zed: Reduce log noise for large JBODs
[zfs.git] / cmd / zed / agents / zfs_mod.c
bloba8d084bb4bd33c1b77907b81016e98fb4c2a3737
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2007, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012 by Delphix. All rights reserved.
24 * Copyright 2014 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2016, 2017, Intel Corporation.
26 * Copyright (c) 2017 Open-E, Inc. All Rights Reserved.
30 * ZFS syseventd module.
32 * file origin: openzfs/usr/src/cmd/syseventd/modules/zfs_mod/zfs_mod.c
34 * The purpose of this module is to identify when devices are added to the
35 * system, and appropriately online or replace the affected vdevs.
37 * When a device is added to the system:
39 * 1. Search for any vdevs whose devid matches that of the newly added
40 * device.
42 * 2. If no vdevs are found, then search for any vdevs whose udev path
43 * matches that of the new device.
45 * 3. If no vdevs match by either method, then ignore the event.
47 * 4. Attempt to online the device with a flag to indicate that it should
48 * be unspared when resilvering completes. If this succeeds, then the
49 * same device was inserted and we should continue normally.
51 * 5. If the pool does not have the 'autoreplace' property set, attempt to
52 * online the device again without the unspare flag, which will
53 * generate a FMA fault.
55 * 6. If the pool has the 'autoreplace' property set, and the matching vdev
56 * is a whole disk, then label the new disk and attempt a 'zpool
57 * replace'.
59 * The module responds to EC_DEV_ADD events. The special ESC_ZFS_VDEV_CHECK
60 * event indicates that a device failed to open during pool load, but the
61 * autoreplace property was set. In this case, we deferred the associated
62 * FMA fault until our module had a chance to process the autoreplace logic.
63 * If the device could not be replaced, then the second online attempt will
64 * trigger the FMA fault that we skipped earlier.
66 * On Linux udev provides a disk insert for both the disk and the partition.
69 #include <ctype.h>
70 #include <fcntl.h>
71 #include <libnvpair.h>
72 #include <libzfs.h>
73 #include <libzutil.h>
74 #include <limits.h>
75 #include <stddef.h>
76 #include <stdlib.h>
77 #include <string.h>
78 #include <syslog.h>
79 #include <sys/list.h>
80 #include <sys/sunddi.h>
81 #include <sys/sysevent/eventdefs.h>
82 #include <sys/sysevent/dev.h>
83 #include <thread_pool.h>
84 #include <pthread.h>
85 #include <unistd.h>
86 #include <errno.h>
87 #include "zfs_agents.h"
88 #include "../zed_log.h"
90 #define DEV_BYID_PATH "/dev/disk/by-id/"
91 #define DEV_BYPATH_PATH "/dev/disk/by-path/"
92 #define DEV_BYVDEV_PATH "/dev/disk/by-vdev/"
94 typedef void (*zfs_process_func_t)(zpool_handle_t *, nvlist_t *, boolean_t);
96 libzfs_handle_t *g_zfshdl;
97 list_t g_pool_list; /* list of unavailable pools at initialization */
98 list_t g_device_list; /* list of disks with asynchronous label request */
99 tpool_t *g_tpool;
100 boolean_t g_enumeration_done;
101 pthread_t g_zfs_tid; /* zfs_enum_pools() thread */
103 typedef struct unavailpool {
104 zpool_handle_t *uap_zhp;
105 list_node_t uap_node;
106 } unavailpool_t;
108 typedef struct pendingdev {
109 char pd_physpath[128];
110 list_node_t pd_node;
111 } pendingdev_t;
113 static int
114 zfs_toplevel_state(zpool_handle_t *zhp)
116 nvlist_t *nvroot;
117 vdev_stat_t *vs;
118 unsigned int c;
120 verify(nvlist_lookup_nvlist(zpool_get_config(zhp, NULL),
121 ZPOOL_CONFIG_VDEV_TREE, &nvroot) == 0);
122 verify(nvlist_lookup_uint64_array(nvroot, ZPOOL_CONFIG_VDEV_STATS,
123 (uint64_t **)&vs, &c) == 0);
124 return (vs->vs_state);
127 static int
128 zfs_unavail_pool(zpool_handle_t *zhp, void *data)
130 zed_log_msg(LOG_INFO, "zfs_unavail_pool: examining '%s' (state %d)",
131 zpool_get_name(zhp), (int)zfs_toplevel_state(zhp));
133 if (zfs_toplevel_state(zhp) < VDEV_STATE_DEGRADED) {
134 unavailpool_t *uap;
135 uap = malloc(sizeof (unavailpool_t));
136 if (uap == NULL) {
137 perror("malloc");
138 exit(EXIT_FAILURE);
141 uap->uap_zhp = zhp;
142 list_insert_tail((list_t *)data, uap);
143 } else {
144 zpool_close(zhp);
146 return (0);
150 * Two stage replace on Linux
151 * since we get disk notifications
152 * we can wait for partitioned disk slice to show up!
154 * First stage tags the disk, initiates async partitioning, and returns
155 * Second stage finds the tag and proceeds to ZFS labeling/replace
157 * disk-add --> label-disk + tag-disk --> partition-add --> zpool_vdev_attach
159 * 1. physical match with no fs, no partition
160 * tag it top, partition disk
162 * 2. physical match again, see partition and tag
167 * The device associated with the given vdev (either by devid or physical path)
168 * has been added to the system. If 'isdisk' is set, then we only attempt a
169 * replacement if it's a whole disk. This also implies that we should label the
170 * disk first.
172 * First, we attempt to online the device (making sure to undo any spare
173 * operation when finished). If this succeeds, then we're done. If it fails,
174 * and the new state is VDEV_CANT_OPEN, it indicates that the device was opened,
175 * but that the label was not what we expected. If the 'autoreplace' property
176 * is enabled, then we relabel the disk (if specified), and attempt a 'zpool
177 * replace'. If the online is successful, but the new state is something else
178 * (REMOVED or FAULTED), it indicates that we're out of sync or in some sort of
179 * race, and we should avoid attempting to relabel the disk.
181 * Also can arrive here from a ESC_ZFS_VDEV_CHECK event
183 static void
184 zfs_process_add(zpool_handle_t *zhp, nvlist_t *vdev, boolean_t labeled)
186 const char *path;
187 vdev_state_t newstate;
188 nvlist_t *nvroot, *newvd;
189 pendingdev_t *device;
190 uint64_t wholedisk = 0ULL;
191 uint64_t offline = 0ULL, faulted = 0ULL;
192 uint64_t guid = 0ULL;
193 uint64_t is_spare = 0;
194 const char *physpath = NULL, *new_devid = NULL, *enc_sysfs_path = NULL;
195 char rawpath[PATH_MAX], fullpath[PATH_MAX];
196 char devpath[PATH_MAX];
197 int ret;
198 int online_flag = ZFS_ONLINE_CHECKREMOVE | ZFS_ONLINE_UNSPARE;
199 boolean_t is_sd = B_FALSE;
200 boolean_t is_mpath_wholedisk = B_FALSE;
201 uint_t c;
202 vdev_stat_t *vs;
204 if (nvlist_lookup_string(vdev, ZPOOL_CONFIG_PATH, &path) != 0)
205 return;
207 /* Skip healthy disks */
208 verify(nvlist_lookup_uint64_array(vdev, ZPOOL_CONFIG_VDEV_STATS,
209 (uint64_t **)&vs, &c) == 0);
210 if (vs->vs_state == VDEV_STATE_HEALTHY) {
211 zed_log_msg(LOG_INFO, "%s: %s is already healthy, skip it.",
212 __func__, path);
213 return;
216 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_PHYS_PATH, &physpath);
217 (void) nvlist_lookup_string(vdev, ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH,
218 &enc_sysfs_path);
219 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
220 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_OFFLINE, &offline);
221 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_FAULTED, &faulted);
223 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_GUID, &guid);
224 (void) nvlist_lookup_uint64(vdev, ZPOOL_CONFIG_IS_SPARE, &is_spare);
227 * Special case:
229 * We've seen times where a disk won't have a ZPOOL_CONFIG_PHYS_PATH
230 * entry in their config. For example, on this force-faulted disk:
232 * children[0]:
233 * type: 'disk'
234 * id: 0
235 * guid: 14309659774640089719
236 * path: '/dev/disk/by-vdev/L28'
237 * whole_disk: 0
238 * DTL: 654
239 * create_txg: 4
240 * com.delphix:vdev_zap_leaf: 1161
241 * faulted: 1
242 * aux_state: 'external'
243 * children[1]:
244 * type: 'disk'
245 * id: 1
246 * guid: 16002508084177980912
247 * path: '/dev/disk/by-vdev/L29'
248 * devid: 'dm-uuid-mpath-35000c500a61d68a3'
249 * phys_path: 'L29'
250 * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
251 * whole_disk: 0
252 * DTL: 1028
253 * create_txg: 4
254 * com.delphix:vdev_zap_leaf: 131
256 * If the disk's path is a /dev/disk/by-vdev/ path, then we can infer
257 * the ZPOOL_CONFIG_PHYS_PATH from the by-vdev disk name.
259 if (physpath == NULL && path != NULL) {
260 /* If path begins with "/dev/disk/by-vdev/" ... */
261 if (strncmp(path, DEV_BYVDEV_PATH,
262 strlen(DEV_BYVDEV_PATH)) == 0) {
263 /* Set physpath to the char after "/dev/disk/by-vdev" */
264 physpath = &path[strlen(DEV_BYVDEV_PATH)];
269 * We don't want to autoreplace offlined disks. However, we do want to
270 * replace force-faulted disks (`zpool offline -f`). Force-faulted
271 * disks have both offline=1 and faulted=1 in the nvlist.
273 if (offline && !faulted) {
274 zed_log_msg(LOG_INFO, "%s: %s is offline, skip autoreplace",
275 __func__, path);
276 return;
279 is_mpath_wholedisk = is_mpath_whole_disk(path);
280 zed_log_msg(LOG_INFO, "zfs_process_add: pool '%s' vdev '%s', phys '%s'"
281 " %s blank disk, %s mpath blank disk, %s labeled, enc sysfs '%s', "
282 "(guid %llu)",
283 zpool_get_name(zhp), path,
284 physpath ? physpath : "NULL",
285 wholedisk ? "is" : "not",
286 is_mpath_wholedisk? "is" : "not",
287 labeled ? "is" : "not",
288 enc_sysfs_path,
289 (long long unsigned int)guid);
292 * The VDEV guid is preferred for identification (gets passed in path)
294 if (guid != 0) {
295 (void) snprintf(fullpath, sizeof (fullpath), "%llu",
296 (long long unsigned int)guid);
297 } else {
299 * otherwise use path sans partition suffix for whole disks
301 (void) strlcpy(fullpath, path, sizeof (fullpath));
302 if (wholedisk) {
303 char *spath = zfs_strip_partition(fullpath);
304 if (!spath) {
305 zed_log_msg(LOG_INFO, "%s: Can't alloc",
306 __func__);
307 return;
310 (void) strlcpy(fullpath, spath, sizeof (fullpath));
311 free(spath);
315 if (is_spare)
316 online_flag |= ZFS_ONLINE_SPARE;
319 * Attempt to online the device.
321 if (zpool_vdev_online(zhp, fullpath, online_flag, &newstate) == 0 &&
322 (newstate == VDEV_STATE_HEALTHY ||
323 newstate == VDEV_STATE_DEGRADED)) {
324 zed_log_msg(LOG_INFO,
325 " zpool_vdev_online: vdev '%s' ('%s') is "
326 "%s", fullpath, physpath, (newstate == VDEV_STATE_HEALTHY) ?
327 "HEALTHY" : "DEGRADED");
328 return;
332 * vdev_id alias rule for using scsi_debug devices (FMA automated
333 * testing)
335 if (physpath != NULL && strcmp("scsidebug", physpath) == 0)
336 is_sd = B_TRUE;
339 * If the pool doesn't have the autoreplace property set, then use
340 * vdev online to trigger a FMA fault by posting an ereport.
342 if (!zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOREPLACE, NULL) ||
343 !(wholedisk || is_mpath_wholedisk) || (physpath == NULL)) {
344 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
345 &newstate);
346 zed_log_msg(LOG_INFO, "Pool's autoreplace is not enabled or "
347 "not a blank disk for '%s' ('%s')", fullpath,
348 physpath);
349 return;
353 * Convert physical path into its current device node. Rawpath
354 * needs to be /dev/disk/by-vdev for a scsi_debug device since
355 * /dev/disk/by-path will not be present.
357 (void) snprintf(rawpath, sizeof (rawpath), "%s%s",
358 is_sd ? DEV_BYVDEV_PATH : DEV_BYPATH_PATH, physpath);
360 if (realpath(rawpath, devpath) == NULL && !is_mpath_wholedisk) {
361 zed_log_msg(LOG_INFO, " realpath: %s failed (%s)",
362 rawpath, strerror(errno));
364 (void) zpool_vdev_online(zhp, fullpath, ZFS_ONLINE_FORCEFAULT,
365 &newstate);
367 zed_log_msg(LOG_INFO, " zpool_vdev_online: %s FORCEFAULT (%s)",
368 fullpath, libzfs_error_description(g_zfshdl));
369 return;
372 /* Only autoreplace bad disks */
373 if ((vs->vs_state != VDEV_STATE_DEGRADED) &&
374 (vs->vs_state != VDEV_STATE_FAULTED) &&
375 (vs->vs_state != VDEV_STATE_CANT_OPEN)) {
376 zed_log_msg(LOG_INFO, " not autoreplacing since disk isn't in "
377 "a bad state (currently %llu)", vs->vs_state);
378 return;
381 nvlist_lookup_string(vdev, "new_devid", &new_devid);
383 if (is_mpath_wholedisk) {
384 /* Don't label device mapper or multipath disks. */
385 } else if (!labeled) {
387 * we're auto-replacing a raw disk, so label it first
389 char *leafname;
392 * If this is a request to label a whole disk, then attempt to
393 * write out the label. Before we can label the disk, we need
394 * to map the physical string that was matched on to the under
395 * lying device node.
397 * If any part of this process fails, then do a force online
398 * to trigger a ZFS fault for the device (and any hot spare
399 * replacement).
401 leafname = strrchr(devpath, '/') + 1;
404 * If this is a request to label a whole disk, then attempt to
405 * write out the label.
407 if (zpool_label_disk(g_zfshdl, zhp, leafname) != 0) {
408 zed_log_msg(LOG_INFO, " zpool_label_disk: could not "
409 "label '%s' (%s)", leafname,
410 libzfs_error_description(g_zfshdl));
412 (void) zpool_vdev_online(zhp, fullpath,
413 ZFS_ONLINE_FORCEFAULT, &newstate);
414 return;
418 * The disk labeling is asynchronous on Linux. Just record
419 * this label request and return as there will be another
420 * disk add event for the partition after the labeling is
421 * completed.
423 device = malloc(sizeof (pendingdev_t));
424 if (device == NULL) {
425 perror("malloc");
426 exit(EXIT_FAILURE);
429 (void) strlcpy(device->pd_physpath, physpath,
430 sizeof (device->pd_physpath));
431 list_insert_tail(&g_device_list, device);
433 zed_log_msg(LOG_INFO, " zpool_label_disk: async '%s' (%llu)",
434 leafname, (u_longlong_t)guid);
436 return; /* resumes at EC_DEV_ADD.ESC_DISK for partition */
438 } else /* labeled */ {
439 boolean_t found = B_FALSE;
441 * match up with request above to label the disk
443 for (device = list_head(&g_device_list); device != NULL;
444 device = list_next(&g_device_list, device)) {
445 if (strcmp(physpath, device->pd_physpath) == 0) {
446 list_remove(&g_device_list, device);
447 free(device);
448 found = B_TRUE;
449 break;
451 zed_log_msg(LOG_INFO, "zpool_label_disk: %s != %s",
452 physpath, device->pd_physpath);
454 if (!found) {
455 /* unexpected partition slice encountered */
456 zed_log_msg(LOG_INFO, "labeled disk %s unexpected here",
457 fullpath);
458 (void) zpool_vdev_online(zhp, fullpath,
459 ZFS_ONLINE_FORCEFAULT, &newstate);
460 return;
463 zed_log_msg(LOG_INFO, " zpool_label_disk: resume '%s' (%llu)",
464 physpath, (u_longlong_t)guid);
466 (void) snprintf(devpath, sizeof (devpath), "%s%s",
467 DEV_BYID_PATH, new_devid);
471 * Construct the root vdev to pass to zpool_vdev_attach(). While adding
472 * the entire vdev structure is harmless, we construct a reduced set of
473 * path/physpath/wholedisk to keep it simple.
475 if (nvlist_alloc(&nvroot, NV_UNIQUE_NAME, 0) != 0) {
476 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
477 return;
479 if (nvlist_alloc(&newvd, NV_UNIQUE_NAME, 0) != 0) {
480 zed_log_msg(LOG_WARNING, "zfs_mod: nvlist_alloc out of memory");
481 nvlist_free(nvroot);
482 return;
485 if (nvlist_add_string(newvd, ZPOOL_CONFIG_TYPE, VDEV_TYPE_DISK) != 0 ||
486 nvlist_add_string(newvd, ZPOOL_CONFIG_PATH, path) != 0 ||
487 nvlist_add_string(newvd, ZPOOL_CONFIG_DEVID, new_devid) != 0 ||
488 (physpath != NULL && nvlist_add_string(newvd,
489 ZPOOL_CONFIG_PHYS_PATH, physpath) != 0) ||
490 (enc_sysfs_path != NULL && nvlist_add_string(newvd,
491 ZPOOL_CONFIG_VDEV_ENC_SYSFS_PATH, enc_sysfs_path) != 0) ||
492 nvlist_add_uint64(newvd, ZPOOL_CONFIG_WHOLE_DISK, wholedisk) != 0 ||
493 nvlist_add_string(nvroot, ZPOOL_CONFIG_TYPE, VDEV_TYPE_ROOT) != 0 ||
494 nvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_CHILDREN,
495 (const nvlist_t **)&newvd, 1) != 0) {
496 zed_log_msg(LOG_WARNING, "zfs_mod: unable to add nvlist pairs");
497 nvlist_free(newvd);
498 nvlist_free(nvroot);
499 return;
502 nvlist_free(newvd);
505 * Wait for udev to verify the links exist, then auto-replace
506 * the leaf disk at same physical location.
508 if (zpool_label_disk_wait(path, 3000) != 0) {
509 zed_log_msg(LOG_WARNING, "zfs_mod: expected replacement "
510 "disk %s is missing", path);
511 nvlist_free(nvroot);
512 return;
516 * Prefer sequential resilvering when supported (mirrors and dRAID),
517 * otherwise fallback to a traditional healing resilver.
519 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot, B_TRUE, B_TRUE);
520 if (ret != 0) {
521 ret = zpool_vdev_attach(zhp, fullpath, path, nvroot,
522 B_TRUE, B_FALSE);
525 zed_log_msg(LOG_INFO, " zpool_vdev_replace: %s with %s (%s)",
526 fullpath, path, (ret == 0) ? "no errors" :
527 libzfs_error_description(g_zfshdl));
529 nvlist_free(nvroot);
533 * Utility functions to find a vdev matching given criteria.
535 typedef struct dev_data {
536 const char *dd_compare;
537 const char *dd_prop;
538 zfs_process_func_t dd_func;
539 boolean_t dd_found;
540 boolean_t dd_islabeled;
541 uint64_t dd_pool_guid;
542 uint64_t dd_vdev_guid;
543 uint64_t dd_new_vdev_guid;
544 const char *dd_new_devid;
545 uint64_t dd_num_spares;
546 } dev_data_t;
548 static void
549 zfs_iter_vdev(zpool_handle_t *zhp, nvlist_t *nvl, void *data)
551 dev_data_t *dp = data;
552 const char *path = NULL;
553 uint_t c, children;
554 nvlist_t **child;
555 uint64_t guid = 0;
556 uint64_t isspare = 0;
559 * First iterate over any children.
561 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN,
562 &child, &children) == 0) {
563 for (c = 0; c < children; c++)
564 zfs_iter_vdev(zhp, child[c], data);
568 * Iterate over any spares and cache devices
570 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_SPARES,
571 &child, &children) == 0) {
572 for (c = 0; c < children; c++)
573 zfs_iter_vdev(zhp, child[c], data);
575 if (nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_L2CACHE,
576 &child, &children) == 0) {
577 for (c = 0; c < children; c++)
578 zfs_iter_vdev(zhp, child[c], data);
581 /* once a vdev was matched and processed there is nothing left to do */
582 if (dp->dd_found && dp->dd_num_spares == 0)
583 return;
584 (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_GUID, &guid);
587 * Match by GUID if available otherwise fallback to devid or physical
589 if (dp->dd_vdev_guid != 0) {
590 if (guid != dp->dd_vdev_guid)
591 return;
592 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched on %llu", guid);
593 dp->dd_found = B_TRUE;
595 } else if (dp->dd_compare != NULL) {
597 * NOTE: On Linux there is an event for partition, so unlike
598 * illumos, substring matching is not required to accommodate
599 * the partition suffix. An exact match will be present in
600 * the dp->dd_compare value.
601 * If the attached disk already contains a vdev GUID, it means
602 * the disk is not clean. In such a scenario, the physical path
603 * would be a match that makes the disk faulted when trying to
604 * online it. So, we would only want to proceed if either GUID
605 * matches with the last attached disk or the disk is in clean
606 * state.
608 if (nvlist_lookup_string(nvl, dp->dd_prop, &path) != 0 ||
609 strcmp(dp->dd_compare, path) != 0) {
610 return;
612 if (dp->dd_new_vdev_guid != 0 && dp->dd_new_vdev_guid != guid) {
613 zed_log_msg(LOG_INFO, " %s: no match (GUID:%llu"
614 " != vdev GUID:%llu)", __func__,
615 dp->dd_new_vdev_guid, guid);
616 return;
619 zed_log_msg(LOG_INFO, " zfs_iter_vdev: matched %s on %s",
620 dp->dd_prop, path);
621 dp->dd_found = B_TRUE;
623 /* pass the new devid for use by replacing code */
624 if (dp->dd_new_devid != NULL) {
625 (void) nvlist_add_string(nvl, "new_devid",
626 dp->dd_new_devid);
630 if (dp->dd_found == B_TRUE && nvlist_lookup_uint64(nvl,
631 ZPOOL_CONFIG_IS_SPARE, &isspare) == 0 && isspare)
632 dp->dd_num_spares++;
634 (dp->dd_func)(zhp, nvl, dp->dd_islabeled);
637 static void
638 zfs_enable_ds(void *arg)
640 unavailpool_t *pool = (unavailpool_t *)arg;
642 (void) zpool_enable_datasets(pool->uap_zhp, NULL, 0);
643 zpool_close(pool->uap_zhp);
644 free(pool);
647 static int
648 zfs_iter_pool(zpool_handle_t *zhp, void *data)
650 nvlist_t *config, *nvl;
651 dev_data_t *dp = data;
652 uint64_t pool_guid;
653 unavailpool_t *pool;
655 zed_log_msg(LOG_INFO, "zfs_iter_pool: evaluating vdevs on %s (by %s)",
656 zpool_get_name(zhp), dp->dd_vdev_guid ? "GUID" : dp->dd_prop);
659 * For each vdev in this pool, look for a match to apply dd_func
661 if ((config = zpool_get_config(zhp, NULL)) != NULL) {
662 if (dp->dd_pool_guid == 0 ||
663 (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID,
664 &pool_guid) == 0 && pool_guid == dp->dd_pool_guid)) {
665 (void) nvlist_lookup_nvlist(config,
666 ZPOOL_CONFIG_VDEV_TREE, &nvl);
667 zfs_iter_vdev(zhp, nvl, data);
669 } else {
670 zed_log_msg(LOG_INFO, "%s: no config\n", __func__);
674 * if this pool was originally unavailable,
675 * then enable its datasets asynchronously
677 if (g_enumeration_done) {
678 for (pool = list_head(&g_pool_list); pool != NULL;
679 pool = list_next(&g_pool_list, pool)) {
681 if (strcmp(zpool_get_name(zhp),
682 zpool_get_name(pool->uap_zhp)))
683 continue;
684 if (zfs_toplevel_state(zhp) >= VDEV_STATE_DEGRADED) {
685 list_remove(&g_pool_list, pool);
686 (void) tpool_dispatch(g_tpool, zfs_enable_ds,
687 pool);
688 break;
693 zpool_close(zhp);
695 /* cease iteration after a match */
696 return (dp->dd_found && dp->dd_num_spares == 0);
700 * Given a physical device location, iterate over all
701 * (pool, vdev) pairs which correspond to that location.
703 static boolean_t
704 devphys_iter(const char *physical, const char *devid, zfs_process_func_t func,
705 boolean_t is_slice, uint64_t new_vdev_guid)
707 dev_data_t data = { 0 };
709 data.dd_compare = physical;
710 data.dd_func = func;
711 data.dd_prop = ZPOOL_CONFIG_PHYS_PATH;
712 data.dd_found = B_FALSE;
713 data.dd_islabeled = is_slice;
714 data.dd_new_devid = devid; /* used by auto replace code */
715 data.dd_new_vdev_guid = new_vdev_guid;
717 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
719 return (data.dd_found);
723 * Given a device identifier, find any vdevs with a matching by-vdev
724 * path. Normally we shouldn't need this as the comparison would be
725 * made earlier in the devphys_iter(). For example, if we were replacing
726 * /dev/disk/by-vdev/L28, normally devphys_iter() would match the
727 * ZPOOL_CONFIG_PHYS_PATH of "L28" from the old disk config to "L28"
728 * of the new disk config. However, we've seen cases where
729 * ZPOOL_CONFIG_PHYS_PATH was not in the config for the old disk. Here's
730 * an example of a real 2-disk mirror pool where one disk was force
731 * faulted:
733 * com.delphix:vdev_zap_top: 129
734 * children[0]:
735 * type: 'disk'
736 * id: 0
737 * guid: 14309659774640089719
738 * path: '/dev/disk/by-vdev/L28'
739 * whole_disk: 0
740 * DTL: 654
741 * create_txg: 4
742 * com.delphix:vdev_zap_leaf: 1161
743 * faulted: 1
744 * aux_state: 'external'
745 * children[1]:
746 * type: 'disk'
747 * id: 1
748 * guid: 16002508084177980912
749 * path: '/dev/disk/by-vdev/L29'
750 * devid: 'dm-uuid-mpath-35000c500a61d68a3'
751 * phys_path: 'L29'
752 * vdev_enc_sysfs_path: '/sys/class/enclosure/0:0:1:0/SLOT 30 32'
753 * whole_disk: 0
754 * DTL: 1028
755 * create_txg: 4
756 * com.delphix:vdev_zap_leaf: 131
758 * So in the case above, the only thing we could compare is the path.
760 * We can do this because we assume by-vdev paths are authoritative as physical
761 * paths. We could not assume this for normal paths like /dev/sda since the
762 * physical location /dev/sda points to could change over time.
764 static boolean_t
765 by_vdev_path_iter(const char *by_vdev_path, const char *devid,
766 zfs_process_func_t func, boolean_t is_slice)
768 dev_data_t data = { 0 };
770 data.dd_compare = by_vdev_path;
771 data.dd_func = func;
772 data.dd_prop = ZPOOL_CONFIG_PATH;
773 data.dd_found = B_FALSE;
774 data.dd_islabeled = is_slice;
775 data.dd_new_devid = devid;
777 if (strncmp(by_vdev_path, DEV_BYVDEV_PATH,
778 strlen(DEV_BYVDEV_PATH)) != 0) {
779 /* by_vdev_path doesn't start with "/dev/disk/by-vdev/" */
780 return (B_FALSE);
783 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
785 return (data.dd_found);
789 * Given a device identifier, find any vdevs with a matching devid.
790 * On Linux we can match devid directly which is always a whole disk.
792 static boolean_t
793 devid_iter(const char *devid, zfs_process_func_t func, boolean_t is_slice)
795 dev_data_t data = { 0 };
797 data.dd_compare = devid;
798 data.dd_func = func;
799 data.dd_prop = ZPOOL_CONFIG_DEVID;
800 data.dd_found = B_FALSE;
801 data.dd_islabeled = is_slice;
802 data.dd_new_devid = devid;
804 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
806 return (data.dd_found);
810 * Given a device guid, find any vdevs with a matching guid.
812 static boolean_t
813 guid_iter(uint64_t pool_guid, uint64_t vdev_guid, const char *devid,
814 zfs_process_func_t func, boolean_t is_slice)
816 dev_data_t data = { 0 };
818 data.dd_func = func;
819 data.dd_found = B_FALSE;
820 data.dd_pool_guid = pool_guid;
821 data.dd_vdev_guid = vdev_guid;
822 data.dd_islabeled = is_slice;
823 data.dd_new_devid = devid;
825 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
827 return (data.dd_found);
831 * Handle a EC_DEV_ADD.ESC_DISK event.
833 * illumos
834 * Expects: DEV_PHYS_PATH string in schema
835 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
837 * path: '/dev/dsk/c0t1d0s0' (persistent)
838 * devid: 'id1,sd@SATA_____Hitachi_HDS72101______JP2940HZ3H74MC/a'
839 * phys_path: '/pci@0,0/pci103c,1609@11/disk@1,0:a'
841 * linux
842 * provides: DEV_PHYS_PATH and DEV_IDENTIFIER strings in schema
843 * Matches: vdev's ZPOOL_CONFIG_PHYS_PATH or ZPOOL_CONFIG_DEVID
845 * path: '/dev/sdc1' (not persistent)
846 * devid: 'ata-SAMSUNG_HD204UI_S2HGJD2Z805891-part1'
847 * phys_path: 'pci-0000:04:00.0-sas-0x4433221106000000-lun-0'
849 static int
850 zfs_deliver_add(nvlist_t *nvl)
852 const char *devpath = NULL, *devid = NULL;
853 uint64_t pool_guid = 0, vdev_guid = 0;
854 boolean_t is_slice;
857 * Expecting a devid string and an optional physical location and guid
859 if (nvlist_lookup_string(nvl, DEV_IDENTIFIER, &devid) != 0) {
860 zed_log_msg(LOG_INFO, "%s: no dev identifier\n", __func__);
861 return (-1);
864 (void) nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devpath);
865 (void) nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID, &pool_guid);
866 (void) nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &vdev_guid);
868 is_slice = (nvlist_lookup_boolean(nvl, DEV_IS_PART) == 0);
870 zed_log_msg(LOG_INFO, "zfs_deliver_add: adding %s (%s) (is_slice %d)",
871 devid, devpath ? devpath : "NULL", is_slice);
874 * Iterate over all vdevs looking for a match in the following order:
875 * 1. ZPOOL_CONFIG_DEVID (identifies the unique disk)
876 * 2. ZPOOL_CONFIG_PHYS_PATH (identifies disk physical location).
877 * 3. ZPOOL_CONFIG_GUID (identifies unique vdev).
878 * 4. ZPOOL_CONFIG_PATH for /dev/disk/by-vdev devices only (since
879 * by-vdev paths represent physical paths).
881 if (devid_iter(devid, zfs_process_add, is_slice))
882 return (0);
883 if (devpath != NULL && devphys_iter(devpath, devid, zfs_process_add,
884 is_slice, vdev_guid))
885 return (0);
886 if (vdev_guid != 0)
887 (void) guid_iter(pool_guid, vdev_guid, devid, zfs_process_add,
888 is_slice);
890 if (devpath != NULL) {
891 /* Can we match a /dev/disk/by-vdev/ path? */
892 char by_vdev_path[MAXPATHLEN];
893 snprintf(by_vdev_path, sizeof (by_vdev_path),
894 "/dev/disk/by-vdev/%s", devpath);
895 if (by_vdev_path_iter(by_vdev_path, devid, zfs_process_add,
896 is_slice))
897 return (0);
900 return (0);
904 * Called when we receive a VDEV_CHECK event, which indicates a device could not
905 * be opened during initial pool open, but the autoreplace property was set on
906 * the pool. In this case, we treat it as if it were an add event.
908 static int
909 zfs_deliver_check(nvlist_t *nvl)
911 dev_data_t data = { 0 };
913 if (nvlist_lookup_uint64(nvl, ZFS_EV_POOL_GUID,
914 &data.dd_pool_guid) != 0 ||
915 nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID,
916 &data.dd_vdev_guid) != 0 ||
917 data.dd_vdev_guid == 0)
918 return (0);
920 zed_log_msg(LOG_INFO, "zfs_deliver_check: pool '%llu', vdev %llu",
921 data.dd_pool_guid, data.dd_vdev_guid);
923 data.dd_func = zfs_process_add;
925 (void) zpool_iter(g_zfshdl, zfs_iter_pool, &data);
927 return (0);
931 * Given a path to a vdev, lookup the vdev's physical size from its
932 * config nvlist.
934 * Returns the vdev's physical size in bytes on success, 0 on error.
936 static uint64_t
937 vdev_size_from_config(zpool_handle_t *zhp, const char *vdev_path)
939 nvlist_t *nvl = NULL;
940 boolean_t avail_spare, l2cache, log;
941 vdev_stat_t *vs = NULL;
942 uint_t c;
944 nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log);
945 if (!nvl)
946 return (0);
948 verify(nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_VDEV_STATS,
949 (uint64_t **)&vs, &c) == 0);
950 if (!vs) {
951 zed_log_msg(LOG_INFO, "%s: no nvlist for '%s'", __func__,
952 vdev_path);
953 return (0);
956 return (vs->vs_pspace);
960 * Given a path to a vdev, lookup if the vdev is a "whole disk" in the
961 * config nvlist. "whole disk" means that ZFS was passed a whole disk
962 * at pool creation time, which it partitioned up and has full control over.
963 * Thus a partition with wholedisk=1 set tells us that zfs created the
964 * partition at creation time. A partition without whole disk set would have
965 * been created by externally (like with fdisk) and passed to ZFS.
967 * Returns the whole disk value (either 0 or 1).
969 static uint64_t
970 vdev_whole_disk_from_config(zpool_handle_t *zhp, const char *vdev_path)
972 nvlist_t *nvl = NULL;
973 boolean_t avail_spare, l2cache, log;
974 uint64_t wholedisk = 0;
976 nvl = zpool_find_vdev(zhp, vdev_path, &avail_spare, &l2cache, &log);
977 if (!nvl)
978 return (0);
980 (void) nvlist_lookup_uint64(nvl, ZPOOL_CONFIG_WHOLE_DISK, &wholedisk);
982 return (wholedisk);
986 * If the device size grew more than 1% then return true.
988 #define DEVICE_GREW(oldsize, newsize) \
989 ((newsize > oldsize) && \
990 ((newsize / (newsize - oldsize)) <= 100))
992 static int
993 zfsdle_vdev_online(zpool_handle_t *zhp, void *data)
995 boolean_t avail_spare, l2cache;
996 nvlist_t *udev_nvl = data;
997 nvlist_t *tgt;
998 int error;
1000 const char *tmp_devname;
1001 char devname[MAXPATHLEN] = "";
1002 uint64_t guid;
1004 if (nvlist_lookup_uint64(udev_nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
1005 sprintf(devname, "%llu", (u_longlong_t)guid);
1006 } else if (nvlist_lookup_string(udev_nvl, DEV_PHYS_PATH,
1007 &tmp_devname) == 0) {
1008 strlcpy(devname, tmp_devname, MAXPATHLEN);
1009 zfs_append_partition(devname, MAXPATHLEN);
1010 } else {
1011 zed_log_msg(LOG_INFO, "%s: no guid or physpath", __func__);
1014 zed_log_msg(LOG_INFO, "zfsdle_vdev_online: searching for '%s' in '%s'",
1015 devname, zpool_get_name(zhp));
1017 if ((tgt = zpool_find_vdev_by_physpath(zhp, devname,
1018 &avail_spare, &l2cache, NULL)) != NULL) {
1019 const char *path;
1020 char fullpath[MAXPATHLEN];
1021 uint64_t wholedisk = 0;
1023 error = nvlist_lookup_string(tgt, ZPOOL_CONFIG_PATH, &path);
1024 if (error) {
1025 zpool_close(zhp);
1026 return (0);
1029 (void) nvlist_lookup_uint64(tgt, ZPOOL_CONFIG_WHOLE_DISK,
1030 &wholedisk);
1032 if (wholedisk) {
1033 char *tmp;
1034 path = strrchr(path, '/');
1035 if (path != NULL) {
1036 tmp = zfs_strip_partition(path + 1);
1037 if (tmp == NULL) {
1038 zpool_close(zhp);
1039 return (0);
1041 } else {
1042 zpool_close(zhp);
1043 return (0);
1046 (void) strlcpy(fullpath, tmp, sizeof (fullpath));
1047 free(tmp);
1050 * We need to reopen the pool associated with this
1051 * device so that the kernel can update the size of
1052 * the expanded device. When expanding there is no
1053 * need to restart the scrub from the beginning.
1055 boolean_t scrub_restart = B_FALSE;
1056 (void) zpool_reopen_one(zhp, &scrub_restart);
1057 } else {
1058 (void) strlcpy(fullpath, path, sizeof (fullpath));
1061 if (zpool_get_prop_int(zhp, ZPOOL_PROP_AUTOEXPAND, NULL)) {
1062 vdev_state_t newstate;
1064 if (zpool_get_state(zhp) != POOL_STATE_UNAVAIL) {
1066 * If this disk size has not changed, then
1067 * there's no need to do an autoexpand. To
1068 * check we look at the disk's size in its
1069 * config, and compare it to the disk size
1070 * that udev is reporting.
1072 uint64_t udev_size = 0, conf_size = 0,
1073 wholedisk = 0, udev_parent_size = 0;
1076 * Get the size of our disk that udev is
1077 * reporting.
1079 if (nvlist_lookup_uint64(udev_nvl, DEV_SIZE,
1080 &udev_size) != 0) {
1081 udev_size = 0;
1085 * Get the size of our disk's parent device
1086 * from udev (where sda1's parent is sda).
1088 if (nvlist_lookup_uint64(udev_nvl,
1089 DEV_PARENT_SIZE, &udev_parent_size) != 0) {
1090 udev_parent_size = 0;
1093 conf_size = vdev_size_from_config(zhp,
1094 fullpath);
1096 wholedisk = vdev_whole_disk_from_config(zhp,
1097 fullpath);
1100 * Only attempt an autoexpand if the vdev size
1101 * changed. There are two different cases
1102 * to consider.
1104 * 1. wholedisk=1
1105 * If you do a 'zpool create' on a whole disk
1106 * (like /dev/sda), then zfs will create
1107 * partitions on the disk (like /dev/sda1). In
1108 * that case, wholedisk=1 will be set in the
1109 * partition's nvlist config. So zed will need
1110 * to see if your parent device (/dev/sda)
1111 * expanded in size, and if so, then attempt
1112 * the autoexpand.
1114 * 2. wholedisk=0
1115 * If you do a 'zpool create' on an existing
1116 * partition, or a device that doesn't allow
1117 * partitions, then wholedisk=0, and you will
1118 * simply need to check if the device itself
1119 * expanded in size.
1121 if (DEVICE_GREW(conf_size, udev_size) ||
1122 (wholedisk && DEVICE_GREW(conf_size,
1123 udev_parent_size))) {
1124 error = zpool_vdev_online(zhp, fullpath,
1125 0, &newstate);
1127 zed_log_msg(LOG_INFO,
1128 "%s: autoexpanding '%s' from %llu"
1129 " to %llu bytes in pool '%s': %d",
1130 __func__, fullpath, conf_size,
1131 MAX(udev_size, udev_parent_size),
1132 zpool_get_name(zhp), error);
1136 zpool_close(zhp);
1137 return (1);
1139 zpool_close(zhp);
1140 return (0);
1144 * This function handles the ESC_DEV_DLE device change event. Use the
1145 * provided vdev guid when looking up a disk or partition, when the guid
1146 * is not present assume the entire disk is owned by ZFS and append the
1147 * expected -part1 partition information then lookup by physical path.
1149 static int
1150 zfs_deliver_dle(nvlist_t *nvl)
1152 const char *devname;
1153 char name[MAXPATHLEN];
1154 uint64_t guid;
1156 if (nvlist_lookup_uint64(nvl, ZFS_EV_VDEV_GUID, &guid) == 0) {
1157 sprintf(name, "%llu", (u_longlong_t)guid);
1158 } else if (nvlist_lookup_string(nvl, DEV_PHYS_PATH, &devname) == 0) {
1159 strlcpy(name, devname, MAXPATHLEN);
1160 zfs_append_partition(name, MAXPATHLEN);
1161 } else {
1162 sprintf(name, "unknown");
1163 zed_log_msg(LOG_INFO, "zfs_deliver_dle: no guid or physpath");
1166 if (zpool_iter(g_zfshdl, zfsdle_vdev_online, nvl) != 1) {
1167 zed_log_msg(LOG_INFO, "zfs_deliver_dle: device '%s' not "
1168 "found", name);
1169 return (1);
1172 return (0);
1176 * syseventd daemon module event handler
1178 * Handles syseventd daemon zfs device related events:
1180 * EC_DEV_ADD.ESC_DISK
1181 * EC_DEV_STATUS.ESC_DEV_DLE
1182 * EC_ZFS.ESC_ZFS_VDEV_CHECK
1184 * Note: assumes only one thread active at a time (not thread safe)
1186 static int
1187 zfs_slm_deliver_event(const char *class, const char *subclass, nvlist_t *nvl)
1189 int ret;
1190 boolean_t is_check = B_FALSE, is_dle = B_FALSE;
1192 if (strcmp(class, EC_DEV_ADD) == 0) {
1194 * We're mainly interested in disk additions, but we also listen
1195 * for new loop devices, to allow for simplified testing.
1197 if (strcmp(subclass, ESC_DISK) != 0 &&
1198 strcmp(subclass, ESC_LOFI) != 0)
1199 return (0);
1201 is_check = B_FALSE;
1202 } else if (strcmp(class, EC_ZFS) == 0 &&
1203 strcmp(subclass, ESC_ZFS_VDEV_CHECK) == 0) {
1205 * This event signifies that a device failed to open
1206 * during pool load, but the 'autoreplace' property was
1207 * set, so we should pretend it's just been added.
1209 is_check = B_TRUE;
1210 } else if (strcmp(class, EC_DEV_STATUS) == 0 &&
1211 strcmp(subclass, ESC_DEV_DLE) == 0) {
1212 is_dle = B_TRUE;
1213 } else {
1214 return (0);
1217 if (is_dle)
1218 ret = zfs_deliver_dle(nvl);
1219 else if (is_check)
1220 ret = zfs_deliver_check(nvl);
1221 else
1222 ret = zfs_deliver_add(nvl);
1224 return (ret);
1227 static void *
1228 zfs_enum_pools(void *arg)
1230 (void) arg;
1232 (void) zpool_iter(g_zfshdl, zfs_unavail_pool, (void *)&g_pool_list);
1234 * Linux - instead of using a thread pool, each list entry
1235 * will spawn a thread when an unavailable pool transitions
1236 * to available. zfs_slm_fini will wait for these threads.
1238 g_enumeration_done = B_TRUE;
1239 return (NULL);
1243 * called from zed daemon at startup
1245 * sent messages from zevents or udev monitor
1247 * For now, each agent has its own libzfs instance
1250 zfs_slm_init(void)
1252 if ((g_zfshdl = libzfs_init()) == NULL)
1253 return (-1);
1256 * collect a list of unavailable pools (asynchronously,
1257 * since this can take a while)
1259 list_create(&g_pool_list, sizeof (struct unavailpool),
1260 offsetof(struct unavailpool, uap_node));
1262 if (pthread_create(&g_zfs_tid, NULL, zfs_enum_pools, NULL) != 0) {
1263 list_destroy(&g_pool_list);
1264 libzfs_fini(g_zfshdl);
1265 return (-1);
1268 pthread_setname_np(g_zfs_tid, "enum-pools");
1269 list_create(&g_device_list, sizeof (struct pendingdev),
1270 offsetof(struct pendingdev, pd_node));
1272 return (0);
1275 void
1276 zfs_slm_fini(void)
1278 unavailpool_t *pool;
1279 pendingdev_t *device;
1281 /* wait for zfs_enum_pools thread to complete */
1282 (void) pthread_join(g_zfs_tid, NULL);
1283 /* destroy the thread pool */
1284 if (g_tpool != NULL) {
1285 tpool_wait(g_tpool);
1286 tpool_destroy(g_tpool);
1289 while ((pool = list_remove_head(&g_pool_list)) != NULL) {
1290 zpool_close(pool->uap_zhp);
1291 free(pool);
1293 list_destroy(&g_pool_list);
1295 while ((device = list_remove_head(&g_device_list)) != NULL)
1296 free(device);
1297 list_destroy(&g_device_list);
1299 libzfs_fini(g_zfshdl);
1302 void
1303 zfs_slm_event(const char *class, const char *subclass, nvlist_t *nvl)
1305 zed_log_msg(LOG_INFO, "zfs_slm_event: %s.%s", class, subclass);
1306 (void) zfs_slm_deliver_event(class, subclass, nvl);