Fix report_mount_progress never calling set_progress_header
[zfs.git] / module / zstd / zfs_zstd.c
blobdfcd938aea323e3e8b496a1765ba67253b950af7
1 /*
2 * BSD 3-Clause New License (https://spdx.org/licenses/BSD-3-Clause.html)
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions are met:
7 * 1. Redistributions of source code must retain the above copyright notice,
8 * this list of conditions and the following disclaimer.
10 * 2. Redistributions in binary form must reproduce the above copyright notice,
11 * this list of conditions and the following disclaimer in the documentation
12 * and/or other materials provided with the distribution.
14 * 3. Neither the name of the copyright holder nor the names of its
15 * contributors may be used to endorse or promote products derived from this
16 * software without specific prior written permission.
18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
19 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
20 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
21 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
22 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
23 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
24 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
25 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
26 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
27 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
28 * POSSIBILITY OF SUCH DAMAGE.
32 * Copyright (c) 2016-2018, Klara Inc.
33 * Copyright (c) 2016-2018, Allan Jude
34 * Copyright (c) 2018-2020, Sebastian Gottschall
35 * Copyright (c) 2019-2020, Michael Niewöhner
36 * Copyright (c) 2020, The FreeBSD Foundation [1]
38 * [1] Portions of this software were developed by Allan Jude
39 * under sponsorship from the FreeBSD Foundation.
42 #include <sys/param.h>
43 #include <sys/sysmacros.h>
44 #include <sys/zfs_context.h>
45 #include <sys/zio_compress.h>
46 #include <sys/spa.h>
47 #include <sys/zstd/zstd.h>
49 #define ZSTD_STATIC_LINKING_ONLY
50 #include "lib/zstd.h"
51 #include "lib/zstd_errors.h"
53 kstat_t *zstd_ksp = NULL;
55 typedef struct zstd_stats {
56 kstat_named_t zstd_stat_alloc_fail;
57 kstat_named_t zstd_stat_alloc_fallback;
58 kstat_named_t zstd_stat_com_alloc_fail;
59 kstat_named_t zstd_stat_dec_alloc_fail;
60 kstat_named_t zstd_stat_com_inval;
61 kstat_named_t zstd_stat_dec_inval;
62 kstat_named_t zstd_stat_dec_header_inval;
63 kstat_named_t zstd_stat_com_fail;
64 kstat_named_t zstd_stat_dec_fail;
65 kstat_named_t zstd_stat_buffers;
66 kstat_named_t zstd_stat_size;
67 } zstd_stats_t;
69 static zstd_stats_t zstd_stats = {
70 { "alloc_fail", KSTAT_DATA_UINT64 },
71 { "alloc_fallback", KSTAT_DATA_UINT64 },
72 { "compress_alloc_fail", KSTAT_DATA_UINT64 },
73 { "decompress_alloc_fail", KSTAT_DATA_UINT64 },
74 { "compress_level_invalid", KSTAT_DATA_UINT64 },
75 { "decompress_level_invalid", KSTAT_DATA_UINT64 },
76 { "decompress_header_invalid", KSTAT_DATA_UINT64 },
77 { "compress_failed", KSTAT_DATA_UINT64 },
78 { "decompress_failed", KSTAT_DATA_UINT64 },
79 { "buffers", KSTAT_DATA_UINT64 },
80 { "size", KSTAT_DATA_UINT64 },
83 /* Enums describing the allocator type specified by kmem_type in zstd_kmem */
84 enum zstd_kmem_type {
85 ZSTD_KMEM_UNKNOWN = 0,
86 /* Allocation type using kmem_vmalloc */
87 ZSTD_KMEM_DEFAULT,
88 /* Pool based allocation using mempool_alloc */
89 ZSTD_KMEM_POOL,
90 /* Reserved fallback memory for decompression only */
91 ZSTD_KMEM_DCTX,
92 ZSTD_KMEM_COUNT,
95 /* Structure for pooled memory objects */
96 struct zstd_pool {
97 void *mem;
98 size_t size;
99 kmutex_t barrier;
100 hrtime_t timeout;
103 /* Global structure for handling memory allocations */
104 struct zstd_kmem {
105 enum zstd_kmem_type kmem_type;
106 size_t kmem_size;
107 struct zstd_pool *pool;
110 /* Fallback memory structure used for decompression only if memory runs out */
111 struct zstd_fallback_mem {
112 size_t mem_size;
113 void *mem;
114 kmutex_t barrier;
117 struct zstd_levelmap {
118 int16_t zstd_level;
119 enum zio_zstd_levels level;
123 * ZSTD memory handlers
125 * For decompression we use a different handler which also provides fallback
126 * memory allocation in case memory runs out.
128 * The ZSTD handlers were split up for the most simplified implementation.
130 static void *zstd_alloc(void *opaque, size_t size);
131 static void *zstd_dctx_alloc(void *opaque, size_t size);
132 static void zstd_free(void *opaque, void *ptr);
134 /* Compression memory handler */
135 static const ZSTD_customMem zstd_malloc = {
136 zstd_alloc,
137 zstd_free,
138 NULL,
141 /* Decompression memory handler */
142 static const ZSTD_customMem zstd_dctx_malloc = {
143 zstd_dctx_alloc,
144 zstd_free,
145 NULL,
148 /* Level map for converting ZFS internal levels to ZSTD levels and vice versa */
149 static struct zstd_levelmap zstd_levels[] = {
150 {ZIO_ZSTD_LEVEL_1, ZIO_ZSTD_LEVEL_1},
151 {ZIO_ZSTD_LEVEL_2, ZIO_ZSTD_LEVEL_2},
152 {ZIO_ZSTD_LEVEL_3, ZIO_ZSTD_LEVEL_3},
153 {ZIO_ZSTD_LEVEL_4, ZIO_ZSTD_LEVEL_4},
154 {ZIO_ZSTD_LEVEL_5, ZIO_ZSTD_LEVEL_5},
155 {ZIO_ZSTD_LEVEL_6, ZIO_ZSTD_LEVEL_6},
156 {ZIO_ZSTD_LEVEL_7, ZIO_ZSTD_LEVEL_7},
157 {ZIO_ZSTD_LEVEL_8, ZIO_ZSTD_LEVEL_8},
158 {ZIO_ZSTD_LEVEL_9, ZIO_ZSTD_LEVEL_9},
159 {ZIO_ZSTD_LEVEL_10, ZIO_ZSTD_LEVEL_10},
160 {ZIO_ZSTD_LEVEL_11, ZIO_ZSTD_LEVEL_11},
161 {ZIO_ZSTD_LEVEL_12, ZIO_ZSTD_LEVEL_12},
162 {ZIO_ZSTD_LEVEL_13, ZIO_ZSTD_LEVEL_13},
163 {ZIO_ZSTD_LEVEL_14, ZIO_ZSTD_LEVEL_14},
164 {ZIO_ZSTD_LEVEL_15, ZIO_ZSTD_LEVEL_15},
165 {ZIO_ZSTD_LEVEL_16, ZIO_ZSTD_LEVEL_16},
166 {ZIO_ZSTD_LEVEL_17, ZIO_ZSTD_LEVEL_17},
167 {ZIO_ZSTD_LEVEL_18, ZIO_ZSTD_LEVEL_18},
168 {ZIO_ZSTD_LEVEL_19, ZIO_ZSTD_LEVEL_19},
169 {-1, ZIO_ZSTD_LEVEL_FAST_1},
170 {-2, ZIO_ZSTD_LEVEL_FAST_2},
171 {-3, ZIO_ZSTD_LEVEL_FAST_3},
172 {-4, ZIO_ZSTD_LEVEL_FAST_4},
173 {-5, ZIO_ZSTD_LEVEL_FAST_5},
174 {-6, ZIO_ZSTD_LEVEL_FAST_6},
175 {-7, ZIO_ZSTD_LEVEL_FAST_7},
176 {-8, ZIO_ZSTD_LEVEL_FAST_8},
177 {-9, ZIO_ZSTD_LEVEL_FAST_9},
178 {-10, ZIO_ZSTD_LEVEL_FAST_10},
179 {-20, ZIO_ZSTD_LEVEL_FAST_20},
180 {-30, ZIO_ZSTD_LEVEL_FAST_30},
181 {-40, ZIO_ZSTD_LEVEL_FAST_40},
182 {-50, ZIO_ZSTD_LEVEL_FAST_50},
183 {-60, ZIO_ZSTD_LEVEL_FAST_60},
184 {-70, ZIO_ZSTD_LEVEL_FAST_70},
185 {-80, ZIO_ZSTD_LEVEL_FAST_80},
186 {-90, ZIO_ZSTD_LEVEL_FAST_90},
187 {-100, ZIO_ZSTD_LEVEL_FAST_100},
188 {-500, ZIO_ZSTD_LEVEL_FAST_500},
189 {-1000, ZIO_ZSTD_LEVEL_FAST_1000},
193 * This variable represents the maximum count of the pool based on the number
194 * of CPUs plus some buffer. We default to cpu count * 4, see init_zstd.
196 static int pool_count = 16;
198 #define ZSTD_POOL_MAX pool_count
199 #define ZSTD_POOL_TIMEOUT 60 * 2
201 static struct zstd_fallback_mem zstd_dctx_fallback;
202 static struct zstd_pool *zstd_mempool_cctx;
203 static struct zstd_pool *zstd_mempool_dctx;
206 static void
207 zstd_mempool_reap(struct zstd_pool *zstd_mempool)
209 struct zstd_pool *pool;
211 if (!zstd_mempool || !ZSTDSTAT(zstd_stat_buffers)) {
212 return;
215 /* free obsolete slots */
216 for (int i = 0; i < ZSTD_POOL_MAX; i++) {
217 pool = &zstd_mempool[i];
218 if (pool->mem && mutex_tryenter(&pool->barrier)) {
219 /* Free memory if unused object older than 2 minutes */
220 if (pool->mem && gethrestime_sec() > pool->timeout) {
221 vmem_free(pool->mem, pool->size);
222 ZSTDSTAT_SUB(zstd_stat_buffers, 1);
223 ZSTDSTAT_SUB(zstd_stat_size, pool->size);
224 pool->mem = NULL;
225 pool->size = 0;
226 pool->timeout = 0;
228 mutex_exit(&pool->barrier);
234 * Try to get a cached allocated buffer from memory pool or allocate a new one
235 * if necessary. If a object is older than 2 minutes and does not fit the
236 * requested size, it will be released and a new cached entry will be allocated.
237 * If other pooled objects are detected without being used for 2 minutes, they
238 * will be released, too.
240 * The concept is that high frequency memory allocations of bigger objects are
241 * expensive. So if a lot of work is going on, allocations will be kept for a
242 * while and can be reused in that time frame.
244 * The scheduled release will be updated every time a object is reused.
247 static void *
248 zstd_mempool_alloc(struct zstd_pool *zstd_mempool, size_t size)
250 struct zstd_pool *pool;
251 struct zstd_kmem *mem = NULL;
253 if (!zstd_mempool) {
254 return (NULL);
257 /* Seek for preallocated memory slot and free obsolete slots */
258 for (int i = 0; i < ZSTD_POOL_MAX; i++) {
259 pool = &zstd_mempool[i];
261 * This lock is simply a marker for a pool object beeing in use.
262 * If it's already hold, it will be skipped.
264 * We need to create it before checking it to avoid race
265 * conditions caused by running in a threaded context.
267 * The lock is later released by zstd_mempool_free.
269 if (mutex_tryenter(&pool->barrier)) {
271 * Check if objects fits the size, if so we take it and
272 * update the timestamp.
274 if (pool->mem && size <= pool->size) {
275 pool->timeout = gethrestime_sec() +
276 ZSTD_POOL_TIMEOUT;
277 mem = pool->mem;
278 return (mem);
280 mutex_exit(&pool->barrier);
285 * If no preallocated slot was found, try to fill in a new one.
287 * We run a similar algorithm twice here to avoid pool fragmentation.
288 * The first one may generate holes in the list if objects get released.
289 * We always make sure that these holes get filled instead of adding new
290 * allocations constantly at the end.
292 for (int i = 0; i < ZSTD_POOL_MAX; i++) {
293 pool = &zstd_mempool[i];
294 if (mutex_tryenter(&pool->barrier)) {
295 /* Object is free, try to allocate new one */
296 if (!pool->mem) {
297 mem = vmem_alloc(size, KM_SLEEP);
298 if (mem) {
299 ZSTDSTAT_ADD(zstd_stat_buffers, 1);
300 ZSTDSTAT_ADD(zstd_stat_size, size);
301 pool->mem = mem;
302 pool->size = size;
303 /* Keep track for later release */
304 mem->pool = pool;
305 mem->kmem_type = ZSTD_KMEM_POOL;
306 mem->kmem_size = size;
310 if (size <= pool->size) {
311 /* Update timestamp */
312 pool->timeout = gethrestime_sec() +
313 ZSTD_POOL_TIMEOUT;
315 return (pool->mem);
318 mutex_exit(&pool->barrier);
323 * If the pool is full or the allocation failed, try lazy allocation
324 * instead.
326 if (!mem) {
327 mem = vmem_alloc(size, KM_NOSLEEP);
328 if (mem) {
329 mem->pool = NULL;
330 mem->kmem_type = ZSTD_KMEM_DEFAULT;
331 mem->kmem_size = size;
335 return (mem);
338 /* Mark object as released by releasing the barrier mutex */
339 static void
340 zstd_mempool_free(struct zstd_kmem *z)
342 mutex_exit(&z->pool->barrier);
345 /* Convert ZFS internal enum to ZSTD level */
346 static int
347 zstd_enum_to_level(enum zio_zstd_levels level, int16_t *zstd_level)
349 if (level > 0 && level <= ZIO_ZSTD_LEVEL_19) {
350 *zstd_level = zstd_levels[level - 1].zstd_level;
351 return (0);
353 if (level >= ZIO_ZSTD_LEVEL_FAST_1 &&
354 level <= ZIO_ZSTD_LEVEL_FAST_1000) {
355 *zstd_level = zstd_levels[level - ZIO_ZSTD_LEVEL_FAST_1
356 + ZIO_ZSTD_LEVEL_19].zstd_level;
357 return (0);
360 /* Invalid/unknown zfs compression enum - this should never happen. */
361 return (1);
364 /* Compress block using zstd */
365 size_t
366 zfs_zstd_compress(void *s_start, void *d_start, size_t s_len, size_t d_len,
367 int level)
369 size_t c_len;
370 int16_t zstd_level;
371 zfs_zstdhdr_t *hdr;
372 ZSTD_CCtx *cctx;
374 hdr = (zfs_zstdhdr_t *)d_start;
376 /* Skip compression if the specified level is invalid */
377 if (zstd_enum_to_level(level, &zstd_level)) {
378 ZSTDSTAT_BUMP(zstd_stat_com_inval);
379 return (s_len);
382 ASSERT3U(d_len, >=, sizeof (*hdr));
383 ASSERT3U(d_len, <=, s_len);
384 ASSERT3U(zstd_level, !=, 0);
386 cctx = ZSTD_createCCtx_advanced(zstd_malloc);
389 * Out of kernel memory, gently fall through - this will disable
390 * compression in zio_compress_data
392 if (!cctx) {
393 ZSTDSTAT_BUMP(zstd_stat_com_alloc_fail);
394 return (s_len);
397 /* Set the compression level */
398 ZSTD_CCtx_setParameter(cctx, ZSTD_c_compressionLevel, zstd_level);
400 /* Use the "magicless" zstd header which saves us 4 header bytes */
401 ZSTD_CCtx_setParameter(cctx, ZSTD_c_format, ZSTD_f_zstd1_magicless);
404 * Disable redundant checksum calculation and content size storage since
405 * this is already done by ZFS itself.
407 ZSTD_CCtx_setParameter(cctx, ZSTD_c_checksumFlag, 0);
408 ZSTD_CCtx_setParameter(cctx, ZSTD_c_contentSizeFlag, 0);
410 c_len = ZSTD_compress2(cctx,
411 hdr->data,
412 d_len - sizeof (*hdr),
413 s_start, s_len);
415 ZSTD_freeCCtx(cctx);
417 /* Error in the compression routine, disable compression. */
418 if (ZSTD_isError(c_len)) {
420 * If we are aborting the compression because the saves are
421 * too small, that is not a failure. Everything else is a
422 * failure, so increment the compression failure counter.
424 if (ZSTD_getErrorCode(c_len) != ZSTD_error_dstSize_tooSmall) {
425 ZSTDSTAT_BUMP(zstd_stat_com_fail);
427 return (s_len);
431 * Encode the compressed buffer size at the start. We'll need this in
432 * decompression to counter the effects of padding which might be added
433 * to the compressed buffer and which, if unhandled, would confuse the
434 * hell out of our decompression function.
436 hdr->c_len = BE_32(c_len);
439 * Check version for overflow.
440 * The limit of 24 bits must not be exceeded. This allows a maximum
441 * version 1677.72.15 which we don't expect to be ever reached.
443 ASSERT3U(ZSTD_VERSION_NUMBER, <=, 0xFFFFFF);
446 * Encode the compression level as well. We may need to know the
447 * original compression level if compressed_arc is disabled, to match
448 * the compression settings to write this block to the L2ARC.
450 * Encode the actual level, so if the enum changes in the future, we
451 * will be compatible.
453 * The upper 24 bits store the ZSTD version to be able to provide
454 * future compatibility, since new versions might enhance the
455 * compression algorithm in a way, where the compressed data will
456 * change.
458 * As soon as such incompatibility occurs, handling code needs to be
459 * added, differentiating between the versions.
461 hdr->version = ZSTD_VERSION_NUMBER;
462 hdr->level = level;
463 hdr->raw_version_level = BE_32(hdr->raw_version_level);
465 return (c_len + sizeof (*hdr));
468 /* Decompress block using zstd and return its stored level */
470 zfs_zstd_decompress_level(void *s_start, void *d_start, size_t s_len,
471 size_t d_len, uint8_t *level)
473 ZSTD_DCtx *dctx;
474 size_t result;
475 int16_t zstd_level;
476 uint32_t c_len;
477 const zfs_zstdhdr_t *hdr;
478 zfs_zstdhdr_t hdr_copy;
480 hdr = (const zfs_zstdhdr_t *)s_start;
481 c_len = BE_32(hdr->c_len);
484 * Make a copy instead of directly converting the header, since we must
485 * not modify the original data that may be used again later.
487 hdr_copy.raw_version_level = BE_32(hdr->raw_version_level);
490 * NOTE: We ignore the ZSTD version for now. As soon as any
491 * incompatibility occurrs, it has to be handled accordingly.
492 * The version can be accessed via `hdr_copy.version`.
496 * Convert and check the level
497 * An invalid level is a strong indicator for data corruption! In such
498 * case return an error so the upper layers can try to fix it.
500 if (zstd_enum_to_level(hdr_copy.level, &zstd_level)) {
501 ZSTDSTAT_BUMP(zstd_stat_dec_inval);
502 return (1);
505 ASSERT3U(d_len, >=, s_len);
506 ASSERT3U(hdr_copy.level, !=, ZIO_COMPLEVEL_INHERIT);
508 /* Invalid compressed buffer size encoded at start */
509 if (c_len + sizeof (*hdr) > s_len) {
510 ZSTDSTAT_BUMP(zstd_stat_dec_header_inval);
511 return (1);
514 dctx = ZSTD_createDCtx_advanced(zstd_dctx_malloc);
515 if (!dctx) {
516 ZSTDSTAT_BUMP(zstd_stat_dec_alloc_fail);
517 return (1);
520 /* Set header type to "magicless" */
521 ZSTD_DCtx_setParameter(dctx, ZSTD_d_format, ZSTD_f_zstd1_magicless);
523 /* Decompress the data and release the context */
524 result = ZSTD_decompressDCtx(dctx, d_start, d_len, hdr->data, c_len);
525 ZSTD_freeDCtx(dctx);
528 * Returns 0 on success (decompression function returned non-negative)
529 * and non-zero on failure (decompression function returned negative.
531 if (ZSTD_isError(result)) {
532 ZSTDSTAT_BUMP(zstd_stat_dec_fail);
533 return (1);
536 if (level) {
537 *level = hdr_copy.level;
540 return (0);
543 /* Decompress datablock using zstd */
545 zfs_zstd_decompress(void *s_start, void *d_start, size_t s_len, size_t d_len,
546 int level __maybe_unused)
549 return (zfs_zstd_decompress_level(s_start, d_start, s_len, d_len,
550 NULL));
553 /* Allocator for zstd compression context using mempool_allocator */
554 static void *
555 zstd_alloc(void *opaque __maybe_unused, size_t size)
557 size_t nbytes = sizeof (struct zstd_kmem) + size;
558 struct zstd_kmem *z = NULL;
560 z = (struct zstd_kmem *)zstd_mempool_alloc(zstd_mempool_cctx, nbytes);
562 if (!z) {
563 ZSTDSTAT_BUMP(zstd_stat_alloc_fail);
564 return (NULL);
567 return ((void*)z + (sizeof (struct zstd_kmem)));
571 * Allocator for zstd decompression context using mempool_allocator with
572 * fallback to reserved memory if allocation fails
574 static void *
575 zstd_dctx_alloc(void *opaque __maybe_unused, size_t size)
577 size_t nbytes = sizeof (struct zstd_kmem) + size;
578 struct zstd_kmem *z = NULL;
579 enum zstd_kmem_type type = ZSTD_KMEM_DEFAULT;
581 z = (struct zstd_kmem *)zstd_mempool_alloc(zstd_mempool_dctx, nbytes);
582 if (!z) {
583 /* Try harder, decompression shall not fail */
584 z = vmem_alloc(nbytes, KM_SLEEP);
585 if (z) {
586 z->pool = NULL;
588 ZSTDSTAT_BUMP(zstd_stat_alloc_fail);
589 } else {
590 return ((void*)z + (sizeof (struct zstd_kmem)));
593 /* Fallback if everything fails */
594 if (!z) {
596 * Barrier since we only can handle it in a single thread. All
597 * other following threads need to wait here until decompression
598 * is completed. zstd_free will release this barrier later.
600 mutex_enter(&zstd_dctx_fallback.barrier);
602 z = zstd_dctx_fallback.mem;
603 type = ZSTD_KMEM_DCTX;
604 ZSTDSTAT_BUMP(zstd_stat_alloc_fallback);
607 /* Allocation should always be successful */
608 if (!z) {
609 return (NULL);
612 z->kmem_type = type;
613 z->kmem_size = nbytes;
615 return ((void*)z + (sizeof (struct zstd_kmem)));
618 /* Free allocated memory by its specific type */
619 static void
620 zstd_free(void *opaque __maybe_unused, void *ptr)
622 struct zstd_kmem *z = (ptr - sizeof (struct zstd_kmem));
623 enum zstd_kmem_type type;
625 ASSERT3U(z->kmem_type, <, ZSTD_KMEM_COUNT);
626 ASSERT3U(z->kmem_type, >, ZSTD_KMEM_UNKNOWN);
628 type = z->kmem_type;
629 switch (type) {
630 case ZSTD_KMEM_DEFAULT:
631 vmem_free(z, z->kmem_size);
632 break;
633 case ZSTD_KMEM_POOL:
634 zstd_mempool_free(z);
635 break;
636 case ZSTD_KMEM_DCTX:
637 mutex_exit(&zstd_dctx_fallback.barrier);
638 break;
639 default:
640 break;
644 /* Allocate fallback memory to ensure safe decompression */
645 static void __init
646 create_fallback_mem(struct zstd_fallback_mem *mem, size_t size)
648 mem->mem_size = size;
649 mem->mem = vmem_zalloc(mem->mem_size, KM_SLEEP);
650 mutex_init(&mem->barrier, NULL, MUTEX_DEFAULT, NULL);
653 /* Initialize memory pool barrier mutexes */
654 static void __init
655 zstd_mempool_init(void)
657 zstd_mempool_cctx = (struct zstd_pool *)
658 kmem_zalloc(ZSTD_POOL_MAX * sizeof (struct zstd_pool), KM_SLEEP);
659 zstd_mempool_dctx = (struct zstd_pool *)
660 kmem_zalloc(ZSTD_POOL_MAX * sizeof (struct zstd_pool), KM_SLEEP);
662 for (int i = 0; i < ZSTD_POOL_MAX; i++) {
663 mutex_init(&zstd_mempool_cctx[i].barrier, NULL,
664 MUTEX_DEFAULT, NULL);
665 mutex_init(&zstd_mempool_dctx[i].barrier, NULL,
666 MUTEX_DEFAULT, NULL);
670 /* Initialize zstd-related memory handling */
671 static int __init
672 zstd_meminit(void)
674 zstd_mempool_init();
677 * Estimate the size of the fallback decompression context.
678 * The expected size on x64 with current ZSTD should be about 160 KB.
680 create_fallback_mem(&zstd_dctx_fallback,
681 P2ROUNDUP(ZSTD_estimateDCtxSize() + sizeof (struct zstd_kmem),
682 PAGESIZE));
684 return (0);
687 /* Release object from pool and free memory */
688 static void __exit
689 release_pool(struct zstd_pool *pool)
691 mutex_destroy(&pool->barrier);
692 vmem_free(pool->mem, pool->size);
693 pool->mem = NULL;
694 pool->size = 0;
697 /* Release memory pool objects */
698 static void __exit
699 zstd_mempool_deinit(void)
701 for (int i = 0; i < ZSTD_POOL_MAX; i++) {
702 release_pool(&zstd_mempool_cctx[i]);
703 release_pool(&zstd_mempool_dctx[i]);
706 kmem_free(zstd_mempool_dctx, ZSTD_POOL_MAX * sizeof (struct zstd_pool));
707 kmem_free(zstd_mempool_cctx, ZSTD_POOL_MAX * sizeof (struct zstd_pool));
708 zstd_mempool_dctx = NULL;
709 zstd_mempool_cctx = NULL;
712 /* release unused memory from pool */
714 void
715 zfs_zstd_cache_reap_now(void)
718 * calling alloc with zero size seeks
719 * and releases old unused objects
721 zstd_mempool_reap(zstd_mempool_cctx);
722 zstd_mempool_reap(zstd_mempool_dctx);
725 extern int __init
726 zstd_init(void)
728 /* Set pool size by using maximum sane thread count * 4 */
729 pool_count = (boot_ncpus * 4);
730 zstd_meminit();
732 /* Initialize kstat */
733 zstd_ksp = kstat_create("zfs", 0, "zstd", "misc",
734 KSTAT_TYPE_NAMED, sizeof (zstd_stats) / sizeof (kstat_named_t),
735 KSTAT_FLAG_VIRTUAL);
736 if (zstd_ksp != NULL) {
737 zstd_ksp->ks_data = &zstd_stats;
738 kstat_install(zstd_ksp);
741 return (0);
744 extern void __exit
745 zstd_fini(void)
747 /* Deinitialize kstat */
748 if (zstd_ksp != NULL) {
749 kstat_delete(zstd_ksp);
750 zstd_ksp = NULL;
753 /* Release fallback memory */
754 vmem_free(zstd_dctx_fallback.mem, zstd_dctx_fallback.mem_size);
755 mutex_destroy(&zstd_dctx_fallback.barrier);
757 /* Deinit memory pool */
758 zstd_mempool_deinit();
761 #if defined(_KERNEL)
762 module_init(zstd_init);
763 module_exit(zstd_fini);
765 ZFS_MODULE_DESCRIPTION("ZSTD Compression for ZFS");
766 ZFS_MODULE_LICENSE("Dual BSD/GPL");
767 ZFS_MODULE_VERSION(ZSTD_VERSION_STRING);
769 EXPORT_SYMBOL(zfs_zstd_compress);
770 EXPORT_SYMBOL(zfs_zstd_decompress_level);
771 EXPORT_SYMBOL(zfs_zstd_decompress);
772 EXPORT_SYMBOL(zfs_zstd_cache_reap_now);
773 #endif