgrade_txholds(tx, zp);
3588 err = dmu_tx_assign(tx, TXG_NOWAIT);
3589 if (err != 0) {
3590 if (err == ERESTART)
3591 dmu_tx_wait(tx);
3593 dmu_tx_abort(tx);
3594 #ifdef HAVE_VFS_FILEMAP_DIRTY_FOLIO
3595 filemap_dirty_folio(page_mapping(pp), page_folio(pp));
3596 #else
3597 __set_page_dirty_nobuffers(pp);
3598 #endif
3599 ClearPageError(pp);
3600 end_page_writeback(pp);
3601 if (!for_sync)
3602 atomic_dec_32(&zp->z_async_writes_cnt);
3603 zfs_rangelock_exit(lr);
3604 zfs_exit(zfsvfs, FTAG);
3605 return (err);
3608 va = kmap(pp);
3609 ASSERT3U(pglen, <=, PAGE_SIZE);
3610 dmu_write(zfsvfs->z_os, zp->z_id, pgoff, pglen, va, tx);
3611 kunmap(pp);
3613 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3614 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3615 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_FLAGS(zfsvfs), NULL,
3616 &zp->z_pflags, 8);
3618 /* Preserve the mtime and ctime provided by the inode */
3619 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3620 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3621 zp->z_atime_dirty = B_FALSE;
3622 zp->z_seq++;
3624 err = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3626 zfs_log_write(zfsvfs->z_log, tx, TX_WRITE, zp, pgoff, pglen, 0,
3627 for_sync ? zfs_putpage_sync_commit_cb :
3628 zfs_putpage_async_commit_cb, pp);
3630 dmu_tx_commit(tx);
3632 zfs_rangelock_exit(lr);
3634 if (wbc->sync_mode != WB_SYNC_NONE) {
3636 * Note that this is rarely called under writepages(), because
3637 * writepages() normally handles the entire commit for
3638 * performance reasons.
3640 zil_commit(zfsvfs->z_log, zp->z_id);
3641 } else if (!for_sync && atomic_load_32(&zp->z_sync_writes_cnt) > 0) {
3643 * If the caller does not intend to wait synchronously
3644 * for this page writeback to complete and there are active
3645 * synchronous calls on this file, do a commit so that
3646 * the latter don't accidentally end up waiting for
3647 * our writeback to complete. Refer to the comment in
3648 * zpl_fsync() (when HAVE_FSYNC_RANGE is defined) for details.
3650 zil_commit(zfsvfs->z_log, zp->z_id);
3653 dataset_kstats_update_write_kstats(&zfsvfs->z_kstat, pglen);
3655 zfs_exit(zfsvfs, FTAG);
3656 return (err);
3660 * Update the system attributes when the inode has been dirtied. For the
3661 * moment we only update the mode, atime, mtime, and ctime.
3664 zfs_dirty_inode(struct inode *ip, int flags)
3666 znode_t *zp = ITOZ(ip);
3667 zfsvfs_t *zfsvfs = ITOZSB(ip);
3668 dmu_tx_t *tx;
3669 uint64_t mode, atime[2], mtime[2], ctime[2];
3670 sa_bulk_attr_t bulk[4];
3671 int error = 0;
3672 int cnt = 0;
3674 if (zfs_is_readonly(zfsvfs) || dmu_objset_is_snapshot(zfsvfs->z_os))
3675 return (0);
3677 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3678 return (error);
3680 #ifdef I_DIRTY_TIME
3682 * This is the lazytime semantic introduced in Linux 4.0
3683 * This flag will only be called from update_time when lazytime is set.
3684 * (Note, I_DIRTY_SYNC will also set if not lazytime)
3685 * Fortunately mtime and ctime are managed within ZFS itself, so we
3686 * only need to dirty atime.
3688 if (flags == I_DIRTY_TIME) {
3689 zp->z_atime_dirty = B_TRUE;
3690 goto out;
3692 #endif
3694 tx = dmu_tx_create(zfsvfs->z_os);
3696 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3697 zfs_sa_upgrade_txholds(tx, zp);
3699 error = dmu_tx_assign(tx, TXG_WAIT);
3700 if (error) {
3701 dmu_tx_abort(tx);
3702 goto out;
3705 mutex_enter(&zp->z_lock);
3706 zp->z_atime_dirty = B_FALSE;
3708 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MODE(zfsvfs), NULL, &mode, 8);
3709 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_ATIME(zfsvfs), NULL, &atime, 16);
3710 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_MTIME(zfsvfs), NULL, &mtime, 16);
3711 SA_ADD_BULK_ATTR(bulk, cnt, SA_ZPL_CTIME(zfsvfs), NULL, &ctime, 16);
3713 /* Preserve the mode, mtime and ctime provided by the inode */
3714 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3715 ZFS_TIME_ENCODE(&ip->i_mtime, mtime);
3716 ZFS_TIME_ENCODE(&ip->i_ctime, ctime);
3717 mode = ip->i_mode;
3719 zp->z_mode = mode;
3721 error = sa_bulk_update(zp->z_sa_hdl, bulk, cnt, tx);
3722 mutex_exit(&zp->z_lock);
3724 dmu_tx_commit(tx);
3725 out:
3726 zfs_exit(zfsvfs, FTAG);
3727 return (error);
3730 void
3731 zfs_inactive(struct inode *ip)
3733 znode_t *zp = ITOZ(ip);
3734 zfsvfs_t *zfsvfs = ITOZSB(ip);
3735 uint64_t atime[2];
3736 int error;
3737 int need_unlock = 0;
3739 /* Only read lock if we haven't already write locked, e.g. rollback */
3740 if (!RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock)) {
3741 need_unlock = 1;
3742 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_READER);
3744 if (zp->z_sa_hdl == NULL) {
3745 if (need_unlock)
3746 rw_exit(&zfsvfs->z_teardown_inactive_lock);
3747 return;
3750 if (zp->z_atime_dirty && zp->z_unlinked == B_FALSE) {
3751 dmu_tx_t *tx = dmu_tx_create(zfsvfs->z_os);
3753 dmu_tx_hold_sa(tx, zp->z_sa_hdl, B_FALSE);
3754 zfs_sa_upgrade_txholds(tx, zp);
3755 error = dmu_tx_assign(tx, TXG_WAIT);
3756 if (error) {
3757 dmu_tx_abort(tx);
3758 } else {
3759 ZFS_TIME_ENCODE(&ip->i_atime, atime);
3760 mutex_enter(&zp->z_lock);
3761 (void) sa_update(zp->z_sa_hdl, SA_ZPL_ATIME(zfsvfs),
3762 (void *)&atime, sizeof (atime), tx);
3763 zp->z_atime_dirty = B_FALSE;
3764 mutex_exit(&zp->z_lock);
3765 dmu_tx_commit(tx);
3769 zfs_zinactive(zp);
3770 if (need_unlock)
3771 rw_exit(&zfsvfs->z_teardown_inactive_lock);
3775 * Fill pages with data from the disk.
3777 static int
3778 zfs_fillpage(struct inode *ip, struct page *pl[], int nr_pages)
3780 znode_t *zp = ITOZ(ip);
3781 zfsvfs_t *zfsvfs = ITOZSB(ip);
3782 objset_t *os;
3783 struct page *cur_pp;
3784 u_offset_t io_off, total;
3785 size_t io_len;
3786 loff_t i_size;
3787 unsigned page_idx;
3788 int err;
3790 os = zfsvfs->z_os;
3791 io_len = nr_pages << PAGE_SHIFT;
3792 i_size = i_size_read(ip);
3793 io_off = page_offset(pl[0]);
3795 if (io_off + io_len > i_size)
3796 io_len = i_size - io_off;
3799 * Iterate over list of pages and read each page individually.
3801 page_idx = 0;
3802 for (total = io_off + io_len; io_off < total; io_off += PAGESIZE) {
3803 caddr_t va;
3805 cur_pp = pl[page_idx++];
3806 va = kmap(cur_pp);
3807 err = dmu_read(os, zp->z_id, io_off, PAGESIZE, va,
3808 DMU_READ_PREFETCH);
3809 kunmap(cur_pp);
3810 if (err) {
3811 /* convert checksum errors into IO errors */
3812 if (err == ECKSUM)
3813 err = SET_ERROR(EIO);
3814 return (err);
3818 return (0);
3822 * Uses zfs_fillpage to read data from the file and fill the pages.
3824 * IN: ip - inode of file to get data from.
3825 * pl - list of pages to read
3826 * nr_pages - number of pages to read
3828 * RETURN: 0 on success, error code on failure.
3830 * Timestamps:
3831 * vp - atime updated
3834 zfs_getpage(struct inode *ip, struct page *pl[], int nr_pages)
3836 znode_t *zp = ITOZ(ip);
3837 zfsvfs_t *zfsvfs = ITOZSB(ip);
3838 int err;
3840 if (pl == NULL)
3841 return (0);
3843 if ((err = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3844 return (err);
3846 err = zfs_fillpage(ip, pl, nr_pages);
3848 dataset_kstats_update_read_kstats(&zfsvfs->z_kstat, nr_pages*PAGESIZE);
3850 zfs_exit(zfsvfs, FTAG);
3851 return (err);
3855 * Check ZFS specific permissions to memory map a section of a file.
3857 * IN: ip - inode of the file to mmap
3858 * off - file offset
3859 * addrp - start address in memory region
3860 * len - length of memory region
3861 * vm_flags- address flags
3863 * RETURN: 0 if success
3864 * error code if failure
3867 zfs_map(struct inode *ip, offset_t off, caddr_t *addrp, size_t len,
3868 unsigned long vm_flags)
3870 (void) addrp;
3871 znode_t *zp = ITOZ(ip);
3872 zfsvfs_t *zfsvfs = ITOZSB(ip);
3873 int error;
3875 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3876 return (error);
3878 if ((vm_flags & VM_WRITE) && (zp->z_pflags &
3879 (ZFS_IMMUTABLE | ZFS_READONLY | ZFS_APPENDONLY))) {
3880 zfs_exit(zfsvfs, FTAG);
3881 return (SET_ERROR(EPERM));
3884 if ((vm_flags & (VM_READ | VM_EXEC)) &&
3885 (zp->z_pflags & ZFS_AV_QUARANTINED)) {
3886 zfs_exit(zfsvfs, FTAG);
3887 return (SET_ERROR(EACCES));
3890 if (off < 0 || len > MAXOFFSET_T - off) {
3891 zfs_exit(zfsvfs, FTAG);
3892 return (SET_ERROR(ENXIO));
3895 zfs_exit(zfsvfs, FTAG);
3896 return (0);
3900 * Free or allocate space in a file. Currently, this function only
3901 * supports the `F_FREESP' command. However, this command is somewhat
3902 * misnamed, as its functionality includes the ability to allocate as
3903 * well as free space.
3905 * IN: zp - znode of file to free data in.
3906 * cmd - action to take (only F_FREESP supported).
3907 * bfp - section of file to free/alloc.
3908 * flag - current file open mode flags.
3909 * offset - current file offset.
3910 * cr - credentials of caller.
3912 * RETURN: 0 on success, error code on failure.
3914 * Timestamps:
3915 * zp - ctime|mtime updated
3918 zfs_space(znode_t *zp, int cmd, flock64_t *bfp, int flag,
3919 offset_t offset, cred_t *cr)
3921 (void) offset;
3922 zfsvfs_t *zfsvfs = ZTOZSB(zp);
3923 uint64_t off, len;
3924 int error;
3926 if ((error = zfs_enter_verify_zp(zfsvfs, zp, FTAG)) != 0)
3927 return (error);
3929 if (cmd != F_FREESP) {
3930 zfs_exit(zfsvfs, FTAG);
3931 return (SET_ERROR(EINVAL));
3935 * Callers might not be able to detect properly that we are read-only,
3936 * so check it explicitly here.
3938 if (zfs_is_readonly(zfsvfs)) {
3939 zfs_exit(zfsvfs, FTAG);
3940 return (SET_ERROR(EROFS));
3943 if (bfp->l_len < 0) {
3944 zfs_exit(zfsvfs, FTAG);
3945 return (SET_ERROR(EINVAL));
3949 * Permissions aren't checked on Solaris because on this OS
3950 * zfs_space() can only be called with an opened file handle.
3951 * On Linux we can get here through truncate_range() which
3952 * operates directly on inodes, so we need to check access rights.
3954 if ((error = zfs_zaccess(zp, ACE_WRITE_DATA, 0, B_FALSE, cr))) {
3955 zfs_exit(zfsvfs, FTAG);
3956 return (error);
3959 off = bfp->l_start;
3960 len = bfp->l_len; /* 0 means from off to end of file */
3962 error = zfs_freesp(zp, off, len, flag, TRUE);
3964 zfs_exit(zfsvfs, FTAG);
3965 return (error);
3969 zfs_fid(struct inode *ip, fid_t *fidp)
3971 znode_t *zp = ITOZ(ip);
3972 zfsvfs_t *zfsvfs = ITOZSB(ip);
3973 uint32_t gen;
3974 uint64_t gen64;
3975 uint64_t object = zp->z_id;
3976 zfid_short_t *zfid;
3977 int size, i, error;
3979 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
3980 return (error);
3982 if (fidp->fid_len < SHORT_FID_LEN) {
3983 fidp->fid_len = SHORT_FID_LEN;
3984 zfs_exit(zfsvfs, FTAG);
3985 return (SET_ERROR(ENOSPC));
3988 if ((error = zfs_verify_zp(zp)) != 0) {
3989 zfs_exit(zfsvfs, FTAG);
3990 return (error);
3993 if ((error = sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs),
3994 &gen64, sizeof (uint64_t))) != 0) {
3995 zfs_exit(zfsvfs, FTAG);
3996 return (error);
3999 gen = (uint32_t)gen64;
4001 size = SHORT_FID_LEN;
4003 zfid = (zfid_short_t *)fidp;
4005 zfid->zf_len = size;
4007 for (i = 0; i < sizeof (zfid->zf_object); i++)
4008 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
4010 /* Must have a non-zero generation number to distinguish from .zfs */
4011 if (gen == 0)
4012 gen = 1;
4013 for (i = 0; i < sizeof (zfid->zf_gen); i++)
4014 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
4016 zfs_exit(zfsvfs, FTAG);
4017 return (0);
4020 #if defined(_KERNEL)
4021 EXPORT_SYMBOL(zfs_open);
4022 EXPORT_SYMBOL(zfs_close);
4023 EXPORT_SYMBOL(zfs_lookup);
4024 EXPORT_SYMBOL(zfs_create);
4025 EXPORT_SYMBOL(zfs_tmpfile);
4026 EXPORT_SYMBOL(zfs_remove);
4027 EXPORT_SYMBOL(zfs_mkdir);
4028 EXPORT_SYMBOL(zfs_rmdir);
4029 EXPORT_SYMBOL(zfs_readdir);
4030 EXPORT_SYMBOL(zfs_getattr_fast);
4031 EXPORT_SYMBOL(zfs_setattr);
4032 EXPORT_SYMBOL(zfs_rename);
4033 EXPORT_SYMBOL(zfs_symlink);
4034 EXPORT_SYMBOL(zfs_readlink);
4035 EXPORT_SYMBOL(zfs_link);
4036 EXPORT_SYMBOL(zfs_inactive);
4037 EXPORT_SYMBOL(zfs_space);
4038 EXPORT_SYMBOL(zfs_fid);
4039 EXPORT_SYMBOL(zfs_getpage);
4040 EXPORT_SYMBOL(zfs_putpage);
4041 EXPORT_SYMBOL(zfs_dirty_inode);
4042 EXPORT_SYMBOL(zfs_map);
4044 /* CSTYLED */
4045 module_param(zfs_delete_blocks, ulong, 0644);
4046 MODULE_PARM_DESC(zfs_delete_blocks, "Delete files larger than N blocks async");
4048 #endif