Handle possible null pointers from malloc/strdup/strndup()
[zfs.git] / module / os / linux / zfs / zio_crypt.c
blob2bc1482e91ec0296e19fbc57213938f28fa4b437
1 /*
2 * CDDL HEADER START
4 * This file and its contents are supplied under the terms of the
5 * Common Development and Distribution License ("CDDL"), version 1.0.
6 * You may only use this file in accordance with the terms of version
7 * 1.0 of the CDDL.
9 * A full copy of the text of the CDDL should have accompanied this
10 * source. A copy of the CDDL is also available via the Internet at
11 * http://www.illumos.org/license/CDDL.
13 * CDDL HEADER END
17 * Copyright (c) 2017, Datto, Inc. All rights reserved.
20 #include <sys/zio_crypt.h>
21 #include <sys/dmu.h>
22 #include <sys/dmu_objset.h>
23 #include <sys/dnode.h>
24 #include <sys/fs/zfs.h>
25 #include <sys/zio.h>
26 #include <sys/zil.h>
27 #include <sys/sha2.h>
28 #include <sys/hkdf.h>
29 #include <sys/qat.h>
32 * This file is responsible for handling all of the details of generating
33 * encryption parameters and performing encryption and authentication.
35 * BLOCK ENCRYPTION PARAMETERS:
36 * Encryption /Authentication Algorithm Suite (crypt):
37 * The encryption algorithm, mode, and key length we are going to use. We
38 * currently support AES in either GCM or CCM modes with 128, 192, and 256 bit
39 * keys. All authentication is currently done with SHA512-HMAC.
41 * Plaintext:
42 * The unencrypted data that we want to encrypt.
44 * Initialization Vector (IV):
45 * An initialization vector for the encryption algorithms. This is used to
46 * "tweak" the encryption algorithms so that two blocks of the same data are
47 * encrypted into different ciphertext outputs, thus obfuscating block patterns.
48 * The supported encryption modes (AES-GCM and AES-CCM) require that an IV is
49 * never reused with the same encryption key. This value is stored unencrypted
50 * and must simply be provided to the decryption function. We use a 96 bit IV
51 * (as recommended by NIST) for all block encryption. For non-dedup blocks we
52 * derive the IV randomly. The first 64 bits of the IV are stored in the second
53 * word of DVA[2] and the remaining 32 bits are stored in the upper 32 bits of
54 * blk_fill. This is safe because encrypted blocks can't use the upper 32 bits
55 * of blk_fill. We only encrypt level 0 blocks, which normally have a fill count
56 * of 1. The only exception is for DMU_OT_DNODE objects, where the fill count of
57 * level 0 blocks is the number of allocated dnodes in that block. The on-disk
58 * format supports at most 2^15 slots per L0 dnode block, because the maximum
59 * block size is 16MB (2^24). In either case, for level 0 blocks this number
60 * will still be smaller than UINT32_MAX so it is safe to store the IV in the
61 * top 32 bits of blk_fill, while leaving the bottom 32 bits of the fill count
62 * for the dnode code.
64 * Master key:
65 * This is the most important secret data of an encrypted dataset. It is used
66 * along with the salt to generate that actual encryption keys via HKDF. We
67 * do not use the master key to directly encrypt any data because there are
68 * theoretical limits on how much data can actually be safely encrypted with
69 * any encryption mode. The master key is stored encrypted on disk with the
70 * user's wrapping key. Its length is determined by the encryption algorithm.
71 * For details on how this is stored see the block comment in dsl_crypt.c
73 * Salt:
74 * Used as an input to the HKDF function, along with the master key. We use a
75 * 64 bit salt, stored unencrypted in the first word of DVA[2]. Any given salt
76 * can be used for encrypting many blocks, so we cache the current salt and the
77 * associated derived key in zio_crypt_t so we do not need to derive it again
78 * needlessly.
80 * Encryption Key:
81 * A secret binary key, generated from an HKDF function used to encrypt and
82 * decrypt data.
84 * Message Authentication Code (MAC)
85 * The MAC is an output of authenticated encryption modes such as AES-GCM and
86 * AES-CCM. Its purpose is to ensure that an attacker cannot modify encrypted
87 * data on disk and return garbage to the application. Effectively, it is a
88 * checksum that can not be reproduced by an attacker. We store the MAC in the
89 * second 128 bits of blk_cksum, leaving the first 128 bits for a truncated
90 * regular checksum of the ciphertext which can be used for scrubbing.
92 * OBJECT AUTHENTICATION:
93 * Some object types, such as DMU_OT_MASTER_NODE cannot be encrypted because
94 * they contain some info that always needs to be readable. To prevent this
95 * data from being altered, we authenticate this data using SHA512-HMAC. This
96 * will produce a MAC (similar to the one produced via encryption) which can
97 * be used to verify the object was not modified. HMACs do not require key
98 * rotation or IVs, so we can keep up to the full 3 copies of authenticated
99 * data.
101 * ZIL ENCRYPTION:
102 * ZIL blocks have their bp written to disk ahead of the associated data, so we
103 * cannot store the MAC there as we normally do. For these blocks the MAC is
104 * stored in the embedded checksum within the zil_chain_t header. The salt and
105 * IV are generated for the block on bp allocation instead of at encryption
106 * time. In addition, ZIL blocks have some pieces that must be left in plaintext
107 * for claiming even though all of the sensitive user data still needs to be
108 * encrypted. The function zio_crypt_init_uios_zil() handles parsing which
109 * pieces of the block need to be encrypted. All data that is not encrypted is
110 * authenticated using the AAD mechanisms that the supported encryption modes
111 * provide for. In order to preserve the semantics of the ZIL for encrypted
112 * datasets, the ZIL is not protected at the objset level as described below.
114 * DNODE ENCRYPTION:
115 * Similarly to ZIL blocks, the core part of each dnode_phys_t needs to be left
116 * in plaintext for scrubbing and claiming, but the bonus buffers might contain
117 * sensitive user data. The function zio_crypt_init_uios_dnode() handles parsing
118 * which pieces of the block need to be encrypted. For more details about
119 * dnode authentication and encryption, see zio_crypt_init_uios_dnode().
121 * OBJECT SET AUTHENTICATION:
122 * Up to this point, everything we have encrypted and authenticated has been
123 * at level 0 (or -2 for the ZIL). If we did not do any further work the
124 * on-disk format would be susceptible to attacks that deleted or rearranged
125 * the order of level 0 blocks. Ideally, the cleanest solution would be to
126 * maintain a tree of authentication MACs going up the bp tree. However, this
127 * presents a problem for raw sends. Send files do not send information about
128 * indirect blocks so there would be no convenient way to transfer the MACs and
129 * they cannot be recalculated on the receive side without the master key which
130 * would defeat one of the purposes of raw sends in the first place. Instead,
131 * for the indirect levels of the bp tree, we use a regular SHA512 of the MACs
132 * from the level below. We also include some portable fields from blk_prop such
133 * as the lsize and compression algorithm to prevent the data from being
134 * misinterpreted.
136 * At the objset level, we maintain 2 separate 256 bit MACs in the
137 * objset_phys_t. The first one is "portable" and is the logical root of the
138 * MAC tree maintained in the metadnode's bps. The second, is "local" and is
139 * used as the root MAC for the user accounting objects, which are also not
140 * transferred via "zfs send". The portable MAC is sent in the DRR_BEGIN payload
141 * of the send file. The useraccounting code ensures that the useraccounting
142 * info is not present upon a receive, so the local MAC can simply be cleared
143 * out at that time. For more info about objset_phys_t authentication, see
144 * zio_crypt_do_objset_hmacs().
146 * CONSIDERATIONS FOR DEDUP:
147 * In order for dedup to work, blocks that we want to dedup with one another
148 * need to use the same IV and encryption key, so that they will have the same
149 * ciphertext. Normally, one should never reuse an IV with the same encryption
150 * key or else AES-GCM and AES-CCM can both actually leak the plaintext of both
151 * blocks. In this case, however, since we are using the same plaintext as
152 * well all that we end up with is a duplicate of the original ciphertext we
153 * already had. As a result, an attacker with read access to the raw disk will
154 * be able to tell which blocks are the same but this information is given away
155 * by dedup anyway. In order to get the same IVs and encryption keys for
156 * equivalent blocks of data we use an HMAC of the plaintext. We use an HMAC
157 * here so that a reproducible checksum of the plaintext is never available to
158 * the attacker. The HMAC key is kept alongside the master key, encrypted on
159 * disk. The first 64 bits of the HMAC are used in place of the random salt, and
160 * the next 96 bits are used as the IV. As a result of this mechanism, dedup
161 * will only work within a clone family since encrypted dedup requires use of
162 * the same master and HMAC keys.
166 * After encrypting many blocks with the same key we may start to run up
167 * against the theoretical limits of how much data can securely be encrypted
168 * with a single key using the supported encryption modes. The most obvious
169 * limitation is that our risk of generating 2 equivalent 96 bit IVs increases
170 * the more IVs we generate (which both GCM and CCM modes strictly forbid).
171 * This risk actually grows surprisingly quickly over time according to the
172 * Birthday Problem. With a total IV space of 2^(96 bits), and assuming we have
173 * generated n IVs with a cryptographically secure RNG, the approximate
174 * probability p(n) of a collision is given as:
176 * p(n) ~= e^(-n*(n-1)/(2*(2^96)))
178 * [http://www.math.cornell.edu/~mec/2008-2009/TianyiZheng/Birthday.html]
180 * Assuming that we want to ensure that p(n) never goes over 1 / 1 trillion
181 * we must not write more than 398,065,730 blocks with the same encryption key.
182 * Therefore, we rotate our keys after 400,000,000 blocks have been written by
183 * generating a new random 64 bit salt for our HKDF encryption key generation
184 * function.
186 #define ZFS_KEY_MAX_SALT_USES_DEFAULT 400000000
187 #define ZFS_CURRENT_MAX_SALT_USES \
188 (MIN(zfs_key_max_salt_uses, ZFS_KEY_MAX_SALT_USES_DEFAULT))
189 static unsigned long zfs_key_max_salt_uses = ZFS_KEY_MAX_SALT_USES_DEFAULT;
191 typedef struct blkptr_auth_buf {
192 uint64_t bab_prop; /* blk_prop - portable mask */
193 uint8_t bab_mac[ZIO_DATA_MAC_LEN]; /* MAC from blk_cksum */
194 uint64_t bab_pad; /* reserved for future use */
195 } blkptr_auth_buf_t;
197 const zio_crypt_info_t zio_crypt_table[ZIO_CRYPT_FUNCTIONS] = {
198 {"", ZC_TYPE_NONE, 0, "inherit"},
199 {"", ZC_TYPE_NONE, 0, "on"},
200 {"", ZC_TYPE_NONE, 0, "off"},
201 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 16, "aes-128-ccm"},
202 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 24, "aes-192-ccm"},
203 {SUN_CKM_AES_CCM, ZC_TYPE_CCM, 32, "aes-256-ccm"},
204 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 16, "aes-128-gcm"},
205 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 24, "aes-192-gcm"},
206 {SUN_CKM_AES_GCM, ZC_TYPE_GCM, 32, "aes-256-gcm"}
209 void
210 zio_crypt_key_destroy(zio_crypt_key_t *key)
212 rw_destroy(&key->zk_salt_lock);
214 /* free crypto templates */
215 crypto_destroy_ctx_template(key->zk_current_tmpl);
216 crypto_destroy_ctx_template(key->zk_hmac_tmpl);
218 /* zero out sensitive data */
219 memset(key, 0, sizeof (zio_crypt_key_t));
223 zio_crypt_key_init(uint64_t crypt, zio_crypt_key_t *key)
225 int ret;
226 crypto_mechanism_t mech;
227 uint_t keydata_len;
229 ASSERT(key != NULL);
230 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
232 keydata_len = zio_crypt_table[crypt].ci_keylen;
233 memset(key, 0, sizeof (zio_crypt_key_t));
234 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
236 /* fill keydata buffers and salt with random data */
237 ret = random_get_bytes((uint8_t *)&key->zk_guid, sizeof (uint64_t));
238 if (ret != 0)
239 goto error;
241 ret = random_get_bytes(key->zk_master_keydata, keydata_len);
242 if (ret != 0)
243 goto error;
245 ret = random_get_bytes(key->zk_hmac_keydata, SHA512_HMAC_KEYLEN);
246 if (ret != 0)
247 goto error;
249 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
250 if (ret != 0)
251 goto error;
253 /* derive the current key from the master key */
254 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
255 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
256 keydata_len);
257 if (ret != 0)
258 goto error;
260 /* initialize keys for the ICP */
261 key->zk_current_key.ck_data = key->zk_current_keydata;
262 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
264 key->zk_hmac_key.ck_data = &key->zk_hmac_key;
265 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
268 * Initialize the crypto templates. It's ok if this fails because
269 * this is just an optimization.
271 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
272 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
273 &key->zk_current_tmpl);
274 if (ret != CRYPTO_SUCCESS)
275 key->zk_current_tmpl = NULL;
277 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
278 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
279 &key->zk_hmac_tmpl);
280 if (ret != CRYPTO_SUCCESS)
281 key->zk_hmac_tmpl = NULL;
283 key->zk_crypt = crypt;
284 key->zk_version = ZIO_CRYPT_KEY_CURRENT_VERSION;
285 key->zk_salt_count = 0;
287 return (0);
289 error:
290 zio_crypt_key_destroy(key);
291 return (ret);
294 static int
295 zio_crypt_key_change_salt(zio_crypt_key_t *key)
297 int ret = 0;
298 uint8_t salt[ZIO_DATA_SALT_LEN];
299 crypto_mechanism_t mech;
300 uint_t keydata_len = zio_crypt_table[key->zk_crypt].ci_keylen;
302 /* generate a new salt */
303 ret = random_get_bytes(salt, ZIO_DATA_SALT_LEN);
304 if (ret != 0)
305 goto error;
307 rw_enter(&key->zk_salt_lock, RW_WRITER);
309 /* someone beat us to the salt rotation, just unlock and return */
310 if (key->zk_salt_count < ZFS_CURRENT_MAX_SALT_USES)
311 goto out_unlock;
313 /* derive the current key from the master key and the new salt */
314 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
315 salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata, keydata_len);
316 if (ret != 0)
317 goto out_unlock;
319 /* assign the salt and reset the usage count */
320 memcpy(key->zk_salt, salt, ZIO_DATA_SALT_LEN);
321 key->zk_salt_count = 0;
323 /* destroy the old context template and create the new one */
324 crypto_destroy_ctx_template(key->zk_current_tmpl);
325 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
326 &key->zk_current_tmpl);
327 if (ret != CRYPTO_SUCCESS)
328 key->zk_current_tmpl = NULL;
330 rw_exit(&key->zk_salt_lock);
332 return (0);
334 out_unlock:
335 rw_exit(&key->zk_salt_lock);
336 error:
337 return (ret);
340 /* See comment above zfs_key_max_salt_uses definition for details */
342 zio_crypt_key_get_salt(zio_crypt_key_t *key, uint8_t *salt)
344 int ret;
345 boolean_t salt_change;
347 rw_enter(&key->zk_salt_lock, RW_READER);
349 memcpy(salt, key->zk_salt, ZIO_DATA_SALT_LEN);
350 salt_change = (atomic_inc_64_nv(&key->zk_salt_count) >=
351 ZFS_CURRENT_MAX_SALT_USES);
353 rw_exit(&key->zk_salt_lock);
355 if (salt_change) {
356 ret = zio_crypt_key_change_salt(key);
357 if (ret != 0)
358 goto error;
361 return (0);
363 error:
364 return (ret);
368 * This function handles all encryption and decryption in zfs. When
369 * encrypting it expects puio to reference the plaintext and cuio to
370 * reference the ciphertext. cuio must have enough space for the
371 * ciphertext + room for a MAC. datalen should be the length of the
372 * plaintext / ciphertext alone.
374 static int
375 zio_do_crypt_uio(boolean_t encrypt, uint64_t crypt, crypto_key_t *key,
376 crypto_ctx_template_t tmpl, uint8_t *ivbuf, uint_t datalen,
377 zfs_uio_t *puio, zfs_uio_t *cuio, uint8_t *authbuf, uint_t auth_len)
379 int ret;
380 crypto_data_t plaindata, cipherdata;
381 CK_AES_CCM_PARAMS ccmp;
382 CK_AES_GCM_PARAMS gcmp;
383 crypto_mechanism_t mech;
384 zio_crypt_info_t crypt_info;
385 uint_t plain_full_len, maclen;
387 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
389 /* lookup the encryption info */
390 crypt_info = zio_crypt_table[crypt];
392 /* the mac will always be the last iovec_t in the cipher uio */
393 maclen = cuio->uio_iov[cuio->uio_iovcnt - 1].iov_len;
395 ASSERT(maclen <= ZIO_DATA_MAC_LEN);
397 /* setup encryption mechanism (same as crypt) */
398 mech.cm_type = crypto_mech2id(crypt_info.ci_mechname);
401 * Strangely, the ICP requires that plain_full_len must include
402 * the MAC length when decrypting, even though the UIO does not
403 * need to have the extra space allocated.
405 if (encrypt) {
406 plain_full_len = datalen;
407 } else {
408 plain_full_len = datalen + maclen;
412 * setup encryption params (currently only AES CCM and AES GCM
413 * are supported)
415 if (crypt_info.ci_crypt_type == ZC_TYPE_CCM) {
416 ccmp.ulNonceSize = ZIO_DATA_IV_LEN;
417 ccmp.ulAuthDataSize = auth_len;
418 ccmp.authData = authbuf;
419 ccmp.ulMACSize = maclen;
420 ccmp.nonce = ivbuf;
421 ccmp.ulDataSize = plain_full_len;
423 mech.cm_param = (char *)(&ccmp);
424 mech.cm_param_len = sizeof (CK_AES_CCM_PARAMS);
425 } else {
426 gcmp.ulIvLen = ZIO_DATA_IV_LEN;
427 gcmp.ulIvBits = CRYPTO_BYTES2BITS(ZIO_DATA_IV_LEN);
428 gcmp.ulAADLen = auth_len;
429 gcmp.pAAD = authbuf;
430 gcmp.ulTagBits = CRYPTO_BYTES2BITS(maclen);
431 gcmp.pIv = ivbuf;
433 mech.cm_param = (char *)(&gcmp);
434 mech.cm_param_len = sizeof (CK_AES_GCM_PARAMS);
437 /* populate the cipher and plain data structs. */
438 plaindata.cd_format = CRYPTO_DATA_UIO;
439 plaindata.cd_offset = 0;
440 plaindata.cd_uio = puio;
441 plaindata.cd_length = plain_full_len;
443 cipherdata.cd_format = CRYPTO_DATA_UIO;
444 cipherdata.cd_offset = 0;
445 cipherdata.cd_uio = cuio;
446 cipherdata.cd_length = datalen + maclen;
448 /* perform the actual encryption */
449 if (encrypt) {
450 ret = crypto_encrypt(&mech, &plaindata, key, tmpl, &cipherdata);
451 if (ret != CRYPTO_SUCCESS) {
452 ret = SET_ERROR(EIO);
453 goto error;
455 } else {
456 ret = crypto_decrypt(&mech, &cipherdata, key, tmpl, &plaindata);
457 if (ret != CRYPTO_SUCCESS) {
458 ASSERT3U(ret, ==, CRYPTO_INVALID_MAC);
459 ret = SET_ERROR(ECKSUM);
460 goto error;
464 return (0);
466 error:
467 return (ret);
471 zio_crypt_key_wrap(crypto_key_t *cwkey, zio_crypt_key_t *key, uint8_t *iv,
472 uint8_t *mac, uint8_t *keydata_out, uint8_t *hmac_keydata_out)
474 int ret;
475 zfs_uio_t puio, cuio;
476 uint64_t aad[3];
477 iovec_t plain_iovecs[2], cipher_iovecs[3];
478 uint64_t crypt = key->zk_crypt;
479 uint_t enc_len, keydata_len, aad_len;
481 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
483 keydata_len = zio_crypt_table[crypt].ci_keylen;
485 /* generate iv for wrapping the master and hmac key */
486 ret = random_get_pseudo_bytes(iv, WRAPPING_IV_LEN);
487 if (ret != 0)
488 goto error;
490 /* initialize zfs_uio_ts */
491 plain_iovecs[0].iov_base = key->zk_master_keydata;
492 plain_iovecs[0].iov_len = keydata_len;
493 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
494 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
496 cipher_iovecs[0].iov_base = keydata_out;
497 cipher_iovecs[0].iov_len = keydata_len;
498 cipher_iovecs[1].iov_base = hmac_keydata_out;
499 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
500 cipher_iovecs[2].iov_base = mac;
501 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
504 * Although we don't support writing to the old format, we do
505 * support rewrapping the key so that the user can move and
506 * quarantine datasets on the old format.
508 if (key->zk_version == 0) {
509 aad_len = sizeof (uint64_t);
510 aad[0] = LE_64(key->zk_guid);
511 } else {
512 ASSERT3U(key->zk_version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
513 aad_len = sizeof (uint64_t) * 3;
514 aad[0] = LE_64(key->zk_guid);
515 aad[1] = LE_64(crypt);
516 aad[2] = LE_64(key->zk_version);
519 enc_len = zio_crypt_table[crypt].ci_keylen + SHA512_HMAC_KEYLEN;
520 puio.uio_iov = plain_iovecs;
521 puio.uio_iovcnt = 2;
522 puio.uio_segflg = UIO_SYSSPACE;
523 cuio.uio_iov = cipher_iovecs;
524 cuio.uio_iovcnt = 3;
525 cuio.uio_segflg = UIO_SYSSPACE;
527 /* encrypt the keys and store the resulting ciphertext and mac */
528 ret = zio_do_crypt_uio(B_TRUE, crypt, cwkey, NULL, iv, enc_len,
529 &puio, &cuio, (uint8_t *)aad, aad_len);
530 if (ret != 0)
531 goto error;
533 return (0);
535 error:
536 return (ret);
540 zio_crypt_key_unwrap(crypto_key_t *cwkey, uint64_t crypt, uint64_t version,
541 uint64_t guid, uint8_t *keydata, uint8_t *hmac_keydata, uint8_t *iv,
542 uint8_t *mac, zio_crypt_key_t *key)
544 crypto_mechanism_t mech;
545 zfs_uio_t puio, cuio;
546 uint64_t aad[3];
547 iovec_t plain_iovecs[2], cipher_iovecs[3];
548 uint_t enc_len, keydata_len, aad_len;
549 int ret;
551 ASSERT3U(crypt, <, ZIO_CRYPT_FUNCTIONS);
553 rw_init(&key->zk_salt_lock, NULL, RW_DEFAULT, NULL);
555 keydata_len = zio_crypt_table[crypt].ci_keylen;
557 /* initialize zfs_uio_ts */
558 plain_iovecs[0].iov_base = key->zk_master_keydata;
559 plain_iovecs[0].iov_len = keydata_len;
560 plain_iovecs[1].iov_base = key->zk_hmac_keydata;
561 plain_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
563 cipher_iovecs[0].iov_base = keydata;
564 cipher_iovecs[0].iov_len = keydata_len;
565 cipher_iovecs[1].iov_base = hmac_keydata;
566 cipher_iovecs[1].iov_len = SHA512_HMAC_KEYLEN;
567 cipher_iovecs[2].iov_base = mac;
568 cipher_iovecs[2].iov_len = WRAPPING_MAC_LEN;
570 if (version == 0) {
571 aad_len = sizeof (uint64_t);
572 aad[0] = LE_64(guid);
573 } else {
574 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
575 aad_len = sizeof (uint64_t) * 3;
576 aad[0] = LE_64(guid);
577 aad[1] = LE_64(crypt);
578 aad[2] = LE_64(version);
581 enc_len = keydata_len + SHA512_HMAC_KEYLEN;
582 puio.uio_iov = plain_iovecs;
583 puio.uio_segflg = UIO_SYSSPACE;
584 puio.uio_iovcnt = 2;
585 cuio.uio_iov = cipher_iovecs;
586 cuio.uio_iovcnt = 3;
587 cuio.uio_segflg = UIO_SYSSPACE;
589 /* decrypt the keys and store the result in the output buffers */
590 ret = zio_do_crypt_uio(B_FALSE, crypt, cwkey, NULL, iv, enc_len,
591 &puio, &cuio, (uint8_t *)aad, aad_len);
592 if (ret != 0)
593 goto error;
595 /* generate a fresh salt */
596 ret = random_get_bytes(key->zk_salt, ZIO_DATA_SALT_LEN);
597 if (ret != 0)
598 goto error;
600 /* derive the current key from the master key */
601 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
602 key->zk_salt, ZIO_DATA_SALT_LEN, key->zk_current_keydata,
603 keydata_len);
604 if (ret != 0)
605 goto error;
607 /* initialize keys for ICP */
608 key->zk_current_key.ck_data = key->zk_current_keydata;
609 key->zk_current_key.ck_length = CRYPTO_BYTES2BITS(keydata_len);
611 key->zk_hmac_key.ck_data = key->zk_hmac_keydata;
612 key->zk_hmac_key.ck_length = CRYPTO_BYTES2BITS(SHA512_HMAC_KEYLEN);
615 * Initialize the crypto templates. It's ok if this fails because
616 * this is just an optimization.
618 mech.cm_type = crypto_mech2id(zio_crypt_table[crypt].ci_mechname);
619 ret = crypto_create_ctx_template(&mech, &key->zk_current_key,
620 &key->zk_current_tmpl);
621 if (ret != CRYPTO_SUCCESS)
622 key->zk_current_tmpl = NULL;
624 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
625 ret = crypto_create_ctx_template(&mech, &key->zk_hmac_key,
626 &key->zk_hmac_tmpl);
627 if (ret != CRYPTO_SUCCESS)
628 key->zk_hmac_tmpl = NULL;
630 key->zk_crypt = crypt;
631 key->zk_version = version;
632 key->zk_guid = guid;
633 key->zk_salt_count = 0;
635 return (0);
637 error:
638 zio_crypt_key_destroy(key);
639 return (ret);
643 zio_crypt_generate_iv(uint8_t *ivbuf)
645 int ret;
647 /* randomly generate the IV */
648 ret = random_get_pseudo_bytes(ivbuf, ZIO_DATA_IV_LEN);
649 if (ret != 0)
650 goto error;
652 return (0);
654 error:
655 memset(ivbuf, 0, ZIO_DATA_IV_LEN);
656 return (ret);
660 zio_crypt_do_hmac(zio_crypt_key_t *key, uint8_t *data, uint_t datalen,
661 uint8_t *digestbuf, uint_t digestlen)
663 int ret;
664 crypto_mechanism_t mech;
665 crypto_data_t in_data, digest_data;
666 uint8_t raw_digestbuf[SHA512_DIGEST_LENGTH];
668 ASSERT3U(digestlen, <=, SHA512_DIGEST_LENGTH);
670 /* initialize sha512-hmac mechanism and crypto data */
671 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
672 mech.cm_param = NULL;
673 mech.cm_param_len = 0;
675 /* initialize the crypto data */
676 in_data.cd_format = CRYPTO_DATA_RAW;
677 in_data.cd_offset = 0;
678 in_data.cd_length = datalen;
679 in_data.cd_raw.iov_base = (char *)data;
680 in_data.cd_raw.iov_len = in_data.cd_length;
682 digest_data.cd_format = CRYPTO_DATA_RAW;
683 digest_data.cd_offset = 0;
684 digest_data.cd_length = SHA512_DIGEST_LENGTH;
685 digest_data.cd_raw.iov_base = (char *)raw_digestbuf;
686 digest_data.cd_raw.iov_len = digest_data.cd_length;
688 /* generate the hmac */
689 ret = crypto_mac(&mech, &in_data, &key->zk_hmac_key, key->zk_hmac_tmpl,
690 &digest_data);
691 if (ret != CRYPTO_SUCCESS) {
692 ret = SET_ERROR(EIO);
693 goto error;
696 memcpy(digestbuf, raw_digestbuf, digestlen);
698 return (0);
700 error:
701 memset(digestbuf, 0, digestlen);
702 return (ret);
706 zio_crypt_generate_iv_salt_dedup(zio_crypt_key_t *key, uint8_t *data,
707 uint_t datalen, uint8_t *ivbuf, uint8_t *salt)
709 int ret;
710 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
712 ret = zio_crypt_do_hmac(key, data, datalen,
713 digestbuf, SHA512_DIGEST_LENGTH);
714 if (ret != 0)
715 return (ret);
717 memcpy(salt, digestbuf, ZIO_DATA_SALT_LEN);
718 memcpy(ivbuf, digestbuf + ZIO_DATA_SALT_LEN, ZIO_DATA_IV_LEN);
720 return (0);
724 * The following functions are used to encode and decode encryption parameters
725 * into blkptr_t and zil_header_t. The ICP wants to use these parameters as
726 * byte strings, which normally means that these strings would not need to deal
727 * with byteswapping at all. However, both blkptr_t and zil_header_t may be
728 * byteswapped by lower layers and so we must "undo" that byteswap here upon
729 * decoding and encoding in a non-native byteorder. These functions require
730 * that the byteorder bit is correct before being called.
732 void
733 zio_crypt_encode_params_bp(blkptr_t *bp, uint8_t *salt, uint8_t *iv)
735 uint64_t val64;
736 uint32_t val32;
738 ASSERT(BP_IS_ENCRYPTED(bp));
740 if (!BP_SHOULD_BYTESWAP(bp)) {
741 memcpy(&bp->blk_dva[2].dva_word[0], salt, sizeof (uint64_t));
742 memcpy(&bp->blk_dva[2].dva_word[1], iv, sizeof (uint64_t));
743 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
744 BP_SET_IV2(bp, val32);
745 } else {
746 memcpy(&val64, salt, sizeof (uint64_t));
747 bp->blk_dva[2].dva_word[0] = BSWAP_64(val64);
749 memcpy(&val64, iv, sizeof (uint64_t));
750 bp->blk_dva[2].dva_word[1] = BSWAP_64(val64);
752 memcpy(&val32, iv + sizeof (uint64_t), sizeof (uint32_t));
753 BP_SET_IV2(bp, BSWAP_32(val32));
757 void
758 zio_crypt_decode_params_bp(const blkptr_t *bp, uint8_t *salt, uint8_t *iv)
760 uint64_t val64;
761 uint32_t val32;
763 ASSERT(BP_IS_PROTECTED(bp));
765 /* for convenience, so callers don't need to check */
766 if (BP_IS_AUTHENTICATED(bp)) {
767 memset(salt, 0, ZIO_DATA_SALT_LEN);
768 memset(iv, 0, ZIO_DATA_IV_LEN);
769 return;
772 if (!BP_SHOULD_BYTESWAP(bp)) {
773 memcpy(salt, &bp->blk_dva[2].dva_word[0], sizeof (uint64_t));
774 memcpy(iv, &bp->blk_dva[2].dva_word[1], sizeof (uint64_t));
776 val32 = (uint32_t)BP_GET_IV2(bp);
777 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
778 } else {
779 val64 = BSWAP_64(bp->blk_dva[2].dva_word[0]);
780 memcpy(salt, &val64, sizeof (uint64_t));
782 val64 = BSWAP_64(bp->blk_dva[2].dva_word[1]);
783 memcpy(iv, &val64, sizeof (uint64_t));
785 val32 = BSWAP_32((uint32_t)BP_GET_IV2(bp));
786 memcpy(iv + sizeof (uint64_t), &val32, sizeof (uint32_t));
790 void
791 zio_crypt_encode_mac_bp(blkptr_t *bp, uint8_t *mac)
793 uint64_t val64;
795 ASSERT(BP_USES_CRYPT(bp));
796 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_OBJSET);
798 if (!BP_SHOULD_BYTESWAP(bp)) {
799 memcpy(&bp->blk_cksum.zc_word[2], mac, sizeof (uint64_t));
800 memcpy(&bp->blk_cksum.zc_word[3], mac + sizeof (uint64_t),
801 sizeof (uint64_t));
802 } else {
803 memcpy(&val64, mac, sizeof (uint64_t));
804 bp->blk_cksum.zc_word[2] = BSWAP_64(val64);
806 memcpy(&val64, mac + sizeof (uint64_t), sizeof (uint64_t));
807 bp->blk_cksum.zc_word[3] = BSWAP_64(val64);
811 void
812 zio_crypt_decode_mac_bp(const blkptr_t *bp, uint8_t *mac)
814 uint64_t val64;
816 ASSERT(BP_USES_CRYPT(bp) || BP_IS_HOLE(bp));
818 /* for convenience, so callers don't need to check */
819 if (BP_GET_TYPE(bp) == DMU_OT_OBJSET) {
820 memset(mac, 0, ZIO_DATA_MAC_LEN);
821 return;
824 if (!BP_SHOULD_BYTESWAP(bp)) {
825 memcpy(mac, &bp->blk_cksum.zc_word[2], sizeof (uint64_t));
826 memcpy(mac + sizeof (uint64_t), &bp->blk_cksum.zc_word[3],
827 sizeof (uint64_t));
828 } else {
829 val64 = BSWAP_64(bp->blk_cksum.zc_word[2]);
830 memcpy(mac, &val64, sizeof (uint64_t));
832 val64 = BSWAP_64(bp->blk_cksum.zc_word[3]);
833 memcpy(mac + sizeof (uint64_t), &val64, sizeof (uint64_t));
837 void
838 zio_crypt_encode_mac_zil(void *data, uint8_t *mac)
840 zil_chain_t *zilc = data;
842 memcpy(&zilc->zc_eck.zec_cksum.zc_word[2], mac, sizeof (uint64_t));
843 memcpy(&zilc->zc_eck.zec_cksum.zc_word[3], mac + sizeof (uint64_t),
844 sizeof (uint64_t));
847 void
848 zio_crypt_decode_mac_zil(const void *data, uint8_t *mac)
851 * The ZIL MAC is embedded in the block it protects, which will
852 * not have been byteswapped by the time this function has been called.
853 * As a result, we don't need to worry about byteswapping the MAC.
855 const zil_chain_t *zilc = data;
857 memcpy(mac, &zilc->zc_eck.zec_cksum.zc_word[2], sizeof (uint64_t));
858 memcpy(mac + sizeof (uint64_t), &zilc->zc_eck.zec_cksum.zc_word[3],
859 sizeof (uint64_t));
863 * This routine takes a block of dnodes (src_abd) and copies only the bonus
864 * buffers to the same offsets in the dst buffer. datalen should be the size
865 * of both the src_abd and the dst buffer (not just the length of the bonus
866 * buffers).
868 void
869 zio_crypt_copy_dnode_bonus(abd_t *src_abd, uint8_t *dst, uint_t datalen)
871 uint_t i, max_dnp = datalen >> DNODE_SHIFT;
872 uint8_t *src;
873 dnode_phys_t *dnp, *sdnp, *ddnp;
875 src = abd_borrow_buf_copy(src_abd, datalen);
877 sdnp = (dnode_phys_t *)src;
878 ddnp = (dnode_phys_t *)dst;
880 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
881 dnp = &sdnp[i];
882 if (dnp->dn_type != DMU_OT_NONE &&
883 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
884 dnp->dn_bonuslen != 0) {
885 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp),
886 DN_MAX_BONUS_LEN(dnp));
890 abd_return_buf(src_abd, src, datalen);
894 * This function decides what fields from blk_prop are included in
895 * the on-disk various MAC algorithms.
897 static void
898 zio_crypt_bp_zero_nonportable_blkprop(blkptr_t *bp, uint64_t version)
901 * Version 0 did not properly zero out all non-portable fields
902 * as it should have done. We maintain this code so that we can
903 * do read-only imports of pools on this version.
905 if (version == 0) {
906 BP_SET_DEDUP(bp, 0);
907 BP_SET_CHECKSUM(bp, 0);
908 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
909 return;
912 ASSERT3U(version, ==, ZIO_CRYPT_KEY_CURRENT_VERSION);
915 * The hole_birth feature might set these fields even if this bp
916 * is a hole. We zero them out here to guarantee that raw sends
917 * will function with or without the feature.
919 if (BP_IS_HOLE(bp)) {
920 bp->blk_prop = 0ULL;
921 return;
925 * At L0 we want to verify these fields to ensure that data blocks
926 * can not be reinterpreted. For instance, we do not want an attacker
927 * to trick us into returning raw lz4 compressed data to the user
928 * by modifying the compression bits. At higher levels, we cannot
929 * enforce this policy since raw sends do not convey any information
930 * about indirect blocks, so these values might be different on the
931 * receive side. Fortunately, this does not open any new attack
932 * vectors, since any alterations that can be made to a higher level
933 * bp must still verify the correct order of the layer below it.
935 if (BP_GET_LEVEL(bp) != 0) {
936 BP_SET_BYTEORDER(bp, 0);
937 BP_SET_COMPRESS(bp, 0);
940 * psize cannot be set to zero or it will trigger
941 * asserts, but the value doesn't really matter as
942 * long as it is constant.
944 BP_SET_PSIZE(bp, SPA_MINBLOCKSIZE);
947 BP_SET_DEDUP(bp, 0);
948 BP_SET_CHECKSUM(bp, 0);
951 static void
952 zio_crypt_bp_auth_init(uint64_t version, boolean_t should_bswap, blkptr_t *bp,
953 blkptr_auth_buf_t *bab, uint_t *bab_len)
955 blkptr_t tmpbp = *bp;
957 if (should_bswap)
958 byteswap_uint64_array(&tmpbp, sizeof (blkptr_t));
960 ASSERT(BP_USES_CRYPT(&tmpbp) || BP_IS_HOLE(&tmpbp));
961 ASSERT0(BP_IS_EMBEDDED(&tmpbp));
963 zio_crypt_decode_mac_bp(&tmpbp, bab->bab_mac);
966 * We always MAC blk_prop in LE to ensure portability. This
967 * must be done after decoding the mac, since the endianness
968 * will get zero'd out here.
970 zio_crypt_bp_zero_nonportable_blkprop(&tmpbp, version);
971 bab->bab_prop = LE_64(tmpbp.blk_prop);
972 bab->bab_pad = 0ULL;
974 /* version 0 did not include the padding */
975 *bab_len = sizeof (blkptr_auth_buf_t);
976 if (version == 0)
977 *bab_len -= sizeof (uint64_t);
980 static int
981 zio_crypt_bp_do_hmac_updates(crypto_context_t ctx, uint64_t version,
982 boolean_t should_bswap, blkptr_t *bp)
984 int ret;
985 uint_t bab_len;
986 blkptr_auth_buf_t bab;
987 crypto_data_t cd;
989 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
990 cd.cd_format = CRYPTO_DATA_RAW;
991 cd.cd_offset = 0;
992 cd.cd_length = bab_len;
993 cd.cd_raw.iov_base = (char *)&bab;
994 cd.cd_raw.iov_len = cd.cd_length;
996 ret = crypto_mac_update(ctx, &cd);
997 if (ret != CRYPTO_SUCCESS) {
998 ret = SET_ERROR(EIO);
999 goto error;
1002 return (0);
1004 error:
1005 return (ret);
1008 static void
1009 zio_crypt_bp_do_indrect_checksum_updates(SHA2_CTX *ctx, uint64_t version,
1010 boolean_t should_bswap, blkptr_t *bp)
1012 uint_t bab_len;
1013 blkptr_auth_buf_t bab;
1015 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1016 SHA2Update(ctx, &bab, bab_len);
1019 static void
1020 zio_crypt_bp_do_aad_updates(uint8_t **aadp, uint_t *aad_len, uint64_t version,
1021 boolean_t should_bswap, blkptr_t *bp)
1023 uint_t bab_len;
1024 blkptr_auth_buf_t bab;
1026 zio_crypt_bp_auth_init(version, should_bswap, bp, &bab, &bab_len);
1027 memcpy(*aadp, &bab, bab_len);
1028 *aadp += bab_len;
1029 *aad_len += bab_len;
1032 static int
1033 zio_crypt_do_dnode_hmac_updates(crypto_context_t ctx, uint64_t version,
1034 boolean_t should_bswap, dnode_phys_t *dnp)
1036 int ret, i;
1037 dnode_phys_t *adnp, tmp_dncore;
1038 size_t dn_core_size = offsetof(dnode_phys_t, dn_blkptr);
1039 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1040 crypto_data_t cd;
1042 cd.cd_format = CRYPTO_DATA_RAW;
1043 cd.cd_offset = 0;
1046 * Authenticate the core dnode (masking out non-portable bits).
1047 * We only copy the first 64 bytes we operate on to avoid the overhead
1048 * of copying 512-64 unneeded bytes. The compiler seems to be fine
1049 * with that.
1051 memcpy(&tmp_dncore, dnp, dn_core_size);
1052 adnp = &tmp_dncore;
1054 if (le_bswap) {
1055 adnp->dn_datablkszsec = BSWAP_16(adnp->dn_datablkszsec);
1056 adnp->dn_bonuslen = BSWAP_16(adnp->dn_bonuslen);
1057 adnp->dn_maxblkid = BSWAP_64(adnp->dn_maxblkid);
1058 adnp->dn_used = BSWAP_64(adnp->dn_used);
1060 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1061 adnp->dn_used = 0;
1063 cd.cd_length = dn_core_size;
1064 cd.cd_raw.iov_base = (char *)adnp;
1065 cd.cd_raw.iov_len = cd.cd_length;
1067 ret = crypto_mac_update(ctx, &cd);
1068 if (ret != CRYPTO_SUCCESS) {
1069 ret = SET_ERROR(EIO);
1070 goto error;
1073 for (i = 0; i < dnp->dn_nblkptr; i++) {
1074 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1075 should_bswap, &dnp->dn_blkptr[i]);
1076 if (ret != 0)
1077 goto error;
1080 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1081 ret = zio_crypt_bp_do_hmac_updates(ctx, version,
1082 should_bswap, DN_SPILL_BLKPTR(dnp));
1083 if (ret != 0)
1084 goto error;
1087 return (0);
1089 error:
1090 return (ret);
1094 * objset_phys_t blocks introduce a number of exceptions to the normal
1095 * authentication process. objset_phys_t's contain 2 separate HMACS for
1096 * protecting the integrity of their data. The portable_mac protects the
1097 * metadnode. This MAC can be sent with a raw send and protects against
1098 * reordering of data within the metadnode. The local_mac protects the user
1099 * accounting objects which are not sent from one system to another.
1101 * In addition, objset blocks are the only blocks that can be modified and
1102 * written to disk without the key loaded under certain circumstances. During
1103 * zil_claim() we need to be able to update the zil_header_t to complete
1104 * claiming log blocks and during raw receives we need to write out the
1105 * portable_mac from the send file. Both of these actions are possible
1106 * because these fields are not protected by either MAC so neither one will
1107 * need to modify the MACs without the key. However, when the modified blocks
1108 * are written out they will be byteswapped into the host machine's native
1109 * endianness which will modify fields protected by the MAC. As a result, MAC
1110 * calculation for objset blocks works slightly differently from other block
1111 * types. Where other block types MAC the data in whatever endianness is
1112 * written to disk, objset blocks always MAC little endian version of their
1113 * values. In the code, should_bswap is the value from BP_SHOULD_BYTESWAP()
1114 * and le_bswap indicates whether a byteswap is needed to get this block
1115 * into little endian format.
1118 zio_crypt_do_objset_hmacs(zio_crypt_key_t *key, void *data, uint_t datalen,
1119 boolean_t should_bswap, uint8_t *portable_mac, uint8_t *local_mac)
1121 int ret;
1122 crypto_mechanism_t mech;
1123 crypto_context_t ctx;
1124 crypto_data_t cd;
1125 objset_phys_t *osp = data;
1126 uint64_t intval;
1127 boolean_t le_bswap = (should_bswap == ZFS_HOST_BYTEORDER);
1128 uint8_t raw_portable_mac[SHA512_DIGEST_LENGTH];
1129 uint8_t raw_local_mac[SHA512_DIGEST_LENGTH];
1131 /* initialize HMAC mechanism */
1132 mech.cm_type = crypto_mech2id(SUN_CKM_SHA512_HMAC);
1133 mech.cm_param = NULL;
1134 mech.cm_param_len = 0;
1136 cd.cd_format = CRYPTO_DATA_RAW;
1137 cd.cd_offset = 0;
1139 /* calculate the portable MAC from the portable fields and metadnode */
1140 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1141 if (ret != CRYPTO_SUCCESS) {
1142 ret = SET_ERROR(EIO);
1143 goto error;
1146 /* add in the os_type */
1147 intval = (le_bswap) ? osp->os_type : BSWAP_64(osp->os_type);
1148 cd.cd_length = sizeof (uint64_t);
1149 cd.cd_raw.iov_base = (char *)&intval;
1150 cd.cd_raw.iov_len = cd.cd_length;
1152 ret = crypto_mac_update(ctx, &cd);
1153 if (ret != CRYPTO_SUCCESS) {
1154 ret = SET_ERROR(EIO);
1155 goto error;
1158 /* add in the portable os_flags */
1159 intval = osp->os_flags;
1160 if (should_bswap)
1161 intval = BSWAP_64(intval);
1162 intval &= OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1163 if (!ZFS_HOST_BYTEORDER)
1164 intval = BSWAP_64(intval);
1166 cd.cd_length = sizeof (uint64_t);
1167 cd.cd_raw.iov_base = (char *)&intval;
1168 cd.cd_raw.iov_len = cd.cd_length;
1170 ret = crypto_mac_update(ctx, &cd);
1171 if (ret != CRYPTO_SUCCESS) {
1172 ret = SET_ERROR(EIO);
1173 goto error;
1176 /* add in fields from the metadnode */
1177 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1178 should_bswap, &osp->os_meta_dnode);
1179 if (ret)
1180 goto error;
1182 /* store the final digest in a temporary buffer and copy what we need */
1183 cd.cd_length = SHA512_DIGEST_LENGTH;
1184 cd.cd_raw.iov_base = (char *)raw_portable_mac;
1185 cd.cd_raw.iov_len = cd.cd_length;
1187 ret = crypto_mac_final(ctx, &cd);
1188 if (ret != CRYPTO_SUCCESS) {
1189 ret = SET_ERROR(EIO);
1190 goto error;
1193 memcpy(portable_mac, raw_portable_mac, ZIO_OBJSET_MAC_LEN);
1196 * This is necessary here as we check next whether
1197 * OBJSET_FLAG_USERACCOUNTING_COMPLETE is set in order to
1198 * decide if the local_mac should be zeroed out. That flag will always
1199 * be set by dmu_objset_id_quota_upgrade_cb() and
1200 * dmu_objset_userspace_upgrade_cb() if useraccounting has been
1201 * completed.
1203 intval = osp->os_flags;
1204 if (should_bswap)
1205 intval = BSWAP_64(intval);
1206 boolean_t uacct_incomplete =
1207 !(intval & OBJSET_FLAG_USERACCOUNTING_COMPLETE);
1210 * The local MAC protects the user, group and project accounting.
1211 * If these objects are not present, the local MAC is zeroed out.
1213 if (uacct_incomplete ||
1214 (datalen >= OBJSET_PHYS_SIZE_V3 &&
1215 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1216 osp->os_groupused_dnode.dn_type == DMU_OT_NONE &&
1217 osp->os_projectused_dnode.dn_type == DMU_OT_NONE) ||
1218 (datalen >= OBJSET_PHYS_SIZE_V2 &&
1219 osp->os_userused_dnode.dn_type == DMU_OT_NONE &&
1220 osp->os_groupused_dnode.dn_type == DMU_OT_NONE) ||
1221 (datalen <= OBJSET_PHYS_SIZE_V1)) {
1222 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1223 return (0);
1226 /* calculate the local MAC from the userused and groupused dnodes */
1227 ret = crypto_mac_init(&mech, &key->zk_hmac_key, NULL, &ctx);
1228 if (ret != CRYPTO_SUCCESS) {
1229 ret = SET_ERROR(EIO);
1230 goto error;
1233 /* add in the non-portable os_flags */
1234 intval = osp->os_flags;
1235 if (should_bswap)
1236 intval = BSWAP_64(intval);
1237 intval &= ~OBJSET_CRYPT_PORTABLE_FLAGS_MASK;
1238 if (!ZFS_HOST_BYTEORDER)
1239 intval = BSWAP_64(intval);
1241 cd.cd_length = sizeof (uint64_t);
1242 cd.cd_raw.iov_base = (char *)&intval;
1243 cd.cd_raw.iov_len = cd.cd_length;
1245 ret = crypto_mac_update(ctx, &cd);
1246 if (ret != CRYPTO_SUCCESS) {
1247 ret = SET_ERROR(EIO);
1248 goto error;
1251 /* add in fields from the user accounting dnodes */
1252 if (osp->os_userused_dnode.dn_type != DMU_OT_NONE) {
1253 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1254 should_bswap, &osp->os_userused_dnode);
1255 if (ret)
1256 goto error;
1259 if (osp->os_groupused_dnode.dn_type != DMU_OT_NONE) {
1260 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1261 should_bswap, &osp->os_groupused_dnode);
1262 if (ret)
1263 goto error;
1266 if (osp->os_projectused_dnode.dn_type != DMU_OT_NONE &&
1267 datalen >= OBJSET_PHYS_SIZE_V3) {
1268 ret = zio_crypt_do_dnode_hmac_updates(ctx, key->zk_version,
1269 should_bswap, &osp->os_projectused_dnode);
1270 if (ret)
1271 goto error;
1274 /* store the final digest in a temporary buffer and copy what we need */
1275 cd.cd_length = SHA512_DIGEST_LENGTH;
1276 cd.cd_raw.iov_base = (char *)raw_local_mac;
1277 cd.cd_raw.iov_len = cd.cd_length;
1279 ret = crypto_mac_final(ctx, &cd);
1280 if (ret != CRYPTO_SUCCESS) {
1281 ret = SET_ERROR(EIO);
1282 goto error;
1285 memcpy(local_mac, raw_local_mac, ZIO_OBJSET_MAC_LEN);
1287 return (0);
1289 error:
1290 memset(portable_mac, 0, ZIO_OBJSET_MAC_LEN);
1291 memset(local_mac, 0, ZIO_OBJSET_MAC_LEN);
1292 return (ret);
1295 static void
1296 zio_crypt_destroy_uio(zfs_uio_t *uio)
1298 if (uio->uio_iov)
1299 kmem_free(uio->uio_iov, uio->uio_iovcnt * sizeof (iovec_t));
1303 * This function parses an uncompressed indirect block and returns a checksum
1304 * of all the portable fields from all of the contained bps. The portable
1305 * fields are the MAC and all of the fields from blk_prop except for the dedup,
1306 * checksum, and psize bits. For an explanation of the purpose of this, see
1307 * the comment block on object set authentication.
1309 static int
1310 zio_crypt_do_indirect_mac_checksum_impl(boolean_t generate, void *buf,
1311 uint_t datalen, uint64_t version, boolean_t byteswap, uint8_t *cksum)
1313 blkptr_t *bp;
1314 int i, epb = datalen >> SPA_BLKPTRSHIFT;
1315 SHA2_CTX ctx;
1316 uint8_t digestbuf[SHA512_DIGEST_LENGTH];
1318 /* checksum all of the MACs from the layer below */
1319 SHA2Init(SHA512, &ctx);
1320 for (i = 0, bp = buf; i < epb; i++, bp++) {
1321 zio_crypt_bp_do_indrect_checksum_updates(&ctx, version,
1322 byteswap, bp);
1324 SHA2Final(digestbuf, &ctx);
1326 if (generate) {
1327 memcpy(cksum, digestbuf, ZIO_DATA_MAC_LEN);
1328 return (0);
1331 if (memcmp(digestbuf, cksum, ZIO_DATA_MAC_LEN) != 0)
1332 return (SET_ERROR(ECKSUM));
1334 return (0);
1338 zio_crypt_do_indirect_mac_checksum(boolean_t generate, void *buf,
1339 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1341 int ret;
1344 * Unfortunately, callers of this function will not always have
1345 * easy access to the on-disk format version. This info is
1346 * normally found in the DSL Crypto Key, but the checksum-of-MACs
1347 * is expected to be verifiable even when the key isn't loaded.
1348 * Here, instead of doing a ZAP lookup for the version for each
1349 * zio, we simply try both existing formats.
1351 ret = zio_crypt_do_indirect_mac_checksum_impl(generate, buf,
1352 datalen, ZIO_CRYPT_KEY_CURRENT_VERSION, byteswap, cksum);
1353 if (ret == ECKSUM) {
1354 ASSERT(!generate);
1355 ret = zio_crypt_do_indirect_mac_checksum_impl(generate,
1356 buf, datalen, 0, byteswap, cksum);
1359 return (ret);
1363 zio_crypt_do_indirect_mac_checksum_abd(boolean_t generate, abd_t *abd,
1364 uint_t datalen, boolean_t byteswap, uint8_t *cksum)
1366 int ret;
1367 void *buf;
1369 buf = abd_borrow_buf_copy(abd, datalen);
1370 ret = zio_crypt_do_indirect_mac_checksum(generate, buf, datalen,
1371 byteswap, cksum);
1372 abd_return_buf(abd, buf, datalen);
1374 return (ret);
1378 * Special case handling routine for encrypting / decrypting ZIL blocks.
1379 * We do not check for the older ZIL chain because the encryption feature
1380 * was not available before the newer ZIL chain was introduced. The goal
1381 * here is to encrypt everything except the blkptr_t of a lr_write_t and
1382 * the zil_chain_t header. Everything that is not encrypted is authenticated.
1384 static int
1385 zio_crypt_init_uios_zil(boolean_t encrypt, uint8_t *plainbuf,
1386 uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap, zfs_uio_t *puio,
1387 zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf, uint_t *auth_len,
1388 boolean_t *no_crypt)
1390 int ret;
1391 uint64_t txtype, lr_len;
1392 uint_t nr_src, nr_dst, crypt_len;
1393 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1394 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1395 uint8_t *src, *dst, *slrp, *dlrp, *blkend, *aadp;
1396 zil_chain_t *zilc;
1397 lr_t *lr;
1398 uint8_t *aadbuf = zio_buf_alloc(datalen);
1400 /* cipherbuf always needs an extra iovec for the MAC */
1401 if (encrypt) {
1402 src = plainbuf;
1403 dst = cipherbuf;
1404 nr_src = 0;
1405 nr_dst = 1;
1406 } else {
1407 src = cipherbuf;
1408 dst = plainbuf;
1409 nr_src = 1;
1410 nr_dst = 0;
1412 memset(dst, 0, datalen);
1414 /* find the start and end record of the log block */
1415 zilc = (zil_chain_t *)src;
1416 slrp = src + sizeof (zil_chain_t);
1417 aadp = aadbuf;
1418 blkend = src + ((byteswap) ? BSWAP_64(zilc->zc_nused) : zilc->zc_nused);
1420 /* calculate the number of encrypted iovecs we will need */
1421 for (; slrp < blkend; slrp += lr_len) {
1422 lr = (lr_t *)slrp;
1424 if (!byteswap) {
1425 txtype = lr->lrc_txtype;
1426 lr_len = lr->lrc_reclen;
1427 } else {
1428 txtype = BSWAP_64(lr->lrc_txtype);
1429 lr_len = BSWAP_64(lr->lrc_reclen);
1432 nr_iovecs++;
1433 if (txtype == TX_WRITE && lr_len != sizeof (lr_write_t))
1434 nr_iovecs++;
1437 nr_src += nr_iovecs;
1438 nr_dst += nr_iovecs;
1440 /* allocate the iovec arrays */
1441 if (nr_src != 0) {
1442 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1443 if (src_iovecs == NULL) {
1444 ret = SET_ERROR(ENOMEM);
1445 goto error;
1449 if (nr_dst != 0) {
1450 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1451 if (dst_iovecs == NULL) {
1452 ret = SET_ERROR(ENOMEM);
1453 goto error;
1458 * Copy the plain zil header over and authenticate everything except
1459 * the checksum that will store our MAC. If we are writing the data
1460 * the embedded checksum will not have been calculated yet, so we don't
1461 * authenticate that.
1463 memcpy(dst, src, sizeof (zil_chain_t));
1464 memcpy(aadp, src, sizeof (zil_chain_t) - sizeof (zio_eck_t));
1465 aadp += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1466 aad_len += sizeof (zil_chain_t) - sizeof (zio_eck_t);
1468 /* loop over records again, filling in iovecs */
1469 nr_iovecs = 0;
1470 slrp = src + sizeof (zil_chain_t);
1471 dlrp = dst + sizeof (zil_chain_t);
1473 for (; slrp < blkend; slrp += lr_len, dlrp += lr_len) {
1474 lr = (lr_t *)slrp;
1476 if (!byteswap) {
1477 txtype = lr->lrc_txtype;
1478 lr_len = lr->lrc_reclen;
1479 } else {
1480 txtype = BSWAP_64(lr->lrc_txtype);
1481 lr_len = BSWAP_64(lr->lrc_reclen);
1484 /* copy the common lr_t */
1485 memcpy(dlrp, slrp, sizeof (lr_t));
1486 memcpy(aadp, slrp, sizeof (lr_t));
1487 aadp += sizeof (lr_t);
1488 aad_len += sizeof (lr_t);
1490 ASSERT3P(src_iovecs, !=, NULL);
1491 ASSERT3P(dst_iovecs, !=, NULL);
1494 * If this is a TX_WRITE record we want to encrypt everything
1495 * except the bp if exists. If the bp does exist we want to
1496 * authenticate it.
1498 if (txtype == TX_WRITE) {
1499 crypt_len = sizeof (lr_write_t) -
1500 sizeof (lr_t) - sizeof (blkptr_t);
1501 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1502 src_iovecs[nr_iovecs].iov_len = crypt_len;
1503 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1504 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1506 /* copy the bp now since it will not be encrypted */
1507 memcpy(dlrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1508 slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1509 sizeof (blkptr_t));
1510 memcpy(aadp,
1511 slrp + sizeof (lr_write_t) - sizeof (blkptr_t),
1512 sizeof (blkptr_t));
1513 aadp += sizeof (blkptr_t);
1514 aad_len += sizeof (blkptr_t);
1515 nr_iovecs++;
1516 total_len += crypt_len;
1518 if (lr_len != sizeof (lr_write_t)) {
1519 crypt_len = lr_len - sizeof (lr_write_t);
1520 src_iovecs[nr_iovecs].iov_base =
1521 slrp + sizeof (lr_write_t);
1522 src_iovecs[nr_iovecs].iov_len = crypt_len;
1523 dst_iovecs[nr_iovecs].iov_base =
1524 dlrp + sizeof (lr_write_t);
1525 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1526 nr_iovecs++;
1527 total_len += crypt_len;
1529 } else {
1530 crypt_len = lr_len - sizeof (lr_t);
1531 src_iovecs[nr_iovecs].iov_base = slrp + sizeof (lr_t);
1532 src_iovecs[nr_iovecs].iov_len = crypt_len;
1533 dst_iovecs[nr_iovecs].iov_base = dlrp + sizeof (lr_t);
1534 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1535 nr_iovecs++;
1536 total_len += crypt_len;
1540 *no_crypt = (nr_iovecs == 0);
1541 *enc_len = total_len;
1542 *authbuf = aadbuf;
1543 *auth_len = aad_len;
1545 if (encrypt) {
1546 puio->uio_iov = src_iovecs;
1547 puio->uio_iovcnt = nr_src;
1548 cuio->uio_iov = dst_iovecs;
1549 cuio->uio_iovcnt = nr_dst;
1550 } else {
1551 puio->uio_iov = dst_iovecs;
1552 puio->uio_iovcnt = nr_dst;
1553 cuio->uio_iov = src_iovecs;
1554 cuio->uio_iovcnt = nr_src;
1557 return (0);
1559 error:
1560 zio_buf_free(aadbuf, datalen);
1561 if (src_iovecs != NULL)
1562 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1563 if (dst_iovecs != NULL)
1564 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1566 *enc_len = 0;
1567 *authbuf = NULL;
1568 *auth_len = 0;
1569 *no_crypt = B_FALSE;
1570 puio->uio_iov = NULL;
1571 puio->uio_iovcnt = 0;
1572 cuio->uio_iov = NULL;
1573 cuio->uio_iovcnt = 0;
1574 return (ret);
1578 * Special case handling routine for encrypting / decrypting dnode blocks.
1580 static int
1581 zio_crypt_init_uios_dnode(boolean_t encrypt, uint64_t version,
1582 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1583 zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len, uint8_t **authbuf,
1584 uint_t *auth_len, boolean_t *no_crypt)
1586 int ret;
1587 uint_t nr_src, nr_dst, crypt_len;
1588 uint_t aad_len = 0, nr_iovecs = 0, total_len = 0;
1589 uint_t i, j, max_dnp = datalen >> DNODE_SHIFT;
1590 iovec_t *src_iovecs = NULL, *dst_iovecs = NULL;
1591 uint8_t *src, *dst, *aadp;
1592 dnode_phys_t *dnp, *adnp, *sdnp, *ddnp;
1593 uint8_t *aadbuf = zio_buf_alloc(datalen);
1595 if (encrypt) {
1596 src = plainbuf;
1597 dst = cipherbuf;
1598 nr_src = 0;
1599 nr_dst = 1;
1600 } else {
1601 src = cipherbuf;
1602 dst = plainbuf;
1603 nr_src = 1;
1604 nr_dst = 0;
1607 sdnp = (dnode_phys_t *)src;
1608 ddnp = (dnode_phys_t *)dst;
1609 aadp = aadbuf;
1612 * Count the number of iovecs we will need to do the encryption by
1613 * counting the number of bonus buffers that need to be encrypted.
1615 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1617 * This block may still be byteswapped. However, all of the
1618 * values we use are either uint8_t's (for which byteswapping
1619 * is a noop) or a * != 0 check, which will work regardless
1620 * of whether or not we byteswap.
1622 if (sdnp[i].dn_type != DMU_OT_NONE &&
1623 DMU_OT_IS_ENCRYPTED(sdnp[i].dn_bonustype) &&
1624 sdnp[i].dn_bonuslen != 0) {
1625 nr_iovecs++;
1629 nr_src += nr_iovecs;
1630 nr_dst += nr_iovecs;
1632 if (nr_src != 0) {
1633 src_iovecs = kmem_alloc(nr_src * sizeof (iovec_t), KM_SLEEP);
1634 if (src_iovecs == NULL) {
1635 ret = SET_ERROR(ENOMEM);
1636 goto error;
1640 if (nr_dst != 0) {
1641 dst_iovecs = kmem_alloc(nr_dst * sizeof (iovec_t), KM_SLEEP);
1642 if (dst_iovecs == NULL) {
1643 ret = SET_ERROR(ENOMEM);
1644 goto error;
1648 nr_iovecs = 0;
1651 * Iterate through the dnodes again, this time filling in the uios
1652 * we allocated earlier. We also concatenate any data we want to
1653 * authenticate onto aadbuf.
1655 for (i = 0; i < max_dnp; i += sdnp[i].dn_extra_slots + 1) {
1656 dnp = &sdnp[i];
1658 /* copy over the core fields and blkptrs (kept as plaintext) */
1659 memcpy(&ddnp[i], dnp,
1660 (uint8_t *)DN_BONUS(dnp) - (uint8_t *)dnp);
1662 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1663 memcpy(DN_SPILL_BLKPTR(&ddnp[i]), DN_SPILL_BLKPTR(dnp),
1664 sizeof (blkptr_t));
1668 * Handle authenticated data. We authenticate everything in
1669 * the dnode that can be brought over when we do a raw send.
1670 * This includes all of the core fields as well as the MACs
1671 * stored in the bp checksums and all of the portable bits
1672 * from blk_prop. We include the dnode padding here in case it
1673 * ever gets used in the future. Some dn_flags and dn_used are
1674 * not portable so we mask those out values out of the
1675 * authenticated data.
1677 crypt_len = offsetof(dnode_phys_t, dn_blkptr);
1678 memcpy(aadp, dnp, crypt_len);
1679 adnp = (dnode_phys_t *)aadp;
1680 adnp->dn_flags &= DNODE_CRYPT_PORTABLE_FLAGS_MASK;
1681 adnp->dn_used = 0;
1682 aadp += crypt_len;
1683 aad_len += crypt_len;
1685 for (j = 0; j < dnp->dn_nblkptr; j++) {
1686 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1687 version, byteswap, &dnp->dn_blkptr[j]);
1690 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) {
1691 zio_crypt_bp_do_aad_updates(&aadp, &aad_len,
1692 version, byteswap, DN_SPILL_BLKPTR(dnp));
1696 * If this bonus buffer needs to be encrypted, we prepare an
1697 * iovec_t. The encryption / decryption functions will fill
1698 * this in for us with the encrypted or decrypted data.
1699 * Otherwise we add the bonus buffer to the authenticated
1700 * data buffer and copy it over to the destination. The
1701 * encrypted iovec extends to DN_MAX_BONUS_LEN(dnp) so that
1702 * we can guarantee alignment with the AES block size
1703 * (128 bits).
1705 crypt_len = DN_MAX_BONUS_LEN(dnp);
1706 if (dnp->dn_type != DMU_OT_NONE &&
1707 DMU_OT_IS_ENCRYPTED(dnp->dn_bonustype) &&
1708 dnp->dn_bonuslen != 0) {
1709 ASSERT3U(nr_iovecs, <, nr_src);
1710 ASSERT3U(nr_iovecs, <, nr_dst);
1711 ASSERT3P(src_iovecs, !=, NULL);
1712 ASSERT3P(dst_iovecs, !=, NULL);
1713 src_iovecs[nr_iovecs].iov_base = DN_BONUS(dnp);
1714 src_iovecs[nr_iovecs].iov_len = crypt_len;
1715 dst_iovecs[nr_iovecs].iov_base = DN_BONUS(&ddnp[i]);
1716 dst_iovecs[nr_iovecs].iov_len = crypt_len;
1718 nr_iovecs++;
1719 total_len += crypt_len;
1720 } else {
1721 memcpy(DN_BONUS(&ddnp[i]), DN_BONUS(dnp), crypt_len);
1722 memcpy(aadp, DN_BONUS(dnp), crypt_len);
1723 aadp += crypt_len;
1724 aad_len += crypt_len;
1728 *no_crypt = (nr_iovecs == 0);
1729 *enc_len = total_len;
1730 *authbuf = aadbuf;
1731 *auth_len = aad_len;
1733 if (encrypt) {
1734 puio->uio_iov = src_iovecs;
1735 puio->uio_iovcnt = nr_src;
1736 cuio->uio_iov = dst_iovecs;
1737 cuio->uio_iovcnt = nr_dst;
1738 } else {
1739 puio->uio_iov = dst_iovecs;
1740 puio->uio_iovcnt = nr_dst;
1741 cuio->uio_iov = src_iovecs;
1742 cuio->uio_iovcnt = nr_src;
1745 return (0);
1747 error:
1748 zio_buf_free(aadbuf, datalen);
1749 if (src_iovecs != NULL)
1750 kmem_free(src_iovecs, nr_src * sizeof (iovec_t));
1751 if (dst_iovecs != NULL)
1752 kmem_free(dst_iovecs, nr_dst * sizeof (iovec_t));
1754 *enc_len = 0;
1755 *authbuf = NULL;
1756 *auth_len = 0;
1757 *no_crypt = B_FALSE;
1758 puio->uio_iov = NULL;
1759 puio->uio_iovcnt = 0;
1760 cuio->uio_iov = NULL;
1761 cuio->uio_iovcnt = 0;
1762 return (ret);
1765 static int
1766 zio_crypt_init_uios_normal(boolean_t encrypt, uint8_t *plainbuf,
1767 uint8_t *cipherbuf, uint_t datalen, zfs_uio_t *puio, zfs_uio_t *cuio,
1768 uint_t *enc_len)
1770 (void) encrypt;
1771 int ret;
1772 uint_t nr_plain = 1, nr_cipher = 2;
1773 iovec_t *plain_iovecs = NULL, *cipher_iovecs = NULL;
1775 /* allocate the iovecs for the plain and cipher data */
1776 plain_iovecs = kmem_alloc(nr_plain * sizeof (iovec_t),
1777 KM_SLEEP);
1778 if (!plain_iovecs) {
1779 ret = SET_ERROR(ENOMEM);
1780 goto error;
1783 cipher_iovecs = kmem_alloc(nr_cipher * sizeof (iovec_t),
1784 KM_SLEEP);
1785 if (!cipher_iovecs) {
1786 ret = SET_ERROR(ENOMEM);
1787 goto error;
1790 plain_iovecs[0].iov_base = plainbuf;
1791 plain_iovecs[0].iov_len = datalen;
1792 cipher_iovecs[0].iov_base = cipherbuf;
1793 cipher_iovecs[0].iov_len = datalen;
1795 *enc_len = datalen;
1796 puio->uio_iov = plain_iovecs;
1797 puio->uio_iovcnt = nr_plain;
1798 cuio->uio_iov = cipher_iovecs;
1799 cuio->uio_iovcnt = nr_cipher;
1801 return (0);
1803 error:
1804 if (plain_iovecs != NULL)
1805 kmem_free(plain_iovecs, nr_plain * sizeof (iovec_t));
1806 if (cipher_iovecs != NULL)
1807 kmem_free(cipher_iovecs, nr_cipher * sizeof (iovec_t));
1809 *enc_len = 0;
1810 puio->uio_iov = NULL;
1811 puio->uio_iovcnt = 0;
1812 cuio->uio_iov = NULL;
1813 cuio->uio_iovcnt = 0;
1814 return (ret);
1818 * This function builds up the plaintext (puio) and ciphertext (cuio) uios so
1819 * that they can be used for encryption and decryption by zio_do_crypt_uio().
1820 * Most blocks will use zio_crypt_init_uios_normal(), with ZIL and dnode blocks
1821 * requiring special handling to parse out pieces that are to be encrypted. The
1822 * authbuf is used by these special cases to store additional authenticated
1823 * data (AAD) for the encryption modes.
1825 static int
1826 zio_crypt_init_uios(boolean_t encrypt, uint64_t version, dmu_object_type_t ot,
1827 uint8_t *plainbuf, uint8_t *cipherbuf, uint_t datalen, boolean_t byteswap,
1828 uint8_t *mac, zfs_uio_t *puio, zfs_uio_t *cuio, uint_t *enc_len,
1829 uint8_t **authbuf, uint_t *auth_len, boolean_t *no_crypt)
1831 int ret;
1832 iovec_t *mac_iov;
1834 ASSERT(DMU_OT_IS_ENCRYPTED(ot) || ot == DMU_OT_NONE);
1836 /* route to handler */
1837 switch (ot) {
1838 case DMU_OT_INTENT_LOG:
1839 ret = zio_crypt_init_uios_zil(encrypt, plainbuf, cipherbuf,
1840 datalen, byteswap, puio, cuio, enc_len, authbuf, auth_len,
1841 no_crypt);
1842 break;
1843 case DMU_OT_DNODE:
1844 ret = zio_crypt_init_uios_dnode(encrypt, version, plainbuf,
1845 cipherbuf, datalen, byteswap, puio, cuio, enc_len, authbuf,
1846 auth_len, no_crypt);
1847 break;
1848 default:
1849 ret = zio_crypt_init_uios_normal(encrypt, plainbuf, cipherbuf,
1850 datalen, puio, cuio, enc_len);
1851 *authbuf = NULL;
1852 *auth_len = 0;
1853 *no_crypt = B_FALSE;
1854 break;
1857 if (ret != 0)
1858 goto error;
1860 /* populate the uios */
1861 puio->uio_segflg = UIO_SYSSPACE;
1862 cuio->uio_segflg = UIO_SYSSPACE;
1864 mac_iov = ((iovec_t *)&cuio->uio_iov[cuio->uio_iovcnt - 1]);
1865 mac_iov->iov_base = mac;
1866 mac_iov->iov_len = ZIO_DATA_MAC_LEN;
1868 return (0);
1870 error:
1871 return (ret);
1875 * Primary encryption / decryption entrypoint for zio data.
1878 zio_do_crypt_data(boolean_t encrypt, zio_crypt_key_t *key,
1879 dmu_object_type_t ot, boolean_t byteswap, uint8_t *salt, uint8_t *iv,
1880 uint8_t *mac, uint_t datalen, uint8_t *plainbuf, uint8_t *cipherbuf,
1881 boolean_t *no_crypt)
1883 int ret;
1884 boolean_t locked = B_FALSE;
1885 uint64_t crypt = key->zk_crypt;
1886 uint_t keydata_len = zio_crypt_table[crypt].ci_keylen;
1887 uint_t enc_len, auth_len;
1888 zfs_uio_t puio, cuio;
1889 uint8_t enc_keydata[MASTER_KEY_MAX_LEN];
1890 crypto_key_t tmp_ckey, *ckey = NULL;
1891 crypto_ctx_template_t tmpl;
1892 uint8_t *authbuf = NULL;
1894 memset(&puio, 0, sizeof (puio));
1895 memset(&cuio, 0, sizeof (cuio));
1898 * If the needed key is the current one, just use it. Otherwise we
1899 * need to generate a temporary one from the given salt + master key.
1900 * If we are encrypting, we must return a copy of the current salt
1901 * so that it can be stored in the blkptr_t.
1903 rw_enter(&key->zk_salt_lock, RW_READER);
1904 locked = B_TRUE;
1906 if (memcmp(salt, key->zk_salt, ZIO_DATA_SALT_LEN) == 0) {
1907 ckey = &key->zk_current_key;
1908 tmpl = key->zk_current_tmpl;
1909 } else {
1910 rw_exit(&key->zk_salt_lock);
1911 locked = B_FALSE;
1913 ret = hkdf_sha512(key->zk_master_keydata, keydata_len, NULL, 0,
1914 salt, ZIO_DATA_SALT_LEN, enc_keydata, keydata_len);
1915 if (ret != 0)
1916 goto error;
1918 tmp_ckey.ck_data = enc_keydata;
1919 tmp_ckey.ck_length = CRYPTO_BYTES2BITS(keydata_len);
1921 ckey = &tmp_ckey;
1922 tmpl = NULL;
1926 * Attempt to use QAT acceleration if we can. We currently don't
1927 * do this for metadnode and ZIL blocks, since they have a much
1928 * more involved buffer layout and the qat_crypt() function only
1929 * works in-place.
1931 if (qat_crypt_use_accel(datalen) &&
1932 ot != DMU_OT_INTENT_LOG && ot != DMU_OT_DNODE) {
1933 uint8_t *srcbuf, *dstbuf;
1935 if (encrypt) {
1936 srcbuf = plainbuf;
1937 dstbuf = cipherbuf;
1938 } else {
1939 srcbuf = cipherbuf;
1940 dstbuf = plainbuf;
1943 ret = qat_crypt((encrypt) ? QAT_ENCRYPT : QAT_DECRYPT, srcbuf,
1944 dstbuf, NULL, 0, iv, mac, ckey, key->zk_crypt, datalen);
1945 if (ret == CPA_STATUS_SUCCESS) {
1946 if (locked) {
1947 rw_exit(&key->zk_salt_lock);
1948 locked = B_FALSE;
1951 return (0);
1953 /* If the hardware implementation fails fall back to software */
1956 /* create uios for encryption */
1957 ret = zio_crypt_init_uios(encrypt, key->zk_version, ot, plainbuf,
1958 cipherbuf, datalen, byteswap, mac, &puio, &cuio, &enc_len,
1959 &authbuf, &auth_len, no_crypt);
1960 if (ret != 0)
1961 goto error;
1963 /* perform the encryption / decryption in software */
1964 ret = zio_do_crypt_uio(encrypt, key->zk_crypt, ckey, tmpl, iv, enc_len,
1965 &puio, &cuio, authbuf, auth_len);
1966 if (ret != 0)
1967 goto error;
1969 if (locked) {
1970 rw_exit(&key->zk_salt_lock);
1971 locked = B_FALSE;
1974 if (authbuf != NULL)
1975 zio_buf_free(authbuf, datalen);
1976 if (ckey == &tmp_ckey)
1977 memset(enc_keydata, 0, keydata_len);
1978 zio_crypt_destroy_uio(&puio);
1979 zio_crypt_destroy_uio(&cuio);
1981 return (0);
1983 error:
1984 if (locked)
1985 rw_exit(&key->zk_salt_lock);
1986 if (authbuf != NULL)
1987 zio_buf_free(authbuf, datalen);
1988 if (ckey == &tmp_ckey)
1989 memset(enc_keydata, 0, keydata_len);
1990 zio_crypt_destroy_uio(&puio);
1991 zio_crypt_destroy_uio(&cuio);
1993 return (ret);
1997 * Simple wrapper around zio_do_crypt_data() to work with abd's instead of
1998 * linear buffers.
2001 zio_do_crypt_abd(boolean_t encrypt, zio_crypt_key_t *key, dmu_object_type_t ot,
2002 boolean_t byteswap, uint8_t *salt, uint8_t *iv, uint8_t *mac,
2003 uint_t datalen, abd_t *pabd, abd_t *cabd, boolean_t *no_crypt)
2005 int ret;
2006 void *ptmp, *ctmp;
2008 if (encrypt) {
2009 ptmp = abd_borrow_buf_copy(pabd, datalen);
2010 ctmp = abd_borrow_buf(cabd, datalen);
2011 } else {
2012 ptmp = abd_borrow_buf(pabd, datalen);
2013 ctmp = abd_borrow_buf_copy(cabd, datalen);
2016 ret = zio_do_crypt_data(encrypt, key, ot, byteswap, salt, iv, mac,
2017 datalen, ptmp, ctmp, no_crypt);
2018 if (ret != 0)
2019 goto error;
2021 if (encrypt) {
2022 abd_return_buf(pabd, ptmp, datalen);
2023 abd_return_buf_copy(cabd, ctmp, datalen);
2024 } else {
2025 abd_return_buf_copy(pabd, ptmp, datalen);
2026 abd_return_buf(cabd, ctmp, datalen);
2029 return (0);
2031 error:
2032 if (encrypt) {
2033 abd_return_buf(pabd, ptmp, datalen);
2034 abd_return_buf_copy(cabd, ctmp, datalen);
2035 } else {
2036 abd_return_buf_copy(pabd, ptmp, datalen);
2037 abd_return_buf(cabd, ctmp, datalen);
2040 return (ret);
2043 #if defined(_KERNEL)
2044 /* CSTYLED */
2045 module_param(zfs_key_max_salt_uses, ulong, 0644);
2046 MODULE_PARM_DESC(zfs_key_max_salt_uses, "Max number of times a salt value "
2047 "can be used for generating encryption keys before it is rotated");
2048 #endif