4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
38 * DVA-based Adjustable Replacement Cache
40 * While much of the theory of operation used here is
41 * based on the self-tuning, low overhead replacement cache
42 * presented by Megiddo and Modha at FAST 2003, there are some
43 * significant differences:
45 * 1. The Megiddo and Modha model assumes any page is evictable.
46 * Pages in its cache cannot be "locked" into memory. This makes
47 * the eviction algorithm simple: evict the last page in the list.
48 * This also make the performance characteristics easy to reason
49 * about. Our cache is not so simple. At any given moment, some
50 * subset of the blocks in the cache are un-evictable because we
51 * have handed out a reference to them. Blocks are only evictable
52 * when there are no external references active. This makes
53 * eviction far more problematic: we choose to evict the evictable
54 * blocks that are the "lowest" in the list.
56 * There are times when it is not possible to evict the requested
57 * space. In these circumstances we are unable to adjust the cache
58 * size. To prevent the cache growing unbounded at these times we
59 * implement a "cache throttle" that slows the flow of new data
60 * into the cache until we can make space available.
62 * 2. The Megiddo and Modha model assumes a fixed cache size.
63 * Pages are evicted when the cache is full and there is a cache
64 * miss. Our model has a variable sized cache. It grows with
65 * high use, but also tries to react to memory pressure from the
66 * operating system: decreasing its size when system memory is
69 * 3. The Megiddo and Modha model assumes a fixed page size. All
70 * elements of the cache are therefore exactly the same size. So
71 * when adjusting the cache size following a cache miss, its simply
72 * a matter of choosing a single page to evict. In our model, we
73 * have variable sized cache blocks (ranging from 512 bytes to
74 * 128K bytes). We therefore choose a set of blocks to evict to make
75 * space for a cache miss that approximates as closely as possible
76 * the space used by the new block.
78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79 * by N. Megiddo & D. Modha, FAST 2003
85 * A new reference to a cache buffer can be obtained in two
86 * ways: 1) via a hash table lookup using the DVA as a key,
87 * or 2) via one of the ARC lists. The arc_read() interface
88 * uses method 1, while the internal ARC algorithms for
89 * adjusting the cache use method 2. We therefore provide two
90 * types of locks: 1) the hash table lock array, and 2) the
93 * Buffers do not have their own mutexes, rather they rely on the
94 * hash table mutexes for the bulk of their protection (i.e. most
95 * fields in the arc_buf_hdr_t are protected by these mutexes).
97 * buf_hash_find() returns the appropriate mutex (held) when it
98 * locates the requested buffer in the hash table. It returns
99 * NULL for the mutex if the buffer was not in the table.
101 * buf_hash_remove() expects the appropriate hash mutex to be
102 * already held before it is invoked.
104 * Each ARC state also has a mutex which is used to protect the
105 * buffer list associated with the state. When attempting to
106 * obtain a hash table lock while holding an ARC list lock you
107 * must use: mutex_tryenter() to avoid deadlock. Also note that
108 * the active state mutex must be held before the ghost state mutex.
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154 * compressed ARC functionality is disabled, the b_pabd will point to an
155 * uncompressed version of the on-disk data.
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164 * "overhead_size" kstat.
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
192 * | b_buf +------------>+-----------+ arc_buf_t
193 * | b_pabd +-+ |b_next +---->+-----------+
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
207 * When a consumer reads a block, the ARC must first look to see if the
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
218 * The diagram below shows an example of an uncompressed ARC hdr that is
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
235 * | b_pabd +-+ |---------| |b_next +-->NULL
236 * +-----------+ | | | +---------+
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
241 * uncompressed | | | |
244 * | uncompressed | | |
247 * +---------------------------------+
249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250 * since the physical block is about to be rewritten. The new data contents
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will memcpy the transformed on-disk block into
254 * a newly allocated b_pabd. Writes are always done into buffers which have
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262 * that when compressed ARC is enabled that the L2ARC blocks are identical
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
266 * ARC is disabled, then the L2ARC's block must be transformed to look
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch
= B_FALSE
;
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
324 static zthr_t
*arc_reap_zthr
;
327 * This thread's job is to keep arc_size under arc_c, by calling
328 * arc_evict(), which improves arc_is_overflowing().
330 static zthr_t
*arc_evict_zthr
;
331 static arc_buf_hdr_t
**arc_state_evict_markers
;
332 static int arc_state_evict_marker_count
;
334 static kmutex_t arc_evict_lock
;
335 static boolean_t arc_evict_needed
= B_FALSE
;
336 static clock_t arc_last_uncached_flush
;
339 * Count of bytes evicted since boot.
341 static uint64_t arc_evict_count
;
344 * List of arc_evict_waiter_t's, representing threads waiting for the
345 * arc_evict_count to reach specific values.
347 static list_t arc_evict_waiters
;
350 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
351 * the requested amount of data to be evicted. For example, by default for
352 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
353 * Since this is above 100%, it ensures that progress is made towards getting
354 * arc_size under arc_c. Since this is finite, it ensures that allocations
355 * can still happen, even during the potentially long time that arc_size is
358 static uint_t zfs_arc_eviction_pct
= 200;
361 * The number of headers to evict in arc_evict_state_impl() before
362 * dropping the sublist lock and evicting from another sublist. A lower
363 * value means we're more likely to evict the "correct" header (i.e. the
364 * oldest header in the arc state), but comes with higher overhead
365 * (i.e. more invocations of arc_evict_state_impl()).
367 static uint_t zfs_arc_evict_batch_limit
= 10;
369 /* number of seconds before growing cache again */
370 uint_t arc_grow_retry
= 5;
373 * Minimum time between calls to arc_kmem_reap_soon().
375 static const int arc_kmem_cache_reap_retry_ms
= 1000;
377 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
378 static int zfs_arc_overflow_shift
= 8;
380 /* shift of arc_c for calculating both min and max arc_p */
381 static uint_t arc_p_min_shift
= 4;
383 /* log2(fraction of arc to reclaim) */
384 uint_t arc_shrink_shift
= 7;
386 /* percent of pagecache to reclaim arc to */
388 uint_t zfs_arc_pc_percent
= 0;
392 * log2(fraction of ARC which must be free to allow growing).
393 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
394 * when reading a new block into the ARC, we will evict an equal-sized block
397 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
398 * we will still not allow it to grow.
400 uint_t arc_no_grow_shift
= 5;
404 * minimum lifespan of a prefetch block in clock ticks
405 * (initialized in arc_init())
407 static uint_t arc_min_prefetch_ms
;
408 static uint_t arc_min_prescient_prefetch_ms
;
411 * If this percent of memory is free, don't throttle.
413 uint_t arc_lotsfree_percent
= 10;
416 * The arc has filled available memory and has now warmed up.
421 * These tunables are for performance analysis.
423 uint64_t zfs_arc_max
= 0;
424 uint64_t zfs_arc_min
= 0;
425 uint64_t zfs_arc_meta_limit
= 0;
426 uint64_t zfs_arc_meta_min
= 0;
427 static uint64_t zfs_arc_dnode_limit
= 0;
428 static uint_t zfs_arc_dnode_reduce_percent
= 10;
429 static uint_t zfs_arc_grow_retry
= 0;
430 static uint_t zfs_arc_shrink_shift
= 0;
431 static uint_t zfs_arc_p_min_shift
= 0;
432 uint_t zfs_arc_average_blocksize
= 8 * 1024; /* 8KB */
435 * ARC dirty data constraints for arc_tempreserve_space() throttle:
436 * * total dirty data limit
437 * * anon block dirty limit
438 * * each pool's anon allowance
440 static const unsigned long zfs_arc_dirty_limit_percent
= 50;
441 static const unsigned long zfs_arc_anon_limit_percent
= 25;
442 static const unsigned long zfs_arc_pool_dirty_percent
= 20;
445 * Enable or disable compressed arc buffers.
447 int zfs_compressed_arc_enabled
= B_TRUE
;
450 * ARC will evict meta buffers that exceed arc_meta_limit. This
451 * tunable make arc_meta_limit adjustable for different workloads.
453 static uint64_t zfs_arc_meta_limit_percent
= 75;
456 * Percentage that can be consumed by dnodes of ARC meta buffers.
458 static uint_t zfs_arc_dnode_limit_percent
= 10;
461 * These tunables are Linux-specific
463 static uint64_t zfs_arc_sys_free
= 0;
464 static uint_t zfs_arc_min_prefetch_ms
= 0;
465 static uint_t zfs_arc_min_prescient_prefetch_ms
= 0;
466 static int zfs_arc_p_dampener_disable
= 1;
467 static uint_t zfs_arc_meta_prune
= 10000;
468 static uint_t zfs_arc_meta_strategy
= ARC_STRATEGY_META_BALANCED
;
469 static uint_t zfs_arc_meta_adjust_restarts
= 4096;
470 static uint_t zfs_arc_lotsfree_percent
= 10;
473 * Number of arc_prune threads
475 static int zfs_arc_prune_task_threads
= 1;
478 arc_state_t ARC_anon
;
480 arc_state_t ARC_mru_ghost
;
482 arc_state_t ARC_mfu_ghost
;
483 arc_state_t ARC_l2c_only
;
484 arc_state_t ARC_uncached
;
486 arc_stats_t arc_stats
= {
487 { "hits", KSTAT_DATA_UINT64
},
488 { "iohits", KSTAT_DATA_UINT64
},
489 { "misses", KSTAT_DATA_UINT64
},
490 { "demand_data_hits", KSTAT_DATA_UINT64
},
491 { "demand_data_iohits", KSTAT_DATA_UINT64
},
492 { "demand_data_misses", KSTAT_DATA_UINT64
},
493 { "demand_metadata_hits", KSTAT_DATA_UINT64
},
494 { "demand_metadata_iohits", KSTAT_DATA_UINT64
},
495 { "demand_metadata_misses", KSTAT_DATA_UINT64
},
496 { "prefetch_data_hits", KSTAT_DATA_UINT64
},
497 { "prefetch_data_iohits", KSTAT_DATA_UINT64
},
498 { "prefetch_data_misses", KSTAT_DATA_UINT64
},
499 { "prefetch_metadata_hits", KSTAT_DATA_UINT64
},
500 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64
},
501 { "prefetch_metadata_misses", KSTAT_DATA_UINT64
},
502 { "mru_hits", KSTAT_DATA_UINT64
},
503 { "mru_ghost_hits", KSTAT_DATA_UINT64
},
504 { "mfu_hits", KSTAT_DATA_UINT64
},
505 { "mfu_ghost_hits", KSTAT_DATA_UINT64
},
506 { "uncached_hits", KSTAT_DATA_UINT64
},
507 { "deleted", KSTAT_DATA_UINT64
},
508 { "mutex_miss", KSTAT_DATA_UINT64
},
509 { "access_skip", KSTAT_DATA_UINT64
},
510 { "evict_skip", KSTAT_DATA_UINT64
},
511 { "evict_not_enough", KSTAT_DATA_UINT64
},
512 { "evict_l2_cached", KSTAT_DATA_UINT64
},
513 { "evict_l2_eligible", KSTAT_DATA_UINT64
},
514 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64
},
515 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64
},
516 { "evict_l2_ineligible", KSTAT_DATA_UINT64
},
517 { "evict_l2_skip", KSTAT_DATA_UINT64
},
518 { "hash_elements", KSTAT_DATA_UINT64
},
519 { "hash_elements_max", KSTAT_DATA_UINT64
},
520 { "hash_collisions", KSTAT_DATA_UINT64
},
521 { "hash_chains", KSTAT_DATA_UINT64
},
522 { "hash_chain_max", KSTAT_DATA_UINT64
},
523 { "p", KSTAT_DATA_UINT64
},
524 { "c", KSTAT_DATA_UINT64
},
525 { "c_min", KSTAT_DATA_UINT64
},
526 { "c_max", KSTAT_DATA_UINT64
},
527 { "size", KSTAT_DATA_UINT64
},
528 { "compressed_size", KSTAT_DATA_UINT64
},
529 { "uncompressed_size", KSTAT_DATA_UINT64
},
530 { "overhead_size", KSTAT_DATA_UINT64
},
531 { "hdr_size", KSTAT_DATA_UINT64
},
532 { "data_size", KSTAT_DATA_UINT64
},
533 { "metadata_size", KSTAT_DATA_UINT64
},
534 { "dbuf_size", KSTAT_DATA_UINT64
},
535 { "dnode_size", KSTAT_DATA_UINT64
},
536 { "bonus_size", KSTAT_DATA_UINT64
},
537 #if defined(COMPAT_FREEBSD11)
538 { "other_size", KSTAT_DATA_UINT64
},
540 { "anon_size", KSTAT_DATA_UINT64
},
541 { "anon_evictable_data", KSTAT_DATA_UINT64
},
542 { "anon_evictable_metadata", KSTAT_DATA_UINT64
},
543 { "mru_size", KSTAT_DATA_UINT64
},
544 { "mru_evictable_data", KSTAT_DATA_UINT64
},
545 { "mru_evictable_metadata", KSTAT_DATA_UINT64
},
546 { "mru_ghost_size", KSTAT_DATA_UINT64
},
547 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64
},
548 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
549 { "mfu_size", KSTAT_DATA_UINT64
},
550 { "mfu_evictable_data", KSTAT_DATA_UINT64
},
551 { "mfu_evictable_metadata", KSTAT_DATA_UINT64
},
552 { "mfu_ghost_size", KSTAT_DATA_UINT64
},
553 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64
},
554 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
555 { "uncached_size", KSTAT_DATA_UINT64
},
556 { "uncached_evictable_data", KSTAT_DATA_UINT64
},
557 { "uncached_evictable_metadata", KSTAT_DATA_UINT64
},
558 { "l2_hits", KSTAT_DATA_UINT64
},
559 { "l2_misses", KSTAT_DATA_UINT64
},
560 { "l2_prefetch_asize", KSTAT_DATA_UINT64
},
561 { "l2_mru_asize", KSTAT_DATA_UINT64
},
562 { "l2_mfu_asize", KSTAT_DATA_UINT64
},
563 { "l2_bufc_data_asize", KSTAT_DATA_UINT64
},
564 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64
},
565 { "l2_feeds", KSTAT_DATA_UINT64
},
566 { "l2_rw_clash", KSTAT_DATA_UINT64
},
567 { "l2_read_bytes", KSTAT_DATA_UINT64
},
568 { "l2_write_bytes", KSTAT_DATA_UINT64
},
569 { "l2_writes_sent", KSTAT_DATA_UINT64
},
570 { "l2_writes_done", KSTAT_DATA_UINT64
},
571 { "l2_writes_error", KSTAT_DATA_UINT64
},
572 { "l2_writes_lock_retry", KSTAT_DATA_UINT64
},
573 { "l2_evict_lock_retry", KSTAT_DATA_UINT64
},
574 { "l2_evict_reading", KSTAT_DATA_UINT64
},
575 { "l2_evict_l1cached", KSTAT_DATA_UINT64
},
576 { "l2_free_on_write", KSTAT_DATA_UINT64
},
577 { "l2_abort_lowmem", KSTAT_DATA_UINT64
},
578 { "l2_cksum_bad", KSTAT_DATA_UINT64
},
579 { "l2_io_error", KSTAT_DATA_UINT64
},
580 { "l2_size", KSTAT_DATA_UINT64
},
581 { "l2_asize", KSTAT_DATA_UINT64
},
582 { "l2_hdr_size", KSTAT_DATA_UINT64
},
583 { "l2_log_blk_writes", KSTAT_DATA_UINT64
},
584 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64
},
585 { "l2_log_blk_asize", KSTAT_DATA_UINT64
},
586 { "l2_log_blk_count", KSTAT_DATA_UINT64
},
587 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64
},
588 { "l2_rebuild_success", KSTAT_DATA_UINT64
},
589 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64
},
590 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64
},
591 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64
},
592 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64
},
593 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64
},
594 { "l2_rebuild_size", KSTAT_DATA_UINT64
},
595 { "l2_rebuild_asize", KSTAT_DATA_UINT64
},
596 { "l2_rebuild_bufs", KSTAT_DATA_UINT64
},
597 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64
},
598 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64
},
599 { "memory_throttle_count", KSTAT_DATA_UINT64
},
600 { "memory_direct_count", KSTAT_DATA_UINT64
},
601 { "memory_indirect_count", KSTAT_DATA_UINT64
},
602 { "memory_all_bytes", KSTAT_DATA_UINT64
},
603 { "memory_free_bytes", KSTAT_DATA_UINT64
},
604 { "memory_available_bytes", KSTAT_DATA_INT64
},
605 { "arc_no_grow", KSTAT_DATA_UINT64
},
606 { "arc_tempreserve", KSTAT_DATA_UINT64
},
607 { "arc_loaned_bytes", KSTAT_DATA_UINT64
},
608 { "arc_prune", KSTAT_DATA_UINT64
},
609 { "arc_meta_used", KSTAT_DATA_UINT64
},
610 { "arc_meta_limit", KSTAT_DATA_UINT64
},
611 { "arc_dnode_limit", KSTAT_DATA_UINT64
},
612 { "arc_meta_max", KSTAT_DATA_UINT64
},
613 { "arc_meta_min", KSTAT_DATA_UINT64
},
614 { "async_upgrade_sync", KSTAT_DATA_UINT64
},
615 { "predictive_prefetch", KSTAT_DATA_UINT64
},
616 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64
},
617 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64
},
618 { "prescient_prefetch", KSTAT_DATA_UINT64
},
619 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64
},
620 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64
},
621 { "arc_need_free", KSTAT_DATA_UINT64
},
622 { "arc_sys_free", KSTAT_DATA_UINT64
},
623 { "arc_raw_size", KSTAT_DATA_UINT64
},
624 { "cached_only_in_progress", KSTAT_DATA_UINT64
},
625 { "abd_chunk_waste_size", KSTAT_DATA_UINT64
},
630 #define ARCSTAT_MAX(stat, val) { \
632 while ((val) > (m = arc_stats.stat.value.ui64) && \
633 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
638 * We define a macro to allow ARC hits/misses to be easily broken down by
639 * two separate conditions, giving a total of four different subtypes for
640 * each of hits and misses (so eight statistics total).
642 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
645 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
647 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
651 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
653 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
658 * This macro allows us to use kstats as floating averages. Each time we
659 * update this kstat, we first factor it and the update value by
660 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
661 * average. This macro assumes that integer loads and stores are atomic, but
662 * is not safe for multiple writers updating the kstat in parallel (only the
663 * last writer's update will remain).
665 #define ARCSTAT_F_AVG_FACTOR 3
666 #define ARCSTAT_F_AVG(stat, value) \
668 uint64_t x = ARCSTAT(stat); \
669 x = x - x / ARCSTAT_F_AVG_FACTOR + \
670 (value) / ARCSTAT_F_AVG_FACTOR; \
674 static kstat_t
*arc_ksp
;
677 * There are several ARC variables that are critical to export as kstats --
678 * but we don't want to have to grovel around in the kstat whenever we wish to
679 * manipulate them. For these variables, we therefore define them to be in
680 * terms of the statistic variable. This assures that we are not introducing
681 * the possibility of inconsistency by having shadow copies of the variables,
682 * while still allowing the code to be readable.
684 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
685 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
686 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
687 /* max size for dnodes */
688 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit)
689 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
690 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
692 hrtime_t arc_growtime
;
693 list_t arc_prune_list
;
694 kmutex_t arc_prune_mtx
;
695 taskq_t
*arc_prune_taskq
;
697 #define GHOST_STATE(state) \
698 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
699 (state) == arc_l2c_only)
701 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
702 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
703 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
704 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
705 #define HDR_PRESCIENT_PREFETCH(hdr) \
706 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
707 #define HDR_COMPRESSION_ENABLED(hdr) \
708 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
710 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
711 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED)
712 #define HDR_L2_READING(hdr) \
713 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
714 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
715 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
716 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
717 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
718 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
719 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
720 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
722 #define HDR_ISTYPE_METADATA(hdr) \
723 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
724 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
726 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
727 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
728 #define HDR_HAS_RABD(hdr) \
729 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
730 (hdr)->b_crypt_hdr.b_rabd != NULL)
731 #define HDR_ENCRYPTED(hdr) \
732 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
733 #define HDR_AUTHENTICATED(hdr) \
734 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
736 /* For storing compression mode in b_flags */
737 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
739 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
740 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
741 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
742 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
744 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
745 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
746 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
747 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
753 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
754 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
755 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
758 * Hash table routines
761 #define BUF_LOCKS 2048
762 typedef struct buf_hash_table
{
764 arc_buf_hdr_t
**ht_table
;
765 kmutex_t ht_locks
[BUF_LOCKS
] ____cacheline_aligned
;
768 static buf_hash_table_t buf_hash_table
;
770 #define BUF_HASH_INDEX(spa, dva, birth) \
771 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
772 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
773 #define HDR_LOCK(hdr) \
774 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
776 uint64_t zfs_crc64_table
[256];
782 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
783 #define L2ARC_HEADROOM 2 /* num of writes */
786 * If we discover during ARC scan any buffers to be compressed, we boost
787 * our headroom for the next scanning cycle by this percentage multiple.
789 #define L2ARC_HEADROOM_BOOST 200
790 #define L2ARC_FEED_SECS 1 /* caching interval secs */
791 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
794 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
795 * and each of the state has two types: data and metadata.
797 #define L2ARC_FEED_TYPES 4
799 /* L2ARC Performance Tunables */
800 uint64_t l2arc_write_max
= L2ARC_WRITE_SIZE
; /* def max write size */
801 uint64_t l2arc_write_boost
= L2ARC_WRITE_SIZE
; /* extra warmup write */
802 uint64_t l2arc_headroom
= L2ARC_HEADROOM
; /* # of dev writes */
803 uint64_t l2arc_headroom_boost
= L2ARC_HEADROOM_BOOST
;
804 uint64_t l2arc_feed_secs
= L2ARC_FEED_SECS
; /* interval seconds */
805 uint64_t l2arc_feed_min_ms
= L2ARC_FEED_MIN_MS
; /* min interval msecs */
806 int l2arc_noprefetch
= B_TRUE
; /* don't cache prefetch bufs */
807 int l2arc_feed_again
= B_TRUE
; /* turbo warmup */
808 int l2arc_norw
= B_FALSE
; /* no reads during writes */
809 static uint_t l2arc_meta_percent
= 33; /* limit on headers size */
814 static list_t L2ARC_dev_list
; /* device list */
815 static list_t
*l2arc_dev_list
; /* device list pointer */
816 static kmutex_t l2arc_dev_mtx
; /* device list mutex */
817 static l2arc_dev_t
*l2arc_dev_last
; /* last device used */
818 static list_t L2ARC_free_on_write
; /* free after write buf list */
819 static list_t
*l2arc_free_on_write
; /* free after write list ptr */
820 static kmutex_t l2arc_free_on_write_mtx
; /* mutex for list */
821 static uint64_t l2arc_ndev
; /* number of devices */
823 typedef struct l2arc_read_callback
{
824 arc_buf_hdr_t
*l2rcb_hdr
; /* read header */
825 blkptr_t l2rcb_bp
; /* original blkptr */
826 zbookmark_phys_t l2rcb_zb
; /* original bookmark */
827 int l2rcb_flags
; /* original flags */
828 abd_t
*l2rcb_abd
; /* temporary buffer */
829 } l2arc_read_callback_t
;
831 typedef struct l2arc_data_free
{
832 /* protected by l2arc_free_on_write_mtx */
835 arc_buf_contents_t l2df_type
;
836 list_node_t l2df_list_node
;
839 typedef enum arc_fill_flags
{
840 ARC_FILL_LOCKED
= 1 << 0, /* hdr lock is held */
841 ARC_FILL_COMPRESSED
= 1 << 1, /* fill with compressed data */
842 ARC_FILL_ENCRYPTED
= 1 << 2, /* fill with encrypted data */
843 ARC_FILL_NOAUTH
= 1 << 3, /* don't attempt to authenticate */
844 ARC_FILL_IN_PLACE
= 1 << 4 /* fill in place (special case) */
847 typedef enum arc_ovf_level
{
848 ARC_OVF_NONE
, /* ARC within target size. */
849 ARC_OVF_SOME
, /* ARC is slightly overflowed. */
850 ARC_OVF_SEVERE
/* ARC is severely overflowed. */
853 static kmutex_t l2arc_feed_thr_lock
;
854 static kcondvar_t l2arc_feed_thr_cv
;
855 static uint8_t l2arc_thread_exit
;
857 static kmutex_t l2arc_rebuild_thr_lock
;
858 static kcondvar_t l2arc_rebuild_thr_cv
;
860 enum arc_hdr_alloc_flags
{
861 ARC_HDR_ALLOC_RDATA
= 0x1,
862 ARC_HDR_DO_ADAPT
= 0x2,
863 ARC_HDR_USE_RESERVE
= 0x4,
864 ARC_HDR_ALLOC_LINEAR
= 0x8,
868 static abd_t
*arc_get_data_abd(arc_buf_hdr_t
*, uint64_t, const void *, int);
869 static void *arc_get_data_buf(arc_buf_hdr_t
*, uint64_t, const void *);
870 static void arc_get_data_impl(arc_buf_hdr_t
*, uint64_t, const void *, int);
871 static void arc_free_data_abd(arc_buf_hdr_t
*, abd_t
*, uint64_t, const void *);
872 static void arc_free_data_buf(arc_buf_hdr_t
*, void *, uint64_t, const void *);
873 static void arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
,
875 static void arc_hdr_free_abd(arc_buf_hdr_t
*, boolean_t
);
876 static void arc_hdr_alloc_abd(arc_buf_hdr_t
*, int);
877 static void arc_hdr_destroy(arc_buf_hdr_t
*);
878 static void arc_access(arc_buf_hdr_t
*, arc_flags_t
, boolean_t
);
879 static void arc_buf_watch(arc_buf_t
*);
880 static void arc_change_state(arc_state_t
*, arc_buf_hdr_t
*);
882 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t
*);
883 static uint32_t arc_bufc_to_flags(arc_buf_contents_t
);
884 static inline void arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
885 static inline void arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
887 static boolean_t
l2arc_write_eligible(uint64_t, arc_buf_hdr_t
*);
888 static void l2arc_read_done(zio_t
*);
889 static void l2arc_do_free_on_write(void);
890 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t
*hdr
, boolean_t incr
,
891 boolean_t state_only
);
893 #define l2arc_hdr_arcstats_increment(hdr) \
894 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
895 #define l2arc_hdr_arcstats_decrement(hdr) \
896 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
897 #define l2arc_hdr_arcstats_increment_state(hdr) \
898 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
899 #define l2arc_hdr_arcstats_decrement_state(hdr) \
900 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
903 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
904 * present on special vdevs are eligibile for caching in L2ARC. If
905 * set to 1, exclude dbufs on special vdevs from being cached to
908 int l2arc_exclude_special
= 0;
911 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
912 * metadata and data are cached from ARC into L2ARC.
914 static int l2arc_mfuonly
= 0;
918 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
919 * the current write size (l2arc_write_max) we should TRIM if we
920 * have filled the device. It is defined as a percentage of the
921 * write size. If set to 100 we trim twice the space required to
922 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
923 * It also enables TRIM of the whole L2ARC device upon creation or
924 * addition to an existing pool or if the header of the device is
925 * invalid upon importing a pool or onlining a cache device. The
926 * default is 0, which disables TRIM on L2ARC altogether as it can
927 * put significant stress on the underlying storage devices. This
928 * will vary depending of how well the specific device handles
931 static uint64_t l2arc_trim_ahead
= 0;
934 * Performance tuning of L2ARC persistence:
936 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
937 * an L2ARC device (either at pool import or later) will attempt
938 * to rebuild L2ARC buffer contents.
939 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
940 * whether log blocks are written to the L2ARC device. If the L2ARC
941 * device is less than 1GB, the amount of data l2arc_evict()
942 * evicts is significant compared to the amount of restored L2ARC
943 * data. In this case do not write log blocks in L2ARC in order
944 * not to waste space.
946 static int l2arc_rebuild_enabled
= B_TRUE
;
947 static uint64_t l2arc_rebuild_blocks_min_l2size
= 1024 * 1024 * 1024;
949 /* L2ARC persistence rebuild control routines. */
950 void l2arc_rebuild_vdev(vdev_t
*vd
, boolean_t reopen
);
951 static __attribute__((noreturn
)) void l2arc_dev_rebuild_thread(void *arg
);
952 static int l2arc_rebuild(l2arc_dev_t
*dev
);
954 /* L2ARC persistence read I/O routines. */
955 static int l2arc_dev_hdr_read(l2arc_dev_t
*dev
);
956 static int l2arc_log_blk_read(l2arc_dev_t
*dev
,
957 const l2arc_log_blkptr_t
*this_lp
, const l2arc_log_blkptr_t
*next_lp
,
958 l2arc_log_blk_phys_t
*this_lb
, l2arc_log_blk_phys_t
*next_lb
,
959 zio_t
*this_io
, zio_t
**next_io
);
960 static zio_t
*l2arc_log_blk_fetch(vdev_t
*vd
,
961 const l2arc_log_blkptr_t
*lp
, l2arc_log_blk_phys_t
*lb
);
962 static void l2arc_log_blk_fetch_abort(zio_t
*zio
);
964 /* L2ARC persistence block restoration routines. */
965 static void l2arc_log_blk_restore(l2arc_dev_t
*dev
,
966 const l2arc_log_blk_phys_t
*lb
, uint64_t lb_asize
);
967 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t
*le
,
970 /* L2ARC persistence write I/O routines. */
971 static void l2arc_log_blk_commit(l2arc_dev_t
*dev
, zio_t
*pio
,
972 l2arc_write_callback_t
*cb
);
974 /* L2ARC persistence auxiliary routines. */
975 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t
*dev
,
976 const l2arc_log_blkptr_t
*lbp
);
977 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t
*dev
,
978 const arc_buf_hdr_t
*ab
);
979 boolean_t
l2arc_range_check_overlap(uint64_t bottom
,
980 uint64_t top
, uint64_t check
);
981 static void l2arc_blk_fetch_done(zio_t
*zio
);
982 static inline uint64_t
983 l2arc_log_blk_overhead(uint64_t write_sz
, l2arc_dev_t
*dev
);
986 * We use Cityhash for this. It's fast, and has good hash properties without
987 * requiring any large static buffers.
990 buf_hash(uint64_t spa
, const dva_t
*dva
, uint64_t birth
)
992 return (cityhash4(spa
, dva
->dva_word
[0], dva
->dva_word
[1], birth
));
995 #define HDR_EMPTY(hdr) \
996 ((hdr)->b_dva.dva_word[0] == 0 && \
997 (hdr)->b_dva.dva_word[1] == 0)
999 #define HDR_EMPTY_OR_LOCKED(hdr) \
1000 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1002 #define HDR_EQUAL(spa, dva, birth, hdr) \
1003 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1004 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1005 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1008 buf_discard_identity(arc_buf_hdr_t
*hdr
)
1010 hdr
->b_dva
.dva_word
[0] = 0;
1011 hdr
->b_dva
.dva_word
[1] = 0;
1015 static arc_buf_hdr_t
*
1016 buf_hash_find(uint64_t spa
, const blkptr_t
*bp
, kmutex_t
**lockp
)
1018 const dva_t
*dva
= BP_IDENTITY(bp
);
1019 uint64_t birth
= BP_PHYSICAL_BIRTH(bp
);
1020 uint64_t idx
= BUF_HASH_INDEX(spa
, dva
, birth
);
1021 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1024 mutex_enter(hash_lock
);
1025 for (hdr
= buf_hash_table
.ht_table
[idx
]; hdr
!= NULL
;
1026 hdr
= hdr
->b_hash_next
) {
1027 if (HDR_EQUAL(spa
, dva
, birth
, hdr
)) {
1032 mutex_exit(hash_lock
);
1038 * Insert an entry into the hash table. If there is already an element
1039 * equal to elem in the hash table, then the already existing element
1040 * will be returned and the new element will not be inserted.
1041 * Otherwise returns NULL.
1042 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1044 static arc_buf_hdr_t
*
1045 buf_hash_insert(arc_buf_hdr_t
*hdr
, kmutex_t
**lockp
)
1047 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1048 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1049 arc_buf_hdr_t
*fhdr
;
1052 ASSERT(!DVA_IS_EMPTY(&hdr
->b_dva
));
1053 ASSERT(hdr
->b_birth
!= 0);
1054 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
1056 if (lockp
!= NULL
) {
1058 mutex_enter(hash_lock
);
1060 ASSERT(MUTEX_HELD(hash_lock
));
1063 for (fhdr
= buf_hash_table
.ht_table
[idx
], i
= 0; fhdr
!= NULL
;
1064 fhdr
= fhdr
->b_hash_next
, i
++) {
1065 if (HDR_EQUAL(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
, fhdr
))
1069 hdr
->b_hash_next
= buf_hash_table
.ht_table
[idx
];
1070 buf_hash_table
.ht_table
[idx
] = hdr
;
1071 arc_hdr_set_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1073 /* collect some hash table performance data */
1075 ARCSTAT_BUMP(arcstat_hash_collisions
);
1077 ARCSTAT_BUMP(arcstat_hash_chains
);
1079 ARCSTAT_MAX(arcstat_hash_chain_max
, i
);
1081 uint64_t he
= atomic_inc_64_nv(
1082 &arc_stats
.arcstat_hash_elements
.value
.ui64
);
1083 ARCSTAT_MAX(arcstat_hash_elements_max
, he
);
1089 buf_hash_remove(arc_buf_hdr_t
*hdr
)
1091 arc_buf_hdr_t
*fhdr
, **hdrp
;
1092 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1094 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx
)));
1095 ASSERT(HDR_IN_HASH_TABLE(hdr
));
1097 hdrp
= &buf_hash_table
.ht_table
[idx
];
1098 while ((fhdr
= *hdrp
) != hdr
) {
1099 ASSERT3P(fhdr
, !=, NULL
);
1100 hdrp
= &fhdr
->b_hash_next
;
1102 *hdrp
= hdr
->b_hash_next
;
1103 hdr
->b_hash_next
= NULL
;
1104 arc_hdr_clear_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1106 /* collect some hash table performance data */
1107 atomic_dec_64(&arc_stats
.arcstat_hash_elements
.value
.ui64
);
1109 if (buf_hash_table
.ht_table
[idx
] &&
1110 buf_hash_table
.ht_table
[idx
]->b_hash_next
== NULL
)
1111 ARCSTAT_BUMPDOWN(arcstat_hash_chains
);
1115 * Global data structures and functions for the buf kmem cache.
1118 static kmem_cache_t
*hdr_full_cache
;
1119 static kmem_cache_t
*hdr_full_crypt_cache
;
1120 static kmem_cache_t
*hdr_l2only_cache
;
1121 static kmem_cache_t
*buf_cache
;
1126 #if defined(_KERNEL)
1128 * Large allocations which do not require contiguous pages
1129 * should be using vmem_free() in the linux kernel\
1131 vmem_free(buf_hash_table
.ht_table
,
1132 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1134 kmem_free(buf_hash_table
.ht_table
,
1135 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1137 for (int i
= 0; i
< BUF_LOCKS
; i
++)
1138 mutex_destroy(BUF_HASH_LOCK(i
));
1139 kmem_cache_destroy(hdr_full_cache
);
1140 kmem_cache_destroy(hdr_full_crypt_cache
);
1141 kmem_cache_destroy(hdr_l2only_cache
);
1142 kmem_cache_destroy(buf_cache
);
1146 * Constructor callback - called when the cache is empty
1147 * and a new buf is requested.
1150 hdr_full_cons(void *vbuf
, void *unused
, int kmflag
)
1152 (void) unused
, (void) kmflag
;
1153 arc_buf_hdr_t
*hdr
= vbuf
;
1155 memset(hdr
, 0, HDR_FULL_SIZE
);
1156 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
1157 cv_init(&hdr
->b_l1hdr
.b_cv
, NULL
, CV_DEFAULT
, NULL
);
1158 zfs_refcount_create(&hdr
->b_l1hdr
.b_refcnt
);
1160 mutex_init(&hdr
->b_l1hdr
.b_freeze_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1162 multilist_link_init(&hdr
->b_l1hdr
.b_arc_node
);
1163 list_link_init(&hdr
->b_l2hdr
.b_l2node
);
1164 arc_space_consume(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1170 hdr_full_crypt_cons(void *vbuf
, void *unused
, int kmflag
)
1173 arc_buf_hdr_t
*hdr
= vbuf
;
1175 hdr_full_cons(vbuf
, unused
, kmflag
);
1176 memset(&hdr
->b_crypt_hdr
, 0, sizeof (hdr
->b_crypt_hdr
));
1177 arc_space_consume(sizeof (hdr
->b_crypt_hdr
), ARC_SPACE_HDRS
);
1183 hdr_l2only_cons(void *vbuf
, void *unused
, int kmflag
)
1185 (void) unused
, (void) kmflag
;
1186 arc_buf_hdr_t
*hdr
= vbuf
;
1188 memset(hdr
, 0, HDR_L2ONLY_SIZE
);
1189 arc_space_consume(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1195 buf_cons(void *vbuf
, void *unused
, int kmflag
)
1197 (void) unused
, (void) kmflag
;
1198 arc_buf_t
*buf
= vbuf
;
1200 memset(buf
, 0, sizeof (arc_buf_t
));
1201 arc_space_consume(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1207 * Destructor callback - called when a cached buf is
1208 * no longer required.
1211 hdr_full_dest(void *vbuf
, void *unused
)
1214 arc_buf_hdr_t
*hdr
= vbuf
;
1216 ASSERT(HDR_EMPTY(hdr
));
1217 cv_destroy(&hdr
->b_l1hdr
.b_cv
);
1218 zfs_refcount_destroy(&hdr
->b_l1hdr
.b_refcnt
);
1220 mutex_destroy(&hdr
->b_l1hdr
.b_freeze_lock
);
1222 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
1223 arc_space_return(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1227 hdr_full_crypt_dest(void *vbuf
, void *unused
)
1229 (void) vbuf
, (void) unused
;
1231 hdr_full_dest(vbuf
, unused
);
1232 arc_space_return(sizeof (((arc_buf_hdr_t
*)NULL
)->b_crypt_hdr
),
1237 hdr_l2only_dest(void *vbuf
, void *unused
)
1240 arc_buf_hdr_t
*hdr
= vbuf
;
1242 ASSERT(HDR_EMPTY(hdr
));
1243 arc_space_return(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1247 buf_dest(void *vbuf
, void *unused
)
1252 arc_space_return(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1258 uint64_t *ct
= NULL
;
1259 uint64_t hsize
= 1ULL << 12;
1263 * The hash table is big enough to fill all of physical memory
1264 * with an average block size of zfs_arc_average_blocksize (default 8K).
1265 * By default, the table will take up
1266 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1268 while (hsize
* zfs_arc_average_blocksize
< arc_all_memory())
1271 buf_hash_table
.ht_mask
= hsize
- 1;
1272 #if defined(_KERNEL)
1274 * Large allocations which do not require contiguous pages
1275 * should be using vmem_alloc() in the linux kernel
1277 buf_hash_table
.ht_table
=
1278 vmem_zalloc(hsize
* sizeof (void*), KM_SLEEP
);
1280 buf_hash_table
.ht_table
=
1281 kmem_zalloc(hsize
* sizeof (void*), KM_NOSLEEP
);
1283 if (buf_hash_table
.ht_table
== NULL
) {
1284 ASSERT(hsize
> (1ULL << 8));
1289 hdr_full_cache
= kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE
,
1290 0, hdr_full_cons
, hdr_full_dest
, NULL
, NULL
, NULL
, 0);
1291 hdr_full_crypt_cache
= kmem_cache_create("arc_buf_hdr_t_full_crypt",
1292 HDR_FULL_CRYPT_SIZE
, 0, hdr_full_crypt_cons
, hdr_full_crypt_dest
,
1293 NULL
, NULL
, NULL
, 0);
1294 hdr_l2only_cache
= kmem_cache_create("arc_buf_hdr_t_l2only",
1295 HDR_L2ONLY_SIZE
, 0, hdr_l2only_cons
, hdr_l2only_dest
, NULL
,
1297 buf_cache
= kmem_cache_create("arc_buf_t", sizeof (arc_buf_t
),
1298 0, buf_cons
, buf_dest
, NULL
, NULL
, NULL
, 0);
1300 for (i
= 0; i
< 256; i
++)
1301 for (ct
= zfs_crc64_table
+ i
, *ct
= i
, j
= 8; j
> 0; j
--)
1302 *ct
= (*ct
>> 1) ^ (-(*ct
& 1) & ZFS_CRC64_POLY
);
1304 for (i
= 0; i
< BUF_LOCKS
; i
++)
1305 mutex_init(BUF_HASH_LOCK(i
), NULL
, MUTEX_DEFAULT
, NULL
);
1308 #define ARC_MINTIME (hz>>4) /* 62 ms */
1311 * This is the size that the buf occupies in memory. If the buf is compressed,
1312 * it will correspond to the compressed size. You should use this method of
1313 * getting the buf size unless you explicitly need the logical size.
1316 arc_buf_size(arc_buf_t
*buf
)
1318 return (ARC_BUF_COMPRESSED(buf
) ?
1319 HDR_GET_PSIZE(buf
->b_hdr
) : HDR_GET_LSIZE(buf
->b_hdr
));
1323 arc_buf_lsize(arc_buf_t
*buf
)
1325 return (HDR_GET_LSIZE(buf
->b_hdr
));
1329 * This function will return B_TRUE if the buffer is encrypted in memory.
1330 * This buffer can be decrypted by calling arc_untransform().
1333 arc_is_encrypted(arc_buf_t
*buf
)
1335 return (ARC_BUF_ENCRYPTED(buf
) != 0);
1339 * Returns B_TRUE if the buffer represents data that has not had its MAC
1343 arc_is_unauthenticated(arc_buf_t
*buf
)
1345 return (HDR_NOAUTH(buf
->b_hdr
) != 0);
1349 arc_get_raw_params(arc_buf_t
*buf
, boolean_t
*byteorder
, uint8_t *salt
,
1350 uint8_t *iv
, uint8_t *mac
)
1352 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1354 ASSERT(HDR_PROTECTED(hdr
));
1356 memcpy(salt
, hdr
->b_crypt_hdr
.b_salt
, ZIO_DATA_SALT_LEN
);
1357 memcpy(iv
, hdr
->b_crypt_hdr
.b_iv
, ZIO_DATA_IV_LEN
);
1358 memcpy(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
);
1359 *byteorder
= (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
1360 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
1364 * Indicates how this buffer is compressed in memory. If it is not compressed
1365 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1366 * arc_untransform() as long as it is also unencrypted.
1369 arc_get_compression(arc_buf_t
*buf
)
1371 return (ARC_BUF_COMPRESSED(buf
) ?
1372 HDR_GET_COMPRESS(buf
->b_hdr
) : ZIO_COMPRESS_OFF
);
1376 * Return the compression algorithm used to store this data in the ARC. If ARC
1377 * compression is enabled or this is an encrypted block, this will be the same
1378 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1380 static inline enum zio_compress
1381 arc_hdr_get_compress(arc_buf_hdr_t
*hdr
)
1383 return (HDR_COMPRESSION_ENABLED(hdr
) ?
1384 HDR_GET_COMPRESS(hdr
) : ZIO_COMPRESS_OFF
);
1388 arc_get_complevel(arc_buf_t
*buf
)
1390 return (buf
->b_hdr
->b_complevel
);
1393 static inline boolean_t
1394 arc_buf_is_shared(arc_buf_t
*buf
)
1396 boolean_t shared
= (buf
->b_data
!= NULL
&&
1397 buf
->b_hdr
->b_l1hdr
.b_pabd
!= NULL
&&
1398 abd_is_linear(buf
->b_hdr
->b_l1hdr
.b_pabd
) &&
1399 buf
->b_data
== abd_to_buf(buf
->b_hdr
->b_l1hdr
.b_pabd
));
1400 IMPLY(shared
, HDR_SHARED_DATA(buf
->b_hdr
));
1401 IMPLY(shared
, ARC_BUF_SHARED(buf
));
1402 IMPLY(shared
, ARC_BUF_COMPRESSED(buf
) || ARC_BUF_LAST(buf
));
1405 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1406 * already being shared" requirement prevents us from doing that.
1413 * Free the checksum associated with this header. If there is no checksum, this
1417 arc_cksum_free(arc_buf_hdr_t
*hdr
)
1420 ASSERT(HDR_HAS_L1HDR(hdr
));
1422 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1423 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
) {
1424 kmem_free(hdr
->b_l1hdr
.b_freeze_cksum
, sizeof (zio_cksum_t
));
1425 hdr
->b_l1hdr
.b_freeze_cksum
= NULL
;
1427 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1432 * Return true iff at least one of the bufs on hdr is not compressed.
1433 * Encrypted buffers count as compressed.
1436 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t
*hdr
)
1438 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY_OR_LOCKED(hdr
));
1440 for (arc_buf_t
*b
= hdr
->b_l1hdr
.b_buf
; b
!= NULL
; b
= b
->b_next
) {
1441 if (!ARC_BUF_COMPRESSED(b
)) {
1450 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1451 * matches the checksum that is stored in the hdr. If there is no checksum,
1452 * or if the buf is compressed, this is a no-op.
1455 arc_cksum_verify(arc_buf_t
*buf
)
1458 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1461 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1464 if (ARC_BUF_COMPRESSED(buf
))
1467 ASSERT(HDR_HAS_L1HDR(hdr
));
1469 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1471 if (hdr
->b_l1hdr
.b_freeze_cksum
== NULL
|| HDR_IO_ERROR(hdr
)) {
1472 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1476 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
, &zc
);
1477 if (!ZIO_CHECKSUM_EQUAL(*hdr
->b_l1hdr
.b_freeze_cksum
, zc
))
1478 panic("buffer modified while frozen!");
1479 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1484 * This function makes the assumption that data stored in the L2ARC
1485 * will be transformed exactly as it is in the main pool. Because of
1486 * this we can verify the checksum against the reading process's bp.
1489 arc_cksum_is_equal(arc_buf_hdr_t
*hdr
, zio_t
*zio
)
1491 ASSERT(!BP_IS_EMBEDDED(zio
->io_bp
));
1492 VERIFY3U(BP_GET_PSIZE(zio
->io_bp
), ==, HDR_GET_PSIZE(hdr
));
1495 * Block pointers always store the checksum for the logical data.
1496 * If the block pointer has the gang bit set, then the checksum
1497 * it represents is for the reconstituted data and not for an
1498 * individual gang member. The zio pipeline, however, must be able to
1499 * determine the checksum of each of the gang constituents so it
1500 * treats the checksum comparison differently than what we need
1501 * for l2arc blocks. This prevents us from using the
1502 * zio_checksum_error() interface directly. Instead we must call the
1503 * zio_checksum_error_impl() so that we can ensure the checksum is
1504 * generated using the correct checksum algorithm and accounts for the
1505 * logical I/O size and not just a gang fragment.
1507 return (zio_checksum_error_impl(zio
->io_spa
, zio
->io_bp
,
1508 BP_GET_CHECKSUM(zio
->io_bp
), zio
->io_abd
, zio
->io_size
,
1509 zio
->io_offset
, NULL
) == 0);
1513 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1514 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1515 * isn't modified later on. If buf is compressed or there is already a checksum
1516 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1519 arc_cksum_compute(arc_buf_t
*buf
)
1521 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1525 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1526 ASSERT(HDR_HAS_L1HDR(hdr
));
1527 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1528 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
|| ARC_BUF_COMPRESSED(buf
)) {
1529 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1533 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
1534 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1535 hdr
->b_l1hdr
.b_freeze_cksum
= kmem_alloc(sizeof (zio_cksum_t
),
1537 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
,
1538 hdr
->b_l1hdr
.b_freeze_cksum
);
1539 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1546 arc_buf_sigsegv(int sig
, siginfo_t
*si
, void *unused
)
1548 (void) sig
, (void) unused
;
1549 panic("Got SIGSEGV at address: 0x%lx\n", (long)si
->si_addr
);
1554 arc_buf_unwatch(arc_buf_t
*buf
)
1558 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1559 PROT_READ
| PROT_WRITE
));
1567 arc_buf_watch(arc_buf_t
*buf
)
1571 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1578 static arc_buf_contents_t
1579 arc_buf_type(arc_buf_hdr_t
*hdr
)
1581 arc_buf_contents_t type
;
1582 if (HDR_ISTYPE_METADATA(hdr
)) {
1583 type
= ARC_BUFC_METADATA
;
1585 type
= ARC_BUFC_DATA
;
1587 VERIFY3U(hdr
->b_type
, ==, type
);
1592 arc_is_metadata(arc_buf_t
*buf
)
1594 return (HDR_ISTYPE_METADATA(buf
->b_hdr
) != 0);
1598 arc_bufc_to_flags(arc_buf_contents_t type
)
1602 /* metadata field is 0 if buffer contains normal data */
1604 case ARC_BUFC_METADATA
:
1605 return (ARC_FLAG_BUFC_METADATA
);
1609 panic("undefined ARC buffer type!");
1610 return ((uint32_t)-1);
1614 arc_buf_thaw(arc_buf_t
*buf
)
1616 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1618 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
1619 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
1621 arc_cksum_verify(buf
);
1624 * Compressed buffers do not manipulate the b_freeze_cksum.
1626 if (ARC_BUF_COMPRESSED(buf
))
1629 ASSERT(HDR_HAS_L1HDR(hdr
));
1630 arc_cksum_free(hdr
);
1631 arc_buf_unwatch(buf
);
1635 arc_buf_freeze(arc_buf_t
*buf
)
1637 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1640 if (ARC_BUF_COMPRESSED(buf
))
1643 ASSERT(HDR_HAS_L1HDR(buf
->b_hdr
));
1644 arc_cksum_compute(buf
);
1648 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1649 * the following functions should be used to ensure that the flags are
1650 * updated in a thread-safe way. When manipulating the flags either
1651 * the hash_lock must be held or the hdr must be undiscoverable. This
1652 * ensures that we're not racing with any other threads when updating
1656 arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1658 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1659 hdr
->b_flags
|= flags
;
1663 arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1665 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1666 hdr
->b_flags
&= ~flags
;
1670 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1671 * done in a special way since we have to clear and set bits
1672 * at the same time. Consumers that wish to set the compression bits
1673 * must use this function to ensure that the flags are updated in
1674 * thread-safe manner.
1677 arc_hdr_set_compress(arc_buf_hdr_t
*hdr
, enum zio_compress cmp
)
1679 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1682 * Holes and embedded blocks will always have a psize = 0 so
1683 * we ignore the compression of the blkptr and set the
1684 * want to uncompress them. Mark them as uncompressed.
1686 if (!zfs_compressed_arc_enabled
|| HDR_GET_PSIZE(hdr
) == 0) {
1687 arc_hdr_clear_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1688 ASSERT(!HDR_COMPRESSION_ENABLED(hdr
));
1690 arc_hdr_set_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1691 ASSERT(HDR_COMPRESSION_ENABLED(hdr
));
1694 HDR_SET_COMPRESS(hdr
, cmp
);
1695 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, cmp
);
1699 * Looks for another buf on the same hdr which has the data decompressed, copies
1700 * from it, and returns true. If no such buf exists, returns false.
1703 arc_buf_try_copy_decompressed_data(arc_buf_t
*buf
)
1705 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1706 boolean_t copied
= B_FALSE
;
1708 ASSERT(HDR_HAS_L1HDR(hdr
));
1709 ASSERT3P(buf
->b_data
, !=, NULL
);
1710 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1712 for (arc_buf_t
*from
= hdr
->b_l1hdr
.b_buf
; from
!= NULL
;
1713 from
= from
->b_next
) {
1714 /* can't use our own data buffer */
1719 if (!ARC_BUF_COMPRESSED(from
)) {
1720 memcpy(buf
->b_data
, from
->b_data
, arc_buf_size(buf
));
1728 * There were no decompressed bufs, so there should not be a
1729 * checksum on the hdr either.
1731 if (zfs_flags
& ZFS_DEBUG_MODIFY
)
1732 EQUIV(!copied
, hdr
->b_l1hdr
.b_freeze_cksum
== NULL
);
1739 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1740 * This is used during l2arc reconstruction to make empty ARC buffers
1741 * which circumvent the regular disk->arc->l2arc path and instead come
1742 * into being in the reverse order, i.e. l2arc->arc.
1744 static arc_buf_hdr_t
*
1745 arc_buf_alloc_l2only(size_t size
, arc_buf_contents_t type
, l2arc_dev_t
*dev
,
1746 dva_t dva
, uint64_t daddr
, int32_t psize
, uint64_t birth
,
1747 enum zio_compress compress
, uint8_t complevel
, boolean_t
protected,
1748 boolean_t prefetch
, arc_state_type_t arcs_state
)
1753 hdr
= kmem_cache_alloc(hdr_l2only_cache
, KM_SLEEP
);
1754 hdr
->b_birth
= birth
;
1757 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L2HDR
);
1758 HDR_SET_LSIZE(hdr
, size
);
1759 HDR_SET_PSIZE(hdr
, psize
);
1760 arc_hdr_set_compress(hdr
, compress
);
1761 hdr
->b_complevel
= complevel
;
1763 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
1765 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
1766 hdr
->b_spa
= spa_load_guid(dev
->l2ad_vdev
->vdev_spa
);
1770 hdr
->b_l2hdr
.b_dev
= dev
;
1771 hdr
->b_l2hdr
.b_daddr
= daddr
;
1772 hdr
->b_l2hdr
.b_arcs_state
= arcs_state
;
1778 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1781 arc_hdr_size(arc_buf_hdr_t
*hdr
)
1785 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
1786 HDR_GET_PSIZE(hdr
) > 0) {
1787 size
= HDR_GET_PSIZE(hdr
);
1789 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, 0);
1790 size
= HDR_GET_LSIZE(hdr
);
1796 arc_hdr_authenticate(arc_buf_hdr_t
*hdr
, spa_t
*spa
, uint64_t dsobj
)
1800 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
1801 uint64_t psize
= HDR_GET_PSIZE(hdr
);
1802 void *tmpbuf
= NULL
;
1803 abd_t
*abd
= hdr
->b_l1hdr
.b_pabd
;
1805 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1806 ASSERT(HDR_AUTHENTICATED(hdr
));
1807 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1810 * The MAC is calculated on the compressed data that is stored on disk.
1811 * However, if compressed arc is disabled we will only have the
1812 * decompressed data available to us now. Compress it into a temporary
1813 * abd so we can verify the MAC. The performance overhead of this will
1814 * be relatively low, since most objects in an encrypted objset will
1815 * be encrypted (instead of authenticated) anyway.
1817 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1818 !HDR_COMPRESSION_ENABLED(hdr
)) {
1819 tmpbuf
= zio_buf_alloc(lsize
);
1820 abd
= abd_get_from_buf(tmpbuf
, lsize
);
1821 abd_take_ownership_of_buf(abd
, B_TRUE
);
1822 csize
= zio_compress_data(HDR_GET_COMPRESS(hdr
),
1823 hdr
->b_l1hdr
.b_pabd
, tmpbuf
, lsize
, hdr
->b_complevel
);
1824 ASSERT3U(csize
, <=, psize
);
1825 abd_zero_off(abd
, csize
, psize
- csize
);
1829 * Authentication is best effort. We authenticate whenever the key is
1830 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1832 if (hdr
->b_crypt_hdr
.b_ot
== DMU_OT_OBJSET
) {
1833 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, ZIO_COMPRESS_OFF
);
1834 ASSERT3U(lsize
, ==, psize
);
1835 ret
= spa_do_crypt_objset_mac_abd(B_FALSE
, spa
, dsobj
, abd
,
1836 psize
, hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1838 ret
= spa_do_crypt_mac_abd(B_FALSE
, spa
, dsobj
, abd
, psize
,
1839 hdr
->b_crypt_hdr
.b_mac
);
1843 arc_hdr_clear_flags(hdr
, ARC_FLAG_NOAUTH
);
1844 else if (ret
!= ENOENT
)
1860 * This function will take a header that only has raw encrypted data in
1861 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1862 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1863 * also decompress the data.
1866 arc_hdr_decrypt(arc_buf_hdr_t
*hdr
, spa_t
*spa
, const zbookmark_phys_t
*zb
)
1871 boolean_t no_crypt
= B_FALSE
;
1872 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1874 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1875 ASSERT(HDR_ENCRYPTED(hdr
));
1877 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
);
1879 ret
= spa_do_crypt_abd(B_FALSE
, spa
, zb
, hdr
->b_crypt_hdr
.b_ot
,
1880 B_FALSE
, bswap
, hdr
->b_crypt_hdr
.b_salt
, hdr
->b_crypt_hdr
.b_iv
,
1881 hdr
->b_crypt_hdr
.b_mac
, HDR_GET_PSIZE(hdr
), hdr
->b_l1hdr
.b_pabd
,
1882 hdr
->b_crypt_hdr
.b_rabd
, &no_crypt
);
1887 abd_copy(hdr
->b_l1hdr
.b_pabd
, hdr
->b_crypt_hdr
.b_rabd
,
1888 HDR_GET_PSIZE(hdr
));
1892 * If this header has disabled arc compression but the b_pabd is
1893 * compressed after decrypting it, we need to decompress the newly
1896 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1897 !HDR_COMPRESSION_ENABLED(hdr
)) {
1899 * We want to make sure that we are correctly honoring the
1900 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1901 * and then loan a buffer from it, rather than allocating a
1902 * linear buffer and wrapping it in an abd later.
1904 cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
1906 tmp
= abd_borrow_buf(cabd
, arc_hdr_size(hdr
));
1908 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
1909 hdr
->b_l1hdr
.b_pabd
, tmp
, HDR_GET_PSIZE(hdr
),
1910 HDR_GET_LSIZE(hdr
), &hdr
->b_complevel
);
1912 abd_return_buf(cabd
, tmp
, arc_hdr_size(hdr
));
1916 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
1917 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
1918 arc_hdr_size(hdr
), hdr
);
1919 hdr
->b_l1hdr
.b_pabd
= cabd
;
1925 arc_hdr_free_abd(hdr
, B_FALSE
);
1927 arc_free_data_buf(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
1933 * This function is called during arc_buf_fill() to prepare the header's
1934 * abd plaintext pointer for use. This involves authenticated protected
1935 * data and decrypting encrypted data into the plaintext abd.
1938 arc_fill_hdr_crypt(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, spa_t
*spa
,
1939 const zbookmark_phys_t
*zb
, boolean_t noauth
)
1943 ASSERT(HDR_PROTECTED(hdr
));
1945 if (hash_lock
!= NULL
)
1946 mutex_enter(hash_lock
);
1948 if (HDR_NOAUTH(hdr
) && !noauth
) {
1950 * The caller requested authenticated data but our data has
1951 * not been authenticated yet. Verify the MAC now if we can.
1953 ret
= arc_hdr_authenticate(hdr
, spa
, zb
->zb_objset
);
1956 } else if (HDR_HAS_RABD(hdr
) && hdr
->b_l1hdr
.b_pabd
== NULL
) {
1958 * If we only have the encrypted version of the data, but the
1959 * unencrypted version was requested we take this opportunity
1960 * to store the decrypted version in the header for future use.
1962 ret
= arc_hdr_decrypt(hdr
, spa
, zb
);
1967 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1969 if (hash_lock
!= NULL
)
1970 mutex_exit(hash_lock
);
1975 if (hash_lock
!= NULL
)
1976 mutex_exit(hash_lock
);
1982 * This function is used by the dbuf code to decrypt bonus buffers in place.
1983 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1984 * block, so we use the hash lock here to protect against concurrent calls to
1988 arc_buf_untransform_in_place(arc_buf_t
*buf
)
1990 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1992 ASSERT(HDR_ENCRYPTED(hdr
));
1993 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
1994 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1995 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1997 zio_crypt_copy_dnode_bonus(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
1999 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
2000 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
2001 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
2005 * Given a buf that has a data buffer attached to it, this function will
2006 * efficiently fill the buf with data of the specified compression setting from
2007 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2008 * are already sharing a data buf, no copy is performed.
2010 * If the buf is marked as compressed but uncompressed data was requested, this
2011 * will allocate a new data buffer for the buf, remove that flag, and fill the
2012 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2013 * uncompressed data, and (since we haven't added support for it yet) if you
2014 * want compressed data your buf must already be marked as compressed and have
2015 * the correct-sized data buffer.
2018 arc_buf_fill(arc_buf_t
*buf
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2019 arc_fill_flags_t flags
)
2022 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2023 boolean_t hdr_compressed
=
2024 (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
2025 boolean_t compressed
= (flags
& ARC_FILL_COMPRESSED
) != 0;
2026 boolean_t encrypted
= (flags
& ARC_FILL_ENCRYPTED
) != 0;
2027 dmu_object_byteswap_t bswap
= hdr
->b_l1hdr
.b_byteswap
;
2028 kmutex_t
*hash_lock
= (flags
& ARC_FILL_LOCKED
) ? NULL
: HDR_LOCK(hdr
);
2030 ASSERT3P(buf
->b_data
, !=, NULL
);
2031 IMPLY(compressed
, hdr_compressed
|| ARC_BUF_ENCRYPTED(buf
));
2032 IMPLY(compressed
, ARC_BUF_COMPRESSED(buf
));
2033 IMPLY(encrypted
, HDR_ENCRYPTED(hdr
));
2034 IMPLY(encrypted
, ARC_BUF_ENCRYPTED(buf
));
2035 IMPLY(encrypted
, ARC_BUF_COMPRESSED(buf
));
2036 IMPLY(encrypted
, !ARC_BUF_SHARED(buf
));
2039 * If the caller wanted encrypted data we just need to copy it from
2040 * b_rabd and potentially byteswap it. We won't be able to do any
2041 * further transforms on it.
2044 ASSERT(HDR_HAS_RABD(hdr
));
2045 abd_copy_to_buf(buf
->b_data
, hdr
->b_crypt_hdr
.b_rabd
,
2046 HDR_GET_PSIZE(hdr
));
2051 * Adjust encrypted and authenticated headers to accommodate
2052 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2053 * allowed to fail decryption due to keys not being loaded
2054 * without being marked as an IO error.
2056 if (HDR_PROTECTED(hdr
)) {
2057 error
= arc_fill_hdr_crypt(hdr
, hash_lock
, spa
,
2058 zb
, !!(flags
& ARC_FILL_NOAUTH
));
2059 if (error
== EACCES
&& (flags
& ARC_FILL_IN_PLACE
) != 0) {
2061 } else if (error
!= 0) {
2062 if (hash_lock
!= NULL
)
2063 mutex_enter(hash_lock
);
2064 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
2065 if (hash_lock
!= NULL
)
2066 mutex_exit(hash_lock
);
2072 * There is a special case here for dnode blocks which are
2073 * decrypting their bonus buffers. These blocks may request to
2074 * be decrypted in-place. This is necessary because there may
2075 * be many dnodes pointing into this buffer and there is
2076 * currently no method to synchronize replacing the backing
2077 * b_data buffer and updating all of the pointers. Here we use
2078 * the hash lock to ensure there are no races. If the need
2079 * arises for other types to be decrypted in-place, they must
2080 * add handling here as well.
2082 if ((flags
& ARC_FILL_IN_PLACE
) != 0) {
2083 ASSERT(!hdr_compressed
);
2084 ASSERT(!compressed
);
2087 if (HDR_ENCRYPTED(hdr
) && ARC_BUF_ENCRYPTED(buf
)) {
2088 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
2090 if (hash_lock
!= NULL
)
2091 mutex_enter(hash_lock
);
2092 arc_buf_untransform_in_place(buf
);
2093 if (hash_lock
!= NULL
)
2094 mutex_exit(hash_lock
);
2096 /* Compute the hdr's checksum if necessary */
2097 arc_cksum_compute(buf
);
2103 if (hdr_compressed
== compressed
) {
2104 if (!arc_buf_is_shared(buf
)) {
2105 abd_copy_to_buf(buf
->b_data
, hdr
->b_l1hdr
.b_pabd
,
2109 ASSERT(hdr_compressed
);
2110 ASSERT(!compressed
);
2113 * If the buf is sharing its data with the hdr, unlink it and
2114 * allocate a new data buffer for the buf.
2116 if (arc_buf_is_shared(buf
)) {
2117 ASSERT(ARC_BUF_COMPRESSED(buf
));
2119 /* We need to give the buf its own b_data */
2120 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
2122 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2123 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2125 /* Previously overhead was 0; just add new overhead */
2126 ARCSTAT_INCR(arcstat_overhead_size
, HDR_GET_LSIZE(hdr
));
2127 } else if (ARC_BUF_COMPRESSED(buf
)) {
2128 /* We need to reallocate the buf's b_data */
2129 arc_free_data_buf(hdr
, buf
->b_data
, HDR_GET_PSIZE(hdr
),
2132 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2134 /* We increased the size of b_data; update overhead */
2135 ARCSTAT_INCR(arcstat_overhead_size
,
2136 HDR_GET_LSIZE(hdr
) - HDR_GET_PSIZE(hdr
));
2140 * Regardless of the buf's previous compression settings, it
2141 * should not be compressed at the end of this function.
2143 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
2146 * Try copying the data from another buf which already has a
2147 * decompressed version. If that's not possible, it's time to
2148 * bite the bullet and decompress the data from the hdr.
2150 if (arc_buf_try_copy_decompressed_data(buf
)) {
2151 /* Skip byteswapping and checksumming (already done) */
2154 error
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
2155 hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
2156 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
),
2160 * Absent hardware errors or software bugs, this should
2161 * be impossible, but log it anyway so we can debug it.
2165 "hdr %px, compress %d, psize %d, lsize %d",
2166 hdr
, arc_hdr_get_compress(hdr
),
2167 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
));
2168 if (hash_lock
!= NULL
)
2169 mutex_enter(hash_lock
);
2170 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
2171 if (hash_lock
!= NULL
)
2172 mutex_exit(hash_lock
);
2173 return (SET_ERROR(EIO
));
2179 /* Byteswap the buf's data if necessary */
2180 if (bswap
!= DMU_BSWAP_NUMFUNCS
) {
2181 ASSERT(!HDR_SHARED_DATA(hdr
));
2182 ASSERT3U(bswap
, <, DMU_BSWAP_NUMFUNCS
);
2183 dmu_ot_byteswap
[bswap
].ob_func(buf
->b_data
, HDR_GET_LSIZE(hdr
));
2186 /* Compute the hdr's checksum if necessary */
2187 arc_cksum_compute(buf
);
2193 * If this function is being called to decrypt an encrypted buffer or verify an
2194 * authenticated one, the key must be loaded and a mapping must be made
2195 * available in the keystore via spa_keystore_create_mapping() or one of its
2199 arc_untransform(arc_buf_t
*buf
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2203 arc_fill_flags_t flags
= 0;
2206 flags
|= ARC_FILL_IN_PLACE
;
2208 ret
= arc_buf_fill(buf
, spa
, zb
, flags
);
2209 if (ret
== ECKSUM
) {
2211 * Convert authentication and decryption errors to EIO
2212 * (and generate an ereport) before leaving the ARC.
2214 ret
= SET_ERROR(EIO
);
2215 spa_log_error(spa
, zb
);
2216 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION
,
2217 spa
, NULL
, zb
, NULL
, 0);
2224 * Increment the amount of evictable space in the arc_state_t's refcount.
2225 * We account for the space used by the hdr and the arc buf individually
2226 * so that we can add and remove them from the refcount individually.
2229 arc_evictable_space_increment(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2231 arc_buf_contents_t type
= arc_buf_type(hdr
);
2233 ASSERT(HDR_HAS_L1HDR(hdr
));
2235 if (GHOST_STATE(state
)) {
2236 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
2237 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2238 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2239 ASSERT(!HDR_HAS_RABD(hdr
));
2240 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2241 HDR_GET_LSIZE(hdr
), hdr
);
2245 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2246 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2247 arc_hdr_size(hdr
), hdr
);
2249 if (HDR_HAS_RABD(hdr
)) {
2250 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2251 HDR_GET_PSIZE(hdr
), hdr
);
2254 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2255 buf
= buf
->b_next
) {
2256 if (arc_buf_is_shared(buf
))
2258 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2259 arc_buf_size(buf
), buf
);
2264 * Decrement the amount of evictable space in the arc_state_t's refcount.
2265 * We account for the space used by the hdr and the arc buf individually
2266 * so that we can add and remove them from the refcount individually.
2269 arc_evictable_space_decrement(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2271 arc_buf_contents_t type
= arc_buf_type(hdr
);
2273 ASSERT(HDR_HAS_L1HDR(hdr
));
2275 if (GHOST_STATE(state
)) {
2276 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
2277 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2278 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2279 ASSERT(!HDR_HAS_RABD(hdr
));
2280 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2281 HDR_GET_LSIZE(hdr
), hdr
);
2285 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2286 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2287 arc_hdr_size(hdr
), hdr
);
2289 if (HDR_HAS_RABD(hdr
)) {
2290 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2291 HDR_GET_PSIZE(hdr
), hdr
);
2294 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2295 buf
= buf
->b_next
) {
2296 if (arc_buf_is_shared(buf
))
2298 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2299 arc_buf_size(buf
), buf
);
2304 * Add a reference to this hdr indicating that someone is actively
2305 * referencing that memory. When the refcount transitions from 0 to 1,
2306 * we remove it from the respective arc_state_t list to indicate that
2307 * it is not evictable.
2310 add_reference(arc_buf_hdr_t
*hdr
, const void *tag
)
2312 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2314 ASSERT(HDR_HAS_L1HDR(hdr
));
2315 if (!HDR_EMPTY(hdr
) && !MUTEX_HELD(HDR_LOCK(hdr
))) {
2316 ASSERT(state
== arc_anon
);
2317 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2318 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2321 if ((zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
) == 1) &&
2322 state
!= arc_anon
&& state
!= arc_l2c_only
) {
2323 /* We don't use the L2-only state list. */
2324 multilist_remove(&state
->arcs_list
[arc_buf_type(hdr
)], hdr
);
2325 arc_evictable_space_decrement(hdr
, state
);
2330 * Remove a reference from this hdr. When the reference transitions from
2331 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2332 * list making it eligible for eviction.
2335 remove_reference(arc_buf_hdr_t
*hdr
, const void *tag
)
2338 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2340 ASSERT(HDR_HAS_L1HDR(hdr
));
2341 ASSERT(state
== arc_anon
|| MUTEX_HELD(HDR_LOCK(hdr
)));
2342 ASSERT(!GHOST_STATE(state
)); /* arc_l2c_only counts as a ghost. */
2344 if ((cnt
= zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
)) != 0)
2347 if (state
== arc_anon
) {
2348 arc_hdr_destroy(hdr
);
2351 if (state
== arc_uncached
&& !HDR_PREFETCH(hdr
)) {
2352 arc_change_state(arc_anon
, hdr
);
2353 arc_hdr_destroy(hdr
);
2356 multilist_insert(&state
->arcs_list
[arc_buf_type(hdr
)], hdr
);
2357 arc_evictable_space_increment(hdr
, state
);
2362 * Returns detailed information about a specific arc buffer. When the
2363 * state_index argument is set the function will calculate the arc header
2364 * list position for its arc state. Since this requires a linear traversal
2365 * callers are strongly encourage not to do this. However, it can be helpful
2366 * for targeted analysis so the functionality is provided.
2369 arc_buf_info(arc_buf_t
*ab
, arc_buf_info_t
*abi
, int state_index
)
2372 arc_buf_hdr_t
*hdr
= ab
->b_hdr
;
2373 l1arc_buf_hdr_t
*l1hdr
= NULL
;
2374 l2arc_buf_hdr_t
*l2hdr
= NULL
;
2375 arc_state_t
*state
= NULL
;
2377 memset(abi
, 0, sizeof (arc_buf_info_t
));
2382 abi
->abi_flags
= hdr
->b_flags
;
2384 if (HDR_HAS_L1HDR(hdr
)) {
2385 l1hdr
= &hdr
->b_l1hdr
;
2386 state
= l1hdr
->b_state
;
2388 if (HDR_HAS_L2HDR(hdr
))
2389 l2hdr
= &hdr
->b_l2hdr
;
2392 abi
->abi_bufcnt
= l1hdr
->b_bufcnt
;
2393 abi
->abi_access
= l1hdr
->b_arc_access
;
2394 abi
->abi_mru_hits
= l1hdr
->b_mru_hits
;
2395 abi
->abi_mru_ghost_hits
= l1hdr
->b_mru_ghost_hits
;
2396 abi
->abi_mfu_hits
= l1hdr
->b_mfu_hits
;
2397 abi
->abi_mfu_ghost_hits
= l1hdr
->b_mfu_ghost_hits
;
2398 abi
->abi_holds
= zfs_refcount_count(&l1hdr
->b_refcnt
);
2402 abi
->abi_l2arc_dattr
= l2hdr
->b_daddr
;
2403 abi
->abi_l2arc_hits
= l2hdr
->b_hits
;
2406 abi
->abi_state_type
= state
? state
->arcs_state
: ARC_STATE_ANON
;
2407 abi
->abi_state_contents
= arc_buf_type(hdr
);
2408 abi
->abi_size
= arc_hdr_size(hdr
);
2412 * Move the supplied buffer to the indicated state. The hash lock
2413 * for the buffer must be held by the caller.
2416 arc_change_state(arc_state_t
*new_state
, arc_buf_hdr_t
*hdr
)
2418 arc_state_t
*old_state
;
2421 boolean_t update_old
, update_new
;
2422 arc_buf_contents_t buftype
= arc_buf_type(hdr
);
2425 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2426 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2427 * L1 hdr doesn't always exist when we change state to arc_anon before
2428 * destroying a header, in which case reallocating to add the L1 hdr is
2431 if (HDR_HAS_L1HDR(hdr
)) {
2432 old_state
= hdr
->b_l1hdr
.b_state
;
2433 refcnt
= zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
);
2434 bufcnt
= hdr
->b_l1hdr
.b_bufcnt
;
2435 update_old
= (bufcnt
> 0 || hdr
->b_l1hdr
.b_pabd
!= NULL
||
2438 IMPLY(GHOST_STATE(old_state
), bufcnt
== 0);
2439 IMPLY(GHOST_STATE(new_state
), bufcnt
== 0);
2440 IMPLY(GHOST_STATE(old_state
), hdr
->b_l1hdr
.b_buf
== NULL
);
2441 IMPLY(GHOST_STATE(new_state
), hdr
->b_l1hdr
.b_buf
== NULL
);
2442 IMPLY(old_state
== arc_anon
, bufcnt
<= 1);
2444 old_state
= arc_l2c_only
;
2447 update_old
= B_FALSE
;
2449 update_new
= update_old
;
2450 if (GHOST_STATE(old_state
))
2451 update_old
= B_TRUE
;
2452 if (GHOST_STATE(new_state
))
2453 update_new
= B_TRUE
;
2455 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
2456 ASSERT3P(new_state
, !=, old_state
);
2459 * If this buffer is evictable, transfer it from the
2460 * old state list to the new state list.
2463 if (old_state
!= arc_anon
&& old_state
!= arc_l2c_only
) {
2464 ASSERT(HDR_HAS_L1HDR(hdr
));
2465 /* remove_reference() saves on insert. */
2466 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
2467 multilist_remove(&old_state
->arcs_list
[buftype
],
2469 arc_evictable_space_decrement(hdr
, old_state
);
2472 if (new_state
!= arc_anon
&& new_state
!= arc_l2c_only
) {
2474 * An L1 header always exists here, since if we're
2475 * moving to some L1-cached state (i.e. not l2c_only or
2476 * anonymous), we realloc the header to add an L1hdr
2479 ASSERT(HDR_HAS_L1HDR(hdr
));
2480 multilist_insert(&new_state
->arcs_list
[buftype
], hdr
);
2481 arc_evictable_space_increment(hdr
, new_state
);
2485 ASSERT(!HDR_EMPTY(hdr
));
2486 if (new_state
== arc_anon
&& HDR_IN_HASH_TABLE(hdr
))
2487 buf_hash_remove(hdr
);
2489 /* adjust state sizes (ignore arc_l2c_only) */
2491 if (update_new
&& new_state
!= arc_l2c_only
) {
2492 ASSERT(HDR_HAS_L1HDR(hdr
));
2493 if (GHOST_STATE(new_state
)) {
2497 * When moving a header to a ghost state, we first
2498 * remove all arc buffers. Thus, we'll have a
2499 * bufcnt of zero, and no arc buffer to use for
2500 * the reference. As a result, we use the arc
2501 * header pointer for the reference.
2503 (void) zfs_refcount_add_many(&new_state
->arcs_size
,
2504 HDR_GET_LSIZE(hdr
), hdr
);
2505 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2506 ASSERT(!HDR_HAS_RABD(hdr
));
2508 uint32_t buffers
= 0;
2511 * Each individual buffer holds a unique reference,
2512 * thus we must remove each of these references one
2515 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2516 buf
= buf
->b_next
) {
2517 ASSERT3U(bufcnt
, !=, 0);
2521 * When the arc_buf_t is sharing the data
2522 * block with the hdr, the owner of the
2523 * reference belongs to the hdr. Only
2524 * add to the refcount if the arc_buf_t is
2527 if (arc_buf_is_shared(buf
))
2530 (void) zfs_refcount_add_many(
2531 &new_state
->arcs_size
,
2532 arc_buf_size(buf
), buf
);
2534 ASSERT3U(bufcnt
, ==, buffers
);
2536 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2537 (void) zfs_refcount_add_many(
2538 &new_state
->arcs_size
,
2539 arc_hdr_size(hdr
), hdr
);
2542 if (HDR_HAS_RABD(hdr
)) {
2543 (void) zfs_refcount_add_many(
2544 &new_state
->arcs_size
,
2545 HDR_GET_PSIZE(hdr
), hdr
);
2550 if (update_old
&& old_state
!= arc_l2c_only
) {
2551 ASSERT(HDR_HAS_L1HDR(hdr
));
2552 if (GHOST_STATE(old_state
)) {
2554 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2555 ASSERT(!HDR_HAS_RABD(hdr
));
2558 * When moving a header off of a ghost state,
2559 * the header will not contain any arc buffers.
2560 * We use the arc header pointer for the reference
2561 * which is exactly what we did when we put the
2562 * header on the ghost state.
2565 (void) zfs_refcount_remove_many(&old_state
->arcs_size
,
2566 HDR_GET_LSIZE(hdr
), hdr
);
2568 uint32_t buffers
= 0;
2571 * Each individual buffer holds a unique reference,
2572 * thus we must remove each of these references one
2575 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2576 buf
= buf
->b_next
) {
2577 ASSERT3U(bufcnt
, !=, 0);
2581 * When the arc_buf_t is sharing the data
2582 * block with the hdr, the owner of the
2583 * reference belongs to the hdr. Only
2584 * add to the refcount if the arc_buf_t is
2587 if (arc_buf_is_shared(buf
))
2590 (void) zfs_refcount_remove_many(
2591 &old_state
->arcs_size
, arc_buf_size(buf
),
2594 ASSERT3U(bufcnt
, ==, buffers
);
2595 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
2598 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2599 (void) zfs_refcount_remove_many(
2600 &old_state
->arcs_size
, arc_hdr_size(hdr
),
2604 if (HDR_HAS_RABD(hdr
)) {
2605 (void) zfs_refcount_remove_many(
2606 &old_state
->arcs_size
, HDR_GET_PSIZE(hdr
),
2612 if (HDR_HAS_L1HDR(hdr
)) {
2613 hdr
->b_l1hdr
.b_state
= new_state
;
2615 if (HDR_HAS_L2HDR(hdr
) && new_state
!= arc_l2c_only
) {
2616 l2arc_hdr_arcstats_decrement_state(hdr
);
2617 hdr
->b_l2hdr
.b_arcs_state
= new_state
->arcs_state
;
2618 l2arc_hdr_arcstats_increment_state(hdr
);
2624 arc_space_consume(uint64_t space
, arc_space_type_t type
)
2626 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2631 case ARC_SPACE_DATA
:
2632 ARCSTAT_INCR(arcstat_data_size
, space
);
2634 case ARC_SPACE_META
:
2635 ARCSTAT_INCR(arcstat_metadata_size
, space
);
2637 case ARC_SPACE_BONUS
:
2638 ARCSTAT_INCR(arcstat_bonus_size
, space
);
2640 case ARC_SPACE_DNODE
:
2641 aggsum_add(&arc_sums
.arcstat_dnode_size
, space
);
2643 case ARC_SPACE_DBUF
:
2644 ARCSTAT_INCR(arcstat_dbuf_size
, space
);
2646 case ARC_SPACE_HDRS
:
2647 ARCSTAT_INCR(arcstat_hdr_size
, space
);
2649 case ARC_SPACE_L2HDRS
:
2650 aggsum_add(&arc_sums
.arcstat_l2_hdr_size
, space
);
2652 case ARC_SPACE_ABD_CHUNK_WASTE
:
2654 * Note: this includes space wasted by all scatter ABD's, not
2655 * just those allocated by the ARC. But the vast majority of
2656 * scatter ABD's come from the ARC, because other users are
2659 ARCSTAT_INCR(arcstat_abd_chunk_waste_size
, space
);
2663 if (type
!= ARC_SPACE_DATA
&& type
!= ARC_SPACE_ABD_CHUNK_WASTE
)
2664 aggsum_add(&arc_sums
.arcstat_meta_used
, space
);
2666 aggsum_add(&arc_sums
.arcstat_size
, space
);
2670 arc_space_return(uint64_t space
, arc_space_type_t type
)
2672 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2677 case ARC_SPACE_DATA
:
2678 ARCSTAT_INCR(arcstat_data_size
, -space
);
2680 case ARC_SPACE_META
:
2681 ARCSTAT_INCR(arcstat_metadata_size
, -space
);
2683 case ARC_SPACE_BONUS
:
2684 ARCSTAT_INCR(arcstat_bonus_size
, -space
);
2686 case ARC_SPACE_DNODE
:
2687 aggsum_add(&arc_sums
.arcstat_dnode_size
, -space
);
2689 case ARC_SPACE_DBUF
:
2690 ARCSTAT_INCR(arcstat_dbuf_size
, -space
);
2692 case ARC_SPACE_HDRS
:
2693 ARCSTAT_INCR(arcstat_hdr_size
, -space
);
2695 case ARC_SPACE_L2HDRS
:
2696 aggsum_add(&arc_sums
.arcstat_l2_hdr_size
, -space
);
2698 case ARC_SPACE_ABD_CHUNK_WASTE
:
2699 ARCSTAT_INCR(arcstat_abd_chunk_waste_size
, -space
);
2703 if (type
!= ARC_SPACE_DATA
&& type
!= ARC_SPACE_ABD_CHUNK_WASTE
) {
2704 ASSERT(aggsum_compare(&arc_sums
.arcstat_meta_used
,
2706 ARCSTAT_MAX(arcstat_meta_max
,
2707 aggsum_upper_bound(&arc_sums
.arcstat_meta_used
));
2708 aggsum_add(&arc_sums
.arcstat_meta_used
, -space
);
2711 ASSERT(aggsum_compare(&arc_sums
.arcstat_size
, space
) >= 0);
2712 aggsum_add(&arc_sums
.arcstat_size
, -space
);
2716 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2717 * with the hdr's b_pabd.
2720 arc_can_share(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2723 * The criteria for sharing a hdr's data are:
2724 * 1. the buffer is not encrypted
2725 * 2. the hdr's compression matches the buf's compression
2726 * 3. the hdr doesn't need to be byteswapped
2727 * 4. the hdr isn't already being shared
2728 * 5. the buf is either compressed or it is the last buf in the hdr list
2730 * Criterion #5 maintains the invariant that shared uncompressed
2731 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2732 * might ask, "if a compressed buf is allocated first, won't that be the
2733 * last thing in the list?", but in that case it's impossible to create
2734 * a shared uncompressed buf anyway (because the hdr must be compressed
2735 * to have the compressed buf). You might also think that #3 is
2736 * sufficient to make this guarantee, however it's possible
2737 * (specifically in the rare L2ARC write race mentioned in
2738 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2739 * is shareable, but wasn't at the time of its allocation. Rather than
2740 * allow a new shared uncompressed buf to be created and then shuffle
2741 * the list around to make it the last element, this simply disallows
2742 * sharing if the new buf isn't the first to be added.
2744 ASSERT3P(buf
->b_hdr
, ==, hdr
);
2745 boolean_t hdr_compressed
=
2746 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
;
2747 boolean_t buf_compressed
= ARC_BUF_COMPRESSED(buf
) != 0;
2748 return (!ARC_BUF_ENCRYPTED(buf
) &&
2749 buf_compressed
== hdr_compressed
&&
2750 hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
&&
2751 !HDR_SHARED_DATA(hdr
) &&
2752 (ARC_BUF_LAST(buf
) || ARC_BUF_COMPRESSED(buf
)));
2756 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2757 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2758 * copy was made successfully, or an error code otherwise.
2761 arc_buf_alloc_impl(arc_buf_hdr_t
*hdr
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2762 const void *tag
, boolean_t encrypted
, boolean_t compressed
,
2763 boolean_t noauth
, boolean_t fill
, arc_buf_t
**ret
)
2766 arc_fill_flags_t flags
= ARC_FILL_LOCKED
;
2768 ASSERT(HDR_HAS_L1HDR(hdr
));
2769 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
2770 VERIFY(hdr
->b_type
== ARC_BUFC_DATA
||
2771 hdr
->b_type
== ARC_BUFC_METADATA
);
2772 ASSERT3P(ret
, !=, NULL
);
2773 ASSERT3P(*ret
, ==, NULL
);
2774 IMPLY(encrypted
, compressed
);
2776 buf
= *ret
= kmem_cache_alloc(buf_cache
, KM_PUSHPAGE
);
2779 buf
->b_next
= hdr
->b_l1hdr
.b_buf
;
2782 add_reference(hdr
, tag
);
2785 * We're about to change the hdr's b_flags. We must either
2786 * hold the hash_lock or be undiscoverable.
2788 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2791 * Only honor requests for compressed bufs if the hdr is actually
2792 * compressed. This must be overridden if the buffer is encrypted since
2793 * encrypted buffers cannot be decompressed.
2796 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2797 buf
->b_flags
|= ARC_BUF_FLAG_ENCRYPTED
;
2798 flags
|= ARC_FILL_COMPRESSED
| ARC_FILL_ENCRYPTED
;
2799 } else if (compressed
&&
2800 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
2801 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2802 flags
|= ARC_FILL_COMPRESSED
;
2807 flags
|= ARC_FILL_NOAUTH
;
2811 * If the hdr's data can be shared then we share the data buffer and
2812 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2813 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2814 * buffer to store the buf's data.
2816 * There are two additional restrictions here because we're sharing
2817 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2818 * actively involved in an L2ARC write, because if this buf is used by
2819 * an arc_write() then the hdr's data buffer will be released when the
2820 * write completes, even though the L2ARC write might still be using it.
2821 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2822 * need to be ABD-aware. It must be allocated via
2823 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2824 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2825 * page" buffers because the ABD code needs to handle freeing them
2828 boolean_t can_share
= arc_can_share(hdr
, buf
) &&
2829 !HDR_L2_WRITING(hdr
) &&
2830 hdr
->b_l1hdr
.b_pabd
!= NULL
&&
2831 abd_is_linear(hdr
->b_l1hdr
.b_pabd
) &&
2832 !abd_is_linear_page(hdr
->b_l1hdr
.b_pabd
);
2834 /* Set up b_data and sharing */
2836 buf
->b_data
= abd_to_buf(hdr
->b_l1hdr
.b_pabd
);
2837 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
2838 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2841 arc_get_data_buf(hdr
, arc_buf_size(buf
), buf
);
2842 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
2844 VERIFY3P(buf
->b_data
, !=, NULL
);
2846 hdr
->b_l1hdr
.b_buf
= buf
;
2847 hdr
->b_l1hdr
.b_bufcnt
+= 1;
2849 hdr
->b_crypt_hdr
.b_ebufcnt
+= 1;
2852 * If the user wants the data from the hdr, we need to either copy or
2853 * decompress the data.
2856 ASSERT3P(zb
, !=, NULL
);
2857 return (arc_buf_fill(buf
, spa
, zb
, flags
));
2863 static const char *arc_onloan_tag
= "onloan";
2866 arc_loaned_bytes_update(int64_t delta
)
2868 atomic_add_64(&arc_loaned_bytes
, delta
);
2870 /* assert that it did not wrap around */
2871 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
2875 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2876 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2877 * buffers must be returned to the arc before they can be used by the DMU or
2881 arc_loan_buf(spa_t
*spa
, boolean_t is_metadata
, int size
)
2883 arc_buf_t
*buf
= arc_alloc_buf(spa
, arc_onloan_tag
,
2884 is_metadata
? ARC_BUFC_METADATA
: ARC_BUFC_DATA
, size
);
2886 arc_loaned_bytes_update(arc_buf_size(buf
));
2892 arc_loan_compressed_buf(spa_t
*spa
, uint64_t psize
, uint64_t lsize
,
2893 enum zio_compress compression_type
, uint8_t complevel
)
2895 arc_buf_t
*buf
= arc_alloc_compressed_buf(spa
, arc_onloan_tag
,
2896 psize
, lsize
, compression_type
, complevel
);
2898 arc_loaned_bytes_update(arc_buf_size(buf
));
2904 arc_loan_raw_buf(spa_t
*spa
, uint64_t dsobj
, boolean_t byteorder
,
2905 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
,
2906 dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
2907 enum zio_compress compression_type
, uint8_t complevel
)
2909 arc_buf_t
*buf
= arc_alloc_raw_buf(spa
, arc_onloan_tag
, dsobj
,
2910 byteorder
, salt
, iv
, mac
, ot
, psize
, lsize
, compression_type
,
2913 atomic_add_64(&arc_loaned_bytes
, psize
);
2919 * Return a loaned arc buffer to the arc.
2922 arc_return_buf(arc_buf_t
*buf
, const void *tag
)
2924 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2926 ASSERT3P(buf
->b_data
, !=, NULL
);
2927 ASSERT(HDR_HAS_L1HDR(hdr
));
2928 (void) zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2929 (void) zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2931 arc_loaned_bytes_update(-arc_buf_size(buf
));
2934 /* Detach an arc_buf from a dbuf (tag) */
2936 arc_loan_inuse_buf(arc_buf_t
*buf
, const void *tag
)
2938 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2940 ASSERT3P(buf
->b_data
, !=, NULL
);
2941 ASSERT(HDR_HAS_L1HDR(hdr
));
2942 (void) zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2943 (void) zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2945 arc_loaned_bytes_update(arc_buf_size(buf
));
2949 l2arc_free_abd_on_write(abd_t
*abd
, size_t size
, arc_buf_contents_t type
)
2951 l2arc_data_free_t
*df
= kmem_alloc(sizeof (*df
), KM_SLEEP
);
2954 df
->l2df_size
= size
;
2955 df
->l2df_type
= type
;
2956 mutex_enter(&l2arc_free_on_write_mtx
);
2957 list_insert_head(l2arc_free_on_write
, df
);
2958 mutex_exit(&l2arc_free_on_write_mtx
);
2962 arc_hdr_free_on_write(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
2964 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2965 arc_buf_contents_t type
= arc_buf_type(hdr
);
2966 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
2968 /* protected by hash lock, if in the hash table */
2969 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
2970 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2971 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
2973 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2976 (void) zfs_refcount_remove_many(&state
->arcs_size
, size
, hdr
);
2977 if (type
== ARC_BUFC_METADATA
) {
2978 arc_space_return(size
, ARC_SPACE_META
);
2980 ASSERT(type
== ARC_BUFC_DATA
);
2981 arc_space_return(size
, ARC_SPACE_DATA
);
2985 l2arc_free_abd_on_write(hdr
->b_crypt_hdr
.b_rabd
, size
, type
);
2987 l2arc_free_abd_on_write(hdr
->b_l1hdr
.b_pabd
, size
, type
);
2992 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2993 * data buffer, we transfer the refcount ownership to the hdr and update
2994 * the appropriate kstats.
2997 arc_share_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2999 ASSERT(arc_can_share(hdr
, buf
));
3000 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3001 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
3002 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3005 * Start sharing the data buffer. We transfer the
3006 * refcount ownership to the hdr since it always owns
3007 * the refcount whenever an arc_buf_t is shared.
3009 zfs_refcount_transfer_ownership_many(&hdr
->b_l1hdr
.b_state
->arcs_size
,
3010 arc_hdr_size(hdr
), buf
, hdr
);
3011 hdr
->b_l1hdr
.b_pabd
= abd_get_from_buf(buf
->b_data
, arc_buf_size(buf
));
3012 abd_take_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
,
3013 HDR_ISTYPE_METADATA(hdr
));
3014 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3015 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
3018 * Since we've transferred ownership to the hdr we need
3019 * to increment its compressed and uncompressed kstats and
3020 * decrement the overhead size.
3022 ARCSTAT_INCR(arcstat_compressed_size
, arc_hdr_size(hdr
));
3023 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
3024 ARCSTAT_INCR(arcstat_overhead_size
, -arc_buf_size(buf
));
3028 arc_unshare_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3030 ASSERT(arc_buf_is_shared(buf
));
3031 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3032 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3035 * We are no longer sharing this buffer so we need
3036 * to transfer its ownership to the rightful owner.
3038 zfs_refcount_transfer_ownership_many(&hdr
->b_l1hdr
.b_state
->arcs_size
,
3039 arc_hdr_size(hdr
), hdr
, buf
);
3040 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3041 abd_release_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
);
3042 abd_free(hdr
->b_l1hdr
.b_pabd
);
3043 hdr
->b_l1hdr
.b_pabd
= NULL
;
3044 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
3047 * Since the buffer is no longer shared between
3048 * the arc buf and the hdr, count it as overhead.
3050 ARCSTAT_INCR(arcstat_compressed_size
, -arc_hdr_size(hdr
));
3051 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3052 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
3056 * Remove an arc_buf_t from the hdr's buf list and return the last
3057 * arc_buf_t on the list. If no buffers remain on the list then return
3061 arc_buf_remove(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3063 ASSERT(HDR_HAS_L1HDR(hdr
));
3064 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3066 arc_buf_t
**bufp
= &hdr
->b_l1hdr
.b_buf
;
3067 arc_buf_t
*lastbuf
= NULL
;
3070 * Remove the buf from the hdr list and locate the last
3071 * remaining buffer on the list.
3073 while (*bufp
!= NULL
) {
3075 *bufp
= buf
->b_next
;
3078 * If we've removed a buffer in the middle of
3079 * the list then update the lastbuf and update
3082 if (*bufp
!= NULL
) {
3084 bufp
= &(*bufp
)->b_next
;
3088 ASSERT3P(lastbuf
, !=, buf
);
3089 IMPLY(hdr
->b_l1hdr
.b_bufcnt
> 0, lastbuf
!= NULL
);
3090 IMPLY(hdr
->b_l1hdr
.b_bufcnt
> 0, hdr
->b_l1hdr
.b_buf
!= NULL
);
3091 IMPLY(lastbuf
!= NULL
, ARC_BUF_LAST(lastbuf
));
3097 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3101 arc_buf_destroy_impl(arc_buf_t
*buf
)
3103 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3106 * Free up the data associated with the buf but only if we're not
3107 * sharing this with the hdr. If we are sharing it with the hdr, the
3108 * hdr is responsible for doing the free.
3110 if (buf
->b_data
!= NULL
) {
3112 * We're about to change the hdr's b_flags. We must either
3113 * hold the hash_lock or be undiscoverable.
3115 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3117 arc_cksum_verify(buf
);
3118 arc_buf_unwatch(buf
);
3120 if (arc_buf_is_shared(buf
)) {
3121 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3123 uint64_t size
= arc_buf_size(buf
);
3124 arc_free_data_buf(hdr
, buf
->b_data
, size
, buf
);
3125 ARCSTAT_INCR(arcstat_overhead_size
, -size
);
3129 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
3130 hdr
->b_l1hdr
.b_bufcnt
-= 1;
3132 if (ARC_BUF_ENCRYPTED(buf
)) {
3133 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
3136 * If we have no more encrypted buffers and we've
3137 * already gotten a copy of the decrypted data we can
3138 * free b_rabd to save some space.
3140 if (hdr
->b_crypt_hdr
.b_ebufcnt
== 0 &&
3141 HDR_HAS_RABD(hdr
) && hdr
->b_l1hdr
.b_pabd
!= NULL
&&
3142 !HDR_IO_IN_PROGRESS(hdr
)) {
3143 arc_hdr_free_abd(hdr
, B_TRUE
);
3148 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
3150 if (ARC_BUF_SHARED(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
3152 * If the current arc_buf_t is sharing its data buffer with the
3153 * hdr, then reassign the hdr's b_pabd to share it with the new
3154 * buffer at the end of the list. The shared buffer is always
3155 * the last one on the hdr's buffer list.
3157 * There is an equivalent case for compressed bufs, but since
3158 * they aren't guaranteed to be the last buf in the list and
3159 * that is an exceedingly rare case, we just allow that space be
3160 * wasted temporarily. We must also be careful not to share
3161 * encrypted buffers, since they cannot be shared.
3163 if (lastbuf
!= NULL
&& !ARC_BUF_ENCRYPTED(lastbuf
)) {
3164 /* Only one buf can be shared at once */
3165 VERIFY(!arc_buf_is_shared(lastbuf
));
3166 /* hdr is uncompressed so can't have compressed buf */
3167 VERIFY(!ARC_BUF_COMPRESSED(lastbuf
));
3169 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3170 arc_hdr_free_abd(hdr
, B_FALSE
);
3173 * We must setup a new shared block between the
3174 * last buffer and the hdr. The data would have
3175 * been allocated by the arc buf so we need to transfer
3176 * ownership to the hdr since it's now being shared.
3178 arc_share_buf(hdr
, lastbuf
);
3180 } else if (HDR_SHARED_DATA(hdr
)) {
3182 * Uncompressed shared buffers are always at the end
3183 * of the list. Compressed buffers don't have the
3184 * same requirements. This makes it hard to
3185 * simply assert that the lastbuf is shared so
3186 * we rely on the hdr's compression flags to determine
3187 * if we have a compressed, shared buffer.
3189 ASSERT3P(lastbuf
, !=, NULL
);
3190 ASSERT(arc_buf_is_shared(lastbuf
) ||
3191 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
3195 * Free the checksum if we're removing the last uncompressed buf from
3198 if (!arc_hdr_has_uncompressed_buf(hdr
)) {
3199 arc_cksum_free(hdr
);
3202 /* clean up the buf */
3204 kmem_cache_free(buf_cache
, buf
);
3208 arc_hdr_alloc_abd(arc_buf_hdr_t
*hdr
, int alloc_flags
)
3211 boolean_t alloc_rdata
= ((alloc_flags
& ARC_HDR_ALLOC_RDATA
) != 0);
3213 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
3214 ASSERT(HDR_HAS_L1HDR(hdr
));
3215 ASSERT(!HDR_SHARED_DATA(hdr
) || alloc_rdata
);
3216 IMPLY(alloc_rdata
, HDR_PROTECTED(hdr
));
3219 size
= HDR_GET_PSIZE(hdr
);
3220 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, ==, NULL
);
3221 hdr
->b_crypt_hdr
.b_rabd
= arc_get_data_abd(hdr
, size
, hdr
,
3223 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, !=, NULL
);
3224 ARCSTAT_INCR(arcstat_raw_size
, size
);
3226 size
= arc_hdr_size(hdr
);
3227 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3228 hdr
->b_l1hdr
.b_pabd
= arc_get_data_abd(hdr
, size
, hdr
,
3230 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3233 ARCSTAT_INCR(arcstat_compressed_size
, size
);
3234 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
3238 arc_hdr_free_abd(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
3240 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
3242 ASSERT(HDR_HAS_L1HDR(hdr
));
3243 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
3244 IMPLY(free_rdata
, HDR_HAS_RABD(hdr
));
3247 * If the hdr is currently being written to the l2arc then
3248 * we defer freeing the data by adding it to the l2arc_free_on_write
3249 * list. The l2arc will free the data once it's finished
3250 * writing it to the l2arc device.
3252 if (HDR_L2_WRITING(hdr
)) {
3253 arc_hdr_free_on_write(hdr
, free_rdata
);
3254 ARCSTAT_BUMP(arcstat_l2_free_on_write
);
3255 } else if (free_rdata
) {
3256 arc_free_data_abd(hdr
, hdr
->b_crypt_hdr
.b_rabd
, size
, hdr
);
3258 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
, size
, hdr
);
3262 hdr
->b_crypt_hdr
.b_rabd
= NULL
;
3263 ARCSTAT_INCR(arcstat_raw_size
, -size
);
3265 hdr
->b_l1hdr
.b_pabd
= NULL
;
3268 if (hdr
->b_l1hdr
.b_pabd
== NULL
&& !HDR_HAS_RABD(hdr
))
3269 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
3271 ARCSTAT_INCR(arcstat_compressed_size
, -size
);
3272 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3276 * Allocate empty anonymous ARC header. The header will get its identity
3277 * assigned and buffers attached later as part of read or write operations.
3279 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3280 * inserts it into ARC hash to become globally visible and allocates physical
3281 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3282 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3283 * sharing one of them with the physical ABD buffer.
3285 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3286 * data. Then after compression and/or encryption arc_write_ready() allocates
3287 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3288 * buffer. On disk write completion arc_write_done() assigns the header its
3289 * new identity (b_dva + b_birth) and inserts into ARC hash.
3291 * In case of partial overwrite the old data is read first as described. Then
3292 * arc_release() either allocates new anonymous ARC header and moves the ARC
3293 * buffer to it, or reuses the old ARC header by discarding its identity and
3294 * removing it from ARC hash. After buffer modification normal write process
3295 * follows as described.
3297 static arc_buf_hdr_t
*
3298 arc_hdr_alloc(uint64_t spa
, int32_t psize
, int32_t lsize
,
3299 boolean_t
protected, enum zio_compress compression_type
, uint8_t complevel
,
3300 arc_buf_contents_t type
)
3304 VERIFY(type
== ARC_BUFC_DATA
|| type
== ARC_BUFC_METADATA
);
3306 hdr
= kmem_cache_alloc(hdr_full_crypt_cache
, KM_PUSHPAGE
);
3308 hdr
= kmem_cache_alloc(hdr_full_cache
, KM_PUSHPAGE
);
3311 ASSERT(HDR_EMPTY(hdr
));
3313 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3315 HDR_SET_PSIZE(hdr
, psize
);
3316 HDR_SET_LSIZE(hdr
, lsize
);
3320 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L1HDR
);
3321 arc_hdr_set_compress(hdr
, compression_type
);
3322 hdr
->b_complevel
= complevel
;
3324 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
3326 hdr
->b_l1hdr
.b_state
= arc_anon
;
3327 hdr
->b_l1hdr
.b_arc_access
= 0;
3328 hdr
->b_l1hdr
.b_mru_hits
= 0;
3329 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
3330 hdr
->b_l1hdr
.b_mfu_hits
= 0;
3331 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
3332 hdr
->b_l1hdr
.b_bufcnt
= 0;
3333 hdr
->b_l1hdr
.b_buf
= NULL
;
3335 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3341 * Transition between the two allocation states for the arc_buf_hdr struct.
3342 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3343 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3344 * version is used when a cache buffer is only in the L2ARC in order to reduce
3347 static arc_buf_hdr_t
*
3348 arc_hdr_realloc(arc_buf_hdr_t
*hdr
, kmem_cache_t
*old
, kmem_cache_t
*new)
3350 ASSERT(HDR_HAS_L2HDR(hdr
));
3352 arc_buf_hdr_t
*nhdr
;
3353 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3355 ASSERT((old
== hdr_full_cache
&& new == hdr_l2only_cache
) ||
3356 (old
== hdr_l2only_cache
&& new == hdr_full_cache
));
3359 * if the caller wanted a new full header and the header is to be
3360 * encrypted we will actually allocate the header from the full crypt
3361 * cache instead. The same applies to freeing from the old cache.
3363 if (HDR_PROTECTED(hdr
) && new == hdr_full_cache
)
3364 new = hdr_full_crypt_cache
;
3365 if (HDR_PROTECTED(hdr
) && old
== hdr_full_cache
)
3366 old
= hdr_full_crypt_cache
;
3368 nhdr
= kmem_cache_alloc(new, KM_PUSHPAGE
);
3370 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
3371 buf_hash_remove(hdr
);
3373 memcpy(nhdr
, hdr
, HDR_L2ONLY_SIZE
);
3375 if (new == hdr_full_cache
|| new == hdr_full_crypt_cache
) {
3376 arc_hdr_set_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3378 * arc_access and arc_change_state need to be aware that a
3379 * header has just come out of L2ARC, so we set its state to
3380 * l2c_only even though it's about to change.
3382 nhdr
->b_l1hdr
.b_state
= arc_l2c_only
;
3384 /* Verify previous threads set to NULL before freeing */
3385 ASSERT3P(nhdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3386 ASSERT(!HDR_HAS_RABD(hdr
));
3388 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3389 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
3391 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3395 * If we've reached here, We must have been called from
3396 * arc_evict_hdr(), as such we should have already been
3397 * removed from any ghost list we were previously on
3398 * (which protects us from racing with arc_evict_state),
3399 * thus no locking is needed during this check.
3401 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3404 * A buffer must not be moved into the arc_l2c_only
3405 * state if it's not finished being written out to the
3406 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3407 * might try to be accessed, even though it was removed.
3409 VERIFY(!HDR_L2_WRITING(hdr
));
3410 VERIFY3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3411 ASSERT(!HDR_HAS_RABD(hdr
));
3413 arc_hdr_clear_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3416 * The header has been reallocated so we need to re-insert it into any
3419 (void) buf_hash_insert(nhdr
, NULL
);
3421 ASSERT(list_link_active(&hdr
->b_l2hdr
.b_l2node
));
3423 mutex_enter(&dev
->l2ad_mtx
);
3426 * We must place the realloc'ed header back into the list at
3427 * the same spot. Otherwise, if it's placed earlier in the list,
3428 * l2arc_write_buffers() could find it during the function's
3429 * write phase, and try to write it out to the l2arc.
3431 list_insert_after(&dev
->l2ad_buflist
, hdr
, nhdr
);
3432 list_remove(&dev
->l2ad_buflist
, hdr
);
3434 mutex_exit(&dev
->l2ad_mtx
);
3437 * Since we're using the pointer address as the tag when
3438 * incrementing and decrementing the l2ad_alloc refcount, we
3439 * must remove the old pointer (that we're about to destroy) and
3440 * add the new pointer to the refcount. Otherwise we'd remove
3441 * the wrong pointer address when calling arc_hdr_destroy() later.
3444 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
,
3445 arc_hdr_size(hdr
), hdr
);
3446 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
3447 arc_hdr_size(nhdr
), nhdr
);
3449 buf_discard_identity(hdr
);
3450 kmem_cache_free(old
, hdr
);
3456 * This function allows an L1 header to be reallocated as a crypt
3457 * header and vice versa. If we are going to a crypt header, the
3458 * new fields will be zeroed out.
3460 static arc_buf_hdr_t
*
3461 arc_hdr_realloc_crypt(arc_buf_hdr_t
*hdr
, boolean_t need_crypt
)
3463 arc_buf_hdr_t
*nhdr
;
3465 kmem_cache_t
*ncache
, *ocache
;
3468 * This function requires that hdr is in the arc_anon state.
3469 * Therefore it won't have any L2ARC data for us to worry
3472 ASSERT(HDR_HAS_L1HDR(hdr
));
3473 ASSERT(!HDR_HAS_L2HDR(hdr
));
3474 ASSERT3U(!!HDR_PROTECTED(hdr
), !=, need_crypt
);
3475 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3476 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3477 ASSERT(!list_link_active(&hdr
->b_l2hdr
.b_l2node
));
3478 ASSERT3P(hdr
->b_hash_next
, ==, NULL
);
3481 ncache
= hdr_full_crypt_cache
;
3482 ocache
= hdr_full_cache
;
3484 ncache
= hdr_full_cache
;
3485 ocache
= hdr_full_crypt_cache
;
3488 nhdr
= kmem_cache_alloc(ncache
, KM_PUSHPAGE
);
3491 * Copy all members that aren't locks or condvars to the new header.
3492 * No lists are pointing to us (as we asserted above), so we don't
3493 * need to worry about the list nodes.
3495 nhdr
->b_dva
= hdr
->b_dva
;
3496 nhdr
->b_birth
= hdr
->b_birth
;
3497 nhdr
->b_type
= hdr
->b_type
;
3498 nhdr
->b_flags
= hdr
->b_flags
;
3499 nhdr
->b_psize
= hdr
->b_psize
;
3500 nhdr
->b_lsize
= hdr
->b_lsize
;
3501 nhdr
->b_spa
= hdr
->b_spa
;
3503 nhdr
->b_l1hdr
.b_freeze_cksum
= hdr
->b_l1hdr
.b_freeze_cksum
;
3505 nhdr
->b_l1hdr
.b_bufcnt
= hdr
->b_l1hdr
.b_bufcnt
;
3506 nhdr
->b_l1hdr
.b_byteswap
= hdr
->b_l1hdr
.b_byteswap
;
3507 nhdr
->b_l1hdr
.b_state
= hdr
->b_l1hdr
.b_state
;
3508 nhdr
->b_l1hdr
.b_arc_access
= hdr
->b_l1hdr
.b_arc_access
;
3509 nhdr
->b_l1hdr
.b_mru_hits
= hdr
->b_l1hdr
.b_mru_hits
;
3510 nhdr
->b_l1hdr
.b_mru_ghost_hits
= hdr
->b_l1hdr
.b_mru_ghost_hits
;
3511 nhdr
->b_l1hdr
.b_mfu_hits
= hdr
->b_l1hdr
.b_mfu_hits
;
3512 nhdr
->b_l1hdr
.b_mfu_ghost_hits
= hdr
->b_l1hdr
.b_mfu_ghost_hits
;
3513 nhdr
->b_l1hdr
.b_acb
= hdr
->b_l1hdr
.b_acb
;
3514 nhdr
->b_l1hdr
.b_pabd
= hdr
->b_l1hdr
.b_pabd
;
3517 * This zfs_refcount_add() exists only to ensure that the individual
3518 * arc buffers always point to a header that is referenced, avoiding
3519 * a small race condition that could trigger ASSERTs.
3521 (void) zfs_refcount_add(&nhdr
->b_l1hdr
.b_refcnt
, FTAG
);
3522 nhdr
->b_l1hdr
.b_buf
= hdr
->b_l1hdr
.b_buf
;
3523 for (buf
= nhdr
->b_l1hdr
.b_buf
; buf
!= NULL
; buf
= buf
->b_next
)
3526 zfs_refcount_transfer(&nhdr
->b_l1hdr
.b_refcnt
, &hdr
->b_l1hdr
.b_refcnt
);
3527 (void) zfs_refcount_remove(&nhdr
->b_l1hdr
.b_refcnt
, FTAG
);
3528 ASSERT0(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
3531 arc_hdr_set_flags(nhdr
, ARC_FLAG_PROTECTED
);
3533 arc_hdr_clear_flags(nhdr
, ARC_FLAG_PROTECTED
);
3536 /* unset all members of the original hdr */
3537 memset(&hdr
->b_dva
, 0, sizeof (dva_t
));
3539 hdr
->b_type
= ARC_BUFC_INVALID
;
3545 hdr
->b_l1hdr
.b_freeze_cksum
= NULL
;
3547 hdr
->b_l1hdr
.b_buf
= NULL
;
3548 hdr
->b_l1hdr
.b_bufcnt
= 0;
3549 hdr
->b_l1hdr
.b_byteswap
= 0;
3550 hdr
->b_l1hdr
.b_state
= NULL
;
3551 hdr
->b_l1hdr
.b_arc_access
= 0;
3552 hdr
->b_l1hdr
.b_mru_hits
= 0;
3553 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
3554 hdr
->b_l1hdr
.b_mfu_hits
= 0;
3555 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
3556 hdr
->b_l1hdr
.b_acb
= NULL
;
3557 hdr
->b_l1hdr
.b_pabd
= NULL
;
3559 if (ocache
== hdr_full_crypt_cache
) {
3560 ASSERT(!HDR_HAS_RABD(hdr
));
3561 hdr
->b_crypt_hdr
.b_ot
= DMU_OT_NONE
;
3562 hdr
->b_crypt_hdr
.b_ebufcnt
= 0;
3563 hdr
->b_crypt_hdr
.b_dsobj
= 0;
3564 memset(hdr
->b_crypt_hdr
.b_salt
, 0, ZIO_DATA_SALT_LEN
);
3565 memset(hdr
->b_crypt_hdr
.b_iv
, 0, ZIO_DATA_IV_LEN
);
3566 memset(hdr
->b_crypt_hdr
.b_mac
, 0, ZIO_DATA_MAC_LEN
);
3569 buf_discard_identity(hdr
);
3570 kmem_cache_free(ocache
, hdr
);
3576 * This function is used by the send / receive code to convert a newly
3577 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3578 * is also used to allow the root objset block to be updated without altering
3579 * its embedded MACs. Both block types will always be uncompressed so we do not
3580 * have to worry about compression type or psize.
3583 arc_convert_to_raw(arc_buf_t
*buf
, uint64_t dsobj
, boolean_t byteorder
,
3584 dmu_object_type_t ot
, const uint8_t *salt
, const uint8_t *iv
,
3587 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3589 ASSERT(ot
== DMU_OT_DNODE
|| ot
== DMU_OT_OBJSET
);
3590 ASSERT(HDR_HAS_L1HDR(hdr
));
3591 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3593 buf
->b_flags
|= (ARC_BUF_FLAG_COMPRESSED
| ARC_BUF_FLAG_ENCRYPTED
);
3594 if (!HDR_PROTECTED(hdr
))
3595 hdr
= arc_hdr_realloc_crypt(hdr
, B_TRUE
);
3596 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3597 hdr
->b_crypt_hdr
.b_ot
= ot
;
3598 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3599 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3600 if (!arc_hdr_has_uncompressed_buf(hdr
))
3601 arc_cksum_free(hdr
);
3604 memcpy(hdr
->b_crypt_hdr
.b_salt
, salt
, ZIO_DATA_SALT_LEN
);
3606 memcpy(hdr
->b_crypt_hdr
.b_iv
, iv
, ZIO_DATA_IV_LEN
);
3608 memcpy(hdr
->b_crypt_hdr
.b_mac
, mac
, ZIO_DATA_MAC_LEN
);
3612 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3613 * The buf is returned thawed since we expect the consumer to modify it.
3616 arc_alloc_buf(spa_t
*spa
, const void *tag
, arc_buf_contents_t type
,
3619 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), size
, size
,
3620 B_FALSE
, ZIO_COMPRESS_OFF
, 0, type
);
3622 arc_buf_t
*buf
= NULL
;
3623 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_FALSE
, B_FALSE
,
3624 B_FALSE
, B_FALSE
, &buf
));
3631 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3632 * for bufs containing metadata.
3635 arc_alloc_compressed_buf(spa_t
*spa
, const void *tag
, uint64_t psize
,
3636 uint64_t lsize
, enum zio_compress compression_type
, uint8_t complevel
)
3638 ASSERT3U(lsize
, >, 0);
3639 ASSERT3U(lsize
, >=, psize
);
3640 ASSERT3U(compression_type
, >, ZIO_COMPRESS_OFF
);
3641 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3643 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
,
3644 B_FALSE
, compression_type
, complevel
, ARC_BUFC_DATA
);
3646 arc_buf_t
*buf
= NULL
;
3647 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_FALSE
,
3648 B_TRUE
, B_FALSE
, B_FALSE
, &buf
));
3652 * To ensure that the hdr has the correct data in it if we call
3653 * arc_untransform() on this buf before it's been written to disk,
3654 * it's easiest if we just set up sharing between the buf and the hdr.
3656 arc_share_buf(hdr
, buf
);
3662 arc_alloc_raw_buf(spa_t
*spa
, const void *tag
, uint64_t dsobj
,
3663 boolean_t byteorder
, const uint8_t *salt
, const uint8_t *iv
,
3664 const uint8_t *mac
, dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
3665 enum zio_compress compression_type
, uint8_t complevel
)
3669 arc_buf_contents_t type
= DMU_OT_IS_METADATA(ot
) ?
3670 ARC_BUFC_METADATA
: ARC_BUFC_DATA
;
3672 ASSERT3U(lsize
, >, 0);
3673 ASSERT3U(lsize
, >=, psize
);
3674 ASSERT3U(compression_type
, >=, ZIO_COMPRESS_OFF
);
3675 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3677 hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
, B_TRUE
,
3678 compression_type
, complevel
, type
);
3680 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3681 hdr
->b_crypt_hdr
.b_ot
= ot
;
3682 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3683 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3684 memcpy(hdr
->b_crypt_hdr
.b_salt
, salt
, ZIO_DATA_SALT_LEN
);
3685 memcpy(hdr
->b_crypt_hdr
.b_iv
, iv
, ZIO_DATA_IV_LEN
);
3686 memcpy(hdr
->b_crypt_hdr
.b_mac
, mac
, ZIO_DATA_MAC_LEN
);
3689 * This buffer will be considered encrypted even if the ot is not an
3690 * encrypted type. It will become authenticated instead in
3691 * arc_write_ready().
3694 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_TRUE
, B_TRUE
,
3695 B_FALSE
, B_FALSE
, &buf
));
3702 l2arc_hdr_arcstats_update(arc_buf_hdr_t
*hdr
, boolean_t incr
,
3703 boolean_t state_only
)
3705 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3706 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3707 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
3708 uint64_t psize
= HDR_GET_PSIZE(hdr
);
3709 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
3710 arc_buf_contents_t type
= hdr
->b_type
;
3725 /* If the buffer is a prefetch, count it as such. */
3726 if (HDR_PREFETCH(hdr
)) {
3727 ARCSTAT_INCR(arcstat_l2_prefetch_asize
, asize_s
);
3730 * We use the value stored in the L2 header upon initial
3731 * caching in L2ARC. This value will be updated in case
3732 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3733 * metadata (log entry) cannot currently be updated. Having
3734 * the ARC state in the L2 header solves the problem of a
3735 * possibly absent L1 header (apparent in buffers restored
3736 * from persistent L2ARC).
3738 switch (hdr
->b_l2hdr
.b_arcs_state
) {
3739 case ARC_STATE_MRU_GHOST
:
3741 ARCSTAT_INCR(arcstat_l2_mru_asize
, asize_s
);
3743 case ARC_STATE_MFU_GHOST
:
3745 ARCSTAT_INCR(arcstat_l2_mfu_asize
, asize_s
);
3755 ARCSTAT_INCR(arcstat_l2_psize
, psize_s
);
3756 ARCSTAT_INCR(arcstat_l2_lsize
, lsize_s
);
3760 ARCSTAT_INCR(arcstat_l2_bufc_data_asize
, asize_s
);
3762 case ARC_BUFC_METADATA
:
3763 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize
, asize_s
);
3772 arc_hdr_l2hdr_destroy(arc_buf_hdr_t
*hdr
)
3774 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3775 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3776 uint64_t psize
= HDR_GET_PSIZE(hdr
);
3777 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
3779 ASSERT(MUTEX_HELD(&dev
->l2ad_mtx
));
3780 ASSERT(HDR_HAS_L2HDR(hdr
));
3782 list_remove(&dev
->l2ad_buflist
, hdr
);
3784 l2arc_hdr_arcstats_decrement(hdr
);
3785 vdev_space_update(dev
->l2ad_vdev
, -asize
, 0, 0);
3787 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
),
3789 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
3793 arc_hdr_destroy(arc_buf_hdr_t
*hdr
)
3795 if (HDR_HAS_L1HDR(hdr
)) {
3796 ASSERT(hdr
->b_l1hdr
.b_buf
== NULL
||
3797 hdr
->b_l1hdr
.b_bufcnt
> 0);
3798 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3799 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3801 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3802 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
3804 if (HDR_HAS_L2HDR(hdr
)) {
3805 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3806 boolean_t buflist_held
= MUTEX_HELD(&dev
->l2ad_mtx
);
3809 mutex_enter(&dev
->l2ad_mtx
);
3812 * Even though we checked this conditional above, we
3813 * need to check this again now that we have the
3814 * l2ad_mtx. This is because we could be racing with
3815 * another thread calling l2arc_evict() which might have
3816 * destroyed this header's L2 portion as we were waiting
3817 * to acquire the l2ad_mtx. If that happens, we don't
3818 * want to re-destroy the header's L2 portion.
3820 if (HDR_HAS_L2HDR(hdr
)) {
3822 if (!HDR_EMPTY(hdr
))
3823 buf_discard_identity(hdr
);
3825 arc_hdr_l2hdr_destroy(hdr
);
3829 mutex_exit(&dev
->l2ad_mtx
);
3833 * The header's identify can only be safely discarded once it is no
3834 * longer discoverable. This requires removing it from the hash table
3835 * and the l2arc header list. After this point the hash lock can not
3836 * be used to protect the header.
3838 if (!HDR_EMPTY(hdr
))
3839 buf_discard_identity(hdr
);
3841 if (HDR_HAS_L1HDR(hdr
)) {
3842 arc_cksum_free(hdr
);
3844 while (hdr
->b_l1hdr
.b_buf
!= NULL
)
3845 arc_buf_destroy_impl(hdr
->b_l1hdr
.b_buf
);
3847 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
3848 arc_hdr_free_abd(hdr
, B_FALSE
);
3850 if (HDR_HAS_RABD(hdr
))
3851 arc_hdr_free_abd(hdr
, B_TRUE
);
3854 ASSERT3P(hdr
->b_hash_next
, ==, NULL
);
3855 if (HDR_HAS_L1HDR(hdr
)) {
3856 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3857 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
3859 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3862 if (!HDR_PROTECTED(hdr
)) {
3863 kmem_cache_free(hdr_full_cache
, hdr
);
3865 kmem_cache_free(hdr_full_crypt_cache
, hdr
);
3868 kmem_cache_free(hdr_l2only_cache
, hdr
);
3873 arc_buf_destroy(arc_buf_t
*buf
, const void *tag
)
3875 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3877 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
3878 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
3879 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3880 VERIFY0(remove_reference(hdr
, tag
));
3884 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
3885 mutex_enter(hash_lock
);
3887 ASSERT3P(hdr
, ==, buf
->b_hdr
);
3888 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
3889 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
3890 ASSERT3P(hdr
->b_l1hdr
.b_state
, !=, arc_anon
);
3891 ASSERT3P(buf
->b_data
, !=, NULL
);
3893 arc_buf_destroy_impl(buf
);
3894 (void) remove_reference(hdr
, tag
);
3895 mutex_exit(hash_lock
);
3899 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3900 * state of the header is dependent on its state prior to entering this
3901 * function. The following transitions are possible:
3903 * - arc_mru -> arc_mru_ghost
3904 * - arc_mfu -> arc_mfu_ghost
3905 * - arc_mru_ghost -> arc_l2c_only
3906 * - arc_mru_ghost -> deleted
3907 * - arc_mfu_ghost -> arc_l2c_only
3908 * - arc_mfu_ghost -> deleted
3909 * - arc_uncached -> deleted
3911 * Return total size of evicted data buffers for eviction progress tracking.
3912 * When evicting from ghost states return logical buffer size to make eviction
3913 * progress at the same (or at least comparable) rate as from non-ghost states.
3915 * Return *real_evicted for actual ARC size reduction to wake up threads
3916 * waiting for it. For non-ghost states it includes size of evicted data
3917 * buffers (the headers are not freed there). For ghost states it includes
3918 * only the evicted headers size.
3921 arc_evict_hdr(arc_buf_hdr_t
*hdr
, uint64_t *real_evicted
)
3923 arc_state_t
*evicted_state
, *state
;
3924 int64_t bytes_evicted
= 0;
3925 uint_t min_lifetime
= HDR_PRESCIENT_PREFETCH(hdr
) ?
3926 arc_min_prescient_prefetch_ms
: arc_min_prefetch_ms
;
3928 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
3929 ASSERT(HDR_HAS_L1HDR(hdr
));
3930 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3931 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
3932 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3933 ASSERT0(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
3936 state
= hdr
->b_l1hdr
.b_state
;
3937 if (GHOST_STATE(state
)) {
3940 * l2arc_write_buffers() relies on a header's L1 portion
3941 * (i.e. its b_pabd field) during it's write phase.
3942 * Thus, we cannot push a header onto the arc_l2c_only
3943 * state (removing its L1 piece) until the header is
3944 * done being written to the l2arc.
3946 if (HDR_HAS_L2HDR(hdr
) && HDR_L2_WRITING(hdr
)) {
3947 ARCSTAT_BUMP(arcstat_evict_l2_skip
);
3948 return (bytes_evicted
);
3951 ARCSTAT_BUMP(arcstat_deleted
);
3952 bytes_evicted
+= HDR_GET_LSIZE(hdr
);
3954 DTRACE_PROBE1(arc__delete
, arc_buf_hdr_t
*, hdr
);
3956 if (HDR_HAS_L2HDR(hdr
)) {
3957 ASSERT(hdr
->b_l1hdr
.b_pabd
== NULL
);
3958 ASSERT(!HDR_HAS_RABD(hdr
));
3960 * This buffer is cached on the 2nd Level ARC;
3961 * don't destroy the header.
3963 arc_change_state(arc_l2c_only
, hdr
);
3965 * dropping from L1+L2 cached to L2-only,
3966 * realloc to remove the L1 header.
3968 (void) arc_hdr_realloc(hdr
, hdr_full_cache
,
3970 *real_evicted
+= HDR_FULL_SIZE
- HDR_L2ONLY_SIZE
;
3972 arc_change_state(arc_anon
, hdr
);
3973 arc_hdr_destroy(hdr
);
3974 *real_evicted
+= HDR_FULL_SIZE
;
3976 return (bytes_evicted
);
3979 ASSERT(state
== arc_mru
|| state
== arc_mfu
|| state
== arc_uncached
);
3980 evicted_state
= (state
== arc_uncached
) ? arc_anon
:
3981 ((state
== arc_mru
) ? arc_mru_ghost
: arc_mfu_ghost
);
3983 /* prefetch buffers have a minimum lifespan */
3984 if ((hdr
->b_flags
& (ARC_FLAG_PREFETCH
| ARC_FLAG_INDIRECT
)) &&
3985 ddi_get_lbolt() - hdr
->b_l1hdr
.b_arc_access
<
3986 MSEC_TO_TICK(min_lifetime
)) {
3987 ARCSTAT_BUMP(arcstat_evict_skip
);
3988 return (bytes_evicted
);
3991 if (HDR_HAS_L2HDR(hdr
)) {
3992 ARCSTAT_INCR(arcstat_evict_l2_cached
, HDR_GET_LSIZE(hdr
));
3994 if (l2arc_write_eligible(hdr
->b_spa
, hdr
)) {
3995 ARCSTAT_INCR(arcstat_evict_l2_eligible
,
3996 HDR_GET_LSIZE(hdr
));
3998 switch (state
->arcs_state
) {
4001 arcstat_evict_l2_eligible_mru
,
4002 HDR_GET_LSIZE(hdr
));
4006 arcstat_evict_l2_eligible_mfu
,
4007 HDR_GET_LSIZE(hdr
));
4013 ARCSTAT_INCR(arcstat_evict_l2_ineligible
,
4014 HDR_GET_LSIZE(hdr
));
4018 bytes_evicted
+= arc_hdr_size(hdr
);
4019 *real_evicted
+= arc_hdr_size(hdr
);
4022 * If this hdr is being evicted and has a compressed buffer then we
4023 * discard it here before we change states. This ensures that the
4024 * accounting is updated correctly in arc_free_data_impl().
4026 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
4027 arc_hdr_free_abd(hdr
, B_FALSE
);
4029 if (HDR_HAS_RABD(hdr
))
4030 arc_hdr_free_abd(hdr
, B_TRUE
);
4032 arc_change_state(evicted_state
, hdr
);
4033 DTRACE_PROBE1(arc__evict
, arc_buf_hdr_t
*, hdr
);
4034 if (evicted_state
== arc_anon
) {
4035 arc_hdr_destroy(hdr
);
4036 *real_evicted
+= HDR_FULL_SIZE
;
4038 ASSERT(HDR_IN_HASH_TABLE(hdr
));
4041 return (bytes_evicted
);
4045 arc_set_need_free(void)
4047 ASSERT(MUTEX_HELD(&arc_evict_lock
));
4048 int64_t remaining
= arc_free_memory() - arc_sys_free
/ 2;
4049 arc_evict_waiter_t
*aw
= list_tail(&arc_evict_waiters
);
4051 arc_need_free
= MAX(-remaining
, 0);
4054 MAX(-remaining
, (int64_t)(aw
->aew_count
- arc_evict_count
));
4059 arc_evict_state_impl(multilist_t
*ml
, int idx
, arc_buf_hdr_t
*marker
,
4060 uint64_t spa
, uint64_t bytes
)
4062 multilist_sublist_t
*mls
;
4063 uint64_t bytes_evicted
= 0, real_evicted
= 0;
4065 kmutex_t
*hash_lock
;
4066 uint_t evict_count
= zfs_arc_evict_batch_limit
;
4068 ASSERT3P(marker
, !=, NULL
);
4070 mls
= multilist_sublist_lock(ml
, idx
);
4072 for (hdr
= multilist_sublist_prev(mls
, marker
); likely(hdr
!= NULL
);
4073 hdr
= multilist_sublist_prev(mls
, marker
)) {
4074 if ((evict_count
== 0) || (bytes_evicted
>= bytes
))
4078 * To keep our iteration location, move the marker
4079 * forward. Since we're not holding hdr's hash lock, we
4080 * must be very careful and not remove 'hdr' from the
4081 * sublist. Otherwise, other consumers might mistake the
4082 * 'hdr' as not being on a sublist when they call the
4083 * multilist_link_active() function (they all rely on
4084 * the hash lock protecting concurrent insertions and
4085 * removals). multilist_sublist_move_forward() was
4086 * specifically implemented to ensure this is the case
4087 * (only 'marker' will be removed and re-inserted).
4089 multilist_sublist_move_forward(mls
, marker
);
4092 * The only case where the b_spa field should ever be
4093 * zero, is the marker headers inserted by
4094 * arc_evict_state(). It's possible for multiple threads
4095 * to be calling arc_evict_state() concurrently (e.g.
4096 * dsl_pool_close() and zio_inject_fault()), so we must
4097 * skip any markers we see from these other threads.
4099 if (hdr
->b_spa
== 0)
4102 /* we're only interested in evicting buffers of a certain spa */
4103 if (spa
!= 0 && hdr
->b_spa
!= spa
) {
4104 ARCSTAT_BUMP(arcstat_evict_skip
);
4108 hash_lock
= HDR_LOCK(hdr
);
4111 * We aren't calling this function from any code path
4112 * that would already be holding a hash lock, so we're
4113 * asserting on this assumption to be defensive in case
4114 * this ever changes. Without this check, it would be
4115 * possible to incorrectly increment arcstat_mutex_miss
4116 * below (e.g. if the code changed such that we called
4117 * this function with a hash lock held).
4119 ASSERT(!MUTEX_HELD(hash_lock
));
4121 if (mutex_tryenter(hash_lock
)) {
4123 uint64_t evicted
= arc_evict_hdr(hdr
, &revicted
);
4124 mutex_exit(hash_lock
);
4126 bytes_evicted
+= evicted
;
4127 real_evicted
+= revicted
;
4130 * If evicted is zero, arc_evict_hdr() must have
4131 * decided to skip this header, don't increment
4132 * evict_count in this case.
4138 ARCSTAT_BUMP(arcstat_mutex_miss
);
4142 multilist_sublist_unlock(mls
);
4145 * Increment the count of evicted bytes, and wake up any threads that
4146 * are waiting for the count to reach this value. Since the list is
4147 * ordered by ascending aew_count, we pop off the beginning of the
4148 * list until we reach the end, or a waiter that's past the current
4149 * "count". Doing this outside the loop reduces the number of times
4150 * we need to acquire the global arc_evict_lock.
4152 * Only wake when there's sufficient free memory in the system
4153 * (specifically, arc_sys_free/2, which by default is a bit more than
4154 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
4156 mutex_enter(&arc_evict_lock
);
4157 arc_evict_count
+= real_evicted
;
4159 if (arc_free_memory() > arc_sys_free
/ 2) {
4160 arc_evict_waiter_t
*aw
;
4161 while ((aw
= list_head(&arc_evict_waiters
)) != NULL
&&
4162 aw
->aew_count
<= arc_evict_count
) {
4163 list_remove(&arc_evict_waiters
, aw
);
4164 cv_broadcast(&aw
->aew_cv
);
4167 arc_set_need_free();
4168 mutex_exit(&arc_evict_lock
);
4171 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4172 * if the average cached block is small), eviction can be on-CPU for
4173 * many seconds. To ensure that other threads that may be bound to
4174 * this CPU are able to make progress, make a voluntary preemption
4177 kpreempt(KPREEMPT_SYNC
);
4179 return (bytes_evicted
);
4183 * Allocate an array of buffer headers used as placeholders during arc state
4186 static arc_buf_hdr_t
**
4187 arc_state_alloc_markers(int count
)
4189 arc_buf_hdr_t
**markers
;
4191 markers
= kmem_zalloc(sizeof (*markers
) * count
, KM_SLEEP
);
4192 for (int i
= 0; i
< count
; i
++) {
4193 markers
[i
] = kmem_cache_alloc(hdr_full_cache
, KM_SLEEP
);
4196 * A b_spa of 0 is used to indicate that this header is
4197 * a marker. This fact is used in arc_evict_type() and
4198 * arc_evict_state_impl().
4200 markers
[i
]->b_spa
= 0;
4207 arc_state_free_markers(arc_buf_hdr_t
**markers
, int count
)
4209 for (int i
= 0; i
< count
; i
++)
4210 kmem_cache_free(hdr_full_cache
, markers
[i
]);
4211 kmem_free(markers
, sizeof (*markers
) * count
);
4215 * Evict buffers from the given arc state, until we've removed the
4216 * specified number of bytes. Move the removed buffers to the
4217 * appropriate evict state.
4219 * This function makes a "best effort". It skips over any buffers
4220 * it can't get a hash_lock on, and so, may not catch all candidates.
4221 * It may also return without evicting as much space as requested.
4223 * If bytes is specified using the special value ARC_EVICT_ALL, this
4224 * will evict all available (i.e. unlocked and evictable) buffers from
4225 * the given arc state; which is used by arc_flush().
4228 arc_evict_state(arc_state_t
*state
, uint64_t spa
, uint64_t bytes
,
4229 arc_buf_contents_t type
)
4231 uint64_t total_evicted
= 0;
4232 multilist_t
*ml
= &state
->arcs_list
[type
];
4234 arc_buf_hdr_t
**markers
;
4236 num_sublists
= multilist_get_num_sublists(ml
);
4239 * If we've tried to evict from each sublist, made some
4240 * progress, but still have not hit the target number of bytes
4241 * to evict, we want to keep trying. The markers allow us to
4242 * pick up where we left off for each individual sublist, rather
4243 * than starting from the tail each time.
4245 if (zthr_iscurthread(arc_evict_zthr
)) {
4246 markers
= arc_state_evict_markers
;
4247 ASSERT3S(num_sublists
, <=, arc_state_evict_marker_count
);
4249 markers
= arc_state_alloc_markers(num_sublists
);
4251 for (int i
= 0; i
< num_sublists
; i
++) {
4252 multilist_sublist_t
*mls
;
4254 mls
= multilist_sublist_lock(ml
, i
);
4255 multilist_sublist_insert_tail(mls
, markers
[i
]);
4256 multilist_sublist_unlock(mls
);
4260 * While we haven't hit our target number of bytes to evict, or
4261 * we're evicting all available buffers.
4263 while (total_evicted
< bytes
) {
4264 int sublist_idx
= multilist_get_random_index(ml
);
4265 uint64_t scan_evicted
= 0;
4268 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4269 * Request that 10% of the LRUs be scanned by the superblock
4272 if (type
== ARC_BUFC_DATA
&& aggsum_compare(
4273 &arc_sums
.arcstat_dnode_size
, arc_dnode_size_limit
) > 0) {
4274 arc_prune_async((aggsum_upper_bound(
4275 &arc_sums
.arcstat_dnode_size
) -
4276 arc_dnode_size_limit
) / sizeof (dnode_t
) /
4277 zfs_arc_dnode_reduce_percent
);
4281 * Start eviction using a randomly selected sublist,
4282 * this is to try and evenly balance eviction across all
4283 * sublists. Always starting at the same sublist
4284 * (e.g. index 0) would cause evictions to favor certain
4285 * sublists over others.
4287 for (int i
= 0; i
< num_sublists
; i
++) {
4288 uint64_t bytes_remaining
;
4289 uint64_t bytes_evicted
;
4291 if (total_evicted
< bytes
)
4292 bytes_remaining
= bytes
- total_evicted
;
4296 bytes_evicted
= arc_evict_state_impl(ml
, sublist_idx
,
4297 markers
[sublist_idx
], spa
, bytes_remaining
);
4299 scan_evicted
+= bytes_evicted
;
4300 total_evicted
+= bytes_evicted
;
4302 /* we've reached the end, wrap to the beginning */
4303 if (++sublist_idx
>= num_sublists
)
4308 * If we didn't evict anything during this scan, we have
4309 * no reason to believe we'll evict more during another
4310 * scan, so break the loop.
4312 if (scan_evicted
== 0) {
4313 /* This isn't possible, let's make that obvious */
4314 ASSERT3S(bytes
, !=, 0);
4317 * When bytes is ARC_EVICT_ALL, the only way to
4318 * break the loop is when scan_evicted is zero.
4319 * In that case, we actually have evicted enough,
4320 * so we don't want to increment the kstat.
4322 if (bytes
!= ARC_EVICT_ALL
) {
4323 ASSERT3S(total_evicted
, <, bytes
);
4324 ARCSTAT_BUMP(arcstat_evict_not_enough
);
4331 for (int i
= 0; i
< num_sublists
; i
++) {
4332 multilist_sublist_t
*mls
= multilist_sublist_lock(ml
, i
);
4333 multilist_sublist_remove(mls
, markers
[i
]);
4334 multilist_sublist_unlock(mls
);
4336 if (markers
!= arc_state_evict_markers
)
4337 arc_state_free_markers(markers
, num_sublists
);
4339 return (total_evicted
);
4343 * Flush all "evictable" data of the given type from the arc state
4344 * specified. This will not evict any "active" buffers (i.e. referenced).
4346 * When 'retry' is set to B_FALSE, the function will make a single pass
4347 * over the state and evict any buffers that it can. Since it doesn't
4348 * continually retry the eviction, it might end up leaving some buffers
4349 * in the ARC due to lock misses.
4351 * When 'retry' is set to B_TRUE, the function will continually retry the
4352 * eviction until *all* evictable buffers have been removed from the
4353 * state. As a result, if concurrent insertions into the state are
4354 * allowed (e.g. if the ARC isn't shutting down), this function might
4355 * wind up in an infinite loop, continually trying to evict buffers.
4358 arc_flush_state(arc_state_t
*state
, uint64_t spa
, arc_buf_contents_t type
,
4361 uint64_t evicted
= 0;
4363 while (zfs_refcount_count(&state
->arcs_esize
[type
]) != 0) {
4364 evicted
+= arc_evict_state(state
, spa
, ARC_EVICT_ALL
, type
);
4374 * Evict the specified number of bytes from the state specified,
4375 * restricting eviction to the spa and type given. This function
4376 * prevents us from trying to evict more from a state's list than
4377 * is "evictable", and to skip evicting altogether when passed a
4378 * negative value for "bytes". In contrast, arc_evict_state() will
4379 * evict everything it can, when passed a negative value for "bytes".
4382 arc_evict_impl(arc_state_t
*state
, uint64_t spa
, int64_t bytes
,
4383 arc_buf_contents_t type
)
4387 if (bytes
> 0 && zfs_refcount_count(&state
->arcs_esize
[type
]) > 0) {
4388 delta
= MIN(zfs_refcount_count(&state
->arcs_esize
[type
]),
4390 return (arc_evict_state(state
, spa
, delta
, type
));
4397 * The goal of this function is to evict enough meta data buffers from the
4398 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4399 * more complicated than it appears because it is common for data buffers
4400 * to have holds on meta data buffers. In addition, dnode meta data buffers
4401 * will be held by the dnodes in the block preventing them from being freed.
4402 * This means we can't simply traverse the ARC and expect to always find
4403 * enough unheld meta data buffer to release.
4405 * Therefore, this function has been updated to make alternating passes
4406 * over the ARC releasing data buffers and then newly unheld meta data
4407 * buffers. This ensures forward progress is maintained and meta_used
4408 * will decrease. Normally this is sufficient, but if required the ARC
4409 * will call the registered prune callbacks causing dentry and inodes to
4410 * be dropped from the VFS cache. This will make dnode meta data buffers
4411 * available for reclaim.
4414 arc_evict_meta_balanced(uint64_t meta_used
)
4416 int64_t delta
, adjustmnt
;
4417 uint64_t total_evicted
= 0, prune
= 0;
4418 arc_buf_contents_t type
= ARC_BUFC_DATA
;
4419 uint_t restarts
= zfs_arc_meta_adjust_restarts
;
4423 * This slightly differs than the way we evict from the mru in
4424 * arc_evict because we don't have a "target" value (i.e. no
4425 * "meta" arc_p). As a result, I think we can completely
4426 * cannibalize the metadata in the MRU before we evict the
4427 * metadata from the MFU. I think we probably need to implement a
4428 * "metadata arc_p" value to do this properly.
4430 adjustmnt
= meta_used
- arc_meta_limit
;
4432 if (adjustmnt
> 0 &&
4433 zfs_refcount_count(&arc_mru
->arcs_esize
[type
]) > 0) {
4434 delta
= MIN(zfs_refcount_count(&arc_mru
->arcs_esize
[type
]),
4436 total_evicted
+= arc_evict_impl(arc_mru
, 0, delta
, type
);
4441 * We can't afford to recalculate adjustmnt here. If we do,
4442 * new metadata buffers can sneak into the MRU or ANON lists,
4443 * thus penalize the MFU metadata. Although the fudge factor is
4444 * small, it has been empirically shown to be significant for
4445 * certain workloads (e.g. creating many empty directories). As
4446 * such, we use the original calculation for adjustmnt, and
4447 * simply decrement the amount of data evicted from the MRU.
4450 if (adjustmnt
> 0 &&
4451 zfs_refcount_count(&arc_mfu
->arcs_esize
[type
]) > 0) {
4452 delta
= MIN(zfs_refcount_count(&arc_mfu
->arcs_esize
[type
]),
4454 total_evicted
+= arc_evict_impl(arc_mfu
, 0, delta
, type
);
4457 adjustmnt
= meta_used
- arc_meta_limit
;
4459 if (adjustmnt
> 0 &&
4460 zfs_refcount_count(&arc_mru_ghost
->arcs_esize
[type
]) > 0) {
4461 delta
= MIN(adjustmnt
,
4462 zfs_refcount_count(&arc_mru_ghost
->arcs_esize
[type
]));
4463 total_evicted
+= arc_evict_impl(arc_mru_ghost
, 0, delta
, type
);
4467 if (adjustmnt
> 0 &&
4468 zfs_refcount_count(&arc_mfu_ghost
->arcs_esize
[type
]) > 0) {
4469 delta
= MIN(adjustmnt
,
4470 zfs_refcount_count(&arc_mfu_ghost
->arcs_esize
[type
]));
4471 total_evicted
+= arc_evict_impl(arc_mfu_ghost
, 0, delta
, type
);
4475 * If after attempting to make the requested adjustment to the ARC
4476 * the meta limit is still being exceeded then request that the
4477 * higher layers drop some cached objects which have holds on ARC
4478 * meta buffers. Requests to the upper layers will be made with
4479 * increasingly large scan sizes until the ARC is below the limit.
4481 if (meta_used
> arc_meta_limit
|| arc_available_memory() < 0) {
4482 if (type
== ARC_BUFC_DATA
) {
4483 type
= ARC_BUFC_METADATA
;
4485 type
= ARC_BUFC_DATA
;
4487 if (zfs_arc_meta_prune
) {
4488 prune
+= zfs_arc_meta_prune
;
4489 arc_prune_async(prune
);
4498 return (total_evicted
);
4502 * Evict metadata buffers from the cache, such that arcstat_meta_used is
4503 * capped by the arc_meta_limit tunable.
4506 arc_evict_meta_only(uint64_t meta_used
)
4508 uint64_t total_evicted
= 0;
4512 * If we're over the meta limit, we want to evict enough
4513 * metadata to get back under the meta limit. We don't want to
4514 * evict so much that we drop the MRU below arc_p, though. If
4515 * we're over the meta limit more than we're over arc_p, we
4516 * evict some from the MRU here, and some from the MFU below.
4518 target
= MIN((int64_t)(meta_used
- arc_meta_limit
),
4519 (int64_t)(zfs_refcount_count(&arc_anon
->arcs_size
) +
4520 zfs_refcount_count(&arc_mru
->arcs_size
) - arc_p
));
4522 total_evicted
+= arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4525 * Similar to the above, we want to evict enough bytes to get us
4526 * below the meta limit, but not so much as to drop us below the
4527 * space allotted to the MFU (which is defined as arc_c - arc_p).
4529 target
= MIN((int64_t)(meta_used
- arc_meta_limit
),
4530 (int64_t)(zfs_refcount_count(&arc_mfu
->arcs_size
) -
4533 total_evicted
+= arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4535 return (total_evicted
);
4539 arc_evict_meta(uint64_t meta_used
)
4541 if (zfs_arc_meta_strategy
== ARC_STRATEGY_META_ONLY
)
4542 return (arc_evict_meta_only(meta_used
));
4544 return (arc_evict_meta_balanced(meta_used
));
4548 * Return the type of the oldest buffer in the given arc state
4550 * This function will select a random sublist of type ARC_BUFC_DATA and
4551 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4552 * is compared, and the type which contains the "older" buffer will be
4555 static arc_buf_contents_t
4556 arc_evict_type(arc_state_t
*state
)
4558 multilist_t
*data_ml
= &state
->arcs_list
[ARC_BUFC_DATA
];
4559 multilist_t
*meta_ml
= &state
->arcs_list
[ARC_BUFC_METADATA
];
4560 int data_idx
= multilist_get_random_index(data_ml
);
4561 int meta_idx
= multilist_get_random_index(meta_ml
);
4562 multilist_sublist_t
*data_mls
;
4563 multilist_sublist_t
*meta_mls
;
4564 arc_buf_contents_t type
;
4565 arc_buf_hdr_t
*data_hdr
;
4566 arc_buf_hdr_t
*meta_hdr
;
4569 * We keep the sublist lock until we're finished, to prevent
4570 * the headers from being destroyed via arc_evict_state().
4572 data_mls
= multilist_sublist_lock(data_ml
, data_idx
);
4573 meta_mls
= multilist_sublist_lock(meta_ml
, meta_idx
);
4576 * These two loops are to ensure we skip any markers that
4577 * might be at the tail of the lists due to arc_evict_state().
4580 for (data_hdr
= multilist_sublist_tail(data_mls
); data_hdr
!= NULL
;
4581 data_hdr
= multilist_sublist_prev(data_mls
, data_hdr
)) {
4582 if (data_hdr
->b_spa
!= 0)
4586 for (meta_hdr
= multilist_sublist_tail(meta_mls
); meta_hdr
!= NULL
;
4587 meta_hdr
= multilist_sublist_prev(meta_mls
, meta_hdr
)) {
4588 if (meta_hdr
->b_spa
!= 0)
4592 if (data_hdr
== NULL
&& meta_hdr
== NULL
) {
4593 type
= ARC_BUFC_DATA
;
4594 } else if (data_hdr
== NULL
) {
4595 ASSERT3P(meta_hdr
, !=, NULL
);
4596 type
= ARC_BUFC_METADATA
;
4597 } else if (meta_hdr
== NULL
) {
4598 ASSERT3P(data_hdr
, !=, NULL
);
4599 type
= ARC_BUFC_DATA
;
4601 ASSERT3P(data_hdr
, !=, NULL
);
4602 ASSERT3P(meta_hdr
, !=, NULL
);
4604 /* The headers can't be on the sublist without an L1 header */
4605 ASSERT(HDR_HAS_L1HDR(data_hdr
));
4606 ASSERT(HDR_HAS_L1HDR(meta_hdr
));
4608 if (data_hdr
->b_l1hdr
.b_arc_access
<
4609 meta_hdr
->b_l1hdr
.b_arc_access
) {
4610 type
= ARC_BUFC_DATA
;
4612 type
= ARC_BUFC_METADATA
;
4616 multilist_sublist_unlock(meta_mls
);
4617 multilist_sublist_unlock(data_mls
);
4623 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4628 uint64_t total_evicted
= 0;
4631 uint64_t asize
= aggsum_value(&arc_sums
.arcstat_size
);
4632 uint64_t ameta
= aggsum_value(&arc_sums
.arcstat_meta_used
);
4635 * If we're over arc_meta_limit, we want to correct that before
4636 * potentially evicting data buffers below.
4638 total_evicted
+= arc_evict_meta(ameta
);
4643 * If we're over the target cache size, we want to evict enough
4644 * from the list to get back to our target size. We don't want
4645 * to evict too much from the MRU, such that it drops below
4646 * arc_p. So, if we're over our target cache size more than
4647 * the MRU is over arc_p, we'll evict enough to get back to
4648 * arc_p here, and then evict more from the MFU below.
4650 target
= MIN((int64_t)(asize
- arc_c
),
4651 (int64_t)(zfs_refcount_count(&arc_anon
->arcs_size
) +
4652 zfs_refcount_count(&arc_mru
->arcs_size
) + ameta
- arc_p
));
4655 * If we're below arc_meta_min, always prefer to evict data.
4656 * Otherwise, try to satisfy the requested number of bytes to
4657 * evict from the type which contains older buffers; in an
4658 * effort to keep newer buffers in the cache regardless of their
4659 * type. If we cannot satisfy the number of bytes from this
4660 * type, spill over into the next type.
4662 if (arc_evict_type(arc_mru
) == ARC_BUFC_METADATA
&&
4663 ameta
> arc_meta_min
) {
4664 bytes
= arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4665 total_evicted
+= bytes
;
4668 * If we couldn't evict our target number of bytes from
4669 * metadata, we try to get the rest from data.
4674 arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_DATA
);
4676 bytes
= arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_DATA
);
4677 total_evicted
+= bytes
;
4680 * If we couldn't evict our target number of bytes from
4681 * data, we try to get the rest from metadata.
4686 arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4690 * Re-sum ARC stats after the first round of evictions.
4692 asize
= aggsum_value(&arc_sums
.arcstat_size
);
4693 ameta
= aggsum_value(&arc_sums
.arcstat_meta_used
);
4699 * Now that we've tried to evict enough from the MRU to get its
4700 * size back to arc_p, if we're still above the target cache
4701 * size, we evict the rest from the MFU.
4703 target
= asize
- arc_c
;
4705 if (arc_evict_type(arc_mfu
) == ARC_BUFC_METADATA
&&
4706 ameta
> arc_meta_min
) {
4707 bytes
= arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4708 total_evicted
+= bytes
;
4711 * If we couldn't evict our target number of bytes from
4712 * metadata, we try to get the rest from data.
4717 arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_DATA
);
4719 bytes
= arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_DATA
);
4720 total_evicted
+= bytes
;
4723 * If we couldn't evict our target number of bytes from
4724 * data, we try to get the rest from data.
4729 arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4733 * Adjust ghost lists
4735 * In addition to the above, the ARC also defines target values
4736 * for the ghost lists. The sum of the mru list and mru ghost
4737 * list should never exceed the target size of the cache, and
4738 * the sum of the mru list, mfu list, mru ghost list, and mfu
4739 * ghost list should never exceed twice the target size of the
4740 * cache. The following logic enforces these limits on the ghost
4741 * caches, and evicts from them as needed.
4743 target
= zfs_refcount_count(&arc_mru
->arcs_size
) +
4744 zfs_refcount_count(&arc_mru_ghost
->arcs_size
) - arc_c
;
4746 bytes
= arc_evict_impl(arc_mru_ghost
, 0, target
, ARC_BUFC_DATA
);
4747 total_evicted
+= bytes
;
4752 arc_evict_impl(arc_mru_ghost
, 0, target
, ARC_BUFC_METADATA
);
4755 * We assume the sum of the mru list and mfu list is less than
4756 * or equal to arc_c (we enforced this above), which means we
4757 * can use the simpler of the two equations below:
4759 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4760 * mru ghost + mfu ghost <= arc_c
4762 target
= zfs_refcount_count(&arc_mru_ghost
->arcs_size
) +
4763 zfs_refcount_count(&arc_mfu_ghost
->arcs_size
) - arc_c
;
4765 bytes
= arc_evict_impl(arc_mfu_ghost
, 0, target
, ARC_BUFC_DATA
);
4766 total_evicted
+= bytes
;
4771 arc_evict_impl(arc_mfu_ghost
, 0, target
, ARC_BUFC_METADATA
);
4773 return (total_evicted
);
4777 arc_flush(spa_t
*spa
, boolean_t retry
)
4782 * If retry is B_TRUE, a spa must not be specified since we have
4783 * no good way to determine if all of a spa's buffers have been
4784 * evicted from an arc state.
4786 ASSERT(!retry
|| spa
== NULL
);
4789 guid
= spa_load_guid(spa
);
4791 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_DATA
, retry
);
4792 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_METADATA
, retry
);
4794 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_DATA
, retry
);
4795 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_METADATA
, retry
);
4797 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4798 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4800 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4801 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4803 (void) arc_flush_state(arc_uncached
, guid
, ARC_BUFC_DATA
, retry
);
4804 (void) arc_flush_state(arc_uncached
, guid
, ARC_BUFC_METADATA
, retry
);
4808 arc_reduce_target_size(int64_t to_free
)
4810 uint64_t asize
= aggsum_value(&arc_sums
.arcstat_size
);
4813 * All callers want the ARC to actually evict (at least) this much
4814 * memory. Therefore we reduce from the lower of the current size and
4815 * the target size. This way, even if arc_c is much higher than
4816 * arc_size (as can be the case after many calls to arc_freed(), we will
4817 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4820 uint64_t c
= MIN(arc_c
, asize
);
4822 if (c
> to_free
&& c
- to_free
> arc_c_min
) {
4823 arc_c
= c
- to_free
;
4824 atomic_add_64(&arc_p
, -(arc_p
>> arc_shrink_shift
));
4826 arc_p
= (arc_c
>> 1);
4827 ASSERT(arc_c
>= arc_c_min
);
4828 ASSERT((int64_t)arc_p
>= 0);
4833 if (asize
> arc_c
) {
4834 /* See comment in arc_evict_cb_check() on why lock+flag */
4835 mutex_enter(&arc_evict_lock
);
4836 arc_evict_needed
= B_TRUE
;
4837 mutex_exit(&arc_evict_lock
);
4838 zthr_wakeup(arc_evict_zthr
);
4843 * Determine if the system is under memory pressure and is asking
4844 * to reclaim memory. A return value of B_TRUE indicates that the system
4845 * is under memory pressure and that the arc should adjust accordingly.
4848 arc_reclaim_needed(void)
4850 return (arc_available_memory() < 0);
4854 arc_kmem_reap_soon(void)
4857 kmem_cache_t
*prev_cache
= NULL
;
4858 kmem_cache_t
*prev_data_cache
= NULL
;
4861 if ((aggsum_compare(&arc_sums
.arcstat_meta_used
,
4862 arc_meta_limit
) >= 0) && zfs_arc_meta_prune
) {
4864 * We are exceeding our meta-data cache limit.
4865 * Prune some entries to release holds on meta-data.
4867 arc_prune_async(zfs_arc_meta_prune
);
4871 * Reclaim unused memory from all kmem caches.
4877 for (i
= 0; i
< SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
; i
++) {
4879 /* reach upper limit of cache size on 32-bit */
4880 if (zio_buf_cache
[i
] == NULL
)
4883 if (zio_buf_cache
[i
] != prev_cache
) {
4884 prev_cache
= zio_buf_cache
[i
];
4885 kmem_cache_reap_now(zio_buf_cache
[i
]);
4887 if (zio_data_buf_cache
[i
] != prev_data_cache
) {
4888 prev_data_cache
= zio_data_buf_cache
[i
];
4889 kmem_cache_reap_now(zio_data_buf_cache
[i
]);
4892 kmem_cache_reap_now(buf_cache
);
4893 kmem_cache_reap_now(hdr_full_cache
);
4894 kmem_cache_reap_now(hdr_l2only_cache
);
4895 kmem_cache_reap_now(zfs_btree_leaf_cache
);
4896 abd_cache_reap_now();
4900 arc_evict_cb_check(void *arg
, zthr_t
*zthr
)
4902 (void) arg
, (void) zthr
;
4906 * This is necessary in order to keep the kstat information
4907 * up to date for tools that display kstat data such as the
4908 * mdb ::arc dcmd and the Linux crash utility. These tools
4909 * typically do not call kstat's update function, but simply
4910 * dump out stats from the most recent update. Without
4911 * this call, these commands may show stale stats for the
4912 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4913 * with this call, the data might be out of date if the
4914 * evict thread hasn't been woken recently; but that should
4915 * suffice. The arc_state_t structures can be queried
4916 * directly if more accurate information is needed.
4918 if (arc_ksp
!= NULL
)
4919 arc_ksp
->ks_update(arc_ksp
, KSTAT_READ
);
4923 * We have to rely on arc_wait_for_eviction() to tell us when to
4924 * evict, rather than checking if we are overflowing here, so that we
4925 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4926 * If we have become "not overflowing" since arc_wait_for_eviction()
4927 * checked, we need to wake it up. We could broadcast the CV here,
4928 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4929 * would need to use a mutex to ensure that this function doesn't
4930 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4931 * the arc_evict_lock). However, the lock ordering of such a lock
4932 * would necessarily be incorrect with respect to the zthr_lock,
4933 * which is held before this function is called, and is held by
4934 * arc_wait_for_eviction() when it calls zthr_wakeup().
4936 if (arc_evict_needed
)
4940 * If we have buffers in uncached state, evict them periodically.
4942 return ((zfs_refcount_count(&arc_uncached
->arcs_esize
[ARC_BUFC_DATA
]) +
4943 zfs_refcount_count(&arc_uncached
->arcs_esize
[ARC_BUFC_METADATA
]) &&
4944 ddi_get_lbolt() - arc_last_uncached_flush
>
4945 MSEC_TO_TICK(arc_min_prefetch_ms
/ 2)));
4949 * Keep arc_size under arc_c by running arc_evict which evicts data
4953 arc_evict_cb(void *arg
, zthr_t
*zthr
)
4955 (void) arg
, (void) zthr
;
4957 uint64_t evicted
= 0;
4958 fstrans_cookie_t cookie
= spl_fstrans_mark();
4960 /* Always try to evict from uncached state. */
4961 arc_last_uncached_flush
= ddi_get_lbolt();
4962 evicted
+= arc_flush_state(arc_uncached
, 0, ARC_BUFC_DATA
, B_FALSE
);
4963 evicted
+= arc_flush_state(arc_uncached
, 0, ARC_BUFC_METADATA
, B_FALSE
);
4965 /* Evict from other states only if told to. */
4966 if (arc_evict_needed
)
4967 evicted
+= arc_evict();
4970 * If evicted is zero, we couldn't evict anything
4971 * via arc_evict(). This could be due to hash lock
4972 * collisions, but more likely due to the majority of
4973 * arc buffers being unevictable. Therefore, even if
4974 * arc_size is above arc_c, another pass is unlikely to
4975 * be helpful and could potentially cause us to enter an
4976 * infinite loop. Additionally, zthr_iscancelled() is
4977 * checked here so that if the arc is shutting down, the
4978 * broadcast will wake any remaining arc evict waiters.
4980 mutex_enter(&arc_evict_lock
);
4981 arc_evict_needed
= !zthr_iscancelled(arc_evict_zthr
) &&
4982 evicted
> 0 && aggsum_compare(&arc_sums
.arcstat_size
, arc_c
) > 0;
4983 if (!arc_evict_needed
) {
4985 * We're either no longer overflowing, or we
4986 * can't evict anything more, so we should wake
4987 * arc_get_data_impl() sooner.
4989 arc_evict_waiter_t
*aw
;
4990 while ((aw
= list_remove_head(&arc_evict_waiters
)) != NULL
) {
4991 cv_broadcast(&aw
->aew_cv
);
4993 arc_set_need_free();
4995 mutex_exit(&arc_evict_lock
);
4996 spl_fstrans_unmark(cookie
);
5000 arc_reap_cb_check(void *arg
, zthr_t
*zthr
)
5002 (void) arg
, (void) zthr
;
5004 int64_t free_memory
= arc_available_memory();
5005 static int reap_cb_check_counter
= 0;
5008 * If a kmem reap is already active, don't schedule more. We must
5009 * check for this because kmem_cache_reap_soon() won't actually
5010 * block on the cache being reaped (this is to prevent callers from
5011 * becoming implicitly blocked by a system-wide kmem reap -- which,
5012 * on a system with many, many full magazines, can take minutes).
5014 if (!kmem_cache_reap_active() && free_memory
< 0) {
5016 arc_no_grow
= B_TRUE
;
5019 * Wait at least zfs_grow_retry (default 5) seconds
5020 * before considering growing.
5022 arc_growtime
= gethrtime() + SEC2NSEC(arc_grow_retry
);
5024 } else if (free_memory
< arc_c
>> arc_no_grow_shift
) {
5025 arc_no_grow
= B_TRUE
;
5026 } else if (gethrtime() >= arc_growtime
) {
5027 arc_no_grow
= B_FALSE
;
5031 * Called unconditionally every 60 seconds to reclaim unused
5032 * zstd compression and decompression context. This is done
5033 * here to avoid the need for an independent thread.
5035 if (!((reap_cb_check_counter
++) % 60))
5036 zfs_zstd_cache_reap_now();
5042 * Keep enough free memory in the system by reaping the ARC's kmem
5043 * caches. To cause more slabs to be reapable, we may reduce the
5044 * target size of the cache (arc_c), causing the arc_evict_cb()
5045 * to free more buffers.
5048 arc_reap_cb(void *arg
, zthr_t
*zthr
)
5050 (void) arg
, (void) zthr
;
5052 int64_t free_memory
;
5053 fstrans_cookie_t cookie
= spl_fstrans_mark();
5056 * Kick off asynchronous kmem_reap()'s of all our caches.
5058 arc_kmem_reap_soon();
5061 * Wait at least arc_kmem_cache_reap_retry_ms between
5062 * arc_kmem_reap_soon() calls. Without this check it is possible to
5063 * end up in a situation where we spend lots of time reaping
5064 * caches, while we're near arc_c_min. Waiting here also gives the
5065 * subsequent free memory check a chance of finding that the
5066 * asynchronous reap has already freed enough memory, and we don't
5067 * need to call arc_reduce_target_size().
5069 delay((hz
* arc_kmem_cache_reap_retry_ms
+ 999) / 1000);
5072 * Reduce the target size as needed to maintain the amount of free
5073 * memory in the system at a fraction of the arc_size (1/128th by
5074 * default). If oversubscribed (free_memory < 0) then reduce the
5075 * target arc_size by the deficit amount plus the fractional
5076 * amount. If free memory is positive but less than the fractional
5077 * amount, reduce by what is needed to hit the fractional amount.
5079 free_memory
= arc_available_memory();
5081 int64_t can_free
= arc_c
- arc_c_min
;
5083 int64_t to_free
= (can_free
>> arc_shrink_shift
) - free_memory
;
5085 arc_reduce_target_size(to_free
);
5087 spl_fstrans_unmark(cookie
);
5092 * Determine the amount of memory eligible for eviction contained in the
5093 * ARC. All clean data reported by the ghost lists can always be safely
5094 * evicted. Due to arc_c_min, the same does not hold for all clean data
5095 * contained by the regular mru and mfu lists.
5097 * In the case of the regular mru and mfu lists, we need to report as
5098 * much clean data as possible, such that evicting that same reported
5099 * data will not bring arc_size below arc_c_min. Thus, in certain
5100 * circumstances, the total amount of clean data in the mru and mfu
5101 * lists might not actually be evictable.
5103 * The following two distinct cases are accounted for:
5105 * 1. The sum of the amount of dirty data contained by both the mru and
5106 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5107 * is greater than or equal to arc_c_min.
5108 * (i.e. amount of dirty data >= arc_c_min)
5110 * This is the easy case; all clean data contained by the mru and mfu
5111 * lists is evictable. Evicting all clean data can only drop arc_size
5112 * to the amount of dirty data, which is greater than arc_c_min.
5114 * 2. The sum of the amount of dirty data contained by both the mru and
5115 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5116 * is less than arc_c_min.
5117 * (i.e. arc_c_min > amount of dirty data)
5119 * 2.1. arc_size is greater than or equal arc_c_min.
5120 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5122 * In this case, not all clean data from the regular mru and mfu
5123 * lists is actually evictable; we must leave enough clean data
5124 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5125 * evictable data from the two lists combined, is exactly the
5126 * difference between arc_size and arc_c_min.
5128 * 2.2. arc_size is less than arc_c_min
5129 * (i.e. arc_c_min > arc_size > amount of dirty data)
5131 * In this case, none of the data contained in the mru and mfu
5132 * lists is evictable, even if it's clean. Since arc_size is
5133 * already below arc_c_min, evicting any more would only
5134 * increase this negative difference.
5137 #endif /* _KERNEL */
5140 * Adapt arc info given the number of bytes we are trying to add and
5141 * the state that we are coming from. This function is only called
5142 * when we are adding new content to the cache.
5145 arc_adapt(int bytes
, arc_state_t
*state
)
5148 uint64_t arc_p_min
= (arc_c
>> arc_p_min_shift
);
5149 int64_t mrug_size
= zfs_refcount_count(&arc_mru_ghost
->arcs_size
);
5150 int64_t mfug_size
= zfs_refcount_count(&arc_mfu_ghost
->arcs_size
);
5154 * Adapt the target size of the MRU list:
5155 * - if we just hit in the MRU ghost list, then increase
5156 * the target size of the MRU list.
5157 * - if we just hit in the MFU ghost list, then increase
5158 * the target size of the MFU list by decreasing the
5159 * target size of the MRU list.
5161 if (state
== arc_mru_ghost
) {
5162 mult
= (mrug_size
>= mfug_size
) ? 1 : (mfug_size
/ mrug_size
);
5163 if (!zfs_arc_p_dampener_disable
)
5164 mult
= MIN(mult
, 10); /* avoid wild arc_p adjustment */
5166 arc_p
= MIN(arc_c
- arc_p_min
, arc_p
+ (uint64_t)bytes
* mult
);
5167 } else if (state
== arc_mfu_ghost
) {
5170 mult
= (mfug_size
>= mrug_size
) ? 1 : (mrug_size
/ mfug_size
);
5171 if (!zfs_arc_p_dampener_disable
)
5172 mult
= MIN(mult
, 10);
5174 delta
= MIN(bytes
* mult
, arc_p
);
5175 arc_p
= MAX(arc_p_min
, arc_p
- delta
);
5177 ASSERT((int64_t)arc_p
>= 0);
5180 * Wake reap thread if we do not have any available memory
5182 if (arc_reclaim_needed()) {
5183 zthr_wakeup(arc_reap_zthr
);
5190 if (arc_c
>= arc_c_max
)
5194 * If we're within (2 * maxblocksize) bytes of the target
5195 * cache size, increment the target cache size
5197 ASSERT3U(arc_c
, >=, 2ULL << SPA_MAXBLOCKSHIFT
);
5198 if (aggsum_upper_bound(&arc_sums
.arcstat_size
) >=
5199 arc_c
- (2ULL << SPA_MAXBLOCKSHIFT
)) {
5200 atomic_add_64(&arc_c
, (int64_t)bytes
);
5201 if (arc_c
> arc_c_max
)
5203 else if (state
== arc_anon
&& arc_p
< arc_c
>> 1)
5204 atomic_add_64(&arc_p
, (int64_t)bytes
);
5208 ASSERT((int64_t)arc_p
>= 0);
5212 * Check if arc_size has grown past our upper threshold, determined by
5213 * zfs_arc_overflow_shift.
5215 static arc_ovf_level_t
5216 arc_is_overflowing(boolean_t use_reserve
)
5218 /* Always allow at least one block of overflow */
5219 int64_t overflow
= MAX(SPA_MAXBLOCKSIZE
,
5220 arc_c
>> zfs_arc_overflow_shift
);
5223 * We just compare the lower bound here for performance reasons. Our
5224 * primary goals are to make sure that the arc never grows without
5225 * bound, and that it can reach its maximum size. This check
5226 * accomplishes both goals. The maximum amount we could run over by is
5227 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5228 * in the ARC. In practice, that's in the tens of MB, which is low
5229 * enough to be safe.
5231 int64_t over
= aggsum_lower_bound(&arc_sums
.arcstat_size
) -
5232 arc_c
- overflow
/ 2;
5235 return (over
< 0 ? ARC_OVF_NONE
:
5236 over
< overflow
? ARC_OVF_SOME
: ARC_OVF_SEVERE
);
5240 arc_get_data_abd(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
,
5243 arc_buf_contents_t type
= arc_buf_type(hdr
);
5245 arc_get_data_impl(hdr
, size
, tag
, alloc_flags
);
5246 if (alloc_flags
& ARC_HDR_ALLOC_LINEAR
)
5247 return (abd_alloc_linear(size
, type
== ARC_BUFC_METADATA
));
5249 return (abd_alloc(size
, type
== ARC_BUFC_METADATA
));
5253 arc_get_data_buf(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
)
5255 arc_buf_contents_t type
= arc_buf_type(hdr
);
5257 arc_get_data_impl(hdr
, size
, tag
, ARC_HDR_DO_ADAPT
);
5258 if (type
== ARC_BUFC_METADATA
) {
5259 return (zio_buf_alloc(size
));
5261 ASSERT(type
== ARC_BUFC_DATA
);
5262 return (zio_data_buf_alloc(size
));
5267 * Wait for the specified amount of data (in bytes) to be evicted from the
5268 * ARC, and for there to be sufficient free memory in the system. Waiting for
5269 * eviction ensures that the memory used by the ARC decreases. Waiting for
5270 * free memory ensures that the system won't run out of free pages, regardless
5271 * of ARC behavior and settings. See arc_lowmem_init().
5274 arc_wait_for_eviction(uint64_t amount
, boolean_t use_reserve
)
5276 switch (arc_is_overflowing(use_reserve
)) {
5281 * This is a bit racy without taking arc_evict_lock, but the
5282 * worst that can happen is we either call zthr_wakeup() extra
5283 * time due to race with other thread here, or the set flag
5284 * get cleared by arc_evict_cb(), which is unlikely due to
5285 * big hysteresis, but also not important since at this level
5286 * of overflow the eviction is purely advisory. Same time
5287 * taking the global lock here every time without waiting for
5288 * the actual eviction creates a significant lock contention.
5290 if (!arc_evict_needed
) {
5291 arc_evict_needed
= B_TRUE
;
5292 zthr_wakeup(arc_evict_zthr
);
5295 case ARC_OVF_SEVERE
:
5298 arc_evict_waiter_t aw
;
5299 list_link_init(&aw
.aew_node
);
5300 cv_init(&aw
.aew_cv
, NULL
, CV_DEFAULT
, NULL
);
5302 uint64_t last_count
= 0;
5303 mutex_enter(&arc_evict_lock
);
5304 if (!list_is_empty(&arc_evict_waiters
)) {
5305 arc_evict_waiter_t
*last
=
5306 list_tail(&arc_evict_waiters
);
5307 last_count
= last
->aew_count
;
5308 } else if (!arc_evict_needed
) {
5309 arc_evict_needed
= B_TRUE
;
5310 zthr_wakeup(arc_evict_zthr
);
5313 * Note, the last waiter's count may be less than
5314 * arc_evict_count if we are low on memory in which
5315 * case arc_evict_state_impl() may have deferred
5316 * wakeups (but still incremented arc_evict_count).
5318 aw
.aew_count
= MAX(last_count
, arc_evict_count
) + amount
;
5320 list_insert_tail(&arc_evict_waiters
, &aw
);
5322 arc_set_need_free();
5324 DTRACE_PROBE3(arc__wait__for__eviction
,
5326 uint64_t, arc_evict_count
,
5327 uint64_t, aw
.aew_count
);
5330 * We will be woken up either when arc_evict_count reaches
5331 * aew_count, or when the ARC is no longer overflowing and
5332 * eviction completes.
5333 * In case of "false" wakeup, we will still be on the list.
5336 cv_wait(&aw
.aew_cv
, &arc_evict_lock
);
5337 } while (list_link_active(&aw
.aew_node
));
5338 mutex_exit(&arc_evict_lock
);
5340 cv_destroy(&aw
.aew_cv
);
5346 * Allocate a block and return it to the caller. If we are hitting the
5347 * hard limit for the cache size, we must sleep, waiting for the eviction
5348 * thread to catch up. If we're past the target size but below the hard
5349 * limit, we'll only signal the reclaim thread and continue on.
5352 arc_get_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
,
5355 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5356 arc_buf_contents_t type
= arc_buf_type(hdr
);
5358 if (alloc_flags
& ARC_HDR_DO_ADAPT
)
5359 arc_adapt(size
, state
);
5362 * If arc_size is currently overflowing, we must be adding data
5363 * faster than we are evicting. To ensure we don't compound the
5364 * problem by adding more data and forcing arc_size to grow even
5365 * further past it's target size, we wait for the eviction thread to
5366 * make some progress. We also wait for there to be sufficient free
5367 * memory in the system, as measured by arc_free_memory().
5369 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5370 * requested size to be evicted. This should be more than 100%, to
5371 * ensure that that progress is also made towards getting arc_size
5372 * under arc_c. See the comment above zfs_arc_eviction_pct.
5374 arc_wait_for_eviction(size
* zfs_arc_eviction_pct
/ 100,
5375 alloc_flags
& ARC_HDR_USE_RESERVE
);
5377 VERIFY3U(hdr
->b_type
, ==, type
);
5378 if (type
== ARC_BUFC_METADATA
) {
5379 arc_space_consume(size
, ARC_SPACE_META
);
5381 arc_space_consume(size
, ARC_SPACE_DATA
);
5385 * Update the state size. Note that ghost states have a
5386 * "ghost size" and so don't need to be updated.
5388 if (!GHOST_STATE(state
)) {
5390 (void) zfs_refcount_add_many(&state
->arcs_size
, size
, tag
);
5393 * If this is reached via arc_read, the link is
5394 * protected by the hash lock. If reached via
5395 * arc_buf_alloc, the header should not be accessed by
5396 * any other thread. And, if reached via arc_read_done,
5397 * the hash lock will protect it if it's found in the
5398 * hash table; otherwise no other thread should be
5399 * trying to [add|remove]_reference it.
5401 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
5402 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5403 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
5408 * If we are growing the cache, and we are adding anonymous
5409 * data, and we have outgrown arc_p, update arc_p
5411 if (aggsum_upper_bound(&arc_sums
.arcstat_size
) < arc_c
&&
5412 hdr
->b_l1hdr
.b_state
== arc_anon
&&
5413 (zfs_refcount_count(&arc_anon
->arcs_size
) +
5414 zfs_refcount_count(&arc_mru
->arcs_size
) > arc_p
&&
5415 arc_p
< arc_c
>> 1))
5416 arc_p
= MIN(arc_c
, arc_p
+ size
);
5421 arc_free_data_abd(arc_buf_hdr_t
*hdr
, abd_t
*abd
, uint64_t size
,
5424 arc_free_data_impl(hdr
, size
, tag
);
5429 arc_free_data_buf(arc_buf_hdr_t
*hdr
, void *buf
, uint64_t size
, const void *tag
)
5431 arc_buf_contents_t type
= arc_buf_type(hdr
);
5433 arc_free_data_impl(hdr
, size
, tag
);
5434 if (type
== ARC_BUFC_METADATA
) {
5435 zio_buf_free(buf
, size
);
5437 ASSERT(type
== ARC_BUFC_DATA
);
5438 zio_data_buf_free(buf
, size
);
5443 * Free the arc data buffer.
5446 arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, const void *tag
)
5448 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5449 arc_buf_contents_t type
= arc_buf_type(hdr
);
5451 /* protected by hash lock, if in the hash table */
5452 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
5453 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5454 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
5456 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
5459 (void) zfs_refcount_remove_many(&state
->arcs_size
, size
, tag
);
5461 VERIFY3U(hdr
->b_type
, ==, type
);
5462 if (type
== ARC_BUFC_METADATA
) {
5463 arc_space_return(size
, ARC_SPACE_META
);
5465 ASSERT(type
== ARC_BUFC_DATA
);
5466 arc_space_return(size
, ARC_SPACE_DATA
);
5471 * This routine is called whenever a buffer is accessed.
5474 arc_access(arc_buf_hdr_t
*hdr
, arc_flags_t arc_flags
, boolean_t hit
)
5476 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
5477 ASSERT(HDR_HAS_L1HDR(hdr
));
5480 * Update buffer prefetch status.
5482 boolean_t was_prefetch
= HDR_PREFETCH(hdr
);
5483 boolean_t now_prefetch
= arc_flags
& ARC_FLAG_PREFETCH
;
5484 if (was_prefetch
!= now_prefetch
) {
5486 ARCSTAT_CONDSTAT(hit
, demand_hit
, demand_iohit
,
5487 HDR_PRESCIENT_PREFETCH(hdr
), prescient
, predictive
,
5490 if (HDR_HAS_L2HDR(hdr
))
5491 l2arc_hdr_arcstats_decrement_state(hdr
);
5493 arc_hdr_clear_flags(hdr
,
5494 ARC_FLAG_PREFETCH
| ARC_FLAG_PRESCIENT_PREFETCH
);
5496 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
5498 if (HDR_HAS_L2HDR(hdr
))
5499 l2arc_hdr_arcstats_increment_state(hdr
);
5502 if (arc_flags
& ARC_FLAG_PRESCIENT_PREFETCH
) {
5503 arc_hdr_set_flags(hdr
, ARC_FLAG_PRESCIENT_PREFETCH
);
5504 ARCSTAT_BUMP(arcstat_prescient_prefetch
);
5506 ARCSTAT_BUMP(arcstat_predictive_prefetch
);
5509 if (arc_flags
& ARC_FLAG_L2CACHE
)
5510 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
5512 clock_t now
= ddi_get_lbolt();
5513 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
5514 arc_state_t
*new_state
;
5516 * This buffer is not in the cache, and does not appear in
5517 * our "ghost" lists. Add it to the MRU or uncached state.
5519 ASSERT0(hdr
->b_l1hdr
.b_arc_access
);
5520 hdr
->b_l1hdr
.b_arc_access
= now
;
5521 if (HDR_UNCACHED(hdr
)) {
5522 new_state
= arc_uncached
;
5523 DTRACE_PROBE1(new_state__uncached
, arc_buf_hdr_t
*,
5526 new_state
= arc_mru
;
5527 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5529 arc_change_state(new_state
, hdr
);
5530 } else if (hdr
->b_l1hdr
.b_state
== arc_mru
) {
5532 * This buffer has been accessed once recently and either
5533 * its read is still in progress or it is in the cache.
5535 if (HDR_IO_IN_PROGRESS(hdr
)) {
5536 hdr
->b_l1hdr
.b_arc_access
= now
;
5539 hdr
->b_l1hdr
.b_mru_hits
++;
5540 ARCSTAT_BUMP(arcstat_mru_hits
);
5543 * If the previous access was a prefetch, then it already
5544 * handled possible promotion, so nothing more to do for now.
5547 hdr
->b_l1hdr
.b_arc_access
= now
;
5552 * If more than ARC_MINTIME have passed from the previous
5553 * hit, promote the buffer to the MFU state.
5555 if (ddi_time_after(now
, hdr
->b_l1hdr
.b_arc_access
+
5557 hdr
->b_l1hdr
.b_arc_access
= now
;
5558 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5559 arc_change_state(arc_mfu
, hdr
);
5561 } else if (hdr
->b_l1hdr
.b_state
== arc_mru_ghost
) {
5562 arc_state_t
*new_state
;
5564 * This buffer has been accessed once recently, but was
5565 * evicted from the cache. Would we have bigger MRU, it
5566 * would be an MRU hit, so handle it the same way, except
5567 * we don't need to check the previous access time.
5569 hdr
->b_l1hdr
.b_mru_ghost_hits
++;
5570 ARCSTAT_BUMP(arcstat_mru_ghost_hits
);
5571 hdr
->b_l1hdr
.b_arc_access
= now
;
5573 new_state
= arc_mru
;
5574 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5576 new_state
= arc_mfu
;
5577 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5579 arc_change_state(new_state
, hdr
);
5580 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu
) {
5582 * This buffer has been accessed more than once and either
5583 * still in the cache or being restored from one of ghosts.
5585 if (!HDR_IO_IN_PROGRESS(hdr
)) {
5586 hdr
->b_l1hdr
.b_mfu_hits
++;
5587 ARCSTAT_BUMP(arcstat_mfu_hits
);
5589 hdr
->b_l1hdr
.b_arc_access
= now
;
5590 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu_ghost
) {
5592 * This buffer has been accessed more than once recently, but
5593 * has been evicted from the cache. Would we have bigger MFU
5594 * it would stay in cache, so move it back to MFU state.
5596 hdr
->b_l1hdr
.b_mfu_ghost_hits
++;
5597 ARCSTAT_BUMP(arcstat_mfu_ghost_hits
);
5598 hdr
->b_l1hdr
.b_arc_access
= now
;
5599 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5600 arc_change_state(arc_mfu
, hdr
);
5601 } else if (hdr
->b_l1hdr
.b_state
== arc_uncached
) {
5603 * This buffer is uncacheable, but we got a hit. Probably
5604 * a demand read after prefetch. Nothing more to do here.
5606 if (!HDR_IO_IN_PROGRESS(hdr
))
5607 ARCSTAT_BUMP(arcstat_uncached_hits
);
5608 hdr
->b_l1hdr
.b_arc_access
= now
;
5609 } else if (hdr
->b_l1hdr
.b_state
== arc_l2c_only
) {
5611 * This buffer is on the 2nd Level ARC and was not accessed
5612 * for a long time, so treat it as new and put into MRU.
5614 hdr
->b_l1hdr
.b_arc_access
= now
;
5615 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5616 arc_change_state(arc_mru
, hdr
);
5618 cmn_err(CE_PANIC
, "invalid arc state 0x%p",
5619 hdr
->b_l1hdr
.b_state
);
5624 * This routine is called by dbuf_hold() to update the arc_access() state
5625 * which otherwise would be skipped for entries in the dbuf cache.
5628 arc_buf_access(arc_buf_t
*buf
)
5630 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
5633 * Avoid taking the hash_lock when possible as an optimization.
5634 * The header must be checked again under the hash_lock in order
5635 * to handle the case where it is concurrently being released.
5637 if (hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY(hdr
))
5640 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
5641 mutex_enter(hash_lock
);
5643 if (hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY(hdr
)) {
5644 mutex_exit(hash_lock
);
5645 ARCSTAT_BUMP(arcstat_access_skip
);
5649 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
5650 hdr
->b_l1hdr
.b_state
== arc_mfu
||
5651 hdr
->b_l1hdr
.b_state
== arc_uncached
);
5653 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
5654 arc_access(hdr
, 0, B_TRUE
);
5655 mutex_exit(hash_lock
);
5657 ARCSTAT_BUMP(arcstat_hits
);
5658 ARCSTAT_CONDSTAT(B_TRUE
/* demand */, demand
, prefetch
,
5659 !HDR_ISTYPE_METADATA(hdr
), data
, metadata
, hits
);
5662 /* a generic arc_read_done_func_t which you can use */
5664 arc_bcopy_func(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
5665 arc_buf_t
*buf
, void *arg
)
5667 (void) zio
, (void) zb
, (void) bp
;
5672 memcpy(arg
, buf
->b_data
, arc_buf_size(buf
));
5673 arc_buf_destroy(buf
, arg
);
5676 /* a generic arc_read_done_func_t */
5678 arc_getbuf_func(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
5679 arc_buf_t
*buf
, void *arg
)
5681 (void) zb
, (void) bp
;
5682 arc_buf_t
**bufp
= arg
;
5685 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
5688 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
5690 ASSERT(buf
->b_data
!= NULL
);
5695 arc_hdr_verify(arc_buf_hdr_t
*hdr
, blkptr_t
*bp
)
5697 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
5698 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, 0);
5699 ASSERT3U(arc_hdr_get_compress(hdr
), ==, ZIO_COMPRESS_OFF
);
5701 if (HDR_COMPRESSION_ENABLED(hdr
)) {
5702 ASSERT3U(arc_hdr_get_compress(hdr
), ==,
5703 BP_GET_COMPRESS(bp
));
5705 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
5706 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, BP_GET_PSIZE(bp
));
5707 ASSERT3U(!!HDR_PROTECTED(hdr
), ==, BP_IS_PROTECTED(bp
));
5712 arc_read_done(zio_t
*zio
)
5714 blkptr_t
*bp
= zio
->io_bp
;
5715 arc_buf_hdr_t
*hdr
= zio
->io_private
;
5716 kmutex_t
*hash_lock
= NULL
;
5717 arc_callback_t
*callback_list
;
5718 arc_callback_t
*acb
;
5721 * The hdr was inserted into hash-table and removed from lists
5722 * prior to starting I/O. We should find this header, since
5723 * it's in the hash table, and it should be legit since it's
5724 * not possible to evict it during the I/O. The only possible
5725 * reason for it not to be found is if we were freed during the
5728 if (HDR_IN_HASH_TABLE(hdr
)) {
5729 arc_buf_hdr_t
*found
;
5731 ASSERT3U(hdr
->b_birth
, ==, BP_PHYSICAL_BIRTH(zio
->io_bp
));
5732 ASSERT3U(hdr
->b_dva
.dva_word
[0], ==,
5733 BP_IDENTITY(zio
->io_bp
)->dva_word
[0]);
5734 ASSERT3U(hdr
->b_dva
.dva_word
[1], ==,
5735 BP_IDENTITY(zio
->io_bp
)->dva_word
[1]);
5737 found
= buf_hash_find(hdr
->b_spa
, zio
->io_bp
, &hash_lock
);
5739 ASSERT((found
== hdr
&&
5740 DVA_EQUAL(&hdr
->b_dva
, BP_IDENTITY(zio
->io_bp
))) ||
5741 (found
== hdr
&& HDR_L2_READING(hdr
)));
5742 ASSERT3P(hash_lock
, !=, NULL
);
5745 if (BP_IS_PROTECTED(bp
)) {
5746 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
5747 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
5748 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
5749 hdr
->b_crypt_hdr
.b_iv
);
5751 if (zio
->io_error
== 0) {
5752 if (BP_GET_TYPE(bp
) == DMU_OT_INTENT_LOG
) {
5755 tmpbuf
= abd_borrow_buf_copy(zio
->io_abd
,
5756 sizeof (zil_chain_t
));
5757 zio_crypt_decode_mac_zil(tmpbuf
,
5758 hdr
->b_crypt_hdr
.b_mac
);
5759 abd_return_buf(zio
->io_abd
, tmpbuf
,
5760 sizeof (zil_chain_t
));
5762 zio_crypt_decode_mac_bp(bp
,
5763 hdr
->b_crypt_hdr
.b_mac
);
5768 if (zio
->io_error
== 0) {
5769 /* byteswap if necessary */
5770 if (BP_SHOULD_BYTESWAP(zio
->io_bp
)) {
5771 if (BP_GET_LEVEL(zio
->io_bp
) > 0) {
5772 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
5774 hdr
->b_l1hdr
.b_byteswap
=
5775 DMU_OT_BYTESWAP(BP_GET_TYPE(zio
->io_bp
));
5778 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
5780 if (!HDR_L2_READING(hdr
)) {
5781 hdr
->b_complevel
= zio
->io_prop
.zp_complevel
;
5785 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_EVICTED
);
5786 if (l2arc_noprefetch
&& HDR_PREFETCH(hdr
))
5787 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2CACHE
);
5789 callback_list
= hdr
->b_l1hdr
.b_acb
;
5790 ASSERT3P(callback_list
, !=, NULL
);
5791 hdr
->b_l1hdr
.b_acb
= NULL
;
5794 * If a read request has a callback (i.e. acb_done is not NULL), then we
5795 * make a buf containing the data according to the parameters which were
5796 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5797 * aren't needlessly decompressing the data multiple times.
5799 int callback_cnt
= 0;
5800 for (acb
= callback_list
; acb
!= NULL
; acb
= acb
->acb_next
) {
5802 /* We need the last one to call below in original order. */
5803 callback_list
= acb
;
5805 if (!acb
->acb_done
|| acb
->acb_nobuf
)
5810 if (zio
->io_error
!= 0)
5813 int error
= arc_buf_alloc_impl(hdr
, zio
->io_spa
,
5814 &acb
->acb_zb
, acb
->acb_private
, acb
->acb_encrypted
,
5815 acb
->acb_compressed
, acb
->acb_noauth
, B_TRUE
,
5819 * Assert non-speculative zios didn't fail because an
5820 * encryption key wasn't loaded
5822 ASSERT((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) ||
5826 * If we failed to decrypt, report an error now (as the zio
5827 * layer would have done if it had done the transforms).
5829 if (error
== ECKSUM
) {
5830 ASSERT(BP_IS_PROTECTED(bp
));
5831 error
= SET_ERROR(EIO
);
5832 if ((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
5833 spa_log_error(zio
->io_spa
, &acb
->acb_zb
);
5834 (void) zfs_ereport_post(
5835 FM_EREPORT_ZFS_AUTHENTICATION
,
5836 zio
->io_spa
, NULL
, &acb
->acb_zb
, zio
, 0);
5842 * Decompression or decryption failed. Set
5843 * io_error so that when we call acb_done
5844 * (below), we will indicate that the read
5845 * failed. Note that in the unusual case
5846 * where one callback is compressed and another
5847 * uncompressed, we will mark all of them
5848 * as failed, even though the uncompressed
5849 * one can't actually fail. In this case,
5850 * the hdr will not be anonymous, because
5851 * if there are multiple callbacks, it's
5852 * because multiple threads found the same
5853 * arc buf in the hash table.
5855 zio
->io_error
= error
;
5860 * If there are multiple callbacks, we must have the hash lock,
5861 * because the only way for multiple threads to find this hdr is
5862 * in the hash table. This ensures that if there are multiple
5863 * callbacks, the hdr is not anonymous. If it were anonymous,
5864 * we couldn't use arc_buf_destroy() in the error case below.
5866 ASSERT(callback_cnt
< 2 || hash_lock
!= NULL
);
5868 if (zio
->io_error
== 0) {
5869 arc_hdr_verify(hdr
, zio
->io_bp
);
5871 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
5872 if (hdr
->b_l1hdr
.b_state
!= arc_anon
)
5873 arc_change_state(arc_anon
, hdr
);
5874 if (HDR_IN_HASH_TABLE(hdr
))
5875 buf_hash_remove(hdr
);
5879 * Broadcast before we drop the hash_lock to avoid the possibility
5880 * that the hdr (and hence the cv) might be freed before we get to
5881 * the cv_broadcast().
5883 cv_broadcast(&hdr
->b_l1hdr
.b_cv
);
5885 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
5886 (void) remove_reference(hdr
, hdr
);
5888 if (hash_lock
!= NULL
)
5889 mutex_exit(hash_lock
);
5891 /* execute each callback and free its structure */
5892 while ((acb
= callback_list
) != NULL
) {
5893 if (acb
->acb_done
!= NULL
) {
5894 if (zio
->io_error
!= 0 && acb
->acb_buf
!= NULL
) {
5896 * If arc_buf_alloc_impl() fails during
5897 * decompression, the buf will still be
5898 * allocated, and needs to be freed here.
5900 arc_buf_destroy(acb
->acb_buf
,
5902 acb
->acb_buf
= NULL
;
5904 acb
->acb_done(zio
, &zio
->io_bookmark
, zio
->io_bp
,
5905 acb
->acb_buf
, acb
->acb_private
);
5908 if (acb
->acb_zio_dummy
!= NULL
) {
5909 acb
->acb_zio_dummy
->io_error
= zio
->io_error
;
5910 zio_nowait(acb
->acb_zio_dummy
);
5913 callback_list
= acb
->acb_prev
;
5914 if (acb
->acb_wait
) {
5915 mutex_enter(&acb
->acb_wait_lock
);
5916 acb
->acb_wait_error
= zio
->io_error
;
5917 acb
->acb_wait
= B_FALSE
;
5918 cv_signal(&acb
->acb_wait_cv
);
5919 mutex_exit(&acb
->acb_wait_lock
);
5920 /* acb will be freed by the waiting thread. */
5922 kmem_free(acb
, sizeof (arc_callback_t
));
5928 * "Read" the block at the specified DVA (in bp) via the
5929 * cache. If the block is found in the cache, invoke the provided
5930 * callback immediately and return. Note that the `zio' parameter
5931 * in the callback will be NULL in this case, since no IO was
5932 * required. If the block is not in the cache pass the read request
5933 * on to the spa with a substitute callback function, so that the
5934 * requested block will be added to the cache.
5936 * If a read request arrives for a block that has a read in-progress,
5937 * either wait for the in-progress read to complete (and return the
5938 * results); or, if this is a read with a "done" func, add a record
5939 * to the read to invoke the "done" func when the read completes,
5940 * and return; or just return.
5942 * arc_read_done() will invoke all the requested "done" functions
5943 * for readers of this block.
5946 arc_read(zio_t
*pio
, spa_t
*spa
, const blkptr_t
*bp
,
5947 arc_read_done_func_t
*done
, void *private, zio_priority_t priority
,
5948 int zio_flags
, arc_flags_t
*arc_flags
, const zbookmark_phys_t
*zb
)
5950 arc_buf_hdr_t
*hdr
= NULL
;
5951 kmutex_t
*hash_lock
= NULL
;
5953 uint64_t guid
= spa_load_guid(spa
);
5954 boolean_t compressed_read
= (zio_flags
& ZIO_FLAG_RAW_COMPRESS
) != 0;
5955 boolean_t encrypted_read
= BP_IS_ENCRYPTED(bp
) &&
5956 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5957 boolean_t noauth_read
= BP_IS_AUTHENTICATED(bp
) &&
5958 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5959 boolean_t embedded_bp
= !!BP_IS_EMBEDDED(bp
);
5960 boolean_t no_buf
= *arc_flags
& ARC_FLAG_NO_BUF
;
5961 arc_buf_t
*buf
= NULL
;
5964 ASSERT(!embedded_bp
||
5965 BPE_GET_ETYPE(bp
) == BP_EMBEDDED_TYPE_DATA
);
5966 ASSERT(!BP_IS_HOLE(bp
));
5967 ASSERT(!BP_IS_REDACTED(bp
));
5970 * Normally SPL_FSTRANS will already be set since kernel threads which
5971 * expect to call the DMU interfaces will set it when created. System
5972 * calls are similarly handled by setting/cleaning the bit in the
5973 * registered callback (module/os/.../zfs/zpl_*).
5975 * External consumers such as Lustre which call the exported DMU
5976 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5977 * on the hash_lock always set and clear the bit.
5979 fstrans_cookie_t cookie
= spl_fstrans_mark();
5982 * Verify the block pointer contents are reasonable. This should
5983 * always be the case since the blkptr is protected by a checksum.
5984 * However, if there is damage it's desirable to detect this early
5985 * and treat it as a checksum error. This allows an alternate blkptr
5986 * to be tried when one is available (e.g. ditto blocks).
5988 if (!zfs_blkptr_verify(spa
, bp
, zio_flags
& ZIO_FLAG_CONFIG_WRITER
,
5990 rc
= SET_ERROR(ECKSUM
);
5996 * Embedded BP's have no DVA and require no I/O to "read".
5997 * Create an anonymous arc buf to back it.
5999 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
6003 * Determine if we have an L1 cache hit or a cache miss. For simplicity
6004 * we maintain encrypted data separately from compressed / uncompressed
6005 * data. If the user is requesting raw encrypted data and we don't have
6006 * that in the header we will read from disk to guarantee that we can
6007 * get it even if the encryption keys aren't loaded.
6009 if (hdr
!= NULL
&& HDR_HAS_L1HDR(hdr
) && (HDR_HAS_RABD(hdr
) ||
6010 (hdr
->b_l1hdr
.b_pabd
!= NULL
&& !encrypted_read
))) {
6011 boolean_t is_data
= !HDR_ISTYPE_METADATA(hdr
);
6013 if (HDR_IO_IN_PROGRESS(hdr
)) {
6014 if (*arc_flags
& ARC_FLAG_CACHED_ONLY
) {
6015 mutex_exit(hash_lock
);
6016 ARCSTAT_BUMP(arcstat_cached_only_in_progress
);
6017 rc
= SET_ERROR(ENOENT
);
6021 zio_t
*head_zio
= hdr
->b_l1hdr
.b_acb
->acb_zio_head
;
6022 ASSERT3P(head_zio
, !=, NULL
);
6023 if ((hdr
->b_flags
& ARC_FLAG_PRIO_ASYNC_READ
) &&
6024 priority
== ZIO_PRIORITY_SYNC_READ
) {
6026 * This is a sync read that needs to wait for
6027 * an in-flight async read. Request that the
6028 * zio have its priority upgraded.
6030 zio_change_priority(head_zio
, priority
);
6031 DTRACE_PROBE1(arc__async__upgrade__sync
,
6032 arc_buf_hdr_t
*, hdr
);
6033 ARCSTAT_BUMP(arcstat_async_upgrade_sync
);
6036 DTRACE_PROBE1(arc__iohit
, arc_buf_hdr_t
*, hdr
);
6037 arc_access(hdr
, *arc_flags
, B_FALSE
);
6040 * If there are multiple threads reading the same block
6041 * and that block is not yet in the ARC, then only one
6042 * thread will do the physical I/O and all other
6043 * threads will wait until that I/O completes.
6044 * Synchronous reads use the acb_wait_cv whereas nowait
6045 * reads register a callback. Both are signalled/called
6048 * Errors of the physical I/O may need to be propagated.
6049 * Synchronous read errors are returned here from
6050 * arc_read_done via acb_wait_error. Nowait reads
6051 * attach the acb_zio_dummy zio to pio and
6052 * arc_read_done propagates the physical I/O's io_error
6053 * to acb_zio_dummy, and thereby to pio.
6055 arc_callback_t
*acb
= NULL
;
6056 if (done
|| pio
|| *arc_flags
& ARC_FLAG_WAIT
) {
6057 acb
= kmem_zalloc(sizeof (arc_callback_t
),
6059 acb
->acb_done
= done
;
6060 acb
->acb_private
= private;
6061 acb
->acb_compressed
= compressed_read
;
6062 acb
->acb_encrypted
= encrypted_read
;
6063 acb
->acb_noauth
= noauth_read
;
6064 acb
->acb_nobuf
= no_buf
;
6065 if (*arc_flags
& ARC_FLAG_WAIT
) {
6066 acb
->acb_wait
= B_TRUE
;
6067 mutex_init(&acb
->acb_wait_lock
, NULL
,
6068 MUTEX_DEFAULT
, NULL
);
6069 cv_init(&acb
->acb_wait_cv
, NULL
,
6074 acb
->acb_zio_dummy
= zio_null(pio
,
6075 spa
, NULL
, NULL
, NULL
, zio_flags
);
6077 acb
->acb_zio_head
= head_zio
;
6078 acb
->acb_next
= hdr
->b_l1hdr
.b_acb
;
6079 if (hdr
->b_l1hdr
.b_acb
)
6080 hdr
->b_l1hdr
.b_acb
->acb_prev
= acb
;
6081 hdr
->b_l1hdr
.b_acb
= acb
;
6083 mutex_exit(hash_lock
);
6085 ARCSTAT_BUMP(arcstat_iohits
);
6086 ARCSTAT_CONDSTAT(!(*arc_flags
& ARC_FLAG_PREFETCH
),
6087 demand
, prefetch
, is_data
, data
, metadata
, iohits
);
6089 if (*arc_flags
& ARC_FLAG_WAIT
) {
6090 mutex_enter(&acb
->acb_wait_lock
);
6091 while (acb
->acb_wait
) {
6092 cv_wait(&acb
->acb_wait_cv
,
6093 &acb
->acb_wait_lock
);
6095 rc
= acb
->acb_wait_error
;
6096 mutex_exit(&acb
->acb_wait_lock
);
6097 mutex_destroy(&acb
->acb_wait_lock
);
6098 cv_destroy(&acb
->acb_wait_cv
);
6099 kmem_free(acb
, sizeof (arc_callback_t
));
6104 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
6105 hdr
->b_l1hdr
.b_state
== arc_mfu
||
6106 hdr
->b_l1hdr
.b_state
== arc_uncached
);
6108 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
6109 arc_access(hdr
, *arc_flags
, B_TRUE
);
6111 if (done
&& !no_buf
) {
6112 ASSERT(!embedded_bp
|| !BP_IS_HOLE(bp
));
6114 /* Get a buf with the desired data in it. */
6115 rc
= arc_buf_alloc_impl(hdr
, spa
, zb
, private,
6116 encrypted_read
, compressed_read
, noauth_read
,
6120 * Convert authentication and decryption errors
6121 * to EIO (and generate an ereport if needed)
6122 * before leaving the ARC.
6124 rc
= SET_ERROR(EIO
);
6125 if ((zio_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
6126 spa_log_error(spa
, zb
);
6127 (void) zfs_ereport_post(
6128 FM_EREPORT_ZFS_AUTHENTICATION
,
6129 spa
, NULL
, zb
, NULL
, 0);
6133 arc_buf_destroy_impl(buf
);
6135 (void) remove_reference(hdr
, private);
6138 /* assert any errors weren't due to unloaded keys */
6139 ASSERT((zio_flags
& ZIO_FLAG_SPECULATIVE
) ||
6142 mutex_exit(hash_lock
);
6143 ARCSTAT_BUMP(arcstat_hits
);
6144 ARCSTAT_CONDSTAT(!(*arc_flags
& ARC_FLAG_PREFETCH
),
6145 demand
, prefetch
, is_data
, data
, metadata
, hits
);
6146 *arc_flags
|= ARC_FLAG_CACHED
;
6149 uint64_t lsize
= BP_GET_LSIZE(bp
);
6150 uint64_t psize
= BP_GET_PSIZE(bp
);
6151 arc_callback_t
*acb
;
6154 boolean_t devw
= B_FALSE
;
6157 int alloc_flags
= encrypted_read
? ARC_HDR_ALLOC_RDATA
: 0;
6159 if (*arc_flags
& ARC_FLAG_CACHED_ONLY
) {
6160 if (hash_lock
!= NULL
)
6161 mutex_exit(hash_lock
);
6162 rc
= SET_ERROR(ENOENT
);
6168 * This block is not in the cache or it has
6171 arc_buf_hdr_t
*exists
= NULL
;
6172 arc_buf_contents_t type
= BP_GET_BUFC_TYPE(bp
);
6173 hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
,
6174 BP_IS_PROTECTED(bp
), BP_GET_COMPRESS(bp
), 0, type
);
6177 hdr
->b_dva
= *BP_IDENTITY(bp
);
6178 hdr
->b_birth
= BP_PHYSICAL_BIRTH(bp
);
6179 exists
= buf_hash_insert(hdr
, &hash_lock
);
6181 if (exists
!= NULL
) {
6182 /* somebody beat us to the hash insert */
6183 mutex_exit(hash_lock
);
6184 buf_discard_identity(hdr
);
6185 arc_hdr_destroy(hdr
);
6186 goto top
; /* restart the IO request */
6190 * This block is in the ghost cache or encrypted data
6191 * was requested and we didn't have it. If it was
6192 * L2-only (and thus didn't have an L1 hdr),
6193 * we realloc the header to add an L1 hdr.
6195 if (!HDR_HAS_L1HDR(hdr
)) {
6196 hdr
= arc_hdr_realloc(hdr
, hdr_l2only_cache
,
6200 if (GHOST_STATE(hdr
->b_l1hdr
.b_state
)) {
6201 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6202 ASSERT(!HDR_HAS_RABD(hdr
));
6203 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6204 ASSERT0(zfs_refcount_count(
6205 &hdr
->b_l1hdr
.b_refcnt
));
6206 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
6208 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
6210 } else if (HDR_IO_IN_PROGRESS(hdr
)) {
6212 * If this header already had an IO in progress
6213 * and we are performing another IO to fetch
6214 * encrypted data we must wait until the first
6215 * IO completes so as not to confuse
6216 * arc_read_done(). This should be very rare
6217 * and so the performance impact shouldn't
6220 cv_wait(&hdr
->b_l1hdr
.b_cv
, hash_lock
);
6221 mutex_exit(hash_lock
);
6225 if (*arc_flags
& ARC_FLAG_UNCACHED
) {
6226 arc_hdr_set_flags(hdr
, ARC_FLAG_UNCACHED
);
6227 if (!encrypted_read
)
6228 alloc_flags
|= ARC_HDR_ALLOC_LINEAR
;
6232 * Call arc_adapt() explicitly before arc_access() to allow
6233 * its logic to balance MRU/MFU based on the original state.
6235 arc_adapt(arc_hdr_size(hdr
), hdr
->b_l1hdr
.b_state
);
6237 * Take additional reference for IO_IN_PROGRESS. It stops
6238 * arc_access() from putting this header without any buffers
6239 * and so other references but obviously nonevictable onto
6240 * the evictable list of MRU or MFU state.
6242 add_reference(hdr
, hdr
);
6244 arc_access(hdr
, *arc_flags
, B_FALSE
);
6245 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6246 arc_hdr_alloc_abd(hdr
, alloc_flags
);
6247 if (encrypted_read
) {
6248 ASSERT(HDR_HAS_RABD(hdr
));
6249 size
= HDR_GET_PSIZE(hdr
);
6250 hdr_abd
= hdr
->b_crypt_hdr
.b_rabd
;
6251 zio_flags
|= ZIO_FLAG_RAW
;
6253 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
6254 size
= arc_hdr_size(hdr
);
6255 hdr_abd
= hdr
->b_l1hdr
.b_pabd
;
6257 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
6258 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
6262 * For authenticated bp's, we do not ask the ZIO layer
6263 * to authenticate them since this will cause the entire
6264 * IO to fail if the key isn't loaded. Instead, we
6265 * defer authentication until arc_buf_fill(), which will
6266 * verify the data when the key is available.
6268 if (BP_IS_AUTHENTICATED(bp
))
6269 zio_flags
|= ZIO_FLAG_RAW_ENCRYPT
;
6272 if (BP_IS_AUTHENTICATED(bp
))
6273 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
6274 if (BP_GET_LEVEL(bp
) > 0)
6275 arc_hdr_set_flags(hdr
, ARC_FLAG_INDIRECT
);
6276 ASSERT(!GHOST_STATE(hdr
->b_l1hdr
.b_state
));
6278 acb
= kmem_zalloc(sizeof (arc_callback_t
), KM_SLEEP
);
6279 acb
->acb_done
= done
;
6280 acb
->acb_private
= private;
6281 acb
->acb_compressed
= compressed_read
;
6282 acb
->acb_encrypted
= encrypted_read
;
6283 acb
->acb_noauth
= noauth_read
;
6286 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6287 hdr
->b_l1hdr
.b_acb
= acb
;
6289 if (HDR_HAS_L2HDR(hdr
) &&
6290 (vd
= hdr
->b_l2hdr
.b_dev
->l2ad_vdev
) != NULL
) {
6291 devw
= hdr
->b_l2hdr
.b_dev
->l2ad_writing
;
6292 addr
= hdr
->b_l2hdr
.b_daddr
;
6294 * Lock out L2ARC device removal.
6296 if (vdev_is_dead(vd
) ||
6297 !spa_config_tryenter(spa
, SCL_L2ARC
, vd
, RW_READER
))
6302 * We count both async reads and scrub IOs as asynchronous so
6303 * that both can be upgraded in the event of a cache hit while
6304 * the read IO is still in-flight.
6306 if (priority
== ZIO_PRIORITY_ASYNC_READ
||
6307 priority
== ZIO_PRIORITY_SCRUB
)
6308 arc_hdr_set_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
6310 arc_hdr_clear_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
6313 * At this point, we have a level 1 cache miss or a blkptr
6314 * with embedded data. Try again in L2ARC if possible.
6316 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, lsize
);
6319 * Skip ARC stat bump for block pointers with embedded
6320 * data. The data are read from the blkptr itself via
6321 * decode_embedded_bp_compressed().
6324 DTRACE_PROBE4(arc__miss
, arc_buf_hdr_t
*, hdr
,
6325 blkptr_t
*, bp
, uint64_t, lsize
,
6326 zbookmark_phys_t
*, zb
);
6327 ARCSTAT_BUMP(arcstat_misses
);
6328 ARCSTAT_CONDSTAT(!(*arc_flags
& ARC_FLAG_PREFETCH
),
6329 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
), data
,
6331 zfs_racct_read(size
, 1);
6334 /* Check if the spa even has l2 configured */
6335 const boolean_t spa_has_l2
= l2arc_ndev
!= 0 &&
6336 spa
->spa_l2cache
.sav_count
> 0;
6338 if (vd
!= NULL
&& spa_has_l2
&& !(l2arc_norw
&& devw
)) {
6340 * Read from the L2ARC if the following are true:
6341 * 1. The L2ARC vdev was previously cached.
6342 * 2. This buffer still has L2ARC metadata.
6343 * 3. This buffer isn't currently writing to the L2ARC.
6344 * 4. The L2ARC entry wasn't evicted, which may
6345 * also have invalidated the vdev.
6346 * 5. This isn't prefetch or l2arc_noprefetch is 0.
6348 if (HDR_HAS_L2HDR(hdr
) &&
6349 !HDR_L2_WRITING(hdr
) && !HDR_L2_EVICTED(hdr
) &&
6350 !(l2arc_noprefetch
&&
6351 (*arc_flags
& ARC_FLAG_PREFETCH
))) {
6352 l2arc_read_callback_t
*cb
;
6356 DTRACE_PROBE1(l2arc__hit
, arc_buf_hdr_t
*, hdr
);
6357 ARCSTAT_BUMP(arcstat_l2_hits
);
6358 hdr
->b_l2hdr
.b_hits
++;
6360 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
),
6362 cb
->l2rcb_hdr
= hdr
;
6365 cb
->l2rcb_flags
= zio_flags
;
6368 * When Compressed ARC is disabled, but the
6369 * L2ARC block is compressed, arc_hdr_size()
6370 * will have returned LSIZE rather than PSIZE.
6372 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
6373 !HDR_COMPRESSION_ENABLED(hdr
) &&
6374 HDR_GET_PSIZE(hdr
) != 0) {
6375 size
= HDR_GET_PSIZE(hdr
);
6378 asize
= vdev_psize_to_asize(vd
, size
);
6379 if (asize
!= size
) {
6380 abd
= abd_alloc_for_io(asize
,
6381 HDR_ISTYPE_METADATA(hdr
));
6382 cb
->l2rcb_abd
= abd
;
6387 ASSERT(addr
>= VDEV_LABEL_START_SIZE
&&
6388 addr
+ asize
<= vd
->vdev_psize
-
6389 VDEV_LABEL_END_SIZE
);
6392 * l2arc read. The SCL_L2ARC lock will be
6393 * released by l2arc_read_done().
6394 * Issue a null zio if the underlying buffer
6395 * was squashed to zero size by compression.
6397 ASSERT3U(arc_hdr_get_compress(hdr
), !=,
6398 ZIO_COMPRESS_EMPTY
);
6399 rzio
= zio_read_phys(pio
, vd
, addr
,
6402 l2arc_read_done
, cb
, priority
,
6403 zio_flags
| ZIO_FLAG_DONT_CACHE
|
6405 ZIO_FLAG_DONT_PROPAGATE
|
6406 ZIO_FLAG_DONT_RETRY
, B_FALSE
);
6407 acb
->acb_zio_head
= rzio
;
6409 if (hash_lock
!= NULL
)
6410 mutex_exit(hash_lock
);
6412 DTRACE_PROBE2(l2arc__read
, vdev_t
*, vd
,
6414 ARCSTAT_INCR(arcstat_l2_read_bytes
,
6415 HDR_GET_PSIZE(hdr
));
6417 if (*arc_flags
& ARC_FLAG_NOWAIT
) {
6422 ASSERT(*arc_flags
& ARC_FLAG_WAIT
);
6423 if (zio_wait(rzio
) == 0)
6426 /* l2arc read error; goto zio_read() */
6427 if (hash_lock
!= NULL
)
6428 mutex_enter(hash_lock
);
6430 DTRACE_PROBE1(l2arc__miss
,
6431 arc_buf_hdr_t
*, hdr
);
6432 ARCSTAT_BUMP(arcstat_l2_misses
);
6433 if (HDR_L2_WRITING(hdr
))
6434 ARCSTAT_BUMP(arcstat_l2_rw_clash
);
6435 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6439 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6442 * Only a spa with l2 should contribute to l2
6443 * miss stats. (Including the case of having a
6444 * faulted cache device - that's also a miss.)
6448 * Skip ARC stat bump for block pointers with
6449 * embedded data. The data are read from the
6451 * decode_embedded_bp_compressed().
6454 DTRACE_PROBE1(l2arc__miss
,
6455 arc_buf_hdr_t
*, hdr
);
6456 ARCSTAT_BUMP(arcstat_l2_misses
);
6461 rzio
= zio_read(pio
, spa
, bp
, hdr_abd
, size
,
6462 arc_read_done
, hdr
, priority
, zio_flags
, zb
);
6463 acb
->acb_zio_head
= rzio
;
6465 if (hash_lock
!= NULL
)
6466 mutex_exit(hash_lock
);
6468 if (*arc_flags
& ARC_FLAG_WAIT
) {
6469 rc
= zio_wait(rzio
);
6473 ASSERT(*arc_flags
& ARC_FLAG_NOWAIT
);
6478 /* embedded bps don't actually go to disk */
6480 spa_read_history_add(spa
, zb
, *arc_flags
);
6481 spl_fstrans_unmark(cookie
);
6486 done(NULL
, zb
, bp
, buf
, private);
6487 if (pio
&& rc
!= 0) {
6488 zio_t
*zio
= zio_null(pio
, spa
, NULL
, NULL
, NULL
, zio_flags
);
6496 arc_add_prune_callback(arc_prune_func_t
*func
, void *private)
6500 p
= kmem_alloc(sizeof (*p
), KM_SLEEP
);
6502 p
->p_private
= private;
6503 list_link_init(&p
->p_node
);
6504 zfs_refcount_create(&p
->p_refcnt
);
6506 mutex_enter(&arc_prune_mtx
);
6507 zfs_refcount_add(&p
->p_refcnt
, &arc_prune_list
);
6508 list_insert_head(&arc_prune_list
, p
);
6509 mutex_exit(&arc_prune_mtx
);
6515 arc_remove_prune_callback(arc_prune_t
*p
)
6517 boolean_t wait
= B_FALSE
;
6518 mutex_enter(&arc_prune_mtx
);
6519 list_remove(&arc_prune_list
, p
);
6520 if (zfs_refcount_remove(&p
->p_refcnt
, &arc_prune_list
) > 0)
6522 mutex_exit(&arc_prune_mtx
);
6524 /* wait for arc_prune_task to finish */
6526 taskq_wait_outstanding(arc_prune_taskq
, 0);
6527 ASSERT0(zfs_refcount_count(&p
->p_refcnt
));
6528 zfs_refcount_destroy(&p
->p_refcnt
);
6529 kmem_free(p
, sizeof (*p
));
6533 * Notify the arc that a block was freed, and thus will never be used again.
6536 arc_freed(spa_t
*spa
, const blkptr_t
*bp
)
6539 kmutex_t
*hash_lock
;
6540 uint64_t guid
= spa_load_guid(spa
);
6542 ASSERT(!BP_IS_EMBEDDED(bp
));
6544 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
6549 * We might be trying to free a block that is still doing I/O
6550 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6551 * dmu_sync-ed block). A block may also have a reference if it is
6552 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6553 * have written the new block to its final resting place on disk but
6554 * without the dedup flag set. This would have left the hdr in the MRU
6555 * state and discoverable. When the txg finally syncs it detects that
6556 * the block was overridden in open context and issues an override I/O.
6557 * Since this is a dedup block, the override I/O will determine if the
6558 * block is already in the DDT. If so, then it will replace the io_bp
6559 * with the bp from the DDT and allow the I/O to finish. When the I/O
6560 * reaches the done callback, dbuf_write_override_done, it will
6561 * check to see if the io_bp and io_bp_override are identical.
6562 * If they are not, then it indicates that the bp was replaced with
6563 * the bp in the DDT and the override bp is freed. This allows
6564 * us to arrive here with a reference on a block that is being
6565 * freed. So if we have an I/O in progress, or a reference to
6566 * this hdr, then we don't destroy the hdr.
6568 if (!HDR_HAS_L1HDR(hdr
) ||
6569 zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6570 arc_change_state(arc_anon
, hdr
);
6571 arc_hdr_destroy(hdr
);
6572 mutex_exit(hash_lock
);
6574 mutex_exit(hash_lock
);
6580 * Release this buffer from the cache, making it an anonymous buffer. This
6581 * must be done after a read and prior to modifying the buffer contents.
6582 * If the buffer has more than one reference, we must make
6583 * a new hdr for the buffer.
6586 arc_release(arc_buf_t
*buf
, const void *tag
)
6588 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6591 * It would be nice to assert that if its DMU metadata (level >
6592 * 0 || it's the dnode file), then it must be syncing context.
6593 * But we don't know that information at this level.
6596 ASSERT(HDR_HAS_L1HDR(hdr
));
6599 * We don't grab the hash lock prior to this check, because if
6600 * the buffer's header is in the arc_anon state, it won't be
6601 * linked into the hash table.
6603 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
6604 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6605 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
6606 ASSERT(!HDR_HAS_L2HDR(hdr
));
6608 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
6609 ASSERT3S(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
), ==, 1);
6610 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6612 hdr
->b_l1hdr
.b_arc_access
= 0;
6615 * If the buf is being overridden then it may already
6616 * have a hdr that is not empty.
6618 buf_discard_identity(hdr
);
6624 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
6625 mutex_enter(hash_lock
);
6628 * This assignment is only valid as long as the hash_lock is
6629 * held, we must be careful not to reference state or the
6630 * b_state field after dropping the lock.
6632 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
6633 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
6634 ASSERT3P(state
, !=, arc_anon
);
6636 /* this buffer is not on any list */
6637 ASSERT3S(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
), >, 0);
6639 if (HDR_HAS_L2HDR(hdr
)) {
6640 mutex_enter(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6643 * We have to recheck this conditional again now that
6644 * we're holding the l2ad_mtx to prevent a race with
6645 * another thread which might be concurrently calling
6646 * l2arc_evict(). In that case, l2arc_evict() might have
6647 * destroyed the header's L2 portion as we were waiting
6648 * to acquire the l2ad_mtx.
6650 if (HDR_HAS_L2HDR(hdr
))
6651 arc_hdr_l2hdr_destroy(hdr
);
6653 mutex_exit(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6657 * Do we have more than one buf?
6659 if (hdr
->b_l1hdr
.b_bufcnt
> 1) {
6660 arc_buf_hdr_t
*nhdr
;
6661 uint64_t spa
= hdr
->b_spa
;
6662 uint64_t psize
= HDR_GET_PSIZE(hdr
);
6663 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
6664 boolean_t
protected = HDR_PROTECTED(hdr
);
6665 enum zio_compress compress
= arc_hdr_get_compress(hdr
);
6666 arc_buf_contents_t type
= arc_buf_type(hdr
);
6667 VERIFY3U(hdr
->b_type
, ==, type
);
6669 ASSERT(hdr
->b_l1hdr
.b_buf
!= buf
|| buf
->b_next
!= NULL
);
6670 VERIFY3S(remove_reference(hdr
, tag
), >, 0);
6672 if (arc_buf_is_shared(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
6673 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6674 ASSERT(ARC_BUF_LAST(buf
));
6678 * Pull the data off of this hdr and attach it to
6679 * a new anonymous hdr. Also find the last buffer
6680 * in the hdr's buffer list.
6682 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
6683 ASSERT3P(lastbuf
, !=, NULL
);
6686 * If the current arc_buf_t and the hdr are sharing their data
6687 * buffer, then we must stop sharing that block.
6689 if (arc_buf_is_shared(buf
)) {
6690 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6691 VERIFY(!arc_buf_is_shared(lastbuf
));
6694 * First, sever the block sharing relationship between
6695 * buf and the arc_buf_hdr_t.
6697 arc_unshare_buf(hdr
, buf
);
6700 * Now we need to recreate the hdr's b_pabd. Since we
6701 * have lastbuf handy, we try to share with it, but if
6702 * we can't then we allocate a new b_pabd and copy the
6703 * data from buf into it.
6705 if (arc_can_share(hdr
, lastbuf
)) {
6706 arc_share_buf(hdr
, lastbuf
);
6708 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
);
6709 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
,
6710 buf
->b_data
, psize
);
6712 VERIFY3P(lastbuf
->b_data
, !=, NULL
);
6713 } else if (HDR_SHARED_DATA(hdr
)) {
6715 * Uncompressed shared buffers are always at the end
6716 * of the list. Compressed buffers don't have the
6717 * same requirements. This makes it hard to
6718 * simply assert that the lastbuf is shared so
6719 * we rely on the hdr's compression flags to determine
6720 * if we have a compressed, shared buffer.
6722 ASSERT(arc_buf_is_shared(lastbuf
) ||
6723 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
6724 ASSERT(!ARC_BUF_SHARED(buf
));
6727 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
6728 ASSERT3P(state
, !=, arc_l2c_only
);
6730 (void) zfs_refcount_remove_many(&state
->arcs_size
,
6731 arc_buf_size(buf
), buf
);
6733 if (zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6734 ASSERT3P(state
, !=, arc_l2c_only
);
6735 (void) zfs_refcount_remove_many(
6736 &state
->arcs_esize
[type
],
6737 arc_buf_size(buf
), buf
);
6740 hdr
->b_l1hdr
.b_bufcnt
-= 1;
6741 if (ARC_BUF_ENCRYPTED(buf
))
6742 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
6744 arc_cksum_verify(buf
);
6745 arc_buf_unwatch(buf
);
6747 /* if this is the last uncompressed buf free the checksum */
6748 if (!arc_hdr_has_uncompressed_buf(hdr
))
6749 arc_cksum_free(hdr
);
6751 mutex_exit(hash_lock
);
6753 nhdr
= arc_hdr_alloc(spa
, psize
, lsize
, protected,
6754 compress
, hdr
->b_complevel
, type
);
6755 ASSERT3P(nhdr
->b_l1hdr
.b_buf
, ==, NULL
);
6756 ASSERT0(nhdr
->b_l1hdr
.b_bufcnt
);
6757 ASSERT0(zfs_refcount_count(&nhdr
->b_l1hdr
.b_refcnt
));
6758 VERIFY3U(nhdr
->b_type
, ==, type
);
6759 ASSERT(!HDR_SHARED_DATA(nhdr
));
6761 nhdr
->b_l1hdr
.b_buf
= buf
;
6762 nhdr
->b_l1hdr
.b_bufcnt
= 1;
6763 if (ARC_BUF_ENCRYPTED(buf
))
6764 nhdr
->b_crypt_hdr
.b_ebufcnt
= 1;
6765 (void) zfs_refcount_add(&nhdr
->b_l1hdr
.b_refcnt
, tag
);
6768 (void) zfs_refcount_add_many(&arc_anon
->arcs_size
,
6769 arc_buf_size(buf
), buf
);
6771 ASSERT(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
) == 1);
6772 /* protected by hash lock, or hdr is on arc_anon */
6773 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6774 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6775 hdr
->b_l1hdr
.b_mru_hits
= 0;
6776 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
6777 hdr
->b_l1hdr
.b_mfu_hits
= 0;
6778 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
6779 arc_change_state(arc_anon
, hdr
);
6780 hdr
->b_l1hdr
.b_arc_access
= 0;
6782 mutex_exit(hash_lock
);
6783 buf_discard_identity(hdr
);
6789 arc_released(arc_buf_t
*buf
)
6791 return (buf
->b_data
!= NULL
&&
6792 buf
->b_hdr
->b_l1hdr
.b_state
== arc_anon
);
6797 arc_referenced(arc_buf_t
*buf
)
6799 return (zfs_refcount_count(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6804 arc_write_ready(zio_t
*zio
)
6806 arc_write_callback_t
*callback
= zio
->io_private
;
6807 arc_buf_t
*buf
= callback
->awcb_buf
;
6808 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6809 blkptr_t
*bp
= zio
->io_bp
;
6810 uint64_t psize
= BP_IS_HOLE(bp
) ? 0 : BP_GET_PSIZE(bp
);
6811 fstrans_cookie_t cookie
= spl_fstrans_mark();
6813 ASSERT(HDR_HAS_L1HDR(hdr
));
6814 ASSERT(!zfs_refcount_is_zero(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6815 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
6818 * If we're reexecuting this zio because the pool suspended, then
6819 * cleanup any state that was previously set the first time the
6820 * callback was invoked.
6822 if (zio
->io_flags
& ZIO_FLAG_REEXECUTED
) {
6823 arc_cksum_free(hdr
);
6824 arc_buf_unwatch(buf
);
6825 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
6826 if (arc_buf_is_shared(buf
)) {
6827 arc_unshare_buf(hdr
, buf
);
6829 arc_hdr_free_abd(hdr
, B_FALSE
);
6833 if (HDR_HAS_RABD(hdr
))
6834 arc_hdr_free_abd(hdr
, B_TRUE
);
6836 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6837 ASSERT(!HDR_HAS_RABD(hdr
));
6838 ASSERT(!HDR_SHARED_DATA(hdr
));
6839 ASSERT(!arc_buf_is_shared(buf
));
6841 callback
->awcb_ready(zio
, buf
, callback
->awcb_private
);
6843 if (HDR_IO_IN_PROGRESS(hdr
)) {
6844 ASSERT(zio
->io_flags
& ZIO_FLAG_REEXECUTED
);
6846 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6847 add_reference(hdr
, hdr
); /* For IO_IN_PROGRESS. */
6850 if (BP_IS_PROTECTED(bp
) != !!HDR_PROTECTED(hdr
))
6851 hdr
= arc_hdr_realloc_crypt(hdr
, BP_IS_PROTECTED(bp
));
6853 if (BP_IS_PROTECTED(bp
)) {
6854 /* ZIL blocks are written through zio_rewrite */
6855 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
6856 ASSERT(HDR_PROTECTED(hdr
));
6858 if (BP_SHOULD_BYTESWAP(bp
)) {
6859 if (BP_GET_LEVEL(bp
) > 0) {
6860 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
6862 hdr
->b_l1hdr
.b_byteswap
=
6863 DMU_OT_BYTESWAP(BP_GET_TYPE(bp
));
6866 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
6869 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
6870 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
6871 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
6872 hdr
->b_crypt_hdr
.b_iv
);
6873 zio_crypt_decode_mac_bp(bp
, hdr
->b_crypt_hdr
.b_mac
);
6877 * If this block was written for raw encryption but the zio layer
6878 * ended up only authenticating it, adjust the buffer flags now.
6880 if (BP_IS_AUTHENTICATED(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6881 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
6882 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6883 if (BP_GET_COMPRESS(bp
) == ZIO_COMPRESS_OFF
)
6884 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6885 } else if (BP_IS_HOLE(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6886 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6887 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6890 /* this must be done after the buffer flags are adjusted */
6891 arc_cksum_compute(buf
);
6893 enum zio_compress compress
;
6894 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
6895 compress
= ZIO_COMPRESS_OFF
;
6897 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
6898 compress
= BP_GET_COMPRESS(bp
);
6900 HDR_SET_PSIZE(hdr
, psize
);
6901 arc_hdr_set_compress(hdr
, compress
);
6902 hdr
->b_complevel
= zio
->io_prop
.zp_complevel
;
6904 if (zio
->io_error
!= 0 || psize
== 0)
6908 * Fill the hdr with data. If the buffer is encrypted we have no choice
6909 * but to copy the data into b_radb. If the hdr is compressed, the data
6910 * we want is available from the zio, otherwise we can take it from
6913 * We might be able to share the buf's data with the hdr here. However,
6914 * doing so would cause the ARC to be full of linear ABDs if we write a
6915 * lot of shareable data. As a compromise, we check whether scattered
6916 * ABDs are allowed, and assume that if they are then the user wants
6917 * the ARC to be primarily filled with them regardless of the data being
6918 * written. Therefore, if they're allowed then we allocate one and copy
6919 * the data into it; otherwise, we share the data directly if we can.
6921 if (ARC_BUF_ENCRYPTED(buf
)) {
6922 ASSERT3U(psize
, >, 0);
6923 ASSERT(ARC_BUF_COMPRESSED(buf
));
6924 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
| ARC_HDR_ALLOC_RDATA
|
6925 ARC_HDR_USE_RESERVE
);
6926 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6927 } else if (!(HDR_UNCACHED(hdr
) ||
6928 abd_size_alloc_linear(arc_buf_size(buf
))) ||
6929 !arc_can_share(hdr
, buf
)) {
6931 * Ideally, we would always copy the io_abd into b_pabd, but the
6932 * user may have disabled compressed ARC, thus we must check the
6933 * hdr's compression setting rather than the io_bp's.
6935 if (BP_IS_ENCRYPTED(bp
)) {
6936 ASSERT3U(psize
, >, 0);
6937 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
|
6938 ARC_HDR_ALLOC_RDATA
| ARC_HDR_USE_RESERVE
);
6939 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6940 } else if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
6941 !ARC_BUF_COMPRESSED(buf
)) {
6942 ASSERT3U(psize
, >, 0);
6943 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
|
6944 ARC_HDR_USE_RESERVE
);
6945 abd_copy(hdr
->b_l1hdr
.b_pabd
, zio
->io_abd
, psize
);
6947 ASSERT3U(zio
->io_orig_size
, ==, arc_hdr_size(hdr
));
6948 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
|
6949 ARC_HDR_USE_RESERVE
);
6950 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
6954 ASSERT3P(buf
->b_data
, ==, abd_to_buf(zio
->io_orig_abd
));
6955 ASSERT3U(zio
->io_orig_size
, ==, arc_buf_size(buf
));
6956 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
6958 arc_share_buf(hdr
, buf
);
6962 arc_hdr_verify(hdr
, bp
);
6963 spl_fstrans_unmark(cookie
);
6967 arc_write_children_ready(zio_t
*zio
)
6969 arc_write_callback_t
*callback
= zio
->io_private
;
6970 arc_buf_t
*buf
= callback
->awcb_buf
;
6972 callback
->awcb_children_ready(zio
, buf
, callback
->awcb_private
);
6976 * The SPA calls this callback for each physical write that happens on behalf
6977 * of a logical write. See the comment in dbuf_write_physdone() for details.
6980 arc_write_physdone(zio_t
*zio
)
6982 arc_write_callback_t
*cb
= zio
->io_private
;
6983 if (cb
->awcb_physdone
!= NULL
)
6984 cb
->awcb_physdone(zio
, cb
->awcb_buf
, cb
->awcb_private
);
6988 arc_write_done(zio_t
*zio
)
6990 arc_write_callback_t
*callback
= zio
->io_private
;
6991 arc_buf_t
*buf
= callback
->awcb_buf
;
6992 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6994 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6996 if (zio
->io_error
== 0) {
6997 arc_hdr_verify(hdr
, zio
->io_bp
);
6999 if (BP_IS_HOLE(zio
->io_bp
) || BP_IS_EMBEDDED(zio
->io_bp
)) {
7000 buf_discard_identity(hdr
);
7002 hdr
->b_dva
= *BP_IDENTITY(zio
->io_bp
);
7003 hdr
->b_birth
= BP_PHYSICAL_BIRTH(zio
->io_bp
);
7006 ASSERT(HDR_EMPTY(hdr
));
7010 * If the block to be written was all-zero or compressed enough to be
7011 * embedded in the BP, no write was performed so there will be no
7012 * dva/birth/checksum. The buffer must therefore remain anonymous
7015 if (!HDR_EMPTY(hdr
)) {
7016 arc_buf_hdr_t
*exists
;
7017 kmutex_t
*hash_lock
;
7019 ASSERT3U(zio
->io_error
, ==, 0);
7021 arc_cksum_verify(buf
);
7023 exists
= buf_hash_insert(hdr
, &hash_lock
);
7024 if (exists
!= NULL
) {
7026 * This can only happen if we overwrite for
7027 * sync-to-convergence, because we remove
7028 * buffers from the hash table when we arc_free().
7030 if (zio
->io_flags
& ZIO_FLAG_IO_REWRITE
) {
7031 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
7032 panic("bad overwrite, hdr=%p exists=%p",
7033 (void *)hdr
, (void *)exists
);
7034 ASSERT(zfs_refcount_is_zero(
7035 &exists
->b_l1hdr
.b_refcnt
));
7036 arc_change_state(arc_anon
, exists
);
7037 arc_hdr_destroy(exists
);
7038 mutex_exit(hash_lock
);
7039 exists
= buf_hash_insert(hdr
, &hash_lock
);
7040 ASSERT3P(exists
, ==, NULL
);
7041 } else if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
) {
7043 ASSERT(zio
->io_prop
.zp_nopwrite
);
7044 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
7045 panic("bad nopwrite, hdr=%p exists=%p",
7046 (void *)hdr
, (void *)exists
);
7049 ASSERT(hdr
->b_l1hdr
.b_bufcnt
== 1);
7050 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
);
7051 ASSERT(BP_GET_DEDUP(zio
->io_bp
));
7052 ASSERT(BP_GET_LEVEL(zio
->io_bp
) == 0);
7055 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
7056 VERIFY3S(remove_reference(hdr
, hdr
), >, 0);
7057 /* if it's not anon, we are doing a scrub */
7058 if (exists
== NULL
&& hdr
->b_l1hdr
.b_state
== arc_anon
)
7059 arc_access(hdr
, 0, B_FALSE
);
7060 mutex_exit(hash_lock
);
7062 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
7063 VERIFY3S(remove_reference(hdr
, hdr
), >, 0);
7066 callback
->awcb_done(zio
, buf
, callback
->awcb_private
);
7068 abd_free(zio
->io_abd
);
7069 kmem_free(callback
, sizeof (arc_write_callback_t
));
7073 arc_write(zio_t
*pio
, spa_t
*spa
, uint64_t txg
,
7074 blkptr_t
*bp
, arc_buf_t
*buf
, boolean_t uncached
, boolean_t l2arc
,
7075 const zio_prop_t
*zp
, arc_write_done_func_t
*ready
,
7076 arc_write_done_func_t
*children_ready
, arc_write_done_func_t
*physdone
,
7077 arc_write_done_func_t
*done
, void *private, zio_priority_t priority
,
7078 int zio_flags
, const zbookmark_phys_t
*zb
)
7080 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
7081 arc_write_callback_t
*callback
;
7083 zio_prop_t localprop
= *zp
;
7085 ASSERT3P(ready
, !=, NULL
);
7086 ASSERT3P(done
, !=, NULL
);
7087 ASSERT(!HDR_IO_ERROR(hdr
));
7088 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
7089 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
7090 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, >, 0);
7092 arc_hdr_set_flags(hdr
, ARC_FLAG_UNCACHED
);
7094 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
7096 if (ARC_BUF_ENCRYPTED(buf
)) {
7097 ASSERT(ARC_BUF_COMPRESSED(buf
));
7098 localprop
.zp_encrypt
= B_TRUE
;
7099 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
7100 localprop
.zp_complevel
= hdr
->b_complevel
;
7101 localprop
.zp_byteorder
=
7102 (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
7103 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
7104 memcpy(localprop
.zp_salt
, hdr
->b_crypt_hdr
.b_salt
,
7106 memcpy(localprop
.zp_iv
, hdr
->b_crypt_hdr
.b_iv
,
7108 memcpy(localprop
.zp_mac
, hdr
->b_crypt_hdr
.b_mac
,
7110 if (DMU_OT_IS_ENCRYPTED(localprop
.zp_type
)) {
7111 localprop
.zp_nopwrite
= B_FALSE
;
7112 localprop
.zp_copies
=
7113 MIN(localprop
.zp_copies
, SPA_DVAS_PER_BP
- 1);
7115 zio_flags
|= ZIO_FLAG_RAW
;
7116 } else if (ARC_BUF_COMPRESSED(buf
)) {
7117 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, arc_buf_size(buf
));
7118 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
7119 localprop
.zp_complevel
= hdr
->b_complevel
;
7120 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
7122 callback
= kmem_zalloc(sizeof (arc_write_callback_t
), KM_SLEEP
);
7123 callback
->awcb_ready
= ready
;
7124 callback
->awcb_children_ready
= children_ready
;
7125 callback
->awcb_physdone
= physdone
;
7126 callback
->awcb_done
= done
;
7127 callback
->awcb_private
= private;
7128 callback
->awcb_buf
= buf
;
7131 * The hdr's b_pabd is now stale, free it now. A new data block
7132 * will be allocated when the zio pipeline calls arc_write_ready().
7134 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
7136 * If the buf is currently sharing the data block with
7137 * the hdr then we need to break that relationship here.
7138 * The hdr will remain with a NULL data pointer and the
7139 * buf will take sole ownership of the block.
7141 if (arc_buf_is_shared(buf
)) {
7142 arc_unshare_buf(hdr
, buf
);
7144 arc_hdr_free_abd(hdr
, B_FALSE
);
7146 VERIFY3P(buf
->b_data
, !=, NULL
);
7149 if (HDR_HAS_RABD(hdr
))
7150 arc_hdr_free_abd(hdr
, B_TRUE
);
7152 if (!(zio_flags
& ZIO_FLAG_RAW
))
7153 arc_hdr_set_compress(hdr
, ZIO_COMPRESS_OFF
);
7155 ASSERT(!arc_buf_is_shared(buf
));
7156 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
7158 zio
= zio_write(pio
, spa
, txg
, bp
,
7159 abd_get_from_buf(buf
->b_data
, HDR_GET_LSIZE(hdr
)),
7160 HDR_GET_LSIZE(hdr
), arc_buf_size(buf
), &localprop
, arc_write_ready
,
7161 (children_ready
!= NULL
) ? arc_write_children_ready
: NULL
,
7162 arc_write_physdone
, arc_write_done
, callback
,
7163 priority
, zio_flags
, zb
);
7169 arc_tempreserve_clear(uint64_t reserve
)
7171 atomic_add_64(&arc_tempreserve
, -reserve
);
7172 ASSERT((int64_t)arc_tempreserve
>= 0);
7176 arc_tempreserve_space(spa_t
*spa
, uint64_t reserve
, uint64_t txg
)
7182 reserve
> arc_c
/4 &&
7183 reserve
* 4 > (2ULL << SPA_MAXBLOCKSHIFT
))
7184 arc_c
= MIN(arc_c_max
, reserve
* 4);
7187 * Throttle when the calculated memory footprint for the TXG
7188 * exceeds the target ARC size.
7190 if (reserve
> arc_c
) {
7191 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve
);
7192 return (SET_ERROR(ERESTART
));
7196 * Don't count loaned bufs as in flight dirty data to prevent long
7197 * network delays from blocking transactions that are ready to be
7198 * assigned to a txg.
7201 /* assert that it has not wrapped around */
7202 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
7204 anon_size
= MAX((int64_t)(zfs_refcount_count(&arc_anon
->arcs_size
) -
7205 arc_loaned_bytes
), 0);
7208 * Writes will, almost always, require additional memory allocations
7209 * in order to compress/encrypt/etc the data. We therefore need to
7210 * make sure that there is sufficient available memory for this.
7212 error
= arc_memory_throttle(spa
, reserve
, txg
);
7217 * Throttle writes when the amount of dirty data in the cache
7218 * gets too large. We try to keep the cache less than half full
7219 * of dirty blocks so that our sync times don't grow too large.
7221 * In the case of one pool being built on another pool, we want
7222 * to make sure we don't end up throttling the lower (backing)
7223 * pool when the upper pool is the majority contributor to dirty
7224 * data. To insure we make forward progress during throttling, we
7225 * also check the current pool's net dirty data and only throttle
7226 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7227 * data in the cache.
7229 * Note: if two requests come in concurrently, we might let them
7230 * both succeed, when one of them should fail. Not a huge deal.
7232 uint64_t total_dirty
= reserve
+ arc_tempreserve
+ anon_size
;
7233 uint64_t spa_dirty_anon
= spa_dirty_data(spa
);
7234 uint64_t rarc_c
= arc_warm
? arc_c
: arc_c_max
;
7235 if (total_dirty
> rarc_c
* zfs_arc_dirty_limit_percent
/ 100 &&
7236 anon_size
> rarc_c
* zfs_arc_anon_limit_percent
/ 100 &&
7237 spa_dirty_anon
> anon_size
* zfs_arc_pool_dirty_percent
/ 100) {
7239 uint64_t meta_esize
= zfs_refcount_count(
7240 &arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7241 uint64_t data_esize
=
7242 zfs_refcount_count(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7243 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7244 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7245 (u_longlong_t
)arc_tempreserve
>> 10,
7246 (u_longlong_t
)meta_esize
>> 10,
7247 (u_longlong_t
)data_esize
>> 10,
7248 (u_longlong_t
)reserve
>> 10,
7249 (u_longlong_t
)rarc_c
>> 10);
7251 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle
);
7252 return (SET_ERROR(ERESTART
));
7254 atomic_add_64(&arc_tempreserve
, reserve
);
7259 arc_kstat_update_state(arc_state_t
*state
, kstat_named_t
*size
,
7260 kstat_named_t
*evict_data
, kstat_named_t
*evict_metadata
)
7262 size
->value
.ui64
= zfs_refcount_count(&state
->arcs_size
);
7263 evict_data
->value
.ui64
=
7264 zfs_refcount_count(&state
->arcs_esize
[ARC_BUFC_DATA
]);
7265 evict_metadata
->value
.ui64
=
7266 zfs_refcount_count(&state
->arcs_esize
[ARC_BUFC_METADATA
]);
7270 arc_kstat_update(kstat_t
*ksp
, int rw
)
7272 arc_stats_t
*as
= ksp
->ks_data
;
7274 if (rw
== KSTAT_WRITE
)
7275 return (SET_ERROR(EACCES
));
7277 as
->arcstat_hits
.value
.ui64
=
7278 wmsum_value(&arc_sums
.arcstat_hits
);
7279 as
->arcstat_iohits
.value
.ui64
=
7280 wmsum_value(&arc_sums
.arcstat_iohits
);
7281 as
->arcstat_misses
.value
.ui64
=
7282 wmsum_value(&arc_sums
.arcstat_misses
);
7283 as
->arcstat_demand_data_hits
.value
.ui64
=
7284 wmsum_value(&arc_sums
.arcstat_demand_data_hits
);
7285 as
->arcstat_demand_data_iohits
.value
.ui64
=
7286 wmsum_value(&arc_sums
.arcstat_demand_data_iohits
);
7287 as
->arcstat_demand_data_misses
.value
.ui64
=
7288 wmsum_value(&arc_sums
.arcstat_demand_data_misses
);
7289 as
->arcstat_demand_metadata_hits
.value
.ui64
=
7290 wmsum_value(&arc_sums
.arcstat_demand_metadata_hits
);
7291 as
->arcstat_demand_metadata_iohits
.value
.ui64
=
7292 wmsum_value(&arc_sums
.arcstat_demand_metadata_iohits
);
7293 as
->arcstat_demand_metadata_misses
.value
.ui64
=
7294 wmsum_value(&arc_sums
.arcstat_demand_metadata_misses
);
7295 as
->arcstat_prefetch_data_hits
.value
.ui64
=
7296 wmsum_value(&arc_sums
.arcstat_prefetch_data_hits
);
7297 as
->arcstat_prefetch_data_iohits
.value
.ui64
=
7298 wmsum_value(&arc_sums
.arcstat_prefetch_data_iohits
);
7299 as
->arcstat_prefetch_data_misses
.value
.ui64
=
7300 wmsum_value(&arc_sums
.arcstat_prefetch_data_misses
);
7301 as
->arcstat_prefetch_metadata_hits
.value
.ui64
=
7302 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_hits
);
7303 as
->arcstat_prefetch_metadata_iohits
.value
.ui64
=
7304 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_iohits
);
7305 as
->arcstat_prefetch_metadata_misses
.value
.ui64
=
7306 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_misses
);
7307 as
->arcstat_mru_hits
.value
.ui64
=
7308 wmsum_value(&arc_sums
.arcstat_mru_hits
);
7309 as
->arcstat_mru_ghost_hits
.value
.ui64
=
7310 wmsum_value(&arc_sums
.arcstat_mru_ghost_hits
);
7311 as
->arcstat_mfu_hits
.value
.ui64
=
7312 wmsum_value(&arc_sums
.arcstat_mfu_hits
);
7313 as
->arcstat_mfu_ghost_hits
.value
.ui64
=
7314 wmsum_value(&arc_sums
.arcstat_mfu_ghost_hits
);
7315 as
->arcstat_uncached_hits
.value
.ui64
=
7316 wmsum_value(&arc_sums
.arcstat_uncached_hits
);
7317 as
->arcstat_deleted
.value
.ui64
=
7318 wmsum_value(&arc_sums
.arcstat_deleted
);
7319 as
->arcstat_mutex_miss
.value
.ui64
=
7320 wmsum_value(&arc_sums
.arcstat_mutex_miss
);
7321 as
->arcstat_access_skip
.value
.ui64
=
7322 wmsum_value(&arc_sums
.arcstat_access_skip
);
7323 as
->arcstat_evict_skip
.value
.ui64
=
7324 wmsum_value(&arc_sums
.arcstat_evict_skip
);
7325 as
->arcstat_evict_not_enough
.value
.ui64
=
7326 wmsum_value(&arc_sums
.arcstat_evict_not_enough
);
7327 as
->arcstat_evict_l2_cached
.value
.ui64
=
7328 wmsum_value(&arc_sums
.arcstat_evict_l2_cached
);
7329 as
->arcstat_evict_l2_eligible
.value
.ui64
=
7330 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible
);
7331 as
->arcstat_evict_l2_eligible_mfu
.value
.ui64
=
7332 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible_mfu
);
7333 as
->arcstat_evict_l2_eligible_mru
.value
.ui64
=
7334 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible_mru
);
7335 as
->arcstat_evict_l2_ineligible
.value
.ui64
=
7336 wmsum_value(&arc_sums
.arcstat_evict_l2_ineligible
);
7337 as
->arcstat_evict_l2_skip
.value
.ui64
=
7338 wmsum_value(&arc_sums
.arcstat_evict_l2_skip
);
7339 as
->arcstat_hash_collisions
.value
.ui64
=
7340 wmsum_value(&arc_sums
.arcstat_hash_collisions
);
7341 as
->arcstat_hash_chains
.value
.ui64
=
7342 wmsum_value(&arc_sums
.arcstat_hash_chains
);
7343 as
->arcstat_size
.value
.ui64
=
7344 aggsum_value(&arc_sums
.arcstat_size
);
7345 as
->arcstat_compressed_size
.value
.ui64
=
7346 wmsum_value(&arc_sums
.arcstat_compressed_size
);
7347 as
->arcstat_uncompressed_size
.value
.ui64
=
7348 wmsum_value(&arc_sums
.arcstat_uncompressed_size
);
7349 as
->arcstat_overhead_size
.value
.ui64
=
7350 wmsum_value(&arc_sums
.arcstat_overhead_size
);
7351 as
->arcstat_hdr_size
.value
.ui64
=
7352 wmsum_value(&arc_sums
.arcstat_hdr_size
);
7353 as
->arcstat_data_size
.value
.ui64
=
7354 wmsum_value(&arc_sums
.arcstat_data_size
);
7355 as
->arcstat_metadata_size
.value
.ui64
=
7356 wmsum_value(&arc_sums
.arcstat_metadata_size
);
7357 as
->arcstat_dbuf_size
.value
.ui64
=
7358 wmsum_value(&arc_sums
.arcstat_dbuf_size
);
7359 #if defined(COMPAT_FREEBSD11)
7360 as
->arcstat_other_size
.value
.ui64
=
7361 wmsum_value(&arc_sums
.arcstat_bonus_size
) +
7362 aggsum_value(&arc_sums
.arcstat_dnode_size
) +
7363 wmsum_value(&arc_sums
.arcstat_dbuf_size
);
7366 arc_kstat_update_state(arc_anon
,
7367 &as
->arcstat_anon_size
,
7368 &as
->arcstat_anon_evictable_data
,
7369 &as
->arcstat_anon_evictable_metadata
);
7370 arc_kstat_update_state(arc_mru
,
7371 &as
->arcstat_mru_size
,
7372 &as
->arcstat_mru_evictable_data
,
7373 &as
->arcstat_mru_evictable_metadata
);
7374 arc_kstat_update_state(arc_mru_ghost
,
7375 &as
->arcstat_mru_ghost_size
,
7376 &as
->arcstat_mru_ghost_evictable_data
,
7377 &as
->arcstat_mru_ghost_evictable_metadata
);
7378 arc_kstat_update_state(arc_mfu
,
7379 &as
->arcstat_mfu_size
,
7380 &as
->arcstat_mfu_evictable_data
,
7381 &as
->arcstat_mfu_evictable_metadata
);
7382 arc_kstat_update_state(arc_mfu_ghost
,
7383 &as
->arcstat_mfu_ghost_size
,
7384 &as
->arcstat_mfu_ghost_evictable_data
,
7385 &as
->arcstat_mfu_ghost_evictable_metadata
);
7386 arc_kstat_update_state(arc_uncached
,
7387 &as
->arcstat_uncached_size
,
7388 &as
->arcstat_uncached_evictable_data
,
7389 &as
->arcstat_uncached_evictable_metadata
);
7391 as
->arcstat_dnode_size
.value
.ui64
=
7392 aggsum_value(&arc_sums
.arcstat_dnode_size
);
7393 as
->arcstat_bonus_size
.value
.ui64
=
7394 wmsum_value(&arc_sums
.arcstat_bonus_size
);
7395 as
->arcstat_l2_hits
.value
.ui64
=
7396 wmsum_value(&arc_sums
.arcstat_l2_hits
);
7397 as
->arcstat_l2_misses
.value
.ui64
=
7398 wmsum_value(&arc_sums
.arcstat_l2_misses
);
7399 as
->arcstat_l2_prefetch_asize
.value
.ui64
=
7400 wmsum_value(&arc_sums
.arcstat_l2_prefetch_asize
);
7401 as
->arcstat_l2_mru_asize
.value
.ui64
=
7402 wmsum_value(&arc_sums
.arcstat_l2_mru_asize
);
7403 as
->arcstat_l2_mfu_asize
.value
.ui64
=
7404 wmsum_value(&arc_sums
.arcstat_l2_mfu_asize
);
7405 as
->arcstat_l2_bufc_data_asize
.value
.ui64
=
7406 wmsum_value(&arc_sums
.arcstat_l2_bufc_data_asize
);
7407 as
->arcstat_l2_bufc_metadata_asize
.value
.ui64
=
7408 wmsum_value(&arc_sums
.arcstat_l2_bufc_metadata_asize
);
7409 as
->arcstat_l2_feeds
.value
.ui64
=
7410 wmsum_value(&arc_sums
.arcstat_l2_feeds
);
7411 as
->arcstat_l2_rw_clash
.value
.ui64
=
7412 wmsum_value(&arc_sums
.arcstat_l2_rw_clash
);
7413 as
->arcstat_l2_read_bytes
.value
.ui64
=
7414 wmsum_value(&arc_sums
.arcstat_l2_read_bytes
);
7415 as
->arcstat_l2_write_bytes
.value
.ui64
=
7416 wmsum_value(&arc_sums
.arcstat_l2_write_bytes
);
7417 as
->arcstat_l2_writes_sent
.value
.ui64
=
7418 wmsum_value(&arc_sums
.arcstat_l2_writes_sent
);
7419 as
->arcstat_l2_writes_done
.value
.ui64
=
7420 wmsum_value(&arc_sums
.arcstat_l2_writes_done
);
7421 as
->arcstat_l2_writes_error
.value
.ui64
=
7422 wmsum_value(&arc_sums
.arcstat_l2_writes_error
);
7423 as
->arcstat_l2_writes_lock_retry
.value
.ui64
=
7424 wmsum_value(&arc_sums
.arcstat_l2_writes_lock_retry
);
7425 as
->arcstat_l2_evict_lock_retry
.value
.ui64
=
7426 wmsum_value(&arc_sums
.arcstat_l2_evict_lock_retry
);
7427 as
->arcstat_l2_evict_reading
.value
.ui64
=
7428 wmsum_value(&arc_sums
.arcstat_l2_evict_reading
);
7429 as
->arcstat_l2_evict_l1cached
.value
.ui64
=
7430 wmsum_value(&arc_sums
.arcstat_l2_evict_l1cached
);
7431 as
->arcstat_l2_free_on_write
.value
.ui64
=
7432 wmsum_value(&arc_sums
.arcstat_l2_free_on_write
);
7433 as
->arcstat_l2_abort_lowmem
.value
.ui64
=
7434 wmsum_value(&arc_sums
.arcstat_l2_abort_lowmem
);
7435 as
->arcstat_l2_cksum_bad
.value
.ui64
=
7436 wmsum_value(&arc_sums
.arcstat_l2_cksum_bad
);
7437 as
->arcstat_l2_io_error
.value
.ui64
=
7438 wmsum_value(&arc_sums
.arcstat_l2_io_error
);
7439 as
->arcstat_l2_lsize
.value
.ui64
=
7440 wmsum_value(&arc_sums
.arcstat_l2_lsize
);
7441 as
->arcstat_l2_psize
.value
.ui64
=
7442 wmsum_value(&arc_sums
.arcstat_l2_psize
);
7443 as
->arcstat_l2_hdr_size
.value
.ui64
=
7444 aggsum_value(&arc_sums
.arcstat_l2_hdr_size
);
7445 as
->arcstat_l2_log_blk_writes
.value
.ui64
=
7446 wmsum_value(&arc_sums
.arcstat_l2_log_blk_writes
);
7447 as
->arcstat_l2_log_blk_asize
.value
.ui64
=
7448 wmsum_value(&arc_sums
.arcstat_l2_log_blk_asize
);
7449 as
->arcstat_l2_log_blk_count
.value
.ui64
=
7450 wmsum_value(&arc_sums
.arcstat_l2_log_blk_count
);
7451 as
->arcstat_l2_rebuild_success
.value
.ui64
=
7452 wmsum_value(&arc_sums
.arcstat_l2_rebuild_success
);
7453 as
->arcstat_l2_rebuild_abort_unsupported
.value
.ui64
=
7454 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
);
7455 as
->arcstat_l2_rebuild_abort_io_errors
.value
.ui64
=
7456 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
);
7457 as
->arcstat_l2_rebuild_abort_dh_errors
.value
.ui64
=
7458 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
);
7459 as
->arcstat_l2_rebuild_abort_cksum_lb_errors
.value
.ui64
=
7460 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
);
7461 as
->arcstat_l2_rebuild_abort_lowmem
.value
.ui64
=
7462 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
);
7463 as
->arcstat_l2_rebuild_size
.value
.ui64
=
7464 wmsum_value(&arc_sums
.arcstat_l2_rebuild_size
);
7465 as
->arcstat_l2_rebuild_asize
.value
.ui64
=
7466 wmsum_value(&arc_sums
.arcstat_l2_rebuild_asize
);
7467 as
->arcstat_l2_rebuild_bufs
.value
.ui64
=
7468 wmsum_value(&arc_sums
.arcstat_l2_rebuild_bufs
);
7469 as
->arcstat_l2_rebuild_bufs_precached
.value
.ui64
=
7470 wmsum_value(&arc_sums
.arcstat_l2_rebuild_bufs_precached
);
7471 as
->arcstat_l2_rebuild_log_blks
.value
.ui64
=
7472 wmsum_value(&arc_sums
.arcstat_l2_rebuild_log_blks
);
7473 as
->arcstat_memory_throttle_count
.value
.ui64
=
7474 wmsum_value(&arc_sums
.arcstat_memory_throttle_count
);
7475 as
->arcstat_memory_direct_count
.value
.ui64
=
7476 wmsum_value(&arc_sums
.arcstat_memory_direct_count
);
7477 as
->arcstat_memory_indirect_count
.value
.ui64
=
7478 wmsum_value(&arc_sums
.arcstat_memory_indirect_count
);
7480 as
->arcstat_memory_all_bytes
.value
.ui64
=
7482 as
->arcstat_memory_free_bytes
.value
.ui64
=
7484 as
->arcstat_memory_available_bytes
.value
.i64
=
7485 arc_available_memory();
7487 as
->arcstat_prune
.value
.ui64
=
7488 wmsum_value(&arc_sums
.arcstat_prune
);
7489 as
->arcstat_meta_used
.value
.ui64
=
7490 aggsum_value(&arc_sums
.arcstat_meta_used
);
7491 as
->arcstat_async_upgrade_sync
.value
.ui64
=
7492 wmsum_value(&arc_sums
.arcstat_async_upgrade_sync
);
7493 as
->arcstat_predictive_prefetch
.value
.ui64
=
7494 wmsum_value(&arc_sums
.arcstat_predictive_prefetch
);
7495 as
->arcstat_demand_hit_predictive_prefetch
.value
.ui64
=
7496 wmsum_value(&arc_sums
.arcstat_demand_hit_predictive_prefetch
);
7497 as
->arcstat_demand_iohit_predictive_prefetch
.value
.ui64
=
7498 wmsum_value(&arc_sums
.arcstat_demand_iohit_predictive_prefetch
);
7499 as
->arcstat_prescient_prefetch
.value
.ui64
=
7500 wmsum_value(&arc_sums
.arcstat_prescient_prefetch
);
7501 as
->arcstat_demand_hit_prescient_prefetch
.value
.ui64
=
7502 wmsum_value(&arc_sums
.arcstat_demand_hit_prescient_prefetch
);
7503 as
->arcstat_demand_iohit_prescient_prefetch
.value
.ui64
=
7504 wmsum_value(&arc_sums
.arcstat_demand_iohit_prescient_prefetch
);
7505 as
->arcstat_raw_size
.value
.ui64
=
7506 wmsum_value(&arc_sums
.arcstat_raw_size
);
7507 as
->arcstat_cached_only_in_progress
.value
.ui64
=
7508 wmsum_value(&arc_sums
.arcstat_cached_only_in_progress
);
7509 as
->arcstat_abd_chunk_waste_size
.value
.ui64
=
7510 wmsum_value(&arc_sums
.arcstat_abd_chunk_waste_size
);
7516 * This function *must* return indices evenly distributed between all
7517 * sublists of the multilist. This is needed due to how the ARC eviction
7518 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7519 * distributed between all sublists and uses this assumption when
7520 * deciding which sublist to evict from and how much to evict from it.
7523 arc_state_multilist_index_func(multilist_t
*ml
, void *obj
)
7525 arc_buf_hdr_t
*hdr
= obj
;
7528 * We rely on b_dva to generate evenly distributed index
7529 * numbers using buf_hash below. So, as an added precaution,
7530 * let's make sure we never add empty buffers to the arc lists.
7532 ASSERT(!HDR_EMPTY(hdr
));
7535 * The assumption here, is the hash value for a given
7536 * arc_buf_hdr_t will remain constant throughout its lifetime
7537 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7538 * Thus, we don't need to store the header's sublist index
7539 * on insertion, as this index can be recalculated on removal.
7541 * Also, the low order bits of the hash value are thought to be
7542 * distributed evenly. Otherwise, in the case that the multilist
7543 * has a power of two number of sublists, each sublists' usage
7544 * would not be evenly distributed. In this context full 64bit
7545 * division would be a waste of time, so limit it to 32 bits.
7547 return ((unsigned int)buf_hash(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
) %
7548 multilist_get_num_sublists(ml
));
7552 arc_state_l2c_multilist_index_func(multilist_t
*ml
, void *obj
)
7554 panic("Header %p insert into arc_l2c_only %p", obj
, ml
);
7557 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7558 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7560 "ignoring tunable %s (using %llu instead)", \
7561 (#tuning), (u_longlong_t)(value)); \
7566 * Called during module initialization and periodically thereafter to
7567 * apply reasonable changes to the exposed performance tunings. Can also be
7568 * called explicitly by param_set_arc_*() functions when ARC tunables are
7569 * updated manually. Non-zero zfs_* values which differ from the currently set
7570 * values will be applied.
7573 arc_tuning_update(boolean_t verbose
)
7575 uint64_t allmem
= arc_all_memory();
7576 unsigned long limit
;
7578 /* Valid range: 32M - <arc_c_max> */
7579 if ((zfs_arc_min
) && (zfs_arc_min
!= arc_c_min
) &&
7580 (zfs_arc_min
>= 2ULL << SPA_MAXBLOCKSHIFT
) &&
7581 (zfs_arc_min
<= arc_c_max
)) {
7582 arc_c_min
= zfs_arc_min
;
7583 arc_c
= MAX(arc_c
, arc_c_min
);
7585 WARN_IF_TUNING_IGNORED(zfs_arc_min
, arc_c_min
, verbose
);
7587 /* Valid range: 64M - <all physical memory> */
7588 if ((zfs_arc_max
) && (zfs_arc_max
!= arc_c_max
) &&
7589 (zfs_arc_max
>= MIN_ARC_MAX
) && (zfs_arc_max
< allmem
) &&
7590 (zfs_arc_max
> arc_c_min
)) {
7591 arc_c_max
= zfs_arc_max
;
7592 arc_c
= MIN(arc_c
, arc_c_max
);
7593 arc_p
= (arc_c
>> 1);
7594 if (arc_meta_limit
> arc_c_max
)
7595 arc_meta_limit
= arc_c_max
;
7596 if (arc_dnode_size_limit
> arc_meta_limit
)
7597 arc_dnode_size_limit
= arc_meta_limit
;
7599 WARN_IF_TUNING_IGNORED(zfs_arc_max
, arc_c_max
, verbose
);
7601 /* Valid range: 16M - <arc_c_max> */
7602 if ((zfs_arc_meta_min
) && (zfs_arc_meta_min
!= arc_meta_min
) &&
7603 (zfs_arc_meta_min
>= 1ULL << SPA_MAXBLOCKSHIFT
) &&
7604 (zfs_arc_meta_min
<= arc_c_max
)) {
7605 arc_meta_min
= zfs_arc_meta_min
;
7606 if (arc_meta_limit
< arc_meta_min
)
7607 arc_meta_limit
= arc_meta_min
;
7608 if (arc_dnode_size_limit
< arc_meta_min
)
7609 arc_dnode_size_limit
= arc_meta_min
;
7611 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min
, arc_meta_min
, verbose
);
7613 /* Valid range: <arc_meta_min> - <arc_c_max> */
7614 limit
= zfs_arc_meta_limit
? zfs_arc_meta_limit
:
7615 MIN(zfs_arc_meta_limit_percent
, 100) * arc_c_max
/ 100;
7616 if ((limit
!= arc_meta_limit
) &&
7617 (limit
>= arc_meta_min
) &&
7618 (limit
<= arc_c_max
))
7619 arc_meta_limit
= limit
;
7620 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit
, arc_meta_limit
, verbose
);
7622 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7623 limit
= zfs_arc_dnode_limit
? zfs_arc_dnode_limit
:
7624 MIN(zfs_arc_dnode_limit_percent
, 100) * arc_meta_limit
/ 100;
7625 if ((limit
!= arc_dnode_size_limit
) &&
7626 (limit
>= arc_meta_min
) &&
7627 (limit
<= arc_meta_limit
))
7628 arc_dnode_size_limit
= limit
;
7629 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit
, arc_dnode_size_limit
,
7632 /* Valid range: 1 - N */
7633 if (zfs_arc_grow_retry
)
7634 arc_grow_retry
= zfs_arc_grow_retry
;
7636 /* Valid range: 1 - N */
7637 if (zfs_arc_shrink_shift
) {
7638 arc_shrink_shift
= zfs_arc_shrink_shift
;
7639 arc_no_grow_shift
= MIN(arc_no_grow_shift
, arc_shrink_shift
-1);
7642 /* Valid range: 1 - N */
7643 if (zfs_arc_p_min_shift
)
7644 arc_p_min_shift
= zfs_arc_p_min_shift
;
7646 /* Valid range: 1 - N ms */
7647 if (zfs_arc_min_prefetch_ms
)
7648 arc_min_prefetch_ms
= zfs_arc_min_prefetch_ms
;
7650 /* Valid range: 1 - N ms */
7651 if (zfs_arc_min_prescient_prefetch_ms
) {
7652 arc_min_prescient_prefetch_ms
=
7653 zfs_arc_min_prescient_prefetch_ms
;
7656 /* Valid range: 0 - 100 */
7657 if (zfs_arc_lotsfree_percent
<= 100)
7658 arc_lotsfree_percent
= zfs_arc_lotsfree_percent
;
7659 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent
, arc_lotsfree_percent
,
7662 /* Valid range: 0 - <all physical memory> */
7663 if ((zfs_arc_sys_free
) && (zfs_arc_sys_free
!= arc_sys_free
))
7664 arc_sys_free
= MIN(zfs_arc_sys_free
, allmem
);
7665 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free
, arc_sys_free
, verbose
);
7669 arc_state_multilist_init(multilist_t
*ml
,
7670 multilist_sublist_index_func_t
*index_func
, int *maxcountp
)
7672 multilist_create(ml
, sizeof (arc_buf_hdr_t
),
7673 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
), index_func
);
7674 *maxcountp
= MAX(*maxcountp
, multilist_get_num_sublists(ml
));
7678 arc_state_init(void)
7680 int num_sublists
= 0;
7682 arc_state_multilist_init(&arc_mru
->arcs_list
[ARC_BUFC_METADATA
],
7683 arc_state_multilist_index_func
, &num_sublists
);
7684 arc_state_multilist_init(&arc_mru
->arcs_list
[ARC_BUFC_DATA
],
7685 arc_state_multilist_index_func
, &num_sublists
);
7686 arc_state_multilist_init(&arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
],
7687 arc_state_multilist_index_func
, &num_sublists
);
7688 arc_state_multilist_init(&arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
],
7689 arc_state_multilist_index_func
, &num_sublists
);
7690 arc_state_multilist_init(&arc_mfu
->arcs_list
[ARC_BUFC_METADATA
],
7691 arc_state_multilist_index_func
, &num_sublists
);
7692 arc_state_multilist_init(&arc_mfu
->arcs_list
[ARC_BUFC_DATA
],
7693 arc_state_multilist_index_func
, &num_sublists
);
7694 arc_state_multilist_init(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
],
7695 arc_state_multilist_index_func
, &num_sublists
);
7696 arc_state_multilist_init(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
],
7697 arc_state_multilist_index_func
, &num_sublists
);
7698 arc_state_multilist_init(&arc_uncached
->arcs_list
[ARC_BUFC_METADATA
],
7699 arc_state_multilist_index_func
, &num_sublists
);
7700 arc_state_multilist_init(&arc_uncached
->arcs_list
[ARC_BUFC_DATA
],
7701 arc_state_multilist_index_func
, &num_sublists
);
7704 * L2 headers should never be on the L2 state list since they don't
7705 * have L1 headers allocated. Special index function asserts that.
7707 arc_state_multilist_init(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
],
7708 arc_state_l2c_multilist_index_func
, &num_sublists
);
7709 arc_state_multilist_init(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
],
7710 arc_state_l2c_multilist_index_func
, &num_sublists
);
7713 * Keep track of the number of markers needed to reclaim buffers from
7714 * any ARC state. The markers will be pre-allocated so as to minimize
7715 * the number of memory allocations performed by the eviction thread.
7717 arc_state_evict_marker_count
= num_sublists
;
7719 zfs_refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7720 zfs_refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7721 zfs_refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7722 zfs_refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7723 zfs_refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7724 zfs_refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7725 zfs_refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7726 zfs_refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7727 zfs_refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7728 zfs_refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7729 zfs_refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7730 zfs_refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7731 zfs_refcount_create(&arc_uncached
->arcs_esize
[ARC_BUFC_METADATA
]);
7732 zfs_refcount_create(&arc_uncached
->arcs_esize
[ARC_BUFC_DATA
]);
7734 zfs_refcount_create(&arc_anon
->arcs_size
);
7735 zfs_refcount_create(&arc_mru
->arcs_size
);
7736 zfs_refcount_create(&arc_mru_ghost
->arcs_size
);
7737 zfs_refcount_create(&arc_mfu
->arcs_size
);
7738 zfs_refcount_create(&arc_mfu_ghost
->arcs_size
);
7739 zfs_refcount_create(&arc_l2c_only
->arcs_size
);
7740 zfs_refcount_create(&arc_uncached
->arcs_size
);
7742 wmsum_init(&arc_sums
.arcstat_hits
, 0);
7743 wmsum_init(&arc_sums
.arcstat_iohits
, 0);
7744 wmsum_init(&arc_sums
.arcstat_misses
, 0);
7745 wmsum_init(&arc_sums
.arcstat_demand_data_hits
, 0);
7746 wmsum_init(&arc_sums
.arcstat_demand_data_iohits
, 0);
7747 wmsum_init(&arc_sums
.arcstat_demand_data_misses
, 0);
7748 wmsum_init(&arc_sums
.arcstat_demand_metadata_hits
, 0);
7749 wmsum_init(&arc_sums
.arcstat_demand_metadata_iohits
, 0);
7750 wmsum_init(&arc_sums
.arcstat_demand_metadata_misses
, 0);
7751 wmsum_init(&arc_sums
.arcstat_prefetch_data_hits
, 0);
7752 wmsum_init(&arc_sums
.arcstat_prefetch_data_iohits
, 0);
7753 wmsum_init(&arc_sums
.arcstat_prefetch_data_misses
, 0);
7754 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_hits
, 0);
7755 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_iohits
, 0);
7756 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_misses
, 0);
7757 wmsum_init(&arc_sums
.arcstat_mru_hits
, 0);
7758 wmsum_init(&arc_sums
.arcstat_mru_ghost_hits
, 0);
7759 wmsum_init(&arc_sums
.arcstat_mfu_hits
, 0);
7760 wmsum_init(&arc_sums
.arcstat_mfu_ghost_hits
, 0);
7761 wmsum_init(&arc_sums
.arcstat_uncached_hits
, 0);
7762 wmsum_init(&arc_sums
.arcstat_deleted
, 0);
7763 wmsum_init(&arc_sums
.arcstat_mutex_miss
, 0);
7764 wmsum_init(&arc_sums
.arcstat_access_skip
, 0);
7765 wmsum_init(&arc_sums
.arcstat_evict_skip
, 0);
7766 wmsum_init(&arc_sums
.arcstat_evict_not_enough
, 0);
7767 wmsum_init(&arc_sums
.arcstat_evict_l2_cached
, 0);
7768 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible
, 0);
7769 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible_mfu
, 0);
7770 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible_mru
, 0);
7771 wmsum_init(&arc_sums
.arcstat_evict_l2_ineligible
, 0);
7772 wmsum_init(&arc_sums
.arcstat_evict_l2_skip
, 0);
7773 wmsum_init(&arc_sums
.arcstat_hash_collisions
, 0);
7774 wmsum_init(&arc_sums
.arcstat_hash_chains
, 0);
7775 aggsum_init(&arc_sums
.arcstat_size
, 0);
7776 wmsum_init(&arc_sums
.arcstat_compressed_size
, 0);
7777 wmsum_init(&arc_sums
.arcstat_uncompressed_size
, 0);
7778 wmsum_init(&arc_sums
.arcstat_overhead_size
, 0);
7779 wmsum_init(&arc_sums
.arcstat_hdr_size
, 0);
7780 wmsum_init(&arc_sums
.arcstat_data_size
, 0);
7781 wmsum_init(&arc_sums
.arcstat_metadata_size
, 0);
7782 wmsum_init(&arc_sums
.arcstat_dbuf_size
, 0);
7783 aggsum_init(&arc_sums
.arcstat_dnode_size
, 0);
7784 wmsum_init(&arc_sums
.arcstat_bonus_size
, 0);
7785 wmsum_init(&arc_sums
.arcstat_l2_hits
, 0);
7786 wmsum_init(&arc_sums
.arcstat_l2_misses
, 0);
7787 wmsum_init(&arc_sums
.arcstat_l2_prefetch_asize
, 0);
7788 wmsum_init(&arc_sums
.arcstat_l2_mru_asize
, 0);
7789 wmsum_init(&arc_sums
.arcstat_l2_mfu_asize
, 0);
7790 wmsum_init(&arc_sums
.arcstat_l2_bufc_data_asize
, 0);
7791 wmsum_init(&arc_sums
.arcstat_l2_bufc_metadata_asize
, 0);
7792 wmsum_init(&arc_sums
.arcstat_l2_feeds
, 0);
7793 wmsum_init(&arc_sums
.arcstat_l2_rw_clash
, 0);
7794 wmsum_init(&arc_sums
.arcstat_l2_read_bytes
, 0);
7795 wmsum_init(&arc_sums
.arcstat_l2_write_bytes
, 0);
7796 wmsum_init(&arc_sums
.arcstat_l2_writes_sent
, 0);
7797 wmsum_init(&arc_sums
.arcstat_l2_writes_done
, 0);
7798 wmsum_init(&arc_sums
.arcstat_l2_writes_error
, 0);
7799 wmsum_init(&arc_sums
.arcstat_l2_writes_lock_retry
, 0);
7800 wmsum_init(&arc_sums
.arcstat_l2_evict_lock_retry
, 0);
7801 wmsum_init(&arc_sums
.arcstat_l2_evict_reading
, 0);
7802 wmsum_init(&arc_sums
.arcstat_l2_evict_l1cached
, 0);
7803 wmsum_init(&arc_sums
.arcstat_l2_free_on_write
, 0);
7804 wmsum_init(&arc_sums
.arcstat_l2_abort_lowmem
, 0);
7805 wmsum_init(&arc_sums
.arcstat_l2_cksum_bad
, 0);
7806 wmsum_init(&arc_sums
.arcstat_l2_io_error
, 0);
7807 wmsum_init(&arc_sums
.arcstat_l2_lsize
, 0);
7808 wmsum_init(&arc_sums
.arcstat_l2_psize
, 0);
7809 aggsum_init(&arc_sums
.arcstat_l2_hdr_size
, 0);
7810 wmsum_init(&arc_sums
.arcstat_l2_log_blk_writes
, 0);
7811 wmsum_init(&arc_sums
.arcstat_l2_log_blk_asize
, 0);
7812 wmsum_init(&arc_sums
.arcstat_l2_log_blk_count
, 0);
7813 wmsum_init(&arc_sums
.arcstat_l2_rebuild_success
, 0);
7814 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
, 0);
7815 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
, 0);
7816 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
, 0);
7817 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
, 0);
7818 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
, 0);
7819 wmsum_init(&arc_sums
.arcstat_l2_rebuild_size
, 0);
7820 wmsum_init(&arc_sums
.arcstat_l2_rebuild_asize
, 0);
7821 wmsum_init(&arc_sums
.arcstat_l2_rebuild_bufs
, 0);
7822 wmsum_init(&arc_sums
.arcstat_l2_rebuild_bufs_precached
, 0);
7823 wmsum_init(&arc_sums
.arcstat_l2_rebuild_log_blks
, 0);
7824 wmsum_init(&arc_sums
.arcstat_memory_throttle_count
, 0);
7825 wmsum_init(&arc_sums
.arcstat_memory_direct_count
, 0);
7826 wmsum_init(&arc_sums
.arcstat_memory_indirect_count
, 0);
7827 wmsum_init(&arc_sums
.arcstat_prune
, 0);
7828 aggsum_init(&arc_sums
.arcstat_meta_used
, 0);
7829 wmsum_init(&arc_sums
.arcstat_async_upgrade_sync
, 0);
7830 wmsum_init(&arc_sums
.arcstat_predictive_prefetch
, 0);
7831 wmsum_init(&arc_sums
.arcstat_demand_hit_predictive_prefetch
, 0);
7832 wmsum_init(&arc_sums
.arcstat_demand_iohit_predictive_prefetch
, 0);
7833 wmsum_init(&arc_sums
.arcstat_prescient_prefetch
, 0);
7834 wmsum_init(&arc_sums
.arcstat_demand_hit_prescient_prefetch
, 0);
7835 wmsum_init(&arc_sums
.arcstat_demand_iohit_prescient_prefetch
, 0);
7836 wmsum_init(&arc_sums
.arcstat_raw_size
, 0);
7837 wmsum_init(&arc_sums
.arcstat_cached_only_in_progress
, 0);
7838 wmsum_init(&arc_sums
.arcstat_abd_chunk_waste_size
, 0);
7840 arc_anon
->arcs_state
= ARC_STATE_ANON
;
7841 arc_mru
->arcs_state
= ARC_STATE_MRU
;
7842 arc_mru_ghost
->arcs_state
= ARC_STATE_MRU_GHOST
;
7843 arc_mfu
->arcs_state
= ARC_STATE_MFU
;
7844 arc_mfu_ghost
->arcs_state
= ARC_STATE_MFU_GHOST
;
7845 arc_l2c_only
->arcs_state
= ARC_STATE_L2C_ONLY
;
7846 arc_uncached
->arcs_state
= ARC_STATE_UNCACHED
;
7850 arc_state_fini(void)
7852 zfs_refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7853 zfs_refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7854 zfs_refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7855 zfs_refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7856 zfs_refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7857 zfs_refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7858 zfs_refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7859 zfs_refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7860 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7861 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7862 zfs_refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7863 zfs_refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7864 zfs_refcount_destroy(&arc_uncached
->arcs_esize
[ARC_BUFC_METADATA
]);
7865 zfs_refcount_destroy(&arc_uncached
->arcs_esize
[ARC_BUFC_DATA
]);
7867 zfs_refcount_destroy(&arc_anon
->arcs_size
);
7868 zfs_refcount_destroy(&arc_mru
->arcs_size
);
7869 zfs_refcount_destroy(&arc_mru_ghost
->arcs_size
);
7870 zfs_refcount_destroy(&arc_mfu
->arcs_size
);
7871 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_size
);
7872 zfs_refcount_destroy(&arc_l2c_only
->arcs_size
);
7873 zfs_refcount_destroy(&arc_uncached
->arcs_size
);
7875 multilist_destroy(&arc_mru
->arcs_list
[ARC_BUFC_METADATA
]);
7876 multilist_destroy(&arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7877 multilist_destroy(&arc_mfu
->arcs_list
[ARC_BUFC_METADATA
]);
7878 multilist_destroy(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7879 multilist_destroy(&arc_mru
->arcs_list
[ARC_BUFC_DATA
]);
7880 multilist_destroy(&arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7881 multilist_destroy(&arc_mfu
->arcs_list
[ARC_BUFC_DATA
]);
7882 multilist_destroy(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7883 multilist_destroy(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
]);
7884 multilist_destroy(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
]);
7885 multilist_destroy(&arc_uncached
->arcs_list
[ARC_BUFC_METADATA
]);
7886 multilist_destroy(&arc_uncached
->arcs_list
[ARC_BUFC_DATA
]);
7888 wmsum_fini(&arc_sums
.arcstat_hits
);
7889 wmsum_fini(&arc_sums
.arcstat_iohits
);
7890 wmsum_fini(&arc_sums
.arcstat_misses
);
7891 wmsum_fini(&arc_sums
.arcstat_demand_data_hits
);
7892 wmsum_fini(&arc_sums
.arcstat_demand_data_iohits
);
7893 wmsum_fini(&arc_sums
.arcstat_demand_data_misses
);
7894 wmsum_fini(&arc_sums
.arcstat_demand_metadata_hits
);
7895 wmsum_fini(&arc_sums
.arcstat_demand_metadata_iohits
);
7896 wmsum_fini(&arc_sums
.arcstat_demand_metadata_misses
);
7897 wmsum_fini(&arc_sums
.arcstat_prefetch_data_hits
);
7898 wmsum_fini(&arc_sums
.arcstat_prefetch_data_iohits
);
7899 wmsum_fini(&arc_sums
.arcstat_prefetch_data_misses
);
7900 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_hits
);
7901 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_iohits
);
7902 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_misses
);
7903 wmsum_fini(&arc_sums
.arcstat_mru_hits
);
7904 wmsum_fini(&arc_sums
.arcstat_mru_ghost_hits
);
7905 wmsum_fini(&arc_sums
.arcstat_mfu_hits
);
7906 wmsum_fini(&arc_sums
.arcstat_mfu_ghost_hits
);
7907 wmsum_fini(&arc_sums
.arcstat_uncached_hits
);
7908 wmsum_fini(&arc_sums
.arcstat_deleted
);
7909 wmsum_fini(&arc_sums
.arcstat_mutex_miss
);
7910 wmsum_fini(&arc_sums
.arcstat_access_skip
);
7911 wmsum_fini(&arc_sums
.arcstat_evict_skip
);
7912 wmsum_fini(&arc_sums
.arcstat_evict_not_enough
);
7913 wmsum_fini(&arc_sums
.arcstat_evict_l2_cached
);
7914 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible
);
7915 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible_mfu
);
7916 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible_mru
);
7917 wmsum_fini(&arc_sums
.arcstat_evict_l2_ineligible
);
7918 wmsum_fini(&arc_sums
.arcstat_evict_l2_skip
);
7919 wmsum_fini(&arc_sums
.arcstat_hash_collisions
);
7920 wmsum_fini(&arc_sums
.arcstat_hash_chains
);
7921 aggsum_fini(&arc_sums
.arcstat_size
);
7922 wmsum_fini(&arc_sums
.arcstat_compressed_size
);
7923 wmsum_fini(&arc_sums
.arcstat_uncompressed_size
);
7924 wmsum_fini(&arc_sums
.arcstat_overhead_size
);
7925 wmsum_fini(&arc_sums
.arcstat_hdr_size
);
7926 wmsum_fini(&arc_sums
.arcstat_data_size
);
7927 wmsum_fini(&arc_sums
.arcstat_metadata_size
);
7928 wmsum_fini(&arc_sums
.arcstat_dbuf_size
);
7929 aggsum_fini(&arc_sums
.arcstat_dnode_size
);
7930 wmsum_fini(&arc_sums
.arcstat_bonus_size
);
7931 wmsum_fini(&arc_sums
.arcstat_l2_hits
);
7932 wmsum_fini(&arc_sums
.arcstat_l2_misses
);
7933 wmsum_fini(&arc_sums
.arcstat_l2_prefetch_asize
);
7934 wmsum_fini(&arc_sums
.arcstat_l2_mru_asize
);
7935 wmsum_fini(&arc_sums
.arcstat_l2_mfu_asize
);
7936 wmsum_fini(&arc_sums
.arcstat_l2_bufc_data_asize
);
7937 wmsum_fini(&arc_sums
.arcstat_l2_bufc_metadata_asize
);
7938 wmsum_fini(&arc_sums
.arcstat_l2_feeds
);
7939 wmsum_fini(&arc_sums
.arcstat_l2_rw_clash
);
7940 wmsum_fini(&arc_sums
.arcstat_l2_read_bytes
);
7941 wmsum_fini(&arc_sums
.arcstat_l2_write_bytes
);
7942 wmsum_fini(&arc_sums
.arcstat_l2_writes_sent
);
7943 wmsum_fini(&arc_sums
.arcstat_l2_writes_done
);
7944 wmsum_fini(&arc_sums
.arcstat_l2_writes_error
);
7945 wmsum_fini(&arc_sums
.arcstat_l2_writes_lock_retry
);
7946 wmsum_fini(&arc_sums
.arcstat_l2_evict_lock_retry
);
7947 wmsum_fini(&arc_sums
.arcstat_l2_evict_reading
);
7948 wmsum_fini(&arc_sums
.arcstat_l2_evict_l1cached
);
7949 wmsum_fini(&arc_sums
.arcstat_l2_free_on_write
);
7950 wmsum_fini(&arc_sums
.arcstat_l2_abort_lowmem
);
7951 wmsum_fini(&arc_sums
.arcstat_l2_cksum_bad
);
7952 wmsum_fini(&arc_sums
.arcstat_l2_io_error
);
7953 wmsum_fini(&arc_sums
.arcstat_l2_lsize
);
7954 wmsum_fini(&arc_sums
.arcstat_l2_psize
);
7955 aggsum_fini(&arc_sums
.arcstat_l2_hdr_size
);
7956 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_writes
);
7957 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_asize
);
7958 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_count
);
7959 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_success
);
7960 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
);
7961 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
);
7962 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
);
7963 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
);
7964 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
);
7965 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_size
);
7966 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_asize
);
7967 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_bufs
);
7968 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_bufs_precached
);
7969 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_log_blks
);
7970 wmsum_fini(&arc_sums
.arcstat_memory_throttle_count
);
7971 wmsum_fini(&arc_sums
.arcstat_memory_direct_count
);
7972 wmsum_fini(&arc_sums
.arcstat_memory_indirect_count
);
7973 wmsum_fini(&arc_sums
.arcstat_prune
);
7974 aggsum_fini(&arc_sums
.arcstat_meta_used
);
7975 wmsum_fini(&arc_sums
.arcstat_async_upgrade_sync
);
7976 wmsum_fini(&arc_sums
.arcstat_predictive_prefetch
);
7977 wmsum_fini(&arc_sums
.arcstat_demand_hit_predictive_prefetch
);
7978 wmsum_fini(&arc_sums
.arcstat_demand_iohit_predictive_prefetch
);
7979 wmsum_fini(&arc_sums
.arcstat_prescient_prefetch
);
7980 wmsum_fini(&arc_sums
.arcstat_demand_hit_prescient_prefetch
);
7981 wmsum_fini(&arc_sums
.arcstat_demand_iohit_prescient_prefetch
);
7982 wmsum_fini(&arc_sums
.arcstat_raw_size
);
7983 wmsum_fini(&arc_sums
.arcstat_cached_only_in_progress
);
7984 wmsum_fini(&arc_sums
.arcstat_abd_chunk_waste_size
);
7988 arc_target_bytes(void)
7994 arc_set_limits(uint64_t allmem
)
7996 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7997 arc_c_min
= MAX(allmem
/ 32, 2ULL << SPA_MAXBLOCKSHIFT
);
7999 /* How to set default max varies by platform. */
8000 arc_c_max
= arc_default_max(arc_c_min
, allmem
);
8005 uint64_t percent
, allmem
= arc_all_memory();
8006 mutex_init(&arc_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
8007 list_create(&arc_evict_waiters
, sizeof (arc_evict_waiter_t
),
8008 offsetof(arc_evict_waiter_t
, aew_node
));
8010 arc_min_prefetch_ms
= 1000;
8011 arc_min_prescient_prefetch_ms
= 6000;
8013 #if defined(_KERNEL)
8017 arc_set_limits(allmem
);
8021 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
8022 * environment before the module was loaded, don't block setting the
8023 * maximum because it is less than arc_c_min, instead, reset arc_c_min
8025 * zfs_arc_min will be handled by arc_tuning_update().
8027 if (zfs_arc_max
!= 0 && zfs_arc_max
>= MIN_ARC_MAX
&&
8028 zfs_arc_max
< allmem
) {
8029 arc_c_max
= zfs_arc_max
;
8030 if (arc_c_min
>= arc_c_max
) {
8031 arc_c_min
= MAX(zfs_arc_max
/ 2,
8032 2ULL << SPA_MAXBLOCKSHIFT
);
8037 * In userland, there's only the memory pressure that we artificially
8038 * create (see arc_available_memory()). Don't let arc_c get too
8039 * small, because it can cause transactions to be larger than
8040 * arc_c, causing arc_tempreserve_space() to fail.
8042 arc_c_min
= MAX(arc_c_max
/ 2, 2ULL << SPA_MAXBLOCKSHIFT
);
8046 arc_p
= (arc_c
>> 1);
8048 /* Set min to 1/2 of arc_c_min */
8049 arc_meta_min
= 1ULL << SPA_MAXBLOCKSHIFT
;
8051 * Set arc_meta_limit to a percent of arc_c_max with a floor of
8052 * arc_meta_min, and a ceiling of arc_c_max.
8054 percent
= MIN(zfs_arc_meta_limit_percent
, 100);
8055 arc_meta_limit
= MAX(arc_meta_min
, (percent
* arc_c_max
) / 100);
8056 percent
= MIN(zfs_arc_dnode_limit_percent
, 100);
8057 arc_dnode_size_limit
= (percent
* arc_meta_limit
) / 100;
8059 /* Apply user specified tunings */
8060 arc_tuning_update(B_TRUE
);
8062 /* if kmem_flags are set, lets try to use less memory */
8063 if (kmem_debugging())
8065 if (arc_c
< arc_c_min
)
8068 arc_register_hotplug();
8074 list_create(&arc_prune_list
, sizeof (arc_prune_t
),
8075 offsetof(arc_prune_t
, p_node
));
8076 mutex_init(&arc_prune_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
8078 arc_prune_taskq
= taskq_create("arc_prune", zfs_arc_prune_task_threads
,
8079 defclsyspri
, 100, INT_MAX
, TASKQ_PREPOPULATE
| TASKQ_DYNAMIC
);
8081 arc_ksp
= kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED
,
8082 sizeof (arc_stats
) / sizeof (kstat_named_t
), KSTAT_FLAG_VIRTUAL
);
8084 if (arc_ksp
!= NULL
) {
8085 arc_ksp
->ks_data
= &arc_stats
;
8086 arc_ksp
->ks_update
= arc_kstat_update
;
8087 kstat_install(arc_ksp
);
8090 arc_state_evict_markers
=
8091 arc_state_alloc_markers(arc_state_evict_marker_count
);
8092 arc_evict_zthr
= zthr_create_timer("arc_evict",
8093 arc_evict_cb_check
, arc_evict_cb
, NULL
, SEC2NSEC(1), defclsyspri
);
8094 arc_reap_zthr
= zthr_create_timer("arc_reap",
8095 arc_reap_cb_check
, arc_reap_cb
, NULL
, SEC2NSEC(1), minclsyspri
);
8100 * Calculate maximum amount of dirty data per pool.
8102 * If it has been set by a module parameter, take that.
8103 * Otherwise, use a percentage of physical memory defined by
8104 * zfs_dirty_data_max_percent (default 10%) with a cap at
8105 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
8108 if (zfs_dirty_data_max_max
== 0)
8109 zfs_dirty_data_max_max
= MIN(4ULL * 1024 * 1024 * 1024,
8110 allmem
* zfs_dirty_data_max_max_percent
/ 100);
8112 if (zfs_dirty_data_max_max
== 0)
8113 zfs_dirty_data_max_max
= MIN(1ULL * 1024 * 1024 * 1024,
8114 allmem
* zfs_dirty_data_max_max_percent
/ 100);
8117 if (zfs_dirty_data_max
== 0) {
8118 zfs_dirty_data_max
= allmem
*
8119 zfs_dirty_data_max_percent
/ 100;
8120 zfs_dirty_data_max
= MIN(zfs_dirty_data_max
,
8121 zfs_dirty_data_max_max
);
8124 if (zfs_wrlog_data_max
== 0) {
8127 * dp_wrlog_total is reduced for each txg at the end of
8128 * spa_sync(). However, dp_dirty_total is reduced every time
8129 * a block is written out. Thus under normal operation,
8130 * dp_wrlog_total could grow 2 times as big as
8131 * zfs_dirty_data_max.
8133 zfs_wrlog_data_max
= zfs_dirty_data_max
* 2;
8144 #endif /* _KERNEL */
8146 /* Use B_TRUE to ensure *all* buffers are evicted */
8147 arc_flush(NULL
, B_TRUE
);
8149 if (arc_ksp
!= NULL
) {
8150 kstat_delete(arc_ksp
);
8154 taskq_wait(arc_prune_taskq
);
8155 taskq_destroy(arc_prune_taskq
);
8157 mutex_enter(&arc_prune_mtx
);
8158 while ((p
= list_head(&arc_prune_list
)) != NULL
) {
8159 list_remove(&arc_prune_list
, p
);
8160 zfs_refcount_remove(&p
->p_refcnt
, &arc_prune_list
);
8161 zfs_refcount_destroy(&p
->p_refcnt
);
8162 kmem_free(p
, sizeof (*p
));
8164 mutex_exit(&arc_prune_mtx
);
8166 list_destroy(&arc_prune_list
);
8167 mutex_destroy(&arc_prune_mtx
);
8169 (void) zthr_cancel(arc_evict_zthr
);
8170 (void) zthr_cancel(arc_reap_zthr
);
8171 arc_state_free_markers(arc_state_evict_markers
,
8172 arc_state_evict_marker_count
);
8174 mutex_destroy(&arc_evict_lock
);
8175 list_destroy(&arc_evict_waiters
);
8178 * Free any buffers that were tagged for destruction. This needs
8179 * to occur before arc_state_fini() runs and destroys the aggsum
8180 * values which are updated when freeing scatter ABDs.
8182 l2arc_do_free_on_write();
8185 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8186 * trigger the release of kmem magazines, which can callback to
8187 * arc_space_return() which accesses aggsums freed in act_state_fini().
8192 arc_unregister_hotplug();
8195 * We destroy the zthrs after all the ARC state has been
8196 * torn down to avoid the case of them receiving any
8197 * wakeup() signals after they are destroyed.
8199 zthr_destroy(arc_evict_zthr
);
8200 zthr_destroy(arc_reap_zthr
);
8202 ASSERT0(arc_loaned_bytes
);
8208 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8209 * It uses dedicated storage devices to hold cached data, which are populated
8210 * using large infrequent writes. The main role of this cache is to boost
8211 * the performance of random read workloads. The intended L2ARC devices
8212 * include short-stroked disks, solid state disks, and other media with
8213 * substantially faster read latency than disk.
8215 * +-----------------------+
8217 * +-----------------------+
8220 * l2arc_feed_thread() arc_read()
8224 * +---------------+ |
8226 * +---------------+ |
8231 * +-------+ +-------+
8233 * | cache | | cache |
8234 * +-------+ +-------+
8235 * +=========+ .-----.
8236 * : L2ARC : |-_____-|
8237 * : devices : | Disks |
8238 * +=========+ `-_____-'
8240 * Read requests are satisfied from the following sources, in order:
8243 * 2) vdev cache of L2ARC devices
8245 * 4) vdev cache of disks
8248 * Some L2ARC device types exhibit extremely slow write performance.
8249 * To accommodate for this there are some significant differences between
8250 * the L2ARC and traditional cache design:
8252 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8253 * the ARC behave as usual, freeing buffers and placing headers on ghost
8254 * lists. The ARC does not send buffers to the L2ARC during eviction as
8255 * this would add inflated write latencies for all ARC memory pressure.
8257 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8258 * It does this by periodically scanning buffers from the eviction-end of
8259 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8260 * not already there. It scans until a headroom of buffers is satisfied,
8261 * which itself is a buffer for ARC eviction. If a compressible buffer is
8262 * found during scanning and selected for writing to an L2ARC device, we
8263 * temporarily boost scanning headroom during the next scan cycle to make
8264 * sure we adapt to compression effects (which might significantly reduce
8265 * the data volume we write to L2ARC). The thread that does this is
8266 * l2arc_feed_thread(), illustrated below; example sizes are included to
8267 * provide a better sense of ratio than this diagram:
8270 * +---------------------+----------+
8271 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8272 * +---------------------+----------+ | o L2ARC eligible
8273 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8274 * +---------------------+----------+ |
8275 * 15.9 Gbytes ^ 32 Mbytes |
8277 * l2arc_feed_thread()
8279 * l2arc write hand <--[oooo]--'
8283 * +==============================+
8284 * L2ARC dev |####|#|###|###| |####| ... |
8285 * +==============================+
8288 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8289 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8290 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8291 * safe to say that this is an uncommon case, since buffers at the end of
8292 * the ARC lists have moved there due to inactivity.
8294 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8295 * then the L2ARC simply misses copying some buffers. This serves as a
8296 * pressure valve to prevent heavy read workloads from both stalling the ARC
8297 * with waits and clogging the L2ARC with writes. This also helps prevent
8298 * the potential for the L2ARC to churn if it attempts to cache content too
8299 * quickly, such as during backups of the entire pool.
8301 * 5. After system boot and before the ARC has filled main memory, there are
8302 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8303 * lists can remain mostly static. Instead of searching from tail of these
8304 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8305 * for eligible buffers, greatly increasing its chance of finding them.
8307 * The L2ARC device write speed is also boosted during this time so that
8308 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8309 * there are no L2ARC reads, and no fear of degrading read performance
8310 * through increased writes.
8312 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8313 * the vdev queue can aggregate them into larger and fewer writes. Each
8314 * device is written to in a rotor fashion, sweeping writes through
8315 * available space then repeating.
8317 * 7. The L2ARC does not store dirty content. It never needs to flush
8318 * write buffers back to disk based storage.
8320 * 8. If an ARC buffer is written (and dirtied) which also exists in the
8321 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8323 * The performance of the L2ARC can be tweaked by a number of tunables, which
8324 * may be necessary for different workloads:
8326 * l2arc_write_max max write bytes per interval
8327 * l2arc_write_boost extra write bytes during device warmup
8328 * l2arc_noprefetch skip caching prefetched buffers
8329 * l2arc_headroom number of max device writes to precache
8330 * l2arc_headroom_boost when we find compressed buffers during ARC
8331 * scanning, we multiply headroom by this
8332 * percentage factor for the next scan cycle,
8333 * since more compressed buffers are likely to
8335 * l2arc_feed_secs seconds between L2ARC writing
8337 * Tunables may be removed or added as future performance improvements are
8338 * integrated, and also may become zpool properties.
8340 * There are three key functions that control how the L2ARC warms up:
8342 * l2arc_write_eligible() check if a buffer is eligible to cache
8343 * l2arc_write_size() calculate how much to write
8344 * l2arc_write_interval() calculate sleep delay between writes
8346 * These three functions determine what to write, how much, and how quickly
8349 * L2ARC persistence:
8351 * When writing buffers to L2ARC, we periodically add some metadata to
8352 * make sure we can pick them up after reboot, thus dramatically reducing
8353 * the impact that any downtime has on the performance of storage systems
8354 * with large caches.
8356 * The implementation works fairly simply by integrating the following two
8359 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8360 * which is an additional piece of metadata which describes what's been
8361 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8362 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8363 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8364 * time-wise and offset-wise interleaved, but that is an optimization rather
8365 * than for correctness. The log block also includes a pointer to the
8366 * previous block in its chain.
8368 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8369 * for our header bookkeeping purposes. This contains a device header,
8370 * which contains our top-level reference structures. We update it each
8371 * time we write a new log block, so that we're able to locate it in the
8372 * L2ARC device. If this write results in an inconsistent device header
8373 * (e.g. due to power failure), we detect this by verifying the header's
8374 * checksum and simply fail to reconstruct the L2ARC after reboot.
8376 * Implementation diagram:
8378 * +=== L2ARC device (not to scale) ======================================+
8379 * | ___two newest log block pointers__.__________ |
8380 * | / \dh_start_lbps[1] |
8381 * | / \ \dh_start_lbps[0]|
8383 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8384 * || hdr| ^ /^ /^ / / |
8385 * |+------+ ...--\-------/ \-----/--\------/ / |
8386 * | \--------------/ \--------------/ |
8387 * +======================================================================+
8389 * As can be seen on the diagram, rather than using a simple linked list,
8390 * we use a pair of linked lists with alternating elements. This is a
8391 * performance enhancement due to the fact that we only find out the
8392 * address of the next log block access once the current block has been
8393 * completely read in. Obviously, this hurts performance, because we'd be
8394 * keeping the device's I/O queue at only a 1 operation deep, thus
8395 * incurring a large amount of I/O round-trip latency. Having two lists
8396 * allows us to fetch two log blocks ahead of where we are currently
8397 * rebuilding L2ARC buffers.
8399 * On-device data structures:
8401 * L2ARC device header: l2arc_dev_hdr_phys_t
8402 * L2ARC log block: l2arc_log_blk_phys_t
8404 * L2ARC reconstruction:
8406 * When writing data, we simply write in the standard rotary fashion,
8407 * evicting buffers as we go and simply writing new data over them (writing
8408 * a new log block every now and then). This obviously means that once we
8409 * loop around the end of the device, we will start cutting into an already
8410 * committed log block (and its referenced data buffers), like so:
8412 * current write head__ __old tail
8415 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8416 * ^ ^^^^^^^^^___________________________________
8418 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8420 * When importing the pool, we detect this situation and use it to stop
8421 * our scanning process (see l2arc_rebuild).
8423 * There is one significant caveat to consider when rebuilding ARC contents
8424 * from an L2ARC device: what about invalidated buffers? Given the above
8425 * construction, we cannot update blocks which we've already written to amend
8426 * them to remove buffers which were invalidated. Thus, during reconstruction,
8427 * we might be populating the cache with buffers for data that's not on the
8428 * main pool anymore, or may have been overwritten!
8430 * As it turns out, this isn't a problem. Every arc_read request includes
8431 * both the DVA and, crucially, the birth TXG of the BP the caller is
8432 * looking for. So even if the cache were populated by completely rotten
8433 * blocks for data that had been long deleted and/or overwritten, we'll
8434 * never actually return bad data from the cache, since the DVA with the
8435 * birth TXG uniquely identify a block in space and time - once created,
8436 * a block is immutable on disk. The worst thing we have done is wasted
8437 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8438 * entries that will get dropped from the l2arc as it is being updated
8441 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8442 * hand are not restored. This is done by saving the offset (in bytes)
8443 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8444 * into account when restoring buffers.
8448 l2arc_write_eligible(uint64_t spa_guid
, arc_buf_hdr_t
*hdr
)
8451 * A buffer is *not* eligible for the L2ARC if it:
8452 * 1. belongs to a different spa.
8453 * 2. is already cached on the L2ARC.
8454 * 3. has an I/O in progress (it may be an incomplete read).
8455 * 4. is flagged not eligible (zfs property).
8457 if (hdr
->b_spa
!= spa_guid
|| HDR_HAS_L2HDR(hdr
) ||
8458 HDR_IO_IN_PROGRESS(hdr
) || !HDR_L2CACHE(hdr
))
8465 l2arc_write_size(l2arc_dev_t
*dev
)
8467 uint64_t size
, dev_size
, tsize
;
8470 * Make sure our globals have meaningful values in case the user
8473 size
= l2arc_write_max
;
8475 cmn_err(CE_NOTE
, "Bad value for l2arc_write_max, value must "
8476 "be greater than zero, resetting it to the default (%d)",
8478 size
= l2arc_write_max
= L2ARC_WRITE_SIZE
;
8481 if (arc_warm
== B_FALSE
)
8482 size
+= l2arc_write_boost
;
8485 * Make sure the write size does not exceed the size of the cache
8486 * device. This is important in l2arc_evict(), otherwise infinite
8487 * iteration can occur.
8489 dev_size
= dev
->l2ad_end
- dev
->l2ad_start
;
8490 tsize
= size
+ l2arc_log_blk_overhead(size
, dev
);
8491 if (dev
->l2ad_vdev
->vdev_has_trim
&& l2arc_trim_ahead
> 0)
8492 tsize
+= MAX(64 * 1024 * 1024,
8493 (tsize
* l2arc_trim_ahead
) / 100);
8495 if (tsize
>= dev_size
) {
8496 cmn_err(CE_NOTE
, "l2arc_write_max or l2arc_write_boost "
8497 "plus the overhead of log blocks (persistent L2ARC, "
8498 "%llu bytes) exceeds the size of the cache device "
8499 "(guid %llu), resetting them to the default (%d)",
8500 (u_longlong_t
)l2arc_log_blk_overhead(size
, dev
),
8501 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
, L2ARC_WRITE_SIZE
);
8502 size
= l2arc_write_max
= l2arc_write_boost
= L2ARC_WRITE_SIZE
;
8504 if (arc_warm
== B_FALSE
)
8505 size
+= l2arc_write_boost
;
8513 l2arc_write_interval(clock_t began
, uint64_t wanted
, uint64_t wrote
)
8515 clock_t interval
, next
, now
;
8518 * If the ARC lists are busy, increase our write rate; if the
8519 * lists are stale, idle back. This is achieved by checking
8520 * how much we previously wrote - if it was more than half of
8521 * what we wanted, schedule the next write much sooner.
8523 if (l2arc_feed_again
&& wrote
> (wanted
/ 2))
8524 interval
= (hz
* l2arc_feed_min_ms
) / 1000;
8526 interval
= hz
* l2arc_feed_secs
;
8528 now
= ddi_get_lbolt();
8529 next
= MAX(now
, MIN(now
+ interval
, began
+ interval
));
8535 * Cycle through L2ARC devices. This is how L2ARC load balances.
8536 * If a device is returned, this also returns holding the spa config lock.
8538 static l2arc_dev_t
*
8539 l2arc_dev_get_next(void)
8541 l2arc_dev_t
*first
, *next
= NULL
;
8544 * Lock out the removal of spas (spa_namespace_lock), then removal
8545 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8546 * both locks will be dropped and a spa config lock held instead.
8548 mutex_enter(&spa_namespace_lock
);
8549 mutex_enter(&l2arc_dev_mtx
);
8551 /* if there are no vdevs, there is nothing to do */
8552 if (l2arc_ndev
== 0)
8556 next
= l2arc_dev_last
;
8558 /* loop around the list looking for a non-faulted vdev */
8560 next
= list_head(l2arc_dev_list
);
8562 next
= list_next(l2arc_dev_list
, next
);
8564 next
= list_head(l2arc_dev_list
);
8567 /* if we have come back to the start, bail out */
8570 else if (next
== first
)
8573 ASSERT3P(next
, !=, NULL
);
8574 } while (vdev_is_dead(next
->l2ad_vdev
) || next
->l2ad_rebuild
||
8575 next
->l2ad_trim_all
);
8577 /* if we were unable to find any usable vdevs, return NULL */
8578 if (vdev_is_dead(next
->l2ad_vdev
) || next
->l2ad_rebuild
||
8579 next
->l2ad_trim_all
)
8582 l2arc_dev_last
= next
;
8585 mutex_exit(&l2arc_dev_mtx
);
8588 * Grab the config lock to prevent the 'next' device from being
8589 * removed while we are writing to it.
8592 spa_config_enter(next
->l2ad_spa
, SCL_L2ARC
, next
, RW_READER
);
8593 mutex_exit(&spa_namespace_lock
);
8599 * Free buffers that were tagged for destruction.
8602 l2arc_do_free_on_write(void)
8605 l2arc_data_free_t
*df
, *df_prev
;
8607 mutex_enter(&l2arc_free_on_write_mtx
);
8608 buflist
= l2arc_free_on_write
;
8610 for (df
= list_tail(buflist
); df
; df
= df_prev
) {
8611 df_prev
= list_prev(buflist
, df
);
8612 ASSERT3P(df
->l2df_abd
, !=, NULL
);
8613 abd_free(df
->l2df_abd
);
8614 list_remove(buflist
, df
);
8615 kmem_free(df
, sizeof (l2arc_data_free_t
));
8618 mutex_exit(&l2arc_free_on_write_mtx
);
8622 * A write to a cache device has completed. Update all headers to allow
8623 * reads from these buffers to begin.
8626 l2arc_write_done(zio_t
*zio
)
8628 l2arc_write_callback_t
*cb
;
8629 l2arc_lb_abd_buf_t
*abd_buf
;
8630 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
8632 l2arc_dev_hdr_phys_t
*l2dhdr
;
8634 arc_buf_hdr_t
*head
, *hdr
, *hdr_prev
;
8635 kmutex_t
*hash_lock
;
8636 int64_t bytes_dropped
= 0;
8638 cb
= zio
->io_private
;
8639 ASSERT3P(cb
, !=, NULL
);
8640 dev
= cb
->l2wcb_dev
;
8641 l2dhdr
= dev
->l2ad_dev_hdr
;
8642 ASSERT3P(dev
, !=, NULL
);
8643 head
= cb
->l2wcb_head
;
8644 ASSERT3P(head
, !=, NULL
);
8645 buflist
= &dev
->l2ad_buflist
;
8646 ASSERT3P(buflist
, !=, NULL
);
8647 DTRACE_PROBE2(l2arc__iodone
, zio_t
*, zio
,
8648 l2arc_write_callback_t
*, cb
);
8651 * All writes completed, or an error was hit.
8654 mutex_enter(&dev
->l2ad_mtx
);
8655 for (hdr
= list_prev(buflist
, head
); hdr
; hdr
= hdr_prev
) {
8656 hdr_prev
= list_prev(buflist
, hdr
);
8658 hash_lock
= HDR_LOCK(hdr
);
8661 * We cannot use mutex_enter or else we can deadlock
8662 * with l2arc_write_buffers (due to swapping the order
8663 * the hash lock and l2ad_mtx are taken).
8665 if (!mutex_tryenter(hash_lock
)) {
8667 * Missed the hash lock. We must retry so we
8668 * don't leave the ARC_FLAG_L2_WRITING bit set.
8670 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry
);
8673 * We don't want to rescan the headers we've
8674 * already marked as having been written out, so
8675 * we reinsert the head node so we can pick up
8676 * where we left off.
8678 list_remove(buflist
, head
);
8679 list_insert_after(buflist
, hdr
, head
);
8681 mutex_exit(&dev
->l2ad_mtx
);
8684 * We wait for the hash lock to become available
8685 * to try and prevent busy waiting, and increase
8686 * the chance we'll be able to acquire the lock
8687 * the next time around.
8689 mutex_enter(hash_lock
);
8690 mutex_exit(hash_lock
);
8695 * We could not have been moved into the arc_l2c_only
8696 * state while in-flight due to our ARC_FLAG_L2_WRITING
8697 * bit being set. Let's just ensure that's being enforced.
8699 ASSERT(HDR_HAS_L1HDR(hdr
));
8702 * Skipped - drop L2ARC entry and mark the header as no
8703 * longer L2 eligibile.
8705 if (zio
->io_error
!= 0) {
8707 * Error - drop L2ARC entry.
8709 list_remove(buflist
, hdr
);
8710 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
8712 uint64_t psize
= HDR_GET_PSIZE(hdr
);
8713 l2arc_hdr_arcstats_decrement(hdr
);
8716 vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
8717 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
,
8718 arc_hdr_size(hdr
), hdr
);
8722 * Allow ARC to begin reads and ghost list evictions to
8725 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_WRITING
);
8727 mutex_exit(hash_lock
);
8731 * Free the allocated abd buffers for writing the log blocks.
8732 * If the zio failed reclaim the allocated space and remove the
8733 * pointers to these log blocks from the log block pointer list
8734 * of the L2ARC device.
8736 while ((abd_buf
= list_remove_tail(&cb
->l2wcb_abd_list
)) != NULL
) {
8737 abd_free(abd_buf
->abd
);
8738 zio_buf_free(abd_buf
, sizeof (*abd_buf
));
8739 if (zio
->io_error
!= 0) {
8740 lb_ptr_buf
= list_remove_head(&dev
->l2ad_lbptr_list
);
8742 * L2BLK_GET_PSIZE returns aligned size for log
8746 L2BLK_GET_PSIZE((lb_ptr_buf
->lb_ptr
)->lbp_prop
);
8747 bytes_dropped
+= asize
;
8748 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, -asize
);
8749 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count
);
8750 zfs_refcount_remove_many(&dev
->l2ad_lb_asize
, asize
,
8752 zfs_refcount_remove(&dev
->l2ad_lb_count
, lb_ptr_buf
);
8753 kmem_free(lb_ptr_buf
->lb_ptr
,
8754 sizeof (l2arc_log_blkptr_t
));
8755 kmem_free(lb_ptr_buf
, sizeof (l2arc_lb_ptr_buf_t
));
8758 list_destroy(&cb
->l2wcb_abd_list
);
8760 if (zio
->io_error
!= 0) {
8761 ARCSTAT_BUMP(arcstat_l2_writes_error
);
8764 * Restore the lbps array in the header to its previous state.
8765 * If the list of log block pointers is empty, zero out the
8766 * log block pointers in the device header.
8768 lb_ptr_buf
= list_head(&dev
->l2ad_lbptr_list
);
8769 for (int i
= 0; i
< 2; i
++) {
8770 if (lb_ptr_buf
== NULL
) {
8772 * If the list is empty zero out the device
8773 * header. Otherwise zero out the second log
8774 * block pointer in the header.
8778 dev
->l2ad_dev_hdr_asize
);
8780 memset(&l2dhdr
->dh_start_lbps
[i
], 0,
8781 sizeof (l2arc_log_blkptr_t
));
8785 memcpy(&l2dhdr
->dh_start_lbps
[i
], lb_ptr_buf
->lb_ptr
,
8786 sizeof (l2arc_log_blkptr_t
));
8787 lb_ptr_buf
= list_next(&dev
->l2ad_lbptr_list
,
8792 ARCSTAT_BUMP(arcstat_l2_writes_done
);
8793 list_remove(buflist
, head
);
8794 ASSERT(!HDR_HAS_L1HDR(head
));
8795 kmem_cache_free(hdr_l2only_cache
, head
);
8796 mutex_exit(&dev
->l2ad_mtx
);
8798 ASSERT(dev
->l2ad_vdev
!= NULL
);
8799 vdev_space_update(dev
->l2ad_vdev
, -bytes_dropped
, 0, 0);
8801 l2arc_do_free_on_write();
8803 kmem_free(cb
, sizeof (l2arc_write_callback_t
));
8807 l2arc_untransform(zio_t
*zio
, l2arc_read_callback_t
*cb
)
8810 spa_t
*spa
= zio
->io_spa
;
8811 arc_buf_hdr_t
*hdr
= cb
->l2rcb_hdr
;
8812 blkptr_t
*bp
= zio
->io_bp
;
8813 uint8_t salt
[ZIO_DATA_SALT_LEN
];
8814 uint8_t iv
[ZIO_DATA_IV_LEN
];
8815 uint8_t mac
[ZIO_DATA_MAC_LEN
];
8816 boolean_t no_crypt
= B_FALSE
;
8819 * ZIL data is never be written to the L2ARC, so we don't need
8820 * special handling for its unique MAC storage.
8822 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
8823 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
8824 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
8827 * If the data was encrypted, decrypt it now. Note that
8828 * we must check the bp here and not the hdr, since the
8829 * hdr does not have its encryption parameters updated
8830 * until arc_read_done().
8832 if (BP_IS_ENCRYPTED(bp
)) {
8833 abd_t
*eabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
8834 ARC_HDR_DO_ADAPT
| ARC_HDR_USE_RESERVE
);
8836 zio_crypt_decode_params_bp(bp
, salt
, iv
);
8837 zio_crypt_decode_mac_bp(bp
, mac
);
8839 ret
= spa_do_crypt_abd(B_FALSE
, spa
, &cb
->l2rcb_zb
,
8840 BP_GET_TYPE(bp
), BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
),
8841 salt
, iv
, mac
, HDR_GET_PSIZE(hdr
), eabd
,
8842 hdr
->b_l1hdr
.b_pabd
, &no_crypt
);
8844 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8849 * If we actually performed decryption, replace b_pabd
8850 * with the decrypted data. Otherwise we can just throw
8851 * our decryption buffer away.
8854 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8855 arc_hdr_size(hdr
), hdr
);
8856 hdr
->b_l1hdr
.b_pabd
= eabd
;
8859 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8864 * If the L2ARC block was compressed, but ARC compression
8865 * is disabled we decompress the data into a new buffer and
8866 * replace the existing data.
8868 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
8869 !HDR_COMPRESSION_ENABLED(hdr
)) {
8870 abd_t
*cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
8871 ARC_HDR_DO_ADAPT
| ARC_HDR_USE_RESERVE
);
8872 void *tmp
= abd_borrow_buf(cabd
, arc_hdr_size(hdr
));
8874 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
8875 hdr
->b_l1hdr
.b_pabd
, tmp
, HDR_GET_PSIZE(hdr
),
8876 HDR_GET_LSIZE(hdr
), &hdr
->b_complevel
);
8878 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
8879 arc_free_data_abd(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
8883 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
8884 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8885 arc_hdr_size(hdr
), hdr
);
8886 hdr
->b_l1hdr
.b_pabd
= cabd
;
8888 zio
->io_size
= HDR_GET_LSIZE(hdr
);
8899 * A read to a cache device completed. Validate buffer contents before
8900 * handing over to the regular ARC routines.
8903 l2arc_read_done(zio_t
*zio
)
8906 l2arc_read_callback_t
*cb
= zio
->io_private
;
8908 kmutex_t
*hash_lock
;
8909 boolean_t valid_cksum
;
8910 boolean_t using_rdata
= (BP_IS_ENCRYPTED(&cb
->l2rcb_bp
) &&
8911 (cb
->l2rcb_flags
& ZIO_FLAG_RAW_ENCRYPT
));
8913 ASSERT3P(zio
->io_vd
, !=, NULL
);
8914 ASSERT(zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
);
8916 spa_config_exit(zio
->io_spa
, SCL_L2ARC
, zio
->io_vd
);
8918 ASSERT3P(cb
, !=, NULL
);
8919 hdr
= cb
->l2rcb_hdr
;
8920 ASSERT3P(hdr
, !=, NULL
);
8922 hash_lock
= HDR_LOCK(hdr
);
8923 mutex_enter(hash_lock
);
8924 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
8927 * If the data was read into a temporary buffer,
8928 * move it and free the buffer.
8930 if (cb
->l2rcb_abd
!= NULL
) {
8931 ASSERT3U(arc_hdr_size(hdr
), <, zio
->io_size
);
8932 if (zio
->io_error
== 0) {
8934 abd_copy(hdr
->b_crypt_hdr
.b_rabd
,
8935 cb
->l2rcb_abd
, arc_hdr_size(hdr
));
8937 abd_copy(hdr
->b_l1hdr
.b_pabd
,
8938 cb
->l2rcb_abd
, arc_hdr_size(hdr
));
8943 * The following must be done regardless of whether
8944 * there was an error:
8945 * - free the temporary buffer
8946 * - point zio to the real ARC buffer
8947 * - set zio size accordingly
8948 * These are required because zio is either re-used for
8949 * an I/O of the block in the case of the error
8950 * or the zio is passed to arc_read_done() and it
8953 abd_free(cb
->l2rcb_abd
);
8954 zio
->io_size
= zio
->io_orig_size
= arc_hdr_size(hdr
);
8957 ASSERT(HDR_HAS_RABD(hdr
));
8958 zio
->io_abd
= zio
->io_orig_abd
=
8959 hdr
->b_crypt_hdr
.b_rabd
;
8961 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
8962 zio
->io_abd
= zio
->io_orig_abd
= hdr
->b_l1hdr
.b_pabd
;
8966 ASSERT3P(zio
->io_abd
, !=, NULL
);
8969 * Check this survived the L2ARC journey.
8971 ASSERT(zio
->io_abd
== hdr
->b_l1hdr
.b_pabd
||
8972 (HDR_HAS_RABD(hdr
) && zio
->io_abd
== hdr
->b_crypt_hdr
.b_rabd
));
8973 zio
->io_bp_copy
= cb
->l2rcb_bp
; /* XXX fix in L2ARC 2.0 */
8974 zio
->io_bp
= &zio
->io_bp_copy
; /* XXX fix in L2ARC 2.0 */
8975 zio
->io_prop
.zp_complevel
= hdr
->b_complevel
;
8977 valid_cksum
= arc_cksum_is_equal(hdr
, zio
);
8980 * b_rabd will always match the data as it exists on disk if it is
8981 * being used. Therefore if we are reading into b_rabd we do not
8982 * attempt to untransform the data.
8984 if (valid_cksum
&& !using_rdata
)
8985 tfm_error
= l2arc_untransform(zio
, cb
);
8987 if (valid_cksum
&& tfm_error
== 0 && zio
->io_error
== 0 &&
8988 !HDR_L2_EVICTED(hdr
)) {
8989 mutex_exit(hash_lock
);
8990 zio
->io_private
= hdr
;
8994 * Buffer didn't survive caching. Increment stats and
8995 * reissue to the original storage device.
8997 if (zio
->io_error
!= 0) {
8998 ARCSTAT_BUMP(arcstat_l2_io_error
);
9000 zio
->io_error
= SET_ERROR(EIO
);
9002 if (!valid_cksum
|| tfm_error
!= 0)
9003 ARCSTAT_BUMP(arcstat_l2_cksum_bad
);
9006 * If there's no waiter, issue an async i/o to the primary
9007 * storage now. If there *is* a waiter, the caller must
9008 * issue the i/o in a context where it's OK to block.
9010 if (zio
->io_waiter
== NULL
) {
9011 zio_t
*pio
= zio_unique_parent(zio
);
9012 void *abd
= (using_rdata
) ?
9013 hdr
->b_crypt_hdr
.b_rabd
: hdr
->b_l1hdr
.b_pabd
;
9015 ASSERT(!pio
|| pio
->io_child_type
== ZIO_CHILD_LOGICAL
);
9017 zio
= zio_read(pio
, zio
->io_spa
, zio
->io_bp
,
9018 abd
, zio
->io_size
, arc_read_done
,
9019 hdr
, zio
->io_priority
, cb
->l2rcb_flags
,
9023 * Original ZIO will be freed, so we need to update
9024 * ARC header with the new ZIO pointer to be used
9025 * by zio_change_priority() in arc_read().
9027 for (struct arc_callback
*acb
= hdr
->b_l1hdr
.b_acb
;
9028 acb
!= NULL
; acb
= acb
->acb_next
)
9029 acb
->acb_zio_head
= zio
;
9031 mutex_exit(hash_lock
);
9034 mutex_exit(hash_lock
);
9038 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
9042 * This is the list priority from which the L2ARC will search for pages to
9043 * cache. This is used within loops (0..3) to cycle through lists in the
9044 * desired order. This order can have a significant effect on cache
9047 * Currently the metadata lists are hit first, MFU then MRU, followed by
9048 * the data lists. This function returns a locked list, and also returns
9051 static multilist_sublist_t
*
9052 l2arc_sublist_lock(int list_num
)
9054 multilist_t
*ml
= NULL
;
9057 ASSERT(list_num
>= 0 && list_num
< L2ARC_FEED_TYPES
);
9061 ml
= &arc_mfu
->arcs_list
[ARC_BUFC_METADATA
];
9064 ml
= &arc_mru
->arcs_list
[ARC_BUFC_METADATA
];
9067 ml
= &arc_mfu
->arcs_list
[ARC_BUFC_DATA
];
9070 ml
= &arc_mru
->arcs_list
[ARC_BUFC_DATA
];
9077 * Return a randomly-selected sublist. This is acceptable
9078 * because the caller feeds only a little bit of data for each
9079 * call (8MB). Subsequent calls will result in different
9080 * sublists being selected.
9082 idx
= multilist_get_random_index(ml
);
9083 return (multilist_sublist_lock(ml
, idx
));
9087 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
9088 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
9089 * overhead in processing to make sure there is enough headroom available
9090 * when writing buffers.
9092 static inline uint64_t
9093 l2arc_log_blk_overhead(uint64_t write_sz
, l2arc_dev_t
*dev
)
9095 if (dev
->l2ad_log_entries
== 0) {
9098 uint64_t log_entries
= write_sz
>> SPA_MINBLOCKSHIFT
;
9100 uint64_t log_blocks
= (log_entries
+
9101 dev
->l2ad_log_entries
- 1) /
9102 dev
->l2ad_log_entries
;
9104 return (vdev_psize_to_asize(dev
->l2ad_vdev
,
9105 sizeof (l2arc_log_blk_phys_t
)) * log_blocks
);
9110 * Evict buffers from the device write hand to the distance specified in
9111 * bytes. This distance may span populated buffers, it may span nothing.
9112 * This is clearing a region on the L2ARC device ready for writing.
9113 * If the 'all' boolean is set, every buffer is evicted.
9116 l2arc_evict(l2arc_dev_t
*dev
, uint64_t distance
, boolean_t all
)
9119 arc_buf_hdr_t
*hdr
, *hdr_prev
;
9120 kmutex_t
*hash_lock
;
9122 l2arc_lb_ptr_buf_t
*lb_ptr_buf
, *lb_ptr_buf_prev
;
9123 vdev_t
*vd
= dev
->l2ad_vdev
;
9126 buflist
= &dev
->l2ad_buflist
;
9129 * We need to add in the worst case scenario of log block overhead.
9131 distance
+= l2arc_log_blk_overhead(distance
, dev
);
9132 if (vd
->vdev_has_trim
&& l2arc_trim_ahead
> 0) {
9134 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
9135 * times the write size, whichever is greater.
9137 distance
+= MAX(64 * 1024 * 1024,
9138 (distance
* l2arc_trim_ahead
) / 100);
9143 if (dev
->l2ad_hand
>= (dev
->l2ad_end
- distance
)) {
9145 * When there is no space to accommodate upcoming writes,
9146 * evict to the end. Then bump the write and evict hands
9147 * to the start and iterate. This iteration does not
9148 * happen indefinitely as we make sure in
9149 * l2arc_write_size() that when the write hand is reset,
9150 * the write size does not exceed the end of the device.
9153 taddr
= dev
->l2ad_end
;
9155 taddr
= dev
->l2ad_hand
+ distance
;
9157 DTRACE_PROBE4(l2arc__evict
, l2arc_dev_t
*, dev
, list_t
*, buflist
,
9158 uint64_t, taddr
, boolean_t
, all
);
9162 * This check has to be placed after deciding whether to
9165 if (dev
->l2ad_first
) {
9167 * This is the first sweep through the device. There is
9168 * nothing to evict. We have already trimmmed the
9174 * Trim the space to be evicted.
9176 if (vd
->vdev_has_trim
&& dev
->l2ad_evict
< taddr
&&
9177 l2arc_trim_ahead
> 0) {
9179 * We have to drop the spa_config lock because
9180 * vdev_trim_range() will acquire it.
9181 * l2ad_evict already accounts for the label
9182 * size. To prevent vdev_trim_ranges() from
9183 * adding it again, we subtract it from
9186 spa_config_exit(dev
->l2ad_spa
, SCL_L2ARC
, dev
);
9187 vdev_trim_simple(vd
,
9188 dev
->l2ad_evict
- VDEV_LABEL_START_SIZE
,
9189 taddr
- dev
->l2ad_evict
);
9190 spa_config_enter(dev
->l2ad_spa
, SCL_L2ARC
, dev
,
9195 * When rebuilding L2ARC we retrieve the evict hand
9196 * from the header of the device. Of note, l2arc_evict()
9197 * does not actually delete buffers from the cache
9198 * device, but trimming may do so depending on the
9199 * hardware implementation. Thus keeping track of the
9200 * evict hand is useful.
9202 dev
->l2ad_evict
= MAX(dev
->l2ad_evict
, taddr
);
9207 mutex_enter(&dev
->l2ad_mtx
);
9209 * We have to account for evicted log blocks. Run vdev_space_update()
9210 * on log blocks whose offset (in bytes) is before the evicted offset
9211 * (in bytes) by searching in the list of pointers to log blocks
9212 * present in the L2ARC device.
9214 for (lb_ptr_buf
= list_tail(&dev
->l2ad_lbptr_list
); lb_ptr_buf
;
9215 lb_ptr_buf
= lb_ptr_buf_prev
) {
9217 lb_ptr_buf_prev
= list_prev(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
9219 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9220 uint64_t asize
= L2BLK_GET_PSIZE(
9221 (lb_ptr_buf
->lb_ptr
)->lbp_prop
);
9224 * We don't worry about log blocks left behind (ie
9225 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9226 * will never write more than l2arc_evict() evicts.
9228 if (!all
&& l2arc_log_blkptr_valid(dev
, lb_ptr_buf
->lb_ptr
)) {
9231 vdev_space_update(vd
, -asize
, 0, 0);
9232 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, -asize
);
9233 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count
);
9234 zfs_refcount_remove_many(&dev
->l2ad_lb_asize
, asize
,
9236 zfs_refcount_remove(&dev
->l2ad_lb_count
, lb_ptr_buf
);
9237 list_remove(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
9238 kmem_free(lb_ptr_buf
->lb_ptr
,
9239 sizeof (l2arc_log_blkptr_t
));
9240 kmem_free(lb_ptr_buf
, sizeof (l2arc_lb_ptr_buf_t
));
9244 for (hdr
= list_tail(buflist
); hdr
; hdr
= hdr_prev
) {
9245 hdr_prev
= list_prev(buflist
, hdr
);
9247 ASSERT(!HDR_EMPTY(hdr
));
9248 hash_lock
= HDR_LOCK(hdr
);
9251 * We cannot use mutex_enter or else we can deadlock
9252 * with l2arc_write_buffers (due to swapping the order
9253 * the hash lock and l2ad_mtx are taken).
9255 if (!mutex_tryenter(hash_lock
)) {
9257 * Missed the hash lock. Retry.
9259 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry
);
9260 mutex_exit(&dev
->l2ad_mtx
);
9261 mutex_enter(hash_lock
);
9262 mutex_exit(hash_lock
);
9267 * A header can't be on this list if it doesn't have L2 header.
9269 ASSERT(HDR_HAS_L2HDR(hdr
));
9271 /* Ensure this header has finished being written. */
9272 ASSERT(!HDR_L2_WRITING(hdr
));
9273 ASSERT(!HDR_L2_WRITE_HEAD(hdr
));
9275 if (!all
&& (hdr
->b_l2hdr
.b_daddr
>= dev
->l2ad_evict
||
9276 hdr
->b_l2hdr
.b_daddr
< dev
->l2ad_hand
)) {
9278 * We've evicted to the target address,
9279 * or the end of the device.
9281 mutex_exit(hash_lock
);
9285 if (!HDR_HAS_L1HDR(hdr
)) {
9286 ASSERT(!HDR_L2_READING(hdr
));
9288 * This doesn't exist in the ARC. Destroy.
9289 * arc_hdr_destroy() will call list_remove()
9290 * and decrement arcstat_l2_lsize.
9292 arc_change_state(arc_anon
, hdr
);
9293 arc_hdr_destroy(hdr
);
9295 ASSERT(hdr
->b_l1hdr
.b_state
!= arc_l2c_only
);
9296 ARCSTAT_BUMP(arcstat_l2_evict_l1cached
);
9298 * Invalidate issued or about to be issued
9299 * reads, since we may be about to write
9300 * over this location.
9302 if (HDR_L2_READING(hdr
)) {
9303 ARCSTAT_BUMP(arcstat_l2_evict_reading
);
9304 arc_hdr_set_flags(hdr
, ARC_FLAG_L2_EVICTED
);
9307 arc_hdr_l2hdr_destroy(hdr
);
9309 mutex_exit(hash_lock
);
9311 mutex_exit(&dev
->l2ad_mtx
);
9315 * We need to check if we evict all buffers, otherwise we may iterate
9318 if (!all
&& rerun
) {
9320 * Bump device hand to the device start if it is approaching the
9321 * end. l2arc_evict() has already evicted ahead for this case.
9323 dev
->l2ad_hand
= dev
->l2ad_start
;
9324 dev
->l2ad_evict
= dev
->l2ad_start
;
9325 dev
->l2ad_first
= B_FALSE
;
9331 * In case of cache device removal (all) the following
9332 * assertions may be violated without functional consequences
9333 * as the device is about to be removed.
9335 ASSERT3U(dev
->l2ad_hand
+ distance
, <, dev
->l2ad_end
);
9336 if (!dev
->l2ad_first
)
9337 ASSERT3U(dev
->l2ad_hand
, <, dev
->l2ad_evict
);
9342 * Handle any abd transforms that might be required for writing to the L2ARC.
9343 * If successful, this function will always return an abd with the data
9344 * transformed as it is on disk in a new abd of asize bytes.
9347 l2arc_apply_transforms(spa_t
*spa
, arc_buf_hdr_t
*hdr
, uint64_t asize
,
9352 abd_t
*cabd
= NULL
, *eabd
= NULL
, *to_write
= hdr
->b_l1hdr
.b_pabd
;
9353 enum zio_compress compress
= HDR_GET_COMPRESS(hdr
);
9354 uint64_t psize
= HDR_GET_PSIZE(hdr
);
9355 uint64_t size
= arc_hdr_size(hdr
);
9356 boolean_t ismd
= HDR_ISTYPE_METADATA(hdr
);
9357 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
9358 dsl_crypto_key_t
*dck
= NULL
;
9359 uint8_t mac
[ZIO_DATA_MAC_LEN
] = { 0 };
9360 boolean_t no_crypt
= B_FALSE
;
9362 ASSERT((HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
9363 !HDR_COMPRESSION_ENABLED(hdr
)) ||
9364 HDR_ENCRYPTED(hdr
) || HDR_SHARED_DATA(hdr
) || psize
!= asize
);
9365 ASSERT3U(psize
, <=, asize
);
9368 * If this data simply needs its own buffer, we simply allocate it
9369 * and copy the data. This may be done to eliminate a dependency on a
9370 * shared buffer or to reallocate the buffer to match asize.
9372 if (HDR_HAS_RABD(hdr
) && asize
!= psize
) {
9373 ASSERT3U(asize
, >=, psize
);
9374 to_write
= abd_alloc_for_io(asize
, ismd
);
9375 abd_copy(to_write
, hdr
->b_crypt_hdr
.b_rabd
, psize
);
9377 abd_zero_off(to_write
, psize
, asize
- psize
);
9381 if ((compress
== ZIO_COMPRESS_OFF
|| HDR_COMPRESSION_ENABLED(hdr
)) &&
9382 !HDR_ENCRYPTED(hdr
)) {
9383 ASSERT3U(size
, ==, psize
);
9384 to_write
= abd_alloc_for_io(asize
, ismd
);
9385 abd_copy(to_write
, hdr
->b_l1hdr
.b_pabd
, size
);
9387 abd_zero_off(to_write
, size
, asize
- size
);
9391 if (compress
!= ZIO_COMPRESS_OFF
&& !HDR_COMPRESSION_ENABLED(hdr
)) {
9393 * In some cases, we can wind up with size > asize, so
9394 * we need to opt for the larger allocation option here.
9396 * (We also need abd_return_buf_copy in all cases because
9397 * it's an ASSERT() to modify the buffer before returning it
9398 * with arc_return_buf(), and all the compressors
9399 * write things before deciding to fail compression in nearly
9402 cabd
= abd_alloc_for_io(size
, ismd
);
9403 tmp
= abd_borrow_buf(cabd
, size
);
9405 psize
= zio_compress_data(compress
, to_write
, tmp
, size
,
9408 if (psize
>= asize
) {
9409 psize
= HDR_GET_PSIZE(hdr
);
9410 abd_return_buf_copy(cabd
, tmp
, size
);
9411 HDR_SET_COMPRESS(hdr
, ZIO_COMPRESS_OFF
);
9413 abd_copy(to_write
, hdr
->b_l1hdr
.b_pabd
, psize
);
9415 abd_zero_off(to_write
, psize
, asize
- psize
);
9418 ASSERT3U(psize
, <=, HDR_GET_PSIZE(hdr
));
9420 memset((char *)tmp
+ psize
, 0, asize
- psize
);
9421 psize
= HDR_GET_PSIZE(hdr
);
9422 abd_return_buf_copy(cabd
, tmp
, size
);
9427 if (HDR_ENCRYPTED(hdr
)) {
9428 eabd
= abd_alloc_for_io(asize
, ismd
);
9431 * If the dataset was disowned before the buffer
9432 * made it to this point, the key to re-encrypt
9433 * it won't be available. In this case we simply
9434 * won't write the buffer to the L2ARC.
9436 ret
= spa_keystore_lookup_key(spa
, hdr
->b_crypt_hdr
.b_dsobj
,
9441 ret
= zio_do_crypt_abd(B_TRUE
, &dck
->dck_key
,
9442 hdr
->b_crypt_hdr
.b_ot
, bswap
, hdr
->b_crypt_hdr
.b_salt
,
9443 hdr
->b_crypt_hdr
.b_iv
, mac
, psize
, to_write
, eabd
,
9449 abd_copy(eabd
, to_write
, psize
);
9452 abd_zero_off(eabd
, psize
, asize
- psize
);
9454 /* assert that the MAC we got here matches the one we saved */
9455 ASSERT0(memcmp(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
));
9456 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
9458 if (to_write
== cabd
)
9465 ASSERT3P(to_write
, !=, hdr
->b_l1hdr
.b_pabd
);
9466 *abd_out
= to_write
;
9471 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
9482 l2arc_blk_fetch_done(zio_t
*zio
)
9484 l2arc_read_callback_t
*cb
;
9486 cb
= zio
->io_private
;
9487 if (cb
->l2rcb_abd
!= NULL
)
9488 abd_free(cb
->l2rcb_abd
);
9489 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
9493 * Find and write ARC buffers to the L2ARC device.
9495 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9496 * for reading until they have completed writing.
9497 * The headroom_boost is an in-out parameter used to maintain headroom boost
9498 * state between calls to this function.
9500 * Returns the number of bytes actually written (which may be smaller than
9501 * the delta by which the device hand has changed due to alignment and the
9502 * writing of log blocks).
9505 l2arc_write_buffers(spa_t
*spa
, l2arc_dev_t
*dev
, uint64_t target_sz
)
9507 arc_buf_hdr_t
*hdr
, *hdr_prev
, *head
;
9508 uint64_t write_asize
, write_psize
, write_lsize
, headroom
;
9510 l2arc_write_callback_t
*cb
= NULL
;
9512 uint64_t guid
= spa_load_guid(spa
);
9513 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9515 ASSERT3P(dev
->l2ad_vdev
, !=, NULL
);
9518 write_lsize
= write_asize
= write_psize
= 0;
9520 head
= kmem_cache_alloc(hdr_l2only_cache
, KM_PUSHPAGE
);
9521 arc_hdr_set_flags(head
, ARC_FLAG_L2_WRITE_HEAD
| ARC_FLAG_HAS_L2HDR
);
9524 * Copy buffers for L2ARC writing.
9526 for (int pass
= 0; pass
< L2ARC_FEED_TYPES
; pass
++) {
9528 * If pass == 1 or 3, we cache MRU metadata and data
9531 if (l2arc_mfuonly
) {
9532 if (pass
== 1 || pass
== 3)
9536 multilist_sublist_t
*mls
= l2arc_sublist_lock(pass
);
9537 uint64_t passed_sz
= 0;
9539 VERIFY3P(mls
, !=, NULL
);
9542 * L2ARC fast warmup.
9544 * Until the ARC is warm and starts to evict, read from the
9545 * head of the ARC lists rather than the tail.
9547 if (arc_warm
== B_FALSE
)
9548 hdr
= multilist_sublist_head(mls
);
9550 hdr
= multilist_sublist_tail(mls
);
9552 headroom
= target_sz
* l2arc_headroom
;
9553 if (zfs_compressed_arc_enabled
)
9554 headroom
= (headroom
* l2arc_headroom_boost
) / 100;
9556 for (; hdr
; hdr
= hdr_prev
) {
9557 kmutex_t
*hash_lock
;
9558 abd_t
*to_write
= NULL
;
9560 if (arc_warm
== B_FALSE
)
9561 hdr_prev
= multilist_sublist_next(mls
, hdr
);
9563 hdr_prev
= multilist_sublist_prev(mls
, hdr
);
9565 hash_lock
= HDR_LOCK(hdr
);
9566 if (!mutex_tryenter(hash_lock
)) {
9568 * Skip this buffer rather than waiting.
9573 passed_sz
+= HDR_GET_LSIZE(hdr
);
9574 if (l2arc_headroom
!= 0 && passed_sz
> headroom
) {
9578 mutex_exit(hash_lock
);
9582 if (!l2arc_write_eligible(guid
, hdr
)) {
9583 mutex_exit(hash_lock
);
9587 ASSERT(HDR_HAS_L1HDR(hdr
));
9589 ASSERT3U(HDR_GET_PSIZE(hdr
), >, 0);
9590 ASSERT3U(arc_hdr_size(hdr
), >, 0);
9591 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
9593 uint64_t psize
= HDR_GET_PSIZE(hdr
);
9594 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
9597 if ((write_asize
+ asize
) > target_sz
) {
9599 mutex_exit(hash_lock
);
9604 * We rely on the L1 portion of the header below, so
9605 * it's invalid for this header to have been evicted out
9606 * of the ghost cache, prior to being written out. The
9607 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9609 arc_hdr_set_flags(hdr
, ARC_FLAG_L2_WRITING
);
9612 * If this header has b_rabd, we can use this since it
9613 * must always match the data exactly as it exists on
9614 * disk. Otherwise, the L2ARC can normally use the
9615 * hdr's data, but if we're sharing data between the
9616 * hdr and one of its bufs, L2ARC needs its own copy of
9617 * the data so that the ZIO below can't race with the
9618 * buf consumer. To ensure that this copy will be
9619 * available for the lifetime of the ZIO and be cleaned
9620 * up afterwards, we add it to the l2arc_free_on_write
9621 * queue. If we need to apply any transforms to the
9622 * data (compression, encryption) we will also need the
9625 if (HDR_HAS_RABD(hdr
) && psize
== asize
) {
9626 to_write
= hdr
->b_crypt_hdr
.b_rabd
;
9627 } else if ((HDR_COMPRESSION_ENABLED(hdr
) ||
9628 HDR_GET_COMPRESS(hdr
) == ZIO_COMPRESS_OFF
) &&
9629 !HDR_ENCRYPTED(hdr
) && !HDR_SHARED_DATA(hdr
) &&
9631 to_write
= hdr
->b_l1hdr
.b_pabd
;
9634 arc_buf_contents_t type
= arc_buf_type(hdr
);
9636 ret
= l2arc_apply_transforms(spa
, hdr
, asize
,
9639 arc_hdr_clear_flags(hdr
,
9640 ARC_FLAG_L2_WRITING
);
9641 mutex_exit(hash_lock
);
9645 l2arc_free_abd_on_write(to_write
, asize
, type
);
9650 * Insert a dummy header on the buflist so
9651 * l2arc_write_done() can find where the
9652 * write buffers begin without searching.
9654 mutex_enter(&dev
->l2ad_mtx
);
9655 list_insert_head(&dev
->l2ad_buflist
, head
);
9656 mutex_exit(&dev
->l2ad_mtx
);
9659 sizeof (l2arc_write_callback_t
), KM_SLEEP
);
9660 cb
->l2wcb_dev
= dev
;
9661 cb
->l2wcb_head
= head
;
9663 * Create a list to save allocated abd buffers
9664 * for l2arc_log_blk_commit().
9666 list_create(&cb
->l2wcb_abd_list
,
9667 sizeof (l2arc_lb_abd_buf_t
),
9668 offsetof(l2arc_lb_abd_buf_t
, node
));
9669 pio
= zio_root(spa
, l2arc_write_done
, cb
,
9673 hdr
->b_l2hdr
.b_dev
= dev
;
9674 hdr
->b_l2hdr
.b_hits
= 0;
9676 hdr
->b_l2hdr
.b_daddr
= dev
->l2ad_hand
;
9677 hdr
->b_l2hdr
.b_arcs_state
=
9678 hdr
->b_l1hdr
.b_state
->arcs_state
;
9679 arc_hdr_set_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
9681 mutex_enter(&dev
->l2ad_mtx
);
9682 list_insert_head(&dev
->l2ad_buflist
, hdr
);
9683 mutex_exit(&dev
->l2ad_mtx
);
9685 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
9686 arc_hdr_size(hdr
), hdr
);
9688 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
,
9689 hdr
->b_l2hdr
.b_daddr
, asize
, to_write
,
9690 ZIO_CHECKSUM_OFF
, NULL
, hdr
,
9691 ZIO_PRIORITY_ASYNC_WRITE
,
9692 ZIO_FLAG_CANFAIL
, B_FALSE
);
9694 write_lsize
+= HDR_GET_LSIZE(hdr
);
9695 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
,
9698 write_psize
+= psize
;
9699 write_asize
+= asize
;
9700 dev
->l2ad_hand
+= asize
;
9701 l2arc_hdr_arcstats_increment(hdr
);
9702 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
9704 mutex_exit(hash_lock
);
9707 * Append buf info to current log and commit if full.
9708 * arcstat_l2_{size,asize} kstats are updated
9711 if (l2arc_log_blk_insert(dev
, hdr
))
9712 l2arc_log_blk_commit(dev
, pio
, cb
);
9717 multilist_sublist_unlock(mls
);
9723 /* No buffers selected for writing? */
9725 ASSERT0(write_lsize
);
9726 ASSERT(!HDR_HAS_L1HDR(head
));
9727 kmem_cache_free(hdr_l2only_cache
, head
);
9730 * Although we did not write any buffers l2ad_evict may
9733 if (dev
->l2ad_evict
!= l2dhdr
->dh_evict
)
9734 l2arc_dev_hdr_update(dev
);
9739 if (!dev
->l2ad_first
)
9740 ASSERT3U(dev
->l2ad_hand
, <=, dev
->l2ad_evict
);
9742 ASSERT3U(write_asize
, <=, target_sz
);
9743 ARCSTAT_BUMP(arcstat_l2_writes_sent
);
9744 ARCSTAT_INCR(arcstat_l2_write_bytes
, write_psize
);
9746 dev
->l2ad_writing
= B_TRUE
;
9747 (void) zio_wait(pio
);
9748 dev
->l2ad_writing
= B_FALSE
;
9751 * Update the device header after the zio completes as
9752 * l2arc_write_done() may have updated the memory holding the log block
9753 * pointers in the device header.
9755 l2arc_dev_hdr_update(dev
);
9757 return (write_asize
);
9761 l2arc_hdr_limit_reached(void)
9763 int64_t s
= aggsum_upper_bound(&arc_sums
.arcstat_l2_hdr_size
);
9765 return (arc_reclaim_needed() || (s
> arc_meta_limit
* 3 / 4) ||
9766 (s
> (arc_warm
? arc_c
: arc_c_max
) * l2arc_meta_percent
/ 100));
9770 * This thread feeds the L2ARC at regular intervals. This is the beating
9771 * heart of the L2ARC.
9773 static __attribute__((noreturn
)) void
9774 l2arc_feed_thread(void *unused
)
9780 uint64_t size
, wrote
;
9781 clock_t begin
, next
= ddi_get_lbolt();
9782 fstrans_cookie_t cookie
;
9784 CALLB_CPR_INIT(&cpr
, &l2arc_feed_thr_lock
, callb_generic_cpr
, FTAG
);
9786 mutex_enter(&l2arc_feed_thr_lock
);
9788 cookie
= spl_fstrans_mark();
9789 while (l2arc_thread_exit
== 0) {
9790 CALLB_CPR_SAFE_BEGIN(&cpr
);
9791 (void) cv_timedwait_idle(&l2arc_feed_thr_cv
,
9792 &l2arc_feed_thr_lock
, next
);
9793 CALLB_CPR_SAFE_END(&cpr
, &l2arc_feed_thr_lock
);
9794 next
= ddi_get_lbolt() + hz
;
9797 * Quick check for L2ARC devices.
9799 mutex_enter(&l2arc_dev_mtx
);
9800 if (l2arc_ndev
== 0) {
9801 mutex_exit(&l2arc_dev_mtx
);
9804 mutex_exit(&l2arc_dev_mtx
);
9805 begin
= ddi_get_lbolt();
9808 * This selects the next l2arc device to write to, and in
9809 * doing so the next spa to feed from: dev->l2ad_spa. This
9810 * will return NULL if there are now no l2arc devices or if
9811 * they are all faulted.
9813 * If a device is returned, its spa's config lock is also
9814 * held to prevent device removal. l2arc_dev_get_next()
9815 * will grab and release l2arc_dev_mtx.
9817 if ((dev
= l2arc_dev_get_next()) == NULL
)
9820 spa
= dev
->l2ad_spa
;
9821 ASSERT3P(spa
, !=, NULL
);
9824 * If the pool is read-only then force the feed thread to
9825 * sleep a little longer.
9827 if (!spa_writeable(spa
)) {
9828 next
= ddi_get_lbolt() + 5 * l2arc_feed_secs
* hz
;
9829 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9834 * Avoid contributing to memory pressure.
9836 if (l2arc_hdr_limit_reached()) {
9837 ARCSTAT_BUMP(arcstat_l2_abort_lowmem
);
9838 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9842 ARCSTAT_BUMP(arcstat_l2_feeds
);
9844 size
= l2arc_write_size(dev
);
9847 * Evict L2ARC buffers that will be overwritten.
9849 l2arc_evict(dev
, size
, B_FALSE
);
9852 * Write ARC buffers.
9854 wrote
= l2arc_write_buffers(spa
, dev
, size
);
9857 * Calculate interval between writes.
9859 next
= l2arc_write_interval(begin
, size
, wrote
);
9860 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9862 spl_fstrans_unmark(cookie
);
9864 l2arc_thread_exit
= 0;
9865 cv_broadcast(&l2arc_feed_thr_cv
);
9866 CALLB_CPR_EXIT(&cpr
); /* drops l2arc_feed_thr_lock */
9871 l2arc_vdev_present(vdev_t
*vd
)
9873 return (l2arc_vdev_get(vd
) != NULL
);
9877 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9878 * the vdev_t isn't an L2ARC device.
9881 l2arc_vdev_get(vdev_t
*vd
)
9885 mutex_enter(&l2arc_dev_mtx
);
9886 for (dev
= list_head(l2arc_dev_list
); dev
!= NULL
;
9887 dev
= list_next(l2arc_dev_list
, dev
)) {
9888 if (dev
->l2ad_vdev
== vd
)
9891 mutex_exit(&l2arc_dev_mtx
);
9897 l2arc_rebuild_dev(l2arc_dev_t
*dev
, boolean_t reopen
)
9899 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9900 uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
9901 spa_t
*spa
= dev
->l2ad_spa
;
9904 * The L2ARC has to hold at least the payload of one log block for
9905 * them to be restored (persistent L2ARC). The payload of a log block
9906 * depends on the amount of its log entries. We always write log blocks
9907 * with 1022 entries. How many of them are committed or restored depends
9908 * on the size of the L2ARC device. Thus the maximum payload of
9909 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9910 * is less than that, we reduce the amount of committed and restored
9911 * log entries per block so as to enable persistence.
9913 if (dev
->l2ad_end
< l2arc_rebuild_blocks_min_l2size
) {
9914 dev
->l2ad_log_entries
= 0;
9916 dev
->l2ad_log_entries
= MIN((dev
->l2ad_end
-
9917 dev
->l2ad_start
) >> SPA_MAXBLOCKSHIFT
,
9918 L2ARC_LOG_BLK_MAX_ENTRIES
);
9922 * Read the device header, if an error is returned do not rebuild L2ARC.
9924 if (l2arc_dev_hdr_read(dev
) == 0 && dev
->l2ad_log_entries
> 0) {
9926 * If we are onlining a cache device (vdev_reopen) that was
9927 * still present (l2arc_vdev_present()) and rebuild is enabled,
9928 * we should evict all ARC buffers and pointers to log blocks
9929 * and reclaim their space before restoring its contents to
9933 if (!l2arc_rebuild_enabled
) {
9936 l2arc_evict(dev
, 0, B_TRUE
);
9937 /* start a new log block */
9938 dev
->l2ad_log_ent_idx
= 0;
9939 dev
->l2ad_log_blk_payload_asize
= 0;
9940 dev
->l2ad_log_blk_payload_start
= 0;
9944 * Just mark the device as pending for a rebuild. We won't
9945 * be starting a rebuild in line here as it would block pool
9946 * import. Instead spa_load_impl will hand that off to an
9947 * async task which will call l2arc_spa_rebuild_start.
9949 dev
->l2ad_rebuild
= B_TRUE
;
9950 } else if (spa_writeable(spa
)) {
9952 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9953 * otherwise create a new header. We zero out the memory holding
9954 * the header to reset dh_start_lbps. If we TRIM the whole
9955 * device the new header will be written by
9956 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9957 * trim_state in the header too. When reading the header, if
9958 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9959 * we opt to TRIM the whole device again.
9961 if (l2arc_trim_ahead
> 0) {
9962 dev
->l2ad_trim_all
= B_TRUE
;
9964 memset(l2dhdr
, 0, l2dhdr_asize
);
9965 l2arc_dev_hdr_update(dev
);
9971 * Add a vdev for use by the L2ARC. By this point the spa has already
9972 * validated the vdev and opened it.
9975 l2arc_add_vdev(spa_t
*spa
, vdev_t
*vd
)
9977 l2arc_dev_t
*adddev
;
9978 uint64_t l2dhdr_asize
;
9980 ASSERT(!l2arc_vdev_present(vd
));
9983 * Create a new l2arc device entry.
9985 adddev
= vmem_zalloc(sizeof (l2arc_dev_t
), KM_SLEEP
);
9986 adddev
->l2ad_spa
= spa
;
9987 adddev
->l2ad_vdev
= vd
;
9988 /* leave extra size for an l2arc device header */
9989 l2dhdr_asize
= adddev
->l2ad_dev_hdr_asize
=
9990 MAX(sizeof (*adddev
->l2ad_dev_hdr
), 1 << vd
->vdev_ashift
);
9991 adddev
->l2ad_start
= VDEV_LABEL_START_SIZE
+ l2dhdr_asize
;
9992 adddev
->l2ad_end
= VDEV_LABEL_START_SIZE
+ vdev_get_min_asize(vd
);
9993 ASSERT3U(adddev
->l2ad_start
, <, adddev
->l2ad_end
);
9994 adddev
->l2ad_hand
= adddev
->l2ad_start
;
9995 adddev
->l2ad_evict
= adddev
->l2ad_start
;
9996 adddev
->l2ad_first
= B_TRUE
;
9997 adddev
->l2ad_writing
= B_FALSE
;
9998 adddev
->l2ad_trim_all
= B_FALSE
;
9999 list_link_init(&adddev
->l2ad_node
);
10000 adddev
->l2ad_dev_hdr
= kmem_zalloc(l2dhdr_asize
, KM_SLEEP
);
10002 mutex_init(&adddev
->l2ad_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
10004 * This is a list of all ARC buffers that are still valid on the
10007 list_create(&adddev
->l2ad_buflist
, sizeof (arc_buf_hdr_t
),
10008 offsetof(arc_buf_hdr_t
, b_l2hdr
.b_l2node
));
10011 * This is a list of pointers to log blocks that are still present
10014 list_create(&adddev
->l2ad_lbptr_list
, sizeof (l2arc_lb_ptr_buf_t
),
10015 offsetof(l2arc_lb_ptr_buf_t
, node
));
10017 vdev_space_update(vd
, 0, 0, adddev
->l2ad_end
- adddev
->l2ad_hand
);
10018 zfs_refcount_create(&adddev
->l2ad_alloc
);
10019 zfs_refcount_create(&adddev
->l2ad_lb_asize
);
10020 zfs_refcount_create(&adddev
->l2ad_lb_count
);
10023 * Decide if dev is eligible for L2ARC rebuild or whole device
10024 * trimming. This has to happen before the device is added in the
10025 * cache device list and l2arc_dev_mtx is released. Otherwise
10026 * l2arc_feed_thread() might already start writing on the
10029 l2arc_rebuild_dev(adddev
, B_FALSE
);
10032 * Add device to global list
10034 mutex_enter(&l2arc_dev_mtx
);
10035 list_insert_head(l2arc_dev_list
, adddev
);
10036 atomic_inc_64(&l2arc_ndev
);
10037 mutex_exit(&l2arc_dev_mtx
);
10041 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
10042 * in case of onlining a cache device.
10045 l2arc_rebuild_vdev(vdev_t
*vd
, boolean_t reopen
)
10047 l2arc_dev_t
*dev
= NULL
;
10049 dev
= l2arc_vdev_get(vd
);
10050 ASSERT3P(dev
, !=, NULL
);
10053 * In contrast to l2arc_add_vdev() we do not have to worry about
10054 * l2arc_feed_thread() invalidating previous content when onlining a
10055 * cache device. The device parameters (l2ad*) are not cleared when
10056 * offlining the device and writing new buffers will not invalidate
10057 * all previous content. In worst case only buffers that have not had
10058 * their log block written to the device will be lost.
10059 * When onlining the cache device (ie offline->online without exporting
10060 * the pool in between) this happens:
10061 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
10063 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
10064 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
10065 * is set to B_TRUE we might write additional buffers to the device.
10067 l2arc_rebuild_dev(dev
, reopen
);
10071 * Remove a vdev from the L2ARC.
10074 l2arc_remove_vdev(vdev_t
*vd
)
10076 l2arc_dev_t
*remdev
= NULL
;
10079 * Find the device by vdev
10081 remdev
= l2arc_vdev_get(vd
);
10082 ASSERT3P(remdev
, !=, NULL
);
10085 * Cancel any ongoing or scheduled rebuild.
10087 mutex_enter(&l2arc_rebuild_thr_lock
);
10088 if (remdev
->l2ad_rebuild_began
== B_TRUE
) {
10089 remdev
->l2ad_rebuild_cancel
= B_TRUE
;
10090 while (remdev
->l2ad_rebuild
== B_TRUE
)
10091 cv_wait(&l2arc_rebuild_thr_cv
, &l2arc_rebuild_thr_lock
);
10093 mutex_exit(&l2arc_rebuild_thr_lock
);
10096 * Remove device from global list
10098 mutex_enter(&l2arc_dev_mtx
);
10099 list_remove(l2arc_dev_list
, remdev
);
10100 l2arc_dev_last
= NULL
; /* may have been invalidated */
10101 atomic_dec_64(&l2arc_ndev
);
10102 mutex_exit(&l2arc_dev_mtx
);
10105 * Clear all buflists and ARC references. L2ARC device flush.
10107 l2arc_evict(remdev
, 0, B_TRUE
);
10108 list_destroy(&remdev
->l2ad_buflist
);
10109 ASSERT(list_is_empty(&remdev
->l2ad_lbptr_list
));
10110 list_destroy(&remdev
->l2ad_lbptr_list
);
10111 mutex_destroy(&remdev
->l2ad_mtx
);
10112 zfs_refcount_destroy(&remdev
->l2ad_alloc
);
10113 zfs_refcount_destroy(&remdev
->l2ad_lb_asize
);
10114 zfs_refcount_destroy(&remdev
->l2ad_lb_count
);
10115 kmem_free(remdev
->l2ad_dev_hdr
, remdev
->l2ad_dev_hdr_asize
);
10116 vmem_free(remdev
, sizeof (l2arc_dev_t
));
10122 l2arc_thread_exit
= 0;
10125 mutex_init(&l2arc_feed_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
10126 cv_init(&l2arc_feed_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
10127 mutex_init(&l2arc_rebuild_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
10128 cv_init(&l2arc_rebuild_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
10129 mutex_init(&l2arc_dev_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
10130 mutex_init(&l2arc_free_on_write_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
10132 l2arc_dev_list
= &L2ARC_dev_list
;
10133 l2arc_free_on_write
= &L2ARC_free_on_write
;
10134 list_create(l2arc_dev_list
, sizeof (l2arc_dev_t
),
10135 offsetof(l2arc_dev_t
, l2ad_node
));
10136 list_create(l2arc_free_on_write
, sizeof (l2arc_data_free_t
),
10137 offsetof(l2arc_data_free_t
, l2df_list_node
));
10143 mutex_destroy(&l2arc_feed_thr_lock
);
10144 cv_destroy(&l2arc_feed_thr_cv
);
10145 mutex_destroy(&l2arc_rebuild_thr_lock
);
10146 cv_destroy(&l2arc_rebuild_thr_cv
);
10147 mutex_destroy(&l2arc_dev_mtx
);
10148 mutex_destroy(&l2arc_free_on_write_mtx
);
10150 list_destroy(l2arc_dev_list
);
10151 list_destroy(l2arc_free_on_write
);
10157 if (!(spa_mode_global
& SPA_MODE_WRITE
))
10160 (void) thread_create(NULL
, 0, l2arc_feed_thread
, NULL
, 0, &p0
,
10161 TS_RUN
, defclsyspri
);
10167 if (!(spa_mode_global
& SPA_MODE_WRITE
))
10170 mutex_enter(&l2arc_feed_thr_lock
);
10171 cv_signal(&l2arc_feed_thr_cv
); /* kick thread out of startup */
10172 l2arc_thread_exit
= 1;
10173 while (l2arc_thread_exit
!= 0)
10174 cv_wait(&l2arc_feed_thr_cv
, &l2arc_feed_thr_lock
);
10175 mutex_exit(&l2arc_feed_thr_lock
);
10179 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10180 * be called after pool import from the spa async thread, since starting
10181 * these threads directly from spa_import() will make them part of the
10182 * "zpool import" context and delay process exit (and thus pool import).
10185 l2arc_spa_rebuild_start(spa_t
*spa
)
10187 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
10190 * Locate the spa's l2arc devices and kick off rebuild threads.
10192 for (int i
= 0; i
< spa
->spa_l2cache
.sav_count
; i
++) {
10194 l2arc_vdev_get(spa
->spa_l2cache
.sav_vdevs
[i
]);
10196 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10199 mutex_enter(&l2arc_rebuild_thr_lock
);
10200 if (dev
->l2ad_rebuild
&& !dev
->l2ad_rebuild_cancel
) {
10201 dev
->l2ad_rebuild_began
= B_TRUE
;
10202 (void) thread_create(NULL
, 0, l2arc_dev_rebuild_thread
,
10203 dev
, 0, &p0
, TS_RUN
, minclsyspri
);
10205 mutex_exit(&l2arc_rebuild_thr_lock
);
10210 * Main entry point for L2ARC rebuilding.
10212 static __attribute__((noreturn
)) void
10213 l2arc_dev_rebuild_thread(void *arg
)
10215 l2arc_dev_t
*dev
= arg
;
10217 VERIFY(!dev
->l2ad_rebuild_cancel
);
10218 VERIFY(dev
->l2ad_rebuild
);
10219 (void) l2arc_rebuild(dev
);
10220 mutex_enter(&l2arc_rebuild_thr_lock
);
10221 dev
->l2ad_rebuild_began
= B_FALSE
;
10222 dev
->l2ad_rebuild
= B_FALSE
;
10223 mutex_exit(&l2arc_rebuild_thr_lock
);
10229 * This function implements the actual L2ARC metadata rebuild. It:
10230 * starts reading the log block chain and restores each block's contents
10231 * to memory (reconstructing arc_buf_hdr_t's).
10233 * Operation stops under any of the following conditions:
10235 * 1) We reach the end of the log block chain.
10236 * 2) We encounter *any* error condition (cksum errors, io errors)
10239 l2arc_rebuild(l2arc_dev_t
*dev
)
10241 vdev_t
*vd
= dev
->l2ad_vdev
;
10242 spa_t
*spa
= vd
->vdev_spa
;
10244 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10245 l2arc_log_blk_phys_t
*this_lb
, *next_lb
;
10246 zio_t
*this_io
= NULL
, *next_io
= NULL
;
10247 l2arc_log_blkptr_t lbps
[2];
10248 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
10249 boolean_t lock_held
;
10251 this_lb
= vmem_zalloc(sizeof (*this_lb
), KM_SLEEP
);
10252 next_lb
= vmem_zalloc(sizeof (*next_lb
), KM_SLEEP
);
10255 * We prevent device removal while issuing reads to the device,
10256 * then during the rebuilding phases we drop this lock again so
10257 * that a spa_unload or device remove can be initiated - this is
10258 * safe, because the spa will signal us to stop before removing
10259 * our device and wait for us to stop.
10261 spa_config_enter(spa
, SCL_L2ARC
, vd
, RW_READER
);
10262 lock_held
= B_TRUE
;
10265 * Retrieve the persistent L2ARC device state.
10266 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10268 dev
->l2ad_evict
= MAX(l2dhdr
->dh_evict
, dev
->l2ad_start
);
10269 dev
->l2ad_hand
= MAX(l2dhdr
->dh_start_lbps
[0].lbp_daddr
+
10270 L2BLK_GET_PSIZE((&l2dhdr
->dh_start_lbps
[0])->lbp_prop
),
10272 dev
->l2ad_first
= !!(l2dhdr
->dh_flags
& L2ARC_DEV_HDR_EVICT_FIRST
);
10274 vd
->vdev_trim_action_time
= l2dhdr
->dh_trim_action_time
;
10275 vd
->vdev_trim_state
= l2dhdr
->dh_trim_state
;
10278 * In case the zfs module parameter l2arc_rebuild_enabled is false
10279 * we do not start the rebuild process.
10281 if (!l2arc_rebuild_enabled
)
10284 /* Prepare the rebuild process */
10285 memcpy(lbps
, l2dhdr
->dh_start_lbps
, sizeof (lbps
));
10287 /* Start the rebuild process */
10289 if (!l2arc_log_blkptr_valid(dev
, &lbps
[0]))
10292 if ((err
= l2arc_log_blk_read(dev
, &lbps
[0], &lbps
[1],
10293 this_lb
, next_lb
, this_io
, &next_io
)) != 0)
10297 * Our memory pressure valve. If the system is running low
10298 * on memory, rather than swamping memory with new ARC buf
10299 * hdrs, we opt not to rebuild the L2ARC. At this point,
10300 * however, we have already set up our L2ARC dev to chain in
10301 * new metadata log blocks, so the user may choose to offline/
10302 * online the L2ARC dev at a later time (or re-import the pool)
10303 * to reconstruct it (when there's less memory pressure).
10305 if (l2arc_hdr_limit_reached()) {
10306 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem
);
10307 cmn_err(CE_NOTE
, "System running low on memory, "
10308 "aborting L2ARC rebuild.");
10309 err
= SET_ERROR(ENOMEM
);
10313 spa_config_exit(spa
, SCL_L2ARC
, vd
);
10314 lock_held
= B_FALSE
;
10317 * Now that we know that the next_lb checks out alright, we
10318 * can start reconstruction from this log block.
10319 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10321 uint64_t asize
= L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
10322 l2arc_log_blk_restore(dev
, this_lb
, asize
);
10325 * log block restored, include its pointer in the list of
10326 * pointers to log blocks present in the L2ARC device.
10328 lb_ptr_buf
= kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t
), KM_SLEEP
);
10329 lb_ptr_buf
->lb_ptr
= kmem_zalloc(sizeof (l2arc_log_blkptr_t
),
10331 memcpy(lb_ptr_buf
->lb_ptr
, &lbps
[0],
10332 sizeof (l2arc_log_blkptr_t
));
10333 mutex_enter(&dev
->l2ad_mtx
);
10334 list_insert_tail(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
10335 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, asize
);
10336 ARCSTAT_BUMP(arcstat_l2_log_blk_count
);
10337 zfs_refcount_add_many(&dev
->l2ad_lb_asize
, asize
, lb_ptr_buf
);
10338 zfs_refcount_add(&dev
->l2ad_lb_count
, lb_ptr_buf
);
10339 mutex_exit(&dev
->l2ad_mtx
);
10340 vdev_space_update(vd
, asize
, 0, 0);
10343 * Protection against loops of log blocks:
10345 * l2ad_hand l2ad_evict
10347 * l2ad_start |=======================================| l2ad_end
10348 * -----|||----|||---|||----|||
10350 * ---|||---|||----|||---|||
10353 * In this situation the pointer of log block (4) passes
10354 * l2arc_log_blkptr_valid() but the log block should not be
10355 * restored as it is overwritten by the payload of log block
10356 * (0). Only log blocks (0)-(3) should be restored. We check
10357 * whether l2ad_evict lies in between the payload starting
10358 * offset of the next log block (lbps[1].lbp_payload_start)
10359 * and the payload starting offset of the present log block
10360 * (lbps[0].lbp_payload_start). If true and this isn't the
10361 * first pass, we are looping from the beginning and we should
10364 if (l2arc_range_check_overlap(lbps
[1].lbp_payload_start
,
10365 lbps
[0].lbp_payload_start
, dev
->l2ad_evict
) &&
10369 kpreempt(KPREEMPT_SYNC
);
10371 mutex_enter(&l2arc_rebuild_thr_lock
);
10372 if (dev
->l2ad_rebuild_cancel
) {
10373 dev
->l2ad_rebuild
= B_FALSE
;
10374 cv_signal(&l2arc_rebuild_thr_cv
);
10375 mutex_exit(&l2arc_rebuild_thr_lock
);
10376 err
= SET_ERROR(ECANCELED
);
10379 mutex_exit(&l2arc_rebuild_thr_lock
);
10380 if (spa_config_tryenter(spa
, SCL_L2ARC
, vd
,
10382 lock_held
= B_TRUE
;
10386 * L2ARC config lock held by somebody in writer,
10387 * possibly due to them trying to remove us. They'll
10388 * likely to want us to shut down, so after a little
10389 * delay, we check l2ad_rebuild_cancel and retry
10396 * Continue with the next log block.
10399 lbps
[1] = this_lb
->lb_prev_lbp
;
10400 PTR_SWAP(this_lb
, next_lb
);
10405 if (this_io
!= NULL
)
10406 l2arc_log_blk_fetch_abort(this_io
);
10408 if (next_io
!= NULL
)
10409 l2arc_log_blk_fetch_abort(next_io
);
10410 vmem_free(this_lb
, sizeof (*this_lb
));
10411 vmem_free(next_lb
, sizeof (*next_lb
));
10413 if (!l2arc_rebuild_enabled
) {
10414 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10416 } else if (err
== 0 && zfs_refcount_count(&dev
->l2ad_lb_count
) > 0) {
10417 ARCSTAT_BUMP(arcstat_l2_rebuild_success
);
10418 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10419 "successful, restored %llu blocks",
10420 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10421 } else if (err
== 0 && zfs_refcount_count(&dev
->l2ad_lb_count
) == 0) {
10423 * No error but also nothing restored, meaning the lbps array
10424 * in the device header points to invalid/non-present log
10425 * blocks. Reset the header.
10427 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10428 "no valid log blocks");
10429 memset(l2dhdr
, 0, dev
->l2ad_dev_hdr_asize
);
10430 l2arc_dev_hdr_update(dev
);
10431 } else if (err
== ECANCELED
) {
10433 * In case the rebuild was canceled do not log to spa history
10434 * log as the pool may be in the process of being removed.
10436 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10437 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10438 } else if (err
!= 0) {
10439 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10440 "aborted, restored %llu blocks",
10441 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10445 spa_config_exit(spa
, SCL_L2ARC
, vd
);
10451 * Attempts to read the device header on the provided L2ARC device and writes
10452 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10453 * error code is returned.
10456 l2arc_dev_hdr_read(l2arc_dev_t
*dev
)
10460 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10461 const uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
10464 guid
= spa_guid(dev
->l2ad_vdev
->vdev_spa
);
10466 abd
= abd_get_from_buf(l2dhdr
, l2dhdr_asize
);
10468 err
= zio_wait(zio_read_phys(NULL
, dev
->l2ad_vdev
,
10469 VDEV_LABEL_START_SIZE
, l2dhdr_asize
, abd
,
10470 ZIO_CHECKSUM_LABEL
, NULL
, NULL
, ZIO_PRIORITY_SYNC_READ
,
10471 ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_CANFAIL
|
10472 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
|
10473 ZIO_FLAG_SPECULATIVE
, B_FALSE
));
10478 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors
);
10479 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10480 "vdev guid: %llu", err
,
10481 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10485 if (l2dhdr
->dh_magic
== BSWAP_64(L2ARC_DEV_HDR_MAGIC
))
10486 byteswap_uint64_array(l2dhdr
, sizeof (*l2dhdr
));
10488 if (l2dhdr
->dh_magic
!= L2ARC_DEV_HDR_MAGIC
||
10489 l2dhdr
->dh_spa_guid
!= guid
||
10490 l2dhdr
->dh_vdev_guid
!= dev
->l2ad_vdev
->vdev_guid
||
10491 l2dhdr
->dh_version
!= L2ARC_PERSISTENT_VERSION
||
10492 l2dhdr
->dh_log_entries
!= dev
->l2ad_log_entries
||
10493 l2dhdr
->dh_end
!= dev
->l2ad_end
||
10494 !l2arc_range_check_overlap(dev
->l2ad_start
, dev
->l2ad_end
,
10495 l2dhdr
->dh_evict
) ||
10496 (l2dhdr
->dh_trim_state
!= VDEV_TRIM_COMPLETE
&&
10497 l2arc_trim_ahead
> 0)) {
10499 * Attempt to rebuild a device containing no actual dev hdr
10500 * or containing a header from some other pool or from another
10501 * version of persistent L2ARC.
10503 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported
);
10504 return (SET_ERROR(ENOTSUP
));
10511 * Reads L2ARC log blocks from storage and validates their contents.
10513 * This function implements a simple fetcher to make sure that while
10514 * we're processing one buffer the L2ARC is already fetching the next
10515 * one in the chain.
10517 * The arguments this_lp and next_lp point to the current and next log block
10518 * address in the block chain. Similarly, this_lb and next_lb hold the
10519 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10521 * The `this_io' and `next_io' arguments are used for block fetching.
10522 * When issuing the first blk IO during rebuild, you should pass NULL for
10523 * `this_io'. This function will then issue a sync IO to read the block and
10524 * also issue an async IO to fetch the next block in the block chain. The
10525 * fetched IO is returned in `next_io'. On subsequent calls to this
10526 * function, pass the value returned in `next_io' from the previous call
10527 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10528 * Prior to the call, you should initialize your `next_io' pointer to be
10529 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10531 * On success, this function returns 0, otherwise it returns an appropriate
10532 * error code. On error the fetching IO is aborted and cleared before
10533 * returning from this function. Therefore, if we return `success', the
10534 * caller can assume that we have taken care of cleanup of fetch IOs.
10537 l2arc_log_blk_read(l2arc_dev_t
*dev
,
10538 const l2arc_log_blkptr_t
*this_lbp
, const l2arc_log_blkptr_t
*next_lbp
,
10539 l2arc_log_blk_phys_t
*this_lb
, l2arc_log_blk_phys_t
*next_lb
,
10540 zio_t
*this_io
, zio_t
**next_io
)
10547 ASSERT(this_lbp
!= NULL
&& next_lbp
!= NULL
);
10548 ASSERT(this_lb
!= NULL
&& next_lb
!= NULL
);
10549 ASSERT(next_io
!= NULL
&& *next_io
== NULL
);
10550 ASSERT(l2arc_log_blkptr_valid(dev
, this_lbp
));
10553 * Check to see if we have issued the IO for this log block in a
10554 * previous run. If not, this is the first call, so issue it now.
10556 if (this_io
== NULL
) {
10557 this_io
= l2arc_log_blk_fetch(dev
->l2ad_vdev
, this_lbp
,
10562 * Peek to see if we can start issuing the next IO immediately.
10564 if (l2arc_log_blkptr_valid(dev
, next_lbp
)) {
10566 * Start issuing IO for the next log block early - this
10567 * should help keep the L2ARC device busy while we
10568 * decompress and restore this log block.
10570 *next_io
= l2arc_log_blk_fetch(dev
->l2ad_vdev
, next_lbp
,
10574 /* Wait for the IO to read this log block to complete */
10575 if ((err
= zio_wait(this_io
)) != 0) {
10576 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors
);
10577 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10578 "offset: %llu, vdev guid: %llu", err
,
10579 (u_longlong_t
)this_lbp
->lbp_daddr
,
10580 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10585 * Make sure the buffer checks out.
10586 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10588 asize
= L2BLK_GET_PSIZE((this_lbp
)->lbp_prop
);
10589 fletcher_4_native(this_lb
, asize
, NULL
, &cksum
);
10590 if (!ZIO_CHECKSUM_EQUAL(cksum
, this_lbp
->lbp_cksum
)) {
10591 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors
);
10592 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10593 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10594 (u_longlong_t
)this_lbp
->lbp_daddr
,
10595 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
,
10596 (u_longlong_t
)dev
->l2ad_hand
,
10597 (u_longlong_t
)dev
->l2ad_evict
);
10598 err
= SET_ERROR(ECKSUM
);
10602 /* Now we can take our time decoding this buffer */
10603 switch (L2BLK_GET_COMPRESS((this_lbp
)->lbp_prop
)) {
10604 case ZIO_COMPRESS_OFF
:
10606 case ZIO_COMPRESS_LZ4
:
10607 abd
= abd_alloc_for_io(asize
, B_TRUE
);
10608 abd_copy_from_buf_off(abd
, this_lb
, 0, asize
);
10609 if ((err
= zio_decompress_data(
10610 L2BLK_GET_COMPRESS((this_lbp
)->lbp_prop
),
10611 abd
, this_lb
, asize
, sizeof (*this_lb
), NULL
)) != 0) {
10612 err
= SET_ERROR(EINVAL
);
10617 err
= SET_ERROR(EINVAL
);
10620 if (this_lb
->lb_magic
== BSWAP_64(L2ARC_LOG_BLK_MAGIC
))
10621 byteswap_uint64_array(this_lb
, sizeof (*this_lb
));
10622 if (this_lb
->lb_magic
!= L2ARC_LOG_BLK_MAGIC
) {
10623 err
= SET_ERROR(EINVAL
);
10627 /* Abort an in-flight fetch I/O in case of error */
10628 if (err
!= 0 && *next_io
!= NULL
) {
10629 l2arc_log_blk_fetch_abort(*next_io
);
10638 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10639 * entries which only contain an l2arc hdr, essentially restoring the
10640 * buffers to their L2ARC evicted state. This function also updates space
10641 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10644 l2arc_log_blk_restore(l2arc_dev_t
*dev
, const l2arc_log_blk_phys_t
*lb
,
10647 uint64_t size
= 0, asize
= 0;
10648 uint64_t log_entries
= dev
->l2ad_log_entries
;
10651 * Usually arc_adapt() is called only for data, not headers, but
10652 * since we may allocate significant amount of memory here, let ARC
10655 arc_adapt(log_entries
* HDR_L2ONLY_SIZE
, arc_l2c_only
);
10657 for (int i
= log_entries
- 1; i
>= 0; i
--) {
10659 * Restore goes in the reverse temporal direction to preserve
10660 * correct temporal ordering of buffers in the l2ad_buflist.
10661 * l2arc_hdr_restore also does a list_insert_tail instead of
10662 * list_insert_head on the l2ad_buflist:
10664 * LIST l2ad_buflist LIST
10665 * HEAD <------ (time) ------ TAIL
10666 * direction +-----+-----+-----+-----+-----+ direction
10667 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10668 * fill +-----+-----+-----+-----+-----+
10672 * l2arc_feed_thread l2arc_rebuild
10673 * will place new bufs here restores bufs here
10675 * During l2arc_rebuild() the device is not used by
10676 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10678 size
+= L2BLK_GET_LSIZE((&lb
->lb_entries
[i
])->le_prop
);
10679 asize
+= vdev_psize_to_asize(dev
->l2ad_vdev
,
10680 L2BLK_GET_PSIZE((&lb
->lb_entries
[i
])->le_prop
));
10681 l2arc_hdr_restore(&lb
->lb_entries
[i
], dev
);
10685 * Record rebuild stats:
10686 * size Logical size of restored buffers in the L2ARC
10687 * asize Aligned size of restored buffers in the L2ARC
10689 ARCSTAT_INCR(arcstat_l2_rebuild_size
, size
);
10690 ARCSTAT_INCR(arcstat_l2_rebuild_asize
, asize
);
10691 ARCSTAT_INCR(arcstat_l2_rebuild_bufs
, log_entries
);
10692 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize
, lb_asize
);
10693 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio
, asize
/ lb_asize
);
10694 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks
);
10698 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10699 * into a state indicating that it has been evicted to L2ARC.
10702 l2arc_hdr_restore(const l2arc_log_ent_phys_t
*le
, l2arc_dev_t
*dev
)
10704 arc_buf_hdr_t
*hdr
, *exists
;
10705 kmutex_t
*hash_lock
;
10706 arc_buf_contents_t type
= L2BLK_GET_TYPE((le
)->le_prop
);
10710 * Do all the allocation before grabbing any locks, this lets us
10711 * sleep if memory is full and we don't have to deal with failed
10714 hdr
= arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le
)->le_prop
), type
,
10715 dev
, le
->le_dva
, le
->le_daddr
,
10716 L2BLK_GET_PSIZE((le
)->le_prop
), le
->le_birth
,
10717 L2BLK_GET_COMPRESS((le
)->le_prop
), le
->le_complevel
,
10718 L2BLK_GET_PROTECTED((le
)->le_prop
),
10719 L2BLK_GET_PREFETCH((le
)->le_prop
),
10720 L2BLK_GET_STATE((le
)->le_prop
));
10721 asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
10722 L2BLK_GET_PSIZE((le
)->le_prop
));
10725 * vdev_space_update() has to be called before arc_hdr_destroy() to
10726 * avoid underflow since the latter also calls vdev_space_update().
10728 l2arc_hdr_arcstats_increment(hdr
);
10729 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10731 mutex_enter(&dev
->l2ad_mtx
);
10732 list_insert_tail(&dev
->l2ad_buflist
, hdr
);
10733 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
), hdr
);
10734 mutex_exit(&dev
->l2ad_mtx
);
10736 exists
= buf_hash_insert(hdr
, &hash_lock
);
10738 /* Buffer was already cached, no need to restore it. */
10739 arc_hdr_destroy(hdr
);
10741 * If the buffer is already cached, check whether it has
10742 * L2ARC metadata. If not, enter them and update the flag.
10743 * This is important is case of onlining a cache device, since
10744 * we previously evicted all L2ARC metadata from ARC.
10746 if (!HDR_HAS_L2HDR(exists
)) {
10747 arc_hdr_set_flags(exists
, ARC_FLAG_HAS_L2HDR
);
10748 exists
->b_l2hdr
.b_dev
= dev
;
10749 exists
->b_l2hdr
.b_daddr
= le
->le_daddr
;
10750 exists
->b_l2hdr
.b_arcs_state
=
10751 L2BLK_GET_STATE((le
)->le_prop
);
10752 mutex_enter(&dev
->l2ad_mtx
);
10753 list_insert_tail(&dev
->l2ad_buflist
, exists
);
10754 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
10755 arc_hdr_size(exists
), exists
);
10756 mutex_exit(&dev
->l2ad_mtx
);
10757 l2arc_hdr_arcstats_increment(exists
);
10758 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10760 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached
);
10763 mutex_exit(hash_lock
);
10767 * Starts an asynchronous read IO to read a log block. This is used in log
10768 * block reconstruction to start reading the next block before we are done
10769 * decoding and reconstructing the current block, to keep the l2arc device
10770 * nice and hot with read IO to process.
10771 * The returned zio will contain a newly allocated memory buffers for the IO
10772 * data which should then be freed by the caller once the zio is no longer
10773 * needed (i.e. due to it having completed). If you wish to abort this
10774 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10775 * care of disposing of the allocated buffers correctly.
10778 l2arc_log_blk_fetch(vdev_t
*vd
, const l2arc_log_blkptr_t
*lbp
,
10779 l2arc_log_blk_phys_t
*lb
)
10783 l2arc_read_callback_t
*cb
;
10785 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10786 asize
= L2BLK_GET_PSIZE((lbp
)->lbp_prop
);
10787 ASSERT(asize
<= sizeof (l2arc_log_blk_phys_t
));
10789 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
), KM_SLEEP
);
10790 cb
->l2rcb_abd
= abd_get_from_buf(lb
, asize
);
10791 pio
= zio_root(vd
->vdev_spa
, l2arc_blk_fetch_done
, cb
,
10792 ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
|
10793 ZIO_FLAG_DONT_RETRY
);
10794 (void) zio_nowait(zio_read_phys(pio
, vd
, lbp
->lbp_daddr
, asize
,
10795 cb
->l2rcb_abd
, ZIO_CHECKSUM_OFF
, NULL
, NULL
,
10796 ZIO_PRIORITY_ASYNC_READ
, ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_CANFAIL
|
10797 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
, B_FALSE
));
10803 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10804 * buffers allocated for it.
10807 l2arc_log_blk_fetch_abort(zio_t
*zio
)
10809 (void) zio_wait(zio
);
10813 * Creates a zio to update the device header on an l2arc device.
10816 l2arc_dev_hdr_update(l2arc_dev_t
*dev
)
10818 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10819 const uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
10823 VERIFY(spa_config_held(dev
->l2ad_spa
, SCL_STATE_ALL
, RW_READER
));
10825 l2dhdr
->dh_magic
= L2ARC_DEV_HDR_MAGIC
;
10826 l2dhdr
->dh_version
= L2ARC_PERSISTENT_VERSION
;
10827 l2dhdr
->dh_spa_guid
= spa_guid(dev
->l2ad_vdev
->vdev_spa
);
10828 l2dhdr
->dh_vdev_guid
= dev
->l2ad_vdev
->vdev_guid
;
10829 l2dhdr
->dh_log_entries
= dev
->l2ad_log_entries
;
10830 l2dhdr
->dh_evict
= dev
->l2ad_evict
;
10831 l2dhdr
->dh_start
= dev
->l2ad_start
;
10832 l2dhdr
->dh_end
= dev
->l2ad_end
;
10833 l2dhdr
->dh_lb_asize
= zfs_refcount_count(&dev
->l2ad_lb_asize
);
10834 l2dhdr
->dh_lb_count
= zfs_refcount_count(&dev
->l2ad_lb_count
);
10835 l2dhdr
->dh_flags
= 0;
10836 l2dhdr
->dh_trim_action_time
= dev
->l2ad_vdev
->vdev_trim_action_time
;
10837 l2dhdr
->dh_trim_state
= dev
->l2ad_vdev
->vdev_trim_state
;
10838 if (dev
->l2ad_first
)
10839 l2dhdr
->dh_flags
|= L2ARC_DEV_HDR_EVICT_FIRST
;
10841 abd
= abd_get_from_buf(l2dhdr
, l2dhdr_asize
);
10843 err
= zio_wait(zio_write_phys(NULL
, dev
->l2ad_vdev
,
10844 VDEV_LABEL_START_SIZE
, l2dhdr_asize
, abd
, ZIO_CHECKSUM_LABEL
, NULL
,
10845 NULL
, ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_CANFAIL
, B_FALSE
));
10850 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10851 "vdev guid: %llu", err
,
10852 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10857 * Commits a log block to the L2ARC device. This routine is invoked from
10858 * l2arc_write_buffers when the log block fills up.
10859 * This function allocates some memory to temporarily hold the serialized
10860 * buffer to be written. This is then released in l2arc_write_done.
10863 l2arc_log_blk_commit(l2arc_dev_t
*dev
, zio_t
*pio
, l2arc_write_callback_t
*cb
)
10865 l2arc_log_blk_phys_t
*lb
= &dev
->l2ad_log_blk
;
10866 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10867 uint64_t psize
, asize
;
10869 l2arc_lb_abd_buf_t
*abd_buf
;
10871 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
10873 VERIFY3S(dev
->l2ad_log_ent_idx
, ==, dev
->l2ad_log_entries
);
10875 tmpbuf
= zio_buf_alloc(sizeof (*lb
));
10876 abd_buf
= zio_buf_alloc(sizeof (*abd_buf
));
10877 abd_buf
->abd
= abd_get_from_buf(lb
, sizeof (*lb
));
10878 lb_ptr_buf
= kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t
), KM_SLEEP
);
10879 lb_ptr_buf
->lb_ptr
= kmem_zalloc(sizeof (l2arc_log_blkptr_t
), KM_SLEEP
);
10881 /* link the buffer into the block chain */
10882 lb
->lb_prev_lbp
= l2dhdr
->dh_start_lbps
[1];
10883 lb
->lb_magic
= L2ARC_LOG_BLK_MAGIC
;
10886 * l2arc_log_blk_commit() may be called multiple times during a single
10887 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10888 * so we can free them in l2arc_write_done() later on.
10890 list_insert_tail(&cb
->l2wcb_abd_list
, abd_buf
);
10892 /* try to compress the buffer */
10893 psize
= zio_compress_data(ZIO_COMPRESS_LZ4
,
10894 abd_buf
->abd
, tmpbuf
, sizeof (*lb
), 0);
10896 /* a log block is never entirely zero */
10897 ASSERT(psize
!= 0);
10898 asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
10899 ASSERT(asize
<= sizeof (*lb
));
10902 * Update the start log block pointer in the device header to point
10903 * to the log block we're about to write.
10905 l2dhdr
->dh_start_lbps
[1] = l2dhdr
->dh_start_lbps
[0];
10906 l2dhdr
->dh_start_lbps
[0].lbp_daddr
= dev
->l2ad_hand
;
10907 l2dhdr
->dh_start_lbps
[0].lbp_payload_asize
=
10908 dev
->l2ad_log_blk_payload_asize
;
10909 l2dhdr
->dh_start_lbps
[0].lbp_payload_start
=
10910 dev
->l2ad_log_blk_payload_start
;
10912 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
, sizeof (*lb
));
10914 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
, asize
);
10915 L2BLK_SET_CHECKSUM(
10916 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10917 ZIO_CHECKSUM_FLETCHER_4
);
10918 if (asize
< sizeof (*lb
)) {
10919 /* compression succeeded */
10920 memset(tmpbuf
+ psize
, 0, asize
- psize
);
10921 L2BLK_SET_COMPRESS(
10922 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10925 /* compression failed */
10926 memcpy(tmpbuf
, lb
, sizeof (*lb
));
10927 L2BLK_SET_COMPRESS(
10928 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10932 /* checksum what we're about to write */
10933 fletcher_4_native(tmpbuf
, asize
, NULL
,
10934 &l2dhdr
->dh_start_lbps
[0].lbp_cksum
);
10936 abd_free(abd_buf
->abd
);
10938 /* perform the write itself */
10939 abd_buf
->abd
= abd_get_from_buf(tmpbuf
, sizeof (*lb
));
10940 abd_take_ownership_of_buf(abd_buf
->abd
, B_TRUE
);
10941 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
, dev
->l2ad_hand
,
10942 asize
, abd_buf
->abd
, ZIO_CHECKSUM_OFF
, NULL
, NULL
,
10943 ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_CANFAIL
, B_FALSE
);
10944 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
, zio_t
*, wzio
);
10945 (void) zio_nowait(wzio
);
10947 dev
->l2ad_hand
+= asize
;
10949 * Include the committed log block's pointer in the list of pointers
10950 * to log blocks present in the L2ARC device.
10952 memcpy(lb_ptr_buf
->lb_ptr
, &l2dhdr
->dh_start_lbps
[0],
10953 sizeof (l2arc_log_blkptr_t
));
10954 mutex_enter(&dev
->l2ad_mtx
);
10955 list_insert_head(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
10956 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, asize
);
10957 ARCSTAT_BUMP(arcstat_l2_log_blk_count
);
10958 zfs_refcount_add_many(&dev
->l2ad_lb_asize
, asize
, lb_ptr_buf
);
10959 zfs_refcount_add(&dev
->l2ad_lb_count
, lb_ptr_buf
);
10960 mutex_exit(&dev
->l2ad_mtx
);
10961 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10963 /* bump the kstats */
10964 ARCSTAT_INCR(arcstat_l2_write_bytes
, asize
);
10965 ARCSTAT_BUMP(arcstat_l2_log_blk_writes
);
10966 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize
, asize
);
10967 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio
,
10968 dev
->l2ad_log_blk_payload_asize
/ asize
);
10970 /* start a new log block */
10971 dev
->l2ad_log_ent_idx
= 0;
10972 dev
->l2ad_log_blk_payload_asize
= 0;
10973 dev
->l2ad_log_blk_payload_start
= 0;
10977 * Validates an L2ARC log block address to make sure that it can be read
10978 * from the provided L2ARC device.
10981 l2arc_log_blkptr_valid(l2arc_dev_t
*dev
, const l2arc_log_blkptr_t
*lbp
)
10983 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10984 uint64_t asize
= L2BLK_GET_PSIZE((lbp
)->lbp_prop
);
10985 uint64_t end
= lbp
->lbp_daddr
+ asize
- 1;
10986 uint64_t start
= lbp
->lbp_payload_start
;
10987 boolean_t evicted
= B_FALSE
;
10990 * A log block is valid if all of the following conditions are true:
10991 * - it fits entirely (including its payload) between l2ad_start and
10993 * - it has a valid size
10994 * - neither the log block itself nor part of its payload was evicted
10995 * by l2arc_evict():
10997 * l2ad_hand l2ad_evict
11002 * l2ad_start ============================================ l2ad_end
11003 * --------------------------||||
11010 l2arc_range_check_overlap(start
, end
, dev
->l2ad_hand
) ||
11011 l2arc_range_check_overlap(start
, end
, dev
->l2ad_evict
) ||
11012 l2arc_range_check_overlap(dev
->l2ad_hand
, dev
->l2ad_evict
, start
) ||
11013 l2arc_range_check_overlap(dev
->l2ad_hand
, dev
->l2ad_evict
, end
);
11015 return (start
>= dev
->l2ad_start
&& end
<= dev
->l2ad_end
&&
11016 asize
> 0 && asize
<= sizeof (l2arc_log_blk_phys_t
) &&
11017 (!evicted
|| dev
->l2ad_first
));
11021 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
11022 * the device. The buffer being inserted must be present in L2ARC.
11023 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
11024 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
11027 l2arc_log_blk_insert(l2arc_dev_t
*dev
, const arc_buf_hdr_t
*hdr
)
11029 l2arc_log_blk_phys_t
*lb
= &dev
->l2ad_log_blk
;
11030 l2arc_log_ent_phys_t
*le
;
11032 if (dev
->l2ad_log_entries
== 0)
11035 int index
= dev
->l2ad_log_ent_idx
++;
11037 ASSERT3S(index
, <, dev
->l2ad_log_entries
);
11038 ASSERT(HDR_HAS_L2HDR(hdr
));
11040 le
= &lb
->lb_entries
[index
];
11041 memset(le
, 0, sizeof (*le
));
11042 le
->le_dva
= hdr
->b_dva
;
11043 le
->le_birth
= hdr
->b_birth
;
11044 le
->le_daddr
= hdr
->b_l2hdr
.b_daddr
;
11046 dev
->l2ad_log_blk_payload_start
= le
->le_daddr
;
11047 L2BLK_SET_LSIZE((le
)->le_prop
, HDR_GET_LSIZE(hdr
));
11048 L2BLK_SET_PSIZE((le
)->le_prop
, HDR_GET_PSIZE(hdr
));
11049 L2BLK_SET_COMPRESS((le
)->le_prop
, HDR_GET_COMPRESS(hdr
));
11050 le
->le_complevel
= hdr
->b_complevel
;
11051 L2BLK_SET_TYPE((le
)->le_prop
, hdr
->b_type
);
11052 L2BLK_SET_PROTECTED((le
)->le_prop
, !!(HDR_PROTECTED(hdr
)));
11053 L2BLK_SET_PREFETCH((le
)->le_prop
, !!(HDR_PREFETCH(hdr
)));
11054 L2BLK_SET_STATE((le
)->le_prop
, hdr
->b_l1hdr
.b_state
->arcs_state
);
11056 dev
->l2ad_log_blk_payload_asize
+= vdev_psize_to_asize(dev
->l2ad_vdev
,
11057 HDR_GET_PSIZE(hdr
));
11059 return (dev
->l2ad_log_ent_idx
== dev
->l2ad_log_entries
);
11063 * Checks whether a given L2ARC device address sits in a time-sequential
11064 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
11065 * just do a range comparison, we need to handle the situation in which the
11066 * range wraps around the end of the L2ARC device. Arguments:
11067 * bottom -- Lower end of the range to check (written to earlier).
11068 * top -- Upper end of the range to check (written to later).
11069 * check -- The address for which we want to determine if it sits in
11070 * between the top and bottom.
11072 * The 3-way conditional below represents the following cases:
11074 * bottom < top : Sequentially ordered case:
11075 * <check>--------+-------------------+
11076 * | (overlap here?) |
11078 * |---------------<bottom>============<top>--------------|
11080 * bottom > top: Looped-around case:
11081 * <check>--------+------------------+
11082 * | (overlap here?) |
11084 * |===============<top>---------------<bottom>===========|
11087 * +---------------+---------<check>
11089 * top == bottom : Just a single address comparison.
11092 l2arc_range_check_overlap(uint64_t bottom
, uint64_t top
, uint64_t check
)
11095 return (bottom
<= check
&& check
<= top
);
11096 else if (bottom
> top
)
11097 return (check
<= top
|| bottom
<= check
);
11099 return (check
== top
);
11102 EXPORT_SYMBOL(arc_buf_size
);
11103 EXPORT_SYMBOL(arc_write
);
11104 EXPORT_SYMBOL(arc_read
);
11105 EXPORT_SYMBOL(arc_buf_info
);
11106 EXPORT_SYMBOL(arc_getbuf_func
);
11107 EXPORT_SYMBOL(arc_add_prune_callback
);
11108 EXPORT_SYMBOL(arc_remove_prune_callback
);
11110 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min
, param_set_arc_min
,
11111 spl_param_get_u64
, ZMOD_RW
, "Minimum ARC size in bytes");
11113 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, max
, param_set_arc_max
,
11114 spl_param_get_u64
, ZMOD_RW
, "Maximum ARC size in bytes");
11116 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, meta_limit
, param_set_arc_u64
,
11117 spl_param_get_u64
, ZMOD_RW
, "Metadata limit for ARC size in bytes");
11119 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, meta_limit_percent
,
11120 param_set_arc_int
, param_get_uint
, ZMOD_RW
,
11121 "Percent of ARC size for ARC meta limit");
11123 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, meta_min
, param_set_arc_u64
,
11124 spl_param_get_u64
, ZMOD_RW
, "Minimum ARC metadata size in bytes");
11126 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_prune
, INT
, ZMOD_RW
,
11127 "Meta objects to scan for prune");
11129 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_adjust_restarts
, UINT
, ZMOD_RW
,
11130 "Limit number of restarts in arc_evict_meta");
11132 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_strategy
, UINT
, ZMOD_RW
,
11133 "Meta reclaim strategy");
11135 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, grow_retry
, param_set_arc_int
,
11136 param_get_uint
, ZMOD_RW
, "Seconds before growing ARC size");
11138 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, p_dampener_disable
, INT
, ZMOD_RW
,
11139 "Disable arc_p adapt dampener");
11141 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, shrink_shift
, param_set_arc_int
,
11142 param_get_uint
, ZMOD_RW
, "log2(fraction of ARC to reclaim)");
11144 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, pc_percent
, UINT
, ZMOD_RW
,
11145 "Percent of pagecache to reclaim ARC to");
11147 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, p_min_shift
, param_set_arc_int
,
11148 param_get_uint
, ZMOD_RW
, "arc_c shift to calc min/max arc_p");
11150 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, average_blocksize
, UINT
, ZMOD_RD
,
11151 "Target average block size");
11153 ZFS_MODULE_PARAM(zfs
, zfs_
, compressed_arc_enabled
, INT
, ZMOD_RW
,
11154 "Disable compressed ARC buffers");
11156 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min_prefetch_ms
, param_set_arc_int
,
11157 param_get_uint
, ZMOD_RW
, "Min life of prefetch block in ms");
11159 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min_prescient_prefetch_ms
,
11160 param_set_arc_int
, param_get_uint
, ZMOD_RW
,
11161 "Min life of prescient prefetched block in ms");
11163 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, write_max
, U64
, ZMOD_RW
,
11164 "Max write bytes per interval");
11166 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, write_boost
, U64
, ZMOD_RW
,
11167 "Extra write bytes during device warmup");
11169 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, headroom
, U64
, ZMOD_RW
,
11170 "Number of max device writes to precache");
11172 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, headroom_boost
, U64
, ZMOD_RW
,
11173 "Compressed l2arc_headroom multiplier");
11175 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, trim_ahead
, U64
, ZMOD_RW
,
11176 "TRIM ahead L2ARC write size multiplier");
11178 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_secs
, U64
, ZMOD_RW
,
11179 "Seconds between L2ARC writing");
11181 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_min_ms
, U64
, ZMOD_RW
,
11182 "Min feed interval in milliseconds");
11184 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, noprefetch
, INT
, ZMOD_RW
,
11185 "Skip caching prefetched buffers");
11187 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_again
, INT
, ZMOD_RW
,
11188 "Turbo L2ARC warmup");
11190 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, norw
, INT
, ZMOD_RW
,
11191 "No reads during writes");
11193 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, meta_percent
, UINT
, ZMOD_RW
,
11194 "Percent of ARC size allowed for L2ARC-only headers");
11196 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, rebuild_enabled
, INT
, ZMOD_RW
,
11197 "Rebuild the L2ARC when importing a pool");
11199 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, rebuild_blocks_min_l2size
, U64
, ZMOD_RW
,
11200 "Min size in bytes to write rebuild log blocks in L2ARC");
11202 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, mfuonly
, INT
, ZMOD_RW
,
11203 "Cache only MFU data from ARC into L2ARC");
11205 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, exclude_special
, INT
, ZMOD_RW
,
11206 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11208 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, lotsfree_percent
, param_set_arc_int
,
11209 param_get_uint
, ZMOD_RW
, "System free memory I/O throttle in bytes");
11211 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, sys_free
, param_set_arc_u64
,
11212 spl_param_get_u64
, ZMOD_RW
, "System free memory target size in bytes");
11214 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, dnode_limit
, param_set_arc_u64
,
11215 spl_param_get_u64
, ZMOD_RW
, "Minimum bytes of dnodes in ARC");
11217 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, dnode_limit_percent
,
11218 param_set_arc_int
, param_get_uint
, ZMOD_RW
,
11219 "Percent of ARC meta buffers for dnodes");
11221 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, dnode_reduce_percent
, UINT
, ZMOD_RW
,
11222 "Percentage of excess dnodes to try to unpin");
11224 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, eviction_pct
, UINT
, ZMOD_RW
,
11225 "When full, ARC allocation waits for eviction of this % of alloc size");
11227 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, evict_batch_limit
, UINT
, ZMOD_RW
,
11228 "The number of headers to evict per sublist before moving to the next");
11230 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, prune_task_threads
, INT
, ZMOD_RW
,
11231 "Number of arc_prune threads");