Improve arc_read() error reporting
[zfs.git] / module / zfs / arc.c
blobaa806706de293a8c7417c52c6857259e5163897f
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
38 * DVA-based Adjustable Replacement Cache
40 * While much of the theory of operation used here is
41 * based on the self-tuning, low overhead replacement cache
42 * presented by Megiddo and Modha at FAST 2003, there are some
43 * significant differences:
45 * 1. The Megiddo and Modha model assumes any page is evictable.
46 * Pages in its cache cannot be "locked" into memory. This makes
47 * the eviction algorithm simple: evict the last page in the list.
48 * This also make the performance characteristics easy to reason
49 * about. Our cache is not so simple. At any given moment, some
50 * subset of the blocks in the cache are un-evictable because we
51 * have handed out a reference to them. Blocks are only evictable
52 * when there are no external references active. This makes
53 * eviction far more problematic: we choose to evict the evictable
54 * blocks that are the "lowest" in the list.
56 * There are times when it is not possible to evict the requested
57 * space. In these circumstances we are unable to adjust the cache
58 * size. To prevent the cache growing unbounded at these times we
59 * implement a "cache throttle" that slows the flow of new data
60 * into the cache until we can make space available.
62 * 2. The Megiddo and Modha model assumes a fixed cache size.
63 * Pages are evicted when the cache is full and there is a cache
64 * miss. Our model has a variable sized cache. It grows with
65 * high use, but also tries to react to memory pressure from the
66 * operating system: decreasing its size when system memory is
67 * tight.
69 * 3. The Megiddo and Modha model assumes a fixed page size. All
70 * elements of the cache are therefore exactly the same size. So
71 * when adjusting the cache size following a cache miss, its simply
72 * a matter of choosing a single page to evict. In our model, we
73 * have variable sized cache blocks (ranging from 512 bytes to
74 * 128K bytes). We therefore choose a set of blocks to evict to make
75 * space for a cache miss that approximates as closely as possible
76 * the space used by the new block.
78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79 * by N. Megiddo & D. Modha, FAST 2003
83 * The locking model:
85 * A new reference to a cache buffer can be obtained in two
86 * ways: 1) via a hash table lookup using the DVA as a key,
87 * or 2) via one of the ARC lists. The arc_read() interface
88 * uses method 1, while the internal ARC algorithms for
89 * adjusting the cache use method 2. We therefore provide two
90 * types of locks: 1) the hash table lock array, and 2) the
91 * ARC list locks.
93 * Buffers do not have their own mutexes, rather they rely on the
94 * hash table mutexes for the bulk of their protection (i.e. most
95 * fields in the arc_buf_hdr_t are protected by these mutexes).
97 * buf_hash_find() returns the appropriate mutex (held) when it
98 * locates the requested buffer in the hash table. It returns
99 * NULL for the mutex if the buffer was not in the table.
101 * buf_hash_remove() expects the appropriate hash mutex to be
102 * already held before it is invoked.
104 * Each ARC state also has a mutex which is used to protect the
105 * buffer list associated with the state. When attempting to
106 * obtain a hash table lock while holding an ARC list lock you
107 * must use: mutex_tryenter() to avoid deadlock. Also note that
108 * the active state mutex must be held before the ghost state mutex.
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
116 * be safely evicted.
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
131 * ARC operation:
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154 * compressed ARC functionality is disabled, the b_pabd will point to an
155 * uncompressed version of the on-disk data.
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164 * "overhead_size" kstat.
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
178 * buffer).
180 * arc_buf_hdr_t
181 * +-----------+
182 * | fields |
183 * | common to |
184 * | L1- and |
185 * | L2ARC |
186 * +-----------+
187 * | l2arc_buf_hdr_t
188 * | |
189 * +-----------+
190 * | l1arc_buf_hdr_t
191 * | | arc_buf_t
192 * | b_buf +------------>+-----------+ arc_buf_t
193 * | b_pabd +-+ |b_next +---->+-----------+
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
199 * compressed | | | |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
203 * data | |
204 * | |
205 * +------+
207 * When a consumer reads a block, the ARC must first look to see if the
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
218 * The diagram below shows an example of an uncompressed ARC hdr that is
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
222 * arc_buf_hdr_t
223 * +-----------+
224 * | |
225 * | |
226 * | |
227 * +-----------+
228 * l2arc_buf_hdr_t| |
229 * | |
230 * +-----------+
231 * l1arc_buf_hdr_t| |
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
235 * | b_pabd +-+ |---------| |b_next +-->NULL
236 * +-----------+ | | | +---------+
237 * | |b_data +-+ | |
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
240 * | | | |
241 * uncompressed | | | |
242 * data +------+ | |
243 * ^ +->+------+ |
244 * | uncompressed | | |
245 * | data | | |
246 * | +------+ |
247 * +---------------------------------+
249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250 * since the physical block is about to be rewritten. The new data contents
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will memcpy the transformed on-disk block into
254 * a newly allocated b_pabd. Writes are always done into buffers which have
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262 * that when compressed ARC is enabled that the L2ARC blocks are identical
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
266 * ARC is disabled, then the L2ARC's block must be transformed to look
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
283 * cannot be shared.
286 #include <sys/spa.h>
287 #include <sys/zio.h>
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
292 #include <sys/arc.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
298 #include <sys/abd.h>
299 #include <sys/zil.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
314 #ifndef _KERNEL
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch = B_FALSE;
317 #endif
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
324 static zthr_t *arc_reap_zthr;
327 * This thread's job is to keep arc_size under arc_c, by calling
328 * arc_evict(), which improves arc_is_overflowing().
330 static zthr_t *arc_evict_zthr;
331 static arc_buf_hdr_t **arc_state_evict_markers;
332 static int arc_state_evict_marker_count;
334 static kmutex_t arc_evict_lock;
335 static boolean_t arc_evict_needed = B_FALSE;
336 static clock_t arc_last_uncached_flush;
339 * Count of bytes evicted since boot.
341 static uint64_t arc_evict_count;
344 * List of arc_evict_waiter_t's, representing threads waiting for the
345 * arc_evict_count to reach specific values.
347 static list_t arc_evict_waiters;
350 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
351 * the requested amount of data to be evicted. For example, by default for
352 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
353 * Since this is above 100%, it ensures that progress is made towards getting
354 * arc_size under arc_c. Since this is finite, it ensures that allocations
355 * can still happen, even during the potentially long time that arc_size is
356 * more than arc_c.
358 static uint_t zfs_arc_eviction_pct = 200;
361 * The number of headers to evict in arc_evict_state_impl() before
362 * dropping the sublist lock and evicting from another sublist. A lower
363 * value means we're more likely to evict the "correct" header (i.e. the
364 * oldest header in the arc state), but comes with higher overhead
365 * (i.e. more invocations of arc_evict_state_impl()).
367 static uint_t zfs_arc_evict_batch_limit = 10;
369 /* number of seconds before growing cache again */
370 uint_t arc_grow_retry = 5;
373 * Minimum time between calls to arc_kmem_reap_soon().
375 static const int arc_kmem_cache_reap_retry_ms = 1000;
377 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
378 static int zfs_arc_overflow_shift = 8;
380 /* shift of arc_c for calculating both min and max arc_p */
381 static uint_t arc_p_min_shift = 4;
383 /* log2(fraction of arc to reclaim) */
384 uint_t arc_shrink_shift = 7;
386 /* percent of pagecache to reclaim arc to */
387 #ifdef _KERNEL
388 uint_t zfs_arc_pc_percent = 0;
389 #endif
392 * log2(fraction of ARC which must be free to allow growing).
393 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
394 * when reading a new block into the ARC, we will evict an equal-sized block
395 * from the ARC.
397 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
398 * we will still not allow it to grow.
400 uint_t arc_no_grow_shift = 5;
404 * minimum lifespan of a prefetch block in clock ticks
405 * (initialized in arc_init())
407 static uint_t arc_min_prefetch_ms;
408 static uint_t arc_min_prescient_prefetch_ms;
411 * If this percent of memory is free, don't throttle.
413 uint_t arc_lotsfree_percent = 10;
416 * The arc has filled available memory and has now warmed up.
418 boolean_t arc_warm;
421 * These tunables are for performance analysis.
423 uint64_t zfs_arc_max = 0;
424 uint64_t zfs_arc_min = 0;
425 uint64_t zfs_arc_meta_limit = 0;
426 uint64_t zfs_arc_meta_min = 0;
427 static uint64_t zfs_arc_dnode_limit = 0;
428 static uint_t zfs_arc_dnode_reduce_percent = 10;
429 static uint_t zfs_arc_grow_retry = 0;
430 static uint_t zfs_arc_shrink_shift = 0;
431 static uint_t zfs_arc_p_min_shift = 0;
432 uint_t zfs_arc_average_blocksize = 8 * 1024; /* 8KB */
435 * ARC dirty data constraints for arc_tempreserve_space() throttle:
436 * * total dirty data limit
437 * * anon block dirty limit
438 * * each pool's anon allowance
440 static const unsigned long zfs_arc_dirty_limit_percent = 50;
441 static const unsigned long zfs_arc_anon_limit_percent = 25;
442 static const unsigned long zfs_arc_pool_dirty_percent = 20;
445 * Enable or disable compressed arc buffers.
447 int zfs_compressed_arc_enabled = B_TRUE;
450 * ARC will evict meta buffers that exceed arc_meta_limit. This
451 * tunable make arc_meta_limit adjustable for different workloads.
453 static uint64_t zfs_arc_meta_limit_percent = 75;
456 * Percentage that can be consumed by dnodes of ARC meta buffers.
458 static uint_t zfs_arc_dnode_limit_percent = 10;
461 * These tunables are Linux-specific
463 static uint64_t zfs_arc_sys_free = 0;
464 static uint_t zfs_arc_min_prefetch_ms = 0;
465 static uint_t zfs_arc_min_prescient_prefetch_ms = 0;
466 static int zfs_arc_p_dampener_disable = 1;
467 static uint_t zfs_arc_meta_prune = 10000;
468 static uint_t zfs_arc_meta_strategy = ARC_STRATEGY_META_BALANCED;
469 static uint_t zfs_arc_meta_adjust_restarts = 4096;
470 static uint_t zfs_arc_lotsfree_percent = 10;
473 * Number of arc_prune threads
475 static int zfs_arc_prune_task_threads = 1;
477 /* The 7 states: */
478 arc_state_t ARC_anon;
479 arc_state_t ARC_mru;
480 arc_state_t ARC_mru_ghost;
481 arc_state_t ARC_mfu;
482 arc_state_t ARC_mfu_ghost;
483 arc_state_t ARC_l2c_only;
484 arc_state_t ARC_uncached;
486 arc_stats_t arc_stats = {
487 { "hits", KSTAT_DATA_UINT64 },
488 { "iohits", KSTAT_DATA_UINT64 },
489 { "misses", KSTAT_DATA_UINT64 },
490 { "demand_data_hits", KSTAT_DATA_UINT64 },
491 { "demand_data_iohits", KSTAT_DATA_UINT64 },
492 { "demand_data_misses", KSTAT_DATA_UINT64 },
493 { "demand_metadata_hits", KSTAT_DATA_UINT64 },
494 { "demand_metadata_iohits", KSTAT_DATA_UINT64 },
495 { "demand_metadata_misses", KSTAT_DATA_UINT64 },
496 { "prefetch_data_hits", KSTAT_DATA_UINT64 },
497 { "prefetch_data_iohits", KSTAT_DATA_UINT64 },
498 { "prefetch_data_misses", KSTAT_DATA_UINT64 },
499 { "prefetch_metadata_hits", KSTAT_DATA_UINT64 },
500 { "prefetch_metadata_iohits", KSTAT_DATA_UINT64 },
501 { "prefetch_metadata_misses", KSTAT_DATA_UINT64 },
502 { "mru_hits", KSTAT_DATA_UINT64 },
503 { "mru_ghost_hits", KSTAT_DATA_UINT64 },
504 { "mfu_hits", KSTAT_DATA_UINT64 },
505 { "mfu_ghost_hits", KSTAT_DATA_UINT64 },
506 { "uncached_hits", KSTAT_DATA_UINT64 },
507 { "deleted", KSTAT_DATA_UINT64 },
508 { "mutex_miss", KSTAT_DATA_UINT64 },
509 { "access_skip", KSTAT_DATA_UINT64 },
510 { "evict_skip", KSTAT_DATA_UINT64 },
511 { "evict_not_enough", KSTAT_DATA_UINT64 },
512 { "evict_l2_cached", KSTAT_DATA_UINT64 },
513 { "evict_l2_eligible", KSTAT_DATA_UINT64 },
514 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64 },
515 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64 },
516 { "evict_l2_ineligible", KSTAT_DATA_UINT64 },
517 { "evict_l2_skip", KSTAT_DATA_UINT64 },
518 { "hash_elements", KSTAT_DATA_UINT64 },
519 { "hash_elements_max", KSTAT_DATA_UINT64 },
520 { "hash_collisions", KSTAT_DATA_UINT64 },
521 { "hash_chains", KSTAT_DATA_UINT64 },
522 { "hash_chain_max", KSTAT_DATA_UINT64 },
523 { "p", KSTAT_DATA_UINT64 },
524 { "c", KSTAT_DATA_UINT64 },
525 { "c_min", KSTAT_DATA_UINT64 },
526 { "c_max", KSTAT_DATA_UINT64 },
527 { "size", KSTAT_DATA_UINT64 },
528 { "compressed_size", KSTAT_DATA_UINT64 },
529 { "uncompressed_size", KSTAT_DATA_UINT64 },
530 { "overhead_size", KSTAT_DATA_UINT64 },
531 { "hdr_size", KSTAT_DATA_UINT64 },
532 { "data_size", KSTAT_DATA_UINT64 },
533 { "metadata_size", KSTAT_DATA_UINT64 },
534 { "dbuf_size", KSTAT_DATA_UINT64 },
535 { "dnode_size", KSTAT_DATA_UINT64 },
536 { "bonus_size", KSTAT_DATA_UINT64 },
537 #if defined(COMPAT_FREEBSD11)
538 { "other_size", KSTAT_DATA_UINT64 },
539 #endif
540 { "anon_size", KSTAT_DATA_UINT64 },
541 { "anon_evictable_data", KSTAT_DATA_UINT64 },
542 { "anon_evictable_metadata", KSTAT_DATA_UINT64 },
543 { "mru_size", KSTAT_DATA_UINT64 },
544 { "mru_evictable_data", KSTAT_DATA_UINT64 },
545 { "mru_evictable_metadata", KSTAT_DATA_UINT64 },
546 { "mru_ghost_size", KSTAT_DATA_UINT64 },
547 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64 },
548 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
549 { "mfu_size", KSTAT_DATA_UINT64 },
550 { "mfu_evictable_data", KSTAT_DATA_UINT64 },
551 { "mfu_evictable_metadata", KSTAT_DATA_UINT64 },
552 { "mfu_ghost_size", KSTAT_DATA_UINT64 },
553 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64 },
554 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64 },
555 { "uncached_size", KSTAT_DATA_UINT64 },
556 { "uncached_evictable_data", KSTAT_DATA_UINT64 },
557 { "uncached_evictable_metadata", KSTAT_DATA_UINT64 },
558 { "l2_hits", KSTAT_DATA_UINT64 },
559 { "l2_misses", KSTAT_DATA_UINT64 },
560 { "l2_prefetch_asize", KSTAT_DATA_UINT64 },
561 { "l2_mru_asize", KSTAT_DATA_UINT64 },
562 { "l2_mfu_asize", KSTAT_DATA_UINT64 },
563 { "l2_bufc_data_asize", KSTAT_DATA_UINT64 },
564 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64 },
565 { "l2_feeds", KSTAT_DATA_UINT64 },
566 { "l2_rw_clash", KSTAT_DATA_UINT64 },
567 { "l2_read_bytes", KSTAT_DATA_UINT64 },
568 { "l2_write_bytes", KSTAT_DATA_UINT64 },
569 { "l2_writes_sent", KSTAT_DATA_UINT64 },
570 { "l2_writes_done", KSTAT_DATA_UINT64 },
571 { "l2_writes_error", KSTAT_DATA_UINT64 },
572 { "l2_writes_lock_retry", KSTAT_DATA_UINT64 },
573 { "l2_evict_lock_retry", KSTAT_DATA_UINT64 },
574 { "l2_evict_reading", KSTAT_DATA_UINT64 },
575 { "l2_evict_l1cached", KSTAT_DATA_UINT64 },
576 { "l2_free_on_write", KSTAT_DATA_UINT64 },
577 { "l2_abort_lowmem", KSTAT_DATA_UINT64 },
578 { "l2_cksum_bad", KSTAT_DATA_UINT64 },
579 { "l2_io_error", KSTAT_DATA_UINT64 },
580 { "l2_size", KSTAT_DATA_UINT64 },
581 { "l2_asize", KSTAT_DATA_UINT64 },
582 { "l2_hdr_size", KSTAT_DATA_UINT64 },
583 { "l2_log_blk_writes", KSTAT_DATA_UINT64 },
584 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64 },
585 { "l2_log_blk_asize", KSTAT_DATA_UINT64 },
586 { "l2_log_blk_count", KSTAT_DATA_UINT64 },
587 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64 },
588 { "l2_rebuild_success", KSTAT_DATA_UINT64 },
589 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64 },
590 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64 },
591 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64 },
592 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64 },
593 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64 },
594 { "l2_rebuild_size", KSTAT_DATA_UINT64 },
595 { "l2_rebuild_asize", KSTAT_DATA_UINT64 },
596 { "l2_rebuild_bufs", KSTAT_DATA_UINT64 },
597 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64 },
598 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64 },
599 { "memory_throttle_count", KSTAT_DATA_UINT64 },
600 { "memory_direct_count", KSTAT_DATA_UINT64 },
601 { "memory_indirect_count", KSTAT_DATA_UINT64 },
602 { "memory_all_bytes", KSTAT_DATA_UINT64 },
603 { "memory_free_bytes", KSTAT_DATA_UINT64 },
604 { "memory_available_bytes", KSTAT_DATA_INT64 },
605 { "arc_no_grow", KSTAT_DATA_UINT64 },
606 { "arc_tempreserve", KSTAT_DATA_UINT64 },
607 { "arc_loaned_bytes", KSTAT_DATA_UINT64 },
608 { "arc_prune", KSTAT_DATA_UINT64 },
609 { "arc_meta_used", KSTAT_DATA_UINT64 },
610 { "arc_meta_limit", KSTAT_DATA_UINT64 },
611 { "arc_dnode_limit", KSTAT_DATA_UINT64 },
612 { "arc_meta_max", KSTAT_DATA_UINT64 },
613 { "arc_meta_min", KSTAT_DATA_UINT64 },
614 { "async_upgrade_sync", KSTAT_DATA_UINT64 },
615 { "predictive_prefetch", KSTAT_DATA_UINT64 },
616 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64 },
617 { "demand_iohit_predictive_prefetch", KSTAT_DATA_UINT64 },
618 { "prescient_prefetch", KSTAT_DATA_UINT64 },
619 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64 },
620 { "demand_iohit_prescient_prefetch", KSTAT_DATA_UINT64 },
621 { "arc_need_free", KSTAT_DATA_UINT64 },
622 { "arc_sys_free", KSTAT_DATA_UINT64 },
623 { "arc_raw_size", KSTAT_DATA_UINT64 },
624 { "cached_only_in_progress", KSTAT_DATA_UINT64 },
625 { "abd_chunk_waste_size", KSTAT_DATA_UINT64 },
628 arc_sums_t arc_sums;
630 #define ARCSTAT_MAX(stat, val) { \
631 uint64_t m; \
632 while ((val) > (m = arc_stats.stat.value.ui64) && \
633 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
634 continue; \
638 * We define a macro to allow ARC hits/misses to be easily broken down by
639 * two separate conditions, giving a total of four different subtypes for
640 * each of hits and misses (so eight statistics total).
642 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
643 if (cond1) { \
644 if (cond2) { \
645 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
646 } else { \
647 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
649 } else { \
650 if (cond2) { \
651 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
652 } else { \
653 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
658 * This macro allows us to use kstats as floating averages. Each time we
659 * update this kstat, we first factor it and the update value by
660 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
661 * average. This macro assumes that integer loads and stores are atomic, but
662 * is not safe for multiple writers updating the kstat in parallel (only the
663 * last writer's update will remain).
665 #define ARCSTAT_F_AVG_FACTOR 3
666 #define ARCSTAT_F_AVG(stat, value) \
667 do { \
668 uint64_t x = ARCSTAT(stat); \
669 x = x - x / ARCSTAT_F_AVG_FACTOR + \
670 (value) / ARCSTAT_F_AVG_FACTOR; \
671 ARCSTAT(stat) = x; \
672 } while (0)
674 static kstat_t *arc_ksp;
677 * There are several ARC variables that are critical to export as kstats --
678 * but we don't want to have to grovel around in the kstat whenever we wish to
679 * manipulate them. For these variables, we therefore define them to be in
680 * terms of the statistic variable. This assures that we are not introducing
681 * the possibility of inconsistency by having shadow copies of the variables,
682 * while still allowing the code to be readable.
684 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
685 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
686 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
687 /* max size for dnodes */
688 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit)
689 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
690 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
692 hrtime_t arc_growtime;
693 list_t arc_prune_list;
694 kmutex_t arc_prune_mtx;
695 taskq_t *arc_prune_taskq;
697 #define GHOST_STATE(state) \
698 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
699 (state) == arc_l2c_only)
701 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
702 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
703 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
704 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
705 #define HDR_PRESCIENT_PREFETCH(hdr) \
706 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
707 #define HDR_COMPRESSION_ENABLED(hdr) \
708 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
710 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
711 #define HDR_UNCACHED(hdr) ((hdr)->b_flags & ARC_FLAG_UNCACHED)
712 #define HDR_L2_READING(hdr) \
713 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
714 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
715 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
716 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
717 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
718 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
719 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
720 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
722 #define HDR_ISTYPE_METADATA(hdr) \
723 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
724 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
726 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
727 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
728 #define HDR_HAS_RABD(hdr) \
729 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
730 (hdr)->b_crypt_hdr.b_rabd != NULL)
731 #define HDR_ENCRYPTED(hdr) \
732 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
733 #define HDR_AUTHENTICATED(hdr) \
734 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
736 /* For storing compression mode in b_flags */
737 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
739 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
740 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
741 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
742 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
744 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
745 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
746 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
747 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
750 * Other sizes
753 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
754 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
755 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
758 * Hash table routines
761 #define BUF_LOCKS 2048
762 typedef struct buf_hash_table {
763 uint64_t ht_mask;
764 arc_buf_hdr_t **ht_table;
765 kmutex_t ht_locks[BUF_LOCKS] ____cacheline_aligned;
766 } buf_hash_table_t;
768 static buf_hash_table_t buf_hash_table;
770 #define BUF_HASH_INDEX(spa, dva, birth) \
771 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
772 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
773 #define HDR_LOCK(hdr) \
774 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
776 uint64_t zfs_crc64_table[256];
779 * Level 2 ARC
782 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
783 #define L2ARC_HEADROOM 2 /* num of writes */
786 * If we discover during ARC scan any buffers to be compressed, we boost
787 * our headroom for the next scanning cycle by this percentage multiple.
789 #define L2ARC_HEADROOM_BOOST 200
790 #define L2ARC_FEED_SECS 1 /* caching interval secs */
791 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
794 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
795 * and each of the state has two types: data and metadata.
797 #define L2ARC_FEED_TYPES 4
799 /* L2ARC Performance Tunables */
800 uint64_t l2arc_write_max = L2ARC_WRITE_SIZE; /* def max write size */
801 uint64_t l2arc_write_boost = L2ARC_WRITE_SIZE; /* extra warmup write */
802 uint64_t l2arc_headroom = L2ARC_HEADROOM; /* # of dev writes */
803 uint64_t l2arc_headroom_boost = L2ARC_HEADROOM_BOOST;
804 uint64_t l2arc_feed_secs = L2ARC_FEED_SECS; /* interval seconds */
805 uint64_t l2arc_feed_min_ms = L2ARC_FEED_MIN_MS; /* min interval msecs */
806 int l2arc_noprefetch = B_TRUE; /* don't cache prefetch bufs */
807 int l2arc_feed_again = B_TRUE; /* turbo warmup */
808 int l2arc_norw = B_FALSE; /* no reads during writes */
809 static uint_t l2arc_meta_percent = 33; /* limit on headers size */
812 * L2ARC Internals
814 static list_t L2ARC_dev_list; /* device list */
815 static list_t *l2arc_dev_list; /* device list pointer */
816 static kmutex_t l2arc_dev_mtx; /* device list mutex */
817 static l2arc_dev_t *l2arc_dev_last; /* last device used */
818 static list_t L2ARC_free_on_write; /* free after write buf list */
819 static list_t *l2arc_free_on_write; /* free after write list ptr */
820 static kmutex_t l2arc_free_on_write_mtx; /* mutex for list */
821 static uint64_t l2arc_ndev; /* number of devices */
823 typedef struct l2arc_read_callback {
824 arc_buf_hdr_t *l2rcb_hdr; /* read header */
825 blkptr_t l2rcb_bp; /* original blkptr */
826 zbookmark_phys_t l2rcb_zb; /* original bookmark */
827 int l2rcb_flags; /* original flags */
828 abd_t *l2rcb_abd; /* temporary buffer */
829 } l2arc_read_callback_t;
831 typedef struct l2arc_data_free {
832 /* protected by l2arc_free_on_write_mtx */
833 abd_t *l2df_abd;
834 size_t l2df_size;
835 arc_buf_contents_t l2df_type;
836 list_node_t l2df_list_node;
837 } l2arc_data_free_t;
839 typedef enum arc_fill_flags {
840 ARC_FILL_LOCKED = 1 << 0, /* hdr lock is held */
841 ARC_FILL_COMPRESSED = 1 << 1, /* fill with compressed data */
842 ARC_FILL_ENCRYPTED = 1 << 2, /* fill with encrypted data */
843 ARC_FILL_NOAUTH = 1 << 3, /* don't attempt to authenticate */
844 ARC_FILL_IN_PLACE = 1 << 4 /* fill in place (special case) */
845 } arc_fill_flags_t;
847 typedef enum arc_ovf_level {
848 ARC_OVF_NONE, /* ARC within target size. */
849 ARC_OVF_SOME, /* ARC is slightly overflowed. */
850 ARC_OVF_SEVERE /* ARC is severely overflowed. */
851 } arc_ovf_level_t;
853 static kmutex_t l2arc_feed_thr_lock;
854 static kcondvar_t l2arc_feed_thr_cv;
855 static uint8_t l2arc_thread_exit;
857 static kmutex_t l2arc_rebuild_thr_lock;
858 static kcondvar_t l2arc_rebuild_thr_cv;
860 enum arc_hdr_alloc_flags {
861 ARC_HDR_ALLOC_RDATA = 0x1,
862 ARC_HDR_DO_ADAPT = 0x2,
863 ARC_HDR_USE_RESERVE = 0x4,
864 ARC_HDR_ALLOC_LINEAR = 0x8,
868 static abd_t *arc_get_data_abd(arc_buf_hdr_t *, uint64_t, const void *, int);
869 static void *arc_get_data_buf(arc_buf_hdr_t *, uint64_t, const void *);
870 static void arc_get_data_impl(arc_buf_hdr_t *, uint64_t, const void *, int);
871 static void arc_free_data_abd(arc_buf_hdr_t *, abd_t *, uint64_t, const void *);
872 static void arc_free_data_buf(arc_buf_hdr_t *, void *, uint64_t, const void *);
873 static void arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size,
874 const void *tag);
875 static void arc_hdr_free_abd(arc_buf_hdr_t *, boolean_t);
876 static void arc_hdr_alloc_abd(arc_buf_hdr_t *, int);
877 static void arc_hdr_destroy(arc_buf_hdr_t *);
878 static void arc_access(arc_buf_hdr_t *, arc_flags_t, boolean_t);
879 static void arc_buf_watch(arc_buf_t *);
880 static void arc_change_state(arc_state_t *, arc_buf_hdr_t *);
882 static arc_buf_contents_t arc_buf_type(arc_buf_hdr_t *);
883 static uint32_t arc_bufc_to_flags(arc_buf_contents_t);
884 static inline void arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
885 static inline void arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags);
887 static boolean_t l2arc_write_eligible(uint64_t, arc_buf_hdr_t *);
888 static void l2arc_read_done(zio_t *);
889 static void l2arc_do_free_on_write(void);
890 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
891 boolean_t state_only);
893 #define l2arc_hdr_arcstats_increment(hdr) \
894 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
895 #define l2arc_hdr_arcstats_decrement(hdr) \
896 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
897 #define l2arc_hdr_arcstats_increment_state(hdr) \
898 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
899 #define l2arc_hdr_arcstats_decrement_state(hdr) \
900 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
903 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
904 * present on special vdevs are eligibile for caching in L2ARC. If
905 * set to 1, exclude dbufs on special vdevs from being cached to
906 * L2ARC.
908 int l2arc_exclude_special = 0;
911 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
912 * metadata and data are cached from ARC into L2ARC.
914 static int l2arc_mfuonly = 0;
917 * L2ARC TRIM
918 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
919 * the current write size (l2arc_write_max) we should TRIM if we
920 * have filled the device. It is defined as a percentage of the
921 * write size. If set to 100 we trim twice the space required to
922 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
923 * It also enables TRIM of the whole L2ARC device upon creation or
924 * addition to an existing pool or if the header of the device is
925 * invalid upon importing a pool or onlining a cache device. The
926 * default is 0, which disables TRIM on L2ARC altogether as it can
927 * put significant stress on the underlying storage devices. This
928 * will vary depending of how well the specific device handles
929 * these commands.
931 static uint64_t l2arc_trim_ahead = 0;
934 * Performance tuning of L2ARC persistence:
936 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
937 * an L2ARC device (either at pool import or later) will attempt
938 * to rebuild L2ARC buffer contents.
939 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
940 * whether log blocks are written to the L2ARC device. If the L2ARC
941 * device is less than 1GB, the amount of data l2arc_evict()
942 * evicts is significant compared to the amount of restored L2ARC
943 * data. In this case do not write log blocks in L2ARC in order
944 * not to waste space.
946 static int l2arc_rebuild_enabled = B_TRUE;
947 static uint64_t l2arc_rebuild_blocks_min_l2size = 1024 * 1024 * 1024;
949 /* L2ARC persistence rebuild control routines. */
950 void l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen);
951 static __attribute__((noreturn)) void l2arc_dev_rebuild_thread(void *arg);
952 static int l2arc_rebuild(l2arc_dev_t *dev);
954 /* L2ARC persistence read I/O routines. */
955 static int l2arc_dev_hdr_read(l2arc_dev_t *dev);
956 static int l2arc_log_blk_read(l2arc_dev_t *dev,
957 const l2arc_log_blkptr_t *this_lp, const l2arc_log_blkptr_t *next_lp,
958 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
959 zio_t *this_io, zio_t **next_io);
960 static zio_t *l2arc_log_blk_fetch(vdev_t *vd,
961 const l2arc_log_blkptr_t *lp, l2arc_log_blk_phys_t *lb);
962 static void l2arc_log_blk_fetch_abort(zio_t *zio);
964 /* L2ARC persistence block restoration routines. */
965 static void l2arc_log_blk_restore(l2arc_dev_t *dev,
966 const l2arc_log_blk_phys_t *lb, uint64_t lb_asize);
967 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t *le,
968 l2arc_dev_t *dev);
970 /* L2ARC persistence write I/O routines. */
971 static void l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio,
972 l2arc_write_callback_t *cb);
974 /* L2ARC persistence auxiliary routines. */
975 boolean_t l2arc_log_blkptr_valid(l2arc_dev_t *dev,
976 const l2arc_log_blkptr_t *lbp);
977 static boolean_t l2arc_log_blk_insert(l2arc_dev_t *dev,
978 const arc_buf_hdr_t *ab);
979 boolean_t l2arc_range_check_overlap(uint64_t bottom,
980 uint64_t top, uint64_t check);
981 static void l2arc_blk_fetch_done(zio_t *zio);
982 static inline uint64_t
983 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev);
986 * We use Cityhash for this. It's fast, and has good hash properties without
987 * requiring any large static buffers.
989 static uint64_t
990 buf_hash(uint64_t spa, const dva_t *dva, uint64_t birth)
992 return (cityhash4(spa, dva->dva_word[0], dva->dva_word[1], birth));
995 #define HDR_EMPTY(hdr) \
996 ((hdr)->b_dva.dva_word[0] == 0 && \
997 (hdr)->b_dva.dva_word[1] == 0)
999 #define HDR_EMPTY_OR_LOCKED(hdr) \
1000 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
1002 #define HDR_EQUAL(spa, dva, birth, hdr) \
1003 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
1004 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
1005 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
1007 static void
1008 buf_discard_identity(arc_buf_hdr_t *hdr)
1010 hdr->b_dva.dva_word[0] = 0;
1011 hdr->b_dva.dva_word[1] = 0;
1012 hdr->b_birth = 0;
1015 static arc_buf_hdr_t *
1016 buf_hash_find(uint64_t spa, const blkptr_t *bp, kmutex_t **lockp)
1018 const dva_t *dva = BP_IDENTITY(bp);
1019 uint64_t birth = BP_PHYSICAL_BIRTH(bp);
1020 uint64_t idx = BUF_HASH_INDEX(spa, dva, birth);
1021 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1022 arc_buf_hdr_t *hdr;
1024 mutex_enter(hash_lock);
1025 for (hdr = buf_hash_table.ht_table[idx]; hdr != NULL;
1026 hdr = hdr->b_hash_next) {
1027 if (HDR_EQUAL(spa, dva, birth, hdr)) {
1028 *lockp = hash_lock;
1029 return (hdr);
1032 mutex_exit(hash_lock);
1033 *lockp = NULL;
1034 return (NULL);
1038 * Insert an entry into the hash table. If there is already an element
1039 * equal to elem in the hash table, then the already existing element
1040 * will be returned and the new element will not be inserted.
1041 * Otherwise returns NULL.
1042 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1044 static arc_buf_hdr_t *
1045 buf_hash_insert(arc_buf_hdr_t *hdr, kmutex_t **lockp)
1047 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1048 kmutex_t *hash_lock = BUF_HASH_LOCK(idx);
1049 arc_buf_hdr_t *fhdr;
1050 uint32_t i;
1052 ASSERT(!DVA_IS_EMPTY(&hdr->b_dva));
1053 ASSERT(hdr->b_birth != 0);
1054 ASSERT(!HDR_IN_HASH_TABLE(hdr));
1056 if (lockp != NULL) {
1057 *lockp = hash_lock;
1058 mutex_enter(hash_lock);
1059 } else {
1060 ASSERT(MUTEX_HELD(hash_lock));
1063 for (fhdr = buf_hash_table.ht_table[idx], i = 0; fhdr != NULL;
1064 fhdr = fhdr->b_hash_next, i++) {
1065 if (HDR_EQUAL(hdr->b_spa, &hdr->b_dva, hdr->b_birth, fhdr))
1066 return (fhdr);
1069 hdr->b_hash_next = buf_hash_table.ht_table[idx];
1070 buf_hash_table.ht_table[idx] = hdr;
1071 arc_hdr_set_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1073 /* collect some hash table performance data */
1074 if (i > 0) {
1075 ARCSTAT_BUMP(arcstat_hash_collisions);
1076 if (i == 1)
1077 ARCSTAT_BUMP(arcstat_hash_chains);
1079 ARCSTAT_MAX(arcstat_hash_chain_max, i);
1081 uint64_t he = atomic_inc_64_nv(
1082 &arc_stats.arcstat_hash_elements.value.ui64);
1083 ARCSTAT_MAX(arcstat_hash_elements_max, he);
1085 return (NULL);
1088 static void
1089 buf_hash_remove(arc_buf_hdr_t *hdr)
1091 arc_buf_hdr_t *fhdr, **hdrp;
1092 uint64_t idx = BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth);
1094 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx)));
1095 ASSERT(HDR_IN_HASH_TABLE(hdr));
1097 hdrp = &buf_hash_table.ht_table[idx];
1098 while ((fhdr = *hdrp) != hdr) {
1099 ASSERT3P(fhdr, !=, NULL);
1100 hdrp = &fhdr->b_hash_next;
1102 *hdrp = hdr->b_hash_next;
1103 hdr->b_hash_next = NULL;
1104 arc_hdr_clear_flags(hdr, ARC_FLAG_IN_HASH_TABLE);
1106 /* collect some hash table performance data */
1107 atomic_dec_64(&arc_stats.arcstat_hash_elements.value.ui64);
1109 if (buf_hash_table.ht_table[idx] &&
1110 buf_hash_table.ht_table[idx]->b_hash_next == NULL)
1111 ARCSTAT_BUMPDOWN(arcstat_hash_chains);
1115 * Global data structures and functions for the buf kmem cache.
1118 static kmem_cache_t *hdr_full_cache;
1119 static kmem_cache_t *hdr_full_crypt_cache;
1120 static kmem_cache_t *hdr_l2only_cache;
1121 static kmem_cache_t *buf_cache;
1123 static void
1124 buf_fini(void)
1126 #if defined(_KERNEL)
1128 * Large allocations which do not require contiguous pages
1129 * should be using vmem_free() in the linux kernel\
1131 vmem_free(buf_hash_table.ht_table,
1132 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1133 #else
1134 kmem_free(buf_hash_table.ht_table,
1135 (buf_hash_table.ht_mask + 1) * sizeof (void *));
1136 #endif
1137 for (int i = 0; i < BUF_LOCKS; i++)
1138 mutex_destroy(BUF_HASH_LOCK(i));
1139 kmem_cache_destroy(hdr_full_cache);
1140 kmem_cache_destroy(hdr_full_crypt_cache);
1141 kmem_cache_destroy(hdr_l2only_cache);
1142 kmem_cache_destroy(buf_cache);
1146 * Constructor callback - called when the cache is empty
1147 * and a new buf is requested.
1149 static int
1150 hdr_full_cons(void *vbuf, void *unused, int kmflag)
1152 (void) unused, (void) kmflag;
1153 arc_buf_hdr_t *hdr = vbuf;
1155 memset(hdr, 0, HDR_FULL_SIZE);
1156 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
1157 cv_init(&hdr->b_l1hdr.b_cv, NULL, CV_DEFAULT, NULL);
1158 zfs_refcount_create(&hdr->b_l1hdr.b_refcnt);
1159 #ifdef ZFS_DEBUG
1160 mutex_init(&hdr->b_l1hdr.b_freeze_lock, NULL, MUTEX_DEFAULT, NULL);
1161 #endif
1162 multilist_link_init(&hdr->b_l1hdr.b_arc_node);
1163 list_link_init(&hdr->b_l2hdr.b_l2node);
1164 arc_space_consume(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1166 return (0);
1169 static int
1170 hdr_full_crypt_cons(void *vbuf, void *unused, int kmflag)
1172 (void) unused;
1173 arc_buf_hdr_t *hdr = vbuf;
1175 hdr_full_cons(vbuf, unused, kmflag);
1176 memset(&hdr->b_crypt_hdr, 0, sizeof (hdr->b_crypt_hdr));
1177 arc_space_consume(sizeof (hdr->b_crypt_hdr), ARC_SPACE_HDRS);
1179 return (0);
1182 static int
1183 hdr_l2only_cons(void *vbuf, void *unused, int kmflag)
1185 (void) unused, (void) kmflag;
1186 arc_buf_hdr_t *hdr = vbuf;
1188 memset(hdr, 0, HDR_L2ONLY_SIZE);
1189 arc_space_consume(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1191 return (0);
1194 static int
1195 buf_cons(void *vbuf, void *unused, int kmflag)
1197 (void) unused, (void) kmflag;
1198 arc_buf_t *buf = vbuf;
1200 memset(buf, 0, sizeof (arc_buf_t));
1201 arc_space_consume(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1203 return (0);
1207 * Destructor callback - called when a cached buf is
1208 * no longer required.
1210 static void
1211 hdr_full_dest(void *vbuf, void *unused)
1213 (void) unused;
1214 arc_buf_hdr_t *hdr = vbuf;
1216 ASSERT(HDR_EMPTY(hdr));
1217 cv_destroy(&hdr->b_l1hdr.b_cv);
1218 zfs_refcount_destroy(&hdr->b_l1hdr.b_refcnt);
1219 #ifdef ZFS_DEBUG
1220 mutex_destroy(&hdr->b_l1hdr.b_freeze_lock);
1221 #endif
1222 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
1223 arc_space_return(HDR_FULL_SIZE, ARC_SPACE_HDRS);
1226 static void
1227 hdr_full_crypt_dest(void *vbuf, void *unused)
1229 (void) vbuf, (void) unused;
1231 hdr_full_dest(vbuf, unused);
1232 arc_space_return(sizeof (((arc_buf_hdr_t *)NULL)->b_crypt_hdr),
1233 ARC_SPACE_HDRS);
1236 static void
1237 hdr_l2only_dest(void *vbuf, void *unused)
1239 (void) unused;
1240 arc_buf_hdr_t *hdr = vbuf;
1242 ASSERT(HDR_EMPTY(hdr));
1243 arc_space_return(HDR_L2ONLY_SIZE, ARC_SPACE_L2HDRS);
1246 static void
1247 buf_dest(void *vbuf, void *unused)
1249 (void) unused;
1250 (void) vbuf;
1252 arc_space_return(sizeof (arc_buf_t), ARC_SPACE_HDRS);
1255 static void
1256 buf_init(void)
1258 uint64_t *ct = NULL;
1259 uint64_t hsize = 1ULL << 12;
1260 int i, j;
1263 * The hash table is big enough to fill all of physical memory
1264 * with an average block size of zfs_arc_average_blocksize (default 8K).
1265 * By default, the table will take up
1266 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1268 while (hsize * zfs_arc_average_blocksize < arc_all_memory())
1269 hsize <<= 1;
1270 retry:
1271 buf_hash_table.ht_mask = hsize - 1;
1272 #if defined(_KERNEL)
1274 * Large allocations which do not require contiguous pages
1275 * should be using vmem_alloc() in the linux kernel
1277 buf_hash_table.ht_table =
1278 vmem_zalloc(hsize * sizeof (void*), KM_SLEEP);
1279 #else
1280 buf_hash_table.ht_table =
1281 kmem_zalloc(hsize * sizeof (void*), KM_NOSLEEP);
1282 #endif
1283 if (buf_hash_table.ht_table == NULL) {
1284 ASSERT(hsize > (1ULL << 8));
1285 hsize >>= 1;
1286 goto retry;
1289 hdr_full_cache = kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE,
1290 0, hdr_full_cons, hdr_full_dest, NULL, NULL, NULL, 0);
1291 hdr_full_crypt_cache = kmem_cache_create("arc_buf_hdr_t_full_crypt",
1292 HDR_FULL_CRYPT_SIZE, 0, hdr_full_crypt_cons, hdr_full_crypt_dest,
1293 NULL, NULL, NULL, 0);
1294 hdr_l2only_cache = kmem_cache_create("arc_buf_hdr_t_l2only",
1295 HDR_L2ONLY_SIZE, 0, hdr_l2only_cons, hdr_l2only_dest, NULL,
1296 NULL, NULL, 0);
1297 buf_cache = kmem_cache_create("arc_buf_t", sizeof (arc_buf_t),
1298 0, buf_cons, buf_dest, NULL, NULL, NULL, 0);
1300 for (i = 0; i < 256; i++)
1301 for (ct = zfs_crc64_table + i, *ct = i, j = 8; j > 0; j--)
1302 *ct = (*ct >> 1) ^ (-(*ct & 1) & ZFS_CRC64_POLY);
1304 for (i = 0; i < BUF_LOCKS; i++)
1305 mutex_init(BUF_HASH_LOCK(i), NULL, MUTEX_DEFAULT, NULL);
1308 #define ARC_MINTIME (hz>>4) /* 62 ms */
1311 * This is the size that the buf occupies in memory. If the buf is compressed,
1312 * it will correspond to the compressed size. You should use this method of
1313 * getting the buf size unless you explicitly need the logical size.
1315 uint64_t
1316 arc_buf_size(arc_buf_t *buf)
1318 return (ARC_BUF_COMPRESSED(buf) ?
1319 HDR_GET_PSIZE(buf->b_hdr) : HDR_GET_LSIZE(buf->b_hdr));
1322 uint64_t
1323 arc_buf_lsize(arc_buf_t *buf)
1325 return (HDR_GET_LSIZE(buf->b_hdr));
1329 * This function will return B_TRUE if the buffer is encrypted in memory.
1330 * This buffer can be decrypted by calling arc_untransform().
1332 boolean_t
1333 arc_is_encrypted(arc_buf_t *buf)
1335 return (ARC_BUF_ENCRYPTED(buf) != 0);
1339 * Returns B_TRUE if the buffer represents data that has not had its MAC
1340 * verified yet.
1342 boolean_t
1343 arc_is_unauthenticated(arc_buf_t *buf)
1345 return (HDR_NOAUTH(buf->b_hdr) != 0);
1348 void
1349 arc_get_raw_params(arc_buf_t *buf, boolean_t *byteorder, uint8_t *salt,
1350 uint8_t *iv, uint8_t *mac)
1352 arc_buf_hdr_t *hdr = buf->b_hdr;
1354 ASSERT(HDR_PROTECTED(hdr));
1356 memcpy(salt, hdr->b_crypt_hdr.b_salt, ZIO_DATA_SALT_LEN);
1357 memcpy(iv, hdr->b_crypt_hdr.b_iv, ZIO_DATA_IV_LEN);
1358 memcpy(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN);
1359 *byteorder = (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
1360 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
1364 * Indicates how this buffer is compressed in memory. If it is not compressed
1365 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1366 * arc_untransform() as long as it is also unencrypted.
1368 enum zio_compress
1369 arc_get_compression(arc_buf_t *buf)
1371 return (ARC_BUF_COMPRESSED(buf) ?
1372 HDR_GET_COMPRESS(buf->b_hdr) : ZIO_COMPRESS_OFF);
1376 * Return the compression algorithm used to store this data in the ARC. If ARC
1377 * compression is enabled or this is an encrypted block, this will be the same
1378 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1380 static inline enum zio_compress
1381 arc_hdr_get_compress(arc_buf_hdr_t *hdr)
1383 return (HDR_COMPRESSION_ENABLED(hdr) ?
1384 HDR_GET_COMPRESS(hdr) : ZIO_COMPRESS_OFF);
1387 uint8_t
1388 arc_get_complevel(arc_buf_t *buf)
1390 return (buf->b_hdr->b_complevel);
1393 static inline boolean_t
1394 arc_buf_is_shared(arc_buf_t *buf)
1396 boolean_t shared = (buf->b_data != NULL &&
1397 buf->b_hdr->b_l1hdr.b_pabd != NULL &&
1398 abd_is_linear(buf->b_hdr->b_l1hdr.b_pabd) &&
1399 buf->b_data == abd_to_buf(buf->b_hdr->b_l1hdr.b_pabd));
1400 IMPLY(shared, HDR_SHARED_DATA(buf->b_hdr));
1401 IMPLY(shared, ARC_BUF_SHARED(buf));
1402 IMPLY(shared, ARC_BUF_COMPRESSED(buf) || ARC_BUF_LAST(buf));
1405 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1406 * already being shared" requirement prevents us from doing that.
1409 return (shared);
1413 * Free the checksum associated with this header. If there is no checksum, this
1414 * is a no-op.
1416 static inline void
1417 arc_cksum_free(arc_buf_hdr_t *hdr)
1419 #ifdef ZFS_DEBUG
1420 ASSERT(HDR_HAS_L1HDR(hdr));
1422 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1423 if (hdr->b_l1hdr.b_freeze_cksum != NULL) {
1424 kmem_free(hdr->b_l1hdr.b_freeze_cksum, sizeof (zio_cksum_t));
1425 hdr->b_l1hdr.b_freeze_cksum = NULL;
1427 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1428 #endif
1432 * Return true iff at least one of the bufs on hdr is not compressed.
1433 * Encrypted buffers count as compressed.
1435 static boolean_t
1436 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t *hdr)
1438 ASSERT(hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY_OR_LOCKED(hdr));
1440 for (arc_buf_t *b = hdr->b_l1hdr.b_buf; b != NULL; b = b->b_next) {
1441 if (!ARC_BUF_COMPRESSED(b)) {
1442 return (B_TRUE);
1445 return (B_FALSE);
1450 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1451 * matches the checksum that is stored in the hdr. If there is no checksum,
1452 * or if the buf is compressed, this is a no-op.
1454 static void
1455 arc_cksum_verify(arc_buf_t *buf)
1457 #ifdef ZFS_DEBUG
1458 arc_buf_hdr_t *hdr = buf->b_hdr;
1459 zio_cksum_t zc;
1461 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1462 return;
1464 if (ARC_BUF_COMPRESSED(buf))
1465 return;
1467 ASSERT(HDR_HAS_L1HDR(hdr));
1469 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1471 if (hdr->b_l1hdr.b_freeze_cksum == NULL || HDR_IO_ERROR(hdr)) {
1472 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1473 return;
1476 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL, &zc);
1477 if (!ZIO_CHECKSUM_EQUAL(*hdr->b_l1hdr.b_freeze_cksum, zc))
1478 panic("buffer modified while frozen!");
1479 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1480 #endif
1484 * This function makes the assumption that data stored in the L2ARC
1485 * will be transformed exactly as it is in the main pool. Because of
1486 * this we can verify the checksum against the reading process's bp.
1488 static boolean_t
1489 arc_cksum_is_equal(arc_buf_hdr_t *hdr, zio_t *zio)
1491 ASSERT(!BP_IS_EMBEDDED(zio->io_bp));
1492 VERIFY3U(BP_GET_PSIZE(zio->io_bp), ==, HDR_GET_PSIZE(hdr));
1495 * Block pointers always store the checksum for the logical data.
1496 * If the block pointer has the gang bit set, then the checksum
1497 * it represents is for the reconstituted data and not for an
1498 * individual gang member. The zio pipeline, however, must be able to
1499 * determine the checksum of each of the gang constituents so it
1500 * treats the checksum comparison differently than what we need
1501 * for l2arc blocks. This prevents us from using the
1502 * zio_checksum_error() interface directly. Instead we must call the
1503 * zio_checksum_error_impl() so that we can ensure the checksum is
1504 * generated using the correct checksum algorithm and accounts for the
1505 * logical I/O size and not just a gang fragment.
1507 return (zio_checksum_error_impl(zio->io_spa, zio->io_bp,
1508 BP_GET_CHECKSUM(zio->io_bp), zio->io_abd, zio->io_size,
1509 zio->io_offset, NULL) == 0);
1513 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1514 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1515 * isn't modified later on. If buf is compressed or there is already a checksum
1516 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1518 static void
1519 arc_cksum_compute(arc_buf_t *buf)
1521 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1522 return;
1524 #ifdef ZFS_DEBUG
1525 arc_buf_hdr_t *hdr = buf->b_hdr;
1526 ASSERT(HDR_HAS_L1HDR(hdr));
1527 mutex_enter(&hdr->b_l1hdr.b_freeze_lock);
1528 if (hdr->b_l1hdr.b_freeze_cksum != NULL || ARC_BUF_COMPRESSED(buf)) {
1529 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1530 return;
1533 ASSERT(!ARC_BUF_ENCRYPTED(buf));
1534 ASSERT(!ARC_BUF_COMPRESSED(buf));
1535 hdr->b_l1hdr.b_freeze_cksum = kmem_alloc(sizeof (zio_cksum_t),
1536 KM_SLEEP);
1537 fletcher_2_native(buf->b_data, arc_buf_size(buf), NULL,
1538 hdr->b_l1hdr.b_freeze_cksum);
1539 mutex_exit(&hdr->b_l1hdr.b_freeze_lock);
1540 #endif
1541 arc_buf_watch(buf);
1544 #ifndef _KERNEL
1545 void
1546 arc_buf_sigsegv(int sig, siginfo_t *si, void *unused)
1548 (void) sig, (void) unused;
1549 panic("Got SIGSEGV at address: 0x%lx\n", (long)si->si_addr);
1551 #endif
1553 static void
1554 arc_buf_unwatch(arc_buf_t *buf)
1556 #ifndef _KERNEL
1557 if (arc_watch) {
1558 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1559 PROT_READ | PROT_WRITE));
1561 #else
1562 (void) buf;
1563 #endif
1566 static void
1567 arc_buf_watch(arc_buf_t *buf)
1569 #ifndef _KERNEL
1570 if (arc_watch)
1571 ASSERT0(mprotect(buf->b_data, arc_buf_size(buf),
1572 PROT_READ));
1573 #else
1574 (void) buf;
1575 #endif
1578 static arc_buf_contents_t
1579 arc_buf_type(arc_buf_hdr_t *hdr)
1581 arc_buf_contents_t type;
1582 if (HDR_ISTYPE_METADATA(hdr)) {
1583 type = ARC_BUFC_METADATA;
1584 } else {
1585 type = ARC_BUFC_DATA;
1587 VERIFY3U(hdr->b_type, ==, type);
1588 return (type);
1591 boolean_t
1592 arc_is_metadata(arc_buf_t *buf)
1594 return (HDR_ISTYPE_METADATA(buf->b_hdr) != 0);
1597 static uint32_t
1598 arc_bufc_to_flags(arc_buf_contents_t type)
1600 switch (type) {
1601 case ARC_BUFC_DATA:
1602 /* metadata field is 0 if buffer contains normal data */
1603 return (0);
1604 case ARC_BUFC_METADATA:
1605 return (ARC_FLAG_BUFC_METADATA);
1606 default:
1607 break;
1609 panic("undefined ARC buffer type!");
1610 return ((uint32_t)-1);
1613 void
1614 arc_buf_thaw(arc_buf_t *buf)
1616 arc_buf_hdr_t *hdr = buf->b_hdr;
1618 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
1619 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
1621 arc_cksum_verify(buf);
1624 * Compressed buffers do not manipulate the b_freeze_cksum.
1626 if (ARC_BUF_COMPRESSED(buf))
1627 return;
1629 ASSERT(HDR_HAS_L1HDR(hdr));
1630 arc_cksum_free(hdr);
1631 arc_buf_unwatch(buf);
1634 void
1635 arc_buf_freeze(arc_buf_t *buf)
1637 if (!(zfs_flags & ZFS_DEBUG_MODIFY))
1638 return;
1640 if (ARC_BUF_COMPRESSED(buf))
1641 return;
1643 ASSERT(HDR_HAS_L1HDR(buf->b_hdr));
1644 arc_cksum_compute(buf);
1648 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1649 * the following functions should be used to ensure that the flags are
1650 * updated in a thread-safe way. When manipulating the flags either
1651 * the hash_lock must be held or the hdr must be undiscoverable. This
1652 * ensures that we're not racing with any other threads when updating
1653 * the flags.
1655 static inline void
1656 arc_hdr_set_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1658 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1659 hdr->b_flags |= flags;
1662 static inline void
1663 arc_hdr_clear_flags(arc_buf_hdr_t *hdr, arc_flags_t flags)
1665 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1666 hdr->b_flags &= ~flags;
1670 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1671 * done in a special way since we have to clear and set bits
1672 * at the same time. Consumers that wish to set the compression bits
1673 * must use this function to ensure that the flags are updated in
1674 * thread-safe manner.
1676 static void
1677 arc_hdr_set_compress(arc_buf_hdr_t *hdr, enum zio_compress cmp)
1679 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1682 * Holes and embedded blocks will always have a psize = 0 so
1683 * we ignore the compression of the blkptr and set the
1684 * want to uncompress them. Mark them as uncompressed.
1686 if (!zfs_compressed_arc_enabled || HDR_GET_PSIZE(hdr) == 0) {
1687 arc_hdr_clear_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1688 ASSERT(!HDR_COMPRESSION_ENABLED(hdr));
1689 } else {
1690 arc_hdr_set_flags(hdr, ARC_FLAG_COMPRESSED_ARC);
1691 ASSERT(HDR_COMPRESSION_ENABLED(hdr));
1694 HDR_SET_COMPRESS(hdr, cmp);
1695 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, cmp);
1699 * Looks for another buf on the same hdr which has the data decompressed, copies
1700 * from it, and returns true. If no such buf exists, returns false.
1702 static boolean_t
1703 arc_buf_try_copy_decompressed_data(arc_buf_t *buf)
1705 arc_buf_hdr_t *hdr = buf->b_hdr;
1706 boolean_t copied = B_FALSE;
1708 ASSERT(HDR_HAS_L1HDR(hdr));
1709 ASSERT3P(buf->b_data, !=, NULL);
1710 ASSERT(!ARC_BUF_COMPRESSED(buf));
1712 for (arc_buf_t *from = hdr->b_l1hdr.b_buf; from != NULL;
1713 from = from->b_next) {
1714 /* can't use our own data buffer */
1715 if (from == buf) {
1716 continue;
1719 if (!ARC_BUF_COMPRESSED(from)) {
1720 memcpy(buf->b_data, from->b_data, arc_buf_size(buf));
1721 copied = B_TRUE;
1722 break;
1726 #ifdef ZFS_DEBUG
1728 * There were no decompressed bufs, so there should not be a
1729 * checksum on the hdr either.
1731 if (zfs_flags & ZFS_DEBUG_MODIFY)
1732 EQUIV(!copied, hdr->b_l1hdr.b_freeze_cksum == NULL);
1733 #endif
1735 return (copied);
1739 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1740 * This is used during l2arc reconstruction to make empty ARC buffers
1741 * which circumvent the regular disk->arc->l2arc path and instead come
1742 * into being in the reverse order, i.e. l2arc->arc.
1744 static arc_buf_hdr_t *
1745 arc_buf_alloc_l2only(size_t size, arc_buf_contents_t type, l2arc_dev_t *dev,
1746 dva_t dva, uint64_t daddr, int32_t psize, uint64_t birth,
1747 enum zio_compress compress, uint8_t complevel, boolean_t protected,
1748 boolean_t prefetch, arc_state_type_t arcs_state)
1750 arc_buf_hdr_t *hdr;
1752 ASSERT(size != 0);
1753 hdr = kmem_cache_alloc(hdr_l2only_cache, KM_SLEEP);
1754 hdr->b_birth = birth;
1755 hdr->b_type = type;
1756 hdr->b_flags = 0;
1757 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L2HDR);
1758 HDR_SET_LSIZE(hdr, size);
1759 HDR_SET_PSIZE(hdr, psize);
1760 arc_hdr_set_compress(hdr, compress);
1761 hdr->b_complevel = complevel;
1762 if (protected)
1763 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
1764 if (prefetch)
1765 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
1766 hdr->b_spa = spa_load_guid(dev->l2ad_vdev->vdev_spa);
1768 hdr->b_dva = dva;
1770 hdr->b_l2hdr.b_dev = dev;
1771 hdr->b_l2hdr.b_daddr = daddr;
1772 hdr->b_l2hdr.b_arcs_state = arcs_state;
1774 return (hdr);
1778 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1780 static uint64_t
1781 arc_hdr_size(arc_buf_hdr_t *hdr)
1783 uint64_t size;
1785 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
1786 HDR_GET_PSIZE(hdr) > 0) {
1787 size = HDR_GET_PSIZE(hdr);
1788 } else {
1789 ASSERT3U(HDR_GET_LSIZE(hdr), !=, 0);
1790 size = HDR_GET_LSIZE(hdr);
1792 return (size);
1795 static int
1796 arc_hdr_authenticate(arc_buf_hdr_t *hdr, spa_t *spa, uint64_t dsobj)
1798 int ret;
1799 uint64_t csize;
1800 uint64_t lsize = HDR_GET_LSIZE(hdr);
1801 uint64_t psize = HDR_GET_PSIZE(hdr);
1802 void *tmpbuf = NULL;
1803 abd_t *abd = hdr->b_l1hdr.b_pabd;
1805 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1806 ASSERT(HDR_AUTHENTICATED(hdr));
1807 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1810 * The MAC is calculated on the compressed data that is stored on disk.
1811 * However, if compressed arc is disabled we will only have the
1812 * decompressed data available to us now. Compress it into a temporary
1813 * abd so we can verify the MAC. The performance overhead of this will
1814 * be relatively low, since most objects in an encrypted objset will
1815 * be encrypted (instead of authenticated) anyway.
1817 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1818 !HDR_COMPRESSION_ENABLED(hdr)) {
1819 tmpbuf = zio_buf_alloc(lsize);
1820 abd = abd_get_from_buf(tmpbuf, lsize);
1821 abd_take_ownership_of_buf(abd, B_TRUE);
1822 csize = zio_compress_data(HDR_GET_COMPRESS(hdr),
1823 hdr->b_l1hdr.b_pabd, tmpbuf, lsize, hdr->b_complevel);
1824 ASSERT3U(csize, <=, psize);
1825 abd_zero_off(abd, csize, psize - csize);
1829 * Authentication is best effort. We authenticate whenever the key is
1830 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1832 if (hdr->b_crypt_hdr.b_ot == DMU_OT_OBJSET) {
1833 ASSERT3U(HDR_GET_COMPRESS(hdr), ==, ZIO_COMPRESS_OFF);
1834 ASSERT3U(lsize, ==, psize);
1835 ret = spa_do_crypt_objset_mac_abd(B_FALSE, spa, dsobj, abd,
1836 psize, hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1837 } else {
1838 ret = spa_do_crypt_mac_abd(B_FALSE, spa, dsobj, abd, psize,
1839 hdr->b_crypt_hdr.b_mac);
1842 if (ret == 0)
1843 arc_hdr_clear_flags(hdr, ARC_FLAG_NOAUTH);
1844 else if (ret != ENOENT)
1845 goto error;
1847 if (tmpbuf != NULL)
1848 abd_free(abd);
1850 return (0);
1852 error:
1853 if (tmpbuf != NULL)
1854 abd_free(abd);
1856 return (ret);
1860 * This function will take a header that only has raw encrypted data in
1861 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1862 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1863 * also decompress the data.
1865 static int
1866 arc_hdr_decrypt(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb)
1868 int ret;
1869 abd_t *cabd = NULL;
1870 void *tmp = NULL;
1871 boolean_t no_crypt = B_FALSE;
1872 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
1874 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1875 ASSERT(HDR_ENCRYPTED(hdr));
1877 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
1879 ret = spa_do_crypt_abd(B_FALSE, spa, zb, hdr->b_crypt_hdr.b_ot,
1880 B_FALSE, bswap, hdr->b_crypt_hdr.b_salt, hdr->b_crypt_hdr.b_iv,
1881 hdr->b_crypt_hdr.b_mac, HDR_GET_PSIZE(hdr), hdr->b_l1hdr.b_pabd,
1882 hdr->b_crypt_hdr.b_rabd, &no_crypt);
1883 if (ret != 0)
1884 goto error;
1886 if (no_crypt) {
1887 abd_copy(hdr->b_l1hdr.b_pabd, hdr->b_crypt_hdr.b_rabd,
1888 HDR_GET_PSIZE(hdr));
1892 * If this header has disabled arc compression but the b_pabd is
1893 * compressed after decrypting it, we need to decompress the newly
1894 * decrypted data.
1896 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
1897 !HDR_COMPRESSION_ENABLED(hdr)) {
1899 * We want to make sure that we are correctly honoring the
1900 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1901 * and then loan a buffer from it, rather than allocating a
1902 * linear buffer and wrapping it in an abd later.
1904 cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
1905 ARC_HDR_DO_ADAPT);
1906 tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
1908 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
1909 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
1910 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
1911 if (ret != 0) {
1912 abd_return_buf(cabd, tmp, arc_hdr_size(hdr));
1913 goto error;
1916 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
1917 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
1918 arc_hdr_size(hdr), hdr);
1919 hdr->b_l1hdr.b_pabd = cabd;
1922 return (0);
1924 error:
1925 arc_hdr_free_abd(hdr, B_FALSE);
1926 if (cabd != NULL)
1927 arc_free_data_buf(hdr, cabd, arc_hdr_size(hdr), hdr);
1929 return (ret);
1933 * This function is called during arc_buf_fill() to prepare the header's
1934 * abd plaintext pointer for use. This involves authenticated protected
1935 * data and decrypting encrypted data into the plaintext abd.
1937 static int
1938 arc_fill_hdr_crypt(arc_buf_hdr_t *hdr, kmutex_t *hash_lock, spa_t *spa,
1939 const zbookmark_phys_t *zb, boolean_t noauth)
1941 int ret;
1943 ASSERT(HDR_PROTECTED(hdr));
1945 if (hash_lock != NULL)
1946 mutex_enter(hash_lock);
1948 if (HDR_NOAUTH(hdr) && !noauth) {
1950 * The caller requested authenticated data but our data has
1951 * not been authenticated yet. Verify the MAC now if we can.
1953 ret = arc_hdr_authenticate(hdr, spa, zb->zb_objset);
1954 if (ret != 0)
1955 goto error;
1956 } else if (HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd == NULL) {
1958 * If we only have the encrypted version of the data, but the
1959 * unencrypted version was requested we take this opportunity
1960 * to store the decrypted version in the header for future use.
1962 ret = arc_hdr_decrypt(hdr, spa, zb);
1963 if (ret != 0)
1964 goto error;
1967 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1969 if (hash_lock != NULL)
1970 mutex_exit(hash_lock);
1972 return (0);
1974 error:
1975 if (hash_lock != NULL)
1976 mutex_exit(hash_lock);
1978 return (ret);
1982 * This function is used by the dbuf code to decrypt bonus buffers in place.
1983 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1984 * block, so we use the hash lock here to protect against concurrent calls to
1985 * arc_buf_fill().
1987 static void
1988 arc_buf_untransform_in_place(arc_buf_t *buf)
1990 arc_buf_hdr_t *hdr = buf->b_hdr;
1992 ASSERT(HDR_ENCRYPTED(hdr));
1993 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
1994 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
1995 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
1997 zio_crypt_copy_dnode_bonus(hdr->b_l1hdr.b_pabd, buf->b_data,
1998 arc_buf_size(buf));
1999 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
2000 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2001 hdr->b_crypt_hdr.b_ebufcnt -= 1;
2005 * Given a buf that has a data buffer attached to it, this function will
2006 * efficiently fill the buf with data of the specified compression setting from
2007 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
2008 * are already sharing a data buf, no copy is performed.
2010 * If the buf is marked as compressed but uncompressed data was requested, this
2011 * will allocate a new data buffer for the buf, remove that flag, and fill the
2012 * buf with uncompressed data. You can't request a compressed buf on a hdr with
2013 * uncompressed data, and (since we haven't added support for it yet) if you
2014 * want compressed data your buf must already be marked as compressed and have
2015 * the correct-sized data buffer.
2017 static int
2018 arc_buf_fill(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2019 arc_fill_flags_t flags)
2021 int error = 0;
2022 arc_buf_hdr_t *hdr = buf->b_hdr;
2023 boolean_t hdr_compressed =
2024 (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
2025 boolean_t compressed = (flags & ARC_FILL_COMPRESSED) != 0;
2026 boolean_t encrypted = (flags & ARC_FILL_ENCRYPTED) != 0;
2027 dmu_object_byteswap_t bswap = hdr->b_l1hdr.b_byteswap;
2028 kmutex_t *hash_lock = (flags & ARC_FILL_LOCKED) ? NULL : HDR_LOCK(hdr);
2030 ASSERT3P(buf->b_data, !=, NULL);
2031 IMPLY(compressed, hdr_compressed || ARC_BUF_ENCRYPTED(buf));
2032 IMPLY(compressed, ARC_BUF_COMPRESSED(buf));
2033 IMPLY(encrypted, HDR_ENCRYPTED(hdr));
2034 IMPLY(encrypted, ARC_BUF_ENCRYPTED(buf));
2035 IMPLY(encrypted, ARC_BUF_COMPRESSED(buf));
2036 IMPLY(encrypted, !ARC_BUF_SHARED(buf));
2039 * If the caller wanted encrypted data we just need to copy it from
2040 * b_rabd and potentially byteswap it. We won't be able to do any
2041 * further transforms on it.
2043 if (encrypted) {
2044 ASSERT(HDR_HAS_RABD(hdr));
2045 abd_copy_to_buf(buf->b_data, hdr->b_crypt_hdr.b_rabd,
2046 HDR_GET_PSIZE(hdr));
2047 goto byteswap;
2051 * Adjust encrypted and authenticated headers to accommodate
2052 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2053 * allowed to fail decryption due to keys not being loaded
2054 * without being marked as an IO error.
2056 if (HDR_PROTECTED(hdr)) {
2057 error = arc_fill_hdr_crypt(hdr, hash_lock, spa,
2058 zb, !!(flags & ARC_FILL_NOAUTH));
2059 if (error == EACCES && (flags & ARC_FILL_IN_PLACE) != 0) {
2060 return (error);
2061 } else if (error != 0) {
2062 if (hash_lock != NULL)
2063 mutex_enter(hash_lock);
2064 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2065 if (hash_lock != NULL)
2066 mutex_exit(hash_lock);
2067 return (error);
2072 * There is a special case here for dnode blocks which are
2073 * decrypting their bonus buffers. These blocks may request to
2074 * be decrypted in-place. This is necessary because there may
2075 * be many dnodes pointing into this buffer and there is
2076 * currently no method to synchronize replacing the backing
2077 * b_data buffer and updating all of the pointers. Here we use
2078 * the hash lock to ensure there are no races. If the need
2079 * arises for other types to be decrypted in-place, they must
2080 * add handling here as well.
2082 if ((flags & ARC_FILL_IN_PLACE) != 0) {
2083 ASSERT(!hdr_compressed);
2084 ASSERT(!compressed);
2085 ASSERT(!encrypted);
2087 if (HDR_ENCRYPTED(hdr) && ARC_BUF_ENCRYPTED(buf)) {
2088 ASSERT3U(hdr->b_crypt_hdr.b_ot, ==, DMU_OT_DNODE);
2090 if (hash_lock != NULL)
2091 mutex_enter(hash_lock);
2092 arc_buf_untransform_in_place(buf);
2093 if (hash_lock != NULL)
2094 mutex_exit(hash_lock);
2096 /* Compute the hdr's checksum if necessary */
2097 arc_cksum_compute(buf);
2100 return (0);
2103 if (hdr_compressed == compressed) {
2104 if (!arc_buf_is_shared(buf)) {
2105 abd_copy_to_buf(buf->b_data, hdr->b_l1hdr.b_pabd,
2106 arc_buf_size(buf));
2108 } else {
2109 ASSERT(hdr_compressed);
2110 ASSERT(!compressed);
2113 * If the buf is sharing its data with the hdr, unlink it and
2114 * allocate a new data buffer for the buf.
2116 if (arc_buf_is_shared(buf)) {
2117 ASSERT(ARC_BUF_COMPRESSED(buf));
2119 /* We need to give the buf its own b_data */
2120 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
2121 buf->b_data =
2122 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2123 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
2125 /* Previously overhead was 0; just add new overhead */
2126 ARCSTAT_INCR(arcstat_overhead_size, HDR_GET_LSIZE(hdr));
2127 } else if (ARC_BUF_COMPRESSED(buf)) {
2128 /* We need to reallocate the buf's b_data */
2129 arc_free_data_buf(hdr, buf->b_data, HDR_GET_PSIZE(hdr),
2130 buf);
2131 buf->b_data =
2132 arc_get_data_buf(hdr, HDR_GET_LSIZE(hdr), buf);
2134 /* We increased the size of b_data; update overhead */
2135 ARCSTAT_INCR(arcstat_overhead_size,
2136 HDR_GET_LSIZE(hdr) - HDR_GET_PSIZE(hdr));
2140 * Regardless of the buf's previous compression settings, it
2141 * should not be compressed at the end of this function.
2143 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
2146 * Try copying the data from another buf which already has a
2147 * decompressed version. If that's not possible, it's time to
2148 * bite the bullet and decompress the data from the hdr.
2150 if (arc_buf_try_copy_decompressed_data(buf)) {
2151 /* Skip byteswapping and checksumming (already done) */
2152 return (0);
2153 } else {
2154 error = zio_decompress_data(HDR_GET_COMPRESS(hdr),
2155 hdr->b_l1hdr.b_pabd, buf->b_data,
2156 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr),
2157 &hdr->b_complevel);
2160 * Absent hardware errors or software bugs, this should
2161 * be impossible, but log it anyway so we can debug it.
2163 if (error != 0) {
2164 zfs_dbgmsg(
2165 "hdr %px, compress %d, psize %d, lsize %d",
2166 hdr, arc_hdr_get_compress(hdr),
2167 HDR_GET_PSIZE(hdr), HDR_GET_LSIZE(hdr));
2168 if (hash_lock != NULL)
2169 mutex_enter(hash_lock);
2170 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
2171 if (hash_lock != NULL)
2172 mutex_exit(hash_lock);
2173 return (SET_ERROR(EIO));
2178 byteswap:
2179 /* Byteswap the buf's data if necessary */
2180 if (bswap != DMU_BSWAP_NUMFUNCS) {
2181 ASSERT(!HDR_SHARED_DATA(hdr));
2182 ASSERT3U(bswap, <, DMU_BSWAP_NUMFUNCS);
2183 dmu_ot_byteswap[bswap].ob_func(buf->b_data, HDR_GET_LSIZE(hdr));
2186 /* Compute the hdr's checksum if necessary */
2187 arc_cksum_compute(buf);
2189 return (0);
2193 * If this function is being called to decrypt an encrypted buffer or verify an
2194 * authenticated one, the key must be loaded and a mapping must be made
2195 * available in the keystore via spa_keystore_create_mapping() or one of its
2196 * callers.
2199 arc_untransform(arc_buf_t *buf, spa_t *spa, const zbookmark_phys_t *zb,
2200 boolean_t in_place)
2202 int ret;
2203 arc_fill_flags_t flags = 0;
2205 if (in_place)
2206 flags |= ARC_FILL_IN_PLACE;
2208 ret = arc_buf_fill(buf, spa, zb, flags);
2209 if (ret == ECKSUM) {
2211 * Convert authentication and decryption errors to EIO
2212 * (and generate an ereport) before leaving the ARC.
2214 ret = SET_ERROR(EIO);
2215 spa_log_error(spa, zb);
2216 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION,
2217 spa, NULL, zb, NULL, 0);
2220 return (ret);
2224 * Increment the amount of evictable space in the arc_state_t's refcount.
2225 * We account for the space used by the hdr and the arc buf individually
2226 * so that we can add and remove them from the refcount individually.
2228 static void
2229 arc_evictable_space_increment(arc_buf_hdr_t *hdr, arc_state_t *state)
2231 arc_buf_contents_t type = arc_buf_type(hdr);
2233 ASSERT(HDR_HAS_L1HDR(hdr));
2235 if (GHOST_STATE(state)) {
2236 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2237 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2238 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2239 ASSERT(!HDR_HAS_RABD(hdr));
2240 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2241 HDR_GET_LSIZE(hdr), hdr);
2242 return;
2245 if (hdr->b_l1hdr.b_pabd != NULL) {
2246 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2247 arc_hdr_size(hdr), hdr);
2249 if (HDR_HAS_RABD(hdr)) {
2250 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2251 HDR_GET_PSIZE(hdr), hdr);
2254 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2255 buf = buf->b_next) {
2256 if (arc_buf_is_shared(buf))
2257 continue;
2258 (void) zfs_refcount_add_many(&state->arcs_esize[type],
2259 arc_buf_size(buf), buf);
2264 * Decrement the amount of evictable space in the arc_state_t's refcount.
2265 * We account for the space used by the hdr and the arc buf individually
2266 * so that we can add and remove them from the refcount individually.
2268 static void
2269 arc_evictable_space_decrement(arc_buf_hdr_t *hdr, arc_state_t *state)
2271 arc_buf_contents_t type = arc_buf_type(hdr);
2273 ASSERT(HDR_HAS_L1HDR(hdr));
2275 if (GHOST_STATE(state)) {
2276 ASSERT0(hdr->b_l1hdr.b_bufcnt);
2277 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2278 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2279 ASSERT(!HDR_HAS_RABD(hdr));
2280 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2281 HDR_GET_LSIZE(hdr), hdr);
2282 return;
2285 if (hdr->b_l1hdr.b_pabd != NULL) {
2286 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2287 arc_hdr_size(hdr), hdr);
2289 if (HDR_HAS_RABD(hdr)) {
2290 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2291 HDR_GET_PSIZE(hdr), hdr);
2294 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2295 buf = buf->b_next) {
2296 if (arc_buf_is_shared(buf))
2297 continue;
2298 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2299 arc_buf_size(buf), buf);
2304 * Add a reference to this hdr indicating that someone is actively
2305 * referencing that memory. When the refcount transitions from 0 to 1,
2306 * we remove it from the respective arc_state_t list to indicate that
2307 * it is not evictable.
2309 static void
2310 add_reference(arc_buf_hdr_t *hdr, const void *tag)
2312 arc_state_t *state = hdr->b_l1hdr.b_state;
2314 ASSERT(HDR_HAS_L1HDR(hdr));
2315 if (!HDR_EMPTY(hdr) && !MUTEX_HELD(HDR_LOCK(hdr))) {
2316 ASSERT(state == arc_anon);
2317 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2318 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
2321 if ((zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag) == 1) &&
2322 state != arc_anon && state != arc_l2c_only) {
2323 /* We don't use the L2-only state list. */
2324 multilist_remove(&state->arcs_list[arc_buf_type(hdr)], hdr);
2325 arc_evictable_space_decrement(hdr, state);
2330 * Remove a reference from this hdr. When the reference transitions from
2331 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2332 * list making it eligible for eviction.
2334 static int
2335 remove_reference(arc_buf_hdr_t *hdr, const void *tag)
2337 int cnt;
2338 arc_state_t *state = hdr->b_l1hdr.b_state;
2340 ASSERT(HDR_HAS_L1HDR(hdr));
2341 ASSERT(state == arc_anon || MUTEX_HELD(HDR_LOCK(hdr)));
2342 ASSERT(!GHOST_STATE(state)); /* arc_l2c_only counts as a ghost. */
2344 if ((cnt = zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag)) != 0)
2345 return (cnt);
2347 if (state == arc_anon) {
2348 arc_hdr_destroy(hdr);
2349 return (0);
2351 if (state == arc_uncached && !HDR_PREFETCH(hdr)) {
2352 arc_change_state(arc_anon, hdr);
2353 arc_hdr_destroy(hdr);
2354 return (0);
2356 multilist_insert(&state->arcs_list[arc_buf_type(hdr)], hdr);
2357 arc_evictable_space_increment(hdr, state);
2358 return (0);
2362 * Returns detailed information about a specific arc buffer. When the
2363 * state_index argument is set the function will calculate the arc header
2364 * list position for its arc state. Since this requires a linear traversal
2365 * callers are strongly encourage not to do this. However, it can be helpful
2366 * for targeted analysis so the functionality is provided.
2368 void
2369 arc_buf_info(arc_buf_t *ab, arc_buf_info_t *abi, int state_index)
2371 (void) state_index;
2372 arc_buf_hdr_t *hdr = ab->b_hdr;
2373 l1arc_buf_hdr_t *l1hdr = NULL;
2374 l2arc_buf_hdr_t *l2hdr = NULL;
2375 arc_state_t *state = NULL;
2377 memset(abi, 0, sizeof (arc_buf_info_t));
2379 if (hdr == NULL)
2380 return;
2382 abi->abi_flags = hdr->b_flags;
2384 if (HDR_HAS_L1HDR(hdr)) {
2385 l1hdr = &hdr->b_l1hdr;
2386 state = l1hdr->b_state;
2388 if (HDR_HAS_L2HDR(hdr))
2389 l2hdr = &hdr->b_l2hdr;
2391 if (l1hdr) {
2392 abi->abi_bufcnt = l1hdr->b_bufcnt;
2393 abi->abi_access = l1hdr->b_arc_access;
2394 abi->abi_mru_hits = l1hdr->b_mru_hits;
2395 abi->abi_mru_ghost_hits = l1hdr->b_mru_ghost_hits;
2396 abi->abi_mfu_hits = l1hdr->b_mfu_hits;
2397 abi->abi_mfu_ghost_hits = l1hdr->b_mfu_ghost_hits;
2398 abi->abi_holds = zfs_refcount_count(&l1hdr->b_refcnt);
2401 if (l2hdr) {
2402 abi->abi_l2arc_dattr = l2hdr->b_daddr;
2403 abi->abi_l2arc_hits = l2hdr->b_hits;
2406 abi->abi_state_type = state ? state->arcs_state : ARC_STATE_ANON;
2407 abi->abi_state_contents = arc_buf_type(hdr);
2408 abi->abi_size = arc_hdr_size(hdr);
2412 * Move the supplied buffer to the indicated state. The hash lock
2413 * for the buffer must be held by the caller.
2415 static void
2416 arc_change_state(arc_state_t *new_state, arc_buf_hdr_t *hdr)
2418 arc_state_t *old_state;
2419 int64_t refcnt;
2420 uint32_t bufcnt;
2421 boolean_t update_old, update_new;
2422 arc_buf_contents_t buftype = arc_buf_type(hdr);
2425 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2426 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2427 * L1 hdr doesn't always exist when we change state to arc_anon before
2428 * destroying a header, in which case reallocating to add the L1 hdr is
2429 * pointless.
2431 if (HDR_HAS_L1HDR(hdr)) {
2432 old_state = hdr->b_l1hdr.b_state;
2433 refcnt = zfs_refcount_count(&hdr->b_l1hdr.b_refcnt);
2434 bufcnt = hdr->b_l1hdr.b_bufcnt;
2435 update_old = (bufcnt > 0 || hdr->b_l1hdr.b_pabd != NULL ||
2436 HDR_HAS_RABD(hdr));
2438 IMPLY(GHOST_STATE(old_state), bufcnt == 0);
2439 IMPLY(GHOST_STATE(new_state), bufcnt == 0);
2440 IMPLY(GHOST_STATE(old_state), hdr->b_l1hdr.b_buf == NULL);
2441 IMPLY(GHOST_STATE(new_state), hdr->b_l1hdr.b_buf == NULL);
2442 IMPLY(old_state == arc_anon, bufcnt <= 1);
2443 } else {
2444 old_state = arc_l2c_only;
2445 refcnt = 0;
2446 bufcnt = 0;
2447 update_old = B_FALSE;
2449 update_new = update_old;
2450 if (GHOST_STATE(old_state))
2451 update_old = B_TRUE;
2452 if (GHOST_STATE(new_state))
2453 update_new = B_TRUE;
2455 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
2456 ASSERT3P(new_state, !=, old_state);
2459 * If this buffer is evictable, transfer it from the
2460 * old state list to the new state list.
2462 if (refcnt == 0) {
2463 if (old_state != arc_anon && old_state != arc_l2c_only) {
2464 ASSERT(HDR_HAS_L1HDR(hdr));
2465 /* remove_reference() saves on insert. */
2466 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2467 multilist_remove(&old_state->arcs_list[buftype],
2468 hdr);
2469 arc_evictable_space_decrement(hdr, old_state);
2472 if (new_state != arc_anon && new_state != arc_l2c_only) {
2474 * An L1 header always exists here, since if we're
2475 * moving to some L1-cached state (i.e. not l2c_only or
2476 * anonymous), we realloc the header to add an L1hdr
2477 * beforehand.
2479 ASSERT(HDR_HAS_L1HDR(hdr));
2480 multilist_insert(&new_state->arcs_list[buftype], hdr);
2481 arc_evictable_space_increment(hdr, new_state);
2485 ASSERT(!HDR_EMPTY(hdr));
2486 if (new_state == arc_anon && HDR_IN_HASH_TABLE(hdr))
2487 buf_hash_remove(hdr);
2489 /* adjust state sizes (ignore arc_l2c_only) */
2491 if (update_new && new_state != arc_l2c_only) {
2492 ASSERT(HDR_HAS_L1HDR(hdr));
2493 if (GHOST_STATE(new_state)) {
2494 ASSERT0(bufcnt);
2497 * When moving a header to a ghost state, we first
2498 * remove all arc buffers. Thus, we'll have a
2499 * bufcnt of zero, and no arc buffer to use for
2500 * the reference. As a result, we use the arc
2501 * header pointer for the reference.
2503 (void) zfs_refcount_add_many(&new_state->arcs_size,
2504 HDR_GET_LSIZE(hdr), hdr);
2505 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2506 ASSERT(!HDR_HAS_RABD(hdr));
2507 } else {
2508 uint32_t buffers = 0;
2511 * Each individual buffer holds a unique reference,
2512 * thus we must remove each of these references one
2513 * at a time.
2515 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2516 buf = buf->b_next) {
2517 ASSERT3U(bufcnt, !=, 0);
2518 buffers++;
2521 * When the arc_buf_t is sharing the data
2522 * block with the hdr, the owner of the
2523 * reference belongs to the hdr. Only
2524 * add to the refcount if the arc_buf_t is
2525 * not shared.
2527 if (arc_buf_is_shared(buf))
2528 continue;
2530 (void) zfs_refcount_add_many(
2531 &new_state->arcs_size,
2532 arc_buf_size(buf), buf);
2534 ASSERT3U(bufcnt, ==, buffers);
2536 if (hdr->b_l1hdr.b_pabd != NULL) {
2537 (void) zfs_refcount_add_many(
2538 &new_state->arcs_size,
2539 arc_hdr_size(hdr), hdr);
2542 if (HDR_HAS_RABD(hdr)) {
2543 (void) zfs_refcount_add_many(
2544 &new_state->arcs_size,
2545 HDR_GET_PSIZE(hdr), hdr);
2550 if (update_old && old_state != arc_l2c_only) {
2551 ASSERT(HDR_HAS_L1HDR(hdr));
2552 if (GHOST_STATE(old_state)) {
2553 ASSERT0(bufcnt);
2554 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
2555 ASSERT(!HDR_HAS_RABD(hdr));
2558 * When moving a header off of a ghost state,
2559 * the header will not contain any arc buffers.
2560 * We use the arc header pointer for the reference
2561 * which is exactly what we did when we put the
2562 * header on the ghost state.
2565 (void) zfs_refcount_remove_many(&old_state->arcs_size,
2566 HDR_GET_LSIZE(hdr), hdr);
2567 } else {
2568 uint32_t buffers = 0;
2571 * Each individual buffer holds a unique reference,
2572 * thus we must remove each of these references one
2573 * at a time.
2575 for (arc_buf_t *buf = hdr->b_l1hdr.b_buf; buf != NULL;
2576 buf = buf->b_next) {
2577 ASSERT3U(bufcnt, !=, 0);
2578 buffers++;
2581 * When the arc_buf_t is sharing the data
2582 * block with the hdr, the owner of the
2583 * reference belongs to the hdr. Only
2584 * add to the refcount if the arc_buf_t is
2585 * not shared.
2587 if (arc_buf_is_shared(buf))
2588 continue;
2590 (void) zfs_refcount_remove_many(
2591 &old_state->arcs_size, arc_buf_size(buf),
2592 buf);
2594 ASSERT3U(bufcnt, ==, buffers);
2595 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
2596 HDR_HAS_RABD(hdr));
2598 if (hdr->b_l1hdr.b_pabd != NULL) {
2599 (void) zfs_refcount_remove_many(
2600 &old_state->arcs_size, arc_hdr_size(hdr),
2601 hdr);
2604 if (HDR_HAS_RABD(hdr)) {
2605 (void) zfs_refcount_remove_many(
2606 &old_state->arcs_size, HDR_GET_PSIZE(hdr),
2607 hdr);
2612 if (HDR_HAS_L1HDR(hdr)) {
2613 hdr->b_l1hdr.b_state = new_state;
2615 if (HDR_HAS_L2HDR(hdr) && new_state != arc_l2c_only) {
2616 l2arc_hdr_arcstats_decrement_state(hdr);
2617 hdr->b_l2hdr.b_arcs_state = new_state->arcs_state;
2618 l2arc_hdr_arcstats_increment_state(hdr);
2623 void
2624 arc_space_consume(uint64_t space, arc_space_type_t type)
2626 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2628 switch (type) {
2629 default:
2630 break;
2631 case ARC_SPACE_DATA:
2632 ARCSTAT_INCR(arcstat_data_size, space);
2633 break;
2634 case ARC_SPACE_META:
2635 ARCSTAT_INCR(arcstat_metadata_size, space);
2636 break;
2637 case ARC_SPACE_BONUS:
2638 ARCSTAT_INCR(arcstat_bonus_size, space);
2639 break;
2640 case ARC_SPACE_DNODE:
2641 aggsum_add(&arc_sums.arcstat_dnode_size, space);
2642 break;
2643 case ARC_SPACE_DBUF:
2644 ARCSTAT_INCR(arcstat_dbuf_size, space);
2645 break;
2646 case ARC_SPACE_HDRS:
2647 ARCSTAT_INCR(arcstat_hdr_size, space);
2648 break;
2649 case ARC_SPACE_L2HDRS:
2650 aggsum_add(&arc_sums.arcstat_l2_hdr_size, space);
2651 break;
2652 case ARC_SPACE_ABD_CHUNK_WASTE:
2654 * Note: this includes space wasted by all scatter ABD's, not
2655 * just those allocated by the ARC. But the vast majority of
2656 * scatter ABD's come from the ARC, because other users are
2657 * very short-lived.
2659 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, space);
2660 break;
2663 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE)
2664 aggsum_add(&arc_sums.arcstat_meta_used, space);
2666 aggsum_add(&arc_sums.arcstat_size, space);
2669 void
2670 arc_space_return(uint64_t space, arc_space_type_t type)
2672 ASSERT(type >= 0 && type < ARC_SPACE_NUMTYPES);
2674 switch (type) {
2675 default:
2676 break;
2677 case ARC_SPACE_DATA:
2678 ARCSTAT_INCR(arcstat_data_size, -space);
2679 break;
2680 case ARC_SPACE_META:
2681 ARCSTAT_INCR(arcstat_metadata_size, -space);
2682 break;
2683 case ARC_SPACE_BONUS:
2684 ARCSTAT_INCR(arcstat_bonus_size, -space);
2685 break;
2686 case ARC_SPACE_DNODE:
2687 aggsum_add(&arc_sums.arcstat_dnode_size, -space);
2688 break;
2689 case ARC_SPACE_DBUF:
2690 ARCSTAT_INCR(arcstat_dbuf_size, -space);
2691 break;
2692 case ARC_SPACE_HDRS:
2693 ARCSTAT_INCR(arcstat_hdr_size, -space);
2694 break;
2695 case ARC_SPACE_L2HDRS:
2696 aggsum_add(&arc_sums.arcstat_l2_hdr_size, -space);
2697 break;
2698 case ARC_SPACE_ABD_CHUNK_WASTE:
2699 ARCSTAT_INCR(arcstat_abd_chunk_waste_size, -space);
2700 break;
2703 if (type != ARC_SPACE_DATA && type != ARC_SPACE_ABD_CHUNK_WASTE) {
2704 ASSERT(aggsum_compare(&arc_sums.arcstat_meta_used,
2705 space) >= 0);
2706 ARCSTAT_MAX(arcstat_meta_max,
2707 aggsum_upper_bound(&arc_sums.arcstat_meta_used));
2708 aggsum_add(&arc_sums.arcstat_meta_used, -space);
2711 ASSERT(aggsum_compare(&arc_sums.arcstat_size, space) >= 0);
2712 aggsum_add(&arc_sums.arcstat_size, -space);
2716 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2717 * with the hdr's b_pabd.
2719 static boolean_t
2720 arc_can_share(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2723 * The criteria for sharing a hdr's data are:
2724 * 1. the buffer is not encrypted
2725 * 2. the hdr's compression matches the buf's compression
2726 * 3. the hdr doesn't need to be byteswapped
2727 * 4. the hdr isn't already being shared
2728 * 5. the buf is either compressed or it is the last buf in the hdr list
2730 * Criterion #5 maintains the invariant that shared uncompressed
2731 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2732 * might ask, "if a compressed buf is allocated first, won't that be the
2733 * last thing in the list?", but in that case it's impossible to create
2734 * a shared uncompressed buf anyway (because the hdr must be compressed
2735 * to have the compressed buf). You might also think that #3 is
2736 * sufficient to make this guarantee, however it's possible
2737 * (specifically in the rare L2ARC write race mentioned in
2738 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2739 * is shareable, but wasn't at the time of its allocation. Rather than
2740 * allow a new shared uncompressed buf to be created and then shuffle
2741 * the list around to make it the last element, this simply disallows
2742 * sharing if the new buf isn't the first to be added.
2744 ASSERT3P(buf->b_hdr, ==, hdr);
2745 boolean_t hdr_compressed =
2746 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF;
2747 boolean_t buf_compressed = ARC_BUF_COMPRESSED(buf) != 0;
2748 return (!ARC_BUF_ENCRYPTED(buf) &&
2749 buf_compressed == hdr_compressed &&
2750 hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS &&
2751 !HDR_SHARED_DATA(hdr) &&
2752 (ARC_BUF_LAST(buf) || ARC_BUF_COMPRESSED(buf)));
2756 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2757 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2758 * copy was made successfully, or an error code otherwise.
2760 static int
2761 arc_buf_alloc_impl(arc_buf_hdr_t *hdr, spa_t *spa, const zbookmark_phys_t *zb,
2762 const void *tag, boolean_t encrypted, boolean_t compressed,
2763 boolean_t noauth, boolean_t fill, arc_buf_t **ret)
2765 arc_buf_t *buf;
2766 arc_fill_flags_t flags = ARC_FILL_LOCKED;
2768 ASSERT(HDR_HAS_L1HDR(hdr));
2769 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
2770 VERIFY(hdr->b_type == ARC_BUFC_DATA ||
2771 hdr->b_type == ARC_BUFC_METADATA);
2772 ASSERT3P(ret, !=, NULL);
2773 ASSERT3P(*ret, ==, NULL);
2774 IMPLY(encrypted, compressed);
2776 buf = *ret = kmem_cache_alloc(buf_cache, KM_PUSHPAGE);
2777 buf->b_hdr = hdr;
2778 buf->b_data = NULL;
2779 buf->b_next = hdr->b_l1hdr.b_buf;
2780 buf->b_flags = 0;
2782 add_reference(hdr, tag);
2785 * We're about to change the hdr's b_flags. We must either
2786 * hold the hash_lock or be undiscoverable.
2788 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
2791 * Only honor requests for compressed bufs if the hdr is actually
2792 * compressed. This must be overridden if the buffer is encrypted since
2793 * encrypted buffers cannot be decompressed.
2795 if (encrypted) {
2796 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2797 buf->b_flags |= ARC_BUF_FLAG_ENCRYPTED;
2798 flags |= ARC_FILL_COMPRESSED | ARC_FILL_ENCRYPTED;
2799 } else if (compressed &&
2800 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
2801 buf->b_flags |= ARC_BUF_FLAG_COMPRESSED;
2802 flags |= ARC_FILL_COMPRESSED;
2805 if (noauth) {
2806 ASSERT0(encrypted);
2807 flags |= ARC_FILL_NOAUTH;
2811 * If the hdr's data can be shared then we share the data buffer and
2812 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2813 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2814 * buffer to store the buf's data.
2816 * There are two additional restrictions here because we're sharing
2817 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2818 * actively involved in an L2ARC write, because if this buf is used by
2819 * an arc_write() then the hdr's data buffer will be released when the
2820 * write completes, even though the L2ARC write might still be using it.
2821 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2822 * need to be ABD-aware. It must be allocated via
2823 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2824 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2825 * page" buffers because the ABD code needs to handle freeing them
2826 * specially.
2828 boolean_t can_share = arc_can_share(hdr, buf) &&
2829 !HDR_L2_WRITING(hdr) &&
2830 hdr->b_l1hdr.b_pabd != NULL &&
2831 abd_is_linear(hdr->b_l1hdr.b_pabd) &&
2832 !abd_is_linear_page(hdr->b_l1hdr.b_pabd);
2834 /* Set up b_data and sharing */
2835 if (can_share) {
2836 buf->b_data = abd_to_buf(hdr->b_l1hdr.b_pabd);
2837 buf->b_flags |= ARC_BUF_FLAG_SHARED;
2838 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
2839 } else {
2840 buf->b_data =
2841 arc_get_data_buf(hdr, arc_buf_size(buf), buf);
2842 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
2844 VERIFY3P(buf->b_data, !=, NULL);
2846 hdr->b_l1hdr.b_buf = buf;
2847 hdr->b_l1hdr.b_bufcnt += 1;
2848 if (encrypted)
2849 hdr->b_crypt_hdr.b_ebufcnt += 1;
2852 * If the user wants the data from the hdr, we need to either copy or
2853 * decompress the data.
2855 if (fill) {
2856 ASSERT3P(zb, !=, NULL);
2857 return (arc_buf_fill(buf, spa, zb, flags));
2860 return (0);
2863 static const char *arc_onloan_tag = "onloan";
2865 static inline void
2866 arc_loaned_bytes_update(int64_t delta)
2868 atomic_add_64(&arc_loaned_bytes, delta);
2870 /* assert that it did not wrap around */
2871 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
2875 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2876 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2877 * buffers must be returned to the arc before they can be used by the DMU or
2878 * freed.
2880 arc_buf_t *
2881 arc_loan_buf(spa_t *spa, boolean_t is_metadata, int size)
2883 arc_buf_t *buf = arc_alloc_buf(spa, arc_onloan_tag,
2884 is_metadata ? ARC_BUFC_METADATA : ARC_BUFC_DATA, size);
2886 arc_loaned_bytes_update(arc_buf_size(buf));
2888 return (buf);
2891 arc_buf_t *
2892 arc_loan_compressed_buf(spa_t *spa, uint64_t psize, uint64_t lsize,
2893 enum zio_compress compression_type, uint8_t complevel)
2895 arc_buf_t *buf = arc_alloc_compressed_buf(spa, arc_onloan_tag,
2896 psize, lsize, compression_type, complevel);
2898 arc_loaned_bytes_update(arc_buf_size(buf));
2900 return (buf);
2903 arc_buf_t *
2904 arc_loan_raw_buf(spa_t *spa, uint64_t dsobj, boolean_t byteorder,
2905 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac,
2906 dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
2907 enum zio_compress compression_type, uint8_t complevel)
2909 arc_buf_t *buf = arc_alloc_raw_buf(spa, arc_onloan_tag, dsobj,
2910 byteorder, salt, iv, mac, ot, psize, lsize, compression_type,
2911 complevel);
2913 atomic_add_64(&arc_loaned_bytes, psize);
2914 return (buf);
2919 * Return a loaned arc buffer to the arc.
2921 void
2922 arc_return_buf(arc_buf_t *buf, const void *tag)
2924 arc_buf_hdr_t *hdr = buf->b_hdr;
2926 ASSERT3P(buf->b_data, !=, NULL);
2927 ASSERT(HDR_HAS_L1HDR(hdr));
2928 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, tag);
2929 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2931 arc_loaned_bytes_update(-arc_buf_size(buf));
2934 /* Detach an arc_buf from a dbuf (tag) */
2935 void
2936 arc_loan_inuse_buf(arc_buf_t *buf, const void *tag)
2938 arc_buf_hdr_t *hdr = buf->b_hdr;
2940 ASSERT3P(buf->b_data, !=, NULL);
2941 ASSERT(HDR_HAS_L1HDR(hdr));
2942 (void) zfs_refcount_add(&hdr->b_l1hdr.b_refcnt, arc_onloan_tag);
2943 (void) zfs_refcount_remove(&hdr->b_l1hdr.b_refcnt, tag);
2945 arc_loaned_bytes_update(arc_buf_size(buf));
2948 static void
2949 l2arc_free_abd_on_write(abd_t *abd, size_t size, arc_buf_contents_t type)
2951 l2arc_data_free_t *df = kmem_alloc(sizeof (*df), KM_SLEEP);
2953 df->l2df_abd = abd;
2954 df->l2df_size = size;
2955 df->l2df_type = type;
2956 mutex_enter(&l2arc_free_on_write_mtx);
2957 list_insert_head(l2arc_free_on_write, df);
2958 mutex_exit(&l2arc_free_on_write_mtx);
2961 static void
2962 arc_hdr_free_on_write(arc_buf_hdr_t *hdr, boolean_t free_rdata)
2964 arc_state_t *state = hdr->b_l1hdr.b_state;
2965 arc_buf_contents_t type = arc_buf_type(hdr);
2966 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
2968 /* protected by hash lock, if in the hash table */
2969 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
2970 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
2971 ASSERT(state != arc_anon && state != arc_l2c_only);
2973 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
2974 size, hdr);
2976 (void) zfs_refcount_remove_many(&state->arcs_size, size, hdr);
2977 if (type == ARC_BUFC_METADATA) {
2978 arc_space_return(size, ARC_SPACE_META);
2979 } else {
2980 ASSERT(type == ARC_BUFC_DATA);
2981 arc_space_return(size, ARC_SPACE_DATA);
2984 if (free_rdata) {
2985 l2arc_free_abd_on_write(hdr->b_crypt_hdr.b_rabd, size, type);
2986 } else {
2987 l2arc_free_abd_on_write(hdr->b_l1hdr.b_pabd, size, type);
2992 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2993 * data buffer, we transfer the refcount ownership to the hdr and update
2994 * the appropriate kstats.
2996 static void
2997 arc_share_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
2999 ASSERT(arc_can_share(hdr, buf));
3000 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3001 ASSERT(!ARC_BUF_ENCRYPTED(buf));
3002 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3005 * Start sharing the data buffer. We transfer the
3006 * refcount ownership to the hdr since it always owns
3007 * the refcount whenever an arc_buf_t is shared.
3009 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3010 arc_hdr_size(hdr), buf, hdr);
3011 hdr->b_l1hdr.b_pabd = abd_get_from_buf(buf->b_data, arc_buf_size(buf));
3012 abd_take_ownership_of_buf(hdr->b_l1hdr.b_pabd,
3013 HDR_ISTYPE_METADATA(hdr));
3014 arc_hdr_set_flags(hdr, ARC_FLAG_SHARED_DATA);
3015 buf->b_flags |= ARC_BUF_FLAG_SHARED;
3018 * Since we've transferred ownership to the hdr we need
3019 * to increment its compressed and uncompressed kstats and
3020 * decrement the overhead size.
3022 ARCSTAT_INCR(arcstat_compressed_size, arc_hdr_size(hdr));
3023 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3024 ARCSTAT_INCR(arcstat_overhead_size, -arc_buf_size(buf));
3027 static void
3028 arc_unshare_buf(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3030 ASSERT(arc_buf_is_shared(buf));
3031 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3032 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3035 * We are no longer sharing this buffer so we need
3036 * to transfer its ownership to the rightful owner.
3038 zfs_refcount_transfer_ownership_many(&hdr->b_l1hdr.b_state->arcs_size,
3039 arc_hdr_size(hdr), hdr, buf);
3040 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3041 abd_release_ownership_of_buf(hdr->b_l1hdr.b_pabd);
3042 abd_free(hdr->b_l1hdr.b_pabd);
3043 hdr->b_l1hdr.b_pabd = NULL;
3044 buf->b_flags &= ~ARC_BUF_FLAG_SHARED;
3047 * Since the buffer is no longer shared between
3048 * the arc buf and the hdr, count it as overhead.
3050 ARCSTAT_INCR(arcstat_compressed_size, -arc_hdr_size(hdr));
3051 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3052 ARCSTAT_INCR(arcstat_overhead_size, arc_buf_size(buf));
3056 * Remove an arc_buf_t from the hdr's buf list and return the last
3057 * arc_buf_t on the list. If no buffers remain on the list then return
3058 * NULL.
3060 static arc_buf_t *
3061 arc_buf_remove(arc_buf_hdr_t *hdr, arc_buf_t *buf)
3063 ASSERT(HDR_HAS_L1HDR(hdr));
3064 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3066 arc_buf_t **bufp = &hdr->b_l1hdr.b_buf;
3067 arc_buf_t *lastbuf = NULL;
3070 * Remove the buf from the hdr list and locate the last
3071 * remaining buffer on the list.
3073 while (*bufp != NULL) {
3074 if (*bufp == buf)
3075 *bufp = buf->b_next;
3078 * If we've removed a buffer in the middle of
3079 * the list then update the lastbuf and update
3080 * bufp.
3082 if (*bufp != NULL) {
3083 lastbuf = *bufp;
3084 bufp = &(*bufp)->b_next;
3087 buf->b_next = NULL;
3088 ASSERT3P(lastbuf, !=, buf);
3089 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, lastbuf != NULL);
3090 IMPLY(hdr->b_l1hdr.b_bufcnt > 0, hdr->b_l1hdr.b_buf != NULL);
3091 IMPLY(lastbuf != NULL, ARC_BUF_LAST(lastbuf));
3093 return (lastbuf);
3097 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3098 * list and free it.
3100 static void
3101 arc_buf_destroy_impl(arc_buf_t *buf)
3103 arc_buf_hdr_t *hdr = buf->b_hdr;
3106 * Free up the data associated with the buf but only if we're not
3107 * sharing this with the hdr. If we are sharing it with the hdr, the
3108 * hdr is responsible for doing the free.
3110 if (buf->b_data != NULL) {
3112 * We're about to change the hdr's b_flags. We must either
3113 * hold the hash_lock or be undiscoverable.
3115 ASSERT(HDR_EMPTY_OR_LOCKED(hdr));
3117 arc_cksum_verify(buf);
3118 arc_buf_unwatch(buf);
3120 if (arc_buf_is_shared(buf)) {
3121 arc_hdr_clear_flags(hdr, ARC_FLAG_SHARED_DATA);
3122 } else {
3123 uint64_t size = arc_buf_size(buf);
3124 arc_free_data_buf(hdr, buf->b_data, size, buf);
3125 ARCSTAT_INCR(arcstat_overhead_size, -size);
3127 buf->b_data = NULL;
3129 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3130 hdr->b_l1hdr.b_bufcnt -= 1;
3132 if (ARC_BUF_ENCRYPTED(buf)) {
3133 hdr->b_crypt_hdr.b_ebufcnt -= 1;
3136 * If we have no more encrypted buffers and we've
3137 * already gotten a copy of the decrypted data we can
3138 * free b_rabd to save some space.
3140 if (hdr->b_crypt_hdr.b_ebufcnt == 0 &&
3141 HDR_HAS_RABD(hdr) && hdr->b_l1hdr.b_pabd != NULL &&
3142 !HDR_IO_IN_PROGRESS(hdr)) {
3143 arc_hdr_free_abd(hdr, B_TRUE);
3148 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
3150 if (ARC_BUF_SHARED(buf) && !ARC_BUF_COMPRESSED(buf)) {
3152 * If the current arc_buf_t is sharing its data buffer with the
3153 * hdr, then reassign the hdr's b_pabd to share it with the new
3154 * buffer at the end of the list. The shared buffer is always
3155 * the last one on the hdr's buffer list.
3157 * There is an equivalent case for compressed bufs, but since
3158 * they aren't guaranteed to be the last buf in the list and
3159 * that is an exceedingly rare case, we just allow that space be
3160 * wasted temporarily. We must also be careful not to share
3161 * encrypted buffers, since they cannot be shared.
3163 if (lastbuf != NULL && !ARC_BUF_ENCRYPTED(lastbuf)) {
3164 /* Only one buf can be shared at once */
3165 VERIFY(!arc_buf_is_shared(lastbuf));
3166 /* hdr is uncompressed so can't have compressed buf */
3167 VERIFY(!ARC_BUF_COMPRESSED(lastbuf));
3169 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3170 arc_hdr_free_abd(hdr, B_FALSE);
3173 * We must setup a new shared block between the
3174 * last buffer and the hdr. The data would have
3175 * been allocated by the arc buf so we need to transfer
3176 * ownership to the hdr since it's now being shared.
3178 arc_share_buf(hdr, lastbuf);
3180 } else if (HDR_SHARED_DATA(hdr)) {
3182 * Uncompressed shared buffers are always at the end
3183 * of the list. Compressed buffers don't have the
3184 * same requirements. This makes it hard to
3185 * simply assert that the lastbuf is shared so
3186 * we rely on the hdr's compression flags to determine
3187 * if we have a compressed, shared buffer.
3189 ASSERT3P(lastbuf, !=, NULL);
3190 ASSERT(arc_buf_is_shared(lastbuf) ||
3191 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
3195 * Free the checksum if we're removing the last uncompressed buf from
3196 * this hdr.
3198 if (!arc_hdr_has_uncompressed_buf(hdr)) {
3199 arc_cksum_free(hdr);
3202 /* clean up the buf */
3203 buf->b_hdr = NULL;
3204 kmem_cache_free(buf_cache, buf);
3207 static void
3208 arc_hdr_alloc_abd(arc_buf_hdr_t *hdr, int alloc_flags)
3210 uint64_t size;
3211 boolean_t alloc_rdata = ((alloc_flags & ARC_HDR_ALLOC_RDATA) != 0);
3213 ASSERT3U(HDR_GET_LSIZE(hdr), >, 0);
3214 ASSERT(HDR_HAS_L1HDR(hdr));
3215 ASSERT(!HDR_SHARED_DATA(hdr) || alloc_rdata);
3216 IMPLY(alloc_rdata, HDR_PROTECTED(hdr));
3218 if (alloc_rdata) {
3219 size = HDR_GET_PSIZE(hdr);
3220 ASSERT3P(hdr->b_crypt_hdr.b_rabd, ==, NULL);
3221 hdr->b_crypt_hdr.b_rabd = arc_get_data_abd(hdr, size, hdr,
3222 alloc_flags);
3223 ASSERT3P(hdr->b_crypt_hdr.b_rabd, !=, NULL);
3224 ARCSTAT_INCR(arcstat_raw_size, size);
3225 } else {
3226 size = arc_hdr_size(hdr);
3227 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3228 hdr->b_l1hdr.b_pabd = arc_get_data_abd(hdr, size, hdr,
3229 alloc_flags);
3230 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
3233 ARCSTAT_INCR(arcstat_compressed_size, size);
3234 ARCSTAT_INCR(arcstat_uncompressed_size, HDR_GET_LSIZE(hdr));
3237 static void
3238 arc_hdr_free_abd(arc_buf_hdr_t *hdr, boolean_t free_rdata)
3240 uint64_t size = (free_rdata) ? HDR_GET_PSIZE(hdr) : arc_hdr_size(hdr);
3242 ASSERT(HDR_HAS_L1HDR(hdr));
3243 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
3244 IMPLY(free_rdata, HDR_HAS_RABD(hdr));
3247 * If the hdr is currently being written to the l2arc then
3248 * we defer freeing the data by adding it to the l2arc_free_on_write
3249 * list. The l2arc will free the data once it's finished
3250 * writing it to the l2arc device.
3252 if (HDR_L2_WRITING(hdr)) {
3253 arc_hdr_free_on_write(hdr, free_rdata);
3254 ARCSTAT_BUMP(arcstat_l2_free_on_write);
3255 } else if (free_rdata) {
3256 arc_free_data_abd(hdr, hdr->b_crypt_hdr.b_rabd, size, hdr);
3257 } else {
3258 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd, size, hdr);
3261 if (free_rdata) {
3262 hdr->b_crypt_hdr.b_rabd = NULL;
3263 ARCSTAT_INCR(arcstat_raw_size, -size);
3264 } else {
3265 hdr->b_l1hdr.b_pabd = NULL;
3268 if (hdr->b_l1hdr.b_pabd == NULL && !HDR_HAS_RABD(hdr))
3269 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
3271 ARCSTAT_INCR(arcstat_compressed_size, -size);
3272 ARCSTAT_INCR(arcstat_uncompressed_size, -HDR_GET_LSIZE(hdr));
3276 * Allocate empty anonymous ARC header. The header will get its identity
3277 * assigned and buffers attached later as part of read or write operations.
3279 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3280 * inserts it into ARC hash to become globally visible and allocates physical
3281 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3282 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3283 * sharing one of them with the physical ABD buffer.
3285 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3286 * data. Then after compression and/or encryption arc_write_ready() allocates
3287 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3288 * buffer. On disk write completion arc_write_done() assigns the header its
3289 * new identity (b_dva + b_birth) and inserts into ARC hash.
3291 * In case of partial overwrite the old data is read first as described. Then
3292 * arc_release() either allocates new anonymous ARC header and moves the ARC
3293 * buffer to it, or reuses the old ARC header by discarding its identity and
3294 * removing it from ARC hash. After buffer modification normal write process
3295 * follows as described.
3297 static arc_buf_hdr_t *
3298 arc_hdr_alloc(uint64_t spa, int32_t psize, int32_t lsize,
3299 boolean_t protected, enum zio_compress compression_type, uint8_t complevel,
3300 arc_buf_contents_t type)
3302 arc_buf_hdr_t *hdr;
3304 VERIFY(type == ARC_BUFC_DATA || type == ARC_BUFC_METADATA);
3305 if (protected) {
3306 hdr = kmem_cache_alloc(hdr_full_crypt_cache, KM_PUSHPAGE);
3307 } else {
3308 hdr = kmem_cache_alloc(hdr_full_cache, KM_PUSHPAGE);
3311 ASSERT(HDR_EMPTY(hdr));
3312 #ifdef ZFS_DEBUG
3313 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3314 #endif
3315 HDR_SET_PSIZE(hdr, psize);
3316 HDR_SET_LSIZE(hdr, lsize);
3317 hdr->b_spa = spa;
3318 hdr->b_type = type;
3319 hdr->b_flags = 0;
3320 arc_hdr_set_flags(hdr, arc_bufc_to_flags(type) | ARC_FLAG_HAS_L1HDR);
3321 arc_hdr_set_compress(hdr, compression_type);
3322 hdr->b_complevel = complevel;
3323 if (protected)
3324 arc_hdr_set_flags(hdr, ARC_FLAG_PROTECTED);
3326 hdr->b_l1hdr.b_state = arc_anon;
3327 hdr->b_l1hdr.b_arc_access = 0;
3328 hdr->b_l1hdr.b_mru_hits = 0;
3329 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3330 hdr->b_l1hdr.b_mfu_hits = 0;
3331 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3332 hdr->b_l1hdr.b_bufcnt = 0;
3333 hdr->b_l1hdr.b_buf = NULL;
3335 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3337 return (hdr);
3341 * Transition between the two allocation states for the arc_buf_hdr struct.
3342 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3343 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3344 * version is used when a cache buffer is only in the L2ARC in order to reduce
3345 * memory usage.
3347 static arc_buf_hdr_t *
3348 arc_hdr_realloc(arc_buf_hdr_t *hdr, kmem_cache_t *old, kmem_cache_t *new)
3350 ASSERT(HDR_HAS_L2HDR(hdr));
3352 arc_buf_hdr_t *nhdr;
3353 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3355 ASSERT((old == hdr_full_cache && new == hdr_l2only_cache) ||
3356 (old == hdr_l2only_cache && new == hdr_full_cache));
3359 * if the caller wanted a new full header and the header is to be
3360 * encrypted we will actually allocate the header from the full crypt
3361 * cache instead. The same applies to freeing from the old cache.
3363 if (HDR_PROTECTED(hdr) && new == hdr_full_cache)
3364 new = hdr_full_crypt_cache;
3365 if (HDR_PROTECTED(hdr) && old == hdr_full_cache)
3366 old = hdr_full_crypt_cache;
3368 nhdr = kmem_cache_alloc(new, KM_PUSHPAGE);
3370 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3371 buf_hash_remove(hdr);
3373 memcpy(nhdr, hdr, HDR_L2ONLY_SIZE);
3375 if (new == hdr_full_cache || new == hdr_full_crypt_cache) {
3376 arc_hdr_set_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3378 * arc_access and arc_change_state need to be aware that a
3379 * header has just come out of L2ARC, so we set its state to
3380 * l2c_only even though it's about to change.
3382 nhdr->b_l1hdr.b_state = arc_l2c_only;
3384 /* Verify previous threads set to NULL before freeing */
3385 ASSERT3P(nhdr->b_l1hdr.b_pabd, ==, NULL);
3386 ASSERT(!HDR_HAS_RABD(hdr));
3387 } else {
3388 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3389 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3390 #ifdef ZFS_DEBUG
3391 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3392 #endif
3395 * If we've reached here, We must have been called from
3396 * arc_evict_hdr(), as such we should have already been
3397 * removed from any ghost list we were previously on
3398 * (which protects us from racing with arc_evict_state),
3399 * thus no locking is needed during this check.
3401 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3404 * A buffer must not be moved into the arc_l2c_only
3405 * state if it's not finished being written out to the
3406 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3407 * might try to be accessed, even though it was removed.
3409 VERIFY(!HDR_L2_WRITING(hdr));
3410 VERIFY3P(hdr->b_l1hdr.b_pabd, ==, NULL);
3411 ASSERT(!HDR_HAS_RABD(hdr));
3413 arc_hdr_clear_flags(nhdr, ARC_FLAG_HAS_L1HDR);
3416 * The header has been reallocated so we need to re-insert it into any
3417 * lists it was on.
3419 (void) buf_hash_insert(nhdr, NULL);
3421 ASSERT(list_link_active(&hdr->b_l2hdr.b_l2node));
3423 mutex_enter(&dev->l2ad_mtx);
3426 * We must place the realloc'ed header back into the list at
3427 * the same spot. Otherwise, if it's placed earlier in the list,
3428 * l2arc_write_buffers() could find it during the function's
3429 * write phase, and try to write it out to the l2arc.
3431 list_insert_after(&dev->l2ad_buflist, hdr, nhdr);
3432 list_remove(&dev->l2ad_buflist, hdr);
3434 mutex_exit(&dev->l2ad_mtx);
3437 * Since we're using the pointer address as the tag when
3438 * incrementing and decrementing the l2ad_alloc refcount, we
3439 * must remove the old pointer (that we're about to destroy) and
3440 * add the new pointer to the refcount. Otherwise we'd remove
3441 * the wrong pointer address when calling arc_hdr_destroy() later.
3444 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
3445 arc_hdr_size(hdr), hdr);
3446 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
3447 arc_hdr_size(nhdr), nhdr);
3449 buf_discard_identity(hdr);
3450 kmem_cache_free(old, hdr);
3452 return (nhdr);
3456 * This function allows an L1 header to be reallocated as a crypt
3457 * header and vice versa. If we are going to a crypt header, the
3458 * new fields will be zeroed out.
3460 static arc_buf_hdr_t *
3461 arc_hdr_realloc_crypt(arc_buf_hdr_t *hdr, boolean_t need_crypt)
3463 arc_buf_hdr_t *nhdr;
3464 arc_buf_t *buf;
3465 kmem_cache_t *ncache, *ocache;
3468 * This function requires that hdr is in the arc_anon state.
3469 * Therefore it won't have any L2ARC data for us to worry
3470 * about copying.
3472 ASSERT(HDR_HAS_L1HDR(hdr));
3473 ASSERT(!HDR_HAS_L2HDR(hdr));
3474 ASSERT3U(!!HDR_PROTECTED(hdr), !=, need_crypt);
3475 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3476 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3477 ASSERT(!list_link_active(&hdr->b_l2hdr.b_l2node));
3478 ASSERT3P(hdr->b_hash_next, ==, NULL);
3480 if (need_crypt) {
3481 ncache = hdr_full_crypt_cache;
3482 ocache = hdr_full_cache;
3483 } else {
3484 ncache = hdr_full_cache;
3485 ocache = hdr_full_crypt_cache;
3488 nhdr = kmem_cache_alloc(ncache, KM_PUSHPAGE);
3491 * Copy all members that aren't locks or condvars to the new header.
3492 * No lists are pointing to us (as we asserted above), so we don't
3493 * need to worry about the list nodes.
3495 nhdr->b_dva = hdr->b_dva;
3496 nhdr->b_birth = hdr->b_birth;
3497 nhdr->b_type = hdr->b_type;
3498 nhdr->b_flags = hdr->b_flags;
3499 nhdr->b_psize = hdr->b_psize;
3500 nhdr->b_lsize = hdr->b_lsize;
3501 nhdr->b_spa = hdr->b_spa;
3502 #ifdef ZFS_DEBUG
3503 nhdr->b_l1hdr.b_freeze_cksum = hdr->b_l1hdr.b_freeze_cksum;
3504 #endif
3505 nhdr->b_l1hdr.b_bufcnt = hdr->b_l1hdr.b_bufcnt;
3506 nhdr->b_l1hdr.b_byteswap = hdr->b_l1hdr.b_byteswap;
3507 nhdr->b_l1hdr.b_state = hdr->b_l1hdr.b_state;
3508 nhdr->b_l1hdr.b_arc_access = hdr->b_l1hdr.b_arc_access;
3509 nhdr->b_l1hdr.b_mru_hits = hdr->b_l1hdr.b_mru_hits;
3510 nhdr->b_l1hdr.b_mru_ghost_hits = hdr->b_l1hdr.b_mru_ghost_hits;
3511 nhdr->b_l1hdr.b_mfu_hits = hdr->b_l1hdr.b_mfu_hits;
3512 nhdr->b_l1hdr.b_mfu_ghost_hits = hdr->b_l1hdr.b_mfu_ghost_hits;
3513 nhdr->b_l1hdr.b_acb = hdr->b_l1hdr.b_acb;
3514 nhdr->b_l1hdr.b_pabd = hdr->b_l1hdr.b_pabd;
3517 * This zfs_refcount_add() exists only to ensure that the individual
3518 * arc buffers always point to a header that is referenced, avoiding
3519 * a small race condition that could trigger ASSERTs.
3521 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, FTAG);
3522 nhdr->b_l1hdr.b_buf = hdr->b_l1hdr.b_buf;
3523 for (buf = nhdr->b_l1hdr.b_buf; buf != NULL; buf = buf->b_next)
3524 buf->b_hdr = nhdr;
3526 zfs_refcount_transfer(&nhdr->b_l1hdr.b_refcnt, &hdr->b_l1hdr.b_refcnt);
3527 (void) zfs_refcount_remove(&nhdr->b_l1hdr.b_refcnt, FTAG);
3528 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3530 if (need_crypt) {
3531 arc_hdr_set_flags(nhdr, ARC_FLAG_PROTECTED);
3532 } else {
3533 arc_hdr_clear_flags(nhdr, ARC_FLAG_PROTECTED);
3536 /* unset all members of the original hdr */
3537 memset(&hdr->b_dva, 0, sizeof (dva_t));
3538 hdr->b_birth = 0;
3539 hdr->b_type = ARC_BUFC_INVALID;
3540 hdr->b_flags = 0;
3541 hdr->b_psize = 0;
3542 hdr->b_lsize = 0;
3543 hdr->b_spa = 0;
3544 #ifdef ZFS_DEBUG
3545 hdr->b_l1hdr.b_freeze_cksum = NULL;
3546 #endif
3547 hdr->b_l1hdr.b_buf = NULL;
3548 hdr->b_l1hdr.b_bufcnt = 0;
3549 hdr->b_l1hdr.b_byteswap = 0;
3550 hdr->b_l1hdr.b_state = NULL;
3551 hdr->b_l1hdr.b_arc_access = 0;
3552 hdr->b_l1hdr.b_mru_hits = 0;
3553 hdr->b_l1hdr.b_mru_ghost_hits = 0;
3554 hdr->b_l1hdr.b_mfu_hits = 0;
3555 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
3556 hdr->b_l1hdr.b_acb = NULL;
3557 hdr->b_l1hdr.b_pabd = NULL;
3559 if (ocache == hdr_full_crypt_cache) {
3560 ASSERT(!HDR_HAS_RABD(hdr));
3561 hdr->b_crypt_hdr.b_ot = DMU_OT_NONE;
3562 hdr->b_crypt_hdr.b_ebufcnt = 0;
3563 hdr->b_crypt_hdr.b_dsobj = 0;
3564 memset(hdr->b_crypt_hdr.b_salt, 0, ZIO_DATA_SALT_LEN);
3565 memset(hdr->b_crypt_hdr.b_iv, 0, ZIO_DATA_IV_LEN);
3566 memset(hdr->b_crypt_hdr.b_mac, 0, ZIO_DATA_MAC_LEN);
3569 buf_discard_identity(hdr);
3570 kmem_cache_free(ocache, hdr);
3572 return (nhdr);
3576 * This function is used by the send / receive code to convert a newly
3577 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3578 * is also used to allow the root objset block to be updated without altering
3579 * its embedded MACs. Both block types will always be uncompressed so we do not
3580 * have to worry about compression type or psize.
3582 void
3583 arc_convert_to_raw(arc_buf_t *buf, uint64_t dsobj, boolean_t byteorder,
3584 dmu_object_type_t ot, const uint8_t *salt, const uint8_t *iv,
3585 const uint8_t *mac)
3587 arc_buf_hdr_t *hdr = buf->b_hdr;
3589 ASSERT(ot == DMU_OT_DNODE || ot == DMU_OT_OBJSET);
3590 ASSERT(HDR_HAS_L1HDR(hdr));
3591 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3593 buf->b_flags |= (ARC_BUF_FLAG_COMPRESSED | ARC_BUF_FLAG_ENCRYPTED);
3594 if (!HDR_PROTECTED(hdr))
3595 hdr = arc_hdr_realloc_crypt(hdr, B_TRUE);
3596 hdr->b_crypt_hdr.b_dsobj = dsobj;
3597 hdr->b_crypt_hdr.b_ot = ot;
3598 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3599 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3600 if (!arc_hdr_has_uncompressed_buf(hdr))
3601 arc_cksum_free(hdr);
3603 if (salt != NULL)
3604 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3605 if (iv != NULL)
3606 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3607 if (mac != NULL)
3608 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3612 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3613 * The buf is returned thawed since we expect the consumer to modify it.
3615 arc_buf_t *
3616 arc_alloc_buf(spa_t *spa, const void *tag, arc_buf_contents_t type,
3617 int32_t size)
3619 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), size, size,
3620 B_FALSE, ZIO_COMPRESS_OFF, 0, type);
3622 arc_buf_t *buf = NULL;
3623 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE, B_FALSE,
3624 B_FALSE, B_FALSE, &buf));
3625 arc_buf_thaw(buf);
3627 return (buf);
3631 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3632 * for bufs containing metadata.
3634 arc_buf_t *
3635 arc_alloc_compressed_buf(spa_t *spa, const void *tag, uint64_t psize,
3636 uint64_t lsize, enum zio_compress compression_type, uint8_t complevel)
3638 ASSERT3U(lsize, >, 0);
3639 ASSERT3U(lsize, >=, psize);
3640 ASSERT3U(compression_type, >, ZIO_COMPRESS_OFF);
3641 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3643 arc_buf_hdr_t *hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
3644 B_FALSE, compression_type, complevel, ARC_BUFC_DATA);
3646 arc_buf_t *buf = NULL;
3647 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_FALSE,
3648 B_TRUE, B_FALSE, B_FALSE, &buf));
3649 arc_buf_thaw(buf);
3652 * To ensure that the hdr has the correct data in it if we call
3653 * arc_untransform() on this buf before it's been written to disk,
3654 * it's easiest if we just set up sharing between the buf and the hdr.
3656 arc_share_buf(hdr, buf);
3658 return (buf);
3661 arc_buf_t *
3662 arc_alloc_raw_buf(spa_t *spa, const void *tag, uint64_t dsobj,
3663 boolean_t byteorder, const uint8_t *salt, const uint8_t *iv,
3664 const uint8_t *mac, dmu_object_type_t ot, uint64_t psize, uint64_t lsize,
3665 enum zio_compress compression_type, uint8_t complevel)
3667 arc_buf_hdr_t *hdr;
3668 arc_buf_t *buf;
3669 arc_buf_contents_t type = DMU_OT_IS_METADATA(ot) ?
3670 ARC_BUFC_METADATA : ARC_BUFC_DATA;
3672 ASSERT3U(lsize, >, 0);
3673 ASSERT3U(lsize, >=, psize);
3674 ASSERT3U(compression_type, >=, ZIO_COMPRESS_OFF);
3675 ASSERT3U(compression_type, <, ZIO_COMPRESS_FUNCTIONS);
3677 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize, B_TRUE,
3678 compression_type, complevel, type);
3680 hdr->b_crypt_hdr.b_dsobj = dsobj;
3681 hdr->b_crypt_hdr.b_ot = ot;
3682 hdr->b_l1hdr.b_byteswap = (byteorder == ZFS_HOST_BYTEORDER) ?
3683 DMU_BSWAP_NUMFUNCS : DMU_OT_BYTESWAP(ot);
3684 memcpy(hdr->b_crypt_hdr.b_salt, salt, ZIO_DATA_SALT_LEN);
3685 memcpy(hdr->b_crypt_hdr.b_iv, iv, ZIO_DATA_IV_LEN);
3686 memcpy(hdr->b_crypt_hdr.b_mac, mac, ZIO_DATA_MAC_LEN);
3689 * This buffer will be considered encrypted even if the ot is not an
3690 * encrypted type. It will become authenticated instead in
3691 * arc_write_ready().
3693 buf = NULL;
3694 VERIFY0(arc_buf_alloc_impl(hdr, spa, NULL, tag, B_TRUE, B_TRUE,
3695 B_FALSE, B_FALSE, &buf));
3696 arc_buf_thaw(buf);
3698 return (buf);
3701 static void
3702 l2arc_hdr_arcstats_update(arc_buf_hdr_t *hdr, boolean_t incr,
3703 boolean_t state_only)
3705 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3706 l2arc_dev_t *dev = l2hdr->b_dev;
3707 uint64_t lsize = HDR_GET_LSIZE(hdr);
3708 uint64_t psize = HDR_GET_PSIZE(hdr);
3709 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3710 arc_buf_contents_t type = hdr->b_type;
3711 int64_t lsize_s;
3712 int64_t psize_s;
3713 int64_t asize_s;
3715 if (incr) {
3716 lsize_s = lsize;
3717 psize_s = psize;
3718 asize_s = asize;
3719 } else {
3720 lsize_s = -lsize;
3721 psize_s = -psize;
3722 asize_s = -asize;
3725 /* If the buffer is a prefetch, count it as such. */
3726 if (HDR_PREFETCH(hdr)) {
3727 ARCSTAT_INCR(arcstat_l2_prefetch_asize, asize_s);
3728 } else {
3730 * We use the value stored in the L2 header upon initial
3731 * caching in L2ARC. This value will be updated in case
3732 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3733 * metadata (log entry) cannot currently be updated. Having
3734 * the ARC state in the L2 header solves the problem of a
3735 * possibly absent L1 header (apparent in buffers restored
3736 * from persistent L2ARC).
3738 switch (hdr->b_l2hdr.b_arcs_state) {
3739 case ARC_STATE_MRU_GHOST:
3740 case ARC_STATE_MRU:
3741 ARCSTAT_INCR(arcstat_l2_mru_asize, asize_s);
3742 break;
3743 case ARC_STATE_MFU_GHOST:
3744 case ARC_STATE_MFU:
3745 ARCSTAT_INCR(arcstat_l2_mfu_asize, asize_s);
3746 break;
3747 default:
3748 break;
3752 if (state_only)
3753 return;
3755 ARCSTAT_INCR(arcstat_l2_psize, psize_s);
3756 ARCSTAT_INCR(arcstat_l2_lsize, lsize_s);
3758 switch (type) {
3759 case ARC_BUFC_DATA:
3760 ARCSTAT_INCR(arcstat_l2_bufc_data_asize, asize_s);
3761 break;
3762 case ARC_BUFC_METADATA:
3763 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize, asize_s);
3764 break;
3765 default:
3766 break;
3771 static void
3772 arc_hdr_l2hdr_destroy(arc_buf_hdr_t *hdr)
3774 l2arc_buf_hdr_t *l2hdr = &hdr->b_l2hdr;
3775 l2arc_dev_t *dev = l2hdr->b_dev;
3776 uint64_t psize = HDR_GET_PSIZE(hdr);
3777 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
3779 ASSERT(MUTEX_HELD(&dev->l2ad_mtx));
3780 ASSERT(HDR_HAS_L2HDR(hdr));
3782 list_remove(&dev->l2ad_buflist, hdr);
3784 l2arc_hdr_arcstats_decrement(hdr);
3785 vdev_space_update(dev->l2ad_vdev, -asize, 0, 0);
3787 (void) zfs_refcount_remove_many(&dev->l2ad_alloc, arc_hdr_size(hdr),
3788 hdr);
3789 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
3792 static void
3793 arc_hdr_destroy(arc_buf_hdr_t *hdr)
3795 if (HDR_HAS_L1HDR(hdr)) {
3796 ASSERT(hdr->b_l1hdr.b_buf == NULL ||
3797 hdr->b_l1hdr.b_bufcnt > 0);
3798 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
3799 ASSERT3P(hdr->b_l1hdr.b_state, ==, arc_anon);
3801 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3802 ASSERT(!HDR_IN_HASH_TABLE(hdr));
3804 if (HDR_HAS_L2HDR(hdr)) {
3805 l2arc_dev_t *dev = hdr->b_l2hdr.b_dev;
3806 boolean_t buflist_held = MUTEX_HELD(&dev->l2ad_mtx);
3808 if (!buflist_held)
3809 mutex_enter(&dev->l2ad_mtx);
3812 * Even though we checked this conditional above, we
3813 * need to check this again now that we have the
3814 * l2ad_mtx. This is because we could be racing with
3815 * another thread calling l2arc_evict() which might have
3816 * destroyed this header's L2 portion as we were waiting
3817 * to acquire the l2ad_mtx. If that happens, we don't
3818 * want to re-destroy the header's L2 portion.
3820 if (HDR_HAS_L2HDR(hdr)) {
3822 if (!HDR_EMPTY(hdr))
3823 buf_discard_identity(hdr);
3825 arc_hdr_l2hdr_destroy(hdr);
3828 if (!buflist_held)
3829 mutex_exit(&dev->l2ad_mtx);
3833 * The header's identify can only be safely discarded once it is no
3834 * longer discoverable. This requires removing it from the hash table
3835 * and the l2arc header list. After this point the hash lock can not
3836 * be used to protect the header.
3838 if (!HDR_EMPTY(hdr))
3839 buf_discard_identity(hdr);
3841 if (HDR_HAS_L1HDR(hdr)) {
3842 arc_cksum_free(hdr);
3844 while (hdr->b_l1hdr.b_buf != NULL)
3845 arc_buf_destroy_impl(hdr->b_l1hdr.b_buf);
3847 if (hdr->b_l1hdr.b_pabd != NULL)
3848 arc_hdr_free_abd(hdr, B_FALSE);
3850 if (HDR_HAS_RABD(hdr))
3851 arc_hdr_free_abd(hdr, B_TRUE);
3854 ASSERT3P(hdr->b_hash_next, ==, NULL);
3855 if (HDR_HAS_L1HDR(hdr)) {
3856 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
3857 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
3858 #ifdef ZFS_DEBUG
3859 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
3860 #endif
3862 if (!HDR_PROTECTED(hdr)) {
3863 kmem_cache_free(hdr_full_cache, hdr);
3864 } else {
3865 kmem_cache_free(hdr_full_crypt_cache, hdr);
3867 } else {
3868 kmem_cache_free(hdr_l2only_cache, hdr);
3872 void
3873 arc_buf_destroy(arc_buf_t *buf, const void *tag)
3875 arc_buf_hdr_t *hdr = buf->b_hdr;
3877 if (hdr->b_l1hdr.b_state == arc_anon) {
3878 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
3879 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3880 VERIFY0(remove_reference(hdr, tag));
3881 return;
3884 kmutex_t *hash_lock = HDR_LOCK(hdr);
3885 mutex_enter(hash_lock);
3887 ASSERT3P(hdr, ==, buf->b_hdr);
3888 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
3889 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
3890 ASSERT3P(hdr->b_l1hdr.b_state, !=, arc_anon);
3891 ASSERT3P(buf->b_data, !=, NULL);
3893 arc_buf_destroy_impl(buf);
3894 (void) remove_reference(hdr, tag);
3895 mutex_exit(hash_lock);
3899 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3900 * state of the header is dependent on its state prior to entering this
3901 * function. The following transitions are possible:
3903 * - arc_mru -> arc_mru_ghost
3904 * - arc_mfu -> arc_mfu_ghost
3905 * - arc_mru_ghost -> arc_l2c_only
3906 * - arc_mru_ghost -> deleted
3907 * - arc_mfu_ghost -> arc_l2c_only
3908 * - arc_mfu_ghost -> deleted
3909 * - arc_uncached -> deleted
3911 * Return total size of evicted data buffers for eviction progress tracking.
3912 * When evicting from ghost states return logical buffer size to make eviction
3913 * progress at the same (or at least comparable) rate as from non-ghost states.
3915 * Return *real_evicted for actual ARC size reduction to wake up threads
3916 * waiting for it. For non-ghost states it includes size of evicted data
3917 * buffers (the headers are not freed there). For ghost states it includes
3918 * only the evicted headers size.
3920 static int64_t
3921 arc_evict_hdr(arc_buf_hdr_t *hdr, uint64_t *real_evicted)
3923 arc_state_t *evicted_state, *state;
3924 int64_t bytes_evicted = 0;
3925 uint_t min_lifetime = HDR_PRESCIENT_PREFETCH(hdr) ?
3926 arc_min_prescient_prefetch_ms : arc_min_prefetch_ms;
3928 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
3929 ASSERT(HDR_HAS_L1HDR(hdr));
3930 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
3931 ASSERT0(hdr->b_l1hdr.b_bufcnt);
3932 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
3933 ASSERT0(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt));
3935 *real_evicted = 0;
3936 state = hdr->b_l1hdr.b_state;
3937 if (GHOST_STATE(state)) {
3940 * l2arc_write_buffers() relies on a header's L1 portion
3941 * (i.e. its b_pabd field) during it's write phase.
3942 * Thus, we cannot push a header onto the arc_l2c_only
3943 * state (removing its L1 piece) until the header is
3944 * done being written to the l2arc.
3946 if (HDR_HAS_L2HDR(hdr) && HDR_L2_WRITING(hdr)) {
3947 ARCSTAT_BUMP(arcstat_evict_l2_skip);
3948 return (bytes_evicted);
3951 ARCSTAT_BUMP(arcstat_deleted);
3952 bytes_evicted += HDR_GET_LSIZE(hdr);
3954 DTRACE_PROBE1(arc__delete, arc_buf_hdr_t *, hdr);
3956 if (HDR_HAS_L2HDR(hdr)) {
3957 ASSERT(hdr->b_l1hdr.b_pabd == NULL);
3958 ASSERT(!HDR_HAS_RABD(hdr));
3960 * This buffer is cached on the 2nd Level ARC;
3961 * don't destroy the header.
3963 arc_change_state(arc_l2c_only, hdr);
3965 * dropping from L1+L2 cached to L2-only,
3966 * realloc to remove the L1 header.
3968 (void) arc_hdr_realloc(hdr, hdr_full_cache,
3969 hdr_l2only_cache);
3970 *real_evicted += HDR_FULL_SIZE - HDR_L2ONLY_SIZE;
3971 } else {
3972 arc_change_state(arc_anon, hdr);
3973 arc_hdr_destroy(hdr);
3974 *real_evicted += HDR_FULL_SIZE;
3976 return (bytes_evicted);
3979 ASSERT(state == arc_mru || state == arc_mfu || state == arc_uncached);
3980 evicted_state = (state == arc_uncached) ? arc_anon :
3981 ((state == arc_mru) ? arc_mru_ghost : arc_mfu_ghost);
3983 /* prefetch buffers have a minimum lifespan */
3984 if ((hdr->b_flags & (ARC_FLAG_PREFETCH | ARC_FLAG_INDIRECT)) &&
3985 ddi_get_lbolt() - hdr->b_l1hdr.b_arc_access <
3986 MSEC_TO_TICK(min_lifetime)) {
3987 ARCSTAT_BUMP(arcstat_evict_skip);
3988 return (bytes_evicted);
3991 if (HDR_HAS_L2HDR(hdr)) {
3992 ARCSTAT_INCR(arcstat_evict_l2_cached, HDR_GET_LSIZE(hdr));
3993 } else {
3994 if (l2arc_write_eligible(hdr->b_spa, hdr)) {
3995 ARCSTAT_INCR(arcstat_evict_l2_eligible,
3996 HDR_GET_LSIZE(hdr));
3998 switch (state->arcs_state) {
3999 case ARC_STATE_MRU:
4000 ARCSTAT_INCR(
4001 arcstat_evict_l2_eligible_mru,
4002 HDR_GET_LSIZE(hdr));
4003 break;
4004 case ARC_STATE_MFU:
4005 ARCSTAT_INCR(
4006 arcstat_evict_l2_eligible_mfu,
4007 HDR_GET_LSIZE(hdr));
4008 break;
4009 default:
4010 break;
4012 } else {
4013 ARCSTAT_INCR(arcstat_evict_l2_ineligible,
4014 HDR_GET_LSIZE(hdr));
4018 bytes_evicted += arc_hdr_size(hdr);
4019 *real_evicted += arc_hdr_size(hdr);
4022 * If this hdr is being evicted and has a compressed buffer then we
4023 * discard it here before we change states. This ensures that the
4024 * accounting is updated correctly in arc_free_data_impl().
4026 if (hdr->b_l1hdr.b_pabd != NULL)
4027 arc_hdr_free_abd(hdr, B_FALSE);
4029 if (HDR_HAS_RABD(hdr))
4030 arc_hdr_free_abd(hdr, B_TRUE);
4032 arc_change_state(evicted_state, hdr);
4033 DTRACE_PROBE1(arc__evict, arc_buf_hdr_t *, hdr);
4034 if (evicted_state == arc_anon) {
4035 arc_hdr_destroy(hdr);
4036 *real_evicted += HDR_FULL_SIZE;
4037 } else {
4038 ASSERT(HDR_IN_HASH_TABLE(hdr));
4041 return (bytes_evicted);
4044 static void
4045 arc_set_need_free(void)
4047 ASSERT(MUTEX_HELD(&arc_evict_lock));
4048 int64_t remaining = arc_free_memory() - arc_sys_free / 2;
4049 arc_evict_waiter_t *aw = list_tail(&arc_evict_waiters);
4050 if (aw == NULL) {
4051 arc_need_free = MAX(-remaining, 0);
4052 } else {
4053 arc_need_free =
4054 MAX(-remaining, (int64_t)(aw->aew_count - arc_evict_count));
4058 static uint64_t
4059 arc_evict_state_impl(multilist_t *ml, int idx, arc_buf_hdr_t *marker,
4060 uint64_t spa, uint64_t bytes)
4062 multilist_sublist_t *mls;
4063 uint64_t bytes_evicted = 0, real_evicted = 0;
4064 arc_buf_hdr_t *hdr;
4065 kmutex_t *hash_lock;
4066 uint_t evict_count = zfs_arc_evict_batch_limit;
4068 ASSERT3P(marker, !=, NULL);
4070 mls = multilist_sublist_lock(ml, idx);
4072 for (hdr = multilist_sublist_prev(mls, marker); likely(hdr != NULL);
4073 hdr = multilist_sublist_prev(mls, marker)) {
4074 if ((evict_count == 0) || (bytes_evicted >= bytes))
4075 break;
4078 * To keep our iteration location, move the marker
4079 * forward. Since we're not holding hdr's hash lock, we
4080 * must be very careful and not remove 'hdr' from the
4081 * sublist. Otherwise, other consumers might mistake the
4082 * 'hdr' as not being on a sublist when they call the
4083 * multilist_link_active() function (they all rely on
4084 * the hash lock protecting concurrent insertions and
4085 * removals). multilist_sublist_move_forward() was
4086 * specifically implemented to ensure this is the case
4087 * (only 'marker' will be removed and re-inserted).
4089 multilist_sublist_move_forward(mls, marker);
4092 * The only case where the b_spa field should ever be
4093 * zero, is the marker headers inserted by
4094 * arc_evict_state(). It's possible for multiple threads
4095 * to be calling arc_evict_state() concurrently (e.g.
4096 * dsl_pool_close() and zio_inject_fault()), so we must
4097 * skip any markers we see from these other threads.
4099 if (hdr->b_spa == 0)
4100 continue;
4102 /* we're only interested in evicting buffers of a certain spa */
4103 if (spa != 0 && hdr->b_spa != spa) {
4104 ARCSTAT_BUMP(arcstat_evict_skip);
4105 continue;
4108 hash_lock = HDR_LOCK(hdr);
4111 * We aren't calling this function from any code path
4112 * that would already be holding a hash lock, so we're
4113 * asserting on this assumption to be defensive in case
4114 * this ever changes. Without this check, it would be
4115 * possible to incorrectly increment arcstat_mutex_miss
4116 * below (e.g. if the code changed such that we called
4117 * this function with a hash lock held).
4119 ASSERT(!MUTEX_HELD(hash_lock));
4121 if (mutex_tryenter(hash_lock)) {
4122 uint64_t revicted;
4123 uint64_t evicted = arc_evict_hdr(hdr, &revicted);
4124 mutex_exit(hash_lock);
4126 bytes_evicted += evicted;
4127 real_evicted += revicted;
4130 * If evicted is zero, arc_evict_hdr() must have
4131 * decided to skip this header, don't increment
4132 * evict_count in this case.
4134 if (evicted != 0)
4135 evict_count--;
4137 } else {
4138 ARCSTAT_BUMP(arcstat_mutex_miss);
4142 multilist_sublist_unlock(mls);
4145 * Increment the count of evicted bytes, and wake up any threads that
4146 * are waiting for the count to reach this value. Since the list is
4147 * ordered by ascending aew_count, we pop off the beginning of the
4148 * list until we reach the end, or a waiter that's past the current
4149 * "count". Doing this outside the loop reduces the number of times
4150 * we need to acquire the global arc_evict_lock.
4152 * Only wake when there's sufficient free memory in the system
4153 * (specifically, arc_sys_free/2, which by default is a bit more than
4154 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
4156 mutex_enter(&arc_evict_lock);
4157 arc_evict_count += real_evicted;
4159 if (arc_free_memory() > arc_sys_free / 2) {
4160 arc_evict_waiter_t *aw;
4161 while ((aw = list_head(&arc_evict_waiters)) != NULL &&
4162 aw->aew_count <= arc_evict_count) {
4163 list_remove(&arc_evict_waiters, aw);
4164 cv_broadcast(&aw->aew_cv);
4167 arc_set_need_free();
4168 mutex_exit(&arc_evict_lock);
4171 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4172 * if the average cached block is small), eviction can be on-CPU for
4173 * many seconds. To ensure that other threads that may be bound to
4174 * this CPU are able to make progress, make a voluntary preemption
4175 * call here.
4177 kpreempt(KPREEMPT_SYNC);
4179 return (bytes_evicted);
4183 * Allocate an array of buffer headers used as placeholders during arc state
4184 * eviction.
4186 static arc_buf_hdr_t **
4187 arc_state_alloc_markers(int count)
4189 arc_buf_hdr_t **markers;
4191 markers = kmem_zalloc(sizeof (*markers) * count, KM_SLEEP);
4192 for (int i = 0; i < count; i++) {
4193 markers[i] = kmem_cache_alloc(hdr_full_cache, KM_SLEEP);
4196 * A b_spa of 0 is used to indicate that this header is
4197 * a marker. This fact is used in arc_evict_type() and
4198 * arc_evict_state_impl().
4200 markers[i]->b_spa = 0;
4203 return (markers);
4206 static void
4207 arc_state_free_markers(arc_buf_hdr_t **markers, int count)
4209 for (int i = 0; i < count; i++)
4210 kmem_cache_free(hdr_full_cache, markers[i]);
4211 kmem_free(markers, sizeof (*markers) * count);
4215 * Evict buffers from the given arc state, until we've removed the
4216 * specified number of bytes. Move the removed buffers to the
4217 * appropriate evict state.
4219 * This function makes a "best effort". It skips over any buffers
4220 * it can't get a hash_lock on, and so, may not catch all candidates.
4221 * It may also return without evicting as much space as requested.
4223 * If bytes is specified using the special value ARC_EVICT_ALL, this
4224 * will evict all available (i.e. unlocked and evictable) buffers from
4225 * the given arc state; which is used by arc_flush().
4227 static uint64_t
4228 arc_evict_state(arc_state_t *state, uint64_t spa, uint64_t bytes,
4229 arc_buf_contents_t type)
4231 uint64_t total_evicted = 0;
4232 multilist_t *ml = &state->arcs_list[type];
4233 int num_sublists;
4234 arc_buf_hdr_t **markers;
4236 num_sublists = multilist_get_num_sublists(ml);
4239 * If we've tried to evict from each sublist, made some
4240 * progress, but still have not hit the target number of bytes
4241 * to evict, we want to keep trying. The markers allow us to
4242 * pick up where we left off for each individual sublist, rather
4243 * than starting from the tail each time.
4245 if (zthr_iscurthread(arc_evict_zthr)) {
4246 markers = arc_state_evict_markers;
4247 ASSERT3S(num_sublists, <=, arc_state_evict_marker_count);
4248 } else {
4249 markers = arc_state_alloc_markers(num_sublists);
4251 for (int i = 0; i < num_sublists; i++) {
4252 multilist_sublist_t *mls;
4254 mls = multilist_sublist_lock(ml, i);
4255 multilist_sublist_insert_tail(mls, markers[i]);
4256 multilist_sublist_unlock(mls);
4260 * While we haven't hit our target number of bytes to evict, or
4261 * we're evicting all available buffers.
4263 while (total_evicted < bytes) {
4264 int sublist_idx = multilist_get_random_index(ml);
4265 uint64_t scan_evicted = 0;
4268 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4269 * Request that 10% of the LRUs be scanned by the superblock
4270 * shrinker.
4272 if (type == ARC_BUFC_DATA && aggsum_compare(
4273 &arc_sums.arcstat_dnode_size, arc_dnode_size_limit) > 0) {
4274 arc_prune_async((aggsum_upper_bound(
4275 &arc_sums.arcstat_dnode_size) -
4276 arc_dnode_size_limit) / sizeof (dnode_t) /
4277 zfs_arc_dnode_reduce_percent);
4281 * Start eviction using a randomly selected sublist,
4282 * this is to try and evenly balance eviction across all
4283 * sublists. Always starting at the same sublist
4284 * (e.g. index 0) would cause evictions to favor certain
4285 * sublists over others.
4287 for (int i = 0; i < num_sublists; i++) {
4288 uint64_t bytes_remaining;
4289 uint64_t bytes_evicted;
4291 if (total_evicted < bytes)
4292 bytes_remaining = bytes - total_evicted;
4293 else
4294 break;
4296 bytes_evicted = arc_evict_state_impl(ml, sublist_idx,
4297 markers[sublist_idx], spa, bytes_remaining);
4299 scan_evicted += bytes_evicted;
4300 total_evicted += bytes_evicted;
4302 /* we've reached the end, wrap to the beginning */
4303 if (++sublist_idx >= num_sublists)
4304 sublist_idx = 0;
4308 * If we didn't evict anything during this scan, we have
4309 * no reason to believe we'll evict more during another
4310 * scan, so break the loop.
4312 if (scan_evicted == 0) {
4313 /* This isn't possible, let's make that obvious */
4314 ASSERT3S(bytes, !=, 0);
4317 * When bytes is ARC_EVICT_ALL, the only way to
4318 * break the loop is when scan_evicted is zero.
4319 * In that case, we actually have evicted enough,
4320 * so we don't want to increment the kstat.
4322 if (bytes != ARC_EVICT_ALL) {
4323 ASSERT3S(total_evicted, <, bytes);
4324 ARCSTAT_BUMP(arcstat_evict_not_enough);
4327 break;
4331 for (int i = 0; i < num_sublists; i++) {
4332 multilist_sublist_t *mls = multilist_sublist_lock(ml, i);
4333 multilist_sublist_remove(mls, markers[i]);
4334 multilist_sublist_unlock(mls);
4336 if (markers != arc_state_evict_markers)
4337 arc_state_free_markers(markers, num_sublists);
4339 return (total_evicted);
4343 * Flush all "evictable" data of the given type from the arc state
4344 * specified. This will not evict any "active" buffers (i.e. referenced).
4346 * When 'retry' is set to B_FALSE, the function will make a single pass
4347 * over the state and evict any buffers that it can. Since it doesn't
4348 * continually retry the eviction, it might end up leaving some buffers
4349 * in the ARC due to lock misses.
4351 * When 'retry' is set to B_TRUE, the function will continually retry the
4352 * eviction until *all* evictable buffers have been removed from the
4353 * state. As a result, if concurrent insertions into the state are
4354 * allowed (e.g. if the ARC isn't shutting down), this function might
4355 * wind up in an infinite loop, continually trying to evict buffers.
4357 static uint64_t
4358 arc_flush_state(arc_state_t *state, uint64_t spa, arc_buf_contents_t type,
4359 boolean_t retry)
4361 uint64_t evicted = 0;
4363 while (zfs_refcount_count(&state->arcs_esize[type]) != 0) {
4364 evicted += arc_evict_state(state, spa, ARC_EVICT_ALL, type);
4366 if (!retry)
4367 break;
4370 return (evicted);
4374 * Evict the specified number of bytes from the state specified,
4375 * restricting eviction to the spa and type given. This function
4376 * prevents us from trying to evict more from a state's list than
4377 * is "evictable", and to skip evicting altogether when passed a
4378 * negative value for "bytes". In contrast, arc_evict_state() will
4379 * evict everything it can, when passed a negative value for "bytes".
4381 static uint64_t
4382 arc_evict_impl(arc_state_t *state, uint64_t spa, int64_t bytes,
4383 arc_buf_contents_t type)
4385 uint64_t delta;
4387 if (bytes > 0 && zfs_refcount_count(&state->arcs_esize[type]) > 0) {
4388 delta = MIN(zfs_refcount_count(&state->arcs_esize[type]),
4389 bytes);
4390 return (arc_evict_state(state, spa, delta, type));
4393 return (0);
4397 * The goal of this function is to evict enough meta data buffers from the
4398 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4399 * more complicated than it appears because it is common for data buffers
4400 * to have holds on meta data buffers. In addition, dnode meta data buffers
4401 * will be held by the dnodes in the block preventing them from being freed.
4402 * This means we can't simply traverse the ARC and expect to always find
4403 * enough unheld meta data buffer to release.
4405 * Therefore, this function has been updated to make alternating passes
4406 * over the ARC releasing data buffers and then newly unheld meta data
4407 * buffers. This ensures forward progress is maintained and meta_used
4408 * will decrease. Normally this is sufficient, but if required the ARC
4409 * will call the registered prune callbacks causing dentry and inodes to
4410 * be dropped from the VFS cache. This will make dnode meta data buffers
4411 * available for reclaim.
4413 static uint64_t
4414 arc_evict_meta_balanced(uint64_t meta_used)
4416 int64_t delta, adjustmnt;
4417 uint64_t total_evicted = 0, prune = 0;
4418 arc_buf_contents_t type = ARC_BUFC_DATA;
4419 uint_t restarts = zfs_arc_meta_adjust_restarts;
4421 restart:
4423 * This slightly differs than the way we evict from the mru in
4424 * arc_evict because we don't have a "target" value (i.e. no
4425 * "meta" arc_p). As a result, I think we can completely
4426 * cannibalize the metadata in the MRU before we evict the
4427 * metadata from the MFU. I think we probably need to implement a
4428 * "metadata arc_p" value to do this properly.
4430 adjustmnt = meta_used - arc_meta_limit;
4432 if (adjustmnt > 0 &&
4433 zfs_refcount_count(&arc_mru->arcs_esize[type]) > 0) {
4434 delta = MIN(zfs_refcount_count(&arc_mru->arcs_esize[type]),
4435 adjustmnt);
4436 total_evicted += arc_evict_impl(arc_mru, 0, delta, type);
4437 adjustmnt -= delta;
4441 * We can't afford to recalculate adjustmnt here. If we do,
4442 * new metadata buffers can sneak into the MRU or ANON lists,
4443 * thus penalize the MFU metadata. Although the fudge factor is
4444 * small, it has been empirically shown to be significant for
4445 * certain workloads (e.g. creating many empty directories). As
4446 * such, we use the original calculation for adjustmnt, and
4447 * simply decrement the amount of data evicted from the MRU.
4450 if (adjustmnt > 0 &&
4451 zfs_refcount_count(&arc_mfu->arcs_esize[type]) > 0) {
4452 delta = MIN(zfs_refcount_count(&arc_mfu->arcs_esize[type]),
4453 adjustmnt);
4454 total_evicted += arc_evict_impl(arc_mfu, 0, delta, type);
4457 adjustmnt = meta_used - arc_meta_limit;
4459 if (adjustmnt > 0 &&
4460 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]) > 0) {
4461 delta = MIN(adjustmnt,
4462 zfs_refcount_count(&arc_mru_ghost->arcs_esize[type]));
4463 total_evicted += arc_evict_impl(arc_mru_ghost, 0, delta, type);
4464 adjustmnt -= delta;
4467 if (adjustmnt > 0 &&
4468 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]) > 0) {
4469 delta = MIN(adjustmnt,
4470 zfs_refcount_count(&arc_mfu_ghost->arcs_esize[type]));
4471 total_evicted += arc_evict_impl(arc_mfu_ghost, 0, delta, type);
4475 * If after attempting to make the requested adjustment to the ARC
4476 * the meta limit is still being exceeded then request that the
4477 * higher layers drop some cached objects which have holds on ARC
4478 * meta buffers. Requests to the upper layers will be made with
4479 * increasingly large scan sizes until the ARC is below the limit.
4481 if (meta_used > arc_meta_limit || arc_available_memory() < 0) {
4482 if (type == ARC_BUFC_DATA) {
4483 type = ARC_BUFC_METADATA;
4484 } else {
4485 type = ARC_BUFC_DATA;
4487 if (zfs_arc_meta_prune) {
4488 prune += zfs_arc_meta_prune;
4489 arc_prune_async(prune);
4493 if (restarts > 0) {
4494 restarts--;
4495 goto restart;
4498 return (total_evicted);
4502 * Evict metadata buffers from the cache, such that arcstat_meta_used is
4503 * capped by the arc_meta_limit tunable.
4505 static uint64_t
4506 arc_evict_meta_only(uint64_t meta_used)
4508 uint64_t total_evicted = 0;
4509 int64_t target;
4512 * If we're over the meta limit, we want to evict enough
4513 * metadata to get back under the meta limit. We don't want to
4514 * evict so much that we drop the MRU below arc_p, though. If
4515 * we're over the meta limit more than we're over arc_p, we
4516 * evict some from the MRU here, and some from the MFU below.
4518 target = MIN((int64_t)(meta_used - arc_meta_limit),
4519 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4520 zfs_refcount_count(&arc_mru->arcs_size) - arc_p));
4522 total_evicted += arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4525 * Similar to the above, we want to evict enough bytes to get us
4526 * below the meta limit, but not so much as to drop us below the
4527 * space allotted to the MFU (which is defined as arc_c - arc_p).
4529 target = MIN((int64_t)(meta_used - arc_meta_limit),
4530 (int64_t)(zfs_refcount_count(&arc_mfu->arcs_size) -
4531 (arc_c - arc_p)));
4533 total_evicted += arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4535 return (total_evicted);
4538 static uint64_t
4539 arc_evict_meta(uint64_t meta_used)
4541 if (zfs_arc_meta_strategy == ARC_STRATEGY_META_ONLY)
4542 return (arc_evict_meta_only(meta_used));
4543 else
4544 return (arc_evict_meta_balanced(meta_used));
4548 * Return the type of the oldest buffer in the given arc state
4550 * This function will select a random sublist of type ARC_BUFC_DATA and
4551 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4552 * is compared, and the type which contains the "older" buffer will be
4553 * returned.
4555 static arc_buf_contents_t
4556 arc_evict_type(arc_state_t *state)
4558 multilist_t *data_ml = &state->arcs_list[ARC_BUFC_DATA];
4559 multilist_t *meta_ml = &state->arcs_list[ARC_BUFC_METADATA];
4560 int data_idx = multilist_get_random_index(data_ml);
4561 int meta_idx = multilist_get_random_index(meta_ml);
4562 multilist_sublist_t *data_mls;
4563 multilist_sublist_t *meta_mls;
4564 arc_buf_contents_t type;
4565 arc_buf_hdr_t *data_hdr;
4566 arc_buf_hdr_t *meta_hdr;
4569 * We keep the sublist lock until we're finished, to prevent
4570 * the headers from being destroyed via arc_evict_state().
4572 data_mls = multilist_sublist_lock(data_ml, data_idx);
4573 meta_mls = multilist_sublist_lock(meta_ml, meta_idx);
4576 * These two loops are to ensure we skip any markers that
4577 * might be at the tail of the lists due to arc_evict_state().
4580 for (data_hdr = multilist_sublist_tail(data_mls); data_hdr != NULL;
4581 data_hdr = multilist_sublist_prev(data_mls, data_hdr)) {
4582 if (data_hdr->b_spa != 0)
4583 break;
4586 for (meta_hdr = multilist_sublist_tail(meta_mls); meta_hdr != NULL;
4587 meta_hdr = multilist_sublist_prev(meta_mls, meta_hdr)) {
4588 if (meta_hdr->b_spa != 0)
4589 break;
4592 if (data_hdr == NULL && meta_hdr == NULL) {
4593 type = ARC_BUFC_DATA;
4594 } else if (data_hdr == NULL) {
4595 ASSERT3P(meta_hdr, !=, NULL);
4596 type = ARC_BUFC_METADATA;
4597 } else if (meta_hdr == NULL) {
4598 ASSERT3P(data_hdr, !=, NULL);
4599 type = ARC_BUFC_DATA;
4600 } else {
4601 ASSERT3P(data_hdr, !=, NULL);
4602 ASSERT3P(meta_hdr, !=, NULL);
4604 /* The headers can't be on the sublist without an L1 header */
4605 ASSERT(HDR_HAS_L1HDR(data_hdr));
4606 ASSERT(HDR_HAS_L1HDR(meta_hdr));
4608 if (data_hdr->b_l1hdr.b_arc_access <
4609 meta_hdr->b_l1hdr.b_arc_access) {
4610 type = ARC_BUFC_DATA;
4611 } else {
4612 type = ARC_BUFC_METADATA;
4616 multilist_sublist_unlock(meta_mls);
4617 multilist_sublist_unlock(data_mls);
4619 return (type);
4623 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4625 static uint64_t
4626 arc_evict(void)
4628 uint64_t total_evicted = 0;
4629 uint64_t bytes;
4630 int64_t target;
4631 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4632 uint64_t ameta = aggsum_value(&arc_sums.arcstat_meta_used);
4635 * If we're over arc_meta_limit, we want to correct that before
4636 * potentially evicting data buffers below.
4638 total_evicted += arc_evict_meta(ameta);
4641 * Adjust MRU size
4643 * If we're over the target cache size, we want to evict enough
4644 * from the list to get back to our target size. We don't want
4645 * to evict too much from the MRU, such that it drops below
4646 * arc_p. So, if we're over our target cache size more than
4647 * the MRU is over arc_p, we'll evict enough to get back to
4648 * arc_p here, and then evict more from the MFU below.
4650 target = MIN((int64_t)(asize - arc_c),
4651 (int64_t)(zfs_refcount_count(&arc_anon->arcs_size) +
4652 zfs_refcount_count(&arc_mru->arcs_size) + ameta - arc_p));
4655 * If we're below arc_meta_min, always prefer to evict data.
4656 * Otherwise, try to satisfy the requested number of bytes to
4657 * evict from the type which contains older buffers; in an
4658 * effort to keep newer buffers in the cache regardless of their
4659 * type. If we cannot satisfy the number of bytes from this
4660 * type, spill over into the next type.
4662 if (arc_evict_type(arc_mru) == ARC_BUFC_METADATA &&
4663 ameta > arc_meta_min) {
4664 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4665 total_evicted += bytes;
4668 * If we couldn't evict our target number of bytes from
4669 * metadata, we try to get the rest from data.
4671 target -= bytes;
4673 total_evicted +=
4674 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4675 } else {
4676 bytes = arc_evict_impl(arc_mru, 0, target, ARC_BUFC_DATA);
4677 total_evicted += bytes;
4680 * If we couldn't evict our target number of bytes from
4681 * data, we try to get the rest from metadata.
4683 target -= bytes;
4685 total_evicted +=
4686 arc_evict_impl(arc_mru, 0, target, ARC_BUFC_METADATA);
4690 * Re-sum ARC stats after the first round of evictions.
4692 asize = aggsum_value(&arc_sums.arcstat_size);
4693 ameta = aggsum_value(&arc_sums.arcstat_meta_used);
4697 * Adjust MFU size
4699 * Now that we've tried to evict enough from the MRU to get its
4700 * size back to arc_p, if we're still above the target cache
4701 * size, we evict the rest from the MFU.
4703 target = asize - arc_c;
4705 if (arc_evict_type(arc_mfu) == ARC_BUFC_METADATA &&
4706 ameta > arc_meta_min) {
4707 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4708 total_evicted += bytes;
4711 * If we couldn't evict our target number of bytes from
4712 * metadata, we try to get the rest from data.
4714 target -= bytes;
4716 total_evicted +=
4717 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4718 } else {
4719 bytes = arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_DATA);
4720 total_evicted += bytes;
4723 * If we couldn't evict our target number of bytes from
4724 * data, we try to get the rest from data.
4726 target -= bytes;
4728 total_evicted +=
4729 arc_evict_impl(arc_mfu, 0, target, ARC_BUFC_METADATA);
4733 * Adjust ghost lists
4735 * In addition to the above, the ARC also defines target values
4736 * for the ghost lists. The sum of the mru list and mru ghost
4737 * list should never exceed the target size of the cache, and
4738 * the sum of the mru list, mfu list, mru ghost list, and mfu
4739 * ghost list should never exceed twice the target size of the
4740 * cache. The following logic enforces these limits on the ghost
4741 * caches, and evicts from them as needed.
4743 target = zfs_refcount_count(&arc_mru->arcs_size) +
4744 zfs_refcount_count(&arc_mru_ghost->arcs_size) - arc_c;
4746 bytes = arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_DATA);
4747 total_evicted += bytes;
4749 target -= bytes;
4751 total_evicted +=
4752 arc_evict_impl(arc_mru_ghost, 0, target, ARC_BUFC_METADATA);
4755 * We assume the sum of the mru list and mfu list is less than
4756 * or equal to arc_c (we enforced this above), which means we
4757 * can use the simpler of the two equations below:
4759 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4760 * mru ghost + mfu ghost <= arc_c
4762 target = zfs_refcount_count(&arc_mru_ghost->arcs_size) +
4763 zfs_refcount_count(&arc_mfu_ghost->arcs_size) - arc_c;
4765 bytes = arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_DATA);
4766 total_evicted += bytes;
4768 target -= bytes;
4770 total_evicted +=
4771 arc_evict_impl(arc_mfu_ghost, 0, target, ARC_BUFC_METADATA);
4773 return (total_evicted);
4776 void
4777 arc_flush(spa_t *spa, boolean_t retry)
4779 uint64_t guid = 0;
4782 * If retry is B_TRUE, a spa must not be specified since we have
4783 * no good way to determine if all of a spa's buffers have been
4784 * evicted from an arc state.
4786 ASSERT(!retry || spa == NULL);
4788 if (spa != NULL)
4789 guid = spa_load_guid(spa);
4791 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_DATA, retry);
4792 (void) arc_flush_state(arc_mru, guid, ARC_BUFC_METADATA, retry);
4794 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_DATA, retry);
4795 (void) arc_flush_state(arc_mfu, guid, ARC_BUFC_METADATA, retry);
4797 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_DATA, retry);
4798 (void) arc_flush_state(arc_mru_ghost, guid, ARC_BUFC_METADATA, retry);
4800 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_DATA, retry);
4801 (void) arc_flush_state(arc_mfu_ghost, guid, ARC_BUFC_METADATA, retry);
4803 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_DATA, retry);
4804 (void) arc_flush_state(arc_uncached, guid, ARC_BUFC_METADATA, retry);
4807 void
4808 arc_reduce_target_size(int64_t to_free)
4810 uint64_t asize = aggsum_value(&arc_sums.arcstat_size);
4813 * All callers want the ARC to actually evict (at least) this much
4814 * memory. Therefore we reduce from the lower of the current size and
4815 * the target size. This way, even if arc_c is much higher than
4816 * arc_size (as can be the case after many calls to arc_freed(), we will
4817 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4818 * will evict.
4820 uint64_t c = MIN(arc_c, asize);
4822 if (c > to_free && c - to_free > arc_c_min) {
4823 arc_c = c - to_free;
4824 atomic_add_64(&arc_p, -(arc_p >> arc_shrink_shift));
4825 if (arc_p > arc_c)
4826 arc_p = (arc_c >> 1);
4827 ASSERT(arc_c >= arc_c_min);
4828 ASSERT((int64_t)arc_p >= 0);
4829 } else {
4830 arc_c = arc_c_min;
4833 if (asize > arc_c) {
4834 /* See comment in arc_evict_cb_check() on why lock+flag */
4835 mutex_enter(&arc_evict_lock);
4836 arc_evict_needed = B_TRUE;
4837 mutex_exit(&arc_evict_lock);
4838 zthr_wakeup(arc_evict_zthr);
4843 * Determine if the system is under memory pressure and is asking
4844 * to reclaim memory. A return value of B_TRUE indicates that the system
4845 * is under memory pressure and that the arc should adjust accordingly.
4847 boolean_t
4848 arc_reclaim_needed(void)
4850 return (arc_available_memory() < 0);
4853 void
4854 arc_kmem_reap_soon(void)
4856 size_t i;
4857 kmem_cache_t *prev_cache = NULL;
4858 kmem_cache_t *prev_data_cache = NULL;
4860 #ifdef _KERNEL
4861 if ((aggsum_compare(&arc_sums.arcstat_meta_used,
4862 arc_meta_limit) >= 0) && zfs_arc_meta_prune) {
4864 * We are exceeding our meta-data cache limit.
4865 * Prune some entries to release holds on meta-data.
4867 arc_prune_async(zfs_arc_meta_prune);
4869 #if defined(_ILP32)
4871 * Reclaim unused memory from all kmem caches.
4873 kmem_reap();
4874 #endif
4875 #endif
4877 for (i = 0; i < SPA_MAXBLOCKSIZE >> SPA_MINBLOCKSHIFT; i++) {
4878 #if defined(_ILP32)
4879 /* reach upper limit of cache size on 32-bit */
4880 if (zio_buf_cache[i] == NULL)
4881 break;
4882 #endif
4883 if (zio_buf_cache[i] != prev_cache) {
4884 prev_cache = zio_buf_cache[i];
4885 kmem_cache_reap_now(zio_buf_cache[i]);
4887 if (zio_data_buf_cache[i] != prev_data_cache) {
4888 prev_data_cache = zio_data_buf_cache[i];
4889 kmem_cache_reap_now(zio_data_buf_cache[i]);
4892 kmem_cache_reap_now(buf_cache);
4893 kmem_cache_reap_now(hdr_full_cache);
4894 kmem_cache_reap_now(hdr_l2only_cache);
4895 kmem_cache_reap_now(zfs_btree_leaf_cache);
4896 abd_cache_reap_now();
4899 static boolean_t
4900 arc_evict_cb_check(void *arg, zthr_t *zthr)
4902 (void) arg, (void) zthr;
4904 #ifdef ZFS_DEBUG
4906 * This is necessary in order to keep the kstat information
4907 * up to date for tools that display kstat data such as the
4908 * mdb ::arc dcmd and the Linux crash utility. These tools
4909 * typically do not call kstat's update function, but simply
4910 * dump out stats from the most recent update. Without
4911 * this call, these commands may show stale stats for the
4912 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4913 * with this call, the data might be out of date if the
4914 * evict thread hasn't been woken recently; but that should
4915 * suffice. The arc_state_t structures can be queried
4916 * directly if more accurate information is needed.
4918 if (arc_ksp != NULL)
4919 arc_ksp->ks_update(arc_ksp, KSTAT_READ);
4920 #endif
4923 * We have to rely on arc_wait_for_eviction() to tell us when to
4924 * evict, rather than checking if we are overflowing here, so that we
4925 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4926 * If we have become "not overflowing" since arc_wait_for_eviction()
4927 * checked, we need to wake it up. We could broadcast the CV here,
4928 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4929 * would need to use a mutex to ensure that this function doesn't
4930 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4931 * the arc_evict_lock). However, the lock ordering of such a lock
4932 * would necessarily be incorrect with respect to the zthr_lock,
4933 * which is held before this function is called, and is held by
4934 * arc_wait_for_eviction() when it calls zthr_wakeup().
4936 if (arc_evict_needed)
4937 return (B_TRUE);
4940 * If we have buffers in uncached state, evict them periodically.
4942 return ((zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_DATA]) +
4943 zfs_refcount_count(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]) &&
4944 ddi_get_lbolt() - arc_last_uncached_flush >
4945 MSEC_TO_TICK(arc_min_prefetch_ms / 2)));
4949 * Keep arc_size under arc_c by running arc_evict which evicts data
4950 * from the ARC.
4952 static void
4953 arc_evict_cb(void *arg, zthr_t *zthr)
4955 (void) arg, (void) zthr;
4957 uint64_t evicted = 0;
4958 fstrans_cookie_t cookie = spl_fstrans_mark();
4960 /* Always try to evict from uncached state. */
4961 arc_last_uncached_flush = ddi_get_lbolt();
4962 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_DATA, B_FALSE);
4963 evicted += arc_flush_state(arc_uncached, 0, ARC_BUFC_METADATA, B_FALSE);
4965 /* Evict from other states only if told to. */
4966 if (arc_evict_needed)
4967 evicted += arc_evict();
4970 * If evicted is zero, we couldn't evict anything
4971 * via arc_evict(). This could be due to hash lock
4972 * collisions, but more likely due to the majority of
4973 * arc buffers being unevictable. Therefore, even if
4974 * arc_size is above arc_c, another pass is unlikely to
4975 * be helpful and could potentially cause us to enter an
4976 * infinite loop. Additionally, zthr_iscancelled() is
4977 * checked here so that if the arc is shutting down, the
4978 * broadcast will wake any remaining arc evict waiters.
4980 mutex_enter(&arc_evict_lock);
4981 arc_evict_needed = !zthr_iscancelled(arc_evict_zthr) &&
4982 evicted > 0 && aggsum_compare(&arc_sums.arcstat_size, arc_c) > 0;
4983 if (!arc_evict_needed) {
4985 * We're either no longer overflowing, or we
4986 * can't evict anything more, so we should wake
4987 * arc_get_data_impl() sooner.
4989 arc_evict_waiter_t *aw;
4990 while ((aw = list_remove_head(&arc_evict_waiters)) != NULL) {
4991 cv_broadcast(&aw->aew_cv);
4993 arc_set_need_free();
4995 mutex_exit(&arc_evict_lock);
4996 spl_fstrans_unmark(cookie);
4999 static boolean_t
5000 arc_reap_cb_check(void *arg, zthr_t *zthr)
5002 (void) arg, (void) zthr;
5004 int64_t free_memory = arc_available_memory();
5005 static int reap_cb_check_counter = 0;
5008 * If a kmem reap is already active, don't schedule more. We must
5009 * check for this because kmem_cache_reap_soon() won't actually
5010 * block on the cache being reaped (this is to prevent callers from
5011 * becoming implicitly blocked by a system-wide kmem reap -- which,
5012 * on a system with many, many full magazines, can take minutes).
5014 if (!kmem_cache_reap_active() && free_memory < 0) {
5016 arc_no_grow = B_TRUE;
5017 arc_warm = B_TRUE;
5019 * Wait at least zfs_grow_retry (default 5) seconds
5020 * before considering growing.
5022 arc_growtime = gethrtime() + SEC2NSEC(arc_grow_retry);
5023 return (B_TRUE);
5024 } else if (free_memory < arc_c >> arc_no_grow_shift) {
5025 arc_no_grow = B_TRUE;
5026 } else if (gethrtime() >= arc_growtime) {
5027 arc_no_grow = B_FALSE;
5031 * Called unconditionally every 60 seconds to reclaim unused
5032 * zstd compression and decompression context. This is done
5033 * here to avoid the need for an independent thread.
5035 if (!((reap_cb_check_counter++) % 60))
5036 zfs_zstd_cache_reap_now();
5038 return (B_FALSE);
5042 * Keep enough free memory in the system by reaping the ARC's kmem
5043 * caches. To cause more slabs to be reapable, we may reduce the
5044 * target size of the cache (arc_c), causing the arc_evict_cb()
5045 * to free more buffers.
5047 static void
5048 arc_reap_cb(void *arg, zthr_t *zthr)
5050 (void) arg, (void) zthr;
5052 int64_t free_memory;
5053 fstrans_cookie_t cookie = spl_fstrans_mark();
5056 * Kick off asynchronous kmem_reap()'s of all our caches.
5058 arc_kmem_reap_soon();
5061 * Wait at least arc_kmem_cache_reap_retry_ms between
5062 * arc_kmem_reap_soon() calls. Without this check it is possible to
5063 * end up in a situation where we spend lots of time reaping
5064 * caches, while we're near arc_c_min. Waiting here also gives the
5065 * subsequent free memory check a chance of finding that the
5066 * asynchronous reap has already freed enough memory, and we don't
5067 * need to call arc_reduce_target_size().
5069 delay((hz * arc_kmem_cache_reap_retry_ms + 999) / 1000);
5072 * Reduce the target size as needed to maintain the amount of free
5073 * memory in the system at a fraction of the arc_size (1/128th by
5074 * default). If oversubscribed (free_memory < 0) then reduce the
5075 * target arc_size by the deficit amount plus the fractional
5076 * amount. If free memory is positive but less than the fractional
5077 * amount, reduce by what is needed to hit the fractional amount.
5079 free_memory = arc_available_memory();
5081 int64_t can_free = arc_c - arc_c_min;
5082 if (can_free > 0) {
5083 int64_t to_free = (can_free >> arc_shrink_shift) - free_memory;
5084 if (to_free > 0)
5085 arc_reduce_target_size(to_free);
5087 spl_fstrans_unmark(cookie);
5090 #ifdef _KERNEL
5092 * Determine the amount of memory eligible for eviction contained in the
5093 * ARC. All clean data reported by the ghost lists can always be safely
5094 * evicted. Due to arc_c_min, the same does not hold for all clean data
5095 * contained by the regular mru and mfu lists.
5097 * In the case of the regular mru and mfu lists, we need to report as
5098 * much clean data as possible, such that evicting that same reported
5099 * data will not bring arc_size below arc_c_min. Thus, in certain
5100 * circumstances, the total amount of clean data in the mru and mfu
5101 * lists might not actually be evictable.
5103 * The following two distinct cases are accounted for:
5105 * 1. The sum of the amount of dirty data contained by both the mru and
5106 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5107 * is greater than or equal to arc_c_min.
5108 * (i.e. amount of dirty data >= arc_c_min)
5110 * This is the easy case; all clean data contained by the mru and mfu
5111 * lists is evictable. Evicting all clean data can only drop arc_size
5112 * to the amount of dirty data, which is greater than arc_c_min.
5114 * 2. The sum of the amount of dirty data contained by both the mru and
5115 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5116 * is less than arc_c_min.
5117 * (i.e. arc_c_min > amount of dirty data)
5119 * 2.1. arc_size is greater than or equal arc_c_min.
5120 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5122 * In this case, not all clean data from the regular mru and mfu
5123 * lists is actually evictable; we must leave enough clean data
5124 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5125 * evictable data from the two lists combined, is exactly the
5126 * difference between arc_size and arc_c_min.
5128 * 2.2. arc_size is less than arc_c_min
5129 * (i.e. arc_c_min > arc_size > amount of dirty data)
5131 * In this case, none of the data contained in the mru and mfu
5132 * lists is evictable, even if it's clean. Since arc_size is
5133 * already below arc_c_min, evicting any more would only
5134 * increase this negative difference.
5137 #endif /* _KERNEL */
5140 * Adapt arc info given the number of bytes we are trying to add and
5141 * the state that we are coming from. This function is only called
5142 * when we are adding new content to the cache.
5144 static void
5145 arc_adapt(int bytes, arc_state_t *state)
5147 int mult;
5148 uint64_t arc_p_min = (arc_c >> arc_p_min_shift);
5149 int64_t mrug_size = zfs_refcount_count(&arc_mru_ghost->arcs_size);
5150 int64_t mfug_size = zfs_refcount_count(&arc_mfu_ghost->arcs_size);
5152 ASSERT(bytes > 0);
5154 * Adapt the target size of the MRU list:
5155 * - if we just hit in the MRU ghost list, then increase
5156 * the target size of the MRU list.
5157 * - if we just hit in the MFU ghost list, then increase
5158 * the target size of the MFU list by decreasing the
5159 * target size of the MRU list.
5161 if (state == arc_mru_ghost) {
5162 mult = (mrug_size >= mfug_size) ? 1 : (mfug_size / mrug_size);
5163 if (!zfs_arc_p_dampener_disable)
5164 mult = MIN(mult, 10); /* avoid wild arc_p adjustment */
5166 arc_p = MIN(arc_c - arc_p_min, arc_p + (uint64_t)bytes * mult);
5167 } else if (state == arc_mfu_ghost) {
5168 uint64_t delta;
5170 mult = (mfug_size >= mrug_size) ? 1 : (mrug_size / mfug_size);
5171 if (!zfs_arc_p_dampener_disable)
5172 mult = MIN(mult, 10);
5174 delta = MIN(bytes * mult, arc_p);
5175 arc_p = MAX(arc_p_min, arc_p - delta);
5177 ASSERT((int64_t)arc_p >= 0);
5180 * Wake reap thread if we do not have any available memory
5182 if (arc_reclaim_needed()) {
5183 zthr_wakeup(arc_reap_zthr);
5184 return;
5187 if (arc_no_grow)
5188 return;
5190 if (arc_c >= arc_c_max)
5191 return;
5194 * If we're within (2 * maxblocksize) bytes of the target
5195 * cache size, increment the target cache size
5197 ASSERT3U(arc_c, >=, 2ULL << SPA_MAXBLOCKSHIFT);
5198 if (aggsum_upper_bound(&arc_sums.arcstat_size) >=
5199 arc_c - (2ULL << SPA_MAXBLOCKSHIFT)) {
5200 atomic_add_64(&arc_c, (int64_t)bytes);
5201 if (arc_c > arc_c_max)
5202 arc_c = arc_c_max;
5203 else if (state == arc_anon && arc_p < arc_c >> 1)
5204 atomic_add_64(&arc_p, (int64_t)bytes);
5205 if (arc_p > arc_c)
5206 arc_p = arc_c;
5208 ASSERT((int64_t)arc_p >= 0);
5212 * Check if arc_size has grown past our upper threshold, determined by
5213 * zfs_arc_overflow_shift.
5215 static arc_ovf_level_t
5216 arc_is_overflowing(boolean_t use_reserve)
5218 /* Always allow at least one block of overflow */
5219 int64_t overflow = MAX(SPA_MAXBLOCKSIZE,
5220 arc_c >> zfs_arc_overflow_shift);
5223 * We just compare the lower bound here for performance reasons. Our
5224 * primary goals are to make sure that the arc never grows without
5225 * bound, and that it can reach its maximum size. This check
5226 * accomplishes both goals. The maximum amount we could run over by is
5227 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5228 * in the ARC. In practice, that's in the tens of MB, which is low
5229 * enough to be safe.
5231 int64_t over = aggsum_lower_bound(&arc_sums.arcstat_size) -
5232 arc_c - overflow / 2;
5233 if (!use_reserve)
5234 overflow /= 2;
5235 return (over < 0 ? ARC_OVF_NONE :
5236 over < overflow ? ARC_OVF_SOME : ARC_OVF_SEVERE);
5239 static abd_t *
5240 arc_get_data_abd(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5241 int alloc_flags)
5243 arc_buf_contents_t type = arc_buf_type(hdr);
5245 arc_get_data_impl(hdr, size, tag, alloc_flags);
5246 if (alloc_flags & ARC_HDR_ALLOC_LINEAR)
5247 return (abd_alloc_linear(size, type == ARC_BUFC_METADATA));
5248 else
5249 return (abd_alloc(size, type == ARC_BUFC_METADATA));
5252 static void *
5253 arc_get_data_buf(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5255 arc_buf_contents_t type = arc_buf_type(hdr);
5257 arc_get_data_impl(hdr, size, tag, ARC_HDR_DO_ADAPT);
5258 if (type == ARC_BUFC_METADATA) {
5259 return (zio_buf_alloc(size));
5260 } else {
5261 ASSERT(type == ARC_BUFC_DATA);
5262 return (zio_data_buf_alloc(size));
5267 * Wait for the specified amount of data (in bytes) to be evicted from the
5268 * ARC, and for there to be sufficient free memory in the system. Waiting for
5269 * eviction ensures that the memory used by the ARC decreases. Waiting for
5270 * free memory ensures that the system won't run out of free pages, regardless
5271 * of ARC behavior and settings. See arc_lowmem_init().
5273 void
5274 arc_wait_for_eviction(uint64_t amount, boolean_t use_reserve)
5276 switch (arc_is_overflowing(use_reserve)) {
5277 case ARC_OVF_NONE:
5278 return;
5279 case ARC_OVF_SOME:
5281 * This is a bit racy without taking arc_evict_lock, but the
5282 * worst that can happen is we either call zthr_wakeup() extra
5283 * time due to race with other thread here, or the set flag
5284 * get cleared by arc_evict_cb(), which is unlikely due to
5285 * big hysteresis, but also not important since at this level
5286 * of overflow the eviction is purely advisory. Same time
5287 * taking the global lock here every time without waiting for
5288 * the actual eviction creates a significant lock contention.
5290 if (!arc_evict_needed) {
5291 arc_evict_needed = B_TRUE;
5292 zthr_wakeup(arc_evict_zthr);
5294 return;
5295 case ARC_OVF_SEVERE:
5296 default:
5298 arc_evict_waiter_t aw;
5299 list_link_init(&aw.aew_node);
5300 cv_init(&aw.aew_cv, NULL, CV_DEFAULT, NULL);
5302 uint64_t last_count = 0;
5303 mutex_enter(&arc_evict_lock);
5304 if (!list_is_empty(&arc_evict_waiters)) {
5305 arc_evict_waiter_t *last =
5306 list_tail(&arc_evict_waiters);
5307 last_count = last->aew_count;
5308 } else if (!arc_evict_needed) {
5309 arc_evict_needed = B_TRUE;
5310 zthr_wakeup(arc_evict_zthr);
5313 * Note, the last waiter's count may be less than
5314 * arc_evict_count if we are low on memory in which
5315 * case arc_evict_state_impl() may have deferred
5316 * wakeups (but still incremented arc_evict_count).
5318 aw.aew_count = MAX(last_count, arc_evict_count) + amount;
5320 list_insert_tail(&arc_evict_waiters, &aw);
5322 arc_set_need_free();
5324 DTRACE_PROBE3(arc__wait__for__eviction,
5325 uint64_t, amount,
5326 uint64_t, arc_evict_count,
5327 uint64_t, aw.aew_count);
5330 * We will be woken up either when arc_evict_count reaches
5331 * aew_count, or when the ARC is no longer overflowing and
5332 * eviction completes.
5333 * In case of "false" wakeup, we will still be on the list.
5335 do {
5336 cv_wait(&aw.aew_cv, &arc_evict_lock);
5337 } while (list_link_active(&aw.aew_node));
5338 mutex_exit(&arc_evict_lock);
5340 cv_destroy(&aw.aew_cv);
5346 * Allocate a block and return it to the caller. If we are hitting the
5347 * hard limit for the cache size, we must sleep, waiting for the eviction
5348 * thread to catch up. If we're past the target size but below the hard
5349 * limit, we'll only signal the reclaim thread and continue on.
5351 static void
5352 arc_get_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag,
5353 int alloc_flags)
5355 arc_state_t *state = hdr->b_l1hdr.b_state;
5356 arc_buf_contents_t type = arc_buf_type(hdr);
5358 if (alloc_flags & ARC_HDR_DO_ADAPT)
5359 arc_adapt(size, state);
5362 * If arc_size is currently overflowing, we must be adding data
5363 * faster than we are evicting. To ensure we don't compound the
5364 * problem by adding more data and forcing arc_size to grow even
5365 * further past it's target size, we wait for the eviction thread to
5366 * make some progress. We also wait for there to be sufficient free
5367 * memory in the system, as measured by arc_free_memory().
5369 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5370 * requested size to be evicted. This should be more than 100%, to
5371 * ensure that that progress is also made towards getting arc_size
5372 * under arc_c. See the comment above zfs_arc_eviction_pct.
5374 arc_wait_for_eviction(size * zfs_arc_eviction_pct / 100,
5375 alloc_flags & ARC_HDR_USE_RESERVE);
5377 VERIFY3U(hdr->b_type, ==, type);
5378 if (type == ARC_BUFC_METADATA) {
5379 arc_space_consume(size, ARC_SPACE_META);
5380 } else {
5381 arc_space_consume(size, ARC_SPACE_DATA);
5385 * Update the state size. Note that ghost states have a
5386 * "ghost size" and so don't need to be updated.
5388 if (!GHOST_STATE(state)) {
5390 (void) zfs_refcount_add_many(&state->arcs_size, size, tag);
5393 * If this is reached via arc_read, the link is
5394 * protected by the hash lock. If reached via
5395 * arc_buf_alloc, the header should not be accessed by
5396 * any other thread. And, if reached via arc_read_done,
5397 * the hash lock will protect it if it's found in the
5398 * hash table; otherwise no other thread should be
5399 * trying to [add|remove]_reference it.
5401 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5402 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5403 (void) zfs_refcount_add_many(&state->arcs_esize[type],
5404 size, tag);
5408 * If we are growing the cache, and we are adding anonymous
5409 * data, and we have outgrown arc_p, update arc_p
5411 if (aggsum_upper_bound(&arc_sums.arcstat_size) < arc_c &&
5412 hdr->b_l1hdr.b_state == arc_anon &&
5413 (zfs_refcount_count(&arc_anon->arcs_size) +
5414 zfs_refcount_count(&arc_mru->arcs_size) > arc_p &&
5415 arc_p < arc_c >> 1))
5416 arc_p = MIN(arc_c, arc_p + size);
5420 static void
5421 arc_free_data_abd(arc_buf_hdr_t *hdr, abd_t *abd, uint64_t size,
5422 const void *tag)
5424 arc_free_data_impl(hdr, size, tag);
5425 abd_free(abd);
5428 static void
5429 arc_free_data_buf(arc_buf_hdr_t *hdr, void *buf, uint64_t size, const void *tag)
5431 arc_buf_contents_t type = arc_buf_type(hdr);
5433 arc_free_data_impl(hdr, size, tag);
5434 if (type == ARC_BUFC_METADATA) {
5435 zio_buf_free(buf, size);
5436 } else {
5437 ASSERT(type == ARC_BUFC_DATA);
5438 zio_data_buf_free(buf, size);
5443 * Free the arc data buffer.
5445 static void
5446 arc_free_data_impl(arc_buf_hdr_t *hdr, uint64_t size, const void *tag)
5448 arc_state_t *state = hdr->b_l1hdr.b_state;
5449 arc_buf_contents_t type = arc_buf_type(hdr);
5451 /* protected by hash lock, if in the hash table */
5452 if (multilist_link_active(&hdr->b_l1hdr.b_arc_node)) {
5453 ASSERT(zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt));
5454 ASSERT(state != arc_anon && state != arc_l2c_only);
5456 (void) zfs_refcount_remove_many(&state->arcs_esize[type],
5457 size, tag);
5459 (void) zfs_refcount_remove_many(&state->arcs_size, size, tag);
5461 VERIFY3U(hdr->b_type, ==, type);
5462 if (type == ARC_BUFC_METADATA) {
5463 arc_space_return(size, ARC_SPACE_META);
5464 } else {
5465 ASSERT(type == ARC_BUFC_DATA);
5466 arc_space_return(size, ARC_SPACE_DATA);
5471 * This routine is called whenever a buffer is accessed.
5473 static void
5474 arc_access(arc_buf_hdr_t *hdr, arc_flags_t arc_flags, boolean_t hit)
5476 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
5477 ASSERT(HDR_HAS_L1HDR(hdr));
5480 * Update buffer prefetch status.
5482 boolean_t was_prefetch = HDR_PREFETCH(hdr);
5483 boolean_t now_prefetch = arc_flags & ARC_FLAG_PREFETCH;
5484 if (was_prefetch != now_prefetch) {
5485 if (was_prefetch) {
5486 ARCSTAT_CONDSTAT(hit, demand_hit, demand_iohit,
5487 HDR_PRESCIENT_PREFETCH(hdr), prescient, predictive,
5488 prefetch);
5490 if (HDR_HAS_L2HDR(hdr))
5491 l2arc_hdr_arcstats_decrement_state(hdr);
5492 if (was_prefetch) {
5493 arc_hdr_clear_flags(hdr,
5494 ARC_FLAG_PREFETCH | ARC_FLAG_PRESCIENT_PREFETCH);
5495 } else {
5496 arc_hdr_set_flags(hdr, ARC_FLAG_PREFETCH);
5498 if (HDR_HAS_L2HDR(hdr))
5499 l2arc_hdr_arcstats_increment_state(hdr);
5501 if (now_prefetch) {
5502 if (arc_flags & ARC_FLAG_PRESCIENT_PREFETCH) {
5503 arc_hdr_set_flags(hdr, ARC_FLAG_PRESCIENT_PREFETCH);
5504 ARCSTAT_BUMP(arcstat_prescient_prefetch);
5505 } else {
5506 ARCSTAT_BUMP(arcstat_predictive_prefetch);
5509 if (arc_flags & ARC_FLAG_L2CACHE)
5510 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
5512 clock_t now = ddi_get_lbolt();
5513 if (hdr->b_l1hdr.b_state == arc_anon) {
5514 arc_state_t *new_state;
5516 * This buffer is not in the cache, and does not appear in
5517 * our "ghost" lists. Add it to the MRU or uncached state.
5519 ASSERT0(hdr->b_l1hdr.b_arc_access);
5520 hdr->b_l1hdr.b_arc_access = now;
5521 if (HDR_UNCACHED(hdr)) {
5522 new_state = arc_uncached;
5523 DTRACE_PROBE1(new_state__uncached, arc_buf_hdr_t *,
5524 hdr);
5525 } else {
5526 new_state = arc_mru;
5527 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5529 arc_change_state(new_state, hdr);
5530 } else if (hdr->b_l1hdr.b_state == arc_mru) {
5532 * This buffer has been accessed once recently and either
5533 * its read is still in progress or it is in the cache.
5535 if (HDR_IO_IN_PROGRESS(hdr)) {
5536 hdr->b_l1hdr.b_arc_access = now;
5537 return;
5539 hdr->b_l1hdr.b_mru_hits++;
5540 ARCSTAT_BUMP(arcstat_mru_hits);
5543 * If the previous access was a prefetch, then it already
5544 * handled possible promotion, so nothing more to do for now.
5546 if (was_prefetch) {
5547 hdr->b_l1hdr.b_arc_access = now;
5548 return;
5552 * If more than ARC_MINTIME have passed from the previous
5553 * hit, promote the buffer to the MFU state.
5555 if (ddi_time_after(now, hdr->b_l1hdr.b_arc_access +
5556 ARC_MINTIME)) {
5557 hdr->b_l1hdr.b_arc_access = now;
5558 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5559 arc_change_state(arc_mfu, hdr);
5561 } else if (hdr->b_l1hdr.b_state == arc_mru_ghost) {
5562 arc_state_t *new_state;
5564 * This buffer has been accessed once recently, but was
5565 * evicted from the cache. Would we have bigger MRU, it
5566 * would be an MRU hit, so handle it the same way, except
5567 * we don't need to check the previous access time.
5569 hdr->b_l1hdr.b_mru_ghost_hits++;
5570 ARCSTAT_BUMP(arcstat_mru_ghost_hits);
5571 hdr->b_l1hdr.b_arc_access = now;
5572 if (was_prefetch) {
5573 new_state = arc_mru;
5574 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5575 } else {
5576 new_state = arc_mfu;
5577 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5579 arc_change_state(new_state, hdr);
5580 } else if (hdr->b_l1hdr.b_state == arc_mfu) {
5582 * This buffer has been accessed more than once and either
5583 * still in the cache or being restored from one of ghosts.
5585 if (!HDR_IO_IN_PROGRESS(hdr)) {
5586 hdr->b_l1hdr.b_mfu_hits++;
5587 ARCSTAT_BUMP(arcstat_mfu_hits);
5589 hdr->b_l1hdr.b_arc_access = now;
5590 } else if (hdr->b_l1hdr.b_state == arc_mfu_ghost) {
5592 * This buffer has been accessed more than once recently, but
5593 * has been evicted from the cache. Would we have bigger MFU
5594 * it would stay in cache, so move it back to MFU state.
5596 hdr->b_l1hdr.b_mfu_ghost_hits++;
5597 ARCSTAT_BUMP(arcstat_mfu_ghost_hits);
5598 hdr->b_l1hdr.b_arc_access = now;
5599 DTRACE_PROBE1(new_state__mfu, arc_buf_hdr_t *, hdr);
5600 arc_change_state(arc_mfu, hdr);
5601 } else if (hdr->b_l1hdr.b_state == arc_uncached) {
5603 * This buffer is uncacheable, but we got a hit. Probably
5604 * a demand read after prefetch. Nothing more to do here.
5606 if (!HDR_IO_IN_PROGRESS(hdr))
5607 ARCSTAT_BUMP(arcstat_uncached_hits);
5608 hdr->b_l1hdr.b_arc_access = now;
5609 } else if (hdr->b_l1hdr.b_state == arc_l2c_only) {
5611 * This buffer is on the 2nd Level ARC and was not accessed
5612 * for a long time, so treat it as new and put into MRU.
5614 hdr->b_l1hdr.b_arc_access = now;
5615 DTRACE_PROBE1(new_state__mru, arc_buf_hdr_t *, hdr);
5616 arc_change_state(arc_mru, hdr);
5617 } else {
5618 cmn_err(CE_PANIC, "invalid arc state 0x%p",
5619 hdr->b_l1hdr.b_state);
5624 * This routine is called by dbuf_hold() to update the arc_access() state
5625 * which otherwise would be skipped for entries in the dbuf cache.
5627 void
5628 arc_buf_access(arc_buf_t *buf)
5630 arc_buf_hdr_t *hdr = buf->b_hdr;
5633 * Avoid taking the hash_lock when possible as an optimization.
5634 * The header must be checked again under the hash_lock in order
5635 * to handle the case where it is concurrently being released.
5637 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr))
5638 return;
5640 kmutex_t *hash_lock = HDR_LOCK(hdr);
5641 mutex_enter(hash_lock);
5643 if (hdr->b_l1hdr.b_state == arc_anon || HDR_EMPTY(hdr)) {
5644 mutex_exit(hash_lock);
5645 ARCSTAT_BUMP(arcstat_access_skip);
5646 return;
5649 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
5650 hdr->b_l1hdr.b_state == arc_mfu ||
5651 hdr->b_l1hdr.b_state == arc_uncached);
5653 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
5654 arc_access(hdr, 0, B_TRUE);
5655 mutex_exit(hash_lock);
5657 ARCSTAT_BUMP(arcstat_hits);
5658 ARCSTAT_CONDSTAT(B_TRUE /* demand */, demand, prefetch,
5659 !HDR_ISTYPE_METADATA(hdr), data, metadata, hits);
5662 /* a generic arc_read_done_func_t which you can use */
5663 void
5664 arc_bcopy_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5665 arc_buf_t *buf, void *arg)
5667 (void) zio, (void) zb, (void) bp;
5669 if (buf == NULL)
5670 return;
5672 memcpy(arg, buf->b_data, arc_buf_size(buf));
5673 arc_buf_destroy(buf, arg);
5676 /* a generic arc_read_done_func_t */
5677 void
5678 arc_getbuf_func(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
5679 arc_buf_t *buf, void *arg)
5681 (void) zb, (void) bp;
5682 arc_buf_t **bufp = arg;
5684 if (buf == NULL) {
5685 ASSERT(zio == NULL || zio->io_error != 0);
5686 *bufp = NULL;
5687 } else {
5688 ASSERT(zio == NULL || zio->io_error == 0);
5689 *bufp = buf;
5690 ASSERT(buf->b_data != NULL);
5694 static void
5695 arc_hdr_verify(arc_buf_hdr_t *hdr, blkptr_t *bp)
5697 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
5698 ASSERT3U(HDR_GET_PSIZE(hdr), ==, 0);
5699 ASSERT3U(arc_hdr_get_compress(hdr), ==, ZIO_COMPRESS_OFF);
5700 } else {
5701 if (HDR_COMPRESSION_ENABLED(hdr)) {
5702 ASSERT3U(arc_hdr_get_compress(hdr), ==,
5703 BP_GET_COMPRESS(bp));
5705 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
5706 ASSERT3U(HDR_GET_PSIZE(hdr), ==, BP_GET_PSIZE(bp));
5707 ASSERT3U(!!HDR_PROTECTED(hdr), ==, BP_IS_PROTECTED(bp));
5711 static void
5712 arc_read_done(zio_t *zio)
5714 blkptr_t *bp = zio->io_bp;
5715 arc_buf_hdr_t *hdr = zio->io_private;
5716 kmutex_t *hash_lock = NULL;
5717 arc_callback_t *callback_list;
5718 arc_callback_t *acb;
5721 * The hdr was inserted into hash-table and removed from lists
5722 * prior to starting I/O. We should find this header, since
5723 * it's in the hash table, and it should be legit since it's
5724 * not possible to evict it during the I/O. The only possible
5725 * reason for it not to be found is if we were freed during the
5726 * read.
5728 if (HDR_IN_HASH_TABLE(hdr)) {
5729 arc_buf_hdr_t *found;
5731 ASSERT3U(hdr->b_birth, ==, BP_PHYSICAL_BIRTH(zio->io_bp));
5732 ASSERT3U(hdr->b_dva.dva_word[0], ==,
5733 BP_IDENTITY(zio->io_bp)->dva_word[0]);
5734 ASSERT3U(hdr->b_dva.dva_word[1], ==,
5735 BP_IDENTITY(zio->io_bp)->dva_word[1]);
5737 found = buf_hash_find(hdr->b_spa, zio->io_bp, &hash_lock);
5739 ASSERT((found == hdr &&
5740 DVA_EQUAL(&hdr->b_dva, BP_IDENTITY(zio->io_bp))) ||
5741 (found == hdr && HDR_L2_READING(hdr)));
5742 ASSERT3P(hash_lock, !=, NULL);
5745 if (BP_IS_PROTECTED(bp)) {
5746 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
5747 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
5748 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
5749 hdr->b_crypt_hdr.b_iv);
5751 if (zio->io_error == 0) {
5752 if (BP_GET_TYPE(bp) == DMU_OT_INTENT_LOG) {
5753 void *tmpbuf;
5755 tmpbuf = abd_borrow_buf_copy(zio->io_abd,
5756 sizeof (zil_chain_t));
5757 zio_crypt_decode_mac_zil(tmpbuf,
5758 hdr->b_crypt_hdr.b_mac);
5759 abd_return_buf(zio->io_abd, tmpbuf,
5760 sizeof (zil_chain_t));
5761 } else {
5762 zio_crypt_decode_mac_bp(bp,
5763 hdr->b_crypt_hdr.b_mac);
5768 if (zio->io_error == 0) {
5769 /* byteswap if necessary */
5770 if (BP_SHOULD_BYTESWAP(zio->io_bp)) {
5771 if (BP_GET_LEVEL(zio->io_bp) > 0) {
5772 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
5773 } else {
5774 hdr->b_l1hdr.b_byteswap =
5775 DMU_OT_BYTESWAP(BP_GET_TYPE(zio->io_bp));
5777 } else {
5778 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
5780 if (!HDR_L2_READING(hdr)) {
5781 hdr->b_complevel = zio->io_prop.zp_complevel;
5785 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_EVICTED);
5786 if (l2arc_noprefetch && HDR_PREFETCH(hdr))
5787 arc_hdr_clear_flags(hdr, ARC_FLAG_L2CACHE);
5789 callback_list = hdr->b_l1hdr.b_acb;
5790 ASSERT3P(callback_list, !=, NULL);
5791 hdr->b_l1hdr.b_acb = NULL;
5794 * If a read request has a callback (i.e. acb_done is not NULL), then we
5795 * make a buf containing the data according to the parameters which were
5796 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5797 * aren't needlessly decompressing the data multiple times.
5799 int callback_cnt = 0;
5800 for (acb = callback_list; acb != NULL; acb = acb->acb_next) {
5802 /* We need the last one to call below in original order. */
5803 callback_list = acb;
5805 if (!acb->acb_done || acb->acb_nobuf)
5806 continue;
5808 callback_cnt++;
5810 if (zio->io_error != 0)
5811 continue;
5813 int error = arc_buf_alloc_impl(hdr, zio->io_spa,
5814 &acb->acb_zb, acb->acb_private, acb->acb_encrypted,
5815 acb->acb_compressed, acb->acb_noauth, B_TRUE,
5816 &acb->acb_buf);
5819 * Assert non-speculative zios didn't fail because an
5820 * encryption key wasn't loaded
5822 ASSERT((zio->io_flags & ZIO_FLAG_SPECULATIVE) ||
5823 error != EACCES);
5826 * If we failed to decrypt, report an error now (as the zio
5827 * layer would have done if it had done the transforms).
5829 if (error == ECKSUM) {
5830 ASSERT(BP_IS_PROTECTED(bp));
5831 error = SET_ERROR(EIO);
5832 if ((zio->io_flags & ZIO_FLAG_SPECULATIVE) == 0) {
5833 spa_log_error(zio->io_spa, &acb->acb_zb);
5834 (void) zfs_ereport_post(
5835 FM_EREPORT_ZFS_AUTHENTICATION,
5836 zio->io_spa, NULL, &acb->acb_zb, zio, 0);
5840 if (error != 0) {
5842 * Decompression or decryption failed. Set
5843 * io_error so that when we call acb_done
5844 * (below), we will indicate that the read
5845 * failed. Note that in the unusual case
5846 * where one callback is compressed and another
5847 * uncompressed, we will mark all of them
5848 * as failed, even though the uncompressed
5849 * one can't actually fail. In this case,
5850 * the hdr will not be anonymous, because
5851 * if there are multiple callbacks, it's
5852 * because multiple threads found the same
5853 * arc buf in the hash table.
5855 zio->io_error = error;
5860 * If there are multiple callbacks, we must have the hash lock,
5861 * because the only way for multiple threads to find this hdr is
5862 * in the hash table. This ensures that if there are multiple
5863 * callbacks, the hdr is not anonymous. If it were anonymous,
5864 * we couldn't use arc_buf_destroy() in the error case below.
5866 ASSERT(callback_cnt < 2 || hash_lock != NULL);
5868 if (zio->io_error == 0) {
5869 arc_hdr_verify(hdr, zio->io_bp);
5870 } else {
5871 arc_hdr_set_flags(hdr, ARC_FLAG_IO_ERROR);
5872 if (hdr->b_l1hdr.b_state != arc_anon)
5873 arc_change_state(arc_anon, hdr);
5874 if (HDR_IN_HASH_TABLE(hdr))
5875 buf_hash_remove(hdr);
5879 * Broadcast before we drop the hash_lock to avoid the possibility
5880 * that the hdr (and hence the cv) might be freed before we get to
5881 * the cv_broadcast().
5883 cv_broadcast(&hdr->b_l1hdr.b_cv);
5885 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
5886 (void) remove_reference(hdr, hdr);
5888 if (hash_lock != NULL)
5889 mutex_exit(hash_lock);
5891 /* execute each callback and free its structure */
5892 while ((acb = callback_list) != NULL) {
5893 if (acb->acb_done != NULL) {
5894 if (zio->io_error != 0 && acb->acb_buf != NULL) {
5896 * If arc_buf_alloc_impl() fails during
5897 * decompression, the buf will still be
5898 * allocated, and needs to be freed here.
5900 arc_buf_destroy(acb->acb_buf,
5901 acb->acb_private);
5902 acb->acb_buf = NULL;
5904 acb->acb_done(zio, &zio->io_bookmark, zio->io_bp,
5905 acb->acb_buf, acb->acb_private);
5908 if (acb->acb_zio_dummy != NULL) {
5909 acb->acb_zio_dummy->io_error = zio->io_error;
5910 zio_nowait(acb->acb_zio_dummy);
5913 callback_list = acb->acb_prev;
5914 if (acb->acb_wait) {
5915 mutex_enter(&acb->acb_wait_lock);
5916 acb->acb_wait_error = zio->io_error;
5917 acb->acb_wait = B_FALSE;
5918 cv_signal(&acb->acb_wait_cv);
5919 mutex_exit(&acb->acb_wait_lock);
5920 /* acb will be freed by the waiting thread. */
5921 } else {
5922 kmem_free(acb, sizeof (arc_callback_t));
5928 * "Read" the block at the specified DVA (in bp) via the
5929 * cache. If the block is found in the cache, invoke the provided
5930 * callback immediately and return. Note that the `zio' parameter
5931 * in the callback will be NULL in this case, since no IO was
5932 * required. If the block is not in the cache pass the read request
5933 * on to the spa with a substitute callback function, so that the
5934 * requested block will be added to the cache.
5936 * If a read request arrives for a block that has a read in-progress,
5937 * either wait for the in-progress read to complete (and return the
5938 * results); or, if this is a read with a "done" func, add a record
5939 * to the read to invoke the "done" func when the read completes,
5940 * and return; or just return.
5942 * arc_read_done() will invoke all the requested "done" functions
5943 * for readers of this block.
5946 arc_read(zio_t *pio, spa_t *spa, const blkptr_t *bp,
5947 arc_read_done_func_t *done, void *private, zio_priority_t priority,
5948 int zio_flags, arc_flags_t *arc_flags, const zbookmark_phys_t *zb)
5950 arc_buf_hdr_t *hdr = NULL;
5951 kmutex_t *hash_lock = NULL;
5952 zio_t *rzio;
5953 uint64_t guid = spa_load_guid(spa);
5954 boolean_t compressed_read = (zio_flags & ZIO_FLAG_RAW_COMPRESS) != 0;
5955 boolean_t encrypted_read = BP_IS_ENCRYPTED(bp) &&
5956 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5957 boolean_t noauth_read = BP_IS_AUTHENTICATED(bp) &&
5958 (zio_flags & ZIO_FLAG_RAW_ENCRYPT) != 0;
5959 boolean_t embedded_bp = !!BP_IS_EMBEDDED(bp);
5960 boolean_t no_buf = *arc_flags & ARC_FLAG_NO_BUF;
5961 arc_buf_t *buf = NULL;
5962 int rc = 0;
5964 ASSERT(!embedded_bp ||
5965 BPE_GET_ETYPE(bp) == BP_EMBEDDED_TYPE_DATA);
5966 ASSERT(!BP_IS_HOLE(bp));
5967 ASSERT(!BP_IS_REDACTED(bp));
5970 * Normally SPL_FSTRANS will already be set since kernel threads which
5971 * expect to call the DMU interfaces will set it when created. System
5972 * calls are similarly handled by setting/cleaning the bit in the
5973 * registered callback (module/os/.../zfs/zpl_*).
5975 * External consumers such as Lustre which call the exported DMU
5976 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5977 * on the hash_lock always set and clear the bit.
5979 fstrans_cookie_t cookie = spl_fstrans_mark();
5980 top:
5982 * Verify the block pointer contents are reasonable. This should
5983 * always be the case since the blkptr is protected by a checksum.
5984 * However, if there is damage it's desirable to detect this early
5985 * and treat it as a checksum error. This allows an alternate blkptr
5986 * to be tried when one is available (e.g. ditto blocks).
5988 if (!zfs_blkptr_verify(spa, bp, zio_flags & ZIO_FLAG_CONFIG_WRITER,
5989 BLK_VERIFY_LOG)) {
5990 rc = SET_ERROR(ECKSUM);
5991 goto done;
5994 if (!embedded_bp) {
5996 * Embedded BP's have no DVA and require no I/O to "read".
5997 * Create an anonymous arc buf to back it.
5999 hdr = buf_hash_find(guid, bp, &hash_lock);
6003 * Determine if we have an L1 cache hit or a cache miss. For simplicity
6004 * we maintain encrypted data separately from compressed / uncompressed
6005 * data. If the user is requesting raw encrypted data and we don't have
6006 * that in the header we will read from disk to guarantee that we can
6007 * get it even if the encryption keys aren't loaded.
6009 if (hdr != NULL && HDR_HAS_L1HDR(hdr) && (HDR_HAS_RABD(hdr) ||
6010 (hdr->b_l1hdr.b_pabd != NULL && !encrypted_read))) {
6011 boolean_t is_data = !HDR_ISTYPE_METADATA(hdr);
6013 if (HDR_IO_IN_PROGRESS(hdr)) {
6014 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6015 mutex_exit(hash_lock);
6016 ARCSTAT_BUMP(arcstat_cached_only_in_progress);
6017 rc = SET_ERROR(ENOENT);
6018 goto done;
6021 zio_t *head_zio = hdr->b_l1hdr.b_acb->acb_zio_head;
6022 ASSERT3P(head_zio, !=, NULL);
6023 if ((hdr->b_flags & ARC_FLAG_PRIO_ASYNC_READ) &&
6024 priority == ZIO_PRIORITY_SYNC_READ) {
6026 * This is a sync read that needs to wait for
6027 * an in-flight async read. Request that the
6028 * zio have its priority upgraded.
6030 zio_change_priority(head_zio, priority);
6031 DTRACE_PROBE1(arc__async__upgrade__sync,
6032 arc_buf_hdr_t *, hdr);
6033 ARCSTAT_BUMP(arcstat_async_upgrade_sync);
6036 DTRACE_PROBE1(arc__iohit, arc_buf_hdr_t *, hdr);
6037 arc_access(hdr, *arc_flags, B_FALSE);
6040 * If there are multiple threads reading the same block
6041 * and that block is not yet in the ARC, then only one
6042 * thread will do the physical I/O and all other
6043 * threads will wait until that I/O completes.
6044 * Synchronous reads use the acb_wait_cv whereas nowait
6045 * reads register a callback. Both are signalled/called
6046 * in arc_read_done.
6048 * Errors of the physical I/O may need to be propagated.
6049 * Synchronous read errors are returned here from
6050 * arc_read_done via acb_wait_error. Nowait reads
6051 * attach the acb_zio_dummy zio to pio and
6052 * arc_read_done propagates the physical I/O's io_error
6053 * to acb_zio_dummy, and thereby to pio.
6055 arc_callback_t *acb = NULL;
6056 if (done || pio || *arc_flags & ARC_FLAG_WAIT) {
6057 acb = kmem_zalloc(sizeof (arc_callback_t),
6058 KM_SLEEP);
6059 acb->acb_done = done;
6060 acb->acb_private = private;
6061 acb->acb_compressed = compressed_read;
6062 acb->acb_encrypted = encrypted_read;
6063 acb->acb_noauth = noauth_read;
6064 acb->acb_nobuf = no_buf;
6065 if (*arc_flags & ARC_FLAG_WAIT) {
6066 acb->acb_wait = B_TRUE;
6067 mutex_init(&acb->acb_wait_lock, NULL,
6068 MUTEX_DEFAULT, NULL);
6069 cv_init(&acb->acb_wait_cv, NULL,
6070 CV_DEFAULT, NULL);
6072 acb->acb_zb = *zb;
6073 if (pio != NULL) {
6074 acb->acb_zio_dummy = zio_null(pio,
6075 spa, NULL, NULL, NULL, zio_flags);
6077 acb->acb_zio_head = head_zio;
6078 acb->acb_next = hdr->b_l1hdr.b_acb;
6079 if (hdr->b_l1hdr.b_acb)
6080 hdr->b_l1hdr.b_acb->acb_prev = acb;
6081 hdr->b_l1hdr.b_acb = acb;
6083 mutex_exit(hash_lock);
6085 ARCSTAT_BUMP(arcstat_iohits);
6086 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6087 demand, prefetch, is_data, data, metadata, iohits);
6089 if (*arc_flags & ARC_FLAG_WAIT) {
6090 mutex_enter(&acb->acb_wait_lock);
6091 while (acb->acb_wait) {
6092 cv_wait(&acb->acb_wait_cv,
6093 &acb->acb_wait_lock);
6095 rc = acb->acb_wait_error;
6096 mutex_exit(&acb->acb_wait_lock);
6097 mutex_destroy(&acb->acb_wait_lock);
6098 cv_destroy(&acb->acb_wait_cv);
6099 kmem_free(acb, sizeof (arc_callback_t));
6101 goto out;
6104 ASSERT(hdr->b_l1hdr.b_state == arc_mru ||
6105 hdr->b_l1hdr.b_state == arc_mfu ||
6106 hdr->b_l1hdr.b_state == arc_uncached);
6108 DTRACE_PROBE1(arc__hit, arc_buf_hdr_t *, hdr);
6109 arc_access(hdr, *arc_flags, B_TRUE);
6111 if (done && !no_buf) {
6112 ASSERT(!embedded_bp || !BP_IS_HOLE(bp));
6114 /* Get a buf with the desired data in it. */
6115 rc = arc_buf_alloc_impl(hdr, spa, zb, private,
6116 encrypted_read, compressed_read, noauth_read,
6117 B_TRUE, &buf);
6118 if (rc == ECKSUM) {
6120 * Convert authentication and decryption errors
6121 * to EIO (and generate an ereport if needed)
6122 * before leaving the ARC.
6124 rc = SET_ERROR(EIO);
6125 if ((zio_flags & ZIO_FLAG_SPECULATIVE) == 0) {
6126 spa_log_error(spa, zb);
6127 (void) zfs_ereport_post(
6128 FM_EREPORT_ZFS_AUTHENTICATION,
6129 spa, NULL, zb, NULL, 0);
6132 if (rc != 0) {
6133 arc_buf_destroy_impl(buf);
6134 buf = NULL;
6135 (void) remove_reference(hdr, private);
6138 /* assert any errors weren't due to unloaded keys */
6139 ASSERT((zio_flags & ZIO_FLAG_SPECULATIVE) ||
6140 rc != EACCES);
6142 mutex_exit(hash_lock);
6143 ARCSTAT_BUMP(arcstat_hits);
6144 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6145 demand, prefetch, is_data, data, metadata, hits);
6146 *arc_flags |= ARC_FLAG_CACHED;
6147 goto done;
6148 } else {
6149 uint64_t lsize = BP_GET_LSIZE(bp);
6150 uint64_t psize = BP_GET_PSIZE(bp);
6151 arc_callback_t *acb;
6152 vdev_t *vd = NULL;
6153 uint64_t addr = 0;
6154 boolean_t devw = B_FALSE;
6155 uint64_t size;
6156 abd_t *hdr_abd;
6157 int alloc_flags = encrypted_read ? ARC_HDR_ALLOC_RDATA : 0;
6159 if (*arc_flags & ARC_FLAG_CACHED_ONLY) {
6160 if (hash_lock != NULL)
6161 mutex_exit(hash_lock);
6162 rc = SET_ERROR(ENOENT);
6163 goto done;
6166 if (hdr == NULL) {
6168 * This block is not in the cache or it has
6169 * embedded data.
6171 arc_buf_hdr_t *exists = NULL;
6172 arc_buf_contents_t type = BP_GET_BUFC_TYPE(bp);
6173 hdr = arc_hdr_alloc(spa_load_guid(spa), psize, lsize,
6174 BP_IS_PROTECTED(bp), BP_GET_COMPRESS(bp), 0, type);
6176 if (!embedded_bp) {
6177 hdr->b_dva = *BP_IDENTITY(bp);
6178 hdr->b_birth = BP_PHYSICAL_BIRTH(bp);
6179 exists = buf_hash_insert(hdr, &hash_lock);
6181 if (exists != NULL) {
6182 /* somebody beat us to the hash insert */
6183 mutex_exit(hash_lock);
6184 buf_discard_identity(hdr);
6185 arc_hdr_destroy(hdr);
6186 goto top; /* restart the IO request */
6188 } else {
6190 * This block is in the ghost cache or encrypted data
6191 * was requested and we didn't have it. If it was
6192 * L2-only (and thus didn't have an L1 hdr),
6193 * we realloc the header to add an L1 hdr.
6195 if (!HDR_HAS_L1HDR(hdr)) {
6196 hdr = arc_hdr_realloc(hdr, hdr_l2only_cache,
6197 hdr_full_cache);
6200 if (GHOST_STATE(hdr->b_l1hdr.b_state)) {
6201 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6202 ASSERT(!HDR_HAS_RABD(hdr));
6203 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6204 ASSERT0(zfs_refcount_count(
6205 &hdr->b_l1hdr.b_refcnt));
6206 ASSERT3P(hdr->b_l1hdr.b_buf, ==, NULL);
6207 #ifdef ZFS_DEBUG
6208 ASSERT3P(hdr->b_l1hdr.b_freeze_cksum, ==, NULL);
6209 #endif
6210 } else if (HDR_IO_IN_PROGRESS(hdr)) {
6212 * If this header already had an IO in progress
6213 * and we are performing another IO to fetch
6214 * encrypted data we must wait until the first
6215 * IO completes so as not to confuse
6216 * arc_read_done(). This should be very rare
6217 * and so the performance impact shouldn't
6218 * matter.
6220 cv_wait(&hdr->b_l1hdr.b_cv, hash_lock);
6221 mutex_exit(hash_lock);
6222 goto top;
6225 if (*arc_flags & ARC_FLAG_UNCACHED) {
6226 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
6227 if (!encrypted_read)
6228 alloc_flags |= ARC_HDR_ALLOC_LINEAR;
6232 * Call arc_adapt() explicitly before arc_access() to allow
6233 * its logic to balance MRU/MFU based on the original state.
6235 arc_adapt(arc_hdr_size(hdr), hdr->b_l1hdr.b_state);
6237 * Take additional reference for IO_IN_PROGRESS. It stops
6238 * arc_access() from putting this header without any buffers
6239 * and so other references but obviously nonevictable onto
6240 * the evictable list of MRU or MFU state.
6242 add_reference(hdr, hdr);
6243 if (!embedded_bp)
6244 arc_access(hdr, *arc_flags, B_FALSE);
6245 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6246 arc_hdr_alloc_abd(hdr, alloc_flags);
6247 if (encrypted_read) {
6248 ASSERT(HDR_HAS_RABD(hdr));
6249 size = HDR_GET_PSIZE(hdr);
6250 hdr_abd = hdr->b_crypt_hdr.b_rabd;
6251 zio_flags |= ZIO_FLAG_RAW;
6252 } else {
6253 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
6254 size = arc_hdr_size(hdr);
6255 hdr_abd = hdr->b_l1hdr.b_pabd;
6257 if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF) {
6258 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
6262 * For authenticated bp's, we do not ask the ZIO layer
6263 * to authenticate them since this will cause the entire
6264 * IO to fail if the key isn't loaded. Instead, we
6265 * defer authentication until arc_buf_fill(), which will
6266 * verify the data when the key is available.
6268 if (BP_IS_AUTHENTICATED(bp))
6269 zio_flags |= ZIO_FLAG_RAW_ENCRYPT;
6272 if (BP_IS_AUTHENTICATED(bp))
6273 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6274 if (BP_GET_LEVEL(bp) > 0)
6275 arc_hdr_set_flags(hdr, ARC_FLAG_INDIRECT);
6276 ASSERT(!GHOST_STATE(hdr->b_l1hdr.b_state));
6278 acb = kmem_zalloc(sizeof (arc_callback_t), KM_SLEEP);
6279 acb->acb_done = done;
6280 acb->acb_private = private;
6281 acb->acb_compressed = compressed_read;
6282 acb->acb_encrypted = encrypted_read;
6283 acb->acb_noauth = noauth_read;
6284 acb->acb_zb = *zb;
6286 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6287 hdr->b_l1hdr.b_acb = acb;
6289 if (HDR_HAS_L2HDR(hdr) &&
6290 (vd = hdr->b_l2hdr.b_dev->l2ad_vdev) != NULL) {
6291 devw = hdr->b_l2hdr.b_dev->l2ad_writing;
6292 addr = hdr->b_l2hdr.b_daddr;
6294 * Lock out L2ARC device removal.
6296 if (vdev_is_dead(vd) ||
6297 !spa_config_tryenter(spa, SCL_L2ARC, vd, RW_READER))
6298 vd = NULL;
6302 * We count both async reads and scrub IOs as asynchronous so
6303 * that both can be upgraded in the event of a cache hit while
6304 * the read IO is still in-flight.
6306 if (priority == ZIO_PRIORITY_ASYNC_READ ||
6307 priority == ZIO_PRIORITY_SCRUB)
6308 arc_hdr_set_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6309 else
6310 arc_hdr_clear_flags(hdr, ARC_FLAG_PRIO_ASYNC_READ);
6313 * At this point, we have a level 1 cache miss or a blkptr
6314 * with embedded data. Try again in L2ARC if possible.
6316 ASSERT3U(HDR_GET_LSIZE(hdr), ==, lsize);
6319 * Skip ARC stat bump for block pointers with embedded
6320 * data. The data are read from the blkptr itself via
6321 * decode_embedded_bp_compressed().
6323 if (!embedded_bp) {
6324 DTRACE_PROBE4(arc__miss, arc_buf_hdr_t *, hdr,
6325 blkptr_t *, bp, uint64_t, lsize,
6326 zbookmark_phys_t *, zb);
6327 ARCSTAT_BUMP(arcstat_misses);
6328 ARCSTAT_CONDSTAT(!(*arc_flags & ARC_FLAG_PREFETCH),
6329 demand, prefetch, !HDR_ISTYPE_METADATA(hdr), data,
6330 metadata, misses);
6331 zfs_racct_read(size, 1);
6334 /* Check if the spa even has l2 configured */
6335 const boolean_t spa_has_l2 = l2arc_ndev != 0 &&
6336 spa->spa_l2cache.sav_count > 0;
6338 if (vd != NULL && spa_has_l2 && !(l2arc_norw && devw)) {
6340 * Read from the L2ARC if the following are true:
6341 * 1. The L2ARC vdev was previously cached.
6342 * 2. This buffer still has L2ARC metadata.
6343 * 3. This buffer isn't currently writing to the L2ARC.
6344 * 4. The L2ARC entry wasn't evicted, which may
6345 * also have invalidated the vdev.
6346 * 5. This isn't prefetch or l2arc_noprefetch is 0.
6348 if (HDR_HAS_L2HDR(hdr) &&
6349 !HDR_L2_WRITING(hdr) && !HDR_L2_EVICTED(hdr) &&
6350 !(l2arc_noprefetch &&
6351 (*arc_flags & ARC_FLAG_PREFETCH))) {
6352 l2arc_read_callback_t *cb;
6353 abd_t *abd;
6354 uint64_t asize;
6356 DTRACE_PROBE1(l2arc__hit, arc_buf_hdr_t *, hdr);
6357 ARCSTAT_BUMP(arcstat_l2_hits);
6358 hdr->b_l2hdr.b_hits++;
6360 cb = kmem_zalloc(sizeof (l2arc_read_callback_t),
6361 KM_SLEEP);
6362 cb->l2rcb_hdr = hdr;
6363 cb->l2rcb_bp = *bp;
6364 cb->l2rcb_zb = *zb;
6365 cb->l2rcb_flags = zio_flags;
6368 * When Compressed ARC is disabled, but the
6369 * L2ARC block is compressed, arc_hdr_size()
6370 * will have returned LSIZE rather than PSIZE.
6372 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
6373 !HDR_COMPRESSION_ENABLED(hdr) &&
6374 HDR_GET_PSIZE(hdr) != 0) {
6375 size = HDR_GET_PSIZE(hdr);
6378 asize = vdev_psize_to_asize(vd, size);
6379 if (asize != size) {
6380 abd = abd_alloc_for_io(asize,
6381 HDR_ISTYPE_METADATA(hdr));
6382 cb->l2rcb_abd = abd;
6383 } else {
6384 abd = hdr_abd;
6387 ASSERT(addr >= VDEV_LABEL_START_SIZE &&
6388 addr + asize <= vd->vdev_psize -
6389 VDEV_LABEL_END_SIZE);
6392 * l2arc read. The SCL_L2ARC lock will be
6393 * released by l2arc_read_done().
6394 * Issue a null zio if the underlying buffer
6395 * was squashed to zero size by compression.
6397 ASSERT3U(arc_hdr_get_compress(hdr), !=,
6398 ZIO_COMPRESS_EMPTY);
6399 rzio = zio_read_phys(pio, vd, addr,
6400 asize, abd,
6401 ZIO_CHECKSUM_OFF,
6402 l2arc_read_done, cb, priority,
6403 zio_flags | ZIO_FLAG_DONT_CACHE |
6404 ZIO_FLAG_CANFAIL |
6405 ZIO_FLAG_DONT_PROPAGATE |
6406 ZIO_FLAG_DONT_RETRY, B_FALSE);
6407 acb->acb_zio_head = rzio;
6409 if (hash_lock != NULL)
6410 mutex_exit(hash_lock);
6412 DTRACE_PROBE2(l2arc__read, vdev_t *, vd,
6413 zio_t *, rzio);
6414 ARCSTAT_INCR(arcstat_l2_read_bytes,
6415 HDR_GET_PSIZE(hdr));
6417 if (*arc_flags & ARC_FLAG_NOWAIT) {
6418 zio_nowait(rzio);
6419 goto out;
6422 ASSERT(*arc_flags & ARC_FLAG_WAIT);
6423 if (zio_wait(rzio) == 0)
6424 goto out;
6426 /* l2arc read error; goto zio_read() */
6427 if (hash_lock != NULL)
6428 mutex_enter(hash_lock);
6429 } else {
6430 DTRACE_PROBE1(l2arc__miss,
6431 arc_buf_hdr_t *, hdr);
6432 ARCSTAT_BUMP(arcstat_l2_misses);
6433 if (HDR_L2_WRITING(hdr))
6434 ARCSTAT_BUMP(arcstat_l2_rw_clash);
6435 spa_config_exit(spa, SCL_L2ARC, vd);
6437 } else {
6438 if (vd != NULL)
6439 spa_config_exit(spa, SCL_L2ARC, vd);
6442 * Only a spa with l2 should contribute to l2
6443 * miss stats. (Including the case of having a
6444 * faulted cache device - that's also a miss.)
6446 if (spa_has_l2) {
6448 * Skip ARC stat bump for block pointers with
6449 * embedded data. The data are read from the
6450 * blkptr itself via
6451 * decode_embedded_bp_compressed().
6453 if (!embedded_bp) {
6454 DTRACE_PROBE1(l2arc__miss,
6455 arc_buf_hdr_t *, hdr);
6456 ARCSTAT_BUMP(arcstat_l2_misses);
6461 rzio = zio_read(pio, spa, bp, hdr_abd, size,
6462 arc_read_done, hdr, priority, zio_flags, zb);
6463 acb->acb_zio_head = rzio;
6465 if (hash_lock != NULL)
6466 mutex_exit(hash_lock);
6468 if (*arc_flags & ARC_FLAG_WAIT) {
6469 rc = zio_wait(rzio);
6470 goto out;
6473 ASSERT(*arc_flags & ARC_FLAG_NOWAIT);
6474 zio_nowait(rzio);
6477 out:
6478 /* embedded bps don't actually go to disk */
6479 if (!embedded_bp)
6480 spa_read_history_add(spa, zb, *arc_flags);
6481 spl_fstrans_unmark(cookie);
6482 return (rc);
6484 done:
6485 if (done)
6486 done(NULL, zb, bp, buf, private);
6487 if (pio && rc != 0) {
6488 zio_t *zio = zio_null(pio, spa, NULL, NULL, NULL, zio_flags);
6489 zio->io_error = rc;
6490 zio_nowait(zio);
6492 goto out;
6495 arc_prune_t *
6496 arc_add_prune_callback(arc_prune_func_t *func, void *private)
6498 arc_prune_t *p;
6500 p = kmem_alloc(sizeof (*p), KM_SLEEP);
6501 p->p_pfunc = func;
6502 p->p_private = private;
6503 list_link_init(&p->p_node);
6504 zfs_refcount_create(&p->p_refcnt);
6506 mutex_enter(&arc_prune_mtx);
6507 zfs_refcount_add(&p->p_refcnt, &arc_prune_list);
6508 list_insert_head(&arc_prune_list, p);
6509 mutex_exit(&arc_prune_mtx);
6511 return (p);
6514 void
6515 arc_remove_prune_callback(arc_prune_t *p)
6517 boolean_t wait = B_FALSE;
6518 mutex_enter(&arc_prune_mtx);
6519 list_remove(&arc_prune_list, p);
6520 if (zfs_refcount_remove(&p->p_refcnt, &arc_prune_list) > 0)
6521 wait = B_TRUE;
6522 mutex_exit(&arc_prune_mtx);
6524 /* wait for arc_prune_task to finish */
6525 if (wait)
6526 taskq_wait_outstanding(arc_prune_taskq, 0);
6527 ASSERT0(zfs_refcount_count(&p->p_refcnt));
6528 zfs_refcount_destroy(&p->p_refcnt);
6529 kmem_free(p, sizeof (*p));
6533 * Notify the arc that a block was freed, and thus will never be used again.
6535 void
6536 arc_freed(spa_t *spa, const blkptr_t *bp)
6538 arc_buf_hdr_t *hdr;
6539 kmutex_t *hash_lock;
6540 uint64_t guid = spa_load_guid(spa);
6542 ASSERT(!BP_IS_EMBEDDED(bp));
6544 hdr = buf_hash_find(guid, bp, &hash_lock);
6545 if (hdr == NULL)
6546 return;
6549 * We might be trying to free a block that is still doing I/O
6550 * (i.e. prefetch) or has some other reference (i.e. a dedup-ed,
6551 * dmu_sync-ed block). A block may also have a reference if it is
6552 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6553 * have written the new block to its final resting place on disk but
6554 * without the dedup flag set. This would have left the hdr in the MRU
6555 * state and discoverable. When the txg finally syncs it detects that
6556 * the block was overridden in open context and issues an override I/O.
6557 * Since this is a dedup block, the override I/O will determine if the
6558 * block is already in the DDT. If so, then it will replace the io_bp
6559 * with the bp from the DDT and allow the I/O to finish. When the I/O
6560 * reaches the done callback, dbuf_write_override_done, it will
6561 * check to see if the io_bp and io_bp_override are identical.
6562 * If they are not, then it indicates that the bp was replaced with
6563 * the bp in the DDT and the override bp is freed. This allows
6564 * us to arrive here with a reference on a block that is being
6565 * freed. So if we have an I/O in progress, or a reference to
6566 * this hdr, then we don't destroy the hdr.
6568 if (!HDR_HAS_L1HDR(hdr) ||
6569 zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6570 arc_change_state(arc_anon, hdr);
6571 arc_hdr_destroy(hdr);
6572 mutex_exit(hash_lock);
6573 } else {
6574 mutex_exit(hash_lock);
6580 * Release this buffer from the cache, making it an anonymous buffer. This
6581 * must be done after a read and prior to modifying the buffer contents.
6582 * If the buffer has more than one reference, we must make
6583 * a new hdr for the buffer.
6585 void
6586 arc_release(arc_buf_t *buf, const void *tag)
6588 arc_buf_hdr_t *hdr = buf->b_hdr;
6591 * It would be nice to assert that if its DMU metadata (level >
6592 * 0 || it's the dnode file), then it must be syncing context.
6593 * But we don't know that information at this level.
6596 ASSERT(HDR_HAS_L1HDR(hdr));
6599 * We don't grab the hash lock prior to this check, because if
6600 * the buffer's header is in the arc_anon state, it won't be
6601 * linked into the hash table.
6603 if (hdr->b_l1hdr.b_state == arc_anon) {
6604 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6605 ASSERT(!HDR_IN_HASH_TABLE(hdr));
6606 ASSERT(!HDR_HAS_L2HDR(hdr));
6608 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6609 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), ==, 1);
6610 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6612 hdr->b_l1hdr.b_arc_access = 0;
6615 * If the buf is being overridden then it may already
6616 * have a hdr that is not empty.
6618 buf_discard_identity(hdr);
6619 arc_buf_thaw(buf);
6621 return;
6624 kmutex_t *hash_lock = HDR_LOCK(hdr);
6625 mutex_enter(hash_lock);
6628 * This assignment is only valid as long as the hash_lock is
6629 * held, we must be careful not to reference state or the
6630 * b_state field after dropping the lock.
6632 arc_state_t *state = hdr->b_l1hdr.b_state;
6633 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
6634 ASSERT3P(state, !=, arc_anon);
6636 /* this buffer is not on any list */
6637 ASSERT3S(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt), >, 0);
6639 if (HDR_HAS_L2HDR(hdr)) {
6640 mutex_enter(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6643 * We have to recheck this conditional again now that
6644 * we're holding the l2ad_mtx to prevent a race with
6645 * another thread which might be concurrently calling
6646 * l2arc_evict(). In that case, l2arc_evict() might have
6647 * destroyed the header's L2 portion as we were waiting
6648 * to acquire the l2ad_mtx.
6650 if (HDR_HAS_L2HDR(hdr))
6651 arc_hdr_l2hdr_destroy(hdr);
6653 mutex_exit(&hdr->b_l2hdr.b_dev->l2ad_mtx);
6657 * Do we have more than one buf?
6659 if (hdr->b_l1hdr.b_bufcnt > 1) {
6660 arc_buf_hdr_t *nhdr;
6661 uint64_t spa = hdr->b_spa;
6662 uint64_t psize = HDR_GET_PSIZE(hdr);
6663 uint64_t lsize = HDR_GET_LSIZE(hdr);
6664 boolean_t protected = HDR_PROTECTED(hdr);
6665 enum zio_compress compress = arc_hdr_get_compress(hdr);
6666 arc_buf_contents_t type = arc_buf_type(hdr);
6667 VERIFY3U(hdr->b_type, ==, type);
6669 ASSERT(hdr->b_l1hdr.b_buf != buf || buf->b_next != NULL);
6670 VERIFY3S(remove_reference(hdr, tag), >, 0);
6672 if (arc_buf_is_shared(buf) && !ARC_BUF_COMPRESSED(buf)) {
6673 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6674 ASSERT(ARC_BUF_LAST(buf));
6678 * Pull the data off of this hdr and attach it to
6679 * a new anonymous hdr. Also find the last buffer
6680 * in the hdr's buffer list.
6682 arc_buf_t *lastbuf = arc_buf_remove(hdr, buf);
6683 ASSERT3P(lastbuf, !=, NULL);
6686 * If the current arc_buf_t and the hdr are sharing their data
6687 * buffer, then we must stop sharing that block.
6689 if (arc_buf_is_shared(buf)) {
6690 ASSERT3P(hdr->b_l1hdr.b_buf, !=, buf);
6691 VERIFY(!arc_buf_is_shared(lastbuf));
6694 * First, sever the block sharing relationship between
6695 * buf and the arc_buf_hdr_t.
6697 arc_unshare_buf(hdr, buf);
6700 * Now we need to recreate the hdr's b_pabd. Since we
6701 * have lastbuf handy, we try to share with it, but if
6702 * we can't then we allocate a new b_pabd and copy the
6703 * data from buf into it.
6705 if (arc_can_share(hdr, lastbuf)) {
6706 arc_share_buf(hdr, lastbuf);
6707 } else {
6708 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT);
6709 abd_copy_from_buf(hdr->b_l1hdr.b_pabd,
6710 buf->b_data, psize);
6712 VERIFY3P(lastbuf->b_data, !=, NULL);
6713 } else if (HDR_SHARED_DATA(hdr)) {
6715 * Uncompressed shared buffers are always at the end
6716 * of the list. Compressed buffers don't have the
6717 * same requirements. This makes it hard to
6718 * simply assert that the lastbuf is shared so
6719 * we rely on the hdr's compression flags to determine
6720 * if we have a compressed, shared buffer.
6722 ASSERT(arc_buf_is_shared(lastbuf) ||
6723 arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF);
6724 ASSERT(!ARC_BUF_SHARED(buf));
6727 ASSERT(hdr->b_l1hdr.b_pabd != NULL || HDR_HAS_RABD(hdr));
6728 ASSERT3P(state, !=, arc_l2c_only);
6730 (void) zfs_refcount_remove_many(&state->arcs_size,
6731 arc_buf_size(buf), buf);
6733 if (zfs_refcount_is_zero(&hdr->b_l1hdr.b_refcnt)) {
6734 ASSERT3P(state, !=, arc_l2c_only);
6735 (void) zfs_refcount_remove_many(
6736 &state->arcs_esize[type],
6737 arc_buf_size(buf), buf);
6740 hdr->b_l1hdr.b_bufcnt -= 1;
6741 if (ARC_BUF_ENCRYPTED(buf))
6742 hdr->b_crypt_hdr.b_ebufcnt -= 1;
6744 arc_cksum_verify(buf);
6745 arc_buf_unwatch(buf);
6747 /* if this is the last uncompressed buf free the checksum */
6748 if (!arc_hdr_has_uncompressed_buf(hdr))
6749 arc_cksum_free(hdr);
6751 mutex_exit(hash_lock);
6753 nhdr = arc_hdr_alloc(spa, psize, lsize, protected,
6754 compress, hdr->b_complevel, type);
6755 ASSERT3P(nhdr->b_l1hdr.b_buf, ==, NULL);
6756 ASSERT0(nhdr->b_l1hdr.b_bufcnt);
6757 ASSERT0(zfs_refcount_count(&nhdr->b_l1hdr.b_refcnt));
6758 VERIFY3U(nhdr->b_type, ==, type);
6759 ASSERT(!HDR_SHARED_DATA(nhdr));
6761 nhdr->b_l1hdr.b_buf = buf;
6762 nhdr->b_l1hdr.b_bufcnt = 1;
6763 if (ARC_BUF_ENCRYPTED(buf))
6764 nhdr->b_crypt_hdr.b_ebufcnt = 1;
6765 (void) zfs_refcount_add(&nhdr->b_l1hdr.b_refcnt, tag);
6766 buf->b_hdr = nhdr;
6768 (void) zfs_refcount_add_many(&arc_anon->arcs_size,
6769 arc_buf_size(buf), buf);
6770 } else {
6771 ASSERT(zfs_refcount_count(&hdr->b_l1hdr.b_refcnt) == 1);
6772 /* protected by hash lock, or hdr is on arc_anon */
6773 ASSERT(!multilist_link_active(&hdr->b_l1hdr.b_arc_node));
6774 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
6775 hdr->b_l1hdr.b_mru_hits = 0;
6776 hdr->b_l1hdr.b_mru_ghost_hits = 0;
6777 hdr->b_l1hdr.b_mfu_hits = 0;
6778 hdr->b_l1hdr.b_mfu_ghost_hits = 0;
6779 arc_change_state(arc_anon, hdr);
6780 hdr->b_l1hdr.b_arc_access = 0;
6782 mutex_exit(hash_lock);
6783 buf_discard_identity(hdr);
6784 arc_buf_thaw(buf);
6789 arc_released(arc_buf_t *buf)
6791 return (buf->b_data != NULL &&
6792 buf->b_hdr->b_l1hdr.b_state == arc_anon);
6795 #ifdef ZFS_DEBUG
6797 arc_referenced(arc_buf_t *buf)
6799 return (zfs_refcount_count(&buf->b_hdr->b_l1hdr.b_refcnt));
6801 #endif
6803 static void
6804 arc_write_ready(zio_t *zio)
6806 arc_write_callback_t *callback = zio->io_private;
6807 arc_buf_t *buf = callback->awcb_buf;
6808 arc_buf_hdr_t *hdr = buf->b_hdr;
6809 blkptr_t *bp = zio->io_bp;
6810 uint64_t psize = BP_IS_HOLE(bp) ? 0 : BP_GET_PSIZE(bp);
6811 fstrans_cookie_t cookie = spl_fstrans_mark();
6813 ASSERT(HDR_HAS_L1HDR(hdr));
6814 ASSERT(!zfs_refcount_is_zero(&buf->b_hdr->b_l1hdr.b_refcnt));
6815 ASSERT(hdr->b_l1hdr.b_bufcnt > 0);
6818 * If we're reexecuting this zio because the pool suspended, then
6819 * cleanup any state that was previously set the first time the
6820 * callback was invoked.
6822 if (zio->io_flags & ZIO_FLAG_REEXECUTED) {
6823 arc_cksum_free(hdr);
6824 arc_buf_unwatch(buf);
6825 if (hdr->b_l1hdr.b_pabd != NULL) {
6826 if (arc_buf_is_shared(buf)) {
6827 arc_unshare_buf(hdr, buf);
6828 } else {
6829 arc_hdr_free_abd(hdr, B_FALSE);
6833 if (HDR_HAS_RABD(hdr))
6834 arc_hdr_free_abd(hdr, B_TRUE);
6836 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
6837 ASSERT(!HDR_HAS_RABD(hdr));
6838 ASSERT(!HDR_SHARED_DATA(hdr));
6839 ASSERT(!arc_buf_is_shared(buf));
6841 callback->awcb_ready(zio, buf, callback->awcb_private);
6843 if (HDR_IO_IN_PROGRESS(hdr)) {
6844 ASSERT(zio->io_flags & ZIO_FLAG_REEXECUTED);
6845 } else {
6846 arc_hdr_set_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
6847 add_reference(hdr, hdr); /* For IO_IN_PROGRESS. */
6850 if (BP_IS_PROTECTED(bp) != !!HDR_PROTECTED(hdr))
6851 hdr = arc_hdr_realloc_crypt(hdr, BP_IS_PROTECTED(bp));
6853 if (BP_IS_PROTECTED(bp)) {
6854 /* ZIL blocks are written through zio_rewrite */
6855 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
6856 ASSERT(HDR_PROTECTED(hdr));
6858 if (BP_SHOULD_BYTESWAP(bp)) {
6859 if (BP_GET_LEVEL(bp) > 0) {
6860 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_UINT64;
6861 } else {
6862 hdr->b_l1hdr.b_byteswap =
6863 DMU_OT_BYTESWAP(BP_GET_TYPE(bp));
6865 } else {
6866 hdr->b_l1hdr.b_byteswap = DMU_BSWAP_NUMFUNCS;
6869 hdr->b_crypt_hdr.b_ot = BP_GET_TYPE(bp);
6870 hdr->b_crypt_hdr.b_dsobj = zio->io_bookmark.zb_objset;
6871 zio_crypt_decode_params_bp(bp, hdr->b_crypt_hdr.b_salt,
6872 hdr->b_crypt_hdr.b_iv);
6873 zio_crypt_decode_mac_bp(bp, hdr->b_crypt_hdr.b_mac);
6877 * If this block was written for raw encryption but the zio layer
6878 * ended up only authenticating it, adjust the buffer flags now.
6880 if (BP_IS_AUTHENTICATED(bp) && ARC_BUF_ENCRYPTED(buf)) {
6881 arc_hdr_set_flags(hdr, ARC_FLAG_NOAUTH);
6882 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6883 if (BP_GET_COMPRESS(bp) == ZIO_COMPRESS_OFF)
6884 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6885 } else if (BP_IS_HOLE(bp) && ARC_BUF_ENCRYPTED(buf)) {
6886 buf->b_flags &= ~ARC_BUF_FLAG_ENCRYPTED;
6887 buf->b_flags &= ~ARC_BUF_FLAG_COMPRESSED;
6890 /* this must be done after the buffer flags are adjusted */
6891 arc_cksum_compute(buf);
6893 enum zio_compress compress;
6894 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp)) {
6895 compress = ZIO_COMPRESS_OFF;
6896 } else {
6897 ASSERT3U(HDR_GET_LSIZE(hdr), ==, BP_GET_LSIZE(bp));
6898 compress = BP_GET_COMPRESS(bp);
6900 HDR_SET_PSIZE(hdr, psize);
6901 arc_hdr_set_compress(hdr, compress);
6902 hdr->b_complevel = zio->io_prop.zp_complevel;
6904 if (zio->io_error != 0 || psize == 0)
6905 goto out;
6908 * Fill the hdr with data. If the buffer is encrypted we have no choice
6909 * but to copy the data into b_radb. If the hdr is compressed, the data
6910 * we want is available from the zio, otherwise we can take it from
6911 * the buf.
6913 * We might be able to share the buf's data with the hdr here. However,
6914 * doing so would cause the ARC to be full of linear ABDs if we write a
6915 * lot of shareable data. As a compromise, we check whether scattered
6916 * ABDs are allowed, and assume that if they are then the user wants
6917 * the ARC to be primarily filled with them regardless of the data being
6918 * written. Therefore, if they're allowed then we allocate one and copy
6919 * the data into it; otherwise, we share the data directly if we can.
6921 if (ARC_BUF_ENCRYPTED(buf)) {
6922 ASSERT3U(psize, >, 0);
6923 ASSERT(ARC_BUF_COMPRESSED(buf));
6924 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT | ARC_HDR_ALLOC_RDATA |
6925 ARC_HDR_USE_RESERVE);
6926 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6927 } else if (!(HDR_UNCACHED(hdr) ||
6928 abd_size_alloc_linear(arc_buf_size(buf))) ||
6929 !arc_can_share(hdr, buf)) {
6931 * Ideally, we would always copy the io_abd into b_pabd, but the
6932 * user may have disabled compressed ARC, thus we must check the
6933 * hdr's compression setting rather than the io_bp's.
6935 if (BP_IS_ENCRYPTED(bp)) {
6936 ASSERT3U(psize, >, 0);
6937 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6938 ARC_HDR_ALLOC_RDATA | ARC_HDR_USE_RESERVE);
6939 abd_copy(hdr->b_crypt_hdr.b_rabd, zio->io_abd, psize);
6940 } else if (arc_hdr_get_compress(hdr) != ZIO_COMPRESS_OFF &&
6941 !ARC_BUF_COMPRESSED(buf)) {
6942 ASSERT3U(psize, >, 0);
6943 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6944 ARC_HDR_USE_RESERVE);
6945 abd_copy(hdr->b_l1hdr.b_pabd, zio->io_abd, psize);
6946 } else {
6947 ASSERT3U(zio->io_orig_size, ==, arc_hdr_size(hdr));
6948 arc_hdr_alloc_abd(hdr, ARC_HDR_DO_ADAPT |
6949 ARC_HDR_USE_RESERVE);
6950 abd_copy_from_buf(hdr->b_l1hdr.b_pabd, buf->b_data,
6951 arc_buf_size(buf));
6953 } else {
6954 ASSERT3P(buf->b_data, ==, abd_to_buf(zio->io_orig_abd));
6955 ASSERT3U(zio->io_orig_size, ==, arc_buf_size(buf));
6956 ASSERT3U(hdr->b_l1hdr.b_bufcnt, ==, 1);
6958 arc_share_buf(hdr, buf);
6961 out:
6962 arc_hdr_verify(hdr, bp);
6963 spl_fstrans_unmark(cookie);
6966 static void
6967 arc_write_children_ready(zio_t *zio)
6969 arc_write_callback_t *callback = zio->io_private;
6970 arc_buf_t *buf = callback->awcb_buf;
6972 callback->awcb_children_ready(zio, buf, callback->awcb_private);
6976 * The SPA calls this callback for each physical write that happens on behalf
6977 * of a logical write. See the comment in dbuf_write_physdone() for details.
6979 static void
6980 arc_write_physdone(zio_t *zio)
6982 arc_write_callback_t *cb = zio->io_private;
6983 if (cb->awcb_physdone != NULL)
6984 cb->awcb_physdone(zio, cb->awcb_buf, cb->awcb_private);
6987 static void
6988 arc_write_done(zio_t *zio)
6990 arc_write_callback_t *callback = zio->io_private;
6991 arc_buf_t *buf = callback->awcb_buf;
6992 arc_buf_hdr_t *hdr = buf->b_hdr;
6994 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
6996 if (zio->io_error == 0) {
6997 arc_hdr_verify(hdr, zio->io_bp);
6999 if (BP_IS_HOLE(zio->io_bp) || BP_IS_EMBEDDED(zio->io_bp)) {
7000 buf_discard_identity(hdr);
7001 } else {
7002 hdr->b_dva = *BP_IDENTITY(zio->io_bp);
7003 hdr->b_birth = BP_PHYSICAL_BIRTH(zio->io_bp);
7005 } else {
7006 ASSERT(HDR_EMPTY(hdr));
7010 * If the block to be written was all-zero or compressed enough to be
7011 * embedded in the BP, no write was performed so there will be no
7012 * dva/birth/checksum. The buffer must therefore remain anonymous
7013 * (and uncached).
7015 if (!HDR_EMPTY(hdr)) {
7016 arc_buf_hdr_t *exists;
7017 kmutex_t *hash_lock;
7019 ASSERT3U(zio->io_error, ==, 0);
7021 arc_cksum_verify(buf);
7023 exists = buf_hash_insert(hdr, &hash_lock);
7024 if (exists != NULL) {
7026 * This can only happen if we overwrite for
7027 * sync-to-convergence, because we remove
7028 * buffers from the hash table when we arc_free().
7030 if (zio->io_flags & ZIO_FLAG_IO_REWRITE) {
7031 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7032 panic("bad overwrite, hdr=%p exists=%p",
7033 (void *)hdr, (void *)exists);
7034 ASSERT(zfs_refcount_is_zero(
7035 &exists->b_l1hdr.b_refcnt));
7036 arc_change_state(arc_anon, exists);
7037 arc_hdr_destroy(exists);
7038 mutex_exit(hash_lock);
7039 exists = buf_hash_insert(hdr, &hash_lock);
7040 ASSERT3P(exists, ==, NULL);
7041 } else if (zio->io_flags & ZIO_FLAG_NOPWRITE) {
7042 /* nopwrite */
7043 ASSERT(zio->io_prop.zp_nopwrite);
7044 if (!BP_EQUAL(&zio->io_bp_orig, zio->io_bp))
7045 panic("bad nopwrite, hdr=%p exists=%p",
7046 (void *)hdr, (void *)exists);
7047 } else {
7048 /* Dedup */
7049 ASSERT(hdr->b_l1hdr.b_bufcnt == 1);
7050 ASSERT(hdr->b_l1hdr.b_state == arc_anon);
7051 ASSERT(BP_GET_DEDUP(zio->io_bp));
7052 ASSERT(BP_GET_LEVEL(zio->io_bp) == 0);
7055 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7056 VERIFY3S(remove_reference(hdr, hdr), >, 0);
7057 /* if it's not anon, we are doing a scrub */
7058 if (exists == NULL && hdr->b_l1hdr.b_state == arc_anon)
7059 arc_access(hdr, 0, B_FALSE);
7060 mutex_exit(hash_lock);
7061 } else {
7062 arc_hdr_clear_flags(hdr, ARC_FLAG_IO_IN_PROGRESS);
7063 VERIFY3S(remove_reference(hdr, hdr), >, 0);
7066 callback->awcb_done(zio, buf, callback->awcb_private);
7068 abd_free(zio->io_abd);
7069 kmem_free(callback, sizeof (arc_write_callback_t));
7072 zio_t *
7073 arc_write(zio_t *pio, spa_t *spa, uint64_t txg,
7074 blkptr_t *bp, arc_buf_t *buf, boolean_t uncached, boolean_t l2arc,
7075 const zio_prop_t *zp, arc_write_done_func_t *ready,
7076 arc_write_done_func_t *children_ready, arc_write_done_func_t *physdone,
7077 arc_write_done_func_t *done, void *private, zio_priority_t priority,
7078 int zio_flags, const zbookmark_phys_t *zb)
7080 arc_buf_hdr_t *hdr = buf->b_hdr;
7081 arc_write_callback_t *callback;
7082 zio_t *zio;
7083 zio_prop_t localprop = *zp;
7085 ASSERT3P(ready, !=, NULL);
7086 ASSERT3P(done, !=, NULL);
7087 ASSERT(!HDR_IO_ERROR(hdr));
7088 ASSERT(!HDR_IO_IN_PROGRESS(hdr));
7089 ASSERT3P(hdr->b_l1hdr.b_acb, ==, NULL);
7090 ASSERT3U(hdr->b_l1hdr.b_bufcnt, >, 0);
7091 if (uncached)
7092 arc_hdr_set_flags(hdr, ARC_FLAG_UNCACHED);
7093 else if (l2arc)
7094 arc_hdr_set_flags(hdr, ARC_FLAG_L2CACHE);
7096 if (ARC_BUF_ENCRYPTED(buf)) {
7097 ASSERT(ARC_BUF_COMPRESSED(buf));
7098 localprop.zp_encrypt = B_TRUE;
7099 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7100 localprop.zp_complevel = hdr->b_complevel;
7101 localprop.zp_byteorder =
7102 (hdr->b_l1hdr.b_byteswap == DMU_BSWAP_NUMFUNCS) ?
7103 ZFS_HOST_BYTEORDER : !ZFS_HOST_BYTEORDER;
7104 memcpy(localprop.zp_salt, hdr->b_crypt_hdr.b_salt,
7105 ZIO_DATA_SALT_LEN);
7106 memcpy(localprop.zp_iv, hdr->b_crypt_hdr.b_iv,
7107 ZIO_DATA_IV_LEN);
7108 memcpy(localprop.zp_mac, hdr->b_crypt_hdr.b_mac,
7109 ZIO_DATA_MAC_LEN);
7110 if (DMU_OT_IS_ENCRYPTED(localprop.zp_type)) {
7111 localprop.zp_nopwrite = B_FALSE;
7112 localprop.zp_copies =
7113 MIN(localprop.zp_copies, SPA_DVAS_PER_BP - 1);
7115 zio_flags |= ZIO_FLAG_RAW;
7116 } else if (ARC_BUF_COMPRESSED(buf)) {
7117 ASSERT3U(HDR_GET_LSIZE(hdr), !=, arc_buf_size(buf));
7118 localprop.zp_compress = HDR_GET_COMPRESS(hdr);
7119 localprop.zp_complevel = hdr->b_complevel;
7120 zio_flags |= ZIO_FLAG_RAW_COMPRESS;
7122 callback = kmem_zalloc(sizeof (arc_write_callback_t), KM_SLEEP);
7123 callback->awcb_ready = ready;
7124 callback->awcb_children_ready = children_ready;
7125 callback->awcb_physdone = physdone;
7126 callback->awcb_done = done;
7127 callback->awcb_private = private;
7128 callback->awcb_buf = buf;
7131 * The hdr's b_pabd is now stale, free it now. A new data block
7132 * will be allocated when the zio pipeline calls arc_write_ready().
7134 if (hdr->b_l1hdr.b_pabd != NULL) {
7136 * If the buf is currently sharing the data block with
7137 * the hdr then we need to break that relationship here.
7138 * The hdr will remain with a NULL data pointer and the
7139 * buf will take sole ownership of the block.
7141 if (arc_buf_is_shared(buf)) {
7142 arc_unshare_buf(hdr, buf);
7143 } else {
7144 arc_hdr_free_abd(hdr, B_FALSE);
7146 VERIFY3P(buf->b_data, !=, NULL);
7149 if (HDR_HAS_RABD(hdr))
7150 arc_hdr_free_abd(hdr, B_TRUE);
7152 if (!(zio_flags & ZIO_FLAG_RAW))
7153 arc_hdr_set_compress(hdr, ZIO_COMPRESS_OFF);
7155 ASSERT(!arc_buf_is_shared(buf));
7156 ASSERT3P(hdr->b_l1hdr.b_pabd, ==, NULL);
7158 zio = zio_write(pio, spa, txg, bp,
7159 abd_get_from_buf(buf->b_data, HDR_GET_LSIZE(hdr)),
7160 HDR_GET_LSIZE(hdr), arc_buf_size(buf), &localprop, arc_write_ready,
7161 (children_ready != NULL) ? arc_write_children_ready : NULL,
7162 arc_write_physdone, arc_write_done, callback,
7163 priority, zio_flags, zb);
7165 return (zio);
7168 void
7169 arc_tempreserve_clear(uint64_t reserve)
7171 atomic_add_64(&arc_tempreserve, -reserve);
7172 ASSERT((int64_t)arc_tempreserve >= 0);
7176 arc_tempreserve_space(spa_t *spa, uint64_t reserve, uint64_t txg)
7178 int error;
7179 uint64_t anon_size;
7181 if (!arc_no_grow &&
7182 reserve > arc_c/4 &&
7183 reserve * 4 > (2ULL << SPA_MAXBLOCKSHIFT))
7184 arc_c = MIN(arc_c_max, reserve * 4);
7187 * Throttle when the calculated memory footprint for the TXG
7188 * exceeds the target ARC size.
7190 if (reserve > arc_c) {
7191 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve);
7192 return (SET_ERROR(ERESTART));
7196 * Don't count loaned bufs as in flight dirty data to prevent long
7197 * network delays from blocking transactions that are ready to be
7198 * assigned to a txg.
7201 /* assert that it has not wrapped around */
7202 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes, 0), >=, 0);
7204 anon_size = MAX((int64_t)(zfs_refcount_count(&arc_anon->arcs_size) -
7205 arc_loaned_bytes), 0);
7208 * Writes will, almost always, require additional memory allocations
7209 * in order to compress/encrypt/etc the data. We therefore need to
7210 * make sure that there is sufficient available memory for this.
7212 error = arc_memory_throttle(spa, reserve, txg);
7213 if (error != 0)
7214 return (error);
7217 * Throttle writes when the amount of dirty data in the cache
7218 * gets too large. We try to keep the cache less than half full
7219 * of dirty blocks so that our sync times don't grow too large.
7221 * In the case of one pool being built on another pool, we want
7222 * to make sure we don't end up throttling the lower (backing)
7223 * pool when the upper pool is the majority contributor to dirty
7224 * data. To insure we make forward progress during throttling, we
7225 * also check the current pool's net dirty data and only throttle
7226 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7227 * data in the cache.
7229 * Note: if two requests come in concurrently, we might let them
7230 * both succeed, when one of them should fail. Not a huge deal.
7232 uint64_t total_dirty = reserve + arc_tempreserve + anon_size;
7233 uint64_t spa_dirty_anon = spa_dirty_data(spa);
7234 uint64_t rarc_c = arc_warm ? arc_c : arc_c_max;
7235 if (total_dirty > rarc_c * zfs_arc_dirty_limit_percent / 100 &&
7236 anon_size > rarc_c * zfs_arc_anon_limit_percent / 100 &&
7237 spa_dirty_anon > anon_size * zfs_arc_pool_dirty_percent / 100) {
7238 #ifdef ZFS_DEBUG
7239 uint64_t meta_esize = zfs_refcount_count(
7240 &arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7241 uint64_t data_esize =
7242 zfs_refcount_count(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7243 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7244 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7245 (u_longlong_t)arc_tempreserve >> 10,
7246 (u_longlong_t)meta_esize >> 10,
7247 (u_longlong_t)data_esize >> 10,
7248 (u_longlong_t)reserve >> 10,
7249 (u_longlong_t)rarc_c >> 10);
7250 #endif
7251 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle);
7252 return (SET_ERROR(ERESTART));
7254 atomic_add_64(&arc_tempreserve, reserve);
7255 return (0);
7258 static void
7259 arc_kstat_update_state(arc_state_t *state, kstat_named_t *size,
7260 kstat_named_t *evict_data, kstat_named_t *evict_metadata)
7262 size->value.ui64 = zfs_refcount_count(&state->arcs_size);
7263 evict_data->value.ui64 =
7264 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_DATA]);
7265 evict_metadata->value.ui64 =
7266 zfs_refcount_count(&state->arcs_esize[ARC_BUFC_METADATA]);
7269 static int
7270 arc_kstat_update(kstat_t *ksp, int rw)
7272 arc_stats_t *as = ksp->ks_data;
7274 if (rw == KSTAT_WRITE)
7275 return (SET_ERROR(EACCES));
7277 as->arcstat_hits.value.ui64 =
7278 wmsum_value(&arc_sums.arcstat_hits);
7279 as->arcstat_iohits.value.ui64 =
7280 wmsum_value(&arc_sums.arcstat_iohits);
7281 as->arcstat_misses.value.ui64 =
7282 wmsum_value(&arc_sums.arcstat_misses);
7283 as->arcstat_demand_data_hits.value.ui64 =
7284 wmsum_value(&arc_sums.arcstat_demand_data_hits);
7285 as->arcstat_demand_data_iohits.value.ui64 =
7286 wmsum_value(&arc_sums.arcstat_demand_data_iohits);
7287 as->arcstat_demand_data_misses.value.ui64 =
7288 wmsum_value(&arc_sums.arcstat_demand_data_misses);
7289 as->arcstat_demand_metadata_hits.value.ui64 =
7290 wmsum_value(&arc_sums.arcstat_demand_metadata_hits);
7291 as->arcstat_demand_metadata_iohits.value.ui64 =
7292 wmsum_value(&arc_sums.arcstat_demand_metadata_iohits);
7293 as->arcstat_demand_metadata_misses.value.ui64 =
7294 wmsum_value(&arc_sums.arcstat_demand_metadata_misses);
7295 as->arcstat_prefetch_data_hits.value.ui64 =
7296 wmsum_value(&arc_sums.arcstat_prefetch_data_hits);
7297 as->arcstat_prefetch_data_iohits.value.ui64 =
7298 wmsum_value(&arc_sums.arcstat_prefetch_data_iohits);
7299 as->arcstat_prefetch_data_misses.value.ui64 =
7300 wmsum_value(&arc_sums.arcstat_prefetch_data_misses);
7301 as->arcstat_prefetch_metadata_hits.value.ui64 =
7302 wmsum_value(&arc_sums.arcstat_prefetch_metadata_hits);
7303 as->arcstat_prefetch_metadata_iohits.value.ui64 =
7304 wmsum_value(&arc_sums.arcstat_prefetch_metadata_iohits);
7305 as->arcstat_prefetch_metadata_misses.value.ui64 =
7306 wmsum_value(&arc_sums.arcstat_prefetch_metadata_misses);
7307 as->arcstat_mru_hits.value.ui64 =
7308 wmsum_value(&arc_sums.arcstat_mru_hits);
7309 as->arcstat_mru_ghost_hits.value.ui64 =
7310 wmsum_value(&arc_sums.arcstat_mru_ghost_hits);
7311 as->arcstat_mfu_hits.value.ui64 =
7312 wmsum_value(&arc_sums.arcstat_mfu_hits);
7313 as->arcstat_mfu_ghost_hits.value.ui64 =
7314 wmsum_value(&arc_sums.arcstat_mfu_ghost_hits);
7315 as->arcstat_uncached_hits.value.ui64 =
7316 wmsum_value(&arc_sums.arcstat_uncached_hits);
7317 as->arcstat_deleted.value.ui64 =
7318 wmsum_value(&arc_sums.arcstat_deleted);
7319 as->arcstat_mutex_miss.value.ui64 =
7320 wmsum_value(&arc_sums.arcstat_mutex_miss);
7321 as->arcstat_access_skip.value.ui64 =
7322 wmsum_value(&arc_sums.arcstat_access_skip);
7323 as->arcstat_evict_skip.value.ui64 =
7324 wmsum_value(&arc_sums.arcstat_evict_skip);
7325 as->arcstat_evict_not_enough.value.ui64 =
7326 wmsum_value(&arc_sums.arcstat_evict_not_enough);
7327 as->arcstat_evict_l2_cached.value.ui64 =
7328 wmsum_value(&arc_sums.arcstat_evict_l2_cached);
7329 as->arcstat_evict_l2_eligible.value.ui64 =
7330 wmsum_value(&arc_sums.arcstat_evict_l2_eligible);
7331 as->arcstat_evict_l2_eligible_mfu.value.ui64 =
7332 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mfu);
7333 as->arcstat_evict_l2_eligible_mru.value.ui64 =
7334 wmsum_value(&arc_sums.arcstat_evict_l2_eligible_mru);
7335 as->arcstat_evict_l2_ineligible.value.ui64 =
7336 wmsum_value(&arc_sums.arcstat_evict_l2_ineligible);
7337 as->arcstat_evict_l2_skip.value.ui64 =
7338 wmsum_value(&arc_sums.arcstat_evict_l2_skip);
7339 as->arcstat_hash_collisions.value.ui64 =
7340 wmsum_value(&arc_sums.arcstat_hash_collisions);
7341 as->arcstat_hash_chains.value.ui64 =
7342 wmsum_value(&arc_sums.arcstat_hash_chains);
7343 as->arcstat_size.value.ui64 =
7344 aggsum_value(&arc_sums.arcstat_size);
7345 as->arcstat_compressed_size.value.ui64 =
7346 wmsum_value(&arc_sums.arcstat_compressed_size);
7347 as->arcstat_uncompressed_size.value.ui64 =
7348 wmsum_value(&arc_sums.arcstat_uncompressed_size);
7349 as->arcstat_overhead_size.value.ui64 =
7350 wmsum_value(&arc_sums.arcstat_overhead_size);
7351 as->arcstat_hdr_size.value.ui64 =
7352 wmsum_value(&arc_sums.arcstat_hdr_size);
7353 as->arcstat_data_size.value.ui64 =
7354 wmsum_value(&arc_sums.arcstat_data_size);
7355 as->arcstat_metadata_size.value.ui64 =
7356 wmsum_value(&arc_sums.arcstat_metadata_size);
7357 as->arcstat_dbuf_size.value.ui64 =
7358 wmsum_value(&arc_sums.arcstat_dbuf_size);
7359 #if defined(COMPAT_FREEBSD11)
7360 as->arcstat_other_size.value.ui64 =
7361 wmsum_value(&arc_sums.arcstat_bonus_size) +
7362 aggsum_value(&arc_sums.arcstat_dnode_size) +
7363 wmsum_value(&arc_sums.arcstat_dbuf_size);
7364 #endif
7366 arc_kstat_update_state(arc_anon,
7367 &as->arcstat_anon_size,
7368 &as->arcstat_anon_evictable_data,
7369 &as->arcstat_anon_evictable_metadata);
7370 arc_kstat_update_state(arc_mru,
7371 &as->arcstat_mru_size,
7372 &as->arcstat_mru_evictable_data,
7373 &as->arcstat_mru_evictable_metadata);
7374 arc_kstat_update_state(arc_mru_ghost,
7375 &as->arcstat_mru_ghost_size,
7376 &as->arcstat_mru_ghost_evictable_data,
7377 &as->arcstat_mru_ghost_evictable_metadata);
7378 arc_kstat_update_state(arc_mfu,
7379 &as->arcstat_mfu_size,
7380 &as->arcstat_mfu_evictable_data,
7381 &as->arcstat_mfu_evictable_metadata);
7382 arc_kstat_update_state(arc_mfu_ghost,
7383 &as->arcstat_mfu_ghost_size,
7384 &as->arcstat_mfu_ghost_evictable_data,
7385 &as->arcstat_mfu_ghost_evictable_metadata);
7386 arc_kstat_update_state(arc_uncached,
7387 &as->arcstat_uncached_size,
7388 &as->arcstat_uncached_evictable_data,
7389 &as->arcstat_uncached_evictable_metadata);
7391 as->arcstat_dnode_size.value.ui64 =
7392 aggsum_value(&arc_sums.arcstat_dnode_size);
7393 as->arcstat_bonus_size.value.ui64 =
7394 wmsum_value(&arc_sums.arcstat_bonus_size);
7395 as->arcstat_l2_hits.value.ui64 =
7396 wmsum_value(&arc_sums.arcstat_l2_hits);
7397 as->arcstat_l2_misses.value.ui64 =
7398 wmsum_value(&arc_sums.arcstat_l2_misses);
7399 as->arcstat_l2_prefetch_asize.value.ui64 =
7400 wmsum_value(&arc_sums.arcstat_l2_prefetch_asize);
7401 as->arcstat_l2_mru_asize.value.ui64 =
7402 wmsum_value(&arc_sums.arcstat_l2_mru_asize);
7403 as->arcstat_l2_mfu_asize.value.ui64 =
7404 wmsum_value(&arc_sums.arcstat_l2_mfu_asize);
7405 as->arcstat_l2_bufc_data_asize.value.ui64 =
7406 wmsum_value(&arc_sums.arcstat_l2_bufc_data_asize);
7407 as->arcstat_l2_bufc_metadata_asize.value.ui64 =
7408 wmsum_value(&arc_sums.arcstat_l2_bufc_metadata_asize);
7409 as->arcstat_l2_feeds.value.ui64 =
7410 wmsum_value(&arc_sums.arcstat_l2_feeds);
7411 as->arcstat_l2_rw_clash.value.ui64 =
7412 wmsum_value(&arc_sums.arcstat_l2_rw_clash);
7413 as->arcstat_l2_read_bytes.value.ui64 =
7414 wmsum_value(&arc_sums.arcstat_l2_read_bytes);
7415 as->arcstat_l2_write_bytes.value.ui64 =
7416 wmsum_value(&arc_sums.arcstat_l2_write_bytes);
7417 as->arcstat_l2_writes_sent.value.ui64 =
7418 wmsum_value(&arc_sums.arcstat_l2_writes_sent);
7419 as->arcstat_l2_writes_done.value.ui64 =
7420 wmsum_value(&arc_sums.arcstat_l2_writes_done);
7421 as->arcstat_l2_writes_error.value.ui64 =
7422 wmsum_value(&arc_sums.arcstat_l2_writes_error);
7423 as->arcstat_l2_writes_lock_retry.value.ui64 =
7424 wmsum_value(&arc_sums.arcstat_l2_writes_lock_retry);
7425 as->arcstat_l2_evict_lock_retry.value.ui64 =
7426 wmsum_value(&arc_sums.arcstat_l2_evict_lock_retry);
7427 as->arcstat_l2_evict_reading.value.ui64 =
7428 wmsum_value(&arc_sums.arcstat_l2_evict_reading);
7429 as->arcstat_l2_evict_l1cached.value.ui64 =
7430 wmsum_value(&arc_sums.arcstat_l2_evict_l1cached);
7431 as->arcstat_l2_free_on_write.value.ui64 =
7432 wmsum_value(&arc_sums.arcstat_l2_free_on_write);
7433 as->arcstat_l2_abort_lowmem.value.ui64 =
7434 wmsum_value(&arc_sums.arcstat_l2_abort_lowmem);
7435 as->arcstat_l2_cksum_bad.value.ui64 =
7436 wmsum_value(&arc_sums.arcstat_l2_cksum_bad);
7437 as->arcstat_l2_io_error.value.ui64 =
7438 wmsum_value(&arc_sums.arcstat_l2_io_error);
7439 as->arcstat_l2_lsize.value.ui64 =
7440 wmsum_value(&arc_sums.arcstat_l2_lsize);
7441 as->arcstat_l2_psize.value.ui64 =
7442 wmsum_value(&arc_sums.arcstat_l2_psize);
7443 as->arcstat_l2_hdr_size.value.ui64 =
7444 aggsum_value(&arc_sums.arcstat_l2_hdr_size);
7445 as->arcstat_l2_log_blk_writes.value.ui64 =
7446 wmsum_value(&arc_sums.arcstat_l2_log_blk_writes);
7447 as->arcstat_l2_log_blk_asize.value.ui64 =
7448 wmsum_value(&arc_sums.arcstat_l2_log_blk_asize);
7449 as->arcstat_l2_log_blk_count.value.ui64 =
7450 wmsum_value(&arc_sums.arcstat_l2_log_blk_count);
7451 as->arcstat_l2_rebuild_success.value.ui64 =
7452 wmsum_value(&arc_sums.arcstat_l2_rebuild_success);
7453 as->arcstat_l2_rebuild_abort_unsupported.value.ui64 =
7454 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7455 as->arcstat_l2_rebuild_abort_io_errors.value.ui64 =
7456 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7457 as->arcstat_l2_rebuild_abort_dh_errors.value.ui64 =
7458 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7459 as->arcstat_l2_rebuild_abort_cksum_lb_errors.value.ui64 =
7460 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7461 as->arcstat_l2_rebuild_abort_lowmem.value.ui64 =
7462 wmsum_value(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7463 as->arcstat_l2_rebuild_size.value.ui64 =
7464 wmsum_value(&arc_sums.arcstat_l2_rebuild_size);
7465 as->arcstat_l2_rebuild_asize.value.ui64 =
7466 wmsum_value(&arc_sums.arcstat_l2_rebuild_asize);
7467 as->arcstat_l2_rebuild_bufs.value.ui64 =
7468 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs);
7469 as->arcstat_l2_rebuild_bufs_precached.value.ui64 =
7470 wmsum_value(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7471 as->arcstat_l2_rebuild_log_blks.value.ui64 =
7472 wmsum_value(&arc_sums.arcstat_l2_rebuild_log_blks);
7473 as->arcstat_memory_throttle_count.value.ui64 =
7474 wmsum_value(&arc_sums.arcstat_memory_throttle_count);
7475 as->arcstat_memory_direct_count.value.ui64 =
7476 wmsum_value(&arc_sums.arcstat_memory_direct_count);
7477 as->arcstat_memory_indirect_count.value.ui64 =
7478 wmsum_value(&arc_sums.arcstat_memory_indirect_count);
7480 as->arcstat_memory_all_bytes.value.ui64 =
7481 arc_all_memory();
7482 as->arcstat_memory_free_bytes.value.ui64 =
7483 arc_free_memory();
7484 as->arcstat_memory_available_bytes.value.i64 =
7485 arc_available_memory();
7487 as->arcstat_prune.value.ui64 =
7488 wmsum_value(&arc_sums.arcstat_prune);
7489 as->arcstat_meta_used.value.ui64 =
7490 aggsum_value(&arc_sums.arcstat_meta_used);
7491 as->arcstat_async_upgrade_sync.value.ui64 =
7492 wmsum_value(&arc_sums.arcstat_async_upgrade_sync);
7493 as->arcstat_predictive_prefetch.value.ui64 =
7494 wmsum_value(&arc_sums.arcstat_predictive_prefetch);
7495 as->arcstat_demand_hit_predictive_prefetch.value.ui64 =
7496 wmsum_value(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7497 as->arcstat_demand_iohit_predictive_prefetch.value.ui64 =
7498 wmsum_value(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7499 as->arcstat_prescient_prefetch.value.ui64 =
7500 wmsum_value(&arc_sums.arcstat_prescient_prefetch);
7501 as->arcstat_demand_hit_prescient_prefetch.value.ui64 =
7502 wmsum_value(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7503 as->arcstat_demand_iohit_prescient_prefetch.value.ui64 =
7504 wmsum_value(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7505 as->arcstat_raw_size.value.ui64 =
7506 wmsum_value(&arc_sums.arcstat_raw_size);
7507 as->arcstat_cached_only_in_progress.value.ui64 =
7508 wmsum_value(&arc_sums.arcstat_cached_only_in_progress);
7509 as->arcstat_abd_chunk_waste_size.value.ui64 =
7510 wmsum_value(&arc_sums.arcstat_abd_chunk_waste_size);
7512 return (0);
7516 * This function *must* return indices evenly distributed between all
7517 * sublists of the multilist. This is needed due to how the ARC eviction
7518 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7519 * distributed between all sublists and uses this assumption when
7520 * deciding which sublist to evict from and how much to evict from it.
7522 static unsigned int
7523 arc_state_multilist_index_func(multilist_t *ml, void *obj)
7525 arc_buf_hdr_t *hdr = obj;
7528 * We rely on b_dva to generate evenly distributed index
7529 * numbers using buf_hash below. So, as an added precaution,
7530 * let's make sure we never add empty buffers to the arc lists.
7532 ASSERT(!HDR_EMPTY(hdr));
7535 * The assumption here, is the hash value for a given
7536 * arc_buf_hdr_t will remain constant throughout its lifetime
7537 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7538 * Thus, we don't need to store the header's sublist index
7539 * on insertion, as this index can be recalculated on removal.
7541 * Also, the low order bits of the hash value are thought to be
7542 * distributed evenly. Otherwise, in the case that the multilist
7543 * has a power of two number of sublists, each sublists' usage
7544 * would not be evenly distributed. In this context full 64bit
7545 * division would be a waste of time, so limit it to 32 bits.
7547 return ((unsigned int)buf_hash(hdr->b_spa, &hdr->b_dva, hdr->b_birth) %
7548 multilist_get_num_sublists(ml));
7551 static unsigned int
7552 arc_state_l2c_multilist_index_func(multilist_t *ml, void *obj)
7554 panic("Header %p insert into arc_l2c_only %p", obj, ml);
7557 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7558 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7559 cmn_err(CE_WARN, \
7560 "ignoring tunable %s (using %llu instead)", \
7561 (#tuning), (u_longlong_t)(value)); \
7563 } while (0)
7566 * Called during module initialization and periodically thereafter to
7567 * apply reasonable changes to the exposed performance tunings. Can also be
7568 * called explicitly by param_set_arc_*() functions when ARC tunables are
7569 * updated manually. Non-zero zfs_* values which differ from the currently set
7570 * values will be applied.
7572 void
7573 arc_tuning_update(boolean_t verbose)
7575 uint64_t allmem = arc_all_memory();
7576 unsigned long limit;
7578 /* Valid range: 32M - <arc_c_max> */
7579 if ((zfs_arc_min) && (zfs_arc_min != arc_c_min) &&
7580 (zfs_arc_min >= 2ULL << SPA_MAXBLOCKSHIFT) &&
7581 (zfs_arc_min <= arc_c_max)) {
7582 arc_c_min = zfs_arc_min;
7583 arc_c = MAX(arc_c, arc_c_min);
7585 WARN_IF_TUNING_IGNORED(zfs_arc_min, arc_c_min, verbose);
7587 /* Valid range: 64M - <all physical memory> */
7588 if ((zfs_arc_max) && (zfs_arc_max != arc_c_max) &&
7589 (zfs_arc_max >= MIN_ARC_MAX) && (zfs_arc_max < allmem) &&
7590 (zfs_arc_max > arc_c_min)) {
7591 arc_c_max = zfs_arc_max;
7592 arc_c = MIN(arc_c, arc_c_max);
7593 arc_p = (arc_c >> 1);
7594 if (arc_meta_limit > arc_c_max)
7595 arc_meta_limit = arc_c_max;
7596 if (arc_dnode_size_limit > arc_meta_limit)
7597 arc_dnode_size_limit = arc_meta_limit;
7599 WARN_IF_TUNING_IGNORED(zfs_arc_max, arc_c_max, verbose);
7601 /* Valid range: 16M - <arc_c_max> */
7602 if ((zfs_arc_meta_min) && (zfs_arc_meta_min != arc_meta_min) &&
7603 (zfs_arc_meta_min >= 1ULL << SPA_MAXBLOCKSHIFT) &&
7604 (zfs_arc_meta_min <= arc_c_max)) {
7605 arc_meta_min = zfs_arc_meta_min;
7606 if (arc_meta_limit < arc_meta_min)
7607 arc_meta_limit = arc_meta_min;
7608 if (arc_dnode_size_limit < arc_meta_min)
7609 arc_dnode_size_limit = arc_meta_min;
7611 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min, arc_meta_min, verbose);
7613 /* Valid range: <arc_meta_min> - <arc_c_max> */
7614 limit = zfs_arc_meta_limit ? zfs_arc_meta_limit :
7615 MIN(zfs_arc_meta_limit_percent, 100) * arc_c_max / 100;
7616 if ((limit != arc_meta_limit) &&
7617 (limit >= arc_meta_min) &&
7618 (limit <= arc_c_max))
7619 arc_meta_limit = limit;
7620 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit, arc_meta_limit, verbose);
7622 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7623 limit = zfs_arc_dnode_limit ? zfs_arc_dnode_limit :
7624 MIN(zfs_arc_dnode_limit_percent, 100) * arc_meta_limit / 100;
7625 if ((limit != arc_dnode_size_limit) &&
7626 (limit >= arc_meta_min) &&
7627 (limit <= arc_meta_limit))
7628 arc_dnode_size_limit = limit;
7629 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit, arc_dnode_size_limit,
7630 verbose);
7632 /* Valid range: 1 - N */
7633 if (zfs_arc_grow_retry)
7634 arc_grow_retry = zfs_arc_grow_retry;
7636 /* Valid range: 1 - N */
7637 if (zfs_arc_shrink_shift) {
7638 arc_shrink_shift = zfs_arc_shrink_shift;
7639 arc_no_grow_shift = MIN(arc_no_grow_shift, arc_shrink_shift -1);
7642 /* Valid range: 1 - N */
7643 if (zfs_arc_p_min_shift)
7644 arc_p_min_shift = zfs_arc_p_min_shift;
7646 /* Valid range: 1 - N ms */
7647 if (zfs_arc_min_prefetch_ms)
7648 arc_min_prefetch_ms = zfs_arc_min_prefetch_ms;
7650 /* Valid range: 1 - N ms */
7651 if (zfs_arc_min_prescient_prefetch_ms) {
7652 arc_min_prescient_prefetch_ms =
7653 zfs_arc_min_prescient_prefetch_ms;
7656 /* Valid range: 0 - 100 */
7657 if (zfs_arc_lotsfree_percent <= 100)
7658 arc_lotsfree_percent = zfs_arc_lotsfree_percent;
7659 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent, arc_lotsfree_percent,
7660 verbose);
7662 /* Valid range: 0 - <all physical memory> */
7663 if ((zfs_arc_sys_free) && (zfs_arc_sys_free != arc_sys_free))
7664 arc_sys_free = MIN(zfs_arc_sys_free, allmem);
7665 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free, arc_sys_free, verbose);
7668 static void
7669 arc_state_multilist_init(multilist_t *ml,
7670 multilist_sublist_index_func_t *index_func, int *maxcountp)
7672 multilist_create(ml, sizeof (arc_buf_hdr_t),
7673 offsetof(arc_buf_hdr_t, b_l1hdr.b_arc_node), index_func);
7674 *maxcountp = MAX(*maxcountp, multilist_get_num_sublists(ml));
7677 static void
7678 arc_state_init(void)
7680 int num_sublists = 0;
7682 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_METADATA],
7683 arc_state_multilist_index_func, &num_sublists);
7684 arc_state_multilist_init(&arc_mru->arcs_list[ARC_BUFC_DATA],
7685 arc_state_multilist_index_func, &num_sublists);
7686 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA],
7687 arc_state_multilist_index_func, &num_sublists);
7688 arc_state_multilist_init(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA],
7689 arc_state_multilist_index_func, &num_sublists);
7690 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_METADATA],
7691 arc_state_multilist_index_func, &num_sublists);
7692 arc_state_multilist_init(&arc_mfu->arcs_list[ARC_BUFC_DATA],
7693 arc_state_multilist_index_func, &num_sublists);
7694 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA],
7695 arc_state_multilist_index_func, &num_sublists);
7696 arc_state_multilist_init(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA],
7697 arc_state_multilist_index_func, &num_sublists);
7698 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_METADATA],
7699 arc_state_multilist_index_func, &num_sublists);
7700 arc_state_multilist_init(&arc_uncached->arcs_list[ARC_BUFC_DATA],
7701 arc_state_multilist_index_func, &num_sublists);
7704 * L2 headers should never be on the L2 state list since they don't
7705 * have L1 headers allocated. Special index function asserts that.
7707 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA],
7708 arc_state_l2c_multilist_index_func, &num_sublists);
7709 arc_state_multilist_init(&arc_l2c_only->arcs_list[ARC_BUFC_DATA],
7710 arc_state_l2c_multilist_index_func, &num_sublists);
7713 * Keep track of the number of markers needed to reclaim buffers from
7714 * any ARC state. The markers will be pre-allocated so as to minimize
7715 * the number of memory allocations performed by the eviction thread.
7717 arc_state_evict_marker_count = num_sublists;
7719 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7720 zfs_refcount_create(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7721 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7722 zfs_refcount_create(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7723 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7724 zfs_refcount_create(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7725 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7726 zfs_refcount_create(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7727 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7728 zfs_refcount_create(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7729 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7730 zfs_refcount_create(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7731 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7732 zfs_refcount_create(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7734 zfs_refcount_create(&arc_anon->arcs_size);
7735 zfs_refcount_create(&arc_mru->arcs_size);
7736 zfs_refcount_create(&arc_mru_ghost->arcs_size);
7737 zfs_refcount_create(&arc_mfu->arcs_size);
7738 zfs_refcount_create(&arc_mfu_ghost->arcs_size);
7739 zfs_refcount_create(&arc_l2c_only->arcs_size);
7740 zfs_refcount_create(&arc_uncached->arcs_size);
7742 wmsum_init(&arc_sums.arcstat_hits, 0);
7743 wmsum_init(&arc_sums.arcstat_iohits, 0);
7744 wmsum_init(&arc_sums.arcstat_misses, 0);
7745 wmsum_init(&arc_sums.arcstat_demand_data_hits, 0);
7746 wmsum_init(&arc_sums.arcstat_demand_data_iohits, 0);
7747 wmsum_init(&arc_sums.arcstat_demand_data_misses, 0);
7748 wmsum_init(&arc_sums.arcstat_demand_metadata_hits, 0);
7749 wmsum_init(&arc_sums.arcstat_demand_metadata_iohits, 0);
7750 wmsum_init(&arc_sums.arcstat_demand_metadata_misses, 0);
7751 wmsum_init(&arc_sums.arcstat_prefetch_data_hits, 0);
7752 wmsum_init(&arc_sums.arcstat_prefetch_data_iohits, 0);
7753 wmsum_init(&arc_sums.arcstat_prefetch_data_misses, 0);
7754 wmsum_init(&arc_sums.arcstat_prefetch_metadata_hits, 0);
7755 wmsum_init(&arc_sums.arcstat_prefetch_metadata_iohits, 0);
7756 wmsum_init(&arc_sums.arcstat_prefetch_metadata_misses, 0);
7757 wmsum_init(&arc_sums.arcstat_mru_hits, 0);
7758 wmsum_init(&arc_sums.arcstat_mru_ghost_hits, 0);
7759 wmsum_init(&arc_sums.arcstat_mfu_hits, 0);
7760 wmsum_init(&arc_sums.arcstat_mfu_ghost_hits, 0);
7761 wmsum_init(&arc_sums.arcstat_uncached_hits, 0);
7762 wmsum_init(&arc_sums.arcstat_deleted, 0);
7763 wmsum_init(&arc_sums.arcstat_mutex_miss, 0);
7764 wmsum_init(&arc_sums.arcstat_access_skip, 0);
7765 wmsum_init(&arc_sums.arcstat_evict_skip, 0);
7766 wmsum_init(&arc_sums.arcstat_evict_not_enough, 0);
7767 wmsum_init(&arc_sums.arcstat_evict_l2_cached, 0);
7768 wmsum_init(&arc_sums.arcstat_evict_l2_eligible, 0);
7769 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mfu, 0);
7770 wmsum_init(&arc_sums.arcstat_evict_l2_eligible_mru, 0);
7771 wmsum_init(&arc_sums.arcstat_evict_l2_ineligible, 0);
7772 wmsum_init(&arc_sums.arcstat_evict_l2_skip, 0);
7773 wmsum_init(&arc_sums.arcstat_hash_collisions, 0);
7774 wmsum_init(&arc_sums.arcstat_hash_chains, 0);
7775 aggsum_init(&arc_sums.arcstat_size, 0);
7776 wmsum_init(&arc_sums.arcstat_compressed_size, 0);
7777 wmsum_init(&arc_sums.arcstat_uncompressed_size, 0);
7778 wmsum_init(&arc_sums.arcstat_overhead_size, 0);
7779 wmsum_init(&arc_sums.arcstat_hdr_size, 0);
7780 wmsum_init(&arc_sums.arcstat_data_size, 0);
7781 wmsum_init(&arc_sums.arcstat_metadata_size, 0);
7782 wmsum_init(&arc_sums.arcstat_dbuf_size, 0);
7783 aggsum_init(&arc_sums.arcstat_dnode_size, 0);
7784 wmsum_init(&arc_sums.arcstat_bonus_size, 0);
7785 wmsum_init(&arc_sums.arcstat_l2_hits, 0);
7786 wmsum_init(&arc_sums.arcstat_l2_misses, 0);
7787 wmsum_init(&arc_sums.arcstat_l2_prefetch_asize, 0);
7788 wmsum_init(&arc_sums.arcstat_l2_mru_asize, 0);
7789 wmsum_init(&arc_sums.arcstat_l2_mfu_asize, 0);
7790 wmsum_init(&arc_sums.arcstat_l2_bufc_data_asize, 0);
7791 wmsum_init(&arc_sums.arcstat_l2_bufc_metadata_asize, 0);
7792 wmsum_init(&arc_sums.arcstat_l2_feeds, 0);
7793 wmsum_init(&arc_sums.arcstat_l2_rw_clash, 0);
7794 wmsum_init(&arc_sums.arcstat_l2_read_bytes, 0);
7795 wmsum_init(&arc_sums.arcstat_l2_write_bytes, 0);
7796 wmsum_init(&arc_sums.arcstat_l2_writes_sent, 0);
7797 wmsum_init(&arc_sums.arcstat_l2_writes_done, 0);
7798 wmsum_init(&arc_sums.arcstat_l2_writes_error, 0);
7799 wmsum_init(&arc_sums.arcstat_l2_writes_lock_retry, 0);
7800 wmsum_init(&arc_sums.arcstat_l2_evict_lock_retry, 0);
7801 wmsum_init(&arc_sums.arcstat_l2_evict_reading, 0);
7802 wmsum_init(&arc_sums.arcstat_l2_evict_l1cached, 0);
7803 wmsum_init(&arc_sums.arcstat_l2_free_on_write, 0);
7804 wmsum_init(&arc_sums.arcstat_l2_abort_lowmem, 0);
7805 wmsum_init(&arc_sums.arcstat_l2_cksum_bad, 0);
7806 wmsum_init(&arc_sums.arcstat_l2_io_error, 0);
7807 wmsum_init(&arc_sums.arcstat_l2_lsize, 0);
7808 wmsum_init(&arc_sums.arcstat_l2_psize, 0);
7809 aggsum_init(&arc_sums.arcstat_l2_hdr_size, 0);
7810 wmsum_init(&arc_sums.arcstat_l2_log_blk_writes, 0);
7811 wmsum_init(&arc_sums.arcstat_l2_log_blk_asize, 0);
7812 wmsum_init(&arc_sums.arcstat_l2_log_blk_count, 0);
7813 wmsum_init(&arc_sums.arcstat_l2_rebuild_success, 0);
7814 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_unsupported, 0);
7815 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_io_errors, 0);
7816 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_dh_errors, 0);
7817 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors, 0);
7818 wmsum_init(&arc_sums.arcstat_l2_rebuild_abort_lowmem, 0);
7819 wmsum_init(&arc_sums.arcstat_l2_rebuild_size, 0);
7820 wmsum_init(&arc_sums.arcstat_l2_rebuild_asize, 0);
7821 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs, 0);
7822 wmsum_init(&arc_sums.arcstat_l2_rebuild_bufs_precached, 0);
7823 wmsum_init(&arc_sums.arcstat_l2_rebuild_log_blks, 0);
7824 wmsum_init(&arc_sums.arcstat_memory_throttle_count, 0);
7825 wmsum_init(&arc_sums.arcstat_memory_direct_count, 0);
7826 wmsum_init(&arc_sums.arcstat_memory_indirect_count, 0);
7827 wmsum_init(&arc_sums.arcstat_prune, 0);
7828 aggsum_init(&arc_sums.arcstat_meta_used, 0);
7829 wmsum_init(&arc_sums.arcstat_async_upgrade_sync, 0);
7830 wmsum_init(&arc_sums.arcstat_predictive_prefetch, 0);
7831 wmsum_init(&arc_sums.arcstat_demand_hit_predictive_prefetch, 0);
7832 wmsum_init(&arc_sums.arcstat_demand_iohit_predictive_prefetch, 0);
7833 wmsum_init(&arc_sums.arcstat_prescient_prefetch, 0);
7834 wmsum_init(&arc_sums.arcstat_demand_hit_prescient_prefetch, 0);
7835 wmsum_init(&arc_sums.arcstat_demand_iohit_prescient_prefetch, 0);
7836 wmsum_init(&arc_sums.arcstat_raw_size, 0);
7837 wmsum_init(&arc_sums.arcstat_cached_only_in_progress, 0);
7838 wmsum_init(&arc_sums.arcstat_abd_chunk_waste_size, 0);
7840 arc_anon->arcs_state = ARC_STATE_ANON;
7841 arc_mru->arcs_state = ARC_STATE_MRU;
7842 arc_mru_ghost->arcs_state = ARC_STATE_MRU_GHOST;
7843 arc_mfu->arcs_state = ARC_STATE_MFU;
7844 arc_mfu_ghost->arcs_state = ARC_STATE_MFU_GHOST;
7845 arc_l2c_only->arcs_state = ARC_STATE_L2C_ONLY;
7846 arc_uncached->arcs_state = ARC_STATE_UNCACHED;
7849 static void
7850 arc_state_fini(void)
7852 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_METADATA]);
7853 zfs_refcount_destroy(&arc_anon->arcs_esize[ARC_BUFC_DATA]);
7854 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_METADATA]);
7855 zfs_refcount_destroy(&arc_mru->arcs_esize[ARC_BUFC_DATA]);
7856 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_METADATA]);
7857 zfs_refcount_destroy(&arc_mru_ghost->arcs_esize[ARC_BUFC_DATA]);
7858 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_METADATA]);
7859 zfs_refcount_destroy(&arc_mfu->arcs_esize[ARC_BUFC_DATA]);
7860 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_METADATA]);
7861 zfs_refcount_destroy(&arc_mfu_ghost->arcs_esize[ARC_BUFC_DATA]);
7862 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_METADATA]);
7863 zfs_refcount_destroy(&arc_l2c_only->arcs_esize[ARC_BUFC_DATA]);
7864 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_METADATA]);
7865 zfs_refcount_destroy(&arc_uncached->arcs_esize[ARC_BUFC_DATA]);
7867 zfs_refcount_destroy(&arc_anon->arcs_size);
7868 zfs_refcount_destroy(&arc_mru->arcs_size);
7869 zfs_refcount_destroy(&arc_mru_ghost->arcs_size);
7870 zfs_refcount_destroy(&arc_mfu->arcs_size);
7871 zfs_refcount_destroy(&arc_mfu_ghost->arcs_size);
7872 zfs_refcount_destroy(&arc_l2c_only->arcs_size);
7873 zfs_refcount_destroy(&arc_uncached->arcs_size);
7875 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_METADATA]);
7876 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_METADATA]);
7877 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_METADATA]);
7878 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_METADATA]);
7879 multilist_destroy(&arc_mru->arcs_list[ARC_BUFC_DATA]);
7880 multilist_destroy(&arc_mru_ghost->arcs_list[ARC_BUFC_DATA]);
7881 multilist_destroy(&arc_mfu->arcs_list[ARC_BUFC_DATA]);
7882 multilist_destroy(&arc_mfu_ghost->arcs_list[ARC_BUFC_DATA]);
7883 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_METADATA]);
7884 multilist_destroy(&arc_l2c_only->arcs_list[ARC_BUFC_DATA]);
7885 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_METADATA]);
7886 multilist_destroy(&arc_uncached->arcs_list[ARC_BUFC_DATA]);
7888 wmsum_fini(&arc_sums.arcstat_hits);
7889 wmsum_fini(&arc_sums.arcstat_iohits);
7890 wmsum_fini(&arc_sums.arcstat_misses);
7891 wmsum_fini(&arc_sums.arcstat_demand_data_hits);
7892 wmsum_fini(&arc_sums.arcstat_demand_data_iohits);
7893 wmsum_fini(&arc_sums.arcstat_demand_data_misses);
7894 wmsum_fini(&arc_sums.arcstat_demand_metadata_hits);
7895 wmsum_fini(&arc_sums.arcstat_demand_metadata_iohits);
7896 wmsum_fini(&arc_sums.arcstat_demand_metadata_misses);
7897 wmsum_fini(&arc_sums.arcstat_prefetch_data_hits);
7898 wmsum_fini(&arc_sums.arcstat_prefetch_data_iohits);
7899 wmsum_fini(&arc_sums.arcstat_prefetch_data_misses);
7900 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_hits);
7901 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_iohits);
7902 wmsum_fini(&arc_sums.arcstat_prefetch_metadata_misses);
7903 wmsum_fini(&arc_sums.arcstat_mru_hits);
7904 wmsum_fini(&arc_sums.arcstat_mru_ghost_hits);
7905 wmsum_fini(&arc_sums.arcstat_mfu_hits);
7906 wmsum_fini(&arc_sums.arcstat_mfu_ghost_hits);
7907 wmsum_fini(&arc_sums.arcstat_uncached_hits);
7908 wmsum_fini(&arc_sums.arcstat_deleted);
7909 wmsum_fini(&arc_sums.arcstat_mutex_miss);
7910 wmsum_fini(&arc_sums.arcstat_access_skip);
7911 wmsum_fini(&arc_sums.arcstat_evict_skip);
7912 wmsum_fini(&arc_sums.arcstat_evict_not_enough);
7913 wmsum_fini(&arc_sums.arcstat_evict_l2_cached);
7914 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible);
7915 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mfu);
7916 wmsum_fini(&arc_sums.arcstat_evict_l2_eligible_mru);
7917 wmsum_fini(&arc_sums.arcstat_evict_l2_ineligible);
7918 wmsum_fini(&arc_sums.arcstat_evict_l2_skip);
7919 wmsum_fini(&arc_sums.arcstat_hash_collisions);
7920 wmsum_fini(&arc_sums.arcstat_hash_chains);
7921 aggsum_fini(&arc_sums.arcstat_size);
7922 wmsum_fini(&arc_sums.arcstat_compressed_size);
7923 wmsum_fini(&arc_sums.arcstat_uncompressed_size);
7924 wmsum_fini(&arc_sums.arcstat_overhead_size);
7925 wmsum_fini(&arc_sums.arcstat_hdr_size);
7926 wmsum_fini(&arc_sums.arcstat_data_size);
7927 wmsum_fini(&arc_sums.arcstat_metadata_size);
7928 wmsum_fini(&arc_sums.arcstat_dbuf_size);
7929 aggsum_fini(&arc_sums.arcstat_dnode_size);
7930 wmsum_fini(&arc_sums.arcstat_bonus_size);
7931 wmsum_fini(&arc_sums.arcstat_l2_hits);
7932 wmsum_fini(&arc_sums.arcstat_l2_misses);
7933 wmsum_fini(&arc_sums.arcstat_l2_prefetch_asize);
7934 wmsum_fini(&arc_sums.arcstat_l2_mru_asize);
7935 wmsum_fini(&arc_sums.arcstat_l2_mfu_asize);
7936 wmsum_fini(&arc_sums.arcstat_l2_bufc_data_asize);
7937 wmsum_fini(&arc_sums.arcstat_l2_bufc_metadata_asize);
7938 wmsum_fini(&arc_sums.arcstat_l2_feeds);
7939 wmsum_fini(&arc_sums.arcstat_l2_rw_clash);
7940 wmsum_fini(&arc_sums.arcstat_l2_read_bytes);
7941 wmsum_fini(&arc_sums.arcstat_l2_write_bytes);
7942 wmsum_fini(&arc_sums.arcstat_l2_writes_sent);
7943 wmsum_fini(&arc_sums.arcstat_l2_writes_done);
7944 wmsum_fini(&arc_sums.arcstat_l2_writes_error);
7945 wmsum_fini(&arc_sums.arcstat_l2_writes_lock_retry);
7946 wmsum_fini(&arc_sums.arcstat_l2_evict_lock_retry);
7947 wmsum_fini(&arc_sums.arcstat_l2_evict_reading);
7948 wmsum_fini(&arc_sums.arcstat_l2_evict_l1cached);
7949 wmsum_fini(&arc_sums.arcstat_l2_free_on_write);
7950 wmsum_fini(&arc_sums.arcstat_l2_abort_lowmem);
7951 wmsum_fini(&arc_sums.arcstat_l2_cksum_bad);
7952 wmsum_fini(&arc_sums.arcstat_l2_io_error);
7953 wmsum_fini(&arc_sums.arcstat_l2_lsize);
7954 wmsum_fini(&arc_sums.arcstat_l2_psize);
7955 aggsum_fini(&arc_sums.arcstat_l2_hdr_size);
7956 wmsum_fini(&arc_sums.arcstat_l2_log_blk_writes);
7957 wmsum_fini(&arc_sums.arcstat_l2_log_blk_asize);
7958 wmsum_fini(&arc_sums.arcstat_l2_log_blk_count);
7959 wmsum_fini(&arc_sums.arcstat_l2_rebuild_success);
7960 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_unsupported);
7961 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_io_errors);
7962 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_dh_errors);
7963 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_cksum_lb_errors);
7964 wmsum_fini(&arc_sums.arcstat_l2_rebuild_abort_lowmem);
7965 wmsum_fini(&arc_sums.arcstat_l2_rebuild_size);
7966 wmsum_fini(&arc_sums.arcstat_l2_rebuild_asize);
7967 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs);
7968 wmsum_fini(&arc_sums.arcstat_l2_rebuild_bufs_precached);
7969 wmsum_fini(&arc_sums.arcstat_l2_rebuild_log_blks);
7970 wmsum_fini(&arc_sums.arcstat_memory_throttle_count);
7971 wmsum_fini(&arc_sums.arcstat_memory_direct_count);
7972 wmsum_fini(&arc_sums.arcstat_memory_indirect_count);
7973 wmsum_fini(&arc_sums.arcstat_prune);
7974 aggsum_fini(&arc_sums.arcstat_meta_used);
7975 wmsum_fini(&arc_sums.arcstat_async_upgrade_sync);
7976 wmsum_fini(&arc_sums.arcstat_predictive_prefetch);
7977 wmsum_fini(&arc_sums.arcstat_demand_hit_predictive_prefetch);
7978 wmsum_fini(&arc_sums.arcstat_demand_iohit_predictive_prefetch);
7979 wmsum_fini(&arc_sums.arcstat_prescient_prefetch);
7980 wmsum_fini(&arc_sums.arcstat_demand_hit_prescient_prefetch);
7981 wmsum_fini(&arc_sums.arcstat_demand_iohit_prescient_prefetch);
7982 wmsum_fini(&arc_sums.arcstat_raw_size);
7983 wmsum_fini(&arc_sums.arcstat_cached_only_in_progress);
7984 wmsum_fini(&arc_sums.arcstat_abd_chunk_waste_size);
7987 uint64_t
7988 arc_target_bytes(void)
7990 return (arc_c);
7993 void
7994 arc_set_limits(uint64_t allmem)
7996 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7997 arc_c_min = MAX(allmem / 32, 2ULL << SPA_MAXBLOCKSHIFT);
7999 /* How to set default max varies by platform. */
8000 arc_c_max = arc_default_max(arc_c_min, allmem);
8002 void
8003 arc_init(void)
8005 uint64_t percent, allmem = arc_all_memory();
8006 mutex_init(&arc_evict_lock, NULL, MUTEX_DEFAULT, NULL);
8007 list_create(&arc_evict_waiters, sizeof (arc_evict_waiter_t),
8008 offsetof(arc_evict_waiter_t, aew_node));
8010 arc_min_prefetch_ms = 1000;
8011 arc_min_prescient_prefetch_ms = 6000;
8013 #if defined(_KERNEL)
8014 arc_lowmem_init();
8015 #endif
8017 arc_set_limits(allmem);
8019 #ifdef _KERNEL
8021 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
8022 * environment before the module was loaded, don't block setting the
8023 * maximum because it is less than arc_c_min, instead, reset arc_c_min
8024 * to a lower value.
8025 * zfs_arc_min will be handled by arc_tuning_update().
8027 if (zfs_arc_max != 0 && zfs_arc_max >= MIN_ARC_MAX &&
8028 zfs_arc_max < allmem) {
8029 arc_c_max = zfs_arc_max;
8030 if (arc_c_min >= arc_c_max) {
8031 arc_c_min = MAX(zfs_arc_max / 2,
8032 2ULL << SPA_MAXBLOCKSHIFT);
8035 #else
8037 * In userland, there's only the memory pressure that we artificially
8038 * create (see arc_available_memory()). Don't let arc_c get too
8039 * small, because it can cause transactions to be larger than
8040 * arc_c, causing arc_tempreserve_space() to fail.
8042 arc_c_min = MAX(arc_c_max / 2, 2ULL << SPA_MAXBLOCKSHIFT);
8043 #endif
8045 arc_c = arc_c_min;
8046 arc_p = (arc_c >> 1);
8048 /* Set min to 1/2 of arc_c_min */
8049 arc_meta_min = 1ULL << SPA_MAXBLOCKSHIFT;
8051 * Set arc_meta_limit to a percent of arc_c_max with a floor of
8052 * arc_meta_min, and a ceiling of arc_c_max.
8054 percent = MIN(zfs_arc_meta_limit_percent, 100);
8055 arc_meta_limit = MAX(arc_meta_min, (percent * arc_c_max) / 100);
8056 percent = MIN(zfs_arc_dnode_limit_percent, 100);
8057 arc_dnode_size_limit = (percent * arc_meta_limit) / 100;
8059 /* Apply user specified tunings */
8060 arc_tuning_update(B_TRUE);
8062 /* if kmem_flags are set, lets try to use less memory */
8063 if (kmem_debugging())
8064 arc_c = arc_c / 2;
8065 if (arc_c < arc_c_min)
8066 arc_c = arc_c_min;
8068 arc_register_hotplug();
8070 arc_state_init();
8072 buf_init();
8074 list_create(&arc_prune_list, sizeof (arc_prune_t),
8075 offsetof(arc_prune_t, p_node));
8076 mutex_init(&arc_prune_mtx, NULL, MUTEX_DEFAULT, NULL);
8078 arc_prune_taskq = taskq_create("arc_prune", zfs_arc_prune_task_threads,
8079 defclsyspri, 100, INT_MAX, TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
8081 arc_ksp = kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED,
8082 sizeof (arc_stats) / sizeof (kstat_named_t), KSTAT_FLAG_VIRTUAL);
8084 if (arc_ksp != NULL) {
8085 arc_ksp->ks_data = &arc_stats;
8086 arc_ksp->ks_update = arc_kstat_update;
8087 kstat_install(arc_ksp);
8090 arc_state_evict_markers =
8091 arc_state_alloc_markers(arc_state_evict_marker_count);
8092 arc_evict_zthr = zthr_create_timer("arc_evict",
8093 arc_evict_cb_check, arc_evict_cb, NULL, SEC2NSEC(1), defclsyspri);
8094 arc_reap_zthr = zthr_create_timer("arc_reap",
8095 arc_reap_cb_check, arc_reap_cb, NULL, SEC2NSEC(1), minclsyspri);
8097 arc_warm = B_FALSE;
8100 * Calculate maximum amount of dirty data per pool.
8102 * If it has been set by a module parameter, take that.
8103 * Otherwise, use a percentage of physical memory defined by
8104 * zfs_dirty_data_max_percent (default 10%) with a cap at
8105 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
8107 #ifdef __LP64__
8108 if (zfs_dirty_data_max_max == 0)
8109 zfs_dirty_data_max_max = MIN(4ULL * 1024 * 1024 * 1024,
8110 allmem * zfs_dirty_data_max_max_percent / 100);
8111 #else
8112 if (zfs_dirty_data_max_max == 0)
8113 zfs_dirty_data_max_max = MIN(1ULL * 1024 * 1024 * 1024,
8114 allmem * zfs_dirty_data_max_max_percent / 100);
8115 #endif
8117 if (zfs_dirty_data_max == 0) {
8118 zfs_dirty_data_max = allmem *
8119 zfs_dirty_data_max_percent / 100;
8120 zfs_dirty_data_max = MIN(zfs_dirty_data_max,
8121 zfs_dirty_data_max_max);
8124 if (zfs_wrlog_data_max == 0) {
8127 * dp_wrlog_total is reduced for each txg at the end of
8128 * spa_sync(). However, dp_dirty_total is reduced every time
8129 * a block is written out. Thus under normal operation,
8130 * dp_wrlog_total could grow 2 times as big as
8131 * zfs_dirty_data_max.
8133 zfs_wrlog_data_max = zfs_dirty_data_max * 2;
8137 void
8138 arc_fini(void)
8140 arc_prune_t *p;
8142 #ifdef _KERNEL
8143 arc_lowmem_fini();
8144 #endif /* _KERNEL */
8146 /* Use B_TRUE to ensure *all* buffers are evicted */
8147 arc_flush(NULL, B_TRUE);
8149 if (arc_ksp != NULL) {
8150 kstat_delete(arc_ksp);
8151 arc_ksp = NULL;
8154 taskq_wait(arc_prune_taskq);
8155 taskq_destroy(arc_prune_taskq);
8157 mutex_enter(&arc_prune_mtx);
8158 while ((p = list_head(&arc_prune_list)) != NULL) {
8159 list_remove(&arc_prune_list, p);
8160 zfs_refcount_remove(&p->p_refcnt, &arc_prune_list);
8161 zfs_refcount_destroy(&p->p_refcnt);
8162 kmem_free(p, sizeof (*p));
8164 mutex_exit(&arc_prune_mtx);
8166 list_destroy(&arc_prune_list);
8167 mutex_destroy(&arc_prune_mtx);
8169 (void) zthr_cancel(arc_evict_zthr);
8170 (void) zthr_cancel(arc_reap_zthr);
8171 arc_state_free_markers(arc_state_evict_markers,
8172 arc_state_evict_marker_count);
8174 mutex_destroy(&arc_evict_lock);
8175 list_destroy(&arc_evict_waiters);
8178 * Free any buffers that were tagged for destruction. This needs
8179 * to occur before arc_state_fini() runs and destroys the aggsum
8180 * values which are updated when freeing scatter ABDs.
8182 l2arc_do_free_on_write();
8185 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8186 * trigger the release of kmem magazines, which can callback to
8187 * arc_space_return() which accesses aggsums freed in act_state_fini().
8189 buf_fini();
8190 arc_state_fini();
8192 arc_unregister_hotplug();
8195 * We destroy the zthrs after all the ARC state has been
8196 * torn down to avoid the case of them receiving any
8197 * wakeup() signals after they are destroyed.
8199 zthr_destroy(arc_evict_zthr);
8200 zthr_destroy(arc_reap_zthr);
8202 ASSERT0(arc_loaned_bytes);
8206 * Level 2 ARC
8208 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8209 * It uses dedicated storage devices to hold cached data, which are populated
8210 * using large infrequent writes. The main role of this cache is to boost
8211 * the performance of random read workloads. The intended L2ARC devices
8212 * include short-stroked disks, solid state disks, and other media with
8213 * substantially faster read latency than disk.
8215 * +-----------------------+
8216 * | ARC |
8217 * +-----------------------+
8218 * | ^ ^
8219 * | | |
8220 * l2arc_feed_thread() arc_read()
8221 * | | |
8222 * | l2arc read |
8223 * V | |
8224 * +---------------+ |
8225 * | L2ARC | |
8226 * +---------------+ |
8227 * | ^ |
8228 * l2arc_write() | |
8229 * | | |
8230 * V | |
8231 * +-------+ +-------+
8232 * | vdev | | vdev |
8233 * | cache | | cache |
8234 * +-------+ +-------+
8235 * +=========+ .-----.
8236 * : L2ARC : |-_____-|
8237 * : devices : | Disks |
8238 * +=========+ `-_____-'
8240 * Read requests are satisfied from the following sources, in order:
8242 * 1) ARC
8243 * 2) vdev cache of L2ARC devices
8244 * 3) L2ARC devices
8245 * 4) vdev cache of disks
8246 * 5) disks
8248 * Some L2ARC device types exhibit extremely slow write performance.
8249 * To accommodate for this there are some significant differences between
8250 * the L2ARC and traditional cache design:
8252 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8253 * the ARC behave as usual, freeing buffers and placing headers on ghost
8254 * lists. The ARC does not send buffers to the L2ARC during eviction as
8255 * this would add inflated write latencies for all ARC memory pressure.
8257 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8258 * It does this by periodically scanning buffers from the eviction-end of
8259 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8260 * not already there. It scans until a headroom of buffers is satisfied,
8261 * which itself is a buffer for ARC eviction. If a compressible buffer is
8262 * found during scanning and selected for writing to an L2ARC device, we
8263 * temporarily boost scanning headroom during the next scan cycle to make
8264 * sure we adapt to compression effects (which might significantly reduce
8265 * the data volume we write to L2ARC). The thread that does this is
8266 * l2arc_feed_thread(), illustrated below; example sizes are included to
8267 * provide a better sense of ratio than this diagram:
8269 * head --> tail
8270 * +---------------------+----------+
8271 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8272 * +---------------------+----------+ | o L2ARC eligible
8273 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8274 * +---------------------+----------+ |
8275 * 15.9 Gbytes ^ 32 Mbytes |
8276 * headroom |
8277 * l2arc_feed_thread()
8279 * l2arc write hand <--[oooo]--'
8280 * | 8 Mbyte
8281 * | write max
8283 * +==============================+
8284 * L2ARC dev |####|#|###|###| |####| ... |
8285 * +==============================+
8286 * 32 Gbytes
8288 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8289 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8290 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8291 * safe to say that this is an uncommon case, since buffers at the end of
8292 * the ARC lists have moved there due to inactivity.
8294 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8295 * then the L2ARC simply misses copying some buffers. This serves as a
8296 * pressure valve to prevent heavy read workloads from both stalling the ARC
8297 * with waits and clogging the L2ARC with writes. This also helps prevent
8298 * the potential for the L2ARC to churn if it attempts to cache content too
8299 * quickly, such as during backups of the entire pool.
8301 * 5. After system boot and before the ARC has filled main memory, there are
8302 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8303 * lists can remain mostly static. Instead of searching from tail of these
8304 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8305 * for eligible buffers, greatly increasing its chance of finding them.
8307 * The L2ARC device write speed is also boosted during this time so that
8308 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8309 * there are no L2ARC reads, and no fear of degrading read performance
8310 * through increased writes.
8312 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8313 * the vdev queue can aggregate them into larger and fewer writes. Each
8314 * device is written to in a rotor fashion, sweeping writes through
8315 * available space then repeating.
8317 * 7. The L2ARC does not store dirty content. It never needs to flush
8318 * write buffers back to disk based storage.
8320 * 8. If an ARC buffer is written (and dirtied) which also exists in the
8321 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8323 * The performance of the L2ARC can be tweaked by a number of tunables, which
8324 * may be necessary for different workloads:
8326 * l2arc_write_max max write bytes per interval
8327 * l2arc_write_boost extra write bytes during device warmup
8328 * l2arc_noprefetch skip caching prefetched buffers
8329 * l2arc_headroom number of max device writes to precache
8330 * l2arc_headroom_boost when we find compressed buffers during ARC
8331 * scanning, we multiply headroom by this
8332 * percentage factor for the next scan cycle,
8333 * since more compressed buffers are likely to
8334 * be present
8335 * l2arc_feed_secs seconds between L2ARC writing
8337 * Tunables may be removed or added as future performance improvements are
8338 * integrated, and also may become zpool properties.
8340 * There are three key functions that control how the L2ARC warms up:
8342 * l2arc_write_eligible() check if a buffer is eligible to cache
8343 * l2arc_write_size() calculate how much to write
8344 * l2arc_write_interval() calculate sleep delay between writes
8346 * These three functions determine what to write, how much, and how quickly
8347 * to send writes.
8349 * L2ARC persistence:
8351 * When writing buffers to L2ARC, we periodically add some metadata to
8352 * make sure we can pick them up after reboot, thus dramatically reducing
8353 * the impact that any downtime has on the performance of storage systems
8354 * with large caches.
8356 * The implementation works fairly simply by integrating the following two
8357 * modifications:
8359 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8360 * which is an additional piece of metadata which describes what's been
8361 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8362 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8363 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8364 * time-wise and offset-wise interleaved, but that is an optimization rather
8365 * than for correctness. The log block also includes a pointer to the
8366 * previous block in its chain.
8368 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8369 * for our header bookkeeping purposes. This contains a device header,
8370 * which contains our top-level reference structures. We update it each
8371 * time we write a new log block, so that we're able to locate it in the
8372 * L2ARC device. If this write results in an inconsistent device header
8373 * (e.g. due to power failure), we detect this by verifying the header's
8374 * checksum and simply fail to reconstruct the L2ARC after reboot.
8376 * Implementation diagram:
8378 * +=== L2ARC device (not to scale) ======================================+
8379 * | ___two newest log block pointers__.__________ |
8380 * | / \dh_start_lbps[1] |
8381 * | / \ \dh_start_lbps[0]|
8382 * |.___/__. V V |
8383 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8384 * || hdr| ^ /^ /^ / / |
8385 * |+------+ ...--\-------/ \-----/--\------/ / |
8386 * | \--------------/ \--------------/ |
8387 * +======================================================================+
8389 * As can be seen on the diagram, rather than using a simple linked list,
8390 * we use a pair of linked lists with alternating elements. This is a
8391 * performance enhancement due to the fact that we only find out the
8392 * address of the next log block access once the current block has been
8393 * completely read in. Obviously, this hurts performance, because we'd be
8394 * keeping the device's I/O queue at only a 1 operation deep, thus
8395 * incurring a large amount of I/O round-trip latency. Having two lists
8396 * allows us to fetch two log blocks ahead of where we are currently
8397 * rebuilding L2ARC buffers.
8399 * On-device data structures:
8401 * L2ARC device header: l2arc_dev_hdr_phys_t
8402 * L2ARC log block: l2arc_log_blk_phys_t
8404 * L2ARC reconstruction:
8406 * When writing data, we simply write in the standard rotary fashion,
8407 * evicting buffers as we go and simply writing new data over them (writing
8408 * a new log block every now and then). This obviously means that once we
8409 * loop around the end of the device, we will start cutting into an already
8410 * committed log block (and its referenced data buffers), like so:
8412 * current write head__ __old tail
8413 * \ /
8414 * V V
8415 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8416 * ^ ^^^^^^^^^___________________________________
8417 * | \
8418 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8420 * When importing the pool, we detect this situation and use it to stop
8421 * our scanning process (see l2arc_rebuild).
8423 * There is one significant caveat to consider when rebuilding ARC contents
8424 * from an L2ARC device: what about invalidated buffers? Given the above
8425 * construction, we cannot update blocks which we've already written to amend
8426 * them to remove buffers which were invalidated. Thus, during reconstruction,
8427 * we might be populating the cache with buffers for data that's not on the
8428 * main pool anymore, or may have been overwritten!
8430 * As it turns out, this isn't a problem. Every arc_read request includes
8431 * both the DVA and, crucially, the birth TXG of the BP the caller is
8432 * looking for. So even if the cache were populated by completely rotten
8433 * blocks for data that had been long deleted and/or overwritten, we'll
8434 * never actually return bad data from the cache, since the DVA with the
8435 * birth TXG uniquely identify a block in space and time - once created,
8436 * a block is immutable on disk. The worst thing we have done is wasted
8437 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8438 * entries that will get dropped from the l2arc as it is being updated
8439 * with new blocks.
8441 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8442 * hand are not restored. This is done by saving the offset (in bytes)
8443 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8444 * into account when restoring buffers.
8447 static boolean_t
8448 l2arc_write_eligible(uint64_t spa_guid, arc_buf_hdr_t *hdr)
8451 * A buffer is *not* eligible for the L2ARC if it:
8452 * 1. belongs to a different spa.
8453 * 2. is already cached on the L2ARC.
8454 * 3. has an I/O in progress (it may be an incomplete read).
8455 * 4. is flagged not eligible (zfs property).
8457 if (hdr->b_spa != spa_guid || HDR_HAS_L2HDR(hdr) ||
8458 HDR_IO_IN_PROGRESS(hdr) || !HDR_L2CACHE(hdr))
8459 return (B_FALSE);
8461 return (B_TRUE);
8464 static uint64_t
8465 l2arc_write_size(l2arc_dev_t *dev)
8467 uint64_t size, dev_size, tsize;
8470 * Make sure our globals have meaningful values in case the user
8471 * altered them.
8473 size = l2arc_write_max;
8474 if (size == 0) {
8475 cmn_err(CE_NOTE, "Bad value for l2arc_write_max, value must "
8476 "be greater than zero, resetting it to the default (%d)",
8477 L2ARC_WRITE_SIZE);
8478 size = l2arc_write_max = L2ARC_WRITE_SIZE;
8481 if (arc_warm == B_FALSE)
8482 size += l2arc_write_boost;
8485 * Make sure the write size does not exceed the size of the cache
8486 * device. This is important in l2arc_evict(), otherwise infinite
8487 * iteration can occur.
8489 dev_size = dev->l2ad_end - dev->l2ad_start;
8490 tsize = size + l2arc_log_blk_overhead(size, dev);
8491 if (dev->l2ad_vdev->vdev_has_trim && l2arc_trim_ahead > 0)
8492 tsize += MAX(64 * 1024 * 1024,
8493 (tsize * l2arc_trim_ahead) / 100);
8495 if (tsize >= dev_size) {
8496 cmn_err(CE_NOTE, "l2arc_write_max or l2arc_write_boost "
8497 "plus the overhead of log blocks (persistent L2ARC, "
8498 "%llu bytes) exceeds the size of the cache device "
8499 "(guid %llu), resetting them to the default (%d)",
8500 (u_longlong_t)l2arc_log_blk_overhead(size, dev),
8501 (u_longlong_t)dev->l2ad_vdev->vdev_guid, L2ARC_WRITE_SIZE);
8502 size = l2arc_write_max = l2arc_write_boost = L2ARC_WRITE_SIZE;
8504 if (arc_warm == B_FALSE)
8505 size += l2arc_write_boost;
8508 return (size);
8512 static clock_t
8513 l2arc_write_interval(clock_t began, uint64_t wanted, uint64_t wrote)
8515 clock_t interval, next, now;
8518 * If the ARC lists are busy, increase our write rate; if the
8519 * lists are stale, idle back. This is achieved by checking
8520 * how much we previously wrote - if it was more than half of
8521 * what we wanted, schedule the next write much sooner.
8523 if (l2arc_feed_again && wrote > (wanted / 2))
8524 interval = (hz * l2arc_feed_min_ms) / 1000;
8525 else
8526 interval = hz * l2arc_feed_secs;
8528 now = ddi_get_lbolt();
8529 next = MAX(now, MIN(now + interval, began + interval));
8531 return (next);
8535 * Cycle through L2ARC devices. This is how L2ARC load balances.
8536 * If a device is returned, this also returns holding the spa config lock.
8538 static l2arc_dev_t *
8539 l2arc_dev_get_next(void)
8541 l2arc_dev_t *first, *next = NULL;
8544 * Lock out the removal of spas (spa_namespace_lock), then removal
8545 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8546 * both locks will be dropped and a spa config lock held instead.
8548 mutex_enter(&spa_namespace_lock);
8549 mutex_enter(&l2arc_dev_mtx);
8551 /* if there are no vdevs, there is nothing to do */
8552 if (l2arc_ndev == 0)
8553 goto out;
8555 first = NULL;
8556 next = l2arc_dev_last;
8557 do {
8558 /* loop around the list looking for a non-faulted vdev */
8559 if (next == NULL) {
8560 next = list_head(l2arc_dev_list);
8561 } else {
8562 next = list_next(l2arc_dev_list, next);
8563 if (next == NULL)
8564 next = list_head(l2arc_dev_list);
8567 /* if we have come back to the start, bail out */
8568 if (first == NULL)
8569 first = next;
8570 else if (next == first)
8571 break;
8573 ASSERT3P(next, !=, NULL);
8574 } while (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8575 next->l2ad_trim_all);
8577 /* if we were unable to find any usable vdevs, return NULL */
8578 if (vdev_is_dead(next->l2ad_vdev) || next->l2ad_rebuild ||
8579 next->l2ad_trim_all)
8580 next = NULL;
8582 l2arc_dev_last = next;
8584 out:
8585 mutex_exit(&l2arc_dev_mtx);
8588 * Grab the config lock to prevent the 'next' device from being
8589 * removed while we are writing to it.
8591 if (next != NULL)
8592 spa_config_enter(next->l2ad_spa, SCL_L2ARC, next, RW_READER);
8593 mutex_exit(&spa_namespace_lock);
8595 return (next);
8599 * Free buffers that were tagged for destruction.
8601 static void
8602 l2arc_do_free_on_write(void)
8604 list_t *buflist;
8605 l2arc_data_free_t *df, *df_prev;
8607 mutex_enter(&l2arc_free_on_write_mtx);
8608 buflist = l2arc_free_on_write;
8610 for (df = list_tail(buflist); df; df = df_prev) {
8611 df_prev = list_prev(buflist, df);
8612 ASSERT3P(df->l2df_abd, !=, NULL);
8613 abd_free(df->l2df_abd);
8614 list_remove(buflist, df);
8615 kmem_free(df, sizeof (l2arc_data_free_t));
8618 mutex_exit(&l2arc_free_on_write_mtx);
8622 * A write to a cache device has completed. Update all headers to allow
8623 * reads from these buffers to begin.
8625 static void
8626 l2arc_write_done(zio_t *zio)
8628 l2arc_write_callback_t *cb;
8629 l2arc_lb_abd_buf_t *abd_buf;
8630 l2arc_lb_ptr_buf_t *lb_ptr_buf;
8631 l2arc_dev_t *dev;
8632 l2arc_dev_hdr_phys_t *l2dhdr;
8633 list_t *buflist;
8634 arc_buf_hdr_t *head, *hdr, *hdr_prev;
8635 kmutex_t *hash_lock;
8636 int64_t bytes_dropped = 0;
8638 cb = zio->io_private;
8639 ASSERT3P(cb, !=, NULL);
8640 dev = cb->l2wcb_dev;
8641 l2dhdr = dev->l2ad_dev_hdr;
8642 ASSERT3P(dev, !=, NULL);
8643 head = cb->l2wcb_head;
8644 ASSERT3P(head, !=, NULL);
8645 buflist = &dev->l2ad_buflist;
8646 ASSERT3P(buflist, !=, NULL);
8647 DTRACE_PROBE2(l2arc__iodone, zio_t *, zio,
8648 l2arc_write_callback_t *, cb);
8651 * All writes completed, or an error was hit.
8653 top:
8654 mutex_enter(&dev->l2ad_mtx);
8655 for (hdr = list_prev(buflist, head); hdr; hdr = hdr_prev) {
8656 hdr_prev = list_prev(buflist, hdr);
8658 hash_lock = HDR_LOCK(hdr);
8661 * We cannot use mutex_enter or else we can deadlock
8662 * with l2arc_write_buffers (due to swapping the order
8663 * the hash lock and l2ad_mtx are taken).
8665 if (!mutex_tryenter(hash_lock)) {
8667 * Missed the hash lock. We must retry so we
8668 * don't leave the ARC_FLAG_L2_WRITING bit set.
8670 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry);
8673 * We don't want to rescan the headers we've
8674 * already marked as having been written out, so
8675 * we reinsert the head node so we can pick up
8676 * where we left off.
8678 list_remove(buflist, head);
8679 list_insert_after(buflist, hdr, head);
8681 mutex_exit(&dev->l2ad_mtx);
8684 * We wait for the hash lock to become available
8685 * to try and prevent busy waiting, and increase
8686 * the chance we'll be able to acquire the lock
8687 * the next time around.
8689 mutex_enter(hash_lock);
8690 mutex_exit(hash_lock);
8691 goto top;
8695 * We could not have been moved into the arc_l2c_only
8696 * state while in-flight due to our ARC_FLAG_L2_WRITING
8697 * bit being set. Let's just ensure that's being enforced.
8699 ASSERT(HDR_HAS_L1HDR(hdr));
8702 * Skipped - drop L2ARC entry and mark the header as no
8703 * longer L2 eligibile.
8705 if (zio->io_error != 0) {
8707 * Error - drop L2ARC entry.
8709 list_remove(buflist, hdr);
8710 arc_hdr_clear_flags(hdr, ARC_FLAG_HAS_L2HDR);
8712 uint64_t psize = HDR_GET_PSIZE(hdr);
8713 l2arc_hdr_arcstats_decrement(hdr);
8715 bytes_dropped +=
8716 vdev_psize_to_asize(dev->l2ad_vdev, psize);
8717 (void) zfs_refcount_remove_many(&dev->l2ad_alloc,
8718 arc_hdr_size(hdr), hdr);
8722 * Allow ARC to begin reads and ghost list evictions to
8723 * this L2ARC entry.
8725 arc_hdr_clear_flags(hdr, ARC_FLAG_L2_WRITING);
8727 mutex_exit(hash_lock);
8731 * Free the allocated abd buffers for writing the log blocks.
8732 * If the zio failed reclaim the allocated space and remove the
8733 * pointers to these log blocks from the log block pointer list
8734 * of the L2ARC device.
8736 while ((abd_buf = list_remove_tail(&cb->l2wcb_abd_list)) != NULL) {
8737 abd_free(abd_buf->abd);
8738 zio_buf_free(abd_buf, sizeof (*abd_buf));
8739 if (zio->io_error != 0) {
8740 lb_ptr_buf = list_remove_head(&dev->l2ad_lbptr_list);
8742 * L2BLK_GET_PSIZE returns aligned size for log
8743 * blocks.
8745 uint64_t asize =
8746 L2BLK_GET_PSIZE((lb_ptr_buf->lb_ptr)->lbp_prop);
8747 bytes_dropped += asize;
8748 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
8749 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
8750 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
8751 lb_ptr_buf);
8752 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
8753 kmem_free(lb_ptr_buf->lb_ptr,
8754 sizeof (l2arc_log_blkptr_t));
8755 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
8758 list_destroy(&cb->l2wcb_abd_list);
8760 if (zio->io_error != 0) {
8761 ARCSTAT_BUMP(arcstat_l2_writes_error);
8764 * Restore the lbps array in the header to its previous state.
8765 * If the list of log block pointers is empty, zero out the
8766 * log block pointers in the device header.
8768 lb_ptr_buf = list_head(&dev->l2ad_lbptr_list);
8769 for (int i = 0; i < 2; i++) {
8770 if (lb_ptr_buf == NULL) {
8772 * If the list is empty zero out the device
8773 * header. Otherwise zero out the second log
8774 * block pointer in the header.
8776 if (i == 0) {
8777 memset(l2dhdr, 0,
8778 dev->l2ad_dev_hdr_asize);
8779 } else {
8780 memset(&l2dhdr->dh_start_lbps[i], 0,
8781 sizeof (l2arc_log_blkptr_t));
8783 break;
8785 memcpy(&l2dhdr->dh_start_lbps[i], lb_ptr_buf->lb_ptr,
8786 sizeof (l2arc_log_blkptr_t));
8787 lb_ptr_buf = list_next(&dev->l2ad_lbptr_list,
8788 lb_ptr_buf);
8792 ARCSTAT_BUMP(arcstat_l2_writes_done);
8793 list_remove(buflist, head);
8794 ASSERT(!HDR_HAS_L1HDR(head));
8795 kmem_cache_free(hdr_l2only_cache, head);
8796 mutex_exit(&dev->l2ad_mtx);
8798 ASSERT(dev->l2ad_vdev != NULL);
8799 vdev_space_update(dev->l2ad_vdev, -bytes_dropped, 0, 0);
8801 l2arc_do_free_on_write();
8803 kmem_free(cb, sizeof (l2arc_write_callback_t));
8806 static int
8807 l2arc_untransform(zio_t *zio, l2arc_read_callback_t *cb)
8809 int ret;
8810 spa_t *spa = zio->io_spa;
8811 arc_buf_hdr_t *hdr = cb->l2rcb_hdr;
8812 blkptr_t *bp = zio->io_bp;
8813 uint8_t salt[ZIO_DATA_SALT_LEN];
8814 uint8_t iv[ZIO_DATA_IV_LEN];
8815 uint8_t mac[ZIO_DATA_MAC_LEN];
8816 boolean_t no_crypt = B_FALSE;
8819 * ZIL data is never be written to the L2ARC, so we don't need
8820 * special handling for its unique MAC storage.
8822 ASSERT3U(BP_GET_TYPE(bp), !=, DMU_OT_INTENT_LOG);
8823 ASSERT(MUTEX_HELD(HDR_LOCK(hdr)));
8824 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8827 * If the data was encrypted, decrypt it now. Note that
8828 * we must check the bp here and not the hdr, since the
8829 * hdr does not have its encryption parameters updated
8830 * until arc_read_done().
8832 if (BP_IS_ENCRYPTED(bp)) {
8833 abd_t *eabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8834 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE);
8836 zio_crypt_decode_params_bp(bp, salt, iv);
8837 zio_crypt_decode_mac_bp(bp, mac);
8839 ret = spa_do_crypt_abd(B_FALSE, spa, &cb->l2rcb_zb,
8840 BP_GET_TYPE(bp), BP_GET_DEDUP(bp), BP_SHOULD_BYTESWAP(bp),
8841 salt, iv, mac, HDR_GET_PSIZE(hdr), eabd,
8842 hdr->b_l1hdr.b_pabd, &no_crypt);
8843 if (ret != 0) {
8844 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8845 goto error;
8849 * If we actually performed decryption, replace b_pabd
8850 * with the decrypted data. Otherwise we can just throw
8851 * our decryption buffer away.
8853 if (!no_crypt) {
8854 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8855 arc_hdr_size(hdr), hdr);
8856 hdr->b_l1hdr.b_pabd = eabd;
8857 zio->io_abd = eabd;
8858 } else {
8859 arc_free_data_abd(hdr, eabd, arc_hdr_size(hdr), hdr);
8864 * If the L2ARC block was compressed, but ARC compression
8865 * is disabled we decompress the data into a new buffer and
8866 * replace the existing data.
8868 if (HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
8869 !HDR_COMPRESSION_ENABLED(hdr)) {
8870 abd_t *cabd = arc_get_data_abd(hdr, arc_hdr_size(hdr), hdr,
8871 ARC_HDR_DO_ADAPT | ARC_HDR_USE_RESERVE);
8872 void *tmp = abd_borrow_buf(cabd, arc_hdr_size(hdr));
8874 ret = zio_decompress_data(HDR_GET_COMPRESS(hdr),
8875 hdr->b_l1hdr.b_pabd, tmp, HDR_GET_PSIZE(hdr),
8876 HDR_GET_LSIZE(hdr), &hdr->b_complevel);
8877 if (ret != 0) {
8878 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8879 arc_free_data_abd(hdr, cabd, arc_hdr_size(hdr), hdr);
8880 goto error;
8883 abd_return_buf_copy(cabd, tmp, arc_hdr_size(hdr));
8884 arc_free_data_abd(hdr, hdr->b_l1hdr.b_pabd,
8885 arc_hdr_size(hdr), hdr);
8886 hdr->b_l1hdr.b_pabd = cabd;
8887 zio->io_abd = cabd;
8888 zio->io_size = HDR_GET_LSIZE(hdr);
8891 return (0);
8893 error:
8894 return (ret);
8899 * A read to a cache device completed. Validate buffer contents before
8900 * handing over to the regular ARC routines.
8902 static void
8903 l2arc_read_done(zio_t *zio)
8905 int tfm_error = 0;
8906 l2arc_read_callback_t *cb = zio->io_private;
8907 arc_buf_hdr_t *hdr;
8908 kmutex_t *hash_lock;
8909 boolean_t valid_cksum;
8910 boolean_t using_rdata = (BP_IS_ENCRYPTED(&cb->l2rcb_bp) &&
8911 (cb->l2rcb_flags & ZIO_FLAG_RAW_ENCRYPT));
8913 ASSERT3P(zio->io_vd, !=, NULL);
8914 ASSERT(zio->io_flags & ZIO_FLAG_DONT_PROPAGATE);
8916 spa_config_exit(zio->io_spa, SCL_L2ARC, zio->io_vd);
8918 ASSERT3P(cb, !=, NULL);
8919 hdr = cb->l2rcb_hdr;
8920 ASSERT3P(hdr, !=, NULL);
8922 hash_lock = HDR_LOCK(hdr);
8923 mutex_enter(hash_lock);
8924 ASSERT3P(hash_lock, ==, HDR_LOCK(hdr));
8927 * If the data was read into a temporary buffer,
8928 * move it and free the buffer.
8930 if (cb->l2rcb_abd != NULL) {
8931 ASSERT3U(arc_hdr_size(hdr), <, zio->io_size);
8932 if (zio->io_error == 0) {
8933 if (using_rdata) {
8934 abd_copy(hdr->b_crypt_hdr.b_rabd,
8935 cb->l2rcb_abd, arc_hdr_size(hdr));
8936 } else {
8937 abd_copy(hdr->b_l1hdr.b_pabd,
8938 cb->l2rcb_abd, arc_hdr_size(hdr));
8943 * The following must be done regardless of whether
8944 * there was an error:
8945 * - free the temporary buffer
8946 * - point zio to the real ARC buffer
8947 * - set zio size accordingly
8948 * These are required because zio is either re-used for
8949 * an I/O of the block in the case of the error
8950 * or the zio is passed to arc_read_done() and it
8951 * needs real data.
8953 abd_free(cb->l2rcb_abd);
8954 zio->io_size = zio->io_orig_size = arc_hdr_size(hdr);
8956 if (using_rdata) {
8957 ASSERT(HDR_HAS_RABD(hdr));
8958 zio->io_abd = zio->io_orig_abd =
8959 hdr->b_crypt_hdr.b_rabd;
8960 } else {
8961 ASSERT3P(hdr->b_l1hdr.b_pabd, !=, NULL);
8962 zio->io_abd = zio->io_orig_abd = hdr->b_l1hdr.b_pabd;
8966 ASSERT3P(zio->io_abd, !=, NULL);
8969 * Check this survived the L2ARC journey.
8971 ASSERT(zio->io_abd == hdr->b_l1hdr.b_pabd ||
8972 (HDR_HAS_RABD(hdr) && zio->io_abd == hdr->b_crypt_hdr.b_rabd));
8973 zio->io_bp_copy = cb->l2rcb_bp; /* XXX fix in L2ARC 2.0 */
8974 zio->io_bp = &zio->io_bp_copy; /* XXX fix in L2ARC 2.0 */
8975 zio->io_prop.zp_complevel = hdr->b_complevel;
8977 valid_cksum = arc_cksum_is_equal(hdr, zio);
8980 * b_rabd will always match the data as it exists on disk if it is
8981 * being used. Therefore if we are reading into b_rabd we do not
8982 * attempt to untransform the data.
8984 if (valid_cksum && !using_rdata)
8985 tfm_error = l2arc_untransform(zio, cb);
8987 if (valid_cksum && tfm_error == 0 && zio->io_error == 0 &&
8988 !HDR_L2_EVICTED(hdr)) {
8989 mutex_exit(hash_lock);
8990 zio->io_private = hdr;
8991 arc_read_done(zio);
8992 } else {
8994 * Buffer didn't survive caching. Increment stats and
8995 * reissue to the original storage device.
8997 if (zio->io_error != 0) {
8998 ARCSTAT_BUMP(arcstat_l2_io_error);
8999 } else {
9000 zio->io_error = SET_ERROR(EIO);
9002 if (!valid_cksum || tfm_error != 0)
9003 ARCSTAT_BUMP(arcstat_l2_cksum_bad);
9006 * If there's no waiter, issue an async i/o to the primary
9007 * storage now. If there *is* a waiter, the caller must
9008 * issue the i/o in a context where it's OK to block.
9010 if (zio->io_waiter == NULL) {
9011 zio_t *pio = zio_unique_parent(zio);
9012 void *abd = (using_rdata) ?
9013 hdr->b_crypt_hdr.b_rabd : hdr->b_l1hdr.b_pabd;
9015 ASSERT(!pio || pio->io_child_type == ZIO_CHILD_LOGICAL);
9017 zio = zio_read(pio, zio->io_spa, zio->io_bp,
9018 abd, zio->io_size, arc_read_done,
9019 hdr, zio->io_priority, cb->l2rcb_flags,
9020 &cb->l2rcb_zb);
9023 * Original ZIO will be freed, so we need to update
9024 * ARC header with the new ZIO pointer to be used
9025 * by zio_change_priority() in arc_read().
9027 for (struct arc_callback *acb = hdr->b_l1hdr.b_acb;
9028 acb != NULL; acb = acb->acb_next)
9029 acb->acb_zio_head = zio;
9031 mutex_exit(hash_lock);
9032 zio_nowait(zio);
9033 } else {
9034 mutex_exit(hash_lock);
9038 kmem_free(cb, sizeof (l2arc_read_callback_t));
9042 * This is the list priority from which the L2ARC will search for pages to
9043 * cache. This is used within loops (0..3) to cycle through lists in the
9044 * desired order. This order can have a significant effect on cache
9045 * performance.
9047 * Currently the metadata lists are hit first, MFU then MRU, followed by
9048 * the data lists. This function returns a locked list, and also returns
9049 * the lock pointer.
9051 static multilist_sublist_t *
9052 l2arc_sublist_lock(int list_num)
9054 multilist_t *ml = NULL;
9055 unsigned int idx;
9057 ASSERT(list_num >= 0 && list_num < L2ARC_FEED_TYPES);
9059 switch (list_num) {
9060 case 0:
9061 ml = &arc_mfu->arcs_list[ARC_BUFC_METADATA];
9062 break;
9063 case 1:
9064 ml = &arc_mru->arcs_list[ARC_BUFC_METADATA];
9065 break;
9066 case 2:
9067 ml = &arc_mfu->arcs_list[ARC_BUFC_DATA];
9068 break;
9069 case 3:
9070 ml = &arc_mru->arcs_list[ARC_BUFC_DATA];
9071 break;
9072 default:
9073 return (NULL);
9077 * Return a randomly-selected sublist. This is acceptable
9078 * because the caller feeds only a little bit of data for each
9079 * call (8MB). Subsequent calls will result in different
9080 * sublists being selected.
9082 idx = multilist_get_random_index(ml);
9083 return (multilist_sublist_lock(ml, idx));
9087 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
9088 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
9089 * overhead in processing to make sure there is enough headroom available
9090 * when writing buffers.
9092 static inline uint64_t
9093 l2arc_log_blk_overhead(uint64_t write_sz, l2arc_dev_t *dev)
9095 if (dev->l2ad_log_entries == 0) {
9096 return (0);
9097 } else {
9098 uint64_t log_entries = write_sz >> SPA_MINBLOCKSHIFT;
9100 uint64_t log_blocks = (log_entries +
9101 dev->l2ad_log_entries - 1) /
9102 dev->l2ad_log_entries;
9104 return (vdev_psize_to_asize(dev->l2ad_vdev,
9105 sizeof (l2arc_log_blk_phys_t)) * log_blocks);
9110 * Evict buffers from the device write hand to the distance specified in
9111 * bytes. This distance may span populated buffers, it may span nothing.
9112 * This is clearing a region on the L2ARC device ready for writing.
9113 * If the 'all' boolean is set, every buffer is evicted.
9115 static void
9116 l2arc_evict(l2arc_dev_t *dev, uint64_t distance, boolean_t all)
9118 list_t *buflist;
9119 arc_buf_hdr_t *hdr, *hdr_prev;
9120 kmutex_t *hash_lock;
9121 uint64_t taddr;
9122 l2arc_lb_ptr_buf_t *lb_ptr_buf, *lb_ptr_buf_prev;
9123 vdev_t *vd = dev->l2ad_vdev;
9124 boolean_t rerun;
9126 buflist = &dev->l2ad_buflist;
9129 * We need to add in the worst case scenario of log block overhead.
9131 distance += l2arc_log_blk_overhead(distance, dev);
9132 if (vd->vdev_has_trim && l2arc_trim_ahead > 0) {
9134 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
9135 * times the write size, whichever is greater.
9137 distance += MAX(64 * 1024 * 1024,
9138 (distance * l2arc_trim_ahead) / 100);
9141 top:
9142 rerun = B_FALSE;
9143 if (dev->l2ad_hand >= (dev->l2ad_end - distance)) {
9145 * When there is no space to accommodate upcoming writes,
9146 * evict to the end. Then bump the write and evict hands
9147 * to the start and iterate. This iteration does not
9148 * happen indefinitely as we make sure in
9149 * l2arc_write_size() that when the write hand is reset,
9150 * the write size does not exceed the end of the device.
9152 rerun = B_TRUE;
9153 taddr = dev->l2ad_end;
9154 } else {
9155 taddr = dev->l2ad_hand + distance;
9157 DTRACE_PROBE4(l2arc__evict, l2arc_dev_t *, dev, list_t *, buflist,
9158 uint64_t, taddr, boolean_t, all);
9160 if (!all) {
9162 * This check has to be placed after deciding whether to
9163 * iterate (rerun).
9165 if (dev->l2ad_first) {
9167 * This is the first sweep through the device. There is
9168 * nothing to evict. We have already trimmmed the
9169 * whole device.
9171 goto out;
9172 } else {
9174 * Trim the space to be evicted.
9176 if (vd->vdev_has_trim && dev->l2ad_evict < taddr &&
9177 l2arc_trim_ahead > 0) {
9179 * We have to drop the spa_config lock because
9180 * vdev_trim_range() will acquire it.
9181 * l2ad_evict already accounts for the label
9182 * size. To prevent vdev_trim_ranges() from
9183 * adding it again, we subtract it from
9184 * l2ad_evict.
9186 spa_config_exit(dev->l2ad_spa, SCL_L2ARC, dev);
9187 vdev_trim_simple(vd,
9188 dev->l2ad_evict - VDEV_LABEL_START_SIZE,
9189 taddr - dev->l2ad_evict);
9190 spa_config_enter(dev->l2ad_spa, SCL_L2ARC, dev,
9191 RW_READER);
9195 * When rebuilding L2ARC we retrieve the evict hand
9196 * from the header of the device. Of note, l2arc_evict()
9197 * does not actually delete buffers from the cache
9198 * device, but trimming may do so depending on the
9199 * hardware implementation. Thus keeping track of the
9200 * evict hand is useful.
9202 dev->l2ad_evict = MAX(dev->l2ad_evict, taddr);
9206 retry:
9207 mutex_enter(&dev->l2ad_mtx);
9209 * We have to account for evicted log blocks. Run vdev_space_update()
9210 * on log blocks whose offset (in bytes) is before the evicted offset
9211 * (in bytes) by searching in the list of pointers to log blocks
9212 * present in the L2ARC device.
9214 for (lb_ptr_buf = list_tail(&dev->l2ad_lbptr_list); lb_ptr_buf;
9215 lb_ptr_buf = lb_ptr_buf_prev) {
9217 lb_ptr_buf_prev = list_prev(&dev->l2ad_lbptr_list, lb_ptr_buf);
9219 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9220 uint64_t asize = L2BLK_GET_PSIZE(
9221 (lb_ptr_buf->lb_ptr)->lbp_prop);
9224 * We don't worry about log blocks left behind (ie
9225 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9226 * will never write more than l2arc_evict() evicts.
9228 if (!all && l2arc_log_blkptr_valid(dev, lb_ptr_buf->lb_ptr)) {
9229 break;
9230 } else {
9231 vdev_space_update(vd, -asize, 0, 0);
9232 ARCSTAT_INCR(arcstat_l2_log_blk_asize, -asize);
9233 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count);
9234 zfs_refcount_remove_many(&dev->l2ad_lb_asize, asize,
9235 lb_ptr_buf);
9236 zfs_refcount_remove(&dev->l2ad_lb_count, lb_ptr_buf);
9237 list_remove(&dev->l2ad_lbptr_list, lb_ptr_buf);
9238 kmem_free(lb_ptr_buf->lb_ptr,
9239 sizeof (l2arc_log_blkptr_t));
9240 kmem_free(lb_ptr_buf, sizeof (l2arc_lb_ptr_buf_t));
9244 for (hdr = list_tail(buflist); hdr; hdr = hdr_prev) {
9245 hdr_prev = list_prev(buflist, hdr);
9247 ASSERT(!HDR_EMPTY(hdr));
9248 hash_lock = HDR_LOCK(hdr);
9251 * We cannot use mutex_enter or else we can deadlock
9252 * with l2arc_write_buffers (due to swapping the order
9253 * the hash lock and l2ad_mtx are taken).
9255 if (!mutex_tryenter(hash_lock)) {
9257 * Missed the hash lock. Retry.
9259 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry);
9260 mutex_exit(&dev->l2ad_mtx);
9261 mutex_enter(hash_lock);
9262 mutex_exit(hash_lock);
9263 goto retry;
9267 * A header can't be on this list if it doesn't have L2 header.
9269 ASSERT(HDR_HAS_L2HDR(hdr));
9271 /* Ensure this header has finished being written. */
9272 ASSERT(!HDR_L2_WRITING(hdr));
9273 ASSERT(!HDR_L2_WRITE_HEAD(hdr));
9275 if (!all && (hdr->b_l2hdr.b_daddr >= dev->l2ad_evict ||
9276 hdr->b_l2hdr.b_daddr < dev->l2ad_hand)) {
9278 * We've evicted to the target address,
9279 * or the end of the device.
9281 mutex_exit(hash_lock);
9282 break;
9285 if (!HDR_HAS_L1HDR(hdr)) {
9286 ASSERT(!HDR_L2_READING(hdr));
9288 * This doesn't exist in the ARC. Destroy.
9289 * arc_hdr_destroy() will call list_remove()
9290 * and decrement arcstat_l2_lsize.
9292 arc_change_state(arc_anon, hdr);
9293 arc_hdr_destroy(hdr);
9294 } else {
9295 ASSERT(hdr->b_l1hdr.b_state != arc_l2c_only);
9296 ARCSTAT_BUMP(arcstat_l2_evict_l1cached);
9298 * Invalidate issued or about to be issued
9299 * reads, since we may be about to write
9300 * over this location.
9302 if (HDR_L2_READING(hdr)) {
9303 ARCSTAT_BUMP(arcstat_l2_evict_reading);
9304 arc_hdr_set_flags(hdr, ARC_FLAG_L2_EVICTED);
9307 arc_hdr_l2hdr_destroy(hdr);
9309 mutex_exit(hash_lock);
9311 mutex_exit(&dev->l2ad_mtx);
9313 out:
9315 * We need to check if we evict all buffers, otherwise we may iterate
9316 * unnecessarily.
9318 if (!all && rerun) {
9320 * Bump device hand to the device start if it is approaching the
9321 * end. l2arc_evict() has already evicted ahead for this case.
9323 dev->l2ad_hand = dev->l2ad_start;
9324 dev->l2ad_evict = dev->l2ad_start;
9325 dev->l2ad_first = B_FALSE;
9326 goto top;
9329 if (!all) {
9331 * In case of cache device removal (all) the following
9332 * assertions may be violated without functional consequences
9333 * as the device is about to be removed.
9335 ASSERT3U(dev->l2ad_hand + distance, <, dev->l2ad_end);
9336 if (!dev->l2ad_first)
9337 ASSERT3U(dev->l2ad_hand, <, dev->l2ad_evict);
9342 * Handle any abd transforms that might be required for writing to the L2ARC.
9343 * If successful, this function will always return an abd with the data
9344 * transformed as it is on disk in a new abd of asize bytes.
9346 static int
9347 l2arc_apply_transforms(spa_t *spa, arc_buf_hdr_t *hdr, uint64_t asize,
9348 abd_t **abd_out)
9350 int ret;
9351 void *tmp = NULL;
9352 abd_t *cabd = NULL, *eabd = NULL, *to_write = hdr->b_l1hdr.b_pabd;
9353 enum zio_compress compress = HDR_GET_COMPRESS(hdr);
9354 uint64_t psize = HDR_GET_PSIZE(hdr);
9355 uint64_t size = arc_hdr_size(hdr);
9356 boolean_t ismd = HDR_ISTYPE_METADATA(hdr);
9357 boolean_t bswap = (hdr->b_l1hdr.b_byteswap != DMU_BSWAP_NUMFUNCS);
9358 dsl_crypto_key_t *dck = NULL;
9359 uint8_t mac[ZIO_DATA_MAC_LEN] = { 0 };
9360 boolean_t no_crypt = B_FALSE;
9362 ASSERT((HDR_GET_COMPRESS(hdr) != ZIO_COMPRESS_OFF &&
9363 !HDR_COMPRESSION_ENABLED(hdr)) ||
9364 HDR_ENCRYPTED(hdr) || HDR_SHARED_DATA(hdr) || psize != asize);
9365 ASSERT3U(psize, <=, asize);
9368 * If this data simply needs its own buffer, we simply allocate it
9369 * and copy the data. This may be done to eliminate a dependency on a
9370 * shared buffer or to reallocate the buffer to match asize.
9372 if (HDR_HAS_RABD(hdr) && asize != psize) {
9373 ASSERT3U(asize, >=, psize);
9374 to_write = abd_alloc_for_io(asize, ismd);
9375 abd_copy(to_write, hdr->b_crypt_hdr.b_rabd, psize);
9376 if (psize != asize)
9377 abd_zero_off(to_write, psize, asize - psize);
9378 goto out;
9381 if ((compress == ZIO_COMPRESS_OFF || HDR_COMPRESSION_ENABLED(hdr)) &&
9382 !HDR_ENCRYPTED(hdr)) {
9383 ASSERT3U(size, ==, psize);
9384 to_write = abd_alloc_for_io(asize, ismd);
9385 abd_copy(to_write, hdr->b_l1hdr.b_pabd, size);
9386 if (size != asize)
9387 abd_zero_off(to_write, size, asize - size);
9388 goto out;
9391 if (compress != ZIO_COMPRESS_OFF && !HDR_COMPRESSION_ENABLED(hdr)) {
9393 * In some cases, we can wind up with size > asize, so
9394 * we need to opt for the larger allocation option here.
9396 * (We also need abd_return_buf_copy in all cases because
9397 * it's an ASSERT() to modify the buffer before returning it
9398 * with arc_return_buf(), and all the compressors
9399 * write things before deciding to fail compression in nearly
9400 * every case.)
9402 cabd = abd_alloc_for_io(size, ismd);
9403 tmp = abd_borrow_buf(cabd, size);
9405 psize = zio_compress_data(compress, to_write, tmp, size,
9406 hdr->b_complevel);
9408 if (psize >= asize) {
9409 psize = HDR_GET_PSIZE(hdr);
9410 abd_return_buf_copy(cabd, tmp, size);
9411 HDR_SET_COMPRESS(hdr, ZIO_COMPRESS_OFF);
9412 to_write = cabd;
9413 abd_copy(to_write, hdr->b_l1hdr.b_pabd, psize);
9414 if (psize != asize)
9415 abd_zero_off(to_write, psize, asize - psize);
9416 goto encrypt;
9418 ASSERT3U(psize, <=, HDR_GET_PSIZE(hdr));
9419 if (psize < asize)
9420 memset((char *)tmp + psize, 0, asize - psize);
9421 psize = HDR_GET_PSIZE(hdr);
9422 abd_return_buf_copy(cabd, tmp, size);
9423 to_write = cabd;
9426 encrypt:
9427 if (HDR_ENCRYPTED(hdr)) {
9428 eabd = abd_alloc_for_io(asize, ismd);
9431 * If the dataset was disowned before the buffer
9432 * made it to this point, the key to re-encrypt
9433 * it won't be available. In this case we simply
9434 * won't write the buffer to the L2ARC.
9436 ret = spa_keystore_lookup_key(spa, hdr->b_crypt_hdr.b_dsobj,
9437 FTAG, &dck);
9438 if (ret != 0)
9439 goto error;
9441 ret = zio_do_crypt_abd(B_TRUE, &dck->dck_key,
9442 hdr->b_crypt_hdr.b_ot, bswap, hdr->b_crypt_hdr.b_salt,
9443 hdr->b_crypt_hdr.b_iv, mac, psize, to_write, eabd,
9444 &no_crypt);
9445 if (ret != 0)
9446 goto error;
9448 if (no_crypt)
9449 abd_copy(eabd, to_write, psize);
9451 if (psize != asize)
9452 abd_zero_off(eabd, psize, asize - psize);
9454 /* assert that the MAC we got here matches the one we saved */
9455 ASSERT0(memcmp(mac, hdr->b_crypt_hdr.b_mac, ZIO_DATA_MAC_LEN));
9456 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9458 if (to_write == cabd)
9459 abd_free(cabd);
9461 to_write = eabd;
9464 out:
9465 ASSERT3P(to_write, !=, hdr->b_l1hdr.b_pabd);
9466 *abd_out = to_write;
9467 return (0);
9469 error:
9470 if (dck != NULL)
9471 spa_keystore_dsl_key_rele(spa, dck, FTAG);
9472 if (cabd != NULL)
9473 abd_free(cabd);
9474 if (eabd != NULL)
9475 abd_free(eabd);
9477 *abd_out = NULL;
9478 return (ret);
9481 static void
9482 l2arc_blk_fetch_done(zio_t *zio)
9484 l2arc_read_callback_t *cb;
9486 cb = zio->io_private;
9487 if (cb->l2rcb_abd != NULL)
9488 abd_free(cb->l2rcb_abd);
9489 kmem_free(cb, sizeof (l2arc_read_callback_t));
9493 * Find and write ARC buffers to the L2ARC device.
9495 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9496 * for reading until they have completed writing.
9497 * The headroom_boost is an in-out parameter used to maintain headroom boost
9498 * state between calls to this function.
9500 * Returns the number of bytes actually written (which may be smaller than
9501 * the delta by which the device hand has changed due to alignment and the
9502 * writing of log blocks).
9504 static uint64_t
9505 l2arc_write_buffers(spa_t *spa, l2arc_dev_t *dev, uint64_t target_sz)
9507 arc_buf_hdr_t *hdr, *hdr_prev, *head;
9508 uint64_t write_asize, write_psize, write_lsize, headroom;
9509 boolean_t full;
9510 l2arc_write_callback_t *cb = NULL;
9511 zio_t *pio, *wzio;
9512 uint64_t guid = spa_load_guid(spa);
9513 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9515 ASSERT3P(dev->l2ad_vdev, !=, NULL);
9517 pio = NULL;
9518 write_lsize = write_asize = write_psize = 0;
9519 full = B_FALSE;
9520 head = kmem_cache_alloc(hdr_l2only_cache, KM_PUSHPAGE);
9521 arc_hdr_set_flags(head, ARC_FLAG_L2_WRITE_HEAD | ARC_FLAG_HAS_L2HDR);
9524 * Copy buffers for L2ARC writing.
9526 for (int pass = 0; pass < L2ARC_FEED_TYPES; pass++) {
9528 * If pass == 1 or 3, we cache MRU metadata and data
9529 * respectively.
9531 if (l2arc_mfuonly) {
9532 if (pass == 1 || pass == 3)
9533 continue;
9536 multilist_sublist_t *mls = l2arc_sublist_lock(pass);
9537 uint64_t passed_sz = 0;
9539 VERIFY3P(mls, !=, NULL);
9542 * L2ARC fast warmup.
9544 * Until the ARC is warm and starts to evict, read from the
9545 * head of the ARC lists rather than the tail.
9547 if (arc_warm == B_FALSE)
9548 hdr = multilist_sublist_head(mls);
9549 else
9550 hdr = multilist_sublist_tail(mls);
9552 headroom = target_sz * l2arc_headroom;
9553 if (zfs_compressed_arc_enabled)
9554 headroom = (headroom * l2arc_headroom_boost) / 100;
9556 for (; hdr; hdr = hdr_prev) {
9557 kmutex_t *hash_lock;
9558 abd_t *to_write = NULL;
9560 if (arc_warm == B_FALSE)
9561 hdr_prev = multilist_sublist_next(mls, hdr);
9562 else
9563 hdr_prev = multilist_sublist_prev(mls, hdr);
9565 hash_lock = HDR_LOCK(hdr);
9566 if (!mutex_tryenter(hash_lock)) {
9568 * Skip this buffer rather than waiting.
9570 continue;
9573 passed_sz += HDR_GET_LSIZE(hdr);
9574 if (l2arc_headroom != 0 && passed_sz > headroom) {
9576 * Searched too far.
9578 mutex_exit(hash_lock);
9579 break;
9582 if (!l2arc_write_eligible(guid, hdr)) {
9583 mutex_exit(hash_lock);
9584 continue;
9587 ASSERT(HDR_HAS_L1HDR(hdr));
9589 ASSERT3U(HDR_GET_PSIZE(hdr), >, 0);
9590 ASSERT3U(arc_hdr_size(hdr), >, 0);
9591 ASSERT(hdr->b_l1hdr.b_pabd != NULL ||
9592 HDR_HAS_RABD(hdr));
9593 uint64_t psize = HDR_GET_PSIZE(hdr);
9594 uint64_t asize = vdev_psize_to_asize(dev->l2ad_vdev,
9595 psize);
9597 if ((write_asize + asize) > target_sz) {
9598 full = B_TRUE;
9599 mutex_exit(hash_lock);
9600 break;
9604 * We rely on the L1 portion of the header below, so
9605 * it's invalid for this header to have been evicted out
9606 * of the ghost cache, prior to being written out. The
9607 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9609 arc_hdr_set_flags(hdr, ARC_FLAG_L2_WRITING);
9612 * If this header has b_rabd, we can use this since it
9613 * must always match the data exactly as it exists on
9614 * disk. Otherwise, the L2ARC can normally use the
9615 * hdr's data, but if we're sharing data between the
9616 * hdr and one of its bufs, L2ARC needs its own copy of
9617 * the data so that the ZIO below can't race with the
9618 * buf consumer. To ensure that this copy will be
9619 * available for the lifetime of the ZIO and be cleaned
9620 * up afterwards, we add it to the l2arc_free_on_write
9621 * queue. If we need to apply any transforms to the
9622 * data (compression, encryption) we will also need the
9623 * extra buffer.
9625 if (HDR_HAS_RABD(hdr) && psize == asize) {
9626 to_write = hdr->b_crypt_hdr.b_rabd;
9627 } else if ((HDR_COMPRESSION_ENABLED(hdr) ||
9628 HDR_GET_COMPRESS(hdr) == ZIO_COMPRESS_OFF) &&
9629 !HDR_ENCRYPTED(hdr) && !HDR_SHARED_DATA(hdr) &&
9630 psize == asize) {
9631 to_write = hdr->b_l1hdr.b_pabd;
9632 } else {
9633 int ret;
9634 arc_buf_contents_t type = arc_buf_type(hdr);
9636 ret = l2arc_apply_transforms(spa, hdr, asize,
9637 &to_write);
9638 if (ret != 0) {
9639 arc_hdr_clear_flags(hdr,
9640 ARC_FLAG_L2_WRITING);
9641 mutex_exit(hash_lock);
9642 continue;
9645 l2arc_free_abd_on_write(to_write, asize, type);
9648 if (pio == NULL) {
9650 * Insert a dummy header on the buflist so
9651 * l2arc_write_done() can find where the
9652 * write buffers begin without searching.
9654 mutex_enter(&dev->l2ad_mtx);
9655 list_insert_head(&dev->l2ad_buflist, head);
9656 mutex_exit(&dev->l2ad_mtx);
9658 cb = kmem_alloc(
9659 sizeof (l2arc_write_callback_t), KM_SLEEP);
9660 cb->l2wcb_dev = dev;
9661 cb->l2wcb_head = head;
9663 * Create a list to save allocated abd buffers
9664 * for l2arc_log_blk_commit().
9666 list_create(&cb->l2wcb_abd_list,
9667 sizeof (l2arc_lb_abd_buf_t),
9668 offsetof(l2arc_lb_abd_buf_t, node));
9669 pio = zio_root(spa, l2arc_write_done, cb,
9670 ZIO_FLAG_CANFAIL);
9673 hdr->b_l2hdr.b_dev = dev;
9674 hdr->b_l2hdr.b_hits = 0;
9676 hdr->b_l2hdr.b_daddr = dev->l2ad_hand;
9677 hdr->b_l2hdr.b_arcs_state =
9678 hdr->b_l1hdr.b_state->arcs_state;
9679 arc_hdr_set_flags(hdr, ARC_FLAG_HAS_L2HDR);
9681 mutex_enter(&dev->l2ad_mtx);
9682 list_insert_head(&dev->l2ad_buflist, hdr);
9683 mutex_exit(&dev->l2ad_mtx);
9685 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
9686 arc_hdr_size(hdr), hdr);
9688 wzio = zio_write_phys(pio, dev->l2ad_vdev,
9689 hdr->b_l2hdr.b_daddr, asize, to_write,
9690 ZIO_CHECKSUM_OFF, NULL, hdr,
9691 ZIO_PRIORITY_ASYNC_WRITE,
9692 ZIO_FLAG_CANFAIL, B_FALSE);
9694 write_lsize += HDR_GET_LSIZE(hdr);
9695 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev,
9696 zio_t *, wzio);
9698 write_psize += psize;
9699 write_asize += asize;
9700 dev->l2ad_hand += asize;
9701 l2arc_hdr_arcstats_increment(hdr);
9702 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
9704 mutex_exit(hash_lock);
9707 * Append buf info to current log and commit if full.
9708 * arcstat_l2_{size,asize} kstats are updated
9709 * internally.
9711 if (l2arc_log_blk_insert(dev, hdr))
9712 l2arc_log_blk_commit(dev, pio, cb);
9714 zio_nowait(wzio);
9717 multilist_sublist_unlock(mls);
9719 if (full == B_TRUE)
9720 break;
9723 /* No buffers selected for writing? */
9724 if (pio == NULL) {
9725 ASSERT0(write_lsize);
9726 ASSERT(!HDR_HAS_L1HDR(head));
9727 kmem_cache_free(hdr_l2only_cache, head);
9730 * Although we did not write any buffers l2ad_evict may
9731 * have advanced.
9733 if (dev->l2ad_evict != l2dhdr->dh_evict)
9734 l2arc_dev_hdr_update(dev);
9736 return (0);
9739 if (!dev->l2ad_first)
9740 ASSERT3U(dev->l2ad_hand, <=, dev->l2ad_evict);
9742 ASSERT3U(write_asize, <=, target_sz);
9743 ARCSTAT_BUMP(arcstat_l2_writes_sent);
9744 ARCSTAT_INCR(arcstat_l2_write_bytes, write_psize);
9746 dev->l2ad_writing = B_TRUE;
9747 (void) zio_wait(pio);
9748 dev->l2ad_writing = B_FALSE;
9751 * Update the device header after the zio completes as
9752 * l2arc_write_done() may have updated the memory holding the log block
9753 * pointers in the device header.
9755 l2arc_dev_hdr_update(dev);
9757 return (write_asize);
9760 static boolean_t
9761 l2arc_hdr_limit_reached(void)
9763 int64_t s = aggsum_upper_bound(&arc_sums.arcstat_l2_hdr_size);
9765 return (arc_reclaim_needed() || (s > arc_meta_limit * 3 / 4) ||
9766 (s > (arc_warm ? arc_c : arc_c_max) * l2arc_meta_percent / 100));
9770 * This thread feeds the L2ARC at regular intervals. This is the beating
9771 * heart of the L2ARC.
9773 static __attribute__((noreturn)) void
9774 l2arc_feed_thread(void *unused)
9776 (void) unused;
9777 callb_cpr_t cpr;
9778 l2arc_dev_t *dev;
9779 spa_t *spa;
9780 uint64_t size, wrote;
9781 clock_t begin, next = ddi_get_lbolt();
9782 fstrans_cookie_t cookie;
9784 CALLB_CPR_INIT(&cpr, &l2arc_feed_thr_lock, callb_generic_cpr, FTAG);
9786 mutex_enter(&l2arc_feed_thr_lock);
9788 cookie = spl_fstrans_mark();
9789 while (l2arc_thread_exit == 0) {
9790 CALLB_CPR_SAFE_BEGIN(&cpr);
9791 (void) cv_timedwait_idle(&l2arc_feed_thr_cv,
9792 &l2arc_feed_thr_lock, next);
9793 CALLB_CPR_SAFE_END(&cpr, &l2arc_feed_thr_lock);
9794 next = ddi_get_lbolt() + hz;
9797 * Quick check for L2ARC devices.
9799 mutex_enter(&l2arc_dev_mtx);
9800 if (l2arc_ndev == 0) {
9801 mutex_exit(&l2arc_dev_mtx);
9802 continue;
9804 mutex_exit(&l2arc_dev_mtx);
9805 begin = ddi_get_lbolt();
9808 * This selects the next l2arc device to write to, and in
9809 * doing so the next spa to feed from: dev->l2ad_spa. This
9810 * will return NULL if there are now no l2arc devices or if
9811 * they are all faulted.
9813 * If a device is returned, its spa's config lock is also
9814 * held to prevent device removal. l2arc_dev_get_next()
9815 * will grab and release l2arc_dev_mtx.
9817 if ((dev = l2arc_dev_get_next()) == NULL)
9818 continue;
9820 spa = dev->l2ad_spa;
9821 ASSERT3P(spa, !=, NULL);
9824 * If the pool is read-only then force the feed thread to
9825 * sleep a little longer.
9827 if (!spa_writeable(spa)) {
9828 next = ddi_get_lbolt() + 5 * l2arc_feed_secs * hz;
9829 spa_config_exit(spa, SCL_L2ARC, dev);
9830 continue;
9834 * Avoid contributing to memory pressure.
9836 if (l2arc_hdr_limit_reached()) {
9837 ARCSTAT_BUMP(arcstat_l2_abort_lowmem);
9838 spa_config_exit(spa, SCL_L2ARC, dev);
9839 continue;
9842 ARCSTAT_BUMP(arcstat_l2_feeds);
9844 size = l2arc_write_size(dev);
9847 * Evict L2ARC buffers that will be overwritten.
9849 l2arc_evict(dev, size, B_FALSE);
9852 * Write ARC buffers.
9854 wrote = l2arc_write_buffers(spa, dev, size);
9857 * Calculate interval between writes.
9859 next = l2arc_write_interval(begin, size, wrote);
9860 spa_config_exit(spa, SCL_L2ARC, dev);
9862 spl_fstrans_unmark(cookie);
9864 l2arc_thread_exit = 0;
9865 cv_broadcast(&l2arc_feed_thr_cv);
9866 CALLB_CPR_EXIT(&cpr); /* drops l2arc_feed_thr_lock */
9867 thread_exit();
9870 boolean_t
9871 l2arc_vdev_present(vdev_t *vd)
9873 return (l2arc_vdev_get(vd) != NULL);
9877 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9878 * the vdev_t isn't an L2ARC device.
9880 l2arc_dev_t *
9881 l2arc_vdev_get(vdev_t *vd)
9883 l2arc_dev_t *dev;
9885 mutex_enter(&l2arc_dev_mtx);
9886 for (dev = list_head(l2arc_dev_list); dev != NULL;
9887 dev = list_next(l2arc_dev_list, dev)) {
9888 if (dev->l2ad_vdev == vd)
9889 break;
9891 mutex_exit(&l2arc_dev_mtx);
9893 return (dev);
9896 static void
9897 l2arc_rebuild_dev(l2arc_dev_t *dev, boolean_t reopen)
9899 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
9900 uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
9901 spa_t *spa = dev->l2ad_spa;
9904 * The L2ARC has to hold at least the payload of one log block for
9905 * them to be restored (persistent L2ARC). The payload of a log block
9906 * depends on the amount of its log entries. We always write log blocks
9907 * with 1022 entries. How many of them are committed or restored depends
9908 * on the size of the L2ARC device. Thus the maximum payload of
9909 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9910 * is less than that, we reduce the amount of committed and restored
9911 * log entries per block so as to enable persistence.
9913 if (dev->l2ad_end < l2arc_rebuild_blocks_min_l2size) {
9914 dev->l2ad_log_entries = 0;
9915 } else {
9916 dev->l2ad_log_entries = MIN((dev->l2ad_end -
9917 dev->l2ad_start) >> SPA_MAXBLOCKSHIFT,
9918 L2ARC_LOG_BLK_MAX_ENTRIES);
9922 * Read the device header, if an error is returned do not rebuild L2ARC.
9924 if (l2arc_dev_hdr_read(dev) == 0 && dev->l2ad_log_entries > 0) {
9926 * If we are onlining a cache device (vdev_reopen) that was
9927 * still present (l2arc_vdev_present()) and rebuild is enabled,
9928 * we should evict all ARC buffers and pointers to log blocks
9929 * and reclaim their space before restoring its contents to
9930 * L2ARC.
9932 if (reopen) {
9933 if (!l2arc_rebuild_enabled) {
9934 return;
9935 } else {
9936 l2arc_evict(dev, 0, B_TRUE);
9937 /* start a new log block */
9938 dev->l2ad_log_ent_idx = 0;
9939 dev->l2ad_log_blk_payload_asize = 0;
9940 dev->l2ad_log_blk_payload_start = 0;
9944 * Just mark the device as pending for a rebuild. We won't
9945 * be starting a rebuild in line here as it would block pool
9946 * import. Instead spa_load_impl will hand that off to an
9947 * async task which will call l2arc_spa_rebuild_start.
9949 dev->l2ad_rebuild = B_TRUE;
9950 } else if (spa_writeable(spa)) {
9952 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9953 * otherwise create a new header. We zero out the memory holding
9954 * the header to reset dh_start_lbps. If we TRIM the whole
9955 * device the new header will be written by
9956 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9957 * trim_state in the header too. When reading the header, if
9958 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9959 * we opt to TRIM the whole device again.
9961 if (l2arc_trim_ahead > 0) {
9962 dev->l2ad_trim_all = B_TRUE;
9963 } else {
9964 memset(l2dhdr, 0, l2dhdr_asize);
9965 l2arc_dev_hdr_update(dev);
9971 * Add a vdev for use by the L2ARC. By this point the spa has already
9972 * validated the vdev and opened it.
9974 void
9975 l2arc_add_vdev(spa_t *spa, vdev_t *vd)
9977 l2arc_dev_t *adddev;
9978 uint64_t l2dhdr_asize;
9980 ASSERT(!l2arc_vdev_present(vd));
9983 * Create a new l2arc device entry.
9985 adddev = vmem_zalloc(sizeof (l2arc_dev_t), KM_SLEEP);
9986 adddev->l2ad_spa = spa;
9987 adddev->l2ad_vdev = vd;
9988 /* leave extra size for an l2arc device header */
9989 l2dhdr_asize = adddev->l2ad_dev_hdr_asize =
9990 MAX(sizeof (*adddev->l2ad_dev_hdr), 1 << vd->vdev_ashift);
9991 adddev->l2ad_start = VDEV_LABEL_START_SIZE + l2dhdr_asize;
9992 adddev->l2ad_end = VDEV_LABEL_START_SIZE + vdev_get_min_asize(vd);
9993 ASSERT3U(adddev->l2ad_start, <, adddev->l2ad_end);
9994 adddev->l2ad_hand = adddev->l2ad_start;
9995 adddev->l2ad_evict = adddev->l2ad_start;
9996 adddev->l2ad_first = B_TRUE;
9997 adddev->l2ad_writing = B_FALSE;
9998 adddev->l2ad_trim_all = B_FALSE;
9999 list_link_init(&adddev->l2ad_node);
10000 adddev->l2ad_dev_hdr = kmem_zalloc(l2dhdr_asize, KM_SLEEP);
10002 mutex_init(&adddev->l2ad_mtx, NULL, MUTEX_DEFAULT, NULL);
10004 * This is a list of all ARC buffers that are still valid on the
10005 * device.
10007 list_create(&adddev->l2ad_buflist, sizeof (arc_buf_hdr_t),
10008 offsetof(arc_buf_hdr_t, b_l2hdr.b_l2node));
10011 * This is a list of pointers to log blocks that are still present
10012 * on the device.
10014 list_create(&adddev->l2ad_lbptr_list, sizeof (l2arc_lb_ptr_buf_t),
10015 offsetof(l2arc_lb_ptr_buf_t, node));
10017 vdev_space_update(vd, 0, 0, adddev->l2ad_end - adddev->l2ad_hand);
10018 zfs_refcount_create(&adddev->l2ad_alloc);
10019 zfs_refcount_create(&adddev->l2ad_lb_asize);
10020 zfs_refcount_create(&adddev->l2ad_lb_count);
10023 * Decide if dev is eligible for L2ARC rebuild or whole device
10024 * trimming. This has to happen before the device is added in the
10025 * cache device list and l2arc_dev_mtx is released. Otherwise
10026 * l2arc_feed_thread() might already start writing on the
10027 * device.
10029 l2arc_rebuild_dev(adddev, B_FALSE);
10032 * Add device to global list
10034 mutex_enter(&l2arc_dev_mtx);
10035 list_insert_head(l2arc_dev_list, adddev);
10036 atomic_inc_64(&l2arc_ndev);
10037 mutex_exit(&l2arc_dev_mtx);
10041 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
10042 * in case of onlining a cache device.
10044 void
10045 l2arc_rebuild_vdev(vdev_t *vd, boolean_t reopen)
10047 l2arc_dev_t *dev = NULL;
10049 dev = l2arc_vdev_get(vd);
10050 ASSERT3P(dev, !=, NULL);
10053 * In contrast to l2arc_add_vdev() we do not have to worry about
10054 * l2arc_feed_thread() invalidating previous content when onlining a
10055 * cache device. The device parameters (l2ad*) are not cleared when
10056 * offlining the device and writing new buffers will not invalidate
10057 * all previous content. In worst case only buffers that have not had
10058 * their log block written to the device will be lost.
10059 * When onlining the cache device (ie offline->online without exporting
10060 * the pool in between) this happens:
10061 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
10062 * | |
10063 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
10064 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
10065 * is set to B_TRUE we might write additional buffers to the device.
10067 l2arc_rebuild_dev(dev, reopen);
10071 * Remove a vdev from the L2ARC.
10073 void
10074 l2arc_remove_vdev(vdev_t *vd)
10076 l2arc_dev_t *remdev = NULL;
10079 * Find the device by vdev
10081 remdev = l2arc_vdev_get(vd);
10082 ASSERT3P(remdev, !=, NULL);
10085 * Cancel any ongoing or scheduled rebuild.
10087 mutex_enter(&l2arc_rebuild_thr_lock);
10088 if (remdev->l2ad_rebuild_began == B_TRUE) {
10089 remdev->l2ad_rebuild_cancel = B_TRUE;
10090 while (remdev->l2ad_rebuild == B_TRUE)
10091 cv_wait(&l2arc_rebuild_thr_cv, &l2arc_rebuild_thr_lock);
10093 mutex_exit(&l2arc_rebuild_thr_lock);
10096 * Remove device from global list
10098 mutex_enter(&l2arc_dev_mtx);
10099 list_remove(l2arc_dev_list, remdev);
10100 l2arc_dev_last = NULL; /* may have been invalidated */
10101 atomic_dec_64(&l2arc_ndev);
10102 mutex_exit(&l2arc_dev_mtx);
10105 * Clear all buflists and ARC references. L2ARC device flush.
10107 l2arc_evict(remdev, 0, B_TRUE);
10108 list_destroy(&remdev->l2ad_buflist);
10109 ASSERT(list_is_empty(&remdev->l2ad_lbptr_list));
10110 list_destroy(&remdev->l2ad_lbptr_list);
10111 mutex_destroy(&remdev->l2ad_mtx);
10112 zfs_refcount_destroy(&remdev->l2ad_alloc);
10113 zfs_refcount_destroy(&remdev->l2ad_lb_asize);
10114 zfs_refcount_destroy(&remdev->l2ad_lb_count);
10115 kmem_free(remdev->l2ad_dev_hdr, remdev->l2ad_dev_hdr_asize);
10116 vmem_free(remdev, sizeof (l2arc_dev_t));
10119 void
10120 l2arc_init(void)
10122 l2arc_thread_exit = 0;
10123 l2arc_ndev = 0;
10125 mutex_init(&l2arc_feed_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10126 cv_init(&l2arc_feed_thr_cv, NULL, CV_DEFAULT, NULL);
10127 mutex_init(&l2arc_rebuild_thr_lock, NULL, MUTEX_DEFAULT, NULL);
10128 cv_init(&l2arc_rebuild_thr_cv, NULL, CV_DEFAULT, NULL);
10129 mutex_init(&l2arc_dev_mtx, NULL, MUTEX_DEFAULT, NULL);
10130 mutex_init(&l2arc_free_on_write_mtx, NULL, MUTEX_DEFAULT, NULL);
10132 l2arc_dev_list = &L2ARC_dev_list;
10133 l2arc_free_on_write = &L2ARC_free_on_write;
10134 list_create(l2arc_dev_list, sizeof (l2arc_dev_t),
10135 offsetof(l2arc_dev_t, l2ad_node));
10136 list_create(l2arc_free_on_write, sizeof (l2arc_data_free_t),
10137 offsetof(l2arc_data_free_t, l2df_list_node));
10140 void
10141 l2arc_fini(void)
10143 mutex_destroy(&l2arc_feed_thr_lock);
10144 cv_destroy(&l2arc_feed_thr_cv);
10145 mutex_destroy(&l2arc_rebuild_thr_lock);
10146 cv_destroy(&l2arc_rebuild_thr_cv);
10147 mutex_destroy(&l2arc_dev_mtx);
10148 mutex_destroy(&l2arc_free_on_write_mtx);
10150 list_destroy(l2arc_dev_list);
10151 list_destroy(l2arc_free_on_write);
10154 void
10155 l2arc_start(void)
10157 if (!(spa_mode_global & SPA_MODE_WRITE))
10158 return;
10160 (void) thread_create(NULL, 0, l2arc_feed_thread, NULL, 0, &p0,
10161 TS_RUN, defclsyspri);
10164 void
10165 l2arc_stop(void)
10167 if (!(spa_mode_global & SPA_MODE_WRITE))
10168 return;
10170 mutex_enter(&l2arc_feed_thr_lock);
10171 cv_signal(&l2arc_feed_thr_cv); /* kick thread out of startup */
10172 l2arc_thread_exit = 1;
10173 while (l2arc_thread_exit != 0)
10174 cv_wait(&l2arc_feed_thr_cv, &l2arc_feed_thr_lock);
10175 mutex_exit(&l2arc_feed_thr_lock);
10179 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10180 * be called after pool import from the spa async thread, since starting
10181 * these threads directly from spa_import() will make them part of the
10182 * "zpool import" context and delay process exit (and thus pool import).
10184 void
10185 l2arc_spa_rebuild_start(spa_t *spa)
10187 ASSERT(MUTEX_HELD(&spa_namespace_lock));
10190 * Locate the spa's l2arc devices and kick off rebuild threads.
10192 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
10193 l2arc_dev_t *dev =
10194 l2arc_vdev_get(spa->spa_l2cache.sav_vdevs[i]);
10195 if (dev == NULL) {
10196 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10197 continue;
10199 mutex_enter(&l2arc_rebuild_thr_lock);
10200 if (dev->l2ad_rebuild && !dev->l2ad_rebuild_cancel) {
10201 dev->l2ad_rebuild_began = B_TRUE;
10202 (void) thread_create(NULL, 0, l2arc_dev_rebuild_thread,
10203 dev, 0, &p0, TS_RUN, minclsyspri);
10205 mutex_exit(&l2arc_rebuild_thr_lock);
10210 * Main entry point for L2ARC rebuilding.
10212 static __attribute__((noreturn)) void
10213 l2arc_dev_rebuild_thread(void *arg)
10215 l2arc_dev_t *dev = arg;
10217 VERIFY(!dev->l2ad_rebuild_cancel);
10218 VERIFY(dev->l2ad_rebuild);
10219 (void) l2arc_rebuild(dev);
10220 mutex_enter(&l2arc_rebuild_thr_lock);
10221 dev->l2ad_rebuild_began = B_FALSE;
10222 dev->l2ad_rebuild = B_FALSE;
10223 mutex_exit(&l2arc_rebuild_thr_lock);
10225 thread_exit();
10229 * This function implements the actual L2ARC metadata rebuild. It:
10230 * starts reading the log block chain and restores each block's contents
10231 * to memory (reconstructing arc_buf_hdr_t's).
10233 * Operation stops under any of the following conditions:
10235 * 1) We reach the end of the log block chain.
10236 * 2) We encounter *any* error condition (cksum errors, io errors)
10238 static int
10239 l2arc_rebuild(l2arc_dev_t *dev)
10241 vdev_t *vd = dev->l2ad_vdev;
10242 spa_t *spa = vd->vdev_spa;
10243 int err = 0;
10244 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10245 l2arc_log_blk_phys_t *this_lb, *next_lb;
10246 zio_t *this_io = NULL, *next_io = NULL;
10247 l2arc_log_blkptr_t lbps[2];
10248 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10249 boolean_t lock_held;
10251 this_lb = vmem_zalloc(sizeof (*this_lb), KM_SLEEP);
10252 next_lb = vmem_zalloc(sizeof (*next_lb), KM_SLEEP);
10255 * We prevent device removal while issuing reads to the device,
10256 * then during the rebuilding phases we drop this lock again so
10257 * that a spa_unload or device remove can be initiated - this is
10258 * safe, because the spa will signal us to stop before removing
10259 * our device and wait for us to stop.
10261 spa_config_enter(spa, SCL_L2ARC, vd, RW_READER);
10262 lock_held = B_TRUE;
10265 * Retrieve the persistent L2ARC device state.
10266 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10268 dev->l2ad_evict = MAX(l2dhdr->dh_evict, dev->l2ad_start);
10269 dev->l2ad_hand = MAX(l2dhdr->dh_start_lbps[0].lbp_daddr +
10270 L2BLK_GET_PSIZE((&l2dhdr->dh_start_lbps[0])->lbp_prop),
10271 dev->l2ad_start);
10272 dev->l2ad_first = !!(l2dhdr->dh_flags & L2ARC_DEV_HDR_EVICT_FIRST);
10274 vd->vdev_trim_action_time = l2dhdr->dh_trim_action_time;
10275 vd->vdev_trim_state = l2dhdr->dh_trim_state;
10278 * In case the zfs module parameter l2arc_rebuild_enabled is false
10279 * we do not start the rebuild process.
10281 if (!l2arc_rebuild_enabled)
10282 goto out;
10284 /* Prepare the rebuild process */
10285 memcpy(lbps, l2dhdr->dh_start_lbps, sizeof (lbps));
10287 /* Start the rebuild process */
10288 for (;;) {
10289 if (!l2arc_log_blkptr_valid(dev, &lbps[0]))
10290 break;
10292 if ((err = l2arc_log_blk_read(dev, &lbps[0], &lbps[1],
10293 this_lb, next_lb, this_io, &next_io)) != 0)
10294 goto out;
10297 * Our memory pressure valve. If the system is running low
10298 * on memory, rather than swamping memory with new ARC buf
10299 * hdrs, we opt not to rebuild the L2ARC. At this point,
10300 * however, we have already set up our L2ARC dev to chain in
10301 * new metadata log blocks, so the user may choose to offline/
10302 * online the L2ARC dev at a later time (or re-import the pool)
10303 * to reconstruct it (when there's less memory pressure).
10305 if (l2arc_hdr_limit_reached()) {
10306 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem);
10307 cmn_err(CE_NOTE, "System running low on memory, "
10308 "aborting L2ARC rebuild.");
10309 err = SET_ERROR(ENOMEM);
10310 goto out;
10313 spa_config_exit(spa, SCL_L2ARC, vd);
10314 lock_held = B_FALSE;
10317 * Now that we know that the next_lb checks out alright, we
10318 * can start reconstruction from this log block.
10319 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10321 uint64_t asize = L2BLK_GET_PSIZE((&lbps[0])->lbp_prop);
10322 l2arc_log_blk_restore(dev, this_lb, asize);
10325 * log block restored, include its pointer in the list of
10326 * pointers to log blocks present in the L2ARC device.
10328 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10329 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t),
10330 KM_SLEEP);
10331 memcpy(lb_ptr_buf->lb_ptr, &lbps[0],
10332 sizeof (l2arc_log_blkptr_t));
10333 mutex_enter(&dev->l2ad_mtx);
10334 list_insert_tail(&dev->l2ad_lbptr_list, lb_ptr_buf);
10335 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10336 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10337 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10338 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10339 mutex_exit(&dev->l2ad_mtx);
10340 vdev_space_update(vd, asize, 0, 0);
10343 * Protection against loops of log blocks:
10345 * l2ad_hand l2ad_evict
10346 * V V
10347 * l2ad_start |=======================================| l2ad_end
10348 * -----|||----|||---|||----|||
10349 * (3) (2) (1) (0)
10350 * ---|||---|||----|||---|||
10351 * (7) (6) (5) (4)
10353 * In this situation the pointer of log block (4) passes
10354 * l2arc_log_blkptr_valid() but the log block should not be
10355 * restored as it is overwritten by the payload of log block
10356 * (0). Only log blocks (0)-(3) should be restored. We check
10357 * whether l2ad_evict lies in between the payload starting
10358 * offset of the next log block (lbps[1].lbp_payload_start)
10359 * and the payload starting offset of the present log block
10360 * (lbps[0].lbp_payload_start). If true and this isn't the
10361 * first pass, we are looping from the beginning and we should
10362 * stop.
10364 if (l2arc_range_check_overlap(lbps[1].lbp_payload_start,
10365 lbps[0].lbp_payload_start, dev->l2ad_evict) &&
10366 !dev->l2ad_first)
10367 goto out;
10369 kpreempt(KPREEMPT_SYNC);
10370 for (;;) {
10371 mutex_enter(&l2arc_rebuild_thr_lock);
10372 if (dev->l2ad_rebuild_cancel) {
10373 dev->l2ad_rebuild = B_FALSE;
10374 cv_signal(&l2arc_rebuild_thr_cv);
10375 mutex_exit(&l2arc_rebuild_thr_lock);
10376 err = SET_ERROR(ECANCELED);
10377 goto out;
10379 mutex_exit(&l2arc_rebuild_thr_lock);
10380 if (spa_config_tryenter(spa, SCL_L2ARC, vd,
10381 RW_READER)) {
10382 lock_held = B_TRUE;
10383 break;
10386 * L2ARC config lock held by somebody in writer,
10387 * possibly due to them trying to remove us. They'll
10388 * likely to want us to shut down, so after a little
10389 * delay, we check l2ad_rebuild_cancel and retry
10390 * the lock again.
10392 delay(1);
10396 * Continue with the next log block.
10398 lbps[0] = lbps[1];
10399 lbps[1] = this_lb->lb_prev_lbp;
10400 PTR_SWAP(this_lb, next_lb);
10401 this_io = next_io;
10402 next_io = NULL;
10405 if (this_io != NULL)
10406 l2arc_log_blk_fetch_abort(this_io);
10407 out:
10408 if (next_io != NULL)
10409 l2arc_log_blk_fetch_abort(next_io);
10410 vmem_free(this_lb, sizeof (*this_lb));
10411 vmem_free(next_lb, sizeof (*next_lb));
10413 if (!l2arc_rebuild_enabled) {
10414 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10415 "disabled");
10416 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) > 0) {
10417 ARCSTAT_BUMP(arcstat_l2_rebuild_success);
10418 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10419 "successful, restored %llu blocks",
10420 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10421 } else if (err == 0 && zfs_refcount_count(&dev->l2ad_lb_count) == 0) {
10423 * No error but also nothing restored, meaning the lbps array
10424 * in the device header points to invalid/non-present log
10425 * blocks. Reset the header.
10427 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10428 "no valid log blocks");
10429 memset(l2dhdr, 0, dev->l2ad_dev_hdr_asize);
10430 l2arc_dev_hdr_update(dev);
10431 } else if (err == ECANCELED) {
10433 * In case the rebuild was canceled do not log to spa history
10434 * log as the pool may be in the process of being removed.
10436 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10437 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10438 } else if (err != 0) {
10439 spa_history_log_internal(spa, "L2ARC rebuild", NULL,
10440 "aborted, restored %llu blocks",
10441 (u_longlong_t)zfs_refcount_count(&dev->l2ad_lb_count));
10444 if (lock_held)
10445 spa_config_exit(spa, SCL_L2ARC, vd);
10447 return (err);
10451 * Attempts to read the device header on the provided L2ARC device and writes
10452 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10453 * error code is returned.
10455 static int
10456 l2arc_dev_hdr_read(l2arc_dev_t *dev)
10458 int err;
10459 uint64_t guid;
10460 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10461 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10462 abd_t *abd;
10464 guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10466 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10468 err = zio_wait(zio_read_phys(NULL, dev->l2ad_vdev,
10469 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd,
10470 ZIO_CHECKSUM_LABEL, NULL, NULL, ZIO_PRIORITY_SYNC_READ,
10471 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10472 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY |
10473 ZIO_FLAG_SPECULATIVE, B_FALSE));
10475 abd_free(abd);
10477 if (err != 0) {
10478 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors);
10479 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10480 "vdev guid: %llu", err,
10481 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10482 return (err);
10485 if (l2dhdr->dh_magic == BSWAP_64(L2ARC_DEV_HDR_MAGIC))
10486 byteswap_uint64_array(l2dhdr, sizeof (*l2dhdr));
10488 if (l2dhdr->dh_magic != L2ARC_DEV_HDR_MAGIC ||
10489 l2dhdr->dh_spa_guid != guid ||
10490 l2dhdr->dh_vdev_guid != dev->l2ad_vdev->vdev_guid ||
10491 l2dhdr->dh_version != L2ARC_PERSISTENT_VERSION ||
10492 l2dhdr->dh_log_entries != dev->l2ad_log_entries ||
10493 l2dhdr->dh_end != dev->l2ad_end ||
10494 !l2arc_range_check_overlap(dev->l2ad_start, dev->l2ad_end,
10495 l2dhdr->dh_evict) ||
10496 (l2dhdr->dh_trim_state != VDEV_TRIM_COMPLETE &&
10497 l2arc_trim_ahead > 0)) {
10499 * Attempt to rebuild a device containing no actual dev hdr
10500 * or containing a header from some other pool or from another
10501 * version of persistent L2ARC.
10503 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported);
10504 return (SET_ERROR(ENOTSUP));
10507 return (0);
10511 * Reads L2ARC log blocks from storage and validates their contents.
10513 * This function implements a simple fetcher to make sure that while
10514 * we're processing one buffer the L2ARC is already fetching the next
10515 * one in the chain.
10517 * The arguments this_lp and next_lp point to the current and next log block
10518 * address in the block chain. Similarly, this_lb and next_lb hold the
10519 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10521 * The `this_io' and `next_io' arguments are used for block fetching.
10522 * When issuing the first blk IO during rebuild, you should pass NULL for
10523 * `this_io'. This function will then issue a sync IO to read the block and
10524 * also issue an async IO to fetch the next block in the block chain. The
10525 * fetched IO is returned in `next_io'. On subsequent calls to this
10526 * function, pass the value returned in `next_io' from the previous call
10527 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10528 * Prior to the call, you should initialize your `next_io' pointer to be
10529 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10531 * On success, this function returns 0, otherwise it returns an appropriate
10532 * error code. On error the fetching IO is aborted and cleared before
10533 * returning from this function. Therefore, if we return `success', the
10534 * caller can assume that we have taken care of cleanup of fetch IOs.
10536 static int
10537 l2arc_log_blk_read(l2arc_dev_t *dev,
10538 const l2arc_log_blkptr_t *this_lbp, const l2arc_log_blkptr_t *next_lbp,
10539 l2arc_log_blk_phys_t *this_lb, l2arc_log_blk_phys_t *next_lb,
10540 zio_t *this_io, zio_t **next_io)
10542 int err = 0;
10543 zio_cksum_t cksum;
10544 abd_t *abd = NULL;
10545 uint64_t asize;
10547 ASSERT(this_lbp != NULL && next_lbp != NULL);
10548 ASSERT(this_lb != NULL && next_lb != NULL);
10549 ASSERT(next_io != NULL && *next_io == NULL);
10550 ASSERT(l2arc_log_blkptr_valid(dev, this_lbp));
10553 * Check to see if we have issued the IO for this log block in a
10554 * previous run. If not, this is the first call, so issue it now.
10556 if (this_io == NULL) {
10557 this_io = l2arc_log_blk_fetch(dev->l2ad_vdev, this_lbp,
10558 this_lb);
10562 * Peek to see if we can start issuing the next IO immediately.
10564 if (l2arc_log_blkptr_valid(dev, next_lbp)) {
10566 * Start issuing IO for the next log block early - this
10567 * should help keep the L2ARC device busy while we
10568 * decompress and restore this log block.
10570 *next_io = l2arc_log_blk_fetch(dev->l2ad_vdev, next_lbp,
10571 next_lb);
10574 /* Wait for the IO to read this log block to complete */
10575 if ((err = zio_wait(this_io)) != 0) {
10576 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors);
10577 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10578 "offset: %llu, vdev guid: %llu", err,
10579 (u_longlong_t)this_lbp->lbp_daddr,
10580 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10581 goto cleanup;
10585 * Make sure the buffer checks out.
10586 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10588 asize = L2BLK_GET_PSIZE((this_lbp)->lbp_prop);
10589 fletcher_4_native(this_lb, asize, NULL, &cksum);
10590 if (!ZIO_CHECKSUM_EQUAL(cksum, this_lbp->lbp_cksum)) {
10591 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors);
10592 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10593 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10594 (u_longlong_t)this_lbp->lbp_daddr,
10595 (u_longlong_t)dev->l2ad_vdev->vdev_guid,
10596 (u_longlong_t)dev->l2ad_hand,
10597 (u_longlong_t)dev->l2ad_evict);
10598 err = SET_ERROR(ECKSUM);
10599 goto cleanup;
10602 /* Now we can take our time decoding this buffer */
10603 switch (L2BLK_GET_COMPRESS((this_lbp)->lbp_prop)) {
10604 case ZIO_COMPRESS_OFF:
10605 break;
10606 case ZIO_COMPRESS_LZ4:
10607 abd = abd_alloc_for_io(asize, B_TRUE);
10608 abd_copy_from_buf_off(abd, this_lb, 0, asize);
10609 if ((err = zio_decompress_data(
10610 L2BLK_GET_COMPRESS((this_lbp)->lbp_prop),
10611 abd, this_lb, asize, sizeof (*this_lb), NULL)) != 0) {
10612 err = SET_ERROR(EINVAL);
10613 goto cleanup;
10615 break;
10616 default:
10617 err = SET_ERROR(EINVAL);
10618 goto cleanup;
10620 if (this_lb->lb_magic == BSWAP_64(L2ARC_LOG_BLK_MAGIC))
10621 byteswap_uint64_array(this_lb, sizeof (*this_lb));
10622 if (this_lb->lb_magic != L2ARC_LOG_BLK_MAGIC) {
10623 err = SET_ERROR(EINVAL);
10624 goto cleanup;
10626 cleanup:
10627 /* Abort an in-flight fetch I/O in case of error */
10628 if (err != 0 && *next_io != NULL) {
10629 l2arc_log_blk_fetch_abort(*next_io);
10630 *next_io = NULL;
10632 if (abd != NULL)
10633 abd_free(abd);
10634 return (err);
10638 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10639 * entries which only contain an l2arc hdr, essentially restoring the
10640 * buffers to their L2ARC evicted state. This function also updates space
10641 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10643 static void
10644 l2arc_log_blk_restore(l2arc_dev_t *dev, const l2arc_log_blk_phys_t *lb,
10645 uint64_t lb_asize)
10647 uint64_t size = 0, asize = 0;
10648 uint64_t log_entries = dev->l2ad_log_entries;
10651 * Usually arc_adapt() is called only for data, not headers, but
10652 * since we may allocate significant amount of memory here, let ARC
10653 * grow its arc_c.
10655 arc_adapt(log_entries * HDR_L2ONLY_SIZE, arc_l2c_only);
10657 for (int i = log_entries - 1; i >= 0; i--) {
10659 * Restore goes in the reverse temporal direction to preserve
10660 * correct temporal ordering of buffers in the l2ad_buflist.
10661 * l2arc_hdr_restore also does a list_insert_tail instead of
10662 * list_insert_head on the l2ad_buflist:
10664 * LIST l2ad_buflist LIST
10665 * HEAD <------ (time) ------ TAIL
10666 * direction +-----+-----+-----+-----+-----+ direction
10667 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10668 * fill +-----+-----+-----+-----+-----+
10669 * ^ ^
10670 * | |
10671 * | |
10672 * l2arc_feed_thread l2arc_rebuild
10673 * will place new bufs here restores bufs here
10675 * During l2arc_rebuild() the device is not used by
10676 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10678 size += L2BLK_GET_LSIZE((&lb->lb_entries[i])->le_prop);
10679 asize += vdev_psize_to_asize(dev->l2ad_vdev,
10680 L2BLK_GET_PSIZE((&lb->lb_entries[i])->le_prop));
10681 l2arc_hdr_restore(&lb->lb_entries[i], dev);
10685 * Record rebuild stats:
10686 * size Logical size of restored buffers in the L2ARC
10687 * asize Aligned size of restored buffers in the L2ARC
10689 ARCSTAT_INCR(arcstat_l2_rebuild_size, size);
10690 ARCSTAT_INCR(arcstat_l2_rebuild_asize, asize);
10691 ARCSTAT_INCR(arcstat_l2_rebuild_bufs, log_entries);
10692 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, lb_asize);
10693 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio, asize / lb_asize);
10694 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks);
10698 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10699 * into a state indicating that it has been evicted to L2ARC.
10701 static void
10702 l2arc_hdr_restore(const l2arc_log_ent_phys_t *le, l2arc_dev_t *dev)
10704 arc_buf_hdr_t *hdr, *exists;
10705 kmutex_t *hash_lock;
10706 arc_buf_contents_t type = L2BLK_GET_TYPE((le)->le_prop);
10707 uint64_t asize;
10710 * Do all the allocation before grabbing any locks, this lets us
10711 * sleep if memory is full and we don't have to deal with failed
10712 * allocations.
10714 hdr = arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le)->le_prop), type,
10715 dev, le->le_dva, le->le_daddr,
10716 L2BLK_GET_PSIZE((le)->le_prop), le->le_birth,
10717 L2BLK_GET_COMPRESS((le)->le_prop), le->le_complevel,
10718 L2BLK_GET_PROTECTED((le)->le_prop),
10719 L2BLK_GET_PREFETCH((le)->le_prop),
10720 L2BLK_GET_STATE((le)->le_prop));
10721 asize = vdev_psize_to_asize(dev->l2ad_vdev,
10722 L2BLK_GET_PSIZE((le)->le_prop));
10725 * vdev_space_update() has to be called before arc_hdr_destroy() to
10726 * avoid underflow since the latter also calls vdev_space_update().
10728 l2arc_hdr_arcstats_increment(hdr);
10729 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10731 mutex_enter(&dev->l2ad_mtx);
10732 list_insert_tail(&dev->l2ad_buflist, hdr);
10733 (void) zfs_refcount_add_many(&dev->l2ad_alloc, arc_hdr_size(hdr), hdr);
10734 mutex_exit(&dev->l2ad_mtx);
10736 exists = buf_hash_insert(hdr, &hash_lock);
10737 if (exists) {
10738 /* Buffer was already cached, no need to restore it. */
10739 arc_hdr_destroy(hdr);
10741 * If the buffer is already cached, check whether it has
10742 * L2ARC metadata. If not, enter them and update the flag.
10743 * This is important is case of onlining a cache device, since
10744 * we previously evicted all L2ARC metadata from ARC.
10746 if (!HDR_HAS_L2HDR(exists)) {
10747 arc_hdr_set_flags(exists, ARC_FLAG_HAS_L2HDR);
10748 exists->b_l2hdr.b_dev = dev;
10749 exists->b_l2hdr.b_daddr = le->le_daddr;
10750 exists->b_l2hdr.b_arcs_state =
10751 L2BLK_GET_STATE((le)->le_prop);
10752 mutex_enter(&dev->l2ad_mtx);
10753 list_insert_tail(&dev->l2ad_buflist, exists);
10754 (void) zfs_refcount_add_many(&dev->l2ad_alloc,
10755 arc_hdr_size(exists), exists);
10756 mutex_exit(&dev->l2ad_mtx);
10757 l2arc_hdr_arcstats_increment(exists);
10758 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10760 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached);
10763 mutex_exit(hash_lock);
10767 * Starts an asynchronous read IO to read a log block. This is used in log
10768 * block reconstruction to start reading the next block before we are done
10769 * decoding and reconstructing the current block, to keep the l2arc device
10770 * nice and hot with read IO to process.
10771 * The returned zio will contain a newly allocated memory buffers for the IO
10772 * data which should then be freed by the caller once the zio is no longer
10773 * needed (i.e. due to it having completed). If you wish to abort this
10774 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10775 * care of disposing of the allocated buffers correctly.
10777 static zio_t *
10778 l2arc_log_blk_fetch(vdev_t *vd, const l2arc_log_blkptr_t *lbp,
10779 l2arc_log_blk_phys_t *lb)
10781 uint32_t asize;
10782 zio_t *pio;
10783 l2arc_read_callback_t *cb;
10785 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10786 asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10787 ASSERT(asize <= sizeof (l2arc_log_blk_phys_t));
10789 cb = kmem_zalloc(sizeof (l2arc_read_callback_t), KM_SLEEP);
10790 cb->l2rcb_abd = abd_get_from_buf(lb, asize);
10791 pio = zio_root(vd->vdev_spa, l2arc_blk_fetch_done, cb,
10792 ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL | ZIO_FLAG_DONT_PROPAGATE |
10793 ZIO_FLAG_DONT_RETRY);
10794 (void) zio_nowait(zio_read_phys(pio, vd, lbp->lbp_daddr, asize,
10795 cb->l2rcb_abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10796 ZIO_PRIORITY_ASYNC_READ, ZIO_FLAG_DONT_CACHE | ZIO_FLAG_CANFAIL |
10797 ZIO_FLAG_DONT_PROPAGATE | ZIO_FLAG_DONT_RETRY, B_FALSE));
10799 return (pio);
10803 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10804 * buffers allocated for it.
10806 static void
10807 l2arc_log_blk_fetch_abort(zio_t *zio)
10809 (void) zio_wait(zio);
10813 * Creates a zio to update the device header on an l2arc device.
10815 void
10816 l2arc_dev_hdr_update(l2arc_dev_t *dev)
10818 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10819 const uint64_t l2dhdr_asize = dev->l2ad_dev_hdr_asize;
10820 abd_t *abd;
10821 int err;
10823 VERIFY(spa_config_held(dev->l2ad_spa, SCL_STATE_ALL, RW_READER));
10825 l2dhdr->dh_magic = L2ARC_DEV_HDR_MAGIC;
10826 l2dhdr->dh_version = L2ARC_PERSISTENT_VERSION;
10827 l2dhdr->dh_spa_guid = spa_guid(dev->l2ad_vdev->vdev_spa);
10828 l2dhdr->dh_vdev_guid = dev->l2ad_vdev->vdev_guid;
10829 l2dhdr->dh_log_entries = dev->l2ad_log_entries;
10830 l2dhdr->dh_evict = dev->l2ad_evict;
10831 l2dhdr->dh_start = dev->l2ad_start;
10832 l2dhdr->dh_end = dev->l2ad_end;
10833 l2dhdr->dh_lb_asize = zfs_refcount_count(&dev->l2ad_lb_asize);
10834 l2dhdr->dh_lb_count = zfs_refcount_count(&dev->l2ad_lb_count);
10835 l2dhdr->dh_flags = 0;
10836 l2dhdr->dh_trim_action_time = dev->l2ad_vdev->vdev_trim_action_time;
10837 l2dhdr->dh_trim_state = dev->l2ad_vdev->vdev_trim_state;
10838 if (dev->l2ad_first)
10839 l2dhdr->dh_flags |= L2ARC_DEV_HDR_EVICT_FIRST;
10841 abd = abd_get_from_buf(l2dhdr, l2dhdr_asize);
10843 err = zio_wait(zio_write_phys(NULL, dev->l2ad_vdev,
10844 VDEV_LABEL_START_SIZE, l2dhdr_asize, abd, ZIO_CHECKSUM_LABEL, NULL,
10845 NULL, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE));
10847 abd_free(abd);
10849 if (err != 0) {
10850 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10851 "vdev guid: %llu", err,
10852 (u_longlong_t)dev->l2ad_vdev->vdev_guid);
10857 * Commits a log block to the L2ARC device. This routine is invoked from
10858 * l2arc_write_buffers when the log block fills up.
10859 * This function allocates some memory to temporarily hold the serialized
10860 * buffer to be written. This is then released in l2arc_write_done.
10862 static void
10863 l2arc_log_blk_commit(l2arc_dev_t *dev, zio_t *pio, l2arc_write_callback_t *cb)
10865 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
10866 l2arc_dev_hdr_phys_t *l2dhdr = dev->l2ad_dev_hdr;
10867 uint64_t psize, asize;
10868 zio_t *wzio;
10869 l2arc_lb_abd_buf_t *abd_buf;
10870 uint8_t *tmpbuf;
10871 l2arc_lb_ptr_buf_t *lb_ptr_buf;
10873 VERIFY3S(dev->l2ad_log_ent_idx, ==, dev->l2ad_log_entries);
10875 tmpbuf = zio_buf_alloc(sizeof (*lb));
10876 abd_buf = zio_buf_alloc(sizeof (*abd_buf));
10877 abd_buf->abd = abd_get_from_buf(lb, sizeof (*lb));
10878 lb_ptr_buf = kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t), KM_SLEEP);
10879 lb_ptr_buf->lb_ptr = kmem_zalloc(sizeof (l2arc_log_blkptr_t), KM_SLEEP);
10881 /* link the buffer into the block chain */
10882 lb->lb_prev_lbp = l2dhdr->dh_start_lbps[1];
10883 lb->lb_magic = L2ARC_LOG_BLK_MAGIC;
10886 * l2arc_log_blk_commit() may be called multiple times during a single
10887 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10888 * so we can free them in l2arc_write_done() later on.
10890 list_insert_tail(&cb->l2wcb_abd_list, abd_buf);
10892 /* try to compress the buffer */
10893 psize = zio_compress_data(ZIO_COMPRESS_LZ4,
10894 abd_buf->abd, tmpbuf, sizeof (*lb), 0);
10896 /* a log block is never entirely zero */
10897 ASSERT(psize != 0);
10898 asize = vdev_psize_to_asize(dev->l2ad_vdev, psize);
10899 ASSERT(asize <= sizeof (*lb));
10902 * Update the start log block pointer in the device header to point
10903 * to the log block we're about to write.
10905 l2dhdr->dh_start_lbps[1] = l2dhdr->dh_start_lbps[0];
10906 l2dhdr->dh_start_lbps[0].lbp_daddr = dev->l2ad_hand;
10907 l2dhdr->dh_start_lbps[0].lbp_payload_asize =
10908 dev->l2ad_log_blk_payload_asize;
10909 l2dhdr->dh_start_lbps[0].lbp_payload_start =
10910 dev->l2ad_log_blk_payload_start;
10911 L2BLK_SET_LSIZE(
10912 (&l2dhdr->dh_start_lbps[0])->lbp_prop, sizeof (*lb));
10913 L2BLK_SET_PSIZE(
10914 (&l2dhdr->dh_start_lbps[0])->lbp_prop, asize);
10915 L2BLK_SET_CHECKSUM(
10916 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10917 ZIO_CHECKSUM_FLETCHER_4);
10918 if (asize < sizeof (*lb)) {
10919 /* compression succeeded */
10920 memset(tmpbuf + psize, 0, asize - psize);
10921 L2BLK_SET_COMPRESS(
10922 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10923 ZIO_COMPRESS_LZ4);
10924 } else {
10925 /* compression failed */
10926 memcpy(tmpbuf, lb, sizeof (*lb));
10927 L2BLK_SET_COMPRESS(
10928 (&l2dhdr->dh_start_lbps[0])->lbp_prop,
10929 ZIO_COMPRESS_OFF);
10932 /* checksum what we're about to write */
10933 fletcher_4_native(tmpbuf, asize, NULL,
10934 &l2dhdr->dh_start_lbps[0].lbp_cksum);
10936 abd_free(abd_buf->abd);
10938 /* perform the write itself */
10939 abd_buf->abd = abd_get_from_buf(tmpbuf, sizeof (*lb));
10940 abd_take_ownership_of_buf(abd_buf->abd, B_TRUE);
10941 wzio = zio_write_phys(pio, dev->l2ad_vdev, dev->l2ad_hand,
10942 asize, abd_buf->abd, ZIO_CHECKSUM_OFF, NULL, NULL,
10943 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_CANFAIL, B_FALSE);
10944 DTRACE_PROBE2(l2arc__write, vdev_t *, dev->l2ad_vdev, zio_t *, wzio);
10945 (void) zio_nowait(wzio);
10947 dev->l2ad_hand += asize;
10949 * Include the committed log block's pointer in the list of pointers
10950 * to log blocks present in the L2ARC device.
10952 memcpy(lb_ptr_buf->lb_ptr, &l2dhdr->dh_start_lbps[0],
10953 sizeof (l2arc_log_blkptr_t));
10954 mutex_enter(&dev->l2ad_mtx);
10955 list_insert_head(&dev->l2ad_lbptr_list, lb_ptr_buf);
10956 ARCSTAT_INCR(arcstat_l2_log_blk_asize, asize);
10957 ARCSTAT_BUMP(arcstat_l2_log_blk_count);
10958 zfs_refcount_add_many(&dev->l2ad_lb_asize, asize, lb_ptr_buf);
10959 zfs_refcount_add(&dev->l2ad_lb_count, lb_ptr_buf);
10960 mutex_exit(&dev->l2ad_mtx);
10961 vdev_space_update(dev->l2ad_vdev, asize, 0, 0);
10963 /* bump the kstats */
10964 ARCSTAT_INCR(arcstat_l2_write_bytes, asize);
10965 ARCSTAT_BUMP(arcstat_l2_log_blk_writes);
10966 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize, asize);
10967 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio,
10968 dev->l2ad_log_blk_payload_asize / asize);
10970 /* start a new log block */
10971 dev->l2ad_log_ent_idx = 0;
10972 dev->l2ad_log_blk_payload_asize = 0;
10973 dev->l2ad_log_blk_payload_start = 0;
10977 * Validates an L2ARC log block address to make sure that it can be read
10978 * from the provided L2ARC device.
10980 boolean_t
10981 l2arc_log_blkptr_valid(l2arc_dev_t *dev, const l2arc_log_blkptr_t *lbp)
10983 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10984 uint64_t asize = L2BLK_GET_PSIZE((lbp)->lbp_prop);
10985 uint64_t end = lbp->lbp_daddr + asize - 1;
10986 uint64_t start = lbp->lbp_payload_start;
10987 boolean_t evicted = B_FALSE;
10990 * A log block is valid if all of the following conditions are true:
10991 * - it fits entirely (including its payload) between l2ad_start and
10992 * l2ad_end
10993 * - it has a valid size
10994 * - neither the log block itself nor part of its payload was evicted
10995 * by l2arc_evict():
10997 * l2ad_hand l2ad_evict
10998 * | | lbp_daddr
10999 * | start | | end
11000 * | | | | |
11001 * V V V V V
11002 * l2ad_start ============================================ l2ad_end
11003 * --------------------------||||
11004 * ^ ^
11005 * | log block
11006 * payload
11009 evicted =
11010 l2arc_range_check_overlap(start, end, dev->l2ad_hand) ||
11011 l2arc_range_check_overlap(start, end, dev->l2ad_evict) ||
11012 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, start) ||
11013 l2arc_range_check_overlap(dev->l2ad_hand, dev->l2ad_evict, end);
11015 return (start >= dev->l2ad_start && end <= dev->l2ad_end &&
11016 asize > 0 && asize <= sizeof (l2arc_log_blk_phys_t) &&
11017 (!evicted || dev->l2ad_first));
11021 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
11022 * the device. The buffer being inserted must be present in L2ARC.
11023 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
11024 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
11026 static boolean_t
11027 l2arc_log_blk_insert(l2arc_dev_t *dev, const arc_buf_hdr_t *hdr)
11029 l2arc_log_blk_phys_t *lb = &dev->l2ad_log_blk;
11030 l2arc_log_ent_phys_t *le;
11032 if (dev->l2ad_log_entries == 0)
11033 return (B_FALSE);
11035 int index = dev->l2ad_log_ent_idx++;
11037 ASSERT3S(index, <, dev->l2ad_log_entries);
11038 ASSERT(HDR_HAS_L2HDR(hdr));
11040 le = &lb->lb_entries[index];
11041 memset(le, 0, sizeof (*le));
11042 le->le_dva = hdr->b_dva;
11043 le->le_birth = hdr->b_birth;
11044 le->le_daddr = hdr->b_l2hdr.b_daddr;
11045 if (index == 0)
11046 dev->l2ad_log_blk_payload_start = le->le_daddr;
11047 L2BLK_SET_LSIZE((le)->le_prop, HDR_GET_LSIZE(hdr));
11048 L2BLK_SET_PSIZE((le)->le_prop, HDR_GET_PSIZE(hdr));
11049 L2BLK_SET_COMPRESS((le)->le_prop, HDR_GET_COMPRESS(hdr));
11050 le->le_complevel = hdr->b_complevel;
11051 L2BLK_SET_TYPE((le)->le_prop, hdr->b_type);
11052 L2BLK_SET_PROTECTED((le)->le_prop, !!(HDR_PROTECTED(hdr)));
11053 L2BLK_SET_PREFETCH((le)->le_prop, !!(HDR_PREFETCH(hdr)));
11054 L2BLK_SET_STATE((le)->le_prop, hdr->b_l1hdr.b_state->arcs_state);
11056 dev->l2ad_log_blk_payload_asize += vdev_psize_to_asize(dev->l2ad_vdev,
11057 HDR_GET_PSIZE(hdr));
11059 return (dev->l2ad_log_ent_idx == dev->l2ad_log_entries);
11063 * Checks whether a given L2ARC device address sits in a time-sequential
11064 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
11065 * just do a range comparison, we need to handle the situation in which the
11066 * range wraps around the end of the L2ARC device. Arguments:
11067 * bottom -- Lower end of the range to check (written to earlier).
11068 * top -- Upper end of the range to check (written to later).
11069 * check -- The address for which we want to determine if it sits in
11070 * between the top and bottom.
11072 * The 3-way conditional below represents the following cases:
11074 * bottom < top : Sequentially ordered case:
11075 * <check>--------+-------------------+
11076 * | (overlap here?) |
11077 * L2ARC dev V V
11078 * |---------------<bottom>============<top>--------------|
11080 * bottom > top: Looped-around case:
11081 * <check>--------+------------------+
11082 * | (overlap here?) |
11083 * L2ARC dev V V
11084 * |===============<top>---------------<bottom>===========|
11085 * ^ ^
11086 * | (or here?) |
11087 * +---------------+---------<check>
11089 * top == bottom : Just a single address comparison.
11091 boolean_t
11092 l2arc_range_check_overlap(uint64_t bottom, uint64_t top, uint64_t check)
11094 if (bottom < top)
11095 return (bottom <= check && check <= top);
11096 else if (bottom > top)
11097 return (check <= top || bottom <= check);
11098 else
11099 return (check == top);
11102 EXPORT_SYMBOL(arc_buf_size);
11103 EXPORT_SYMBOL(arc_write);
11104 EXPORT_SYMBOL(arc_read);
11105 EXPORT_SYMBOL(arc_buf_info);
11106 EXPORT_SYMBOL(arc_getbuf_func);
11107 EXPORT_SYMBOL(arc_add_prune_callback);
11108 EXPORT_SYMBOL(arc_remove_prune_callback);
11110 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min, param_set_arc_min,
11111 spl_param_get_u64, ZMOD_RW, "Minimum ARC size in bytes");
11113 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, max, param_set_arc_max,
11114 spl_param_get_u64, ZMOD_RW, "Maximum ARC size in bytes");
11116 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit, param_set_arc_u64,
11117 spl_param_get_u64, ZMOD_RW, "Metadata limit for ARC size in bytes");
11119 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_limit_percent,
11120 param_set_arc_int, param_get_uint, ZMOD_RW,
11121 "Percent of ARC size for ARC meta limit");
11123 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, meta_min, param_set_arc_u64,
11124 spl_param_get_u64, ZMOD_RW, "Minimum ARC metadata size in bytes");
11126 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_prune, INT, ZMOD_RW,
11127 "Meta objects to scan for prune");
11129 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_adjust_restarts, UINT, ZMOD_RW,
11130 "Limit number of restarts in arc_evict_meta");
11132 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, meta_strategy, UINT, ZMOD_RW,
11133 "Meta reclaim strategy");
11135 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, grow_retry, param_set_arc_int,
11136 param_get_uint, ZMOD_RW, "Seconds before growing ARC size");
11138 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, p_dampener_disable, INT, ZMOD_RW,
11139 "Disable arc_p adapt dampener");
11141 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, shrink_shift, param_set_arc_int,
11142 param_get_uint, ZMOD_RW, "log2(fraction of ARC to reclaim)");
11144 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, pc_percent, UINT, ZMOD_RW,
11145 "Percent of pagecache to reclaim ARC to");
11147 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, p_min_shift, param_set_arc_int,
11148 param_get_uint, ZMOD_RW, "arc_c shift to calc min/max arc_p");
11150 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, average_blocksize, UINT, ZMOD_RD,
11151 "Target average block size");
11153 ZFS_MODULE_PARAM(zfs, zfs_, compressed_arc_enabled, INT, ZMOD_RW,
11154 "Disable compressed ARC buffers");
11156 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prefetch_ms, param_set_arc_int,
11157 param_get_uint, ZMOD_RW, "Min life of prefetch block in ms");
11159 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, min_prescient_prefetch_ms,
11160 param_set_arc_int, param_get_uint, ZMOD_RW,
11161 "Min life of prescient prefetched block in ms");
11163 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_max, U64, ZMOD_RW,
11164 "Max write bytes per interval");
11166 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, write_boost, U64, ZMOD_RW,
11167 "Extra write bytes during device warmup");
11169 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom, U64, ZMOD_RW,
11170 "Number of max device writes to precache");
11172 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, headroom_boost, U64, ZMOD_RW,
11173 "Compressed l2arc_headroom multiplier");
11175 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, trim_ahead, U64, ZMOD_RW,
11176 "TRIM ahead L2ARC write size multiplier");
11178 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_secs, U64, ZMOD_RW,
11179 "Seconds between L2ARC writing");
11181 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_min_ms, U64, ZMOD_RW,
11182 "Min feed interval in milliseconds");
11184 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, noprefetch, INT, ZMOD_RW,
11185 "Skip caching prefetched buffers");
11187 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, feed_again, INT, ZMOD_RW,
11188 "Turbo L2ARC warmup");
11190 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, norw, INT, ZMOD_RW,
11191 "No reads during writes");
11193 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, meta_percent, UINT, ZMOD_RW,
11194 "Percent of ARC size allowed for L2ARC-only headers");
11196 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_enabled, INT, ZMOD_RW,
11197 "Rebuild the L2ARC when importing a pool");
11199 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, rebuild_blocks_min_l2size, U64, ZMOD_RW,
11200 "Min size in bytes to write rebuild log blocks in L2ARC");
11202 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, mfuonly, INT, ZMOD_RW,
11203 "Cache only MFU data from ARC into L2ARC");
11205 ZFS_MODULE_PARAM(zfs_l2arc, l2arc_, exclude_special, INT, ZMOD_RW,
11206 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11208 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, lotsfree_percent, param_set_arc_int,
11209 param_get_uint, ZMOD_RW, "System free memory I/O throttle in bytes");
11211 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, sys_free, param_set_arc_u64,
11212 spl_param_get_u64, ZMOD_RW, "System free memory target size in bytes");
11214 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit, param_set_arc_u64,
11215 spl_param_get_u64, ZMOD_RW, "Minimum bytes of dnodes in ARC");
11217 ZFS_MODULE_PARAM_CALL(zfs_arc, zfs_arc_, dnode_limit_percent,
11218 param_set_arc_int, param_get_uint, ZMOD_RW,
11219 "Percent of ARC meta buffers for dnodes");
11221 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, dnode_reduce_percent, UINT, ZMOD_RW,
11222 "Percentage of excess dnodes to try to unpin");
11224 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, eviction_pct, UINT, ZMOD_RW,
11225 "When full, ARC allocation waits for eviction of this % of alloc size");
11227 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, evict_batch_limit, UINT, ZMOD_RW,
11228 "The number of headers to evict per sublist before moving to the next");
11230 ZFS_MODULE_PARAM(zfs_arc, zfs_arc_, prune_task_threads, INT, ZMOD_RW,
11231 "Number of arc_prune threads");