4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2018, Joyent, Inc.
24 * Copyright (c) 2011, 2020, Delphix. All rights reserved.
25 * Copyright (c) 2014, Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2017, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2019, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
28 * Copyright (c) 2020, George Amanakis. All rights reserved.
29 * Copyright (c) 2019, Klara Inc.
30 * Copyright (c) 2019, Allan Jude
31 * Copyright (c) 2020, The FreeBSD Foundation [1]
33 * [1] Portions of this software were developed by Allan Jude
34 * under sponsorship from the FreeBSD Foundation.
38 * DVA-based Adjustable Replacement Cache
40 * While much of the theory of operation used here is
41 * based on the self-tuning, low overhead replacement cache
42 * presented by Megiddo and Modha at FAST 2003, there are some
43 * significant differences:
45 * 1. The Megiddo and Modha model assumes any page is evictable.
46 * Pages in its cache cannot be "locked" into memory. This makes
47 * the eviction algorithm simple: evict the last page in the list.
48 * This also make the performance characteristics easy to reason
49 * about. Our cache is not so simple. At any given moment, some
50 * subset of the blocks in the cache are un-evictable because we
51 * have handed out a reference to them. Blocks are only evictable
52 * when there are no external references active. This makes
53 * eviction far more problematic: we choose to evict the evictable
54 * blocks that are the "lowest" in the list.
56 * There are times when it is not possible to evict the requested
57 * space. In these circumstances we are unable to adjust the cache
58 * size. To prevent the cache growing unbounded at these times we
59 * implement a "cache throttle" that slows the flow of new data
60 * into the cache until we can make space available.
62 * 2. The Megiddo and Modha model assumes a fixed cache size.
63 * Pages are evicted when the cache is full and there is a cache
64 * miss. Our model has a variable sized cache. It grows with
65 * high use, but also tries to react to memory pressure from the
66 * operating system: decreasing its size when system memory is
69 * 3. The Megiddo and Modha model assumes a fixed page size. All
70 * elements of the cache are therefore exactly the same size. So
71 * when adjusting the cache size following a cache miss, its simply
72 * a matter of choosing a single page to evict. In our model, we
73 * have variable sized cache blocks (ranging from 512 bytes to
74 * 128K bytes). We therefore choose a set of blocks to evict to make
75 * space for a cache miss that approximates as closely as possible
76 * the space used by the new block.
78 * See also: "ARC: A Self-Tuning, Low Overhead Replacement Cache"
79 * by N. Megiddo & D. Modha, FAST 2003
85 * A new reference to a cache buffer can be obtained in two
86 * ways: 1) via a hash table lookup using the DVA as a key,
87 * or 2) via one of the ARC lists. The arc_read() interface
88 * uses method 1, while the internal ARC algorithms for
89 * adjusting the cache use method 2. We therefore provide two
90 * types of locks: 1) the hash table lock array, and 2) the
93 * Buffers do not have their own mutexes, rather they rely on the
94 * hash table mutexes for the bulk of their protection (i.e. most
95 * fields in the arc_buf_hdr_t are protected by these mutexes).
97 * buf_hash_find() returns the appropriate mutex (held) when it
98 * locates the requested buffer in the hash table. It returns
99 * NULL for the mutex if the buffer was not in the table.
101 * buf_hash_remove() expects the appropriate hash mutex to be
102 * already held before it is invoked.
104 * Each ARC state also has a mutex which is used to protect the
105 * buffer list associated with the state. When attempting to
106 * obtain a hash table lock while holding an ARC list lock you
107 * must use: mutex_tryenter() to avoid deadlock. Also note that
108 * the active state mutex must be held before the ghost state mutex.
110 * It as also possible to register a callback which is run when the
111 * arc_meta_limit is reached and no buffers can be safely evicted. In
112 * this case the arc user should drop a reference on some arc buffers so
113 * they can be reclaimed and the arc_meta_limit honored. For example,
114 * when using the ZPL each dentry holds a references on a znode. These
115 * dentries must be pruned before the arc buffer holding the znode can
118 * Note that the majority of the performance stats are manipulated
119 * with atomic operations.
121 * The L2ARC uses the l2ad_mtx on each vdev for the following:
123 * - L2ARC buflist creation
124 * - L2ARC buflist eviction
125 * - L2ARC write completion, which walks L2ARC buflists
126 * - ARC header destruction, as it removes from L2ARC buflists
127 * - ARC header release, as it removes from L2ARC buflists
133 * Every block that is in the ARC is tracked by an arc_buf_hdr_t structure.
134 * This structure can point either to a block that is still in the cache or to
135 * one that is only accessible in an L2 ARC device, or it can provide
136 * information about a block that was recently evicted. If a block is
137 * only accessible in the L2ARC, then the arc_buf_hdr_t only has enough
138 * information to retrieve it from the L2ARC device. This information is
139 * stored in the l2arc_buf_hdr_t sub-structure of the arc_buf_hdr_t. A block
140 * that is in this state cannot access the data directly.
142 * Blocks that are actively being referenced or have not been evicted
143 * are cached in the L1ARC. The L1ARC (l1arc_buf_hdr_t) is a structure within
144 * the arc_buf_hdr_t that will point to the data block in memory. A block can
145 * only be read by a consumer if it has an l1arc_buf_hdr_t. The L1ARC
146 * caches data in two ways -- in a list of ARC buffers (arc_buf_t) and
147 * also in the arc_buf_hdr_t's private physical data block pointer (b_pabd).
149 * The L1ARC's data pointer may or may not be uncompressed. The ARC has the
150 * ability to store the physical data (b_pabd) associated with the DVA of the
151 * arc_buf_hdr_t. Since the b_pabd is a copy of the on-disk physical block,
152 * it will match its on-disk compression characteristics. This behavior can be
153 * disabled by setting 'zfs_compressed_arc_enabled' to B_FALSE. When the
154 * compressed ARC functionality is disabled, the b_pabd will point to an
155 * uncompressed version of the on-disk data.
157 * Data in the L1ARC is not accessed by consumers of the ARC directly. Each
158 * arc_buf_hdr_t can have multiple ARC buffers (arc_buf_t) which reference it.
159 * Each ARC buffer (arc_buf_t) is being actively accessed by a specific ARC
160 * consumer. The ARC will provide references to this data and will keep it
161 * cached until it is no longer in use. The ARC caches only the L1ARC's physical
162 * data block and will evict any arc_buf_t that is no longer referenced. The
163 * amount of memory consumed by the arc_buf_ts' data buffers can be seen via the
164 * "overhead_size" kstat.
166 * Depending on the consumer, an arc_buf_t can be requested in uncompressed or
167 * compressed form. The typical case is that consumers will want uncompressed
168 * data, and when that happens a new data buffer is allocated where the data is
169 * decompressed for them to use. Currently the only consumer who wants
170 * compressed arc_buf_t's is "zfs send", when it streams data exactly as it
171 * exists on disk. When this happens, the arc_buf_t's data buffer is shared
172 * with the arc_buf_hdr_t.
174 * Here is a diagram showing an arc_buf_hdr_t referenced by two arc_buf_t's. The
175 * first one is owned by a compressed send consumer (and therefore references
176 * the same compressed data buffer as the arc_buf_hdr_t) and the second could be
177 * used by any other consumer (and has its own uncompressed copy of the data
192 * | b_buf +------------>+-----------+ arc_buf_t
193 * | b_pabd +-+ |b_next +---->+-----------+
194 * +-----------+ | |-----------| |b_next +-->NULL
195 * | |b_comp = T | +-----------+
196 * | |b_data +-+ |b_comp = F |
197 * | +-----------+ | |b_data +-+
198 * +->+------+ | +-----------+ |
200 * data | |<--------------+ | uncompressed
201 * +------+ compressed, | data
202 * shared +-->+------+
207 * When a consumer reads a block, the ARC must first look to see if the
208 * arc_buf_hdr_t is cached. If the hdr is cached then the ARC allocates a new
209 * arc_buf_t and either copies uncompressed data into a new data buffer from an
210 * existing uncompressed arc_buf_t, decompresses the hdr's b_pabd buffer into a
211 * new data buffer, or shares the hdr's b_pabd buffer, depending on whether the
212 * hdr is compressed and the desired compression characteristics of the
213 * arc_buf_t consumer. If the arc_buf_t ends up sharing data with the
214 * arc_buf_hdr_t and both of them are uncompressed then the arc_buf_t must be
215 * the last buffer in the hdr's b_buf list, however a shared compressed buf can
216 * be anywhere in the hdr's list.
218 * The diagram below shows an example of an uncompressed ARC hdr that is
219 * sharing its data with an arc_buf_t (note that the shared uncompressed buf is
220 * the last element in the buf list):
232 * | | arc_buf_t (shared)
233 * | b_buf +------------>+---------+ arc_buf_t
234 * | | |b_next +---->+---------+
235 * | b_pabd +-+ |---------| |b_next +-->NULL
236 * +-----------+ | | | +---------+
238 * | +---------+ | |b_data +-+
239 * +->+------+ | +---------+ |
241 * uncompressed | | | |
244 * | uncompressed | | |
247 * +---------------------------------+
249 * Writing to the ARC requires that the ARC first discard the hdr's b_pabd
250 * since the physical block is about to be rewritten. The new data contents
251 * will be contained in the arc_buf_t. As the I/O pipeline performs the write,
252 * it may compress the data before writing it to disk. The ARC will be called
253 * with the transformed data and will memcpy the transformed on-disk block into
254 * a newly allocated b_pabd. Writes are always done into buffers which have
255 * either been loaned (and hence are new and don't have other readers) or
256 * buffers which have been released (and hence have their own hdr, if there
257 * were originally other readers of the buf's original hdr). This ensures that
258 * the ARC only needs to update a single buf and its hdr after a write occurs.
260 * When the L2ARC is in use, it will also take advantage of the b_pabd. The
261 * L2ARC will always write the contents of b_pabd to the L2ARC. This means
262 * that when compressed ARC is enabled that the L2ARC blocks are identical
263 * to the on-disk block in the main data pool. This provides a significant
264 * advantage since the ARC can leverage the bp's checksum when reading from the
265 * L2ARC to determine if the contents are valid. However, if the compressed
266 * ARC is disabled, then the L2ARC's block must be transformed to look
267 * like the physical block in the main data pool before comparing the
268 * checksum and determining its validity.
270 * The L1ARC has a slightly different system for storing encrypted data.
271 * Raw (encrypted + possibly compressed) data has a few subtle differences from
272 * data that is just compressed. The biggest difference is that it is not
273 * possible to decrypt encrypted data (or vice-versa) if the keys aren't loaded.
274 * The other difference is that encryption cannot be treated as a suggestion.
275 * If a caller would prefer compressed data, but they actually wind up with
276 * uncompressed data the worst thing that could happen is there might be a
277 * performance hit. If the caller requests encrypted data, however, we must be
278 * sure they actually get it or else secret information could be leaked. Raw
279 * data is stored in hdr->b_crypt_hdr.b_rabd. An encrypted header, therefore,
280 * may have both an encrypted version and a decrypted version of its data at
281 * once. When a caller needs a raw arc_buf_t, it is allocated and the data is
282 * copied out of this header. To avoid complications with b_pabd, raw buffers
288 #include <sys/spa_impl.h>
289 #include <sys/zio_compress.h>
290 #include <sys/zio_checksum.h>
291 #include <sys/zfs_context.h>
293 #include <sys/zfs_refcount.h>
294 #include <sys/vdev.h>
295 #include <sys/vdev_impl.h>
296 #include <sys/dsl_pool.h>
297 #include <sys/multilist.h>
300 #include <sys/fm/fs/zfs.h>
301 #include <sys/callb.h>
302 #include <sys/kstat.h>
303 #include <sys/zthr.h>
304 #include <zfs_fletcher.h>
305 #include <sys/arc_impl.h>
306 #include <sys/trace_zfs.h>
307 #include <sys/aggsum.h>
308 #include <sys/wmsum.h>
309 #include <cityhash.h>
310 #include <sys/vdev_trim.h>
311 #include <sys/zfs_racct.h>
312 #include <sys/zstd/zstd.h>
315 /* set with ZFS_DEBUG=watch, to enable watchpoints on frozen buffers */
316 boolean_t arc_watch
= B_FALSE
;
320 * This thread's job is to keep enough free memory in the system, by
321 * calling arc_kmem_reap_soon() plus arc_reduce_target_size(), which improves
322 * arc_available_memory().
324 static zthr_t
*arc_reap_zthr
;
327 * This thread's job is to keep arc_size under arc_c, by calling
328 * arc_evict(), which improves arc_is_overflowing().
330 static zthr_t
*arc_evict_zthr
;
331 static arc_buf_hdr_t
**arc_state_evict_markers
;
332 static int arc_state_evict_marker_count
;
334 static kmutex_t arc_evict_lock
;
335 static boolean_t arc_evict_needed
= B_FALSE
;
338 * Count of bytes evicted since boot.
340 static uint64_t arc_evict_count
;
343 * List of arc_evict_waiter_t's, representing threads waiting for the
344 * arc_evict_count to reach specific values.
346 static list_t arc_evict_waiters
;
349 * When arc_is_overflowing(), arc_get_data_impl() waits for this percent of
350 * the requested amount of data to be evicted. For example, by default for
351 * every 2KB that's evicted, 1KB of it may be "reused" by a new allocation.
352 * Since this is above 100%, it ensures that progress is made towards getting
353 * arc_size under arc_c. Since this is finite, it ensures that allocations
354 * can still happen, even during the potentially long time that arc_size is
357 static int zfs_arc_eviction_pct
= 200;
360 * The number of headers to evict in arc_evict_state_impl() before
361 * dropping the sublist lock and evicting from another sublist. A lower
362 * value means we're more likely to evict the "correct" header (i.e. the
363 * oldest header in the arc state), but comes with higher overhead
364 * (i.e. more invocations of arc_evict_state_impl()).
366 static int zfs_arc_evict_batch_limit
= 10;
368 /* number of seconds before growing cache again */
369 int arc_grow_retry
= 5;
372 * Minimum time between calls to arc_kmem_reap_soon().
374 static const int arc_kmem_cache_reap_retry_ms
= 1000;
376 /* shift of arc_c for calculating overflow limit in arc_get_data_impl */
377 static int zfs_arc_overflow_shift
= 8;
379 /* shift of arc_c for calculating both min and max arc_p */
380 static int arc_p_min_shift
= 4;
382 /* log2(fraction of arc to reclaim) */
383 int arc_shrink_shift
= 7;
385 /* percent of pagecache to reclaim arc to */
387 uint_t zfs_arc_pc_percent
= 0;
391 * log2(fraction of ARC which must be free to allow growing).
392 * I.e. If there is less than arc_c >> arc_no_grow_shift free memory,
393 * when reading a new block into the ARC, we will evict an equal-sized block
396 * This must be less than arc_shrink_shift, so that when we shrink the ARC,
397 * we will still not allow it to grow.
399 int arc_no_grow_shift
= 5;
403 * minimum lifespan of a prefetch block in clock ticks
404 * (initialized in arc_init())
406 static int arc_min_prefetch_ms
;
407 static int arc_min_prescient_prefetch_ms
;
410 * If this percent of memory is free, don't throttle.
412 int arc_lotsfree_percent
= 10;
415 * The arc has filled available memory and has now warmed up.
420 * These tunables are for performance analysis.
422 unsigned long zfs_arc_max
= 0;
423 unsigned long zfs_arc_min
= 0;
424 unsigned long zfs_arc_meta_limit
= 0;
425 unsigned long zfs_arc_meta_min
= 0;
426 static unsigned long zfs_arc_dnode_limit
= 0;
427 static unsigned long zfs_arc_dnode_reduce_percent
= 10;
428 static int zfs_arc_grow_retry
= 0;
429 static int zfs_arc_shrink_shift
= 0;
430 static int zfs_arc_p_min_shift
= 0;
431 int zfs_arc_average_blocksize
= 8 * 1024; /* 8KB */
434 * ARC dirty data constraints for arc_tempreserve_space() throttle:
435 * * total dirty data limit
436 * * anon block dirty limit
437 * * each pool's anon allowance
439 static const unsigned long zfs_arc_dirty_limit_percent
= 50;
440 static const unsigned long zfs_arc_anon_limit_percent
= 25;
441 static const unsigned long zfs_arc_pool_dirty_percent
= 20;
444 * Enable or disable compressed arc buffers.
446 int zfs_compressed_arc_enabled
= B_TRUE
;
449 * ARC will evict meta buffers that exceed arc_meta_limit. This
450 * tunable make arc_meta_limit adjustable for different workloads.
452 static unsigned long zfs_arc_meta_limit_percent
= 75;
455 * Percentage that can be consumed by dnodes of ARC meta buffers.
457 static unsigned long zfs_arc_dnode_limit_percent
= 10;
460 * These tunables are Linux-specific
462 static unsigned long zfs_arc_sys_free
= 0;
463 static int zfs_arc_min_prefetch_ms
= 0;
464 static int zfs_arc_min_prescient_prefetch_ms
= 0;
465 static int zfs_arc_p_dampener_disable
= 1;
466 static int zfs_arc_meta_prune
= 10000;
467 static int zfs_arc_meta_strategy
= ARC_STRATEGY_META_BALANCED
;
468 static int zfs_arc_meta_adjust_restarts
= 4096;
469 static int zfs_arc_lotsfree_percent
= 10;
472 * Number of arc_prune threads
474 static int zfs_arc_prune_task_threads
= 1;
477 arc_state_t ARC_anon
;
479 arc_state_t ARC_mru_ghost
;
481 arc_state_t ARC_mfu_ghost
;
482 arc_state_t ARC_l2c_only
;
484 arc_stats_t arc_stats
= {
485 { "hits", KSTAT_DATA_UINT64
},
486 { "misses", KSTAT_DATA_UINT64
},
487 { "demand_data_hits", KSTAT_DATA_UINT64
},
488 { "demand_data_misses", KSTAT_DATA_UINT64
},
489 { "demand_metadata_hits", KSTAT_DATA_UINT64
},
490 { "demand_metadata_misses", KSTAT_DATA_UINT64
},
491 { "prefetch_data_hits", KSTAT_DATA_UINT64
},
492 { "prefetch_data_misses", KSTAT_DATA_UINT64
},
493 { "prefetch_metadata_hits", KSTAT_DATA_UINT64
},
494 { "prefetch_metadata_misses", KSTAT_DATA_UINT64
},
495 { "mru_hits", KSTAT_DATA_UINT64
},
496 { "mru_ghost_hits", KSTAT_DATA_UINT64
},
497 { "mfu_hits", KSTAT_DATA_UINT64
},
498 { "mfu_ghost_hits", KSTAT_DATA_UINT64
},
499 { "deleted", KSTAT_DATA_UINT64
},
500 { "mutex_miss", KSTAT_DATA_UINT64
},
501 { "access_skip", KSTAT_DATA_UINT64
},
502 { "evict_skip", KSTAT_DATA_UINT64
},
503 { "evict_not_enough", KSTAT_DATA_UINT64
},
504 { "evict_l2_cached", KSTAT_DATA_UINT64
},
505 { "evict_l2_eligible", KSTAT_DATA_UINT64
},
506 { "evict_l2_eligible_mfu", KSTAT_DATA_UINT64
},
507 { "evict_l2_eligible_mru", KSTAT_DATA_UINT64
},
508 { "evict_l2_ineligible", KSTAT_DATA_UINT64
},
509 { "evict_l2_skip", KSTAT_DATA_UINT64
},
510 { "hash_elements", KSTAT_DATA_UINT64
},
511 { "hash_elements_max", KSTAT_DATA_UINT64
},
512 { "hash_collisions", KSTAT_DATA_UINT64
},
513 { "hash_chains", KSTAT_DATA_UINT64
},
514 { "hash_chain_max", KSTAT_DATA_UINT64
},
515 { "p", KSTAT_DATA_UINT64
},
516 { "c", KSTAT_DATA_UINT64
},
517 { "c_min", KSTAT_DATA_UINT64
},
518 { "c_max", KSTAT_DATA_UINT64
},
519 { "size", KSTAT_DATA_UINT64
},
520 { "compressed_size", KSTAT_DATA_UINT64
},
521 { "uncompressed_size", KSTAT_DATA_UINT64
},
522 { "overhead_size", KSTAT_DATA_UINT64
},
523 { "hdr_size", KSTAT_DATA_UINT64
},
524 { "data_size", KSTAT_DATA_UINT64
},
525 { "metadata_size", KSTAT_DATA_UINT64
},
526 { "dbuf_size", KSTAT_DATA_UINT64
},
527 { "dnode_size", KSTAT_DATA_UINT64
},
528 { "bonus_size", KSTAT_DATA_UINT64
},
529 #if defined(COMPAT_FREEBSD11)
530 { "other_size", KSTAT_DATA_UINT64
},
532 { "anon_size", KSTAT_DATA_UINT64
},
533 { "anon_evictable_data", KSTAT_DATA_UINT64
},
534 { "anon_evictable_metadata", KSTAT_DATA_UINT64
},
535 { "mru_size", KSTAT_DATA_UINT64
},
536 { "mru_evictable_data", KSTAT_DATA_UINT64
},
537 { "mru_evictable_metadata", KSTAT_DATA_UINT64
},
538 { "mru_ghost_size", KSTAT_DATA_UINT64
},
539 { "mru_ghost_evictable_data", KSTAT_DATA_UINT64
},
540 { "mru_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
541 { "mfu_size", KSTAT_DATA_UINT64
},
542 { "mfu_evictable_data", KSTAT_DATA_UINT64
},
543 { "mfu_evictable_metadata", KSTAT_DATA_UINT64
},
544 { "mfu_ghost_size", KSTAT_DATA_UINT64
},
545 { "mfu_ghost_evictable_data", KSTAT_DATA_UINT64
},
546 { "mfu_ghost_evictable_metadata", KSTAT_DATA_UINT64
},
547 { "l2_hits", KSTAT_DATA_UINT64
},
548 { "l2_misses", KSTAT_DATA_UINT64
},
549 { "l2_prefetch_asize", KSTAT_DATA_UINT64
},
550 { "l2_mru_asize", KSTAT_DATA_UINT64
},
551 { "l2_mfu_asize", KSTAT_DATA_UINT64
},
552 { "l2_bufc_data_asize", KSTAT_DATA_UINT64
},
553 { "l2_bufc_metadata_asize", KSTAT_DATA_UINT64
},
554 { "l2_feeds", KSTAT_DATA_UINT64
},
555 { "l2_rw_clash", KSTAT_DATA_UINT64
},
556 { "l2_read_bytes", KSTAT_DATA_UINT64
},
557 { "l2_write_bytes", KSTAT_DATA_UINT64
},
558 { "l2_writes_sent", KSTAT_DATA_UINT64
},
559 { "l2_writes_done", KSTAT_DATA_UINT64
},
560 { "l2_writes_error", KSTAT_DATA_UINT64
},
561 { "l2_writes_lock_retry", KSTAT_DATA_UINT64
},
562 { "l2_evict_lock_retry", KSTAT_DATA_UINT64
},
563 { "l2_evict_reading", KSTAT_DATA_UINT64
},
564 { "l2_evict_l1cached", KSTAT_DATA_UINT64
},
565 { "l2_free_on_write", KSTAT_DATA_UINT64
},
566 { "l2_abort_lowmem", KSTAT_DATA_UINT64
},
567 { "l2_cksum_bad", KSTAT_DATA_UINT64
},
568 { "l2_io_error", KSTAT_DATA_UINT64
},
569 { "l2_size", KSTAT_DATA_UINT64
},
570 { "l2_asize", KSTAT_DATA_UINT64
},
571 { "l2_hdr_size", KSTAT_DATA_UINT64
},
572 { "l2_log_blk_writes", KSTAT_DATA_UINT64
},
573 { "l2_log_blk_avg_asize", KSTAT_DATA_UINT64
},
574 { "l2_log_blk_asize", KSTAT_DATA_UINT64
},
575 { "l2_log_blk_count", KSTAT_DATA_UINT64
},
576 { "l2_data_to_meta_ratio", KSTAT_DATA_UINT64
},
577 { "l2_rebuild_success", KSTAT_DATA_UINT64
},
578 { "l2_rebuild_unsupported", KSTAT_DATA_UINT64
},
579 { "l2_rebuild_io_errors", KSTAT_DATA_UINT64
},
580 { "l2_rebuild_dh_errors", KSTAT_DATA_UINT64
},
581 { "l2_rebuild_cksum_lb_errors", KSTAT_DATA_UINT64
},
582 { "l2_rebuild_lowmem", KSTAT_DATA_UINT64
},
583 { "l2_rebuild_size", KSTAT_DATA_UINT64
},
584 { "l2_rebuild_asize", KSTAT_DATA_UINT64
},
585 { "l2_rebuild_bufs", KSTAT_DATA_UINT64
},
586 { "l2_rebuild_bufs_precached", KSTAT_DATA_UINT64
},
587 { "l2_rebuild_log_blks", KSTAT_DATA_UINT64
},
588 { "memory_throttle_count", KSTAT_DATA_UINT64
},
589 { "memory_direct_count", KSTAT_DATA_UINT64
},
590 { "memory_indirect_count", KSTAT_DATA_UINT64
},
591 { "memory_all_bytes", KSTAT_DATA_UINT64
},
592 { "memory_free_bytes", KSTAT_DATA_UINT64
},
593 { "memory_available_bytes", KSTAT_DATA_INT64
},
594 { "arc_no_grow", KSTAT_DATA_UINT64
},
595 { "arc_tempreserve", KSTAT_DATA_UINT64
},
596 { "arc_loaned_bytes", KSTAT_DATA_UINT64
},
597 { "arc_prune", KSTAT_DATA_UINT64
},
598 { "arc_meta_used", KSTAT_DATA_UINT64
},
599 { "arc_meta_limit", KSTAT_DATA_UINT64
},
600 { "arc_dnode_limit", KSTAT_DATA_UINT64
},
601 { "arc_meta_max", KSTAT_DATA_UINT64
},
602 { "arc_meta_min", KSTAT_DATA_UINT64
},
603 { "async_upgrade_sync", KSTAT_DATA_UINT64
},
604 { "demand_hit_predictive_prefetch", KSTAT_DATA_UINT64
},
605 { "demand_hit_prescient_prefetch", KSTAT_DATA_UINT64
},
606 { "arc_need_free", KSTAT_DATA_UINT64
},
607 { "arc_sys_free", KSTAT_DATA_UINT64
},
608 { "arc_raw_size", KSTAT_DATA_UINT64
},
609 { "cached_only_in_progress", KSTAT_DATA_UINT64
},
610 { "abd_chunk_waste_size", KSTAT_DATA_UINT64
},
615 #define ARCSTAT_MAX(stat, val) { \
617 while ((val) > (m = arc_stats.stat.value.ui64) && \
618 (m != atomic_cas_64(&arc_stats.stat.value.ui64, m, (val)))) \
623 * We define a macro to allow ARC hits/misses to be easily broken down by
624 * two separate conditions, giving a total of four different subtypes for
625 * each of hits and misses (so eight statistics total).
627 #define ARCSTAT_CONDSTAT(cond1, stat1, notstat1, cond2, stat2, notstat2, stat) \
630 ARCSTAT_BUMP(arcstat_##stat1##_##stat2##_##stat); \
632 ARCSTAT_BUMP(arcstat_##stat1##_##notstat2##_##stat); \
636 ARCSTAT_BUMP(arcstat_##notstat1##_##stat2##_##stat); \
638 ARCSTAT_BUMP(arcstat_##notstat1##_##notstat2##_##stat);\
643 * This macro allows us to use kstats as floating averages. Each time we
644 * update this kstat, we first factor it and the update value by
645 * ARCSTAT_AVG_FACTOR to shrink the new value's contribution to the overall
646 * average. This macro assumes that integer loads and stores are atomic, but
647 * is not safe for multiple writers updating the kstat in parallel (only the
648 * last writer's update will remain).
650 #define ARCSTAT_F_AVG_FACTOR 3
651 #define ARCSTAT_F_AVG(stat, value) \
653 uint64_t x = ARCSTAT(stat); \
654 x = x - x / ARCSTAT_F_AVG_FACTOR + \
655 (value) / ARCSTAT_F_AVG_FACTOR; \
659 static kstat_t
*arc_ksp
;
662 * There are several ARC variables that are critical to export as kstats --
663 * but we don't want to have to grovel around in the kstat whenever we wish to
664 * manipulate them. For these variables, we therefore define them to be in
665 * terms of the statistic variable. This assures that we are not introducing
666 * the possibility of inconsistency by having shadow copies of the variables,
667 * while still allowing the code to be readable.
669 #define arc_tempreserve ARCSTAT(arcstat_tempreserve)
670 #define arc_loaned_bytes ARCSTAT(arcstat_loaned_bytes)
671 #define arc_meta_limit ARCSTAT(arcstat_meta_limit) /* max size for metadata */
672 /* max size for dnodes */
673 #define arc_dnode_size_limit ARCSTAT(arcstat_dnode_limit)
674 #define arc_meta_min ARCSTAT(arcstat_meta_min) /* min size for metadata */
675 #define arc_need_free ARCSTAT(arcstat_need_free) /* waiting to be evicted */
677 hrtime_t arc_growtime
;
678 list_t arc_prune_list
;
679 kmutex_t arc_prune_mtx
;
680 taskq_t
*arc_prune_taskq
;
682 #define GHOST_STATE(state) \
683 ((state) == arc_mru_ghost || (state) == arc_mfu_ghost || \
684 (state) == arc_l2c_only)
686 #define HDR_IN_HASH_TABLE(hdr) ((hdr)->b_flags & ARC_FLAG_IN_HASH_TABLE)
687 #define HDR_IO_IN_PROGRESS(hdr) ((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS)
688 #define HDR_IO_ERROR(hdr) ((hdr)->b_flags & ARC_FLAG_IO_ERROR)
689 #define HDR_PREFETCH(hdr) ((hdr)->b_flags & ARC_FLAG_PREFETCH)
690 #define HDR_PRESCIENT_PREFETCH(hdr) \
691 ((hdr)->b_flags & ARC_FLAG_PRESCIENT_PREFETCH)
692 #define HDR_COMPRESSION_ENABLED(hdr) \
693 ((hdr)->b_flags & ARC_FLAG_COMPRESSED_ARC)
695 #define HDR_L2CACHE(hdr) ((hdr)->b_flags & ARC_FLAG_L2CACHE)
696 #define HDR_L2_READING(hdr) \
697 (((hdr)->b_flags & ARC_FLAG_IO_IN_PROGRESS) && \
698 ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR))
699 #define HDR_L2_WRITING(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITING)
700 #define HDR_L2_EVICTED(hdr) ((hdr)->b_flags & ARC_FLAG_L2_EVICTED)
701 #define HDR_L2_WRITE_HEAD(hdr) ((hdr)->b_flags & ARC_FLAG_L2_WRITE_HEAD)
702 #define HDR_PROTECTED(hdr) ((hdr)->b_flags & ARC_FLAG_PROTECTED)
703 #define HDR_NOAUTH(hdr) ((hdr)->b_flags & ARC_FLAG_NOAUTH)
704 #define HDR_SHARED_DATA(hdr) ((hdr)->b_flags & ARC_FLAG_SHARED_DATA)
706 #define HDR_ISTYPE_METADATA(hdr) \
707 ((hdr)->b_flags & ARC_FLAG_BUFC_METADATA)
708 #define HDR_ISTYPE_DATA(hdr) (!HDR_ISTYPE_METADATA(hdr))
710 #define HDR_HAS_L1HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L1HDR)
711 #define HDR_HAS_L2HDR(hdr) ((hdr)->b_flags & ARC_FLAG_HAS_L2HDR)
712 #define HDR_HAS_RABD(hdr) \
713 (HDR_HAS_L1HDR(hdr) && HDR_PROTECTED(hdr) && \
714 (hdr)->b_crypt_hdr.b_rabd != NULL)
715 #define HDR_ENCRYPTED(hdr) \
716 (HDR_PROTECTED(hdr) && DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
717 #define HDR_AUTHENTICATED(hdr) \
718 (HDR_PROTECTED(hdr) && !DMU_OT_IS_ENCRYPTED((hdr)->b_crypt_hdr.b_ot))
720 /* For storing compression mode in b_flags */
721 #define HDR_COMPRESS_OFFSET (highbit64(ARC_FLAG_COMPRESS_0) - 1)
723 #define HDR_GET_COMPRESS(hdr) ((enum zio_compress)BF32_GET((hdr)->b_flags, \
724 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS))
725 #define HDR_SET_COMPRESS(hdr, cmp) BF32_SET((hdr)->b_flags, \
726 HDR_COMPRESS_OFFSET, SPA_COMPRESSBITS, (cmp));
728 #define ARC_BUF_LAST(buf) ((buf)->b_next == NULL)
729 #define ARC_BUF_SHARED(buf) ((buf)->b_flags & ARC_BUF_FLAG_SHARED)
730 #define ARC_BUF_COMPRESSED(buf) ((buf)->b_flags & ARC_BUF_FLAG_COMPRESSED)
731 #define ARC_BUF_ENCRYPTED(buf) ((buf)->b_flags & ARC_BUF_FLAG_ENCRYPTED)
737 #define HDR_FULL_CRYPT_SIZE ((int64_t)sizeof (arc_buf_hdr_t))
738 #define HDR_FULL_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_crypt_hdr))
739 #define HDR_L2ONLY_SIZE ((int64_t)offsetof(arc_buf_hdr_t, b_l1hdr))
742 * Hash table routines
745 #define BUF_LOCKS 2048
746 typedef struct buf_hash_table
{
748 arc_buf_hdr_t
**ht_table
;
749 kmutex_t ht_locks
[BUF_LOCKS
] ____cacheline_aligned
;
752 static buf_hash_table_t buf_hash_table
;
754 #define BUF_HASH_INDEX(spa, dva, birth) \
755 (buf_hash(spa, dva, birth) & buf_hash_table.ht_mask)
756 #define BUF_HASH_LOCK(idx) (&buf_hash_table.ht_locks[idx & (BUF_LOCKS-1)])
757 #define HDR_LOCK(hdr) \
758 (BUF_HASH_LOCK(BUF_HASH_INDEX(hdr->b_spa, &hdr->b_dva, hdr->b_birth)))
760 uint64_t zfs_crc64_table
[256];
766 #define L2ARC_WRITE_SIZE (8 * 1024 * 1024) /* initial write max */
767 #define L2ARC_HEADROOM 2 /* num of writes */
770 * If we discover during ARC scan any buffers to be compressed, we boost
771 * our headroom for the next scanning cycle by this percentage multiple.
773 #define L2ARC_HEADROOM_BOOST 200
774 #define L2ARC_FEED_SECS 1 /* caching interval secs */
775 #define L2ARC_FEED_MIN_MS 200 /* min caching interval ms */
778 * We can feed L2ARC from two states of ARC buffers, mru and mfu,
779 * and each of the state has two types: data and metadata.
781 #define L2ARC_FEED_TYPES 4
783 /* L2ARC Performance Tunables */
784 unsigned long l2arc_write_max
= L2ARC_WRITE_SIZE
; /* def max write size */
785 unsigned long l2arc_write_boost
= L2ARC_WRITE_SIZE
; /* extra warmup write */
786 unsigned long l2arc_headroom
= L2ARC_HEADROOM
; /* # of dev writes */
787 unsigned long l2arc_headroom_boost
= L2ARC_HEADROOM_BOOST
;
788 unsigned long l2arc_feed_secs
= L2ARC_FEED_SECS
; /* interval seconds */
789 unsigned long l2arc_feed_min_ms
= L2ARC_FEED_MIN_MS
; /* min interval msecs */
790 int l2arc_noprefetch
= B_TRUE
; /* don't cache prefetch bufs */
791 int l2arc_feed_again
= B_TRUE
; /* turbo warmup */
792 int l2arc_norw
= B_FALSE
; /* no reads during writes */
793 static int l2arc_meta_percent
= 33; /* limit on headers size */
798 static list_t L2ARC_dev_list
; /* device list */
799 static list_t
*l2arc_dev_list
; /* device list pointer */
800 static kmutex_t l2arc_dev_mtx
; /* device list mutex */
801 static l2arc_dev_t
*l2arc_dev_last
; /* last device used */
802 static list_t L2ARC_free_on_write
; /* free after write buf list */
803 static list_t
*l2arc_free_on_write
; /* free after write list ptr */
804 static kmutex_t l2arc_free_on_write_mtx
; /* mutex for list */
805 static uint64_t l2arc_ndev
; /* number of devices */
807 typedef struct l2arc_read_callback
{
808 arc_buf_hdr_t
*l2rcb_hdr
; /* read header */
809 blkptr_t l2rcb_bp
; /* original blkptr */
810 zbookmark_phys_t l2rcb_zb
; /* original bookmark */
811 int l2rcb_flags
; /* original flags */
812 abd_t
*l2rcb_abd
; /* temporary buffer */
813 } l2arc_read_callback_t
;
815 typedef struct l2arc_data_free
{
816 /* protected by l2arc_free_on_write_mtx */
819 arc_buf_contents_t l2df_type
;
820 list_node_t l2df_list_node
;
823 typedef enum arc_fill_flags
{
824 ARC_FILL_LOCKED
= 1 << 0, /* hdr lock is held */
825 ARC_FILL_COMPRESSED
= 1 << 1, /* fill with compressed data */
826 ARC_FILL_ENCRYPTED
= 1 << 2, /* fill with encrypted data */
827 ARC_FILL_NOAUTH
= 1 << 3, /* don't attempt to authenticate */
828 ARC_FILL_IN_PLACE
= 1 << 4 /* fill in place (special case) */
831 typedef enum arc_ovf_level
{
832 ARC_OVF_NONE
, /* ARC within target size. */
833 ARC_OVF_SOME
, /* ARC is slightly overflowed. */
834 ARC_OVF_SEVERE
/* ARC is severely overflowed. */
837 static kmutex_t l2arc_feed_thr_lock
;
838 static kcondvar_t l2arc_feed_thr_cv
;
839 static uint8_t l2arc_thread_exit
;
841 static kmutex_t l2arc_rebuild_thr_lock
;
842 static kcondvar_t l2arc_rebuild_thr_cv
;
844 enum arc_hdr_alloc_flags
{
845 ARC_HDR_ALLOC_RDATA
= 0x1,
846 ARC_HDR_DO_ADAPT
= 0x2,
847 ARC_HDR_USE_RESERVE
= 0x4,
851 static abd_t
*arc_get_data_abd(arc_buf_hdr_t
*, uint64_t, void *, int);
852 static void *arc_get_data_buf(arc_buf_hdr_t
*, uint64_t, void *);
853 static void arc_get_data_impl(arc_buf_hdr_t
*, uint64_t, void *, int);
854 static void arc_free_data_abd(arc_buf_hdr_t
*, abd_t
*, uint64_t, void *);
855 static void arc_free_data_buf(arc_buf_hdr_t
*, void *, uint64_t, void *);
856 static void arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
);
857 static void arc_hdr_free_abd(arc_buf_hdr_t
*, boolean_t
);
858 static void arc_hdr_alloc_abd(arc_buf_hdr_t
*, int);
859 static void arc_access(arc_buf_hdr_t
*, kmutex_t
*);
860 static void arc_buf_watch(arc_buf_t
*);
862 static arc_buf_contents_t
arc_buf_type(arc_buf_hdr_t
*);
863 static uint32_t arc_bufc_to_flags(arc_buf_contents_t
);
864 static inline void arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
865 static inline void arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
);
867 static boolean_t
l2arc_write_eligible(uint64_t, arc_buf_hdr_t
*);
868 static void l2arc_read_done(zio_t
*);
869 static void l2arc_do_free_on_write(void);
870 static void l2arc_hdr_arcstats_update(arc_buf_hdr_t
*hdr
, boolean_t incr
,
871 boolean_t state_only
);
873 #define l2arc_hdr_arcstats_increment(hdr) \
874 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_FALSE)
875 #define l2arc_hdr_arcstats_decrement(hdr) \
876 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_FALSE)
877 #define l2arc_hdr_arcstats_increment_state(hdr) \
878 l2arc_hdr_arcstats_update((hdr), B_TRUE, B_TRUE)
879 #define l2arc_hdr_arcstats_decrement_state(hdr) \
880 l2arc_hdr_arcstats_update((hdr), B_FALSE, B_TRUE)
883 * l2arc_exclude_special : A zfs module parameter that controls whether buffers
884 * present on special vdevs are eligibile for caching in L2ARC. If
885 * set to 1, exclude dbufs on special vdevs from being cached to
888 int l2arc_exclude_special
= 0;
891 * l2arc_mfuonly : A ZFS module parameter that controls whether only MFU
892 * metadata and data are cached from ARC into L2ARC.
894 static int l2arc_mfuonly
= 0;
898 * l2arc_trim_ahead : A ZFS module parameter that controls how much ahead of
899 * the current write size (l2arc_write_max) we should TRIM if we
900 * have filled the device. It is defined as a percentage of the
901 * write size. If set to 100 we trim twice the space required to
902 * accommodate upcoming writes. A minimum of 64MB will be trimmed.
903 * It also enables TRIM of the whole L2ARC device upon creation or
904 * addition to an existing pool or if the header of the device is
905 * invalid upon importing a pool or onlining a cache device. The
906 * default is 0, which disables TRIM on L2ARC altogether as it can
907 * put significant stress on the underlying storage devices. This
908 * will vary depending of how well the specific device handles
911 static unsigned long l2arc_trim_ahead
= 0;
914 * Performance tuning of L2ARC persistence:
916 * l2arc_rebuild_enabled : A ZFS module parameter that controls whether adding
917 * an L2ARC device (either at pool import or later) will attempt
918 * to rebuild L2ARC buffer contents.
919 * l2arc_rebuild_blocks_min_l2size : A ZFS module parameter that controls
920 * whether log blocks are written to the L2ARC device. If the L2ARC
921 * device is less than 1GB, the amount of data l2arc_evict()
922 * evicts is significant compared to the amount of restored L2ARC
923 * data. In this case do not write log blocks in L2ARC in order
924 * not to waste space.
926 static int l2arc_rebuild_enabled
= B_TRUE
;
927 static unsigned long l2arc_rebuild_blocks_min_l2size
= 1024 * 1024 * 1024;
929 /* L2ARC persistence rebuild control routines. */
930 void l2arc_rebuild_vdev(vdev_t
*vd
, boolean_t reopen
);
931 static __attribute__((noreturn
)) void l2arc_dev_rebuild_thread(void *arg
);
932 static int l2arc_rebuild(l2arc_dev_t
*dev
);
934 /* L2ARC persistence read I/O routines. */
935 static int l2arc_dev_hdr_read(l2arc_dev_t
*dev
);
936 static int l2arc_log_blk_read(l2arc_dev_t
*dev
,
937 const l2arc_log_blkptr_t
*this_lp
, const l2arc_log_blkptr_t
*next_lp
,
938 l2arc_log_blk_phys_t
*this_lb
, l2arc_log_blk_phys_t
*next_lb
,
939 zio_t
*this_io
, zio_t
**next_io
);
940 static zio_t
*l2arc_log_blk_fetch(vdev_t
*vd
,
941 const l2arc_log_blkptr_t
*lp
, l2arc_log_blk_phys_t
*lb
);
942 static void l2arc_log_blk_fetch_abort(zio_t
*zio
);
944 /* L2ARC persistence block restoration routines. */
945 static void l2arc_log_blk_restore(l2arc_dev_t
*dev
,
946 const l2arc_log_blk_phys_t
*lb
, uint64_t lb_asize
);
947 static void l2arc_hdr_restore(const l2arc_log_ent_phys_t
*le
,
950 /* L2ARC persistence write I/O routines. */
951 static void l2arc_log_blk_commit(l2arc_dev_t
*dev
, zio_t
*pio
,
952 l2arc_write_callback_t
*cb
);
954 /* L2ARC persistence auxiliary routines. */
955 boolean_t
l2arc_log_blkptr_valid(l2arc_dev_t
*dev
,
956 const l2arc_log_blkptr_t
*lbp
);
957 static boolean_t
l2arc_log_blk_insert(l2arc_dev_t
*dev
,
958 const arc_buf_hdr_t
*ab
);
959 boolean_t
l2arc_range_check_overlap(uint64_t bottom
,
960 uint64_t top
, uint64_t check
);
961 static void l2arc_blk_fetch_done(zio_t
*zio
);
962 static inline uint64_t
963 l2arc_log_blk_overhead(uint64_t write_sz
, l2arc_dev_t
*dev
);
966 * We use Cityhash for this. It's fast, and has good hash properties without
967 * requiring any large static buffers.
970 buf_hash(uint64_t spa
, const dva_t
*dva
, uint64_t birth
)
972 return (cityhash4(spa
, dva
->dva_word
[0], dva
->dva_word
[1], birth
));
975 #define HDR_EMPTY(hdr) \
976 ((hdr)->b_dva.dva_word[0] == 0 && \
977 (hdr)->b_dva.dva_word[1] == 0)
979 #define HDR_EMPTY_OR_LOCKED(hdr) \
980 (HDR_EMPTY(hdr) || MUTEX_HELD(HDR_LOCK(hdr)))
982 #define HDR_EQUAL(spa, dva, birth, hdr) \
983 ((hdr)->b_dva.dva_word[0] == (dva)->dva_word[0]) && \
984 ((hdr)->b_dva.dva_word[1] == (dva)->dva_word[1]) && \
985 ((hdr)->b_birth == birth) && ((hdr)->b_spa == spa)
988 buf_discard_identity(arc_buf_hdr_t
*hdr
)
990 hdr
->b_dva
.dva_word
[0] = 0;
991 hdr
->b_dva
.dva_word
[1] = 0;
995 static arc_buf_hdr_t
*
996 buf_hash_find(uint64_t spa
, const blkptr_t
*bp
, kmutex_t
**lockp
)
998 const dva_t
*dva
= BP_IDENTITY(bp
);
999 uint64_t birth
= BP_PHYSICAL_BIRTH(bp
);
1000 uint64_t idx
= BUF_HASH_INDEX(spa
, dva
, birth
);
1001 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1004 mutex_enter(hash_lock
);
1005 for (hdr
= buf_hash_table
.ht_table
[idx
]; hdr
!= NULL
;
1006 hdr
= hdr
->b_hash_next
) {
1007 if (HDR_EQUAL(spa
, dva
, birth
, hdr
)) {
1012 mutex_exit(hash_lock
);
1018 * Insert an entry into the hash table. If there is already an element
1019 * equal to elem in the hash table, then the already existing element
1020 * will be returned and the new element will not be inserted.
1021 * Otherwise returns NULL.
1022 * If lockp == NULL, the caller is assumed to already hold the hash lock.
1024 static arc_buf_hdr_t
*
1025 buf_hash_insert(arc_buf_hdr_t
*hdr
, kmutex_t
**lockp
)
1027 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1028 kmutex_t
*hash_lock
= BUF_HASH_LOCK(idx
);
1029 arc_buf_hdr_t
*fhdr
;
1032 ASSERT(!DVA_IS_EMPTY(&hdr
->b_dva
));
1033 ASSERT(hdr
->b_birth
!= 0);
1034 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
1036 if (lockp
!= NULL
) {
1038 mutex_enter(hash_lock
);
1040 ASSERT(MUTEX_HELD(hash_lock
));
1043 for (fhdr
= buf_hash_table
.ht_table
[idx
], i
= 0; fhdr
!= NULL
;
1044 fhdr
= fhdr
->b_hash_next
, i
++) {
1045 if (HDR_EQUAL(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
, fhdr
))
1049 hdr
->b_hash_next
= buf_hash_table
.ht_table
[idx
];
1050 buf_hash_table
.ht_table
[idx
] = hdr
;
1051 arc_hdr_set_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1053 /* collect some hash table performance data */
1055 ARCSTAT_BUMP(arcstat_hash_collisions
);
1057 ARCSTAT_BUMP(arcstat_hash_chains
);
1059 ARCSTAT_MAX(arcstat_hash_chain_max
, i
);
1061 uint64_t he
= atomic_inc_64_nv(
1062 &arc_stats
.arcstat_hash_elements
.value
.ui64
);
1063 ARCSTAT_MAX(arcstat_hash_elements_max
, he
);
1069 buf_hash_remove(arc_buf_hdr_t
*hdr
)
1071 arc_buf_hdr_t
*fhdr
, **hdrp
;
1072 uint64_t idx
= BUF_HASH_INDEX(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
);
1074 ASSERT(MUTEX_HELD(BUF_HASH_LOCK(idx
)));
1075 ASSERT(HDR_IN_HASH_TABLE(hdr
));
1077 hdrp
= &buf_hash_table
.ht_table
[idx
];
1078 while ((fhdr
= *hdrp
) != hdr
) {
1079 ASSERT3P(fhdr
, !=, NULL
);
1080 hdrp
= &fhdr
->b_hash_next
;
1082 *hdrp
= hdr
->b_hash_next
;
1083 hdr
->b_hash_next
= NULL
;
1084 arc_hdr_clear_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
1086 /* collect some hash table performance data */
1087 atomic_dec_64(&arc_stats
.arcstat_hash_elements
.value
.ui64
);
1089 if (buf_hash_table
.ht_table
[idx
] &&
1090 buf_hash_table
.ht_table
[idx
]->b_hash_next
== NULL
)
1091 ARCSTAT_BUMPDOWN(arcstat_hash_chains
);
1095 * Global data structures and functions for the buf kmem cache.
1098 static kmem_cache_t
*hdr_full_cache
;
1099 static kmem_cache_t
*hdr_full_crypt_cache
;
1100 static kmem_cache_t
*hdr_l2only_cache
;
1101 static kmem_cache_t
*buf_cache
;
1106 #if defined(_KERNEL)
1108 * Large allocations which do not require contiguous pages
1109 * should be using vmem_free() in the linux kernel\
1111 vmem_free(buf_hash_table
.ht_table
,
1112 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1114 kmem_free(buf_hash_table
.ht_table
,
1115 (buf_hash_table
.ht_mask
+ 1) * sizeof (void *));
1117 for (int i
= 0; i
< BUF_LOCKS
; i
++)
1118 mutex_destroy(BUF_HASH_LOCK(i
));
1119 kmem_cache_destroy(hdr_full_cache
);
1120 kmem_cache_destroy(hdr_full_crypt_cache
);
1121 kmem_cache_destroy(hdr_l2only_cache
);
1122 kmem_cache_destroy(buf_cache
);
1126 * Constructor callback - called when the cache is empty
1127 * and a new buf is requested.
1130 hdr_full_cons(void *vbuf
, void *unused
, int kmflag
)
1132 (void) unused
, (void) kmflag
;
1133 arc_buf_hdr_t
*hdr
= vbuf
;
1135 memset(hdr
, 0, HDR_FULL_SIZE
);
1136 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
1137 cv_init(&hdr
->b_l1hdr
.b_cv
, NULL
, CV_DEFAULT
, NULL
);
1138 zfs_refcount_create(&hdr
->b_l1hdr
.b_refcnt
);
1139 mutex_init(&hdr
->b_l1hdr
.b_freeze_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1140 list_link_init(&hdr
->b_l1hdr
.b_arc_node
);
1141 list_link_init(&hdr
->b_l2hdr
.b_l2node
);
1142 multilist_link_init(&hdr
->b_l1hdr
.b_arc_node
);
1143 arc_space_consume(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1149 hdr_full_crypt_cons(void *vbuf
, void *unused
, int kmflag
)
1152 arc_buf_hdr_t
*hdr
= vbuf
;
1154 hdr_full_cons(vbuf
, unused
, kmflag
);
1155 memset(&hdr
->b_crypt_hdr
, 0, sizeof (hdr
->b_crypt_hdr
));
1156 arc_space_consume(sizeof (hdr
->b_crypt_hdr
), ARC_SPACE_HDRS
);
1162 hdr_l2only_cons(void *vbuf
, void *unused
, int kmflag
)
1164 (void) unused
, (void) kmflag
;
1165 arc_buf_hdr_t
*hdr
= vbuf
;
1167 memset(hdr
, 0, HDR_L2ONLY_SIZE
);
1168 arc_space_consume(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1174 buf_cons(void *vbuf
, void *unused
, int kmflag
)
1176 (void) unused
, (void) kmflag
;
1177 arc_buf_t
*buf
= vbuf
;
1179 memset(buf
, 0, sizeof (arc_buf_t
));
1180 mutex_init(&buf
->b_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1181 arc_space_consume(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1187 * Destructor callback - called when a cached buf is
1188 * no longer required.
1191 hdr_full_dest(void *vbuf
, void *unused
)
1194 arc_buf_hdr_t
*hdr
= vbuf
;
1196 ASSERT(HDR_EMPTY(hdr
));
1197 cv_destroy(&hdr
->b_l1hdr
.b_cv
);
1198 zfs_refcount_destroy(&hdr
->b_l1hdr
.b_refcnt
);
1199 mutex_destroy(&hdr
->b_l1hdr
.b_freeze_lock
);
1200 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
1201 arc_space_return(HDR_FULL_SIZE
, ARC_SPACE_HDRS
);
1205 hdr_full_crypt_dest(void *vbuf
, void *unused
)
1207 (void) vbuf
, (void) unused
;
1209 hdr_full_dest(vbuf
, unused
);
1210 arc_space_return(sizeof (((arc_buf_hdr_t
*)NULL
)->b_crypt_hdr
),
1215 hdr_l2only_dest(void *vbuf
, void *unused
)
1218 arc_buf_hdr_t
*hdr
= vbuf
;
1220 ASSERT(HDR_EMPTY(hdr
));
1221 arc_space_return(HDR_L2ONLY_SIZE
, ARC_SPACE_L2HDRS
);
1225 buf_dest(void *vbuf
, void *unused
)
1228 arc_buf_t
*buf
= vbuf
;
1230 mutex_destroy(&buf
->b_evict_lock
);
1231 arc_space_return(sizeof (arc_buf_t
), ARC_SPACE_HDRS
);
1237 uint64_t *ct
= NULL
;
1238 uint64_t hsize
= 1ULL << 12;
1242 * The hash table is big enough to fill all of physical memory
1243 * with an average block size of zfs_arc_average_blocksize (default 8K).
1244 * By default, the table will take up
1245 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
1247 while (hsize
* zfs_arc_average_blocksize
< arc_all_memory())
1250 buf_hash_table
.ht_mask
= hsize
- 1;
1251 #if defined(_KERNEL)
1253 * Large allocations which do not require contiguous pages
1254 * should be using vmem_alloc() in the linux kernel
1256 buf_hash_table
.ht_table
=
1257 vmem_zalloc(hsize
* sizeof (void*), KM_SLEEP
);
1259 buf_hash_table
.ht_table
=
1260 kmem_zalloc(hsize
* sizeof (void*), KM_NOSLEEP
);
1262 if (buf_hash_table
.ht_table
== NULL
) {
1263 ASSERT(hsize
> (1ULL << 8));
1268 hdr_full_cache
= kmem_cache_create("arc_buf_hdr_t_full", HDR_FULL_SIZE
,
1269 0, hdr_full_cons
, hdr_full_dest
, NULL
, NULL
, NULL
, 0);
1270 hdr_full_crypt_cache
= kmem_cache_create("arc_buf_hdr_t_full_crypt",
1271 HDR_FULL_CRYPT_SIZE
, 0, hdr_full_crypt_cons
, hdr_full_crypt_dest
,
1272 NULL
, NULL
, NULL
, 0);
1273 hdr_l2only_cache
= kmem_cache_create("arc_buf_hdr_t_l2only",
1274 HDR_L2ONLY_SIZE
, 0, hdr_l2only_cons
, hdr_l2only_dest
, NULL
,
1276 buf_cache
= kmem_cache_create("arc_buf_t", sizeof (arc_buf_t
),
1277 0, buf_cons
, buf_dest
, NULL
, NULL
, NULL
, 0);
1279 for (i
= 0; i
< 256; i
++)
1280 for (ct
= zfs_crc64_table
+ i
, *ct
= i
, j
= 8; j
> 0; j
--)
1281 *ct
= (*ct
>> 1) ^ (-(*ct
& 1) & ZFS_CRC64_POLY
);
1283 for (i
= 0; i
< BUF_LOCKS
; i
++)
1284 mutex_init(BUF_HASH_LOCK(i
), NULL
, MUTEX_DEFAULT
, NULL
);
1287 #define ARC_MINTIME (hz>>4) /* 62 ms */
1290 * This is the size that the buf occupies in memory. If the buf is compressed,
1291 * it will correspond to the compressed size. You should use this method of
1292 * getting the buf size unless you explicitly need the logical size.
1295 arc_buf_size(arc_buf_t
*buf
)
1297 return (ARC_BUF_COMPRESSED(buf
) ?
1298 HDR_GET_PSIZE(buf
->b_hdr
) : HDR_GET_LSIZE(buf
->b_hdr
));
1302 arc_buf_lsize(arc_buf_t
*buf
)
1304 return (HDR_GET_LSIZE(buf
->b_hdr
));
1308 * This function will return B_TRUE if the buffer is encrypted in memory.
1309 * This buffer can be decrypted by calling arc_untransform().
1312 arc_is_encrypted(arc_buf_t
*buf
)
1314 return (ARC_BUF_ENCRYPTED(buf
) != 0);
1318 * Returns B_TRUE if the buffer represents data that has not had its MAC
1322 arc_is_unauthenticated(arc_buf_t
*buf
)
1324 return (HDR_NOAUTH(buf
->b_hdr
) != 0);
1328 arc_get_raw_params(arc_buf_t
*buf
, boolean_t
*byteorder
, uint8_t *salt
,
1329 uint8_t *iv
, uint8_t *mac
)
1331 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1333 ASSERT(HDR_PROTECTED(hdr
));
1335 memcpy(salt
, hdr
->b_crypt_hdr
.b_salt
, ZIO_DATA_SALT_LEN
);
1336 memcpy(iv
, hdr
->b_crypt_hdr
.b_iv
, ZIO_DATA_IV_LEN
);
1337 memcpy(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
);
1338 *byteorder
= (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
1339 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
1343 * Indicates how this buffer is compressed in memory. If it is not compressed
1344 * the value will be ZIO_COMPRESS_OFF. It can be made normally readable with
1345 * arc_untransform() as long as it is also unencrypted.
1348 arc_get_compression(arc_buf_t
*buf
)
1350 return (ARC_BUF_COMPRESSED(buf
) ?
1351 HDR_GET_COMPRESS(buf
->b_hdr
) : ZIO_COMPRESS_OFF
);
1355 * Return the compression algorithm used to store this data in the ARC. If ARC
1356 * compression is enabled or this is an encrypted block, this will be the same
1357 * as what's used to store it on-disk. Otherwise, this will be ZIO_COMPRESS_OFF.
1359 static inline enum zio_compress
1360 arc_hdr_get_compress(arc_buf_hdr_t
*hdr
)
1362 return (HDR_COMPRESSION_ENABLED(hdr
) ?
1363 HDR_GET_COMPRESS(hdr
) : ZIO_COMPRESS_OFF
);
1367 arc_get_complevel(arc_buf_t
*buf
)
1369 return (buf
->b_hdr
->b_complevel
);
1372 static inline boolean_t
1373 arc_buf_is_shared(arc_buf_t
*buf
)
1375 boolean_t shared
= (buf
->b_data
!= NULL
&&
1376 buf
->b_hdr
->b_l1hdr
.b_pabd
!= NULL
&&
1377 abd_is_linear(buf
->b_hdr
->b_l1hdr
.b_pabd
) &&
1378 buf
->b_data
== abd_to_buf(buf
->b_hdr
->b_l1hdr
.b_pabd
));
1379 IMPLY(shared
, HDR_SHARED_DATA(buf
->b_hdr
));
1380 IMPLY(shared
, ARC_BUF_SHARED(buf
));
1381 IMPLY(shared
, ARC_BUF_COMPRESSED(buf
) || ARC_BUF_LAST(buf
));
1384 * It would be nice to assert arc_can_share() too, but the "hdr isn't
1385 * already being shared" requirement prevents us from doing that.
1392 * Free the checksum associated with this header. If there is no checksum, this
1396 arc_cksum_free(arc_buf_hdr_t
*hdr
)
1398 ASSERT(HDR_HAS_L1HDR(hdr
));
1400 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1401 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
) {
1402 kmem_free(hdr
->b_l1hdr
.b_freeze_cksum
, sizeof (zio_cksum_t
));
1403 hdr
->b_l1hdr
.b_freeze_cksum
= NULL
;
1405 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1409 * Return true iff at least one of the bufs on hdr is not compressed.
1410 * Encrypted buffers count as compressed.
1413 arc_hdr_has_uncompressed_buf(arc_buf_hdr_t
*hdr
)
1415 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY_OR_LOCKED(hdr
));
1417 for (arc_buf_t
*b
= hdr
->b_l1hdr
.b_buf
; b
!= NULL
; b
= b
->b_next
) {
1418 if (!ARC_BUF_COMPRESSED(b
)) {
1427 * If we've turned on the ZFS_DEBUG_MODIFY flag, verify that the buf's data
1428 * matches the checksum that is stored in the hdr. If there is no checksum,
1429 * or if the buf is compressed, this is a no-op.
1432 arc_cksum_verify(arc_buf_t
*buf
)
1434 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1437 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1440 if (ARC_BUF_COMPRESSED(buf
))
1443 ASSERT(HDR_HAS_L1HDR(hdr
));
1445 mutex_enter(&hdr
->b_l1hdr
.b_freeze_lock
);
1447 if (hdr
->b_l1hdr
.b_freeze_cksum
== NULL
|| HDR_IO_ERROR(hdr
)) {
1448 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1452 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
, &zc
);
1453 if (!ZIO_CHECKSUM_EQUAL(*hdr
->b_l1hdr
.b_freeze_cksum
, zc
))
1454 panic("buffer modified while frozen!");
1455 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1459 * This function makes the assumption that data stored in the L2ARC
1460 * will be transformed exactly as it is in the main pool. Because of
1461 * this we can verify the checksum against the reading process's bp.
1464 arc_cksum_is_equal(arc_buf_hdr_t
*hdr
, zio_t
*zio
)
1466 ASSERT(!BP_IS_EMBEDDED(zio
->io_bp
));
1467 VERIFY3U(BP_GET_PSIZE(zio
->io_bp
), ==, HDR_GET_PSIZE(hdr
));
1470 * Block pointers always store the checksum for the logical data.
1471 * If the block pointer has the gang bit set, then the checksum
1472 * it represents is for the reconstituted data and not for an
1473 * individual gang member. The zio pipeline, however, must be able to
1474 * determine the checksum of each of the gang constituents so it
1475 * treats the checksum comparison differently than what we need
1476 * for l2arc blocks. This prevents us from using the
1477 * zio_checksum_error() interface directly. Instead we must call the
1478 * zio_checksum_error_impl() so that we can ensure the checksum is
1479 * generated using the correct checksum algorithm and accounts for the
1480 * logical I/O size and not just a gang fragment.
1482 return (zio_checksum_error_impl(zio
->io_spa
, zio
->io_bp
,
1483 BP_GET_CHECKSUM(zio
->io_bp
), zio
->io_abd
, zio
->io_size
,
1484 zio
->io_offset
, NULL
) == 0);
1488 * Given a buf full of data, if ZFS_DEBUG_MODIFY is enabled this computes a
1489 * checksum and attaches it to the buf's hdr so that we can ensure that the buf
1490 * isn't modified later on. If buf is compressed or there is already a checksum
1491 * on the hdr, this is a no-op (we only checksum uncompressed bufs).
1494 arc_cksum_compute(arc_buf_t
*buf
)
1496 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1498 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1501 ASSERT(HDR_HAS_L1HDR(hdr
));
1503 mutex_enter(&buf
->b_hdr
->b_l1hdr
.b_freeze_lock
);
1504 if (hdr
->b_l1hdr
.b_freeze_cksum
!= NULL
|| ARC_BUF_COMPRESSED(buf
)) {
1505 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1509 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
1510 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1511 hdr
->b_l1hdr
.b_freeze_cksum
= kmem_alloc(sizeof (zio_cksum_t
),
1513 fletcher_2_native(buf
->b_data
, arc_buf_size(buf
), NULL
,
1514 hdr
->b_l1hdr
.b_freeze_cksum
);
1515 mutex_exit(&hdr
->b_l1hdr
.b_freeze_lock
);
1521 arc_buf_sigsegv(int sig
, siginfo_t
*si
, void *unused
)
1523 (void) sig
, (void) unused
;
1524 panic("Got SIGSEGV at address: 0x%lx\n", (long)si
->si_addr
);
1529 arc_buf_unwatch(arc_buf_t
*buf
)
1533 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1534 PROT_READ
| PROT_WRITE
));
1542 arc_buf_watch(arc_buf_t
*buf
)
1546 ASSERT0(mprotect(buf
->b_data
, arc_buf_size(buf
),
1553 static arc_buf_contents_t
1554 arc_buf_type(arc_buf_hdr_t
*hdr
)
1556 arc_buf_contents_t type
;
1557 if (HDR_ISTYPE_METADATA(hdr
)) {
1558 type
= ARC_BUFC_METADATA
;
1560 type
= ARC_BUFC_DATA
;
1562 VERIFY3U(hdr
->b_type
, ==, type
);
1567 arc_is_metadata(arc_buf_t
*buf
)
1569 return (HDR_ISTYPE_METADATA(buf
->b_hdr
) != 0);
1573 arc_bufc_to_flags(arc_buf_contents_t type
)
1577 /* metadata field is 0 if buffer contains normal data */
1579 case ARC_BUFC_METADATA
:
1580 return (ARC_FLAG_BUFC_METADATA
);
1584 panic("undefined ARC buffer type!");
1585 return ((uint32_t)-1);
1589 arc_buf_thaw(arc_buf_t
*buf
)
1591 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1593 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
1594 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
1596 arc_cksum_verify(buf
);
1599 * Compressed buffers do not manipulate the b_freeze_cksum.
1601 if (ARC_BUF_COMPRESSED(buf
))
1604 ASSERT(HDR_HAS_L1HDR(hdr
));
1605 arc_cksum_free(hdr
);
1606 arc_buf_unwatch(buf
);
1610 arc_buf_freeze(arc_buf_t
*buf
)
1612 if (!(zfs_flags
& ZFS_DEBUG_MODIFY
))
1615 if (ARC_BUF_COMPRESSED(buf
))
1618 ASSERT(HDR_HAS_L1HDR(buf
->b_hdr
));
1619 arc_cksum_compute(buf
);
1623 * The arc_buf_hdr_t's b_flags should never be modified directly. Instead,
1624 * the following functions should be used to ensure that the flags are
1625 * updated in a thread-safe way. When manipulating the flags either
1626 * the hash_lock must be held or the hdr must be undiscoverable. This
1627 * ensures that we're not racing with any other threads when updating
1631 arc_hdr_set_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1633 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1634 hdr
->b_flags
|= flags
;
1638 arc_hdr_clear_flags(arc_buf_hdr_t
*hdr
, arc_flags_t flags
)
1640 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1641 hdr
->b_flags
&= ~flags
;
1645 * Setting the compression bits in the arc_buf_hdr_t's b_flags is
1646 * done in a special way since we have to clear and set bits
1647 * at the same time. Consumers that wish to set the compression bits
1648 * must use this function to ensure that the flags are updated in
1649 * thread-safe manner.
1652 arc_hdr_set_compress(arc_buf_hdr_t
*hdr
, enum zio_compress cmp
)
1654 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1657 * Holes and embedded blocks will always have a psize = 0 so
1658 * we ignore the compression of the blkptr and set the
1659 * want to uncompress them. Mark them as uncompressed.
1661 if (!zfs_compressed_arc_enabled
|| HDR_GET_PSIZE(hdr
) == 0) {
1662 arc_hdr_clear_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1663 ASSERT(!HDR_COMPRESSION_ENABLED(hdr
));
1665 arc_hdr_set_flags(hdr
, ARC_FLAG_COMPRESSED_ARC
);
1666 ASSERT(HDR_COMPRESSION_ENABLED(hdr
));
1669 HDR_SET_COMPRESS(hdr
, cmp
);
1670 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, cmp
);
1674 * Looks for another buf on the same hdr which has the data decompressed, copies
1675 * from it, and returns true. If no such buf exists, returns false.
1678 arc_buf_try_copy_decompressed_data(arc_buf_t
*buf
)
1680 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1681 boolean_t copied
= B_FALSE
;
1683 ASSERT(HDR_HAS_L1HDR(hdr
));
1684 ASSERT3P(buf
->b_data
, !=, NULL
);
1685 ASSERT(!ARC_BUF_COMPRESSED(buf
));
1687 for (arc_buf_t
*from
= hdr
->b_l1hdr
.b_buf
; from
!= NULL
;
1688 from
= from
->b_next
) {
1689 /* can't use our own data buffer */
1694 if (!ARC_BUF_COMPRESSED(from
)) {
1695 memcpy(buf
->b_data
, from
->b_data
, arc_buf_size(buf
));
1702 * There were no decompressed bufs, so there should not be a
1703 * checksum on the hdr either.
1705 if (zfs_flags
& ZFS_DEBUG_MODIFY
)
1706 EQUIV(!copied
, hdr
->b_l1hdr
.b_freeze_cksum
== NULL
);
1712 * Allocates an ARC buf header that's in an evicted & L2-cached state.
1713 * This is used during l2arc reconstruction to make empty ARC buffers
1714 * which circumvent the regular disk->arc->l2arc path and instead come
1715 * into being in the reverse order, i.e. l2arc->arc.
1717 static arc_buf_hdr_t
*
1718 arc_buf_alloc_l2only(size_t size
, arc_buf_contents_t type
, l2arc_dev_t
*dev
,
1719 dva_t dva
, uint64_t daddr
, int32_t psize
, uint64_t birth
,
1720 enum zio_compress compress
, uint8_t complevel
, boolean_t
protected,
1721 boolean_t prefetch
, arc_state_type_t arcs_state
)
1726 hdr
= kmem_cache_alloc(hdr_l2only_cache
, KM_SLEEP
);
1727 hdr
->b_birth
= birth
;
1730 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L2HDR
);
1731 HDR_SET_LSIZE(hdr
, size
);
1732 HDR_SET_PSIZE(hdr
, psize
);
1733 arc_hdr_set_compress(hdr
, compress
);
1734 hdr
->b_complevel
= complevel
;
1736 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
1738 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
1739 hdr
->b_spa
= spa_load_guid(dev
->l2ad_vdev
->vdev_spa
);
1743 hdr
->b_l2hdr
.b_dev
= dev
;
1744 hdr
->b_l2hdr
.b_daddr
= daddr
;
1745 hdr
->b_l2hdr
.b_arcs_state
= arcs_state
;
1751 * Return the size of the block, b_pabd, that is stored in the arc_buf_hdr_t.
1754 arc_hdr_size(arc_buf_hdr_t
*hdr
)
1758 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
1759 HDR_GET_PSIZE(hdr
) > 0) {
1760 size
= HDR_GET_PSIZE(hdr
);
1762 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, 0);
1763 size
= HDR_GET_LSIZE(hdr
);
1769 arc_hdr_authenticate(arc_buf_hdr_t
*hdr
, spa_t
*spa
, uint64_t dsobj
)
1773 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
1774 uint64_t psize
= HDR_GET_PSIZE(hdr
);
1775 void *tmpbuf
= NULL
;
1776 abd_t
*abd
= hdr
->b_l1hdr
.b_pabd
;
1778 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1779 ASSERT(HDR_AUTHENTICATED(hdr
));
1780 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1783 * The MAC is calculated on the compressed data that is stored on disk.
1784 * However, if compressed arc is disabled we will only have the
1785 * decompressed data available to us now. Compress it into a temporary
1786 * abd so we can verify the MAC. The performance overhead of this will
1787 * be relatively low, since most objects in an encrypted objset will
1788 * be encrypted (instead of authenticated) anyway.
1790 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1791 !HDR_COMPRESSION_ENABLED(hdr
)) {
1792 tmpbuf
= zio_buf_alloc(lsize
);
1793 abd
= abd_get_from_buf(tmpbuf
, lsize
);
1794 abd_take_ownership_of_buf(abd
, B_TRUE
);
1795 csize
= zio_compress_data(HDR_GET_COMPRESS(hdr
),
1796 hdr
->b_l1hdr
.b_pabd
, tmpbuf
, lsize
, hdr
->b_complevel
);
1797 ASSERT3U(csize
, <=, psize
);
1798 abd_zero_off(abd
, csize
, psize
- csize
);
1802 * Authentication is best effort. We authenticate whenever the key is
1803 * available. If we succeed we clear ARC_FLAG_NOAUTH.
1805 if (hdr
->b_crypt_hdr
.b_ot
== DMU_OT_OBJSET
) {
1806 ASSERT3U(HDR_GET_COMPRESS(hdr
), ==, ZIO_COMPRESS_OFF
);
1807 ASSERT3U(lsize
, ==, psize
);
1808 ret
= spa_do_crypt_objset_mac_abd(B_FALSE
, spa
, dsobj
, abd
,
1809 psize
, hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1811 ret
= spa_do_crypt_mac_abd(B_FALSE
, spa
, dsobj
, abd
, psize
,
1812 hdr
->b_crypt_hdr
.b_mac
);
1816 arc_hdr_clear_flags(hdr
, ARC_FLAG_NOAUTH
);
1817 else if (ret
!= ENOENT
)
1833 * This function will take a header that only has raw encrypted data in
1834 * b_crypt_hdr.b_rabd and decrypt it into a new buffer which is stored in
1835 * b_l1hdr.b_pabd. If designated in the header flags, this function will
1836 * also decompress the data.
1839 arc_hdr_decrypt(arc_buf_hdr_t
*hdr
, spa_t
*spa
, const zbookmark_phys_t
*zb
)
1844 boolean_t no_crypt
= B_FALSE
;
1845 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
1847 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1848 ASSERT(HDR_ENCRYPTED(hdr
));
1850 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
);
1852 ret
= spa_do_crypt_abd(B_FALSE
, spa
, zb
, hdr
->b_crypt_hdr
.b_ot
,
1853 B_FALSE
, bswap
, hdr
->b_crypt_hdr
.b_salt
, hdr
->b_crypt_hdr
.b_iv
,
1854 hdr
->b_crypt_hdr
.b_mac
, HDR_GET_PSIZE(hdr
), hdr
->b_l1hdr
.b_pabd
,
1855 hdr
->b_crypt_hdr
.b_rabd
, &no_crypt
);
1860 abd_copy(hdr
->b_l1hdr
.b_pabd
, hdr
->b_crypt_hdr
.b_rabd
,
1861 HDR_GET_PSIZE(hdr
));
1865 * If this header has disabled arc compression but the b_pabd is
1866 * compressed after decrypting it, we need to decompress the newly
1869 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
1870 !HDR_COMPRESSION_ENABLED(hdr
)) {
1872 * We want to make sure that we are correctly honoring the
1873 * zfs_abd_scatter_enabled setting, so we allocate an abd here
1874 * and then loan a buffer from it, rather than allocating a
1875 * linear buffer and wrapping it in an abd later.
1877 cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
1879 tmp
= abd_borrow_buf(cabd
, arc_hdr_size(hdr
));
1881 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
1882 hdr
->b_l1hdr
.b_pabd
, tmp
, HDR_GET_PSIZE(hdr
),
1883 HDR_GET_LSIZE(hdr
), &hdr
->b_complevel
);
1885 abd_return_buf(cabd
, tmp
, arc_hdr_size(hdr
));
1889 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
1890 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
1891 arc_hdr_size(hdr
), hdr
);
1892 hdr
->b_l1hdr
.b_pabd
= cabd
;
1898 arc_hdr_free_abd(hdr
, B_FALSE
);
1900 arc_free_data_buf(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
1906 * This function is called during arc_buf_fill() to prepare the header's
1907 * abd plaintext pointer for use. This involves authenticated protected
1908 * data and decrypting encrypted data into the plaintext abd.
1911 arc_fill_hdr_crypt(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, spa_t
*spa
,
1912 const zbookmark_phys_t
*zb
, boolean_t noauth
)
1916 ASSERT(HDR_PROTECTED(hdr
));
1918 if (hash_lock
!= NULL
)
1919 mutex_enter(hash_lock
);
1921 if (HDR_NOAUTH(hdr
) && !noauth
) {
1923 * The caller requested authenticated data but our data has
1924 * not been authenticated yet. Verify the MAC now if we can.
1926 ret
= arc_hdr_authenticate(hdr
, spa
, zb
->zb_objset
);
1929 } else if (HDR_HAS_RABD(hdr
) && hdr
->b_l1hdr
.b_pabd
== NULL
) {
1931 * If we only have the encrypted version of the data, but the
1932 * unencrypted version was requested we take this opportunity
1933 * to store the decrypted version in the header for future use.
1935 ret
= arc_hdr_decrypt(hdr
, spa
, zb
);
1940 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1942 if (hash_lock
!= NULL
)
1943 mutex_exit(hash_lock
);
1948 if (hash_lock
!= NULL
)
1949 mutex_exit(hash_lock
);
1955 * This function is used by the dbuf code to decrypt bonus buffers in place.
1956 * The dbuf code itself doesn't have any locking for decrypting a shared dnode
1957 * block, so we use the hash lock here to protect against concurrent calls to
1961 arc_buf_untransform_in_place(arc_buf_t
*buf
)
1963 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1965 ASSERT(HDR_ENCRYPTED(hdr
));
1966 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
1967 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
1968 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
1970 zio_crypt_copy_dnode_bonus(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
1972 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
1973 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
1974 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
1978 * Given a buf that has a data buffer attached to it, this function will
1979 * efficiently fill the buf with data of the specified compression setting from
1980 * the hdr and update the hdr's b_freeze_cksum if necessary. If the buf and hdr
1981 * are already sharing a data buf, no copy is performed.
1983 * If the buf is marked as compressed but uncompressed data was requested, this
1984 * will allocate a new data buffer for the buf, remove that flag, and fill the
1985 * buf with uncompressed data. You can't request a compressed buf on a hdr with
1986 * uncompressed data, and (since we haven't added support for it yet) if you
1987 * want compressed data your buf must already be marked as compressed and have
1988 * the correct-sized data buffer.
1991 arc_buf_fill(arc_buf_t
*buf
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
1992 arc_fill_flags_t flags
)
1995 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
1996 boolean_t hdr_compressed
=
1997 (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
1998 boolean_t compressed
= (flags
& ARC_FILL_COMPRESSED
) != 0;
1999 boolean_t encrypted
= (flags
& ARC_FILL_ENCRYPTED
) != 0;
2000 dmu_object_byteswap_t bswap
= hdr
->b_l1hdr
.b_byteswap
;
2001 kmutex_t
*hash_lock
= (flags
& ARC_FILL_LOCKED
) ? NULL
: HDR_LOCK(hdr
);
2003 ASSERT3P(buf
->b_data
, !=, NULL
);
2004 IMPLY(compressed
, hdr_compressed
|| ARC_BUF_ENCRYPTED(buf
));
2005 IMPLY(compressed
, ARC_BUF_COMPRESSED(buf
));
2006 IMPLY(encrypted
, HDR_ENCRYPTED(hdr
));
2007 IMPLY(encrypted
, ARC_BUF_ENCRYPTED(buf
));
2008 IMPLY(encrypted
, ARC_BUF_COMPRESSED(buf
));
2009 IMPLY(encrypted
, !ARC_BUF_SHARED(buf
));
2012 * If the caller wanted encrypted data we just need to copy it from
2013 * b_rabd and potentially byteswap it. We won't be able to do any
2014 * further transforms on it.
2017 ASSERT(HDR_HAS_RABD(hdr
));
2018 abd_copy_to_buf(buf
->b_data
, hdr
->b_crypt_hdr
.b_rabd
,
2019 HDR_GET_PSIZE(hdr
));
2024 * Adjust encrypted and authenticated headers to accommodate
2025 * the request if needed. Dnode blocks (ARC_FILL_IN_PLACE) are
2026 * allowed to fail decryption due to keys not being loaded
2027 * without being marked as an IO error.
2029 if (HDR_PROTECTED(hdr
)) {
2030 error
= arc_fill_hdr_crypt(hdr
, hash_lock
, spa
,
2031 zb
, !!(flags
& ARC_FILL_NOAUTH
));
2032 if (error
== EACCES
&& (flags
& ARC_FILL_IN_PLACE
) != 0) {
2034 } else if (error
!= 0) {
2035 if (hash_lock
!= NULL
)
2036 mutex_enter(hash_lock
);
2037 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
2038 if (hash_lock
!= NULL
)
2039 mutex_exit(hash_lock
);
2045 * There is a special case here for dnode blocks which are
2046 * decrypting their bonus buffers. These blocks may request to
2047 * be decrypted in-place. This is necessary because there may
2048 * be many dnodes pointing into this buffer and there is
2049 * currently no method to synchronize replacing the backing
2050 * b_data buffer and updating all of the pointers. Here we use
2051 * the hash lock to ensure there are no races. If the need
2052 * arises for other types to be decrypted in-place, they must
2053 * add handling here as well.
2055 if ((flags
& ARC_FILL_IN_PLACE
) != 0) {
2056 ASSERT(!hdr_compressed
);
2057 ASSERT(!compressed
);
2060 if (HDR_ENCRYPTED(hdr
) && ARC_BUF_ENCRYPTED(buf
)) {
2061 ASSERT3U(hdr
->b_crypt_hdr
.b_ot
, ==, DMU_OT_DNODE
);
2063 if (hash_lock
!= NULL
)
2064 mutex_enter(hash_lock
);
2065 arc_buf_untransform_in_place(buf
);
2066 if (hash_lock
!= NULL
)
2067 mutex_exit(hash_lock
);
2069 /* Compute the hdr's checksum if necessary */
2070 arc_cksum_compute(buf
);
2076 if (hdr_compressed
== compressed
) {
2077 if (!arc_buf_is_shared(buf
)) {
2078 abd_copy_to_buf(buf
->b_data
, hdr
->b_l1hdr
.b_pabd
,
2082 ASSERT(hdr_compressed
);
2083 ASSERT(!compressed
);
2086 * If the buf is sharing its data with the hdr, unlink it and
2087 * allocate a new data buffer for the buf.
2089 if (arc_buf_is_shared(buf
)) {
2090 ASSERT(ARC_BUF_COMPRESSED(buf
));
2092 /* We need to give the buf its own b_data */
2093 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
2095 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2096 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2098 /* Previously overhead was 0; just add new overhead */
2099 ARCSTAT_INCR(arcstat_overhead_size
, HDR_GET_LSIZE(hdr
));
2100 } else if (ARC_BUF_COMPRESSED(buf
)) {
2101 /* We need to reallocate the buf's b_data */
2102 arc_free_data_buf(hdr
, buf
->b_data
, HDR_GET_PSIZE(hdr
),
2105 arc_get_data_buf(hdr
, HDR_GET_LSIZE(hdr
), buf
);
2107 /* We increased the size of b_data; update overhead */
2108 ARCSTAT_INCR(arcstat_overhead_size
,
2109 HDR_GET_LSIZE(hdr
) - HDR_GET_PSIZE(hdr
));
2113 * Regardless of the buf's previous compression settings, it
2114 * should not be compressed at the end of this function.
2116 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
2119 * Try copying the data from another buf which already has a
2120 * decompressed version. If that's not possible, it's time to
2121 * bite the bullet and decompress the data from the hdr.
2123 if (arc_buf_try_copy_decompressed_data(buf
)) {
2124 /* Skip byteswapping and checksumming (already done) */
2127 error
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
2128 hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
2129 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
),
2133 * Absent hardware errors or software bugs, this should
2134 * be impossible, but log it anyway so we can debug it.
2138 "hdr %px, compress %d, psize %d, lsize %d",
2139 hdr
, arc_hdr_get_compress(hdr
),
2140 HDR_GET_PSIZE(hdr
), HDR_GET_LSIZE(hdr
));
2141 if (hash_lock
!= NULL
)
2142 mutex_enter(hash_lock
);
2143 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
2144 if (hash_lock
!= NULL
)
2145 mutex_exit(hash_lock
);
2146 return (SET_ERROR(EIO
));
2152 /* Byteswap the buf's data if necessary */
2153 if (bswap
!= DMU_BSWAP_NUMFUNCS
) {
2154 ASSERT(!HDR_SHARED_DATA(hdr
));
2155 ASSERT3U(bswap
, <, DMU_BSWAP_NUMFUNCS
);
2156 dmu_ot_byteswap
[bswap
].ob_func(buf
->b_data
, HDR_GET_LSIZE(hdr
));
2159 /* Compute the hdr's checksum if necessary */
2160 arc_cksum_compute(buf
);
2166 * If this function is being called to decrypt an encrypted buffer or verify an
2167 * authenticated one, the key must be loaded and a mapping must be made
2168 * available in the keystore via spa_keystore_create_mapping() or one of its
2172 arc_untransform(arc_buf_t
*buf
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2176 arc_fill_flags_t flags
= 0;
2179 flags
|= ARC_FILL_IN_PLACE
;
2181 ret
= arc_buf_fill(buf
, spa
, zb
, flags
);
2182 if (ret
== ECKSUM
) {
2184 * Convert authentication and decryption errors to EIO
2185 * (and generate an ereport) before leaving the ARC.
2187 ret
= SET_ERROR(EIO
);
2188 spa_log_error(spa
, zb
);
2189 (void) zfs_ereport_post(FM_EREPORT_ZFS_AUTHENTICATION
,
2190 spa
, NULL
, zb
, NULL
, 0);
2197 * Increment the amount of evictable space in the arc_state_t's refcount.
2198 * We account for the space used by the hdr and the arc buf individually
2199 * so that we can add and remove them from the refcount individually.
2202 arc_evictable_space_increment(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2204 arc_buf_contents_t type
= arc_buf_type(hdr
);
2206 ASSERT(HDR_HAS_L1HDR(hdr
));
2208 if (GHOST_STATE(state
)) {
2209 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
2210 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2211 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2212 ASSERT(!HDR_HAS_RABD(hdr
));
2213 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2214 HDR_GET_LSIZE(hdr
), hdr
);
2218 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2219 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2220 arc_hdr_size(hdr
), hdr
);
2222 if (HDR_HAS_RABD(hdr
)) {
2223 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2224 HDR_GET_PSIZE(hdr
), hdr
);
2227 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2228 buf
= buf
->b_next
) {
2229 if (arc_buf_is_shared(buf
))
2231 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
2232 arc_buf_size(buf
), buf
);
2237 * Decrement the amount of evictable space in the arc_state_t's refcount.
2238 * We account for the space used by the hdr and the arc buf individually
2239 * so that we can add and remove them from the refcount individually.
2242 arc_evictable_space_decrement(arc_buf_hdr_t
*hdr
, arc_state_t
*state
)
2244 arc_buf_contents_t type
= arc_buf_type(hdr
);
2246 ASSERT(HDR_HAS_L1HDR(hdr
));
2248 if (GHOST_STATE(state
)) {
2249 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
2250 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2251 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2252 ASSERT(!HDR_HAS_RABD(hdr
));
2253 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2254 HDR_GET_LSIZE(hdr
), hdr
);
2258 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2259 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2260 arc_hdr_size(hdr
), hdr
);
2262 if (HDR_HAS_RABD(hdr
)) {
2263 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2264 HDR_GET_PSIZE(hdr
), hdr
);
2267 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2268 buf
= buf
->b_next
) {
2269 if (arc_buf_is_shared(buf
))
2271 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2272 arc_buf_size(buf
), buf
);
2277 * Add a reference to this hdr indicating that someone is actively
2278 * referencing that memory. When the refcount transitions from 0 to 1,
2279 * we remove it from the respective arc_state_t list to indicate that
2280 * it is not evictable.
2283 add_reference(arc_buf_hdr_t
*hdr
, void *tag
)
2287 ASSERT(HDR_HAS_L1HDR(hdr
));
2288 if (!HDR_EMPTY(hdr
) && !MUTEX_HELD(HDR_LOCK(hdr
))) {
2289 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
);
2290 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2291 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2294 state
= hdr
->b_l1hdr
.b_state
;
2296 if ((zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
) == 1) &&
2297 (state
!= arc_anon
)) {
2298 /* We don't use the L2-only state list. */
2299 if (state
!= arc_l2c_only
) {
2300 multilist_remove(&state
->arcs_list
[arc_buf_type(hdr
)],
2302 arc_evictable_space_decrement(hdr
, state
);
2304 /* remove the prefetch flag if we get a reference */
2305 if (HDR_HAS_L2HDR(hdr
))
2306 l2arc_hdr_arcstats_decrement_state(hdr
);
2307 arc_hdr_clear_flags(hdr
, ARC_FLAG_PREFETCH
);
2308 if (HDR_HAS_L2HDR(hdr
))
2309 l2arc_hdr_arcstats_increment_state(hdr
);
2314 * Remove a reference from this hdr. When the reference transitions from
2315 * 1 to 0 and we're not anonymous, then we add this hdr to the arc_state_t's
2316 * list making it eligible for eviction.
2319 remove_reference(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, void *tag
)
2322 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2324 ASSERT(HDR_HAS_L1HDR(hdr
));
2325 ASSERT(state
== arc_anon
|| MUTEX_HELD(hash_lock
));
2326 ASSERT(!GHOST_STATE(state
));
2329 * arc_l2c_only counts as a ghost state so we don't need to explicitly
2330 * check to prevent usage of the arc_l2c_only list.
2332 if (((cnt
= zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
)) == 0) &&
2333 (state
!= arc_anon
)) {
2334 multilist_insert(&state
->arcs_list
[arc_buf_type(hdr
)], hdr
);
2335 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, >, 0);
2336 arc_evictable_space_increment(hdr
, state
);
2342 * Returns detailed information about a specific arc buffer. When the
2343 * state_index argument is set the function will calculate the arc header
2344 * list position for its arc state. Since this requires a linear traversal
2345 * callers are strongly encourage not to do this. However, it can be helpful
2346 * for targeted analysis so the functionality is provided.
2349 arc_buf_info(arc_buf_t
*ab
, arc_buf_info_t
*abi
, int state_index
)
2352 arc_buf_hdr_t
*hdr
= ab
->b_hdr
;
2353 l1arc_buf_hdr_t
*l1hdr
= NULL
;
2354 l2arc_buf_hdr_t
*l2hdr
= NULL
;
2355 arc_state_t
*state
= NULL
;
2357 memset(abi
, 0, sizeof (arc_buf_info_t
));
2362 abi
->abi_flags
= hdr
->b_flags
;
2364 if (HDR_HAS_L1HDR(hdr
)) {
2365 l1hdr
= &hdr
->b_l1hdr
;
2366 state
= l1hdr
->b_state
;
2368 if (HDR_HAS_L2HDR(hdr
))
2369 l2hdr
= &hdr
->b_l2hdr
;
2372 abi
->abi_bufcnt
= l1hdr
->b_bufcnt
;
2373 abi
->abi_access
= l1hdr
->b_arc_access
;
2374 abi
->abi_mru_hits
= l1hdr
->b_mru_hits
;
2375 abi
->abi_mru_ghost_hits
= l1hdr
->b_mru_ghost_hits
;
2376 abi
->abi_mfu_hits
= l1hdr
->b_mfu_hits
;
2377 abi
->abi_mfu_ghost_hits
= l1hdr
->b_mfu_ghost_hits
;
2378 abi
->abi_holds
= zfs_refcount_count(&l1hdr
->b_refcnt
);
2382 abi
->abi_l2arc_dattr
= l2hdr
->b_daddr
;
2383 abi
->abi_l2arc_hits
= l2hdr
->b_hits
;
2386 abi
->abi_state_type
= state
? state
->arcs_state
: ARC_STATE_ANON
;
2387 abi
->abi_state_contents
= arc_buf_type(hdr
);
2388 abi
->abi_size
= arc_hdr_size(hdr
);
2392 * Move the supplied buffer to the indicated state. The hash lock
2393 * for the buffer must be held by the caller.
2396 arc_change_state(arc_state_t
*new_state
, arc_buf_hdr_t
*hdr
,
2397 kmutex_t
*hash_lock
)
2399 arc_state_t
*old_state
;
2402 boolean_t update_old
, update_new
;
2403 arc_buf_contents_t buftype
= arc_buf_type(hdr
);
2406 * We almost always have an L1 hdr here, since we call arc_hdr_realloc()
2407 * in arc_read() when bringing a buffer out of the L2ARC. However, the
2408 * L1 hdr doesn't always exist when we change state to arc_anon before
2409 * destroying a header, in which case reallocating to add the L1 hdr is
2412 if (HDR_HAS_L1HDR(hdr
)) {
2413 old_state
= hdr
->b_l1hdr
.b_state
;
2414 refcnt
= zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
);
2415 bufcnt
= hdr
->b_l1hdr
.b_bufcnt
;
2416 update_old
= (bufcnt
> 0 || hdr
->b_l1hdr
.b_pabd
!= NULL
||
2419 old_state
= arc_l2c_only
;
2422 update_old
= B_FALSE
;
2424 update_new
= update_old
;
2426 ASSERT(MUTEX_HELD(hash_lock
));
2427 ASSERT3P(new_state
, !=, old_state
);
2428 ASSERT(!GHOST_STATE(new_state
) || bufcnt
== 0);
2429 ASSERT(old_state
!= arc_anon
|| bufcnt
<= 1);
2432 * If this buffer is evictable, transfer it from the
2433 * old state list to the new state list.
2436 if (old_state
!= arc_anon
&& old_state
!= arc_l2c_only
) {
2437 ASSERT(HDR_HAS_L1HDR(hdr
));
2438 multilist_remove(&old_state
->arcs_list
[buftype
], hdr
);
2440 if (GHOST_STATE(old_state
)) {
2442 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2443 update_old
= B_TRUE
;
2445 arc_evictable_space_decrement(hdr
, old_state
);
2447 if (new_state
!= arc_anon
&& new_state
!= arc_l2c_only
) {
2449 * An L1 header always exists here, since if we're
2450 * moving to some L1-cached state (i.e. not l2c_only or
2451 * anonymous), we realloc the header to add an L1hdr
2454 ASSERT(HDR_HAS_L1HDR(hdr
));
2455 multilist_insert(&new_state
->arcs_list
[buftype
], hdr
);
2457 if (GHOST_STATE(new_state
)) {
2459 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
2460 update_new
= B_TRUE
;
2462 arc_evictable_space_increment(hdr
, new_state
);
2466 ASSERT(!HDR_EMPTY(hdr
));
2467 if (new_state
== arc_anon
&& HDR_IN_HASH_TABLE(hdr
))
2468 buf_hash_remove(hdr
);
2470 /* adjust state sizes (ignore arc_l2c_only) */
2472 if (update_new
&& new_state
!= arc_l2c_only
) {
2473 ASSERT(HDR_HAS_L1HDR(hdr
));
2474 if (GHOST_STATE(new_state
)) {
2478 * When moving a header to a ghost state, we first
2479 * remove all arc buffers. Thus, we'll have a
2480 * bufcnt of zero, and no arc buffer to use for
2481 * the reference. As a result, we use the arc
2482 * header pointer for the reference.
2484 (void) zfs_refcount_add_many(&new_state
->arcs_size
,
2485 HDR_GET_LSIZE(hdr
), hdr
);
2486 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2487 ASSERT(!HDR_HAS_RABD(hdr
));
2489 uint32_t buffers
= 0;
2492 * Each individual buffer holds a unique reference,
2493 * thus we must remove each of these references one
2496 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2497 buf
= buf
->b_next
) {
2498 ASSERT3U(bufcnt
, !=, 0);
2502 * When the arc_buf_t is sharing the data
2503 * block with the hdr, the owner of the
2504 * reference belongs to the hdr. Only
2505 * add to the refcount if the arc_buf_t is
2508 if (arc_buf_is_shared(buf
))
2511 (void) zfs_refcount_add_many(
2512 &new_state
->arcs_size
,
2513 arc_buf_size(buf
), buf
);
2515 ASSERT3U(bufcnt
, ==, buffers
);
2517 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2518 (void) zfs_refcount_add_many(
2519 &new_state
->arcs_size
,
2520 arc_hdr_size(hdr
), hdr
);
2523 if (HDR_HAS_RABD(hdr
)) {
2524 (void) zfs_refcount_add_many(
2525 &new_state
->arcs_size
,
2526 HDR_GET_PSIZE(hdr
), hdr
);
2531 if (update_old
&& old_state
!= arc_l2c_only
) {
2532 ASSERT(HDR_HAS_L1HDR(hdr
));
2533 if (GHOST_STATE(old_state
)) {
2535 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2536 ASSERT(!HDR_HAS_RABD(hdr
));
2539 * When moving a header off of a ghost state,
2540 * the header will not contain any arc buffers.
2541 * We use the arc header pointer for the reference
2542 * which is exactly what we did when we put the
2543 * header on the ghost state.
2546 (void) zfs_refcount_remove_many(&old_state
->arcs_size
,
2547 HDR_GET_LSIZE(hdr
), hdr
);
2549 uint32_t buffers
= 0;
2552 * Each individual buffer holds a unique reference,
2553 * thus we must remove each of these references one
2556 for (arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
; buf
!= NULL
;
2557 buf
= buf
->b_next
) {
2558 ASSERT3U(bufcnt
, !=, 0);
2562 * When the arc_buf_t is sharing the data
2563 * block with the hdr, the owner of the
2564 * reference belongs to the hdr. Only
2565 * add to the refcount if the arc_buf_t is
2568 if (arc_buf_is_shared(buf
))
2571 (void) zfs_refcount_remove_many(
2572 &old_state
->arcs_size
, arc_buf_size(buf
),
2575 ASSERT3U(bufcnt
, ==, buffers
);
2576 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
2579 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
2580 (void) zfs_refcount_remove_many(
2581 &old_state
->arcs_size
, arc_hdr_size(hdr
),
2585 if (HDR_HAS_RABD(hdr
)) {
2586 (void) zfs_refcount_remove_many(
2587 &old_state
->arcs_size
, HDR_GET_PSIZE(hdr
),
2593 if (HDR_HAS_L1HDR(hdr
)) {
2594 hdr
->b_l1hdr
.b_state
= new_state
;
2596 if (HDR_HAS_L2HDR(hdr
) && new_state
!= arc_l2c_only
) {
2597 l2arc_hdr_arcstats_decrement_state(hdr
);
2598 hdr
->b_l2hdr
.b_arcs_state
= new_state
->arcs_state
;
2599 l2arc_hdr_arcstats_increment_state(hdr
);
2605 arc_space_consume(uint64_t space
, arc_space_type_t type
)
2607 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2612 case ARC_SPACE_DATA
:
2613 ARCSTAT_INCR(arcstat_data_size
, space
);
2615 case ARC_SPACE_META
:
2616 ARCSTAT_INCR(arcstat_metadata_size
, space
);
2618 case ARC_SPACE_BONUS
:
2619 ARCSTAT_INCR(arcstat_bonus_size
, space
);
2621 case ARC_SPACE_DNODE
:
2622 aggsum_add(&arc_sums
.arcstat_dnode_size
, space
);
2624 case ARC_SPACE_DBUF
:
2625 ARCSTAT_INCR(arcstat_dbuf_size
, space
);
2627 case ARC_SPACE_HDRS
:
2628 ARCSTAT_INCR(arcstat_hdr_size
, space
);
2630 case ARC_SPACE_L2HDRS
:
2631 aggsum_add(&arc_sums
.arcstat_l2_hdr_size
, space
);
2633 case ARC_SPACE_ABD_CHUNK_WASTE
:
2635 * Note: this includes space wasted by all scatter ABD's, not
2636 * just those allocated by the ARC. But the vast majority of
2637 * scatter ABD's come from the ARC, because other users are
2640 ARCSTAT_INCR(arcstat_abd_chunk_waste_size
, space
);
2644 if (type
!= ARC_SPACE_DATA
&& type
!= ARC_SPACE_ABD_CHUNK_WASTE
)
2645 aggsum_add(&arc_sums
.arcstat_meta_used
, space
);
2647 aggsum_add(&arc_sums
.arcstat_size
, space
);
2651 arc_space_return(uint64_t space
, arc_space_type_t type
)
2653 ASSERT(type
>= 0 && type
< ARC_SPACE_NUMTYPES
);
2658 case ARC_SPACE_DATA
:
2659 ARCSTAT_INCR(arcstat_data_size
, -space
);
2661 case ARC_SPACE_META
:
2662 ARCSTAT_INCR(arcstat_metadata_size
, -space
);
2664 case ARC_SPACE_BONUS
:
2665 ARCSTAT_INCR(arcstat_bonus_size
, -space
);
2667 case ARC_SPACE_DNODE
:
2668 aggsum_add(&arc_sums
.arcstat_dnode_size
, -space
);
2670 case ARC_SPACE_DBUF
:
2671 ARCSTAT_INCR(arcstat_dbuf_size
, -space
);
2673 case ARC_SPACE_HDRS
:
2674 ARCSTAT_INCR(arcstat_hdr_size
, -space
);
2676 case ARC_SPACE_L2HDRS
:
2677 aggsum_add(&arc_sums
.arcstat_l2_hdr_size
, -space
);
2679 case ARC_SPACE_ABD_CHUNK_WASTE
:
2680 ARCSTAT_INCR(arcstat_abd_chunk_waste_size
, -space
);
2684 if (type
!= ARC_SPACE_DATA
&& type
!= ARC_SPACE_ABD_CHUNK_WASTE
) {
2685 ASSERT(aggsum_compare(&arc_sums
.arcstat_meta_used
,
2687 ARCSTAT_MAX(arcstat_meta_max
,
2688 aggsum_upper_bound(&arc_sums
.arcstat_meta_used
));
2689 aggsum_add(&arc_sums
.arcstat_meta_used
, -space
);
2692 ASSERT(aggsum_compare(&arc_sums
.arcstat_size
, space
) >= 0);
2693 aggsum_add(&arc_sums
.arcstat_size
, -space
);
2697 * Given a hdr and a buf, returns whether that buf can share its b_data buffer
2698 * with the hdr's b_pabd.
2701 arc_can_share(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2704 * The criteria for sharing a hdr's data are:
2705 * 1. the buffer is not encrypted
2706 * 2. the hdr's compression matches the buf's compression
2707 * 3. the hdr doesn't need to be byteswapped
2708 * 4. the hdr isn't already being shared
2709 * 5. the buf is either compressed or it is the last buf in the hdr list
2711 * Criterion #5 maintains the invariant that shared uncompressed
2712 * bufs must be the final buf in the hdr's b_buf list. Reading this, you
2713 * might ask, "if a compressed buf is allocated first, won't that be the
2714 * last thing in the list?", but in that case it's impossible to create
2715 * a shared uncompressed buf anyway (because the hdr must be compressed
2716 * to have the compressed buf). You might also think that #3 is
2717 * sufficient to make this guarantee, however it's possible
2718 * (specifically in the rare L2ARC write race mentioned in
2719 * arc_buf_alloc_impl()) there will be an existing uncompressed buf that
2720 * is shareable, but wasn't at the time of its allocation. Rather than
2721 * allow a new shared uncompressed buf to be created and then shuffle
2722 * the list around to make it the last element, this simply disallows
2723 * sharing if the new buf isn't the first to be added.
2725 ASSERT3P(buf
->b_hdr
, ==, hdr
);
2726 boolean_t hdr_compressed
=
2727 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
;
2728 boolean_t buf_compressed
= ARC_BUF_COMPRESSED(buf
) != 0;
2729 return (!ARC_BUF_ENCRYPTED(buf
) &&
2730 buf_compressed
== hdr_compressed
&&
2731 hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
&&
2732 !HDR_SHARED_DATA(hdr
) &&
2733 (ARC_BUF_LAST(buf
) || ARC_BUF_COMPRESSED(buf
)));
2737 * Allocate a buf for this hdr. If you care about the data that's in the hdr,
2738 * or if you want a compressed buffer, pass those flags in. Returns 0 if the
2739 * copy was made successfully, or an error code otherwise.
2742 arc_buf_alloc_impl(arc_buf_hdr_t
*hdr
, spa_t
*spa
, const zbookmark_phys_t
*zb
,
2743 void *tag
, boolean_t encrypted
, boolean_t compressed
, boolean_t noauth
,
2744 boolean_t fill
, arc_buf_t
**ret
)
2747 arc_fill_flags_t flags
= ARC_FILL_LOCKED
;
2749 ASSERT(HDR_HAS_L1HDR(hdr
));
2750 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
2751 VERIFY(hdr
->b_type
== ARC_BUFC_DATA
||
2752 hdr
->b_type
== ARC_BUFC_METADATA
);
2753 ASSERT3P(ret
, !=, NULL
);
2754 ASSERT3P(*ret
, ==, NULL
);
2755 IMPLY(encrypted
, compressed
);
2757 buf
= *ret
= kmem_cache_alloc(buf_cache
, KM_PUSHPAGE
);
2760 buf
->b_next
= hdr
->b_l1hdr
.b_buf
;
2763 add_reference(hdr
, tag
);
2766 * We're about to change the hdr's b_flags. We must either
2767 * hold the hash_lock or be undiscoverable.
2769 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2772 * Only honor requests for compressed bufs if the hdr is actually
2773 * compressed. This must be overridden if the buffer is encrypted since
2774 * encrypted buffers cannot be decompressed.
2777 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2778 buf
->b_flags
|= ARC_BUF_FLAG_ENCRYPTED
;
2779 flags
|= ARC_FILL_COMPRESSED
| ARC_FILL_ENCRYPTED
;
2780 } else if (compressed
&&
2781 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
2782 buf
->b_flags
|= ARC_BUF_FLAG_COMPRESSED
;
2783 flags
|= ARC_FILL_COMPRESSED
;
2788 flags
|= ARC_FILL_NOAUTH
;
2792 * If the hdr's data can be shared then we share the data buffer and
2793 * set the appropriate bit in the hdr's b_flags to indicate the hdr is
2794 * sharing it's b_pabd with the arc_buf_t. Otherwise, we allocate a new
2795 * buffer to store the buf's data.
2797 * There are two additional restrictions here because we're sharing
2798 * hdr -> buf instead of the usual buf -> hdr. First, the hdr can't be
2799 * actively involved in an L2ARC write, because if this buf is used by
2800 * an arc_write() then the hdr's data buffer will be released when the
2801 * write completes, even though the L2ARC write might still be using it.
2802 * Second, the hdr's ABD must be linear so that the buf's user doesn't
2803 * need to be ABD-aware. It must be allocated via
2804 * zio_[data_]buf_alloc(), not as a page, because we need to be able
2805 * to abd_release_ownership_of_buf(), which isn't allowed on "linear
2806 * page" buffers because the ABD code needs to handle freeing them
2809 boolean_t can_share
= arc_can_share(hdr
, buf
) &&
2810 !HDR_L2_WRITING(hdr
) &&
2811 hdr
->b_l1hdr
.b_pabd
!= NULL
&&
2812 abd_is_linear(hdr
->b_l1hdr
.b_pabd
) &&
2813 !abd_is_linear_page(hdr
->b_l1hdr
.b_pabd
);
2815 /* Set up b_data and sharing */
2817 buf
->b_data
= abd_to_buf(hdr
->b_l1hdr
.b_pabd
);
2818 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
2819 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2822 arc_get_data_buf(hdr
, arc_buf_size(buf
), buf
);
2823 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
2825 VERIFY3P(buf
->b_data
, !=, NULL
);
2827 hdr
->b_l1hdr
.b_buf
= buf
;
2828 hdr
->b_l1hdr
.b_bufcnt
+= 1;
2830 hdr
->b_crypt_hdr
.b_ebufcnt
+= 1;
2833 * If the user wants the data from the hdr, we need to either copy or
2834 * decompress the data.
2837 ASSERT3P(zb
, !=, NULL
);
2838 return (arc_buf_fill(buf
, spa
, zb
, flags
));
2844 static char *arc_onloan_tag
= "onloan";
2847 arc_loaned_bytes_update(int64_t delta
)
2849 atomic_add_64(&arc_loaned_bytes
, delta
);
2851 /* assert that it did not wrap around */
2852 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
2856 * Loan out an anonymous arc buffer. Loaned buffers are not counted as in
2857 * flight data by arc_tempreserve_space() until they are "returned". Loaned
2858 * buffers must be returned to the arc before they can be used by the DMU or
2862 arc_loan_buf(spa_t
*spa
, boolean_t is_metadata
, int size
)
2864 arc_buf_t
*buf
= arc_alloc_buf(spa
, arc_onloan_tag
,
2865 is_metadata
? ARC_BUFC_METADATA
: ARC_BUFC_DATA
, size
);
2867 arc_loaned_bytes_update(arc_buf_size(buf
));
2873 arc_loan_compressed_buf(spa_t
*spa
, uint64_t psize
, uint64_t lsize
,
2874 enum zio_compress compression_type
, uint8_t complevel
)
2876 arc_buf_t
*buf
= arc_alloc_compressed_buf(spa
, arc_onloan_tag
,
2877 psize
, lsize
, compression_type
, complevel
);
2879 arc_loaned_bytes_update(arc_buf_size(buf
));
2885 arc_loan_raw_buf(spa_t
*spa
, uint64_t dsobj
, boolean_t byteorder
,
2886 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
,
2887 dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
2888 enum zio_compress compression_type
, uint8_t complevel
)
2890 arc_buf_t
*buf
= arc_alloc_raw_buf(spa
, arc_onloan_tag
, dsobj
,
2891 byteorder
, salt
, iv
, mac
, ot
, psize
, lsize
, compression_type
,
2894 atomic_add_64(&arc_loaned_bytes
, psize
);
2900 * Return a loaned arc buffer to the arc.
2903 arc_return_buf(arc_buf_t
*buf
, void *tag
)
2905 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2907 ASSERT3P(buf
->b_data
, !=, NULL
);
2908 ASSERT(HDR_HAS_L1HDR(hdr
));
2909 (void) zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2910 (void) zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2912 arc_loaned_bytes_update(-arc_buf_size(buf
));
2915 /* Detach an arc_buf from a dbuf (tag) */
2917 arc_loan_inuse_buf(arc_buf_t
*buf
, void *tag
)
2919 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
2921 ASSERT3P(buf
->b_data
, !=, NULL
);
2922 ASSERT(HDR_HAS_L1HDR(hdr
));
2923 (void) zfs_refcount_add(&hdr
->b_l1hdr
.b_refcnt
, arc_onloan_tag
);
2924 (void) zfs_refcount_remove(&hdr
->b_l1hdr
.b_refcnt
, tag
);
2926 arc_loaned_bytes_update(arc_buf_size(buf
));
2930 l2arc_free_abd_on_write(abd_t
*abd
, size_t size
, arc_buf_contents_t type
)
2932 l2arc_data_free_t
*df
= kmem_alloc(sizeof (*df
), KM_SLEEP
);
2935 df
->l2df_size
= size
;
2936 df
->l2df_type
= type
;
2937 mutex_enter(&l2arc_free_on_write_mtx
);
2938 list_insert_head(l2arc_free_on_write
, df
);
2939 mutex_exit(&l2arc_free_on_write_mtx
);
2943 arc_hdr_free_on_write(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
2945 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
2946 arc_buf_contents_t type
= arc_buf_type(hdr
);
2947 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
2949 /* protected by hash lock, if in the hash table */
2950 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
2951 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
2952 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
2954 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
2957 (void) zfs_refcount_remove_many(&state
->arcs_size
, size
, hdr
);
2958 if (type
== ARC_BUFC_METADATA
) {
2959 arc_space_return(size
, ARC_SPACE_META
);
2961 ASSERT(type
== ARC_BUFC_DATA
);
2962 arc_space_return(size
, ARC_SPACE_DATA
);
2966 l2arc_free_abd_on_write(hdr
->b_crypt_hdr
.b_rabd
, size
, type
);
2968 l2arc_free_abd_on_write(hdr
->b_l1hdr
.b_pabd
, size
, type
);
2973 * Share the arc_buf_t's data with the hdr. Whenever we are sharing the
2974 * data buffer, we transfer the refcount ownership to the hdr and update
2975 * the appropriate kstats.
2978 arc_share_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
2980 ASSERT(arc_can_share(hdr
, buf
));
2981 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
2982 ASSERT(!ARC_BUF_ENCRYPTED(buf
));
2983 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
2986 * Start sharing the data buffer. We transfer the
2987 * refcount ownership to the hdr since it always owns
2988 * the refcount whenever an arc_buf_t is shared.
2990 zfs_refcount_transfer_ownership_many(&hdr
->b_l1hdr
.b_state
->arcs_size
,
2991 arc_hdr_size(hdr
), buf
, hdr
);
2992 hdr
->b_l1hdr
.b_pabd
= abd_get_from_buf(buf
->b_data
, arc_buf_size(buf
));
2993 abd_take_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
,
2994 HDR_ISTYPE_METADATA(hdr
));
2995 arc_hdr_set_flags(hdr
, ARC_FLAG_SHARED_DATA
);
2996 buf
->b_flags
|= ARC_BUF_FLAG_SHARED
;
2999 * Since we've transferred ownership to the hdr we need
3000 * to increment its compressed and uncompressed kstats and
3001 * decrement the overhead size.
3003 ARCSTAT_INCR(arcstat_compressed_size
, arc_hdr_size(hdr
));
3004 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
3005 ARCSTAT_INCR(arcstat_overhead_size
, -arc_buf_size(buf
));
3009 arc_unshare_buf(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3011 ASSERT(arc_buf_is_shared(buf
));
3012 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3013 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3016 * We are no longer sharing this buffer so we need
3017 * to transfer its ownership to the rightful owner.
3019 zfs_refcount_transfer_ownership_many(&hdr
->b_l1hdr
.b_state
->arcs_size
,
3020 arc_hdr_size(hdr
), hdr
, buf
);
3021 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3022 abd_release_ownership_of_buf(hdr
->b_l1hdr
.b_pabd
);
3023 abd_free(hdr
->b_l1hdr
.b_pabd
);
3024 hdr
->b_l1hdr
.b_pabd
= NULL
;
3025 buf
->b_flags
&= ~ARC_BUF_FLAG_SHARED
;
3028 * Since the buffer is no longer shared between
3029 * the arc buf and the hdr, count it as overhead.
3031 ARCSTAT_INCR(arcstat_compressed_size
, -arc_hdr_size(hdr
));
3032 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3033 ARCSTAT_INCR(arcstat_overhead_size
, arc_buf_size(buf
));
3037 * Remove an arc_buf_t from the hdr's buf list and return the last
3038 * arc_buf_t on the list. If no buffers remain on the list then return
3042 arc_buf_remove(arc_buf_hdr_t
*hdr
, arc_buf_t
*buf
)
3044 ASSERT(HDR_HAS_L1HDR(hdr
));
3045 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3047 arc_buf_t
**bufp
= &hdr
->b_l1hdr
.b_buf
;
3048 arc_buf_t
*lastbuf
= NULL
;
3051 * Remove the buf from the hdr list and locate the last
3052 * remaining buffer on the list.
3054 while (*bufp
!= NULL
) {
3056 *bufp
= buf
->b_next
;
3059 * If we've removed a buffer in the middle of
3060 * the list then update the lastbuf and update
3063 if (*bufp
!= NULL
) {
3065 bufp
= &(*bufp
)->b_next
;
3069 ASSERT3P(lastbuf
, !=, buf
);
3070 IMPLY(hdr
->b_l1hdr
.b_bufcnt
> 0, lastbuf
!= NULL
);
3071 IMPLY(hdr
->b_l1hdr
.b_bufcnt
> 0, hdr
->b_l1hdr
.b_buf
!= NULL
);
3072 IMPLY(lastbuf
!= NULL
, ARC_BUF_LAST(lastbuf
));
3078 * Free up buf->b_data and pull the arc_buf_t off of the arc_buf_hdr_t's
3082 arc_buf_destroy_impl(arc_buf_t
*buf
)
3084 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3087 * Free up the data associated with the buf but only if we're not
3088 * sharing this with the hdr. If we are sharing it with the hdr, the
3089 * hdr is responsible for doing the free.
3091 if (buf
->b_data
!= NULL
) {
3093 * We're about to change the hdr's b_flags. We must either
3094 * hold the hash_lock or be undiscoverable.
3096 ASSERT(HDR_EMPTY_OR_LOCKED(hdr
));
3098 arc_cksum_verify(buf
);
3099 arc_buf_unwatch(buf
);
3101 if (arc_buf_is_shared(buf
)) {
3102 arc_hdr_clear_flags(hdr
, ARC_FLAG_SHARED_DATA
);
3104 uint64_t size
= arc_buf_size(buf
);
3105 arc_free_data_buf(hdr
, buf
->b_data
, size
, buf
);
3106 ARCSTAT_INCR(arcstat_overhead_size
, -size
);
3110 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
3111 hdr
->b_l1hdr
.b_bufcnt
-= 1;
3113 if (ARC_BUF_ENCRYPTED(buf
)) {
3114 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
3117 * If we have no more encrypted buffers and we've
3118 * already gotten a copy of the decrypted data we can
3119 * free b_rabd to save some space.
3121 if (hdr
->b_crypt_hdr
.b_ebufcnt
== 0 &&
3122 HDR_HAS_RABD(hdr
) && hdr
->b_l1hdr
.b_pabd
!= NULL
&&
3123 !HDR_IO_IN_PROGRESS(hdr
)) {
3124 arc_hdr_free_abd(hdr
, B_TRUE
);
3129 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
3131 if (ARC_BUF_SHARED(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
3133 * If the current arc_buf_t is sharing its data buffer with the
3134 * hdr, then reassign the hdr's b_pabd to share it with the new
3135 * buffer at the end of the list. The shared buffer is always
3136 * the last one on the hdr's buffer list.
3138 * There is an equivalent case for compressed bufs, but since
3139 * they aren't guaranteed to be the last buf in the list and
3140 * that is an exceedingly rare case, we just allow that space be
3141 * wasted temporarily. We must also be careful not to share
3142 * encrypted buffers, since they cannot be shared.
3144 if (lastbuf
!= NULL
&& !ARC_BUF_ENCRYPTED(lastbuf
)) {
3145 /* Only one buf can be shared at once */
3146 VERIFY(!arc_buf_is_shared(lastbuf
));
3147 /* hdr is uncompressed so can't have compressed buf */
3148 VERIFY(!ARC_BUF_COMPRESSED(lastbuf
));
3150 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3151 arc_hdr_free_abd(hdr
, B_FALSE
);
3154 * We must setup a new shared block between the
3155 * last buffer and the hdr. The data would have
3156 * been allocated by the arc buf so we need to transfer
3157 * ownership to the hdr since it's now being shared.
3159 arc_share_buf(hdr
, lastbuf
);
3161 } else if (HDR_SHARED_DATA(hdr
)) {
3163 * Uncompressed shared buffers are always at the end
3164 * of the list. Compressed buffers don't have the
3165 * same requirements. This makes it hard to
3166 * simply assert that the lastbuf is shared so
3167 * we rely on the hdr's compression flags to determine
3168 * if we have a compressed, shared buffer.
3170 ASSERT3P(lastbuf
, !=, NULL
);
3171 ASSERT(arc_buf_is_shared(lastbuf
) ||
3172 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
3176 * Free the checksum if we're removing the last uncompressed buf from
3179 if (!arc_hdr_has_uncompressed_buf(hdr
)) {
3180 arc_cksum_free(hdr
);
3183 /* clean up the buf */
3185 kmem_cache_free(buf_cache
, buf
);
3189 arc_hdr_alloc_abd(arc_buf_hdr_t
*hdr
, int alloc_flags
)
3192 boolean_t alloc_rdata
= ((alloc_flags
& ARC_HDR_ALLOC_RDATA
) != 0);
3194 ASSERT3U(HDR_GET_LSIZE(hdr
), >, 0);
3195 ASSERT(HDR_HAS_L1HDR(hdr
));
3196 ASSERT(!HDR_SHARED_DATA(hdr
) || alloc_rdata
);
3197 IMPLY(alloc_rdata
, HDR_PROTECTED(hdr
));
3200 size
= HDR_GET_PSIZE(hdr
);
3201 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, ==, NULL
);
3202 hdr
->b_crypt_hdr
.b_rabd
= arc_get_data_abd(hdr
, size
, hdr
,
3204 ASSERT3P(hdr
->b_crypt_hdr
.b_rabd
, !=, NULL
);
3205 ARCSTAT_INCR(arcstat_raw_size
, size
);
3207 size
= arc_hdr_size(hdr
);
3208 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3209 hdr
->b_l1hdr
.b_pabd
= arc_get_data_abd(hdr
, size
, hdr
,
3211 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
3214 ARCSTAT_INCR(arcstat_compressed_size
, size
);
3215 ARCSTAT_INCR(arcstat_uncompressed_size
, HDR_GET_LSIZE(hdr
));
3219 arc_hdr_free_abd(arc_buf_hdr_t
*hdr
, boolean_t free_rdata
)
3221 uint64_t size
= (free_rdata
) ? HDR_GET_PSIZE(hdr
) : arc_hdr_size(hdr
);
3223 ASSERT(HDR_HAS_L1HDR(hdr
));
3224 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
3225 IMPLY(free_rdata
, HDR_HAS_RABD(hdr
));
3228 * If the hdr is currently being written to the l2arc then
3229 * we defer freeing the data by adding it to the l2arc_free_on_write
3230 * list. The l2arc will free the data once it's finished
3231 * writing it to the l2arc device.
3233 if (HDR_L2_WRITING(hdr
)) {
3234 arc_hdr_free_on_write(hdr
, free_rdata
);
3235 ARCSTAT_BUMP(arcstat_l2_free_on_write
);
3236 } else if (free_rdata
) {
3237 arc_free_data_abd(hdr
, hdr
->b_crypt_hdr
.b_rabd
, size
, hdr
);
3239 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
, size
, hdr
);
3243 hdr
->b_crypt_hdr
.b_rabd
= NULL
;
3244 ARCSTAT_INCR(arcstat_raw_size
, -size
);
3246 hdr
->b_l1hdr
.b_pabd
= NULL
;
3249 if (hdr
->b_l1hdr
.b_pabd
== NULL
&& !HDR_HAS_RABD(hdr
))
3250 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
3252 ARCSTAT_INCR(arcstat_compressed_size
, -size
);
3253 ARCSTAT_INCR(arcstat_uncompressed_size
, -HDR_GET_LSIZE(hdr
));
3257 * Allocate empty anonymous ARC header. The header will get its identity
3258 * assigned and buffers attached later as part of read or write operations.
3260 * In case of read arc_read() assigns header its identify (b_dva + b_birth),
3261 * inserts it into ARC hash to become globally visible and allocates physical
3262 * (b_pabd) or raw (b_rabd) ABD buffer to read into from disk. On disk read
3263 * completion arc_read_done() allocates ARC buffer(s) as needed, potentially
3264 * sharing one of them with the physical ABD buffer.
3266 * In case of write arc_alloc_buf() allocates ARC buffer to be filled with
3267 * data. Then after compression and/or encryption arc_write_ready() allocates
3268 * and fills (or potentially shares) physical (b_pabd) or raw (b_rabd) ABD
3269 * buffer. On disk write completion arc_write_done() assigns the header its
3270 * new identity (b_dva + b_birth) and inserts into ARC hash.
3272 * In case of partial overwrite the old data is read first as described. Then
3273 * arc_release() either allocates new anonymous ARC header and moves the ARC
3274 * buffer to it, or reuses the old ARC header by discarding its identity and
3275 * removing it from ARC hash. After buffer modification normal write process
3276 * follows as described.
3278 static arc_buf_hdr_t
*
3279 arc_hdr_alloc(uint64_t spa
, int32_t psize
, int32_t lsize
,
3280 boolean_t
protected, enum zio_compress compression_type
, uint8_t complevel
,
3281 arc_buf_contents_t type
)
3285 VERIFY(type
== ARC_BUFC_DATA
|| type
== ARC_BUFC_METADATA
);
3287 hdr
= kmem_cache_alloc(hdr_full_crypt_cache
, KM_PUSHPAGE
);
3289 hdr
= kmem_cache_alloc(hdr_full_cache
, KM_PUSHPAGE
);
3292 ASSERT(HDR_EMPTY(hdr
));
3293 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3294 HDR_SET_PSIZE(hdr
, psize
);
3295 HDR_SET_LSIZE(hdr
, lsize
);
3299 arc_hdr_set_flags(hdr
, arc_bufc_to_flags(type
) | ARC_FLAG_HAS_L1HDR
);
3300 arc_hdr_set_compress(hdr
, compression_type
);
3301 hdr
->b_complevel
= complevel
;
3303 arc_hdr_set_flags(hdr
, ARC_FLAG_PROTECTED
);
3305 hdr
->b_l1hdr
.b_state
= arc_anon
;
3306 hdr
->b_l1hdr
.b_arc_access
= 0;
3307 hdr
->b_l1hdr
.b_mru_hits
= 0;
3308 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
3309 hdr
->b_l1hdr
.b_mfu_hits
= 0;
3310 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
3311 hdr
->b_l1hdr
.b_bufcnt
= 0;
3312 hdr
->b_l1hdr
.b_buf
= NULL
;
3314 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3320 * Transition between the two allocation states for the arc_buf_hdr struct.
3321 * The arc_buf_hdr struct can be allocated with (hdr_full_cache) or without
3322 * (hdr_l2only_cache) the fields necessary for the L1 cache - the smaller
3323 * version is used when a cache buffer is only in the L2ARC in order to reduce
3326 static arc_buf_hdr_t
*
3327 arc_hdr_realloc(arc_buf_hdr_t
*hdr
, kmem_cache_t
*old
, kmem_cache_t
*new)
3329 ASSERT(HDR_HAS_L2HDR(hdr
));
3331 arc_buf_hdr_t
*nhdr
;
3332 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3334 ASSERT((old
== hdr_full_cache
&& new == hdr_l2only_cache
) ||
3335 (old
== hdr_l2only_cache
&& new == hdr_full_cache
));
3338 * if the caller wanted a new full header and the header is to be
3339 * encrypted we will actually allocate the header from the full crypt
3340 * cache instead. The same applies to freeing from the old cache.
3342 if (HDR_PROTECTED(hdr
) && new == hdr_full_cache
)
3343 new = hdr_full_crypt_cache
;
3344 if (HDR_PROTECTED(hdr
) && old
== hdr_full_cache
)
3345 old
= hdr_full_crypt_cache
;
3347 nhdr
= kmem_cache_alloc(new, KM_PUSHPAGE
);
3349 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
3350 buf_hash_remove(hdr
);
3352 memcpy(nhdr
, hdr
, HDR_L2ONLY_SIZE
);
3354 if (new == hdr_full_cache
|| new == hdr_full_crypt_cache
) {
3355 arc_hdr_set_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3357 * arc_access and arc_change_state need to be aware that a
3358 * header has just come out of L2ARC, so we set its state to
3359 * l2c_only even though it's about to change.
3361 nhdr
->b_l1hdr
.b_state
= arc_l2c_only
;
3363 /* Verify previous threads set to NULL before freeing */
3364 ASSERT3P(nhdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3365 ASSERT(!HDR_HAS_RABD(hdr
));
3367 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3368 ASSERT0(hdr
->b_l1hdr
.b_bufcnt
);
3369 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3372 * If we've reached here, We must have been called from
3373 * arc_evict_hdr(), as such we should have already been
3374 * removed from any ghost list we were previously on
3375 * (which protects us from racing with arc_evict_state),
3376 * thus no locking is needed during this check.
3378 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3381 * A buffer must not be moved into the arc_l2c_only
3382 * state if it's not finished being written out to the
3383 * l2arc device. Otherwise, the b_l1hdr.b_pabd field
3384 * might try to be accessed, even though it was removed.
3386 VERIFY(!HDR_L2_WRITING(hdr
));
3387 VERIFY3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
3388 ASSERT(!HDR_HAS_RABD(hdr
));
3390 arc_hdr_clear_flags(nhdr
, ARC_FLAG_HAS_L1HDR
);
3393 * The header has been reallocated so we need to re-insert it into any
3396 (void) buf_hash_insert(nhdr
, NULL
);
3398 ASSERT(list_link_active(&hdr
->b_l2hdr
.b_l2node
));
3400 mutex_enter(&dev
->l2ad_mtx
);
3403 * We must place the realloc'ed header back into the list at
3404 * the same spot. Otherwise, if it's placed earlier in the list,
3405 * l2arc_write_buffers() could find it during the function's
3406 * write phase, and try to write it out to the l2arc.
3408 list_insert_after(&dev
->l2ad_buflist
, hdr
, nhdr
);
3409 list_remove(&dev
->l2ad_buflist
, hdr
);
3411 mutex_exit(&dev
->l2ad_mtx
);
3414 * Since we're using the pointer address as the tag when
3415 * incrementing and decrementing the l2ad_alloc refcount, we
3416 * must remove the old pointer (that we're about to destroy) and
3417 * add the new pointer to the refcount. Otherwise we'd remove
3418 * the wrong pointer address when calling arc_hdr_destroy() later.
3421 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
,
3422 arc_hdr_size(hdr
), hdr
);
3423 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
3424 arc_hdr_size(nhdr
), nhdr
);
3426 buf_discard_identity(hdr
);
3427 kmem_cache_free(old
, hdr
);
3433 * This function allows an L1 header to be reallocated as a crypt
3434 * header and vice versa. If we are going to a crypt header, the
3435 * new fields will be zeroed out.
3437 static arc_buf_hdr_t
*
3438 arc_hdr_realloc_crypt(arc_buf_hdr_t
*hdr
, boolean_t need_crypt
)
3440 arc_buf_hdr_t
*nhdr
;
3442 kmem_cache_t
*ncache
, *ocache
;
3445 * This function requires that hdr is in the arc_anon state.
3446 * Therefore it won't have any L2ARC data for us to worry
3449 ASSERT(HDR_HAS_L1HDR(hdr
));
3450 ASSERT(!HDR_HAS_L2HDR(hdr
));
3451 ASSERT3U(!!HDR_PROTECTED(hdr
), !=, need_crypt
);
3452 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3453 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3454 ASSERT(!list_link_active(&hdr
->b_l2hdr
.b_l2node
));
3455 ASSERT3P(hdr
->b_hash_next
, ==, NULL
);
3458 ncache
= hdr_full_crypt_cache
;
3459 ocache
= hdr_full_cache
;
3461 ncache
= hdr_full_cache
;
3462 ocache
= hdr_full_crypt_cache
;
3465 nhdr
= kmem_cache_alloc(ncache
, KM_PUSHPAGE
);
3468 * Copy all members that aren't locks or condvars to the new header.
3469 * No lists are pointing to us (as we asserted above), so we don't
3470 * need to worry about the list nodes.
3472 nhdr
->b_dva
= hdr
->b_dva
;
3473 nhdr
->b_birth
= hdr
->b_birth
;
3474 nhdr
->b_type
= hdr
->b_type
;
3475 nhdr
->b_flags
= hdr
->b_flags
;
3476 nhdr
->b_psize
= hdr
->b_psize
;
3477 nhdr
->b_lsize
= hdr
->b_lsize
;
3478 nhdr
->b_spa
= hdr
->b_spa
;
3479 nhdr
->b_l1hdr
.b_freeze_cksum
= hdr
->b_l1hdr
.b_freeze_cksum
;
3480 nhdr
->b_l1hdr
.b_bufcnt
= hdr
->b_l1hdr
.b_bufcnt
;
3481 nhdr
->b_l1hdr
.b_byteswap
= hdr
->b_l1hdr
.b_byteswap
;
3482 nhdr
->b_l1hdr
.b_state
= hdr
->b_l1hdr
.b_state
;
3483 nhdr
->b_l1hdr
.b_arc_access
= hdr
->b_l1hdr
.b_arc_access
;
3484 nhdr
->b_l1hdr
.b_mru_hits
= hdr
->b_l1hdr
.b_mru_hits
;
3485 nhdr
->b_l1hdr
.b_mru_ghost_hits
= hdr
->b_l1hdr
.b_mru_ghost_hits
;
3486 nhdr
->b_l1hdr
.b_mfu_hits
= hdr
->b_l1hdr
.b_mfu_hits
;
3487 nhdr
->b_l1hdr
.b_mfu_ghost_hits
= hdr
->b_l1hdr
.b_mfu_ghost_hits
;
3488 nhdr
->b_l1hdr
.b_acb
= hdr
->b_l1hdr
.b_acb
;
3489 nhdr
->b_l1hdr
.b_pabd
= hdr
->b_l1hdr
.b_pabd
;
3492 * This zfs_refcount_add() exists only to ensure that the individual
3493 * arc buffers always point to a header that is referenced, avoiding
3494 * a small race condition that could trigger ASSERTs.
3496 (void) zfs_refcount_add(&nhdr
->b_l1hdr
.b_refcnt
, FTAG
);
3497 nhdr
->b_l1hdr
.b_buf
= hdr
->b_l1hdr
.b_buf
;
3498 for (buf
= nhdr
->b_l1hdr
.b_buf
; buf
!= NULL
; buf
= buf
->b_next
) {
3499 mutex_enter(&buf
->b_evict_lock
);
3501 mutex_exit(&buf
->b_evict_lock
);
3504 zfs_refcount_transfer(&nhdr
->b_l1hdr
.b_refcnt
, &hdr
->b_l1hdr
.b_refcnt
);
3505 (void) zfs_refcount_remove(&nhdr
->b_l1hdr
.b_refcnt
, FTAG
);
3506 ASSERT0(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
3509 arc_hdr_set_flags(nhdr
, ARC_FLAG_PROTECTED
);
3511 arc_hdr_clear_flags(nhdr
, ARC_FLAG_PROTECTED
);
3514 /* unset all members of the original hdr */
3515 memset(&hdr
->b_dva
, 0, sizeof (dva_t
));
3517 hdr
->b_type
= ARC_BUFC_INVALID
;
3522 hdr
->b_l1hdr
.b_freeze_cksum
= NULL
;
3523 hdr
->b_l1hdr
.b_buf
= NULL
;
3524 hdr
->b_l1hdr
.b_bufcnt
= 0;
3525 hdr
->b_l1hdr
.b_byteswap
= 0;
3526 hdr
->b_l1hdr
.b_state
= NULL
;
3527 hdr
->b_l1hdr
.b_arc_access
= 0;
3528 hdr
->b_l1hdr
.b_mru_hits
= 0;
3529 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
3530 hdr
->b_l1hdr
.b_mfu_hits
= 0;
3531 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
3532 hdr
->b_l1hdr
.b_acb
= NULL
;
3533 hdr
->b_l1hdr
.b_pabd
= NULL
;
3535 if (ocache
== hdr_full_crypt_cache
) {
3536 ASSERT(!HDR_HAS_RABD(hdr
));
3537 hdr
->b_crypt_hdr
.b_ot
= DMU_OT_NONE
;
3538 hdr
->b_crypt_hdr
.b_ebufcnt
= 0;
3539 hdr
->b_crypt_hdr
.b_dsobj
= 0;
3540 memset(hdr
->b_crypt_hdr
.b_salt
, 0, ZIO_DATA_SALT_LEN
);
3541 memset(hdr
->b_crypt_hdr
.b_iv
, 0, ZIO_DATA_IV_LEN
);
3542 memset(hdr
->b_crypt_hdr
.b_mac
, 0, ZIO_DATA_MAC_LEN
);
3545 buf_discard_identity(hdr
);
3546 kmem_cache_free(ocache
, hdr
);
3552 * This function is used by the send / receive code to convert a newly
3553 * allocated arc_buf_t to one that is suitable for a raw encrypted write. It
3554 * is also used to allow the root objset block to be updated without altering
3555 * its embedded MACs. Both block types will always be uncompressed so we do not
3556 * have to worry about compression type or psize.
3559 arc_convert_to_raw(arc_buf_t
*buf
, uint64_t dsobj
, boolean_t byteorder
,
3560 dmu_object_type_t ot
, const uint8_t *salt
, const uint8_t *iv
,
3563 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3565 ASSERT(ot
== DMU_OT_DNODE
|| ot
== DMU_OT_OBJSET
);
3566 ASSERT(HDR_HAS_L1HDR(hdr
));
3567 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3569 buf
->b_flags
|= (ARC_BUF_FLAG_COMPRESSED
| ARC_BUF_FLAG_ENCRYPTED
);
3570 if (!HDR_PROTECTED(hdr
))
3571 hdr
= arc_hdr_realloc_crypt(hdr
, B_TRUE
);
3572 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3573 hdr
->b_crypt_hdr
.b_ot
= ot
;
3574 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3575 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3576 if (!arc_hdr_has_uncompressed_buf(hdr
))
3577 arc_cksum_free(hdr
);
3580 memcpy(hdr
->b_crypt_hdr
.b_salt
, salt
, ZIO_DATA_SALT_LEN
);
3582 memcpy(hdr
->b_crypt_hdr
.b_iv
, iv
, ZIO_DATA_IV_LEN
);
3584 memcpy(hdr
->b_crypt_hdr
.b_mac
, mac
, ZIO_DATA_MAC_LEN
);
3588 * Allocate a new arc_buf_hdr_t and arc_buf_t and return the buf to the caller.
3589 * The buf is returned thawed since we expect the consumer to modify it.
3592 arc_alloc_buf(spa_t
*spa
, void *tag
, arc_buf_contents_t type
, int32_t size
)
3594 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), size
, size
,
3595 B_FALSE
, ZIO_COMPRESS_OFF
, 0, type
);
3597 arc_buf_t
*buf
= NULL
;
3598 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_FALSE
, B_FALSE
,
3599 B_FALSE
, B_FALSE
, &buf
));
3606 * Allocate a compressed buf in the same manner as arc_alloc_buf. Don't use this
3607 * for bufs containing metadata.
3610 arc_alloc_compressed_buf(spa_t
*spa
, void *tag
, uint64_t psize
, uint64_t lsize
,
3611 enum zio_compress compression_type
, uint8_t complevel
)
3613 ASSERT3U(lsize
, >, 0);
3614 ASSERT3U(lsize
, >=, psize
);
3615 ASSERT3U(compression_type
, >, ZIO_COMPRESS_OFF
);
3616 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3618 arc_buf_hdr_t
*hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
,
3619 B_FALSE
, compression_type
, complevel
, ARC_BUFC_DATA
);
3621 arc_buf_t
*buf
= NULL
;
3622 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_FALSE
,
3623 B_TRUE
, B_FALSE
, B_FALSE
, &buf
));
3625 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3628 * To ensure that the hdr has the correct data in it if we call
3629 * arc_untransform() on this buf before it's been written to disk,
3630 * it's easiest if we just set up sharing between the buf and the hdr.
3632 arc_share_buf(hdr
, buf
);
3638 arc_alloc_raw_buf(spa_t
*spa
, void *tag
, uint64_t dsobj
, boolean_t byteorder
,
3639 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
,
3640 dmu_object_type_t ot
, uint64_t psize
, uint64_t lsize
,
3641 enum zio_compress compression_type
, uint8_t complevel
)
3645 arc_buf_contents_t type
= DMU_OT_IS_METADATA(ot
) ?
3646 ARC_BUFC_METADATA
: ARC_BUFC_DATA
;
3648 ASSERT3U(lsize
, >, 0);
3649 ASSERT3U(lsize
, >=, psize
);
3650 ASSERT3U(compression_type
, >=, ZIO_COMPRESS_OFF
);
3651 ASSERT3U(compression_type
, <, ZIO_COMPRESS_FUNCTIONS
);
3653 hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
, B_TRUE
,
3654 compression_type
, complevel
, type
);
3656 hdr
->b_crypt_hdr
.b_dsobj
= dsobj
;
3657 hdr
->b_crypt_hdr
.b_ot
= ot
;
3658 hdr
->b_l1hdr
.b_byteswap
= (byteorder
== ZFS_HOST_BYTEORDER
) ?
3659 DMU_BSWAP_NUMFUNCS
: DMU_OT_BYTESWAP(ot
);
3660 memcpy(hdr
->b_crypt_hdr
.b_salt
, salt
, ZIO_DATA_SALT_LEN
);
3661 memcpy(hdr
->b_crypt_hdr
.b_iv
, iv
, ZIO_DATA_IV_LEN
);
3662 memcpy(hdr
->b_crypt_hdr
.b_mac
, mac
, ZIO_DATA_MAC_LEN
);
3665 * This buffer will be considered encrypted even if the ot is not an
3666 * encrypted type. It will become authenticated instead in
3667 * arc_write_ready().
3670 VERIFY0(arc_buf_alloc_impl(hdr
, spa
, NULL
, tag
, B_TRUE
, B_TRUE
,
3671 B_FALSE
, B_FALSE
, &buf
));
3673 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
3679 l2arc_hdr_arcstats_update(arc_buf_hdr_t
*hdr
, boolean_t incr
,
3680 boolean_t state_only
)
3682 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3683 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3684 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
3685 uint64_t psize
= HDR_GET_PSIZE(hdr
);
3686 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
3687 arc_buf_contents_t type
= hdr
->b_type
;
3702 /* If the buffer is a prefetch, count it as such. */
3703 if (HDR_PREFETCH(hdr
)) {
3704 ARCSTAT_INCR(arcstat_l2_prefetch_asize
, asize_s
);
3707 * We use the value stored in the L2 header upon initial
3708 * caching in L2ARC. This value will be updated in case
3709 * an MRU/MRU_ghost buffer transitions to MFU but the L2ARC
3710 * metadata (log entry) cannot currently be updated. Having
3711 * the ARC state in the L2 header solves the problem of a
3712 * possibly absent L1 header (apparent in buffers restored
3713 * from persistent L2ARC).
3715 switch (hdr
->b_l2hdr
.b_arcs_state
) {
3716 case ARC_STATE_MRU_GHOST
:
3718 ARCSTAT_INCR(arcstat_l2_mru_asize
, asize_s
);
3720 case ARC_STATE_MFU_GHOST
:
3722 ARCSTAT_INCR(arcstat_l2_mfu_asize
, asize_s
);
3732 ARCSTAT_INCR(arcstat_l2_psize
, psize_s
);
3733 ARCSTAT_INCR(arcstat_l2_lsize
, lsize_s
);
3737 ARCSTAT_INCR(arcstat_l2_bufc_data_asize
, asize_s
);
3739 case ARC_BUFC_METADATA
:
3740 ARCSTAT_INCR(arcstat_l2_bufc_metadata_asize
, asize_s
);
3749 arc_hdr_l2hdr_destroy(arc_buf_hdr_t
*hdr
)
3751 l2arc_buf_hdr_t
*l2hdr
= &hdr
->b_l2hdr
;
3752 l2arc_dev_t
*dev
= l2hdr
->b_dev
;
3753 uint64_t psize
= HDR_GET_PSIZE(hdr
);
3754 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
3756 ASSERT(MUTEX_HELD(&dev
->l2ad_mtx
));
3757 ASSERT(HDR_HAS_L2HDR(hdr
));
3759 list_remove(&dev
->l2ad_buflist
, hdr
);
3761 l2arc_hdr_arcstats_decrement(hdr
);
3762 vdev_space_update(dev
->l2ad_vdev
, -asize
, 0, 0);
3764 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
),
3766 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
3770 arc_hdr_destroy(arc_buf_hdr_t
*hdr
)
3772 if (HDR_HAS_L1HDR(hdr
)) {
3773 ASSERT(hdr
->b_l1hdr
.b_buf
== NULL
||
3774 hdr
->b_l1hdr
.b_bufcnt
> 0);
3775 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
3776 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
3778 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3779 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
3781 if (HDR_HAS_L2HDR(hdr
)) {
3782 l2arc_dev_t
*dev
= hdr
->b_l2hdr
.b_dev
;
3783 boolean_t buflist_held
= MUTEX_HELD(&dev
->l2ad_mtx
);
3786 mutex_enter(&dev
->l2ad_mtx
);
3789 * Even though we checked this conditional above, we
3790 * need to check this again now that we have the
3791 * l2ad_mtx. This is because we could be racing with
3792 * another thread calling l2arc_evict() which might have
3793 * destroyed this header's L2 portion as we were waiting
3794 * to acquire the l2ad_mtx. If that happens, we don't
3795 * want to re-destroy the header's L2 portion.
3797 if (HDR_HAS_L2HDR(hdr
)) {
3799 if (!HDR_EMPTY(hdr
))
3800 buf_discard_identity(hdr
);
3802 arc_hdr_l2hdr_destroy(hdr
);
3806 mutex_exit(&dev
->l2ad_mtx
);
3810 * The header's identify can only be safely discarded once it is no
3811 * longer discoverable. This requires removing it from the hash table
3812 * and the l2arc header list. After this point the hash lock can not
3813 * be used to protect the header.
3815 if (!HDR_EMPTY(hdr
))
3816 buf_discard_identity(hdr
);
3818 if (HDR_HAS_L1HDR(hdr
)) {
3819 arc_cksum_free(hdr
);
3821 while (hdr
->b_l1hdr
.b_buf
!= NULL
)
3822 arc_buf_destroy_impl(hdr
->b_l1hdr
.b_buf
);
3824 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
3825 arc_hdr_free_abd(hdr
, B_FALSE
);
3827 if (HDR_HAS_RABD(hdr
))
3828 arc_hdr_free_abd(hdr
, B_TRUE
);
3831 ASSERT3P(hdr
->b_hash_next
, ==, NULL
);
3832 if (HDR_HAS_L1HDR(hdr
)) {
3833 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
3834 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
3836 if (!HDR_PROTECTED(hdr
)) {
3837 kmem_cache_free(hdr_full_cache
, hdr
);
3839 kmem_cache_free(hdr_full_crypt_cache
, hdr
);
3842 kmem_cache_free(hdr_l2only_cache
, hdr
);
3847 arc_buf_destroy(arc_buf_t
*buf
, void* tag
)
3849 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
3851 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
3852 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
3853 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3854 VERIFY0(remove_reference(hdr
, NULL
, tag
));
3855 arc_hdr_destroy(hdr
);
3859 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
3860 mutex_enter(hash_lock
);
3862 ASSERT3P(hdr
, ==, buf
->b_hdr
);
3863 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
3864 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
3865 ASSERT3P(hdr
->b_l1hdr
.b_state
, !=, arc_anon
);
3866 ASSERT3P(buf
->b_data
, !=, NULL
);
3868 (void) remove_reference(hdr
, hash_lock
, tag
);
3869 arc_buf_destroy_impl(buf
);
3870 mutex_exit(hash_lock
);
3874 * Evict the arc_buf_hdr that is provided as a parameter. The resultant
3875 * state of the header is dependent on its state prior to entering this
3876 * function. The following transitions are possible:
3878 * - arc_mru -> arc_mru_ghost
3879 * - arc_mfu -> arc_mfu_ghost
3880 * - arc_mru_ghost -> arc_l2c_only
3881 * - arc_mru_ghost -> deleted
3882 * - arc_mfu_ghost -> arc_l2c_only
3883 * - arc_mfu_ghost -> deleted
3885 * Return total size of evicted data buffers for eviction progress tracking.
3886 * When evicting from ghost states return logical buffer size to make eviction
3887 * progress at the same (or at least comparable) rate as from non-ghost states.
3889 * Return *real_evicted for actual ARC size reduction to wake up threads
3890 * waiting for it. For non-ghost states it includes size of evicted data
3891 * buffers (the headers are not freed there). For ghost states it includes
3892 * only the evicted headers size.
3895 arc_evict_hdr(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
, uint64_t *real_evicted
)
3897 arc_state_t
*evicted_state
, *state
;
3898 int64_t bytes_evicted
= 0;
3899 int min_lifetime
= HDR_PRESCIENT_PREFETCH(hdr
) ?
3900 arc_min_prescient_prefetch_ms
: arc_min_prefetch_ms
;
3902 ASSERT(MUTEX_HELD(hash_lock
));
3903 ASSERT(HDR_HAS_L1HDR(hdr
));
3906 state
= hdr
->b_l1hdr
.b_state
;
3907 if (GHOST_STATE(state
)) {
3908 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
3909 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
3912 * l2arc_write_buffers() relies on a header's L1 portion
3913 * (i.e. its b_pabd field) during it's write phase.
3914 * Thus, we cannot push a header onto the arc_l2c_only
3915 * state (removing its L1 piece) until the header is
3916 * done being written to the l2arc.
3918 if (HDR_HAS_L2HDR(hdr
) && HDR_L2_WRITING(hdr
)) {
3919 ARCSTAT_BUMP(arcstat_evict_l2_skip
);
3920 return (bytes_evicted
);
3923 ARCSTAT_BUMP(arcstat_deleted
);
3924 bytes_evicted
+= HDR_GET_LSIZE(hdr
);
3926 DTRACE_PROBE1(arc__delete
, arc_buf_hdr_t
*, hdr
);
3928 if (HDR_HAS_L2HDR(hdr
)) {
3929 ASSERT(hdr
->b_l1hdr
.b_pabd
== NULL
);
3930 ASSERT(!HDR_HAS_RABD(hdr
));
3932 * This buffer is cached on the 2nd Level ARC;
3933 * don't destroy the header.
3935 arc_change_state(arc_l2c_only
, hdr
, hash_lock
);
3937 * dropping from L1+L2 cached to L2-only,
3938 * realloc to remove the L1 header.
3940 hdr
= arc_hdr_realloc(hdr
, hdr_full_cache
,
3942 *real_evicted
+= HDR_FULL_SIZE
- HDR_L2ONLY_SIZE
;
3944 arc_change_state(arc_anon
, hdr
, hash_lock
);
3945 arc_hdr_destroy(hdr
);
3946 *real_evicted
+= HDR_FULL_SIZE
;
3948 return (bytes_evicted
);
3951 ASSERT(state
== arc_mru
|| state
== arc_mfu
);
3952 evicted_state
= (state
== arc_mru
) ? arc_mru_ghost
: arc_mfu_ghost
;
3954 /* prefetch buffers have a minimum lifespan */
3955 if (HDR_IO_IN_PROGRESS(hdr
) ||
3956 ((hdr
->b_flags
& (ARC_FLAG_PREFETCH
| ARC_FLAG_INDIRECT
)) &&
3957 ddi_get_lbolt() - hdr
->b_l1hdr
.b_arc_access
<
3958 MSEC_TO_TICK(min_lifetime
))) {
3959 ARCSTAT_BUMP(arcstat_evict_skip
);
3960 return (bytes_evicted
);
3963 ASSERT0(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
));
3964 while (hdr
->b_l1hdr
.b_buf
) {
3965 arc_buf_t
*buf
= hdr
->b_l1hdr
.b_buf
;
3966 if (!mutex_tryenter(&buf
->b_evict_lock
)) {
3967 ARCSTAT_BUMP(arcstat_mutex_miss
);
3970 if (buf
->b_data
!= NULL
) {
3971 bytes_evicted
+= HDR_GET_LSIZE(hdr
);
3972 *real_evicted
+= HDR_GET_LSIZE(hdr
);
3974 mutex_exit(&buf
->b_evict_lock
);
3975 arc_buf_destroy_impl(buf
);
3978 if (HDR_HAS_L2HDR(hdr
)) {
3979 ARCSTAT_INCR(arcstat_evict_l2_cached
, HDR_GET_LSIZE(hdr
));
3981 if (l2arc_write_eligible(hdr
->b_spa
, hdr
)) {
3982 ARCSTAT_INCR(arcstat_evict_l2_eligible
,
3983 HDR_GET_LSIZE(hdr
));
3985 switch (state
->arcs_state
) {
3988 arcstat_evict_l2_eligible_mru
,
3989 HDR_GET_LSIZE(hdr
));
3993 arcstat_evict_l2_eligible_mfu
,
3994 HDR_GET_LSIZE(hdr
));
4000 ARCSTAT_INCR(arcstat_evict_l2_ineligible
,
4001 HDR_GET_LSIZE(hdr
));
4005 if (hdr
->b_l1hdr
.b_bufcnt
== 0) {
4006 arc_cksum_free(hdr
);
4008 bytes_evicted
+= arc_hdr_size(hdr
);
4009 *real_evicted
+= arc_hdr_size(hdr
);
4012 * If this hdr is being evicted and has a compressed
4013 * buffer then we discard it here before we change states.
4014 * This ensures that the accounting is updated correctly
4015 * in arc_free_data_impl().
4017 if (hdr
->b_l1hdr
.b_pabd
!= NULL
)
4018 arc_hdr_free_abd(hdr
, B_FALSE
);
4020 if (HDR_HAS_RABD(hdr
))
4021 arc_hdr_free_abd(hdr
, B_TRUE
);
4023 arc_change_state(evicted_state
, hdr
, hash_lock
);
4024 ASSERT(HDR_IN_HASH_TABLE(hdr
));
4025 arc_hdr_set_flags(hdr
, ARC_FLAG_IN_HASH_TABLE
);
4026 DTRACE_PROBE1(arc__evict
, arc_buf_hdr_t
*, hdr
);
4029 return (bytes_evicted
);
4033 arc_set_need_free(void)
4035 ASSERT(MUTEX_HELD(&arc_evict_lock
));
4036 int64_t remaining
= arc_free_memory() - arc_sys_free
/ 2;
4037 arc_evict_waiter_t
*aw
= list_tail(&arc_evict_waiters
);
4039 arc_need_free
= MAX(-remaining
, 0);
4042 MAX(-remaining
, (int64_t)(aw
->aew_count
- arc_evict_count
));
4047 arc_evict_state_impl(multilist_t
*ml
, int idx
, arc_buf_hdr_t
*marker
,
4048 uint64_t spa
, uint64_t bytes
)
4050 multilist_sublist_t
*mls
;
4051 uint64_t bytes_evicted
= 0, real_evicted
= 0;
4053 kmutex_t
*hash_lock
;
4054 int evict_count
= zfs_arc_evict_batch_limit
;
4056 ASSERT3P(marker
, !=, NULL
);
4058 mls
= multilist_sublist_lock(ml
, idx
);
4060 for (hdr
= multilist_sublist_prev(mls
, marker
); likely(hdr
!= NULL
);
4061 hdr
= multilist_sublist_prev(mls
, marker
)) {
4062 if ((evict_count
<= 0) || (bytes_evicted
>= bytes
))
4066 * To keep our iteration location, move the marker
4067 * forward. Since we're not holding hdr's hash lock, we
4068 * must be very careful and not remove 'hdr' from the
4069 * sublist. Otherwise, other consumers might mistake the
4070 * 'hdr' as not being on a sublist when they call the
4071 * multilist_link_active() function (they all rely on
4072 * the hash lock protecting concurrent insertions and
4073 * removals). multilist_sublist_move_forward() was
4074 * specifically implemented to ensure this is the case
4075 * (only 'marker' will be removed and re-inserted).
4077 multilist_sublist_move_forward(mls
, marker
);
4080 * The only case where the b_spa field should ever be
4081 * zero, is the marker headers inserted by
4082 * arc_evict_state(). It's possible for multiple threads
4083 * to be calling arc_evict_state() concurrently (e.g.
4084 * dsl_pool_close() and zio_inject_fault()), so we must
4085 * skip any markers we see from these other threads.
4087 if (hdr
->b_spa
== 0)
4090 /* we're only interested in evicting buffers of a certain spa */
4091 if (spa
!= 0 && hdr
->b_spa
!= spa
) {
4092 ARCSTAT_BUMP(arcstat_evict_skip
);
4096 hash_lock
= HDR_LOCK(hdr
);
4099 * We aren't calling this function from any code path
4100 * that would already be holding a hash lock, so we're
4101 * asserting on this assumption to be defensive in case
4102 * this ever changes. Without this check, it would be
4103 * possible to incorrectly increment arcstat_mutex_miss
4104 * below (e.g. if the code changed such that we called
4105 * this function with a hash lock held).
4107 ASSERT(!MUTEX_HELD(hash_lock
));
4109 if (mutex_tryenter(hash_lock
)) {
4111 uint64_t evicted
= arc_evict_hdr(hdr
, hash_lock
,
4113 mutex_exit(hash_lock
);
4115 bytes_evicted
+= evicted
;
4116 real_evicted
+= revicted
;
4119 * If evicted is zero, arc_evict_hdr() must have
4120 * decided to skip this header, don't increment
4121 * evict_count in this case.
4127 ARCSTAT_BUMP(arcstat_mutex_miss
);
4131 multilist_sublist_unlock(mls
);
4134 * Increment the count of evicted bytes, and wake up any threads that
4135 * are waiting for the count to reach this value. Since the list is
4136 * ordered by ascending aew_count, we pop off the beginning of the
4137 * list until we reach the end, or a waiter that's past the current
4138 * "count". Doing this outside the loop reduces the number of times
4139 * we need to acquire the global arc_evict_lock.
4141 * Only wake when there's sufficient free memory in the system
4142 * (specifically, arc_sys_free/2, which by default is a bit more than
4143 * 1/64th of RAM). See the comments in arc_wait_for_eviction().
4145 mutex_enter(&arc_evict_lock
);
4146 arc_evict_count
+= real_evicted
;
4148 if (arc_free_memory() > arc_sys_free
/ 2) {
4149 arc_evict_waiter_t
*aw
;
4150 while ((aw
= list_head(&arc_evict_waiters
)) != NULL
&&
4151 aw
->aew_count
<= arc_evict_count
) {
4152 list_remove(&arc_evict_waiters
, aw
);
4153 cv_broadcast(&aw
->aew_cv
);
4156 arc_set_need_free();
4157 mutex_exit(&arc_evict_lock
);
4160 * If the ARC size is reduced from arc_c_max to arc_c_min (especially
4161 * if the average cached block is small), eviction can be on-CPU for
4162 * many seconds. To ensure that other threads that may be bound to
4163 * this CPU are able to make progress, make a voluntary preemption
4168 return (bytes_evicted
);
4172 * Allocate an array of buffer headers used as placeholders during arc state
4175 static arc_buf_hdr_t
**
4176 arc_state_alloc_markers(int count
)
4178 arc_buf_hdr_t
**markers
;
4180 markers
= kmem_zalloc(sizeof (*markers
) * count
, KM_SLEEP
);
4181 for (int i
= 0; i
< count
; i
++) {
4182 markers
[i
] = kmem_cache_alloc(hdr_full_cache
, KM_SLEEP
);
4185 * A b_spa of 0 is used to indicate that this header is
4186 * a marker. This fact is used in arc_evict_type() and
4187 * arc_evict_state_impl().
4189 markers
[i
]->b_spa
= 0;
4196 arc_state_free_markers(arc_buf_hdr_t
**markers
, int count
)
4198 for (int i
= 0; i
< count
; i
++)
4199 kmem_cache_free(hdr_full_cache
, markers
[i
]);
4200 kmem_free(markers
, sizeof (*markers
) * count
);
4204 * Evict buffers from the given arc state, until we've removed the
4205 * specified number of bytes. Move the removed buffers to the
4206 * appropriate evict state.
4208 * This function makes a "best effort". It skips over any buffers
4209 * it can't get a hash_lock on, and so, may not catch all candidates.
4210 * It may also return without evicting as much space as requested.
4212 * If bytes is specified using the special value ARC_EVICT_ALL, this
4213 * will evict all available (i.e. unlocked and evictable) buffers from
4214 * the given arc state; which is used by arc_flush().
4217 arc_evict_state(arc_state_t
*state
, uint64_t spa
, uint64_t bytes
,
4218 arc_buf_contents_t type
)
4220 uint64_t total_evicted
= 0;
4221 multilist_t
*ml
= &state
->arcs_list
[type
];
4223 arc_buf_hdr_t
**markers
;
4225 num_sublists
= multilist_get_num_sublists(ml
);
4228 * If we've tried to evict from each sublist, made some
4229 * progress, but still have not hit the target number of bytes
4230 * to evict, we want to keep trying. The markers allow us to
4231 * pick up where we left off for each individual sublist, rather
4232 * than starting from the tail each time.
4234 if (zthr_iscurthread(arc_evict_zthr
)) {
4235 markers
= arc_state_evict_markers
;
4236 ASSERT3S(num_sublists
, <=, arc_state_evict_marker_count
);
4238 markers
= arc_state_alloc_markers(num_sublists
);
4240 for (int i
= 0; i
< num_sublists
; i
++) {
4241 multilist_sublist_t
*mls
;
4243 mls
= multilist_sublist_lock(ml
, i
);
4244 multilist_sublist_insert_tail(mls
, markers
[i
]);
4245 multilist_sublist_unlock(mls
);
4249 * While we haven't hit our target number of bytes to evict, or
4250 * we're evicting all available buffers.
4252 while (total_evicted
< bytes
) {
4253 int sublist_idx
= multilist_get_random_index(ml
);
4254 uint64_t scan_evicted
= 0;
4257 * Try to reduce pinned dnodes with a floor of arc_dnode_limit.
4258 * Request that 10% of the LRUs be scanned by the superblock
4261 if (type
== ARC_BUFC_DATA
&& aggsum_compare(
4262 &arc_sums
.arcstat_dnode_size
, arc_dnode_size_limit
) > 0) {
4263 arc_prune_async((aggsum_upper_bound(
4264 &arc_sums
.arcstat_dnode_size
) -
4265 arc_dnode_size_limit
) / sizeof (dnode_t
) /
4266 zfs_arc_dnode_reduce_percent
);
4270 * Start eviction using a randomly selected sublist,
4271 * this is to try and evenly balance eviction across all
4272 * sublists. Always starting at the same sublist
4273 * (e.g. index 0) would cause evictions to favor certain
4274 * sublists over others.
4276 for (int i
= 0; i
< num_sublists
; i
++) {
4277 uint64_t bytes_remaining
;
4278 uint64_t bytes_evicted
;
4280 if (total_evicted
< bytes
)
4281 bytes_remaining
= bytes
- total_evicted
;
4285 bytes_evicted
= arc_evict_state_impl(ml
, sublist_idx
,
4286 markers
[sublist_idx
], spa
, bytes_remaining
);
4288 scan_evicted
+= bytes_evicted
;
4289 total_evicted
+= bytes_evicted
;
4291 /* we've reached the end, wrap to the beginning */
4292 if (++sublist_idx
>= num_sublists
)
4297 * If we didn't evict anything during this scan, we have
4298 * no reason to believe we'll evict more during another
4299 * scan, so break the loop.
4301 if (scan_evicted
== 0) {
4302 /* This isn't possible, let's make that obvious */
4303 ASSERT3S(bytes
, !=, 0);
4306 * When bytes is ARC_EVICT_ALL, the only way to
4307 * break the loop is when scan_evicted is zero.
4308 * In that case, we actually have evicted enough,
4309 * so we don't want to increment the kstat.
4311 if (bytes
!= ARC_EVICT_ALL
) {
4312 ASSERT3S(total_evicted
, <, bytes
);
4313 ARCSTAT_BUMP(arcstat_evict_not_enough
);
4320 for (int i
= 0; i
< num_sublists
; i
++) {
4321 multilist_sublist_t
*mls
= multilist_sublist_lock(ml
, i
);
4322 multilist_sublist_remove(mls
, markers
[i
]);
4323 multilist_sublist_unlock(mls
);
4325 if (markers
!= arc_state_evict_markers
)
4326 arc_state_free_markers(markers
, num_sublists
);
4328 return (total_evicted
);
4332 * Flush all "evictable" data of the given type from the arc state
4333 * specified. This will not evict any "active" buffers (i.e. referenced).
4335 * When 'retry' is set to B_FALSE, the function will make a single pass
4336 * over the state and evict any buffers that it can. Since it doesn't
4337 * continually retry the eviction, it might end up leaving some buffers
4338 * in the ARC due to lock misses.
4340 * When 'retry' is set to B_TRUE, the function will continually retry the
4341 * eviction until *all* evictable buffers have been removed from the
4342 * state. As a result, if concurrent insertions into the state are
4343 * allowed (e.g. if the ARC isn't shutting down), this function might
4344 * wind up in an infinite loop, continually trying to evict buffers.
4347 arc_flush_state(arc_state_t
*state
, uint64_t spa
, arc_buf_contents_t type
,
4350 uint64_t evicted
= 0;
4352 while (zfs_refcount_count(&state
->arcs_esize
[type
]) != 0) {
4353 evicted
+= arc_evict_state(state
, spa
, ARC_EVICT_ALL
, type
);
4363 * Evict the specified number of bytes from the state specified,
4364 * restricting eviction to the spa and type given. This function
4365 * prevents us from trying to evict more from a state's list than
4366 * is "evictable", and to skip evicting altogether when passed a
4367 * negative value for "bytes". In contrast, arc_evict_state() will
4368 * evict everything it can, when passed a negative value for "bytes".
4371 arc_evict_impl(arc_state_t
*state
, uint64_t spa
, int64_t bytes
,
4372 arc_buf_contents_t type
)
4376 if (bytes
> 0 && zfs_refcount_count(&state
->arcs_esize
[type
]) > 0) {
4377 delta
= MIN(zfs_refcount_count(&state
->arcs_esize
[type
]),
4379 return (arc_evict_state(state
, spa
, delta
, type
));
4386 * The goal of this function is to evict enough meta data buffers from the
4387 * ARC in order to enforce the arc_meta_limit. Achieving this is slightly
4388 * more complicated than it appears because it is common for data buffers
4389 * to have holds on meta data buffers. In addition, dnode meta data buffers
4390 * will be held by the dnodes in the block preventing them from being freed.
4391 * This means we can't simply traverse the ARC and expect to always find
4392 * enough unheld meta data buffer to release.
4394 * Therefore, this function has been updated to make alternating passes
4395 * over the ARC releasing data buffers and then newly unheld meta data
4396 * buffers. This ensures forward progress is maintained and meta_used
4397 * will decrease. Normally this is sufficient, but if required the ARC
4398 * will call the registered prune callbacks causing dentry and inodes to
4399 * be dropped from the VFS cache. This will make dnode meta data buffers
4400 * available for reclaim.
4403 arc_evict_meta_balanced(uint64_t meta_used
)
4405 int64_t delta
, prune
= 0, adjustmnt
;
4406 uint64_t total_evicted
= 0;
4407 arc_buf_contents_t type
= ARC_BUFC_DATA
;
4408 int restarts
= MAX(zfs_arc_meta_adjust_restarts
, 0);
4412 * This slightly differs than the way we evict from the mru in
4413 * arc_evict because we don't have a "target" value (i.e. no
4414 * "meta" arc_p). As a result, I think we can completely
4415 * cannibalize the metadata in the MRU before we evict the
4416 * metadata from the MFU. I think we probably need to implement a
4417 * "metadata arc_p" value to do this properly.
4419 adjustmnt
= meta_used
- arc_meta_limit
;
4421 if (adjustmnt
> 0 &&
4422 zfs_refcount_count(&arc_mru
->arcs_esize
[type
]) > 0) {
4423 delta
= MIN(zfs_refcount_count(&arc_mru
->arcs_esize
[type
]),
4425 total_evicted
+= arc_evict_impl(arc_mru
, 0, delta
, type
);
4430 * We can't afford to recalculate adjustmnt here. If we do,
4431 * new metadata buffers can sneak into the MRU or ANON lists,
4432 * thus penalize the MFU metadata. Although the fudge factor is
4433 * small, it has been empirically shown to be significant for
4434 * certain workloads (e.g. creating many empty directories). As
4435 * such, we use the original calculation for adjustmnt, and
4436 * simply decrement the amount of data evicted from the MRU.
4439 if (adjustmnt
> 0 &&
4440 zfs_refcount_count(&arc_mfu
->arcs_esize
[type
]) > 0) {
4441 delta
= MIN(zfs_refcount_count(&arc_mfu
->arcs_esize
[type
]),
4443 total_evicted
+= arc_evict_impl(arc_mfu
, 0, delta
, type
);
4446 adjustmnt
= meta_used
- arc_meta_limit
;
4448 if (adjustmnt
> 0 &&
4449 zfs_refcount_count(&arc_mru_ghost
->arcs_esize
[type
]) > 0) {
4450 delta
= MIN(adjustmnt
,
4451 zfs_refcount_count(&arc_mru_ghost
->arcs_esize
[type
]));
4452 total_evicted
+= arc_evict_impl(arc_mru_ghost
, 0, delta
, type
);
4456 if (adjustmnt
> 0 &&
4457 zfs_refcount_count(&arc_mfu_ghost
->arcs_esize
[type
]) > 0) {
4458 delta
= MIN(adjustmnt
,
4459 zfs_refcount_count(&arc_mfu_ghost
->arcs_esize
[type
]));
4460 total_evicted
+= arc_evict_impl(arc_mfu_ghost
, 0, delta
, type
);
4464 * If after attempting to make the requested adjustment to the ARC
4465 * the meta limit is still being exceeded then request that the
4466 * higher layers drop some cached objects which have holds on ARC
4467 * meta buffers. Requests to the upper layers will be made with
4468 * increasingly large scan sizes until the ARC is below the limit.
4470 if (meta_used
> arc_meta_limit
) {
4471 if (type
== ARC_BUFC_DATA
) {
4472 type
= ARC_BUFC_METADATA
;
4474 type
= ARC_BUFC_DATA
;
4476 if (zfs_arc_meta_prune
) {
4477 prune
+= zfs_arc_meta_prune
;
4478 arc_prune_async(prune
);
4487 return (total_evicted
);
4491 * Evict metadata buffers from the cache, such that arcstat_meta_used is
4492 * capped by the arc_meta_limit tunable.
4495 arc_evict_meta_only(uint64_t meta_used
)
4497 uint64_t total_evicted
= 0;
4501 * If we're over the meta limit, we want to evict enough
4502 * metadata to get back under the meta limit. We don't want to
4503 * evict so much that we drop the MRU below arc_p, though. If
4504 * we're over the meta limit more than we're over arc_p, we
4505 * evict some from the MRU here, and some from the MFU below.
4507 target
= MIN((int64_t)(meta_used
- arc_meta_limit
),
4508 (int64_t)(zfs_refcount_count(&arc_anon
->arcs_size
) +
4509 zfs_refcount_count(&arc_mru
->arcs_size
) - arc_p
));
4511 total_evicted
+= arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4514 * Similar to the above, we want to evict enough bytes to get us
4515 * below the meta limit, but not so much as to drop us below the
4516 * space allotted to the MFU (which is defined as arc_c - arc_p).
4518 target
= MIN((int64_t)(meta_used
- arc_meta_limit
),
4519 (int64_t)(zfs_refcount_count(&arc_mfu
->arcs_size
) -
4522 total_evicted
+= arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4524 return (total_evicted
);
4528 arc_evict_meta(uint64_t meta_used
)
4530 if (zfs_arc_meta_strategy
== ARC_STRATEGY_META_ONLY
)
4531 return (arc_evict_meta_only(meta_used
));
4533 return (arc_evict_meta_balanced(meta_used
));
4537 * Return the type of the oldest buffer in the given arc state
4539 * This function will select a random sublist of type ARC_BUFC_DATA and
4540 * a random sublist of type ARC_BUFC_METADATA. The tail of each sublist
4541 * is compared, and the type which contains the "older" buffer will be
4544 static arc_buf_contents_t
4545 arc_evict_type(arc_state_t
*state
)
4547 multilist_t
*data_ml
= &state
->arcs_list
[ARC_BUFC_DATA
];
4548 multilist_t
*meta_ml
= &state
->arcs_list
[ARC_BUFC_METADATA
];
4549 int data_idx
= multilist_get_random_index(data_ml
);
4550 int meta_idx
= multilist_get_random_index(meta_ml
);
4551 multilist_sublist_t
*data_mls
;
4552 multilist_sublist_t
*meta_mls
;
4553 arc_buf_contents_t type
;
4554 arc_buf_hdr_t
*data_hdr
;
4555 arc_buf_hdr_t
*meta_hdr
;
4558 * We keep the sublist lock until we're finished, to prevent
4559 * the headers from being destroyed via arc_evict_state().
4561 data_mls
= multilist_sublist_lock(data_ml
, data_idx
);
4562 meta_mls
= multilist_sublist_lock(meta_ml
, meta_idx
);
4565 * These two loops are to ensure we skip any markers that
4566 * might be at the tail of the lists due to arc_evict_state().
4569 for (data_hdr
= multilist_sublist_tail(data_mls
); data_hdr
!= NULL
;
4570 data_hdr
= multilist_sublist_prev(data_mls
, data_hdr
)) {
4571 if (data_hdr
->b_spa
!= 0)
4575 for (meta_hdr
= multilist_sublist_tail(meta_mls
); meta_hdr
!= NULL
;
4576 meta_hdr
= multilist_sublist_prev(meta_mls
, meta_hdr
)) {
4577 if (meta_hdr
->b_spa
!= 0)
4581 if (data_hdr
== NULL
&& meta_hdr
== NULL
) {
4582 type
= ARC_BUFC_DATA
;
4583 } else if (data_hdr
== NULL
) {
4584 ASSERT3P(meta_hdr
, !=, NULL
);
4585 type
= ARC_BUFC_METADATA
;
4586 } else if (meta_hdr
== NULL
) {
4587 ASSERT3P(data_hdr
, !=, NULL
);
4588 type
= ARC_BUFC_DATA
;
4590 ASSERT3P(data_hdr
, !=, NULL
);
4591 ASSERT3P(meta_hdr
, !=, NULL
);
4593 /* The headers can't be on the sublist without an L1 header */
4594 ASSERT(HDR_HAS_L1HDR(data_hdr
));
4595 ASSERT(HDR_HAS_L1HDR(meta_hdr
));
4597 if (data_hdr
->b_l1hdr
.b_arc_access
<
4598 meta_hdr
->b_l1hdr
.b_arc_access
) {
4599 type
= ARC_BUFC_DATA
;
4601 type
= ARC_BUFC_METADATA
;
4605 multilist_sublist_unlock(meta_mls
);
4606 multilist_sublist_unlock(data_mls
);
4612 * Evict buffers from the cache, such that arcstat_size is capped by arc_c.
4617 uint64_t total_evicted
= 0;
4620 uint64_t asize
= aggsum_value(&arc_sums
.arcstat_size
);
4621 uint64_t ameta
= aggsum_value(&arc_sums
.arcstat_meta_used
);
4624 * If we're over arc_meta_limit, we want to correct that before
4625 * potentially evicting data buffers below.
4627 total_evicted
+= arc_evict_meta(ameta
);
4632 * If we're over the target cache size, we want to evict enough
4633 * from the list to get back to our target size. We don't want
4634 * to evict too much from the MRU, such that it drops below
4635 * arc_p. So, if we're over our target cache size more than
4636 * the MRU is over arc_p, we'll evict enough to get back to
4637 * arc_p here, and then evict more from the MFU below.
4639 target
= MIN((int64_t)(asize
- arc_c
),
4640 (int64_t)(zfs_refcount_count(&arc_anon
->arcs_size
) +
4641 zfs_refcount_count(&arc_mru
->arcs_size
) + ameta
- arc_p
));
4644 * If we're below arc_meta_min, always prefer to evict data.
4645 * Otherwise, try to satisfy the requested number of bytes to
4646 * evict from the type which contains older buffers; in an
4647 * effort to keep newer buffers in the cache regardless of their
4648 * type. If we cannot satisfy the number of bytes from this
4649 * type, spill over into the next type.
4651 if (arc_evict_type(arc_mru
) == ARC_BUFC_METADATA
&&
4652 ameta
> arc_meta_min
) {
4653 bytes
= arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4654 total_evicted
+= bytes
;
4657 * If we couldn't evict our target number of bytes from
4658 * metadata, we try to get the rest from data.
4663 arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_DATA
);
4665 bytes
= arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_DATA
);
4666 total_evicted
+= bytes
;
4669 * If we couldn't evict our target number of bytes from
4670 * data, we try to get the rest from metadata.
4675 arc_evict_impl(arc_mru
, 0, target
, ARC_BUFC_METADATA
);
4679 * Re-sum ARC stats after the first round of evictions.
4681 asize
= aggsum_value(&arc_sums
.arcstat_size
);
4682 ameta
= aggsum_value(&arc_sums
.arcstat_meta_used
);
4688 * Now that we've tried to evict enough from the MRU to get its
4689 * size back to arc_p, if we're still above the target cache
4690 * size, we evict the rest from the MFU.
4692 target
= asize
- arc_c
;
4694 if (arc_evict_type(arc_mfu
) == ARC_BUFC_METADATA
&&
4695 ameta
> arc_meta_min
) {
4696 bytes
= arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4697 total_evicted
+= bytes
;
4700 * If we couldn't evict our target number of bytes from
4701 * metadata, we try to get the rest from data.
4706 arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_DATA
);
4708 bytes
= arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_DATA
);
4709 total_evicted
+= bytes
;
4712 * If we couldn't evict our target number of bytes from
4713 * data, we try to get the rest from data.
4718 arc_evict_impl(arc_mfu
, 0, target
, ARC_BUFC_METADATA
);
4722 * Adjust ghost lists
4724 * In addition to the above, the ARC also defines target values
4725 * for the ghost lists. The sum of the mru list and mru ghost
4726 * list should never exceed the target size of the cache, and
4727 * the sum of the mru list, mfu list, mru ghost list, and mfu
4728 * ghost list should never exceed twice the target size of the
4729 * cache. The following logic enforces these limits on the ghost
4730 * caches, and evicts from them as needed.
4732 target
= zfs_refcount_count(&arc_mru
->arcs_size
) +
4733 zfs_refcount_count(&arc_mru_ghost
->arcs_size
) - arc_c
;
4735 bytes
= arc_evict_impl(arc_mru_ghost
, 0, target
, ARC_BUFC_DATA
);
4736 total_evicted
+= bytes
;
4741 arc_evict_impl(arc_mru_ghost
, 0, target
, ARC_BUFC_METADATA
);
4744 * We assume the sum of the mru list and mfu list is less than
4745 * or equal to arc_c (we enforced this above), which means we
4746 * can use the simpler of the two equations below:
4748 * mru + mfu + mru ghost + mfu ghost <= 2 * arc_c
4749 * mru ghost + mfu ghost <= arc_c
4751 target
= zfs_refcount_count(&arc_mru_ghost
->arcs_size
) +
4752 zfs_refcount_count(&arc_mfu_ghost
->arcs_size
) - arc_c
;
4754 bytes
= arc_evict_impl(arc_mfu_ghost
, 0, target
, ARC_BUFC_DATA
);
4755 total_evicted
+= bytes
;
4760 arc_evict_impl(arc_mfu_ghost
, 0, target
, ARC_BUFC_METADATA
);
4762 return (total_evicted
);
4766 arc_flush(spa_t
*spa
, boolean_t retry
)
4771 * If retry is B_TRUE, a spa must not be specified since we have
4772 * no good way to determine if all of a spa's buffers have been
4773 * evicted from an arc state.
4775 ASSERT(!retry
|| spa
== 0);
4778 guid
= spa_load_guid(spa
);
4780 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_DATA
, retry
);
4781 (void) arc_flush_state(arc_mru
, guid
, ARC_BUFC_METADATA
, retry
);
4783 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_DATA
, retry
);
4784 (void) arc_flush_state(arc_mfu
, guid
, ARC_BUFC_METADATA
, retry
);
4786 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4787 (void) arc_flush_state(arc_mru_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4789 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_DATA
, retry
);
4790 (void) arc_flush_state(arc_mfu_ghost
, guid
, ARC_BUFC_METADATA
, retry
);
4794 arc_reduce_target_size(int64_t to_free
)
4796 uint64_t asize
= aggsum_value(&arc_sums
.arcstat_size
);
4799 * All callers want the ARC to actually evict (at least) this much
4800 * memory. Therefore we reduce from the lower of the current size and
4801 * the target size. This way, even if arc_c is much higher than
4802 * arc_size (as can be the case after many calls to arc_freed(), we will
4803 * immediately have arc_c < arc_size and therefore the arc_evict_zthr
4806 uint64_t c
= MIN(arc_c
, asize
);
4808 if (c
> to_free
&& c
- to_free
> arc_c_min
) {
4809 arc_c
= c
- to_free
;
4810 atomic_add_64(&arc_p
, -(arc_p
>> arc_shrink_shift
));
4812 arc_p
= (arc_c
>> 1);
4813 ASSERT(arc_c
>= arc_c_min
);
4814 ASSERT((int64_t)arc_p
>= 0);
4819 if (asize
> arc_c
) {
4820 /* See comment in arc_evict_cb_check() on why lock+flag */
4821 mutex_enter(&arc_evict_lock
);
4822 arc_evict_needed
= B_TRUE
;
4823 mutex_exit(&arc_evict_lock
);
4824 zthr_wakeup(arc_evict_zthr
);
4829 * Determine if the system is under memory pressure and is asking
4830 * to reclaim memory. A return value of B_TRUE indicates that the system
4831 * is under memory pressure and that the arc should adjust accordingly.
4834 arc_reclaim_needed(void)
4836 return (arc_available_memory() < 0);
4840 arc_kmem_reap_soon(void)
4843 kmem_cache_t
*prev_cache
= NULL
;
4844 kmem_cache_t
*prev_data_cache
= NULL
;
4847 if ((aggsum_compare(&arc_sums
.arcstat_meta_used
,
4848 arc_meta_limit
) >= 0) && zfs_arc_meta_prune
) {
4850 * We are exceeding our meta-data cache limit.
4851 * Prune some entries to release holds on meta-data.
4853 arc_prune_async(zfs_arc_meta_prune
);
4857 * Reclaim unused memory from all kmem caches.
4863 for (i
= 0; i
< SPA_MAXBLOCKSIZE
>> SPA_MINBLOCKSHIFT
; i
++) {
4865 /* reach upper limit of cache size on 32-bit */
4866 if (zio_buf_cache
[i
] == NULL
)
4869 if (zio_buf_cache
[i
] != prev_cache
) {
4870 prev_cache
= zio_buf_cache
[i
];
4871 kmem_cache_reap_now(zio_buf_cache
[i
]);
4873 if (zio_data_buf_cache
[i
] != prev_data_cache
) {
4874 prev_data_cache
= zio_data_buf_cache
[i
];
4875 kmem_cache_reap_now(zio_data_buf_cache
[i
]);
4878 kmem_cache_reap_now(buf_cache
);
4879 kmem_cache_reap_now(hdr_full_cache
);
4880 kmem_cache_reap_now(hdr_l2only_cache
);
4881 kmem_cache_reap_now(zfs_btree_leaf_cache
);
4882 abd_cache_reap_now();
4886 arc_evict_cb_check(void *arg
, zthr_t
*zthr
)
4888 (void) arg
, (void) zthr
;
4892 * This is necessary in order to keep the kstat information
4893 * up to date for tools that display kstat data such as the
4894 * mdb ::arc dcmd and the Linux crash utility. These tools
4895 * typically do not call kstat's update function, but simply
4896 * dump out stats from the most recent update. Without
4897 * this call, these commands may show stale stats for the
4898 * anon, mru, mru_ghost, mfu, and mfu_ghost lists. Even
4899 * with this call, the data might be out of date if the
4900 * evict thread hasn't been woken recently; but that should
4901 * suffice. The arc_state_t structures can be queried
4902 * directly if more accurate information is needed.
4904 if (arc_ksp
!= NULL
)
4905 arc_ksp
->ks_update(arc_ksp
, KSTAT_READ
);
4909 * We have to rely on arc_wait_for_eviction() to tell us when to
4910 * evict, rather than checking if we are overflowing here, so that we
4911 * are sure to not leave arc_wait_for_eviction() waiting on aew_cv.
4912 * If we have become "not overflowing" since arc_wait_for_eviction()
4913 * checked, we need to wake it up. We could broadcast the CV here,
4914 * but arc_wait_for_eviction() may have not yet gone to sleep. We
4915 * would need to use a mutex to ensure that this function doesn't
4916 * broadcast until arc_wait_for_eviction() has gone to sleep (e.g.
4917 * the arc_evict_lock). However, the lock ordering of such a lock
4918 * would necessarily be incorrect with respect to the zthr_lock,
4919 * which is held before this function is called, and is held by
4920 * arc_wait_for_eviction() when it calls zthr_wakeup().
4922 return (arc_evict_needed
);
4926 * Keep arc_size under arc_c by running arc_evict which evicts data
4930 arc_evict_cb(void *arg
, zthr_t
*zthr
)
4932 (void) arg
, (void) zthr
;
4934 uint64_t evicted
= 0;
4935 fstrans_cookie_t cookie
= spl_fstrans_mark();
4937 /* Evict from cache */
4938 evicted
= arc_evict();
4941 * If evicted is zero, we couldn't evict anything
4942 * via arc_evict(). This could be due to hash lock
4943 * collisions, but more likely due to the majority of
4944 * arc buffers being unevictable. Therefore, even if
4945 * arc_size is above arc_c, another pass is unlikely to
4946 * be helpful and could potentially cause us to enter an
4947 * infinite loop. Additionally, zthr_iscancelled() is
4948 * checked here so that if the arc is shutting down, the
4949 * broadcast will wake any remaining arc evict waiters.
4951 mutex_enter(&arc_evict_lock
);
4952 arc_evict_needed
= !zthr_iscancelled(arc_evict_zthr
) &&
4953 evicted
> 0 && aggsum_compare(&arc_sums
.arcstat_size
, arc_c
) > 0;
4954 if (!arc_evict_needed
) {
4956 * We're either no longer overflowing, or we
4957 * can't evict anything more, so we should wake
4958 * arc_get_data_impl() sooner.
4960 arc_evict_waiter_t
*aw
;
4961 while ((aw
= list_remove_head(&arc_evict_waiters
)) != NULL
) {
4962 cv_broadcast(&aw
->aew_cv
);
4964 arc_set_need_free();
4966 mutex_exit(&arc_evict_lock
);
4967 spl_fstrans_unmark(cookie
);
4971 arc_reap_cb_check(void *arg
, zthr_t
*zthr
)
4973 (void) arg
, (void) zthr
;
4975 int64_t free_memory
= arc_available_memory();
4976 static int reap_cb_check_counter
= 0;
4979 * If a kmem reap is already active, don't schedule more. We must
4980 * check for this because kmem_cache_reap_soon() won't actually
4981 * block on the cache being reaped (this is to prevent callers from
4982 * becoming implicitly blocked by a system-wide kmem reap -- which,
4983 * on a system with many, many full magazines, can take minutes).
4985 if (!kmem_cache_reap_active() && free_memory
< 0) {
4987 arc_no_grow
= B_TRUE
;
4990 * Wait at least zfs_grow_retry (default 5) seconds
4991 * before considering growing.
4993 arc_growtime
= gethrtime() + SEC2NSEC(arc_grow_retry
);
4995 } else if (free_memory
< arc_c
>> arc_no_grow_shift
) {
4996 arc_no_grow
= B_TRUE
;
4997 } else if (gethrtime() >= arc_growtime
) {
4998 arc_no_grow
= B_FALSE
;
5002 * Called unconditionally every 60 seconds to reclaim unused
5003 * zstd compression and decompression context. This is done
5004 * here to avoid the need for an independent thread.
5006 if (!((reap_cb_check_counter
++) % 60))
5007 zfs_zstd_cache_reap_now();
5013 * Keep enough free memory in the system by reaping the ARC's kmem
5014 * caches. To cause more slabs to be reapable, we may reduce the
5015 * target size of the cache (arc_c), causing the arc_evict_cb()
5016 * to free more buffers.
5019 arc_reap_cb(void *arg
, zthr_t
*zthr
)
5021 (void) arg
, (void) zthr
;
5023 int64_t free_memory
;
5024 fstrans_cookie_t cookie
= spl_fstrans_mark();
5027 * Kick off asynchronous kmem_reap()'s of all our caches.
5029 arc_kmem_reap_soon();
5032 * Wait at least arc_kmem_cache_reap_retry_ms between
5033 * arc_kmem_reap_soon() calls. Without this check it is possible to
5034 * end up in a situation where we spend lots of time reaping
5035 * caches, while we're near arc_c_min. Waiting here also gives the
5036 * subsequent free memory check a chance of finding that the
5037 * asynchronous reap has already freed enough memory, and we don't
5038 * need to call arc_reduce_target_size().
5040 delay((hz
* arc_kmem_cache_reap_retry_ms
+ 999) / 1000);
5043 * Reduce the target size as needed to maintain the amount of free
5044 * memory in the system at a fraction of the arc_size (1/128th by
5045 * default). If oversubscribed (free_memory < 0) then reduce the
5046 * target arc_size by the deficit amount plus the fractional
5047 * amount. If free memory is positive but less than the fractional
5048 * amount, reduce by what is needed to hit the fractional amount.
5050 free_memory
= arc_available_memory();
5053 (arc_c
>> arc_shrink_shift
) - free_memory
;
5055 arc_reduce_target_size(to_free
);
5057 spl_fstrans_unmark(cookie
);
5062 * Determine the amount of memory eligible for eviction contained in the
5063 * ARC. All clean data reported by the ghost lists can always be safely
5064 * evicted. Due to arc_c_min, the same does not hold for all clean data
5065 * contained by the regular mru and mfu lists.
5067 * In the case of the regular mru and mfu lists, we need to report as
5068 * much clean data as possible, such that evicting that same reported
5069 * data will not bring arc_size below arc_c_min. Thus, in certain
5070 * circumstances, the total amount of clean data in the mru and mfu
5071 * lists might not actually be evictable.
5073 * The following two distinct cases are accounted for:
5075 * 1. The sum of the amount of dirty data contained by both the mru and
5076 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5077 * is greater than or equal to arc_c_min.
5078 * (i.e. amount of dirty data >= arc_c_min)
5080 * This is the easy case; all clean data contained by the mru and mfu
5081 * lists is evictable. Evicting all clean data can only drop arc_size
5082 * to the amount of dirty data, which is greater than arc_c_min.
5084 * 2. The sum of the amount of dirty data contained by both the mru and
5085 * mfu lists, plus the ARC's other accounting (e.g. the anon list),
5086 * is less than arc_c_min.
5087 * (i.e. arc_c_min > amount of dirty data)
5089 * 2.1. arc_size is greater than or equal arc_c_min.
5090 * (i.e. arc_size >= arc_c_min > amount of dirty data)
5092 * In this case, not all clean data from the regular mru and mfu
5093 * lists is actually evictable; we must leave enough clean data
5094 * to keep arc_size above arc_c_min. Thus, the maximum amount of
5095 * evictable data from the two lists combined, is exactly the
5096 * difference between arc_size and arc_c_min.
5098 * 2.2. arc_size is less than arc_c_min
5099 * (i.e. arc_c_min > arc_size > amount of dirty data)
5101 * In this case, none of the data contained in the mru and mfu
5102 * lists is evictable, even if it's clean. Since arc_size is
5103 * already below arc_c_min, evicting any more would only
5104 * increase this negative difference.
5107 #endif /* _KERNEL */
5110 * Adapt arc info given the number of bytes we are trying to add and
5111 * the state that we are coming from. This function is only called
5112 * when we are adding new content to the cache.
5115 arc_adapt(int bytes
, arc_state_t
*state
)
5118 uint64_t arc_p_min
= (arc_c
>> arc_p_min_shift
);
5119 int64_t mrug_size
= zfs_refcount_count(&arc_mru_ghost
->arcs_size
);
5120 int64_t mfug_size
= zfs_refcount_count(&arc_mfu_ghost
->arcs_size
);
5124 * Adapt the target size of the MRU list:
5125 * - if we just hit in the MRU ghost list, then increase
5126 * the target size of the MRU list.
5127 * - if we just hit in the MFU ghost list, then increase
5128 * the target size of the MFU list by decreasing the
5129 * target size of the MRU list.
5131 if (state
== arc_mru_ghost
) {
5132 mult
= (mrug_size
>= mfug_size
) ? 1 : (mfug_size
/ mrug_size
);
5133 if (!zfs_arc_p_dampener_disable
)
5134 mult
= MIN(mult
, 10); /* avoid wild arc_p adjustment */
5136 arc_p
= MIN(arc_c
- arc_p_min
, arc_p
+ bytes
* mult
);
5137 } else if (state
== arc_mfu_ghost
) {
5140 mult
= (mfug_size
>= mrug_size
) ? 1 : (mrug_size
/ mfug_size
);
5141 if (!zfs_arc_p_dampener_disable
)
5142 mult
= MIN(mult
, 10);
5144 delta
= MIN(bytes
* mult
, arc_p
);
5145 arc_p
= MAX(arc_p_min
, arc_p
- delta
);
5147 ASSERT((int64_t)arc_p
>= 0);
5150 * Wake reap thread if we do not have any available memory
5152 if (arc_reclaim_needed()) {
5153 zthr_wakeup(arc_reap_zthr
);
5160 if (arc_c
>= arc_c_max
)
5164 * If we're within (2 * maxblocksize) bytes of the target
5165 * cache size, increment the target cache size
5167 ASSERT3U(arc_c
, >=, 2ULL << SPA_MAXBLOCKSHIFT
);
5168 if (aggsum_upper_bound(&arc_sums
.arcstat_size
) >=
5169 arc_c
- (2ULL << SPA_MAXBLOCKSHIFT
)) {
5170 atomic_add_64(&arc_c
, (int64_t)bytes
);
5171 if (arc_c
> arc_c_max
)
5173 else if (state
== arc_anon
)
5174 atomic_add_64(&arc_p
, (int64_t)bytes
);
5178 ASSERT((int64_t)arc_p
>= 0);
5182 * Check if arc_size has grown past our upper threshold, determined by
5183 * zfs_arc_overflow_shift.
5185 static arc_ovf_level_t
5186 arc_is_overflowing(boolean_t use_reserve
)
5188 /* Always allow at least one block of overflow */
5189 int64_t overflow
= MAX(SPA_MAXBLOCKSIZE
,
5190 arc_c
>> zfs_arc_overflow_shift
);
5193 * We just compare the lower bound here for performance reasons. Our
5194 * primary goals are to make sure that the arc never grows without
5195 * bound, and that it can reach its maximum size. This check
5196 * accomplishes both goals. The maximum amount we could run over by is
5197 * 2 * aggsum_borrow_multiplier * NUM_CPUS * the average size of a block
5198 * in the ARC. In practice, that's in the tens of MB, which is low
5199 * enough to be safe.
5201 int64_t over
= aggsum_lower_bound(&arc_sums
.arcstat_size
) -
5202 arc_c
- overflow
/ 2;
5205 return (over
< 0 ? ARC_OVF_NONE
:
5206 over
< overflow
? ARC_OVF_SOME
: ARC_OVF_SEVERE
);
5210 arc_get_data_abd(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
,
5213 arc_buf_contents_t type
= arc_buf_type(hdr
);
5215 arc_get_data_impl(hdr
, size
, tag
, alloc_flags
);
5216 if (type
== ARC_BUFC_METADATA
) {
5217 return (abd_alloc(size
, B_TRUE
));
5219 ASSERT(type
== ARC_BUFC_DATA
);
5220 return (abd_alloc(size
, B_FALSE
));
5225 arc_get_data_buf(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
)
5227 arc_buf_contents_t type
= arc_buf_type(hdr
);
5229 arc_get_data_impl(hdr
, size
, tag
, ARC_HDR_DO_ADAPT
);
5230 if (type
== ARC_BUFC_METADATA
) {
5231 return (zio_buf_alloc(size
));
5233 ASSERT(type
== ARC_BUFC_DATA
);
5234 return (zio_data_buf_alloc(size
));
5239 * Wait for the specified amount of data (in bytes) to be evicted from the
5240 * ARC, and for there to be sufficient free memory in the system. Waiting for
5241 * eviction ensures that the memory used by the ARC decreases. Waiting for
5242 * free memory ensures that the system won't run out of free pages, regardless
5243 * of ARC behavior and settings. See arc_lowmem_init().
5246 arc_wait_for_eviction(uint64_t amount
, boolean_t use_reserve
)
5248 switch (arc_is_overflowing(use_reserve
)) {
5253 * This is a bit racy without taking arc_evict_lock, but the
5254 * worst that can happen is we either call zthr_wakeup() extra
5255 * time due to race with other thread here, or the set flag
5256 * get cleared by arc_evict_cb(), which is unlikely due to
5257 * big hysteresis, but also not important since at this level
5258 * of overflow the eviction is purely advisory. Same time
5259 * taking the global lock here every time without waiting for
5260 * the actual eviction creates a significant lock contention.
5262 if (!arc_evict_needed
) {
5263 arc_evict_needed
= B_TRUE
;
5264 zthr_wakeup(arc_evict_zthr
);
5267 case ARC_OVF_SEVERE
:
5270 arc_evict_waiter_t aw
;
5271 list_link_init(&aw
.aew_node
);
5272 cv_init(&aw
.aew_cv
, NULL
, CV_DEFAULT
, NULL
);
5274 uint64_t last_count
= 0;
5275 mutex_enter(&arc_evict_lock
);
5276 if (!list_is_empty(&arc_evict_waiters
)) {
5277 arc_evict_waiter_t
*last
=
5278 list_tail(&arc_evict_waiters
);
5279 last_count
= last
->aew_count
;
5280 } else if (!arc_evict_needed
) {
5281 arc_evict_needed
= B_TRUE
;
5282 zthr_wakeup(arc_evict_zthr
);
5285 * Note, the last waiter's count may be less than
5286 * arc_evict_count if we are low on memory in which
5287 * case arc_evict_state_impl() may have deferred
5288 * wakeups (but still incremented arc_evict_count).
5290 aw
.aew_count
= MAX(last_count
, arc_evict_count
) + amount
;
5292 list_insert_tail(&arc_evict_waiters
, &aw
);
5294 arc_set_need_free();
5296 DTRACE_PROBE3(arc__wait__for__eviction
,
5298 uint64_t, arc_evict_count
,
5299 uint64_t, aw
.aew_count
);
5302 * We will be woken up either when arc_evict_count reaches
5303 * aew_count, or when the ARC is no longer overflowing and
5304 * eviction completes.
5305 * In case of "false" wakeup, we will still be on the list.
5308 cv_wait(&aw
.aew_cv
, &arc_evict_lock
);
5309 } while (list_link_active(&aw
.aew_node
));
5310 mutex_exit(&arc_evict_lock
);
5312 cv_destroy(&aw
.aew_cv
);
5318 * Allocate a block and return it to the caller. If we are hitting the
5319 * hard limit for the cache size, we must sleep, waiting for the eviction
5320 * thread to catch up. If we're past the target size but below the hard
5321 * limit, we'll only signal the reclaim thread and continue on.
5324 arc_get_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
,
5327 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5328 arc_buf_contents_t type
= arc_buf_type(hdr
);
5330 if (alloc_flags
& ARC_HDR_DO_ADAPT
)
5331 arc_adapt(size
, state
);
5334 * If arc_size is currently overflowing, we must be adding data
5335 * faster than we are evicting. To ensure we don't compound the
5336 * problem by adding more data and forcing arc_size to grow even
5337 * further past it's target size, we wait for the eviction thread to
5338 * make some progress. We also wait for there to be sufficient free
5339 * memory in the system, as measured by arc_free_memory().
5341 * Specifically, we wait for zfs_arc_eviction_pct percent of the
5342 * requested size to be evicted. This should be more than 100%, to
5343 * ensure that that progress is also made towards getting arc_size
5344 * under arc_c. See the comment above zfs_arc_eviction_pct.
5346 arc_wait_for_eviction(size
* zfs_arc_eviction_pct
/ 100,
5347 alloc_flags
& ARC_HDR_USE_RESERVE
);
5349 VERIFY3U(hdr
->b_type
, ==, type
);
5350 if (type
== ARC_BUFC_METADATA
) {
5351 arc_space_consume(size
, ARC_SPACE_META
);
5353 arc_space_consume(size
, ARC_SPACE_DATA
);
5357 * Update the state size. Note that ghost states have a
5358 * "ghost size" and so don't need to be updated.
5360 if (!GHOST_STATE(state
)) {
5362 (void) zfs_refcount_add_many(&state
->arcs_size
, size
, tag
);
5365 * If this is reached via arc_read, the link is
5366 * protected by the hash lock. If reached via
5367 * arc_buf_alloc, the header should not be accessed by
5368 * any other thread. And, if reached via arc_read_done,
5369 * the hash lock will protect it if it's found in the
5370 * hash table; otherwise no other thread should be
5371 * trying to [add|remove]_reference it.
5373 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
5374 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5375 (void) zfs_refcount_add_many(&state
->arcs_esize
[type
],
5380 * If we are growing the cache, and we are adding anonymous
5381 * data, and we have outgrown arc_p, update arc_p
5383 if (aggsum_upper_bound(&arc_sums
.arcstat_size
) < arc_c
&&
5384 hdr
->b_l1hdr
.b_state
== arc_anon
&&
5385 (zfs_refcount_count(&arc_anon
->arcs_size
) +
5386 zfs_refcount_count(&arc_mru
->arcs_size
) > arc_p
))
5387 arc_p
= MIN(arc_c
, arc_p
+ size
);
5392 arc_free_data_abd(arc_buf_hdr_t
*hdr
, abd_t
*abd
, uint64_t size
, void *tag
)
5394 arc_free_data_impl(hdr
, size
, tag
);
5399 arc_free_data_buf(arc_buf_hdr_t
*hdr
, void *buf
, uint64_t size
, void *tag
)
5401 arc_buf_contents_t type
= arc_buf_type(hdr
);
5403 arc_free_data_impl(hdr
, size
, tag
);
5404 if (type
== ARC_BUFC_METADATA
) {
5405 zio_buf_free(buf
, size
);
5407 ASSERT(type
== ARC_BUFC_DATA
);
5408 zio_data_buf_free(buf
, size
);
5413 * Free the arc data buffer.
5416 arc_free_data_impl(arc_buf_hdr_t
*hdr
, uint64_t size
, void *tag
)
5418 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
5419 arc_buf_contents_t type
= arc_buf_type(hdr
);
5421 /* protected by hash lock, if in the hash table */
5422 if (multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
)) {
5423 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
5424 ASSERT(state
!= arc_anon
&& state
!= arc_l2c_only
);
5426 (void) zfs_refcount_remove_many(&state
->arcs_esize
[type
],
5429 (void) zfs_refcount_remove_many(&state
->arcs_size
, size
, tag
);
5431 VERIFY3U(hdr
->b_type
, ==, type
);
5432 if (type
== ARC_BUFC_METADATA
) {
5433 arc_space_return(size
, ARC_SPACE_META
);
5435 ASSERT(type
== ARC_BUFC_DATA
);
5436 arc_space_return(size
, ARC_SPACE_DATA
);
5441 * This routine is called whenever a buffer is accessed.
5442 * NOTE: the hash lock is dropped in this function.
5445 arc_access(arc_buf_hdr_t
*hdr
, kmutex_t
*hash_lock
)
5449 ASSERT(MUTEX_HELD(hash_lock
));
5450 ASSERT(HDR_HAS_L1HDR(hdr
));
5452 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
5454 * This buffer is not in the cache, and does not
5455 * appear in our "ghost" list. Add the new buffer
5459 ASSERT0(hdr
->b_l1hdr
.b_arc_access
);
5460 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5461 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5462 arc_change_state(arc_mru
, hdr
, hash_lock
);
5464 } else if (hdr
->b_l1hdr
.b_state
== arc_mru
) {
5465 now
= ddi_get_lbolt();
5468 * If this buffer is here because of a prefetch, then either:
5469 * - clear the flag if this is a "referencing" read
5470 * (any subsequent access will bump this into the MFU state).
5472 * - move the buffer to the head of the list if this is
5473 * another prefetch (to make it less likely to be evicted).
5475 if (HDR_PREFETCH(hdr
) || HDR_PRESCIENT_PREFETCH(hdr
)) {
5476 if (zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
) == 0) {
5477 /* link protected by hash lock */
5478 ASSERT(multilist_link_active(
5479 &hdr
->b_l1hdr
.b_arc_node
));
5481 if (HDR_HAS_L2HDR(hdr
))
5482 l2arc_hdr_arcstats_decrement_state(hdr
);
5483 arc_hdr_clear_flags(hdr
,
5485 ARC_FLAG_PRESCIENT_PREFETCH
);
5486 hdr
->b_l1hdr
.b_mru_hits
++;
5487 ARCSTAT_BUMP(arcstat_mru_hits
);
5488 if (HDR_HAS_L2HDR(hdr
))
5489 l2arc_hdr_arcstats_increment_state(hdr
);
5491 hdr
->b_l1hdr
.b_arc_access
= now
;
5496 * This buffer has been "accessed" only once so far,
5497 * but it is still in the cache. Move it to the MFU
5500 if (ddi_time_after(now
, hdr
->b_l1hdr
.b_arc_access
+
5503 * More than 125ms have passed since we
5504 * instantiated this buffer. Move it to the
5505 * most frequently used state.
5507 hdr
->b_l1hdr
.b_arc_access
= now
;
5508 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5509 arc_change_state(arc_mfu
, hdr
, hash_lock
);
5511 hdr
->b_l1hdr
.b_mru_hits
++;
5512 ARCSTAT_BUMP(arcstat_mru_hits
);
5513 } else if (hdr
->b_l1hdr
.b_state
== arc_mru_ghost
) {
5514 arc_state_t
*new_state
;
5516 * This buffer has been "accessed" recently, but
5517 * was evicted from the cache. Move it to the
5520 if (HDR_PREFETCH(hdr
) || HDR_PRESCIENT_PREFETCH(hdr
)) {
5521 new_state
= arc_mru
;
5522 if (zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
) > 0) {
5523 if (HDR_HAS_L2HDR(hdr
))
5524 l2arc_hdr_arcstats_decrement_state(hdr
);
5525 arc_hdr_clear_flags(hdr
,
5527 ARC_FLAG_PRESCIENT_PREFETCH
);
5528 if (HDR_HAS_L2HDR(hdr
))
5529 l2arc_hdr_arcstats_increment_state(hdr
);
5531 DTRACE_PROBE1(new_state__mru
, arc_buf_hdr_t
*, hdr
);
5533 new_state
= arc_mfu
;
5534 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5537 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5538 arc_change_state(new_state
, hdr
, hash_lock
);
5540 hdr
->b_l1hdr
.b_mru_ghost_hits
++;
5541 ARCSTAT_BUMP(arcstat_mru_ghost_hits
);
5542 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu
) {
5544 * This buffer has been accessed more than once and is
5545 * still in the cache. Keep it in the MFU state.
5547 * NOTE: an add_reference() that occurred when we did
5548 * the arc_read() will have kicked this off the list.
5549 * If it was a prefetch, we will explicitly move it to
5550 * the head of the list now.
5553 hdr
->b_l1hdr
.b_mfu_hits
++;
5554 ARCSTAT_BUMP(arcstat_mfu_hits
);
5555 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5556 } else if (hdr
->b_l1hdr
.b_state
== arc_mfu_ghost
) {
5557 arc_state_t
*new_state
= arc_mfu
;
5559 * This buffer has been accessed more than once but has
5560 * been evicted from the cache. Move it back to the
5564 if (HDR_PREFETCH(hdr
) || HDR_PRESCIENT_PREFETCH(hdr
)) {
5566 * This is a prefetch access...
5567 * move this block back to the MRU state.
5569 new_state
= arc_mru
;
5572 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5573 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5574 arc_change_state(new_state
, hdr
, hash_lock
);
5576 hdr
->b_l1hdr
.b_mfu_ghost_hits
++;
5577 ARCSTAT_BUMP(arcstat_mfu_ghost_hits
);
5578 } else if (hdr
->b_l1hdr
.b_state
== arc_l2c_only
) {
5580 * This buffer is on the 2nd Level ARC.
5583 hdr
->b_l1hdr
.b_arc_access
= ddi_get_lbolt();
5584 DTRACE_PROBE1(new_state__mfu
, arc_buf_hdr_t
*, hdr
);
5585 arc_change_state(arc_mfu
, hdr
, hash_lock
);
5587 cmn_err(CE_PANIC
, "invalid arc state 0x%p",
5588 hdr
->b_l1hdr
.b_state
);
5593 * This routine is called by dbuf_hold() to update the arc_access() state
5594 * which otherwise would be skipped for entries in the dbuf cache.
5597 arc_buf_access(arc_buf_t
*buf
)
5599 mutex_enter(&buf
->b_evict_lock
);
5600 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
5603 * Avoid taking the hash_lock when possible as an optimization.
5604 * The header must be checked again under the hash_lock in order
5605 * to handle the case where it is concurrently being released.
5607 if (hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY(hdr
)) {
5608 mutex_exit(&buf
->b_evict_lock
);
5612 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
5613 mutex_enter(hash_lock
);
5615 if (hdr
->b_l1hdr
.b_state
== arc_anon
|| HDR_EMPTY(hdr
)) {
5616 mutex_exit(hash_lock
);
5617 mutex_exit(&buf
->b_evict_lock
);
5618 ARCSTAT_BUMP(arcstat_access_skip
);
5622 mutex_exit(&buf
->b_evict_lock
);
5624 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
5625 hdr
->b_l1hdr
.b_state
== arc_mfu
);
5627 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
5628 arc_access(hdr
, hash_lock
);
5629 mutex_exit(hash_lock
);
5631 ARCSTAT_BUMP(arcstat_hits
);
5632 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr
) && !HDR_PRESCIENT_PREFETCH(hdr
),
5633 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
), data
, metadata
, hits
);
5636 /* a generic arc_read_done_func_t which you can use */
5638 arc_bcopy_func(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
5639 arc_buf_t
*buf
, void *arg
)
5641 (void) zio
, (void) zb
, (void) bp
;
5646 memcpy(arg
, buf
->b_data
, arc_buf_size(buf
));
5647 arc_buf_destroy(buf
, arg
);
5650 /* a generic arc_read_done_func_t */
5652 arc_getbuf_func(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
5653 arc_buf_t
*buf
, void *arg
)
5655 (void) zb
, (void) bp
;
5656 arc_buf_t
**bufp
= arg
;
5659 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
5662 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
5664 ASSERT(buf
->b_data
!= NULL
);
5669 arc_hdr_verify(arc_buf_hdr_t
*hdr
, blkptr_t
*bp
)
5671 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
5672 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, 0);
5673 ASSERT3U(arc_hdr_get_compress(hdr
), ==, ZIO_COMPRESS_OFF
);
5675 if (HDR_COMPRESSION_ENABLED(hdr
)) {
5676 ASSERT3U(arc_hdr_get_compress(hdr
), ==,
5677 BP_GET_COMPRESS(bp
));
5679 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
5680 ASSERT3U(HDR_GET_PSIZE(hdr
), ==, BP_GET_PSIZE(bp
));
5681 ASSERT3U(!!HDR_PROTECTED(hdr
), ==, BP_IS_PROTECTED(bp
));
5686 arc_read_done(zio_t
*zio
)
5688 blkptr_t
*bp
= zio
->io_bp
;
5689 arc_buf_hdr_t
*hdr
= zio
->io_private
;
5690 kmutex_t
*hash_lock
= NULL
;
5691 arc_callback_t
*callback_list
;
5692 arc_callback_t
*acb
;
5693 boolean_t freeable
= B_FALSE
;
5696 * The hdr was inserted into hash-table and removed from lists
5697 * prior to starting I/O. We should find this header, since
5698 * it's in the hash table, and it should be legit since it's
5699 * not possible to evict it during the I/O. The only possible
5700 * reason for it not to be found is if we were freed during the
5703 if (HDR_IN_HASH_TABLE(hdr
)) {
5704 arc_buf_hdr_t
*found
;
5706 ASSERT3U(hdr
->b_birth
, ==, BP_PHYSICAL_BIRTH(zio
->io_bp
));
5707 ASSERT3U(hdr
->b_dva
.dva_word
[0], ==,
5708 BP_IDENTITY(zio
->io_bp
)->dva_word
[0]);
5709 ASSERT3U(hdr
->b_dva
.dva_word
[1], ==,
5710 BP_IDENTITY(zio
->io_bp
)->dva_word
[1]);
5712 found
= buf_hash_find(hdr
->b_spa
, zio
->io_bp
, &hash_lock
);
5714 ASSERT((found
== hdr
&&
5715 DVA_EQUAL(&hdr
->b_dva
, BP_IDENTITY(zio
->io_bp
))) ||
5716 (found
== hdr
&& HDR_L2_READING(hdr
)));
5717 ASSERT3P(hash_lock
, !=, NULL
);
5720 if (BP_IS_PROTECTED(bp
)) {
5721 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
5722 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
5723 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
5724 hdr
->b_crypt_hdr
.b_iv
);
5726 if (zio
->io_error
== 0) {
5727 if (BP_GET_TYPE(bp
) == DMU_OT_INTENT_LOG
) {
5730 tmpbuf
= abd_borrow_buf_copy(zio
->io_abd
,
5731 sizeof (zil_chain_t
));
5732 zio_crypt_decode_mac_zil(tmpbuf
,
5733 hdr
->b_crypt_hdr
.b_mac
);
5734 abd_return_buf(zio
->io_abd
, tmpbuf
,
5735 sizeof (zil_chain_t
));
5737 zio_crypt_decode_mac_bp(bp
,
5738 hdr
->b_crypt_hdr
.b_mac
);
5743 if (zio
->io_error
== 0) {
5744 /* byteswap if necessary */
5745 if (BP_SHOULD_BYTESWAP(zio
->io_bp
)) {
5746 if (BP_GET_LEVEL(zio
->io_bp
) > 0) {
5747 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
5749 hdr
->b_l1hdr
.b_byteswap
=
5750 DMU_OT_BYTESWAP(BP_GET_TYPE(zio
->io_bp
));
5753 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
5755 if (!HDR_L2_READING(hdr
)) {
5756 hdr
->b_complevel
= zio
->io_prop
.zp_complevel
;
5760 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_EVICTED
);
5761 if (l2arc_noprefetch
&& HDR_PREFETCH(hdr
))
5762 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2CACHE
);
5764 callback_list
= hdr
->b_l1hdr
.b_acb
;
5765 ASSERT3P(callback_list
, !=, NULL
);
5767 if (hash_lock
&& zio
->io_error
== 0 &&
5768 hdr
->b_l1hdr
.b_state
== arc_anon
) {
5770 * Only call arc_access on anonymous buffers. This is because
5771 * if we've issued an I/O for an evicted buffer, we've already
5772 * called arc_access (to prevent any simultaneous readers from
5773 * getting confused).
5775 arc_access(hdr
, hash_lock
);
5779 * If a read request has a callback (i.e. acb_done is not NULL), then we
5780 * make a buf containing the data according to the parameters which were
5781 * passed in. The implementation of arc_buf_alloc_impl() ensures that we
5782 * aren't needlessly decompressing the data multiple times.
5784 int callback_cnt
= 0;
5785 for (acb
= callback_list
; acb
!= NULL
; acb
= acb
->acb_next
) {
5786 if (!acb
->acb_done
|| acb
->acb_nobuf
)
5791 if (zio
->io_error
!= 0)
5794 int error
= arc_buf_alloc_impl(hdr
, zio
->io_spa
,
5795 &acb
->acb_zb
, acb
->acb_private
, acb
->acb_encrypted
,
5796 acb
->acb_compressed
, acb
->acb_noauth
, B_TRUE
,
5800 * Assert non-speculative zios didn't fail because an
5801 * encryption key wasn't loaded
5803 ASSERT((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) ||
5807 * If we failed to decrypt, report an error now (as the zio
5808 * layer would have done if it had done the transforms).
5810 if (error
== ECKSUM
) {
5811 ASSERT(BP_IS_PROTECTED(bp
));
5812 error
= SET_ERROR(EIO
);
5813 if ((zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
5814 spa_log_error(zio
->io_spa
, &acb
->acb_zb
);
5815 (void) zfs_ereport_post(
5816 FM_EREPORT_ZFS_AUTHENTICATION
,
5817 zio
->io_spa
, NULL
, &acb
->acb_zb
, zio
, 0);
5823 * Decompression or decryption failed. Set
5824 * io_error so that when we call acb_done
5825 * (below), we will indicate that the read
5826 * failed. Note that in the unusual case
5827 * where one callback is compressed and another
5828 * uncompressed, we will mark all of them
5829 * as failed, even though the uncompressed
5830 * one can't actually fail. In this case,
5831 * the hdr will not be anonymous, because
5832 * if there are multiple callbacks, it's
5833 * because multiple threads found the same
5834 * arc buf in the hash table.
5836 zio
->io_error
= error
;
5841 * If there are multiple callbacks, we must have the hash lock,
5842 * because the only way for multiple threads to find this hdr is
5843 * in the hash table. This ensures that if there are multiple
5844 * callbacks, the hdr is not anonymous. If it were anonymous,
5845 * we couldn't use arc_buf_destroy() in the error case below.
5847 ASSERT(callback_cnt
< 2 || hash_lock
!= NULL
);
5849 hdr
->b_l1hdr
.b_acb
= NULL
;
5850 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
5851 if (callback_cnt
== 0)
5852 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
5854 ASSERT(zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
) ||
5855 callback_list
!= NULL
);
5857 if (zio
->io_error
== 0) {
5858 arc_hdr_verify(hdr
, zio
->io_bp
);
5860 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_ERROR
);
5861 if (hdr
->b_l1hdr
.b_state
!= arc_anon
)
5862 arc_change_state(arc_anon
, hdr
, hash_lock
);
5863 if (HDR_IN_HASH_TABLE(hdr
))
5864 buf_hash_remove(hdr
);
5865 freeable
= zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
);
5869 * Broadcast before we drop the hash_lock to avoid the possibility
5870 * that the hdr (and hence the cv) might be freed before we get to
5871 * the cv_broadcast().
5873 cv_broadcast(&hdr
->b_l1hdr
.b_cv
);
5875 if (hash_lock
!= NULL
) {
5876 mutex_exit(hash_lock
);
5879 * This block was freed while we waited for the read to
5880 * complete. It has been removed from the hash table and
5881 * moved to the anonymous state (so that it won't show up
5884 ASSERT3P(hdr
->b_l1hdr
.b_state
, ==, arc_anon
);
5885 freeable
= zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
);
5888 /* execute each callback and free its structure */
5889 while ((acb
= callback_list
) != NULL
) {
5890 if (acb
->acb_done
!= NULL
) {
5891 if (zio
->io_error
!= 0 && acb
->acb_buf
!= NULL
) {
5893 * If arc_buf_alloc_impl() fails during
5894 * decompression, the buf will still be
5895 * allocated, and needs to be freed here.
5897 arc_buf_destroy(acb
->acb_buf
,
5899 acb
->acb_buf
= NULL
;
5901 acb
->acb_done(zio
, &zio
->io_bookmark
, zio
->io_bp
,
5902 acb
->acb_buf
, acb
->acb_private
);
5905 if (acb
->acb_zio_dummy
!= NULL
) {
5906 acb
->acb_zio_dummy
->io_error
= zio
->io_error
;
5907 zio_nowait(acb
->acb_zio_dummy
);
5910 callback_list
= acb
->acb_next
;
5911 kmem_free(acb
, sizeof (arc_callback_t
));
5915 arc_hdr_destroy(hdr
);
5919 * "Read" the block at the specified DVA (in bp) via the
5920 * cache. If the block is found in the cache, invoke the provided
5921 * callback immediately and return. Note that the `zio' parameter
5922 * in the callback will be NULL in this case, since no IO was
5923 * required. If the block is not in the cache pass the read request
5924 * on to the spa with a substitute callback function, so that the
5925 * requested block will be added to the cache.
5927 * If a read request arrives for a block that has a read in-progress,
5928 * either wait for the in-progress read to complete (and return the
5929 * results); or, if this is a read with a "done" func, add a record
5930 * to the read to invoke the "done" func when the read completes,
5931 * and return; or just return.
5933 * arc_read_done() will invoke all the requested "done" functions
5934 * for readers of this block.
5937 arc_read(zio_t
*pio
, spa_t
*spa
, const blkptr_t
*bp
,
5938 arc_read_done_func_t
*done
, void *private, zio_priority_t priority
,
5939 int zio_flags
, arc_flags_t
*arc_flags
, const zbookmark_phys_t
*zb
)
5941 arc_buf_hdr_t
*hdr
= NULL
;
5942 kmutex_t
*hash_lock
= NULL
;
5944 uint64_t guid
= spa_load_guid(spa
);
5945 boolean_t compressed_read
= (zio_flags
& ZIO_FLAG_RAW_COMPRESS
) != 0;
5946 boolean_t encrypted_read
= BP_IS_ENCRYPTED(bp
) &&
5947 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5948 boolean_t noauth_read
= BP_IS_AUTHENTICATED(bp
) &&
5949 (zio_flags
& ZIO_FLAG_RAW_ENCRYPT
) != 0;
5950 boolean_t embedded_bp
= !!BP_IS_EMBEDDED(bp
);
5951 boolean_t no_buf
= *arc_flags
& ARC_FLAG_NO_BUF
;
5954 ASSERT(!embedded_bp
||
5955 BPE_GET_ETYPE(bp
) == BP_EMBEDDED_TYPE_DATA
);
5956 ASSERT(!BP_IS_HOLE(bp
));
5957 ASSERT(!BP_IS_REDACTED(bp
));
5960 * Normally SPL_FSTRANS will already be set since kernel threads which
5961 * expect to call the DMU interfaces will set it when created. System
5962 * calls are similarly handled by setting/cleaning the bit in the
5963 * registered callback (module/os/.../zfs/zpl_*).
5965 * External consumers such as Lustre which call the exported DMU
5966 * interfaces may not have set SPL_FSTRANS. To avoid a deadlock
5967 * on the hash_lock always set and clear the bit.
5969 fstrans_cookie_t cookie
= spl_fstrans_mark();
5972 * Verify the block pointer contents are reasonable. This should
5973 * always be the case since the blkptr is protected by a checksum.
5974 * However, if there is damage it's desirable to detect this early
5975 * and treat it as a checksum error. This allows an alternate blkptr
5976 * to be tried when one is available (e.g. ditto blocks).
5978 if (!zfs_blkptr_verify(spa
, bp
, zio_flags
& ZIO_FLAG_CONFIG_WRITER
,
5980 rc
= SET_ERROR(ECKSUM
);
5986 * Embedded BP's have no DVA and require no I/O to "read".
5987 * Create an anonymous arc buf to back it.
5989 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
5993 * Determine if we have an L1 cache hit or a cache miss. For simplicity
5994 * we maintain encrypted data separately from compressed / uncompressed
5995 * data. If the user is requesting raw encrypted data and we don't have
5996 * that in the header we will read from disk to guarantee that we can
5997 * get it even if the encryption keys aren't loaded.
5999 if (hdr
!= NULL
&& HDR_HAS_L1HDR(hdr
) && (HDR_HAS_RABD(hdr
) ||
6000 (hdr
->b_l1hdr
.b_pabd
!= NULL
&& !encrypted_read
))) {
6001 arc_buf_t
*buf
= NULL
;
6002 *arc_flags
|= ARC_FLAG_CACHED
;
6004 if (HDR_IO_IN_PROGRESS(hdr
)) {
6005 zio_t
*head_zio
= hdr
->b_l1hdr
.b_acb
->acb_zio_head
;
6007 if (*arc_flags
& ARC_FLAG_CACHED_ONLY
) {
6008 mutex_exit(hash_lock
);
6009 ARCSTAT_BUMP(arcstat_cached_only_in_progress
);
6010 rc
= SET_ERROR(ENOENT
);
6014 ASSERT3P(head_zio
, !=, NULL
);
6015 if ((hdr
->b_flags
& ARC_FLAG_PRIO_ASYNC_READ
) &&
6016 priority
== ZIO_PRIORITY_SYNC_READ
) {
6018 * This is a sync read that needs to wait for
6019 * an in-flight async read. Request that the
6020 * zio have its priority upgraded.
6022 zio_change_priority(head_zio
, priority
);
6023 DTRACE_PROBE1(arc__async__upgrade__sync
,
6024 arc_buf_hdr_t
*, hdr
);
6025 ARCSTAT_BUMP(arcstat_async_upgrade_sync
);
6027 if (hdr
->b_flags
& ARC_FLAG_PREDICTIVE_PREFETCH
) {
6028 arc_hdr_clear_flags(hdr
,
6029 ARC_FLAG_PREDICTIVE_PREFETCH
);
6032 if (*arc_flags
& ARC_FLAG_WAIT
) {
6033 cv_wait(&hdr
->b_l1hdr
.b_cv
, hash_lock
);
6034 mutex_exit(hash_lock
);
6037 ASSERT(*arc_flags
& ARC_FLAG_NOWAIT
);
6040 arc_callback_t
*acb
= NULL
;
6042 acb
= kmem_zalloc(sizeof (arc_callback_t
),
6044 acb
->acb_done
= done
;
6045 acb
->acb_private
= private;
6046 acb
->acb_compressed
= compressed_read
;
6047 acb
->acb_encrypted
= encrypted_read
;
6048 acb
->acb_noauth
= noauth_read
;
6049 acb
->acb_nobuf
= no_buf
;
6052 acb
->acb_zio_dummy
= zio_null(pio
,
6053 spa
, NULL
, NULL
, NULL
, zio_flags
);
6055 ASSERT3P(acb
->acb_done
, !=, NULL
);
6056 acb
->acb_zio_head
= head_zio
;
6057 acb
->acb_next
= hdr
->b_l1hdr
.b_acb
;
6058 hdr
->b_l1hdr
.b_acb
= acb
;
6060 mutex_exit(hash_lock
);
6064 ASSERT(hdr
->b_l1hdr
.b_state
== arc_mru
||
6065 hdr
->b_l1hdr
.b_state
== arc_mfu
);
6067 if (done
&& !no_buf
) {
6068 if (hdr
->b_flags
& ARC_FLAG_PREDICTIVE_PREFETCH
) {
6070 * This is a demand read which does not have to
6071 * wait for i/o because we did a predictive
6072 * prefetch i/o for it, which has completed.
6075 arc__demand__hit__predictive__prefetch
,
6076 arc_buf_hdr_t
*, hdr
);
6078 arcstat_demand_hit_predictive_prefetch
);
6079 arc_hdr_clear_flags(hdr
,
6080 ARC_FLAG_PREDICTIVE_PREFETCH
);
6083 if (hdr
->b_flags
& ARC_FLAG_PRESCIENT_PREFETCH
) {
6085 arcstat_demand_hit_prescient_prefetch
);
6086 arc_hdr_clear_flags(hdr
,
6087 ARC_FLAG_PRESCIENT_PREFETCH
);
6090 ASSERT(!embedded_bp
|| !BP_IS_HOLE(bp
));
6092 /* Get a buf with the desired data in it. */
6093 rc
= arc_buf_alloc_impl(hdr
, spa
, zb
, private,
6094 encrypted_read
, compressed_read
, noauth_read
,
6098 * Convert authentication and decryption errors
6099 * to EIO (and generate an ereport if needed)
6100 * before leaving the ARC.
6102 rc
= SET_ERROR(EIO
);
6103 if ((zio_flags
& ZIO_FLAG_SPECULATIVE
) == 0) {
6104 spa_log_error(spa
, zb
);
6105 (void) zfs_ereport_post(
6106 FM_EREPORT_ZFS_AUTHENTICATION
,
6107 spa
, NULL
, zb
, NULL
, 0);
6111 (void) remove_reference(hdr
, hash_lock
,
6113 arc_buf_destroy_impl(buf
);
6117 /* assert any errors weren't due to unloaded keys */
6118 ASSERT((zio_flags
& ZIO_FLAG_SPECULATIVE
) ||
6120 } else if (*arc_flags
& ARC_FLAG_PREFETCH
&&
6121 zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6122 if (HDR_HAS_L2HDR(hdr
))
6123 l2arc_hdr_arcstats_decrement_state(hdr
);
6124 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
6125 if (HDR_HAS_L2HDR(hdr
))
6126 l2arc_hdr_arcstats_increment_state(hdr
);
6128 DTRACE_PROBE1(arc__hit
, arc_buf_hdr_t
*, hdr
);
6129 arc_access(hdr
, hash_lock
);
6130 if (*arc_flags
& ARC_FLAG_PRESCIENT_PREFETCH
)
6131 arc_hdr_set_flags(hdr
, ARC_FLAG_PRESCIENT_PREFETCH
);
6132 if (*arc_flags
& ARC_FLAG_L2CACHE
)
6133 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
6134 mutex_exit(hash_lock
);
6135 ARCSTAT_BUMP(arcstat_hits
);
6136 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr
),
6137 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
),
6138 data
, metadata
, hits
);
6141 done(NULL
, zb
, bp
, buf
, private);
6143 uint64_t lsize
= BP_GET_LSIZE(bp
);
6144 uint64_t psize
= BP_GET_PSIZE(bp
);
6145 arc_callback_t
*acb
;
6148 boolean_t devw
= B_FALSE
;
6151 int alloc_flags
= encrypted_read
? ARC_HDR_ALLOC_RDATA
: 0;
6153 if (*arc_flags
& ARC_FLAG_CACHED_ONLY
) {
6154 rc
= SET_ERROR(ENOENT
);
6155 if (hash_lock
!= NULL
)
6156 mutex_exit(hash_lock
);
6162 * This block is not in the cache or it has
6165 arc_buf_hdr_t
*exists
= NULL
;
6166 arc_buf_contents_t type
= BP_GET_BUFC_TYPE(bp
);
6167 hdr
= arc_hdr_alloc(spa_load_guid(spa
), psize
, lsize
,
6168 BP_IS_PROTECTED(bp
), BP_GET_COMPRESS(bp
), 0, type
);
6171 hdr
->b_dva
= *BP_IDENTITY(bp
);
6172 hdr
->b_birth
= BP_PHYSICAL_BIRTH(bp
);
6173 exists
= buf_hash_insert(hdr
, &hash_lock
);
6175 if (exists
!= NULL
) {
6176 /* somebody beat us to the hash insert */
6177 mutex_exit(hash_lock
);
6178 buf_discard_identity(hdr
);
6179 arc_hdr_destroy(hdr
);
6180 goto top
; /* restart the IO request */
6182 alloc_flags
|= ARC_HDR_DO_ADAPT
;
6185 * This block is in the ghost cache or encrypted data
6186 * was requested and we didn't have it. If it was
6187 * L2-only (and thus didn't have an L1 hdr),
6188 * we realloc the header to add an L1 hdr.
6190 if (!HDR_HAS_L1HDR(hdr
)) {
6191 hdr
= arc_hdr_realloc(hdr
, hdr_l2only_cache
,
6195 if (GHOST_STATE(hdr
->b_l1hdr
.b_state
)) {
6196 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6197 ASSERT(!HDR_HAS_RABD(hdr
));
6198 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6199 ASSERT0(zfs_refcount_count(
6200 &hdr
->b_l1hdr
.b_refcnt
));
6201 ASSERT3P(hdr
->b_l1hdr
.b_buf
, ==, NULL
);
6202 ASSERT3P(hdr
->b_l1hdr
.b_freeze_cksum
, ==, NULL
);
6203 } else if (HDR_IO_IN_PROGRESS(hdr
)) {
6205 * If this header already had an IO in progress
6206 * and we are performing another IO to fetch
6207 * encrypted data we must wait until the first
6208 * IO completes so as not to confuse
6209 * arc_read_done(). This should be very rare
6210 * and so the performance impact shouldn't
6213 cv_wait(&hdr
->b_l1hdr
.b_cv
, hash_lock
);
6214 mutex_exit(hash_lock
);
6219 * This is a delicate dance that we play here.
6220 * This hdr might be in the ghost list so we access
6221 * it to move it out of the ghost list before we
6222 * initiate the read. If it's a prefetch then
6223 * it won't have a callback so we'll remove the
6224 * reference that arc_buf_alloc_impl() created. We
6225 * do this after we've called arc_access() to
6226 * avoid hitting an assert in remove_reference().
6228 arc_adapt(arc_hdr_size(hdr
), hdr
->b_l1hdr
.b_state
);
6229 arc_access(hdr
, hash_lock
);
6232 arc_hdr_alloc_abd(hdr
, alloc_flags
);
6233 if (encrypted_read
) {
6234 ASSERT(HDR_HAS_RABD(hdr
));
6235 size
= HDR_GET_PSIZE(hdr
);
6236 hdr_abd
= hdr
->b_crypt_hdr
.b_rabd
;
6237 zio_flags
|= ZIO_FLAG_RAW
;
6239 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
6240 size
= arc_hdr_size(hdr
);
6241 hdr_abd
= hdr
->b_l1hdr
.b_pabd
;
6243 if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
) {
6244 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
6248 * For authenticated bp's, we do not ask the ZIO layer
6249 * to authenticate them since this will cause the entire
6250 * IO to fail if the key isn't loaded. Instead, we
6251 * defer authentication until arc_buf_fill(), which will
6252 * verify the data when the key is available.
6254 if (BP_IS_AUTHENTICATED(bp
))
6255 zio_flags
|= ZIO_FLAG_RAW_ENCRYPT
;
6258 if (*arc_flags
& ARC_FLAG_PREFETCH
&&
6259 zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6260 if (HDR_HAS_L2HDR(hdr
))
6261 l2arc_hdr_arcstats_decrement_state(hdr
);
6262 arc_hdr_set_flags(hdr
, ARC_FLAG_PREFETCH
);
6263 if (HDR_HAS_L2HDR(hdr
))
6264 l2arc_hdr_arcstats_increment_state(hdr
);
6266 if (*arc_flags
& ARC_FLAG_PRESCIENT_PREFETCH
)
6267 arc_hdr_set_flags(hdr
, ARC_FLAG_PRESCIENT_PREFETCH
);
6268 if (*arc_flags
& ARC_FLAG_L2CACHE
)
6269 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
6270 if (BP_IS_AUTHENTICATED(bp
))
6271 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
6272 if (BP_GET_LEVEL(bp
) > 0)
6273 arc_hdr_set_flags(hdr
, ARC_FLAG_INDIRECT
);
6274 if (*arc_flags
& ARC_FLAG_PREDICTIVE_PREFETCH
)
6275 arc_hdr_set_flags(hdr
, ARC_FLAG_PREDICTIVE_PREFETCH
);
6276 ASSERT(!GHOST_STATE(hdr
->b_l1hdr
.b_state
));
6278 acb
= kmem_zalloc(sizeof (arc_callback_t
), KM_SLEEP
);
6279 acb
->acb_done
= done
;
6280 acb
->acb_private
= private;
6281 acb
->acb_compressed
= compressed_read
;
6282 acb
->acb_encrypted
= encrypted_read
;
6283 acb
->acb_noauth
= noauth_read
;
6286 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
6287 hdr
->b_l1hdr
.b_acb
= acb
;
6288 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6290 if (HDR_HAS_L2HDR(hdr
) &&
6291 (vd
= hdr
->b_l2hdr
.b_dev
->l2ad_vdev
) != NULL
) {
6292 devw
= hdr
->b_l2hdr
.b_dev
->l2ad_writing
;
6293 addr
= hdr
->b_l2hdr
.b_daddr
;
6295 * Lock out L2ARC device removal.
6297 if (vdev_is_dead(vd
) ||
6298 !spa_config_tryenter(spa
, SCL_L2ARC
, vd
, RW_READER
))
6303 * We count both async reads and scrub IOs as asynchronous so
6304 * that both can be upgraded in the event of a cache hit while
6305 * the read IO is still in-flight.
6307 if (priority
== ZIO_PRIORITY_ASYNC_READ
||
6308 priority
== ZIO_PRIORITY_SCRUB
)
6309 arc_hdr_set_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
6311 arc_hdr_clear_flags(hdr
, ARC_FLAG_PRIO_ASYNC_READ
);
6314 * At this point, we have a level 1 cache miss or a blkptr
6315 * with embedded data. Try again in L2ARC if possible.
6317 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, lsize
);
6320 * Skip ARC stat bump for block pointers with embedded
6321 * data. The data are read from the blkptr itself via
6322 * decode_embedded_bp_compressed().
6325 DTRACE_PROBE4(arc__miss
, arc_buf_hdr_t
*, hdr
,
6326 blkptr_t
*, bp
, uint64_t, lsize
,
6327 zbookmark_phys_t
*, zb
);
6328 ARCSTAT_BUMP(arcstat_misses
);
6329 ARCSTAT_CONDSTAT(!HDR_PREFETCH(hdr
),
6330 demand
, prefetch
, !HDR_ISTYPE_METADATA(hdr
), data
,
6332 zfs_racct_read(size
, 1);
6335 /* Check if the spa even has l2 configured */
6336 const boolean_t spa_has_l2
= l2arc_ndev
!= 0 &&
6337 spa
->spa_l2cache
.sav_count
> 0;
6339 if (vd
!= NULL
&& spa_has_l2
&& !(l2arc_norw
&& devw
)) {
6341 * Read from the L2ARC if the following are true:
6342 * 1. The L2ARC vdev was previously cached.
6343 * 2. This buffer still has L2ARC metadata.
6344 * 3. This buffer isn't currently writing to the L2ARC.
6345 * 4. The L2ARC entry wasn't evicted, which may
6346 * also have invalidated the vdev.
6347 * 5. This isn't prefetch or l2arc_noprefetch is 0.
6349 if (HDR_HAS_L2HDR(hdr
) &&
6350 !HDR_L2_WRITING(hdr
) && !HDR_L2_EVICTED(hdr
) &&
6351 !(l2arc_noprefetch
&& HDR_PREFETCH(hdr
))) {
6352 l2arc_read_callback_t
*cb
;
6356 DTRACE_PROBE1(l2arc__hit
, arc_buf_hdr_t
*, hdr
);
6357 ARCSTAT_BUMP(arcstat_l2_hits
);
6358 hdr
->b_l2hdr
.b_hits
++;
6360 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
),
6362 cb
->l2rcb_hdr
= hdr
;
6365 cb
->l2rcb_flags
= zio_flags
;
6368 * When Compressed ARC is disabled, but the
6369 * L2ARC block is compressed, arc_hdr_size()
6370 * will have returned LSIZE rather than PSIZE.
6372 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
6373 !HDR_COMPRESSION_ENABLED(hdr
) &&
6374 HDR_GET_PSIZE(hdr
) != 0) {
6375 size
= HDR_GET_PSIZE(hdr
);
6378 asize
= vdev_psize_to_asize(vd
, size
);
6379 if (asize
!= size
) {
6380 abd
= abd_alloc_for_io(asize
,
6381 HDR_ISTYPE_METADATA(hdr
));
6382 cb
->l2rcb_abd
= abd
;
6387 ASSERT(addr
>= VDEV_LABEL_START_SIZE
&&
6388 addr
+ asize
<= vd
->vdev_psize
-
6389 VDEV_LABEL_END_SIZE
);
6392 * l2arc read. The SCL_L2ARC lock will be
6393 * released by l2arc_read_done().
6394 * Issue a null zio if the underlying buffer
6395 * was squashed to zero size by compression.
6397 ASSERT3U(arc_hdr_get_compress(hdr
), !=,
6398 ZIO_COMPRESS_EMPTY
);
6399 rzio
= zio_read_phys(pio
, vd
, addr
,
6402 l2arc_read_done
, cb
, priority
,
6403 zio_flags
| ZIO_FLAG_DONT_CACHE
|
6405 ZIO_FLAG_DONT_PROPAGATE
|
6406 ZIO_FLAG_DONT_RETRY
, B_FALSE
);
6407 acb
->acb_zio_head
= rzio
;
6409 if (hash_lock
!= NULL
)
6410 mutex_exit(hash_lock
);
6412 DTRACE_PROBE2(l2arc__read
, vdev_t
*, vd
,
6414 ARCSTAT_INCR(arcstat_l2_read_bytes
,
6415 HDR_GET_PSIZE(hdr
));
6417 if (*arc_flags
& ARC_FLAG_NOWAIT
) {
6422 ASSERT(*arc_flags
& ARC_FLAG_WAIT
);
6423 if (zio_wait(rzio
) == 0)
6426 /* l2arc read error; goto zio_read() */
6427 if (hash_lock
!= NULL
)
6428 mutex_enter(hash_lock
);
6430 DTRACE_PROBE1(l2arc__miss
,
6431 arc_buf_hdr_t
*, hdr
);
6432 ARCSTAT_BUMP(arcstat_l2_misses
);
6433 if (HDR_L2_WRITING(hdr
))
6434 ARCSTAT_BUMP(arcstat_l2_rw_clash
);
6435 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6439 spa_config_exit(spa
, SCL_L2ARC
, vd
);
6442 * Only a spa with l2 should contribute to l2
6443 * miss stats. (Including the case of having a
6444 * faulted cache device - that's also a miss.)
6448 * Skip ARC stat bump for block pointers with
6449 * embedded data. The data are read from the
6451 * decode_embedded_bp_compressed().
6454 DTRACE_PROBE1(l2arc__miss
,
6455 arc_buf_hdr_t
*, hdr
);
6456 ARCSTAT_BUMP(arcstat_l2_misses
);
6461 rzio
= zio_read(pio
, spa
, bp
, hdr_abd
, size
,
6462 arc_read_done
, hdr
, priority
, zio_flags
, zb
);
6463 acb
->acb_zio_head
= rzio
;
6465 if (hash_lock
!= NULL
)
6466 mutex_exit(hash_lock
);
6468 if (*arc_flags
& ARC_FLAG_WAIT
) {
6469 rc
= zio_wait(rzio
);
6473 ASSERT(*arc_flags
& ARC_FLAG_NOWAIT
);
6478 /* embedded bps don't actually go to disk */
6480 spa_read_history_add(spa
, zb
, *arc_flags
);
6481 spl_fstrans_unmark(cookie
);
6486 arc_add_prune_callback(arc_prune_func_t
*func
, void *private)
6490 p
= kmem_alloc(sizeof (*p
), KM_SLEEP
);
6492 p
->p_private
= private;
6493 list_link_init(&p
->p_node
);
6494 zfs_refcount_create(&p
->p_refcnt
);
6496 mutex_enter(&arc_prune_mtx
);
6497 zfs_refcount_add(&p
->p_refcnt
, &arc_prune_list
);
6498 list_insert_head(&arc_prune_list
, p
);
6499 mutex_exit(&arc_prune_mtx
);
6505 arc_remove_prune_callback(arc_prune_t
*p
)
6507 boolean_t wait
= B_FALSE
;
6508 mutex_enter(&arc_prune_mtx
);
6509 list_remove(&arc_prune_list
, p
);
6510 if (zfs_refcount_remove(&p
->p_refcnt
, &arc_prune_list
) > 0)
6512 mutex_exit(&arc_prune_mtx
);
6514 /* wait for arc_prune_task to finish */
6516 taskq_wait_outstanding(arc_prune_taskq
, 0);
6517 ASSERT0(zfs_refcount_count(&p
->p_refcnt
));
6518 zfs_refcount_destroy(&p
->p_refcnt
);
6519 kmem_free(p
, sizeof (*p
));
6523 * Notify the arc that a block was freed, and thus will never be used again.
6526 arc_freed(spa_t
*spa
, const blkptr_t
*bp
)
6529 kmutex_t
*hash_lock
;
6530 uint64_t guid
= spa_load_guid(spa
);
6532 ASSERT(!BP_IS_EMBEDDED(bp
));
6534 hdr
= buf_hash_find(guid
, bp
, &hash_lock
);
6539 * We might be trying to free a block that is still doing I/O
6540 * (i.e. prefetch) or has a reference (i.e. a dedup-ed,
6541 * dmu_sync-ed block). If this block is being prefetched, then it
6542 * would still have the ARC_FLAG_IO_IN_PROGRESS flag set on the hdr
6543 * until the I/O completes. A block may also have a reference if it is
6544 * part of a dedup-ed, dmu_synced write. The dmu_sync() function would
6545 * have written the new block to its final resting place on disk but
6546 * without the dedup flag set. This would have left the hdr in the MRU
6547 * state and discoverable. When the txg finally syncs it detects that
6548 * the block was overridden in open context and issues an override I/O.
6549 * Since this is a dedup block, the override I/O will determine if the
6550 * block is already in the DDT. If so, then it will replace the io_bp
6551 * with the bp from the DDT and allow the I/O to finish. When the I/O
6552 * reaches the done callback, dbuf_write_override_done, it will
6553 * check to see if the io_bp and io_bp_override are identical.
6554 * If they are not, then it indicates that the bp was replaced with
6555 * the bp in the DDT and the override bp is freed. This allows
6556 * us to arrive here with a reference on a block that is being
6557 * freed. So if we have an I/O in progress, or a reference to
6558 * this hdr, then we don't destroy the hdr.
6560 if (!HDR_HAS_L1HDR(hdr
) || (!HDR_IO_IN_PROGRESS(hdr
) &&
6561 zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
))) {
6562 arc_change_state(arc_anon
, hdr
, hash_lock
);
6563 arc_hdr_destroy(hdr
);
6564 mutex_exit(hash_lock
);
6566 mutex_exit(hash_lock
);
6572 * Release this buffer from the cache, making it an anonymous buffer. This
6573 * must be done after a read and prior to modifying the buffer contents.
6574 * If the buffer has more than one reference, we must make
6575 * a new hdr for the buffer.
6578 arc_release(arc_buf_t
*buf
, void *tag
)
6580 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6583 * It would be nice to assert that if its DMU metadata (level >
6584 * 0 || it's the dnode file), then it must be syncing context.
6585 * But we don't know that information at this level.
6588 mutex_enter(&buf
->b_evict_lock
);
6590 ASSERT(HDR_HAS_L1HDR(hdr
));
6593 * We don't grab the hash lock prior to this check, because if
6594 * the buffer's header is in the arc_anon state, it won't be
6595 * linked into the hash table.
6597 if (hdr
->b_l1hdr
.b_state
== arc_anon
) {
6598 mutex_exit(&buf
->b_evict_lock
);
6599 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6600 ASSERT(!HDR_IN_HASH_TABLE(hdr
));
6601 ASSERT(!HDR_HAS_L2HDR(hdr
));
6603 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
6604 ASSERT3S(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
), ==, 1);
6605 ASSERT(!list_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6607 hdr
->b_l1hdr
.b_arc_access
= 0;
6610 * If the buf is being overridden then it may already
6611 * have a hdr that is not empty.
6613 buf_discard_identity(hdr
);
6619 kmutex_t
*hash_lock
= HDR_LOCK(hdr
);
6620 mutex_enter(hash_lock
);
6623 * This assignment is only valid as long as the hash_lock is
6624 * held, we must be careful not to reference state or the
6625 * b_state field after dropping the lock.
6627 arc_state_t
*state
= hdr
->b_l1hdr
.b_state
;
6628 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
6629 ASSERT3P(state
, !=, arc_anon
);
6631 /* this buffer is not on any list */
6632 ASSERT3S(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
), >, 0);
6634 if (HDR_HAS_L2HDR(hdr
)) {
6635 mutex_enter(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6638 * We have to recheck this conditional again now that
6639 * we're holding the l2ad_mtx to prevent a race with
6640 * another thread which might be concurrently calling
6641 * l2arc_evict(). In that case, l2arc_evict() might have
6642 * destroyed the header's L2 portion as we were waiting
6643 * to acquire the l2ad_mtx.
6645 if (HDR_HAS_L2HDR(hdr
))
6646 arc_hdr_l2hdr_destroy(hdr
);
6648 mutex_exit(&hdr
->b_l2hdr
.b_dev
->l2ad_mtx
);
6652 * Do we have more than one buf?
6654 if (hdr
->b_l1hdr
.b_bufcnt
> 1) {
6655 arc_buf_hdr_t
*nhdr
;
6656 uint64_t spa
= hdr
->b_spa
;
6657 uint64_t psize
= HDR_GET_PSIZE(hdr
);
6658 uint64_t lsize
= HDR_GET_LSIZE(hdr
);
6659 boolean_t
protected = HDR_PROTECTED(hdr
);
6660 enum zio_compress compress
= arc_hdr_get_compress(hdr
);
6661 arc_buf_contents_t type
= arc_buf_type(hdr
);
6662 VERIFY3U(hdr
->b_type
, ==, type
);
6664 ASSERT(hdr
->b_l1hdr
.b_buf
!= buf
|| buf
->b_next
!= NULL
);
6665 (void) remove_reference(hdr
, hash_lock
, tag
);
6667 if (arc_buf_is_shared(buf
) && !ARC_BUF_COMPRESSED(buf
)) {
6668 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6669 ASSERT(ARC_BUF_LAST(buf
));
6673 * Pull the data off of this hdr and attach it to
6674 * a new anonymous hdr. Also find the last buffer
6675 * in the hdr's buffer list.
6677 arc_buf_t
*lastbuf
= arc_buf_remove(hdr
, buf
);
6678 ASSERT3P(lastbuf
, !=, NULL
);
6681 * If the current arc_buf_t and the hdr are sharing their data
6682 * buffer, then we must stop sharing that block.
6684 if (arc_buf_is_shared(buf
)) {
6685 ASSERT3P(hdr
->b_l1hdr
.b_buf
, !=, buf
);
6686 VERIFY(!arc_buf_is_shared(lastbuf
));
6689 * First, sever the block sharing relationship between
6690 * buf and the arc_buf_hdr_t.
6692 arc_unshare_buf(hdr
, buf
);
6695 * Now we need to recreate the hdr's b_pabd. Since we
6696 * have lastbuf handy, we try to share with it, but if
6697 * we can't then we allocate a new b_pabd and copy the
6698 * data from buf into it.
6700 if (arc_can_share(hdr
, lastbuf
)) {
6701 arc_share_buf(hdr
, lastbuf
);
6703 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
);
6704 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
,
6705 buf
->b_data
, psize
);
6707 VERIFY3P(lastbuf
->b_data
, !=, NULL
);
6708 } else if (HDR_SHARED_DATA(hdr
)) {
6710 * Uncompressed shared buffers are always at the end
6711 * of the list. Compressed buffers don't have the
6712 * same requirements. This makes it hard to
6713 * simply assert that the lastbuf is shared so
6714 * we rely on the hdr's compression flags to determine
6715 * if we have a compressed, shared buffer.
6717 ASSERT(arc_buf_is_shared(lastbuf
) ||
6718 arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
);
6719 ASSERT(!ARC_BUF_SHARED(buf
));
6722 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
|| HDR_HAS_RABD(hdr
));
6723 ASSERT3P(state
, !=, arc_l2c_only
);
6725 (void) zfs_refcount_remove_many(&state
->arcs_size
,
6726 arc_buf_size(buf
), buf
);
6728 if (zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
)) {
6729 ASSERT3P(state
, !=, arc_l2c_only
);
6730 (void) zfs_refcount_remove_many(
6731 &state
->arcs_esize
[type
],
6732 arc_buf_size(buf
), buf
);
6735 hdr
->b_l1hdr
.b_bufcnt
-= 1;
6736 if (ARC_BUF_ENCRYPTED(buf
))
6737 hdr
->b_crypt_hdr
.b_ebufcnt
-= 1;
6739 arc_cksum_verify(buf
);
6740 arc_buf_unwatch(buf
);
6742 /* if this is the last uncompressed buf free the checksum */
6743 if (!arc_hdr_has_uncompressed_buf(hdr
))
6744 arc_cksum_free(hdr
);
6746 mutex_exit(hash_lock
);
6749 * Allocate a new hdr. The new hdr will contain a b_pabd
6750 * buffer which will be freed in arc_write().
6752 nhdr
= arc_hdr_alloc(spa
, psize
, lsize
, protected,
6753 compress
, hdr
->b_complevel
, type
);
6754 ASSERT3P(nhdr
->b_l1hdr
.b_buf
, ==, NULL
);
6755 ASSERT0(nhdr
->b_l1hdr
.b_bufcnt
);
6756 ASSERT0(zfs_refcount_count(&nhdr
->b_l1hdr
.b_refcnt
));
6757 VERIFY3U(nhdr
->b_type
, ==, type
);
6758 ASSERT(!HDR_SHARED_DATA(nhdr
));
6760 nhdr
->b_l1hdr
.b_buf
= buf
;
6761 nhdr
->b_l1hdr
.b_bufcnt
= 1;
6762 if (ARC_BUF_ENCRYPTED(buf
))
6763 nhdr
->b_crypt_hdr
.b_ebufcnt
= 1;
6764 (void) zfs_refcount_add(&nhdr
->b_l1hdr
.b_refcnt
, tag
);
6767 mutex_exit(&buf
->b_evict_lock
);
6768 (void) zfs_refcount_add_many(&arc_anon
->arcs_size
,
6769 arc_buf_size(buf
), buf
);
6771 mutex_exit(&buf
->b_evict_lock
);
6772 ASSERT(zfs_refcount_count(&hdr
->b_l1hdr
.b_refcnt
) == 1);
6773 /* protected by hash lock, or hdr is on arc_anon */
6774 ASSERT(!multilist_link_active(&hdr
->b_l1hdr
.b_arc_node
));
6775 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
6776 hdr
->b_l1hdr
.b_mru_hits
= 0;
6777 hdr
->b_l1hdr
.b_mru_ghost_hits
= 0;
6778 hdr
->b_l1hdr
.b_mfu_hits
= 0;
6779 hdr
->b_l1hdr
.b_mfu_ghost_hits
= 0;
6780 arc_change_state(arc_anon
, hdr
, hash_lock
);
6781 hdr
->b_l1hdr
.b_arc_access
= 0;
6783 mutex_exit(hash_lock
);
6784 buf_discard_identity(hdr
);
6790 arc_released(arc_buf_t
*buf
)
6794 mutex_enter(&buf
->b_evict_lock
);
6795 released
= (buf
->b_data
!= NULL
&&
6796 buf
->b_hdr
->b_l1hdr
.b_state
== arc_anon
);
6797 mutex_exit(&buf
->b_evict_lock
);
6803 arc_referenced(arc_buf_t
*buf
)
6807 mutex_enter(&buf
->b_evict_lock
);
6808 referenced
= (zfs_refcount_count(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6809 mutex_exit(&buf
->b_evict_lock
);
6810 return (referenced
);
6815 arc_write_ready(zio_t
*zio
)
6817 arc_write_callback_t
*callback
= zio
->io_private
;
6818 arc_buf_t
*buf
= callback
->awcb_buf
;
6819 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
6820 blkptr_t
*bp
= zio
->io_bp
;
6821 uint64_t psize
= BP_IS_HOLE(bp
) ? 0 : BP_GET_PSIZE(bp
);
6822 fstrans_cookie_t cookie
= spl_fstrans_mark();
6824 ASSERT(HDR_HAS_L1HDR(hdr
));
6825 ASSERT(!zfs_refcount_is_zero(&buf
->b_hdr
->b_l1hdr
.b_refcnt
));
6826 ASSERT(hdr
->b_l1hdr
.b_bufcnt
> 0);
6829 * If we're reexecuting this zio because the pool suspended, then
6830 * cleanup any state that was previously set the first time the
6831 * callback was invoked.
6833 if (zio
->io_flags
& ZIO_FLAG_REEXECUTED
) {
6834 arc_cksum_free(hdr
);
6835 arc_buf_unwatch(buf
);
6836 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
6837 if (arc_buf_is_shared(buf
)) {
6838 arc_unshare_buf(hdr
, buf
);
6840 arc_hdr_free_abd(hdr
, B_FALSE
);
6844 if (HDR_HAS_RABD(hdr
))
6845 arc_hdr_free_abd(hdr
, B_TRUE
);
6847 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
6848 ASSERT(!HDR_HAS_RABD(hdr
));
6849 ASSERT(!HDR_SHARED_DATA(hdr
));
6850 ASSERT(!arc_buf_is_shared(buf
));
6852 callback
->awcb_ready(zio
, buf
, callback
->awcb_private
);
6854 if (HDR_IO_IN_PROGRESS(hdr
))
6855 ASSERT(zio
->io_flags
& ZIO_FLAG_REEXECUTED
);
6857 arc_hdr_set_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
6859 if (BP_IS_PROTECTED(bp
) != !!HDR_PROTECTED(hdr
))
6860 hdr
= arc_hdr_realloc_crypt(hdr
, BP_IS_PROTECTED(bp
));
6862 if (BP_IS_PROTECTED(bp
)) {
6863 /* ZIL blocks are written through zio_rewrite */
6864 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
6865 ASSERT(HDR_PROTECTED(hdr
));
6867 if (BP_SHOULD_BYTESWAP(bp
)) {
6868 if (BP_GET_LEVEL(bp
) > 0) {
6869 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_UINT64
;
6871 hdr
->b_l1hdr
.b_byteswap
=
6872 DMU_OT_BYTESWAP(BP_GET_TYPE(bp
));
6875 hdr
->b_l1hdr
.b_byteswap
= DMU_BSWAP_NUMFUNCS
;
6878 hdr
->b_crypt_hdr
.b_ot
= BP_GET_TYPE(bp
);
6879 hdr
->b_crypt_hdr
.b_dsobj
= zio
->io_bookmark
.zb_objset
;
6880 zio_crypt_decode_params_bp(bp
, hdr
->b_crypt_hdr
.b_salt
,
6881 hdr
->b_crypt_hdr
.b_iv
);
6882 zio_crypt_decode_mac_bp(bp
, hdr
->b_crypt_hdr
.b_mac
);
6886 * If this block was written for raw encryption but the zio layer
6887 * ended up only authenticating it, adjust the buffer flags now.
6889 if (BP_IS_AUTHENTICATED(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6890 arc_hdr_set_flags(hdr
, ARC_FLAG_NOAUTH
);
6891 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6892 if (BP_GET_COMPRESS(bp
) == ZIO_COMPRESS_OFF
)
6893 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6894 } else if (BP_IS_HOLE(bp
) && ARC_BUF_ENCRYPTED(buf
)) {
6895 buf
->b_flags
&= ~ARC_BUF_FLAG_ENCRYPTED
;
6896 buf
->b_flags
&= ~ARC_BUF_FLAG_COMPRESSED
;
6899 /* this must be done after the buffer flags are adjusted */
6900 arc_cksum_compute(buf
);
6902 enum zio_compress compress
;
6903 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
)) {
6904 compress
= ZIO_COMPRESS_OFF
;
6906 ASSERT3U(HDR_GET_LSIZE(hdr
), ==, BP_GET_LSIZE(bp
));
6907 compress
= BP_GET_COMPRESS(bp
);
6909 HDR_SET_PSIZE(hdr
, psize
);
6910 arc_hdr_set_compress(hdr
, compress
);
6911 hdr
->b_complevel
= zio
->io_prop
.zp_complevel
;
6913 if (zio
->io_error
!= 0 || psize
== 0)
6917 * Fill the hdr with data. If the buffer is encrypted we have no choice
6918 * but to copy the data into b_radb. If the hdr is compressed, the data
6919 * we want is available from the zio, otherwise we can take it from
6922 * We might be able to share the buf's data with the hdr here. However,
6923 * doing so would cause the ARC to be full of linear ABDs if we write a
6924 * lot of shareable data. As a compromise, we check whether scattered
6925 * ABDs are allowed, and assume that if they are then the user wants
6926 * the ARC to be primarily filled with them regardless of the data being
6927 * written. Therefore, if they're allowed then we allocate one and copy
6928 * the data into it; otherwise, we share the data directly if we can.
6930 if (ARC_BUF_ENCRYPTED(buf
)) {
6931 ASSERT3U(psize
, >, 0);
6932 ASSERT(ARC_BUF_COMPRESSED(buf
));
6933 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
| ARC_HDR_ALLOC_RDATA
|
6934 ARC_HDR_USE_RESERVE
);
6935 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6936 } else if (!abd_size_alloc_linear(arc_buf_size(buf
)) ||
6937 !arc_can_share(hdr
, buf
)) {
6939 * Ideally, we would always copy the io_abd into b_pabd, but the
6940 * user may have disabled compressed ARC, thus we must check the
6941 * hdr's compression setting rather than the io_bp's.
6943 if (BP_IS_ENCRYPTED(bp
)) {
6944 ASSERT3U(psize
, >, 0);
6945 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
|
6946 ARC_HDR_ALLOC_RDATA
| ARC_HDR_USE_RESERVE
);
6947 abd_copy(hdr
->b_crypt_hdr
.b_rabd
, zio
->io_abd
, psize
);
6948 } else if (arc_hdr_get_compress(hdr
) != ZIO_COMPRESS_OFF
&&
6949 !ARC_BUF_COMPRESSED(buf
)) {
6950 ASSERT3U(psize
, >, 0);
6951 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
|
6952 ARC_HDR_USE_RESERVE
);
6953 abd_copy(hdr
->b_l1hdr
.b_pabd
, zio
->io_abd
, psize
);
6955 ASSERT3U(zio
->io_orig_size
, ==, arc_hdr_size(hdr
));
6956 arc_hdr_alloc_abd(hdr
, ARC_HDR_DO_ADAPT
|
6957 ARC_HDR_USE_RESERVE
);
6958 abd_copy_from_buf(hdr
->b_l1hdr
.b_pabd
, buf
->b_data
,
6962 ASSERT3P(buf
->b_data
, ==, abd_to_buf(zio
->io_orig_abd
));
6963 ASSERT3U(zio
->io_orig_size
, ==, arc_buf_size(buf
));
6964 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, ==, 1);
6966 arc_share_buf(hdr
, buf
);
6970 arc_hdr_verify(hdr
, bp
);
6971 spl_fstrans_unmark(cookie
);
6975 arc_write_children_ready(zio_t
*zio
)
6977 arc_write_callback_t
*callback
= zio
->io_private
;
6978 arc_buf_t
*buf
= callback
->awcb_buf
;
6980 callback
->awcb_children_ready(zio
, buf
, callback
->awcb_private
);
6984 * The SPA calls this callback for each physical write that happens on behalf
6985 * of a logical write. See the comment in dbuf_write_physdone() for details.
6988 arc_write_physdone(zio_t
*zio
)
6990 arc_write_callback_t
*cb
= zio
->io_private
;
6991 if (cb
->awcb_physdone
!= NULL
)
6992 cb
->awcb_physdone(zio
, cb
->awcb_buf
, cb
->awcb_private
);
6996 arc_write_done(zio_t
*zio
)
6998 arc_write_callback_t
*callback
= zio
->io_private
;
6999 arc_buf_t
*buf
= callback
->awcb_buf
;
7000 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
7002 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
7004 if (zio
->io_error
== 0) {
7005 arc_hdr_verify(hdr
, zio
->io_bp
);
7007 if (BP_IS_HOLE(zio
->io_bp
) || BP_IS_EMBEDDED(zio
->io_bp
)) {
7008 buf_discard_identity(hdr
);
7010 hdr
->b_dva
= *BP_IDENTITY(zio
->io_bp
);
7011 hdr
->b_birth
= BP_PHYSICAL_BIRTH(zio
->io_bp
);
7014 ASSERT(HDR_EMPTY(hdr
));
7018 * If the block to be written was all-zero or compressed enough to be
7019 * embedded in the BP, no write was performed so there will be no
7020 * dva/birth/checksum. The buffer must therefore remain anonymous
7023 if (!HDR_EMPTY(hdr
)) {
7024 arc_buf_hdr_t
*exists
;
7025 kmutex_t
*hash_lock
;
7027 ASSERT3U(zio
->io_error
, ==, 0);
7029 arc_cksum_verify(buf
);
7031 exists
= buf_hash_insert(hdr
, &hash_lock
);
7032 if (exists
!= NULL
) {
7034 * This can only happen if we overwrite for
7035 * sync-to-convergence, because we remove
7036 * buffers from the hash table when we arc_free().
7038 if (zio
->io_flags
& ZIO_FLAG_IO_REWRITE
) {
7039 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
7040 panic("bad overwrite, hdr=%p exists=%p",
7041 (void *)hdr
, (void *)exists
);
7042 ASSERT(zfs_refcount_is_zero(
7043 &exists
->b_l1hdr
.b_refcnt
));
7044 arc_change_state(arc_anon
, exists
, hash_lock
);
7045 arc_hdr_destroy(exists
);
7046 mutex_exit(hash_lock
);
7047 exists
= buf_hash_insert(hdr
, &hash_lock
);
7048 ASSERT3P(exists
, ==, NULL
);
7049 } else if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
) {
7051 ASSERT(zio
->io_prop
.zp_nopwrite
);
7052 if (!BP_EQUAL(&zio
->io_bp_orig
, zio
->io_bp
))
7053 panic("bad nopwrite, hdr=%p exists=%p",
7054 (void *)hdr
, (void *)exists
);
7057 ASSERT(hdr
->b_l1hdr
.b_bufcnt
== 1);
7058 ASSERT(hdr
->b_l1hdr
.b_state
== arc_anon
);
7059 ASSERT(BP_GET_DEDUP(zio
->io_bp
));
7060 ASSERT(BP_GET_LEVEL(zio
->io_bp
) == 0);
7063 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
7064 /* if it's not anon, we are doing a scrub */
7065 if (exists
== NULL
&& hdr
->b_l1hdr
.b_state
== arc_anon
)
7066 arc_access(hdr
, hash_lock
);
7067 mutex_exit(hash_lock
);
7069 arc_hdr_clear_flags(hdr
, ARC_FLAG_IO_IN_PROGRESS
);
7072 ASSERT(!zfs_refcount_is_zero(&hdr
->b_l1hdr
.b_refcnt
));
7073 callback
->awcb_done(zio
, buf
, callback
->awcb_private
);
7075 abd_free(zio
->io_abd
);
7076 kmem_free(callback
, sizeof (arc_write_callback_t
));
7080 arc_write(zio_t
*pio
, spa_t
*spa
, uint64_t txg
,
7081 blkptr_t
*bp
, arc_buf_t
*buf
, boolean_t l2arc
,
7082 const zio_prop_t
*zp
, arc_write_done_func_t
*ready
,
7083 arc_write_done_func_t
*children_ready
, arc_write_done_func_t
*physdone
,
7084 arc_write_done_func_t
*done
, void *private, zio_priority_t priority
,
7085 int zio_flags
, const zbookmark_phys_t
*zb
)
7087 arc_buf_hdr_t
*hdr
= buf
->b_hdr
;
7088 arc_write_callback_t
*callback
;
7090 zio_prop_t localprop
= *zp
;
7092 ASSERT3P(ready
, !=, NULL
);
7093 ASSERT3P(done
, !=, NULL
);
7094 ASSERT(!HDR_IO_ERROR(hdr
));
7095 ASSERT(!HDR_IO_IN_PROGRESS(hdr
));
7096 ASSERT3P(hdr
->b_l1hdr
.b_acb
, ==, NULL
);
7097 ASSERT3U(hdr
->b_l1hdr
.b_bufcnt
, >, 0);
7099 arc_hdr_set_flags(hdr
, ARC_FLAG_L2CACHE
);
7101 if (ARC_BUF_ENCRYPTED(buf
)) {
7102 ASSERT(ARC_BUF_COMPRESSED(buf
));
7103 localprop
.zp_encrypt
= B_TRUE
;
7104 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
7105 localprop
.zp_complevel
= hdr
->b_complevel
;
7106 localprop
.zp_byteorder
=
7107 (hdr
->b_l1hdr
.b_byteswap
== DMU_BSWAP_NUMFUNCS
) ?
7108 ZFS_HOST_BYTEORDER
: !ZFS_HOST_BYTEORDER
;
7109 memcpy(localprop
.zp_salt
, hdr
->b_crypt_hdr
.b_salt
,
7111 memcpy(localprop
.zp_iv
, hdr
->b_crypt_hdr
.b_iv
,
7113 memcpy(localprop
.zp_mac
, hdr
->b_crypt_hdr
.b_mac
,
7115 if (DMU_OT_IS_ENCRYPTED(localprop
.zp_type
)) {
7116 localprop
.zp_nopwrite
= B_FALSE
;
7117 localprop
.zp_copies
=
7118 MIN(localprop
.zp_copies
, SPA_DVAS_PER_BP
- 1);
7120 zio_flags
|= ZIO_FLAG_RAW
;
7121 } else if (ARC_BUF_COMPRESSED(buf
)) {
7122 ASSERT3U(HDR_GET_LSIZE(hdr
), !=, arc_buf_size(buf
));
7123 localprop
.zp_compress
= HDR_GET_COMPRESS(hdr
);
7124 localprop
.zp_complevel
= hdr
->b_complevel
;
7125 zio_flags
|= ZIO_FLAG_RAW_COMPRESS
;
7127 callback
= kmem_zalloc(sizeof (arc_write_callback_t
), KM_SLEEP
);
7128 callback
->awcb_ready
= ready
;
7129 callback
->awcb_children_ready
= children_ready
;
7130 callback
->awcb_physdone
= physdone
;
7131 callback
->awcb_done
= done
;
7132 callback
->awcb_private
= private;
7133 callback
->awcb_buf
= buf
;
7136 * The hdr's b_pabd is now stale, free it now. A new data block
7137 * will be allocated when the zio pipeline calls arc_write_ready().
7139 if (hdr
->b_l1hdr
.b_pabd
!= NULL
) {
7141 * If the buf is currently sharing the data block with
7142 * the hdr then we need to break that relationship here.
7143 * The hdr will remain with a NULL data pointer and the
7144 * buf will take sole ownership of the block.
7146 if (arc_buf_is_shared(buf
)) {
7147 arc_unshare_buf(hdr
, buf
);
7149 arc_hdr_free_abd(hdr
, B_FALSE
);
7151 VERIFY3P(buf
->b_data
, !=, NULL
);
7154 if (HDR_HAS_RABD(hdr
))
7155 arc_hdr_free_abd(hdr
, B_TRUE
);
7157 if (!(zio_flags
& ZIO_FLAG_RAW
))
7158 arc_hdr_set_compress(hdr
, ZIO_COMPRESS_OFF
);
7160 ASSERT(!arc_buf_is_shared(buf
));
7161 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, ==, NULL
);
7163 zio
= zio_write(pio
, spa
, txg
, bp
,
7164 abd_get_from_buf(buf
->b_data
, HDR_GET_LSIZE(hdr
)),
7165 HDR_GET_LSIZE(hdr
), arc_buf_size(buf
), &localprop
, arc_write_ready
,
7166 (children_ready
!= NULL
) ? arc_write_children_ready
: NULL
,
7167 arc_write_physdone
, arc_write_done
, callback
,
7168 priority
, zio_flags
, zb
);
7174 arc_tempreserve_clear(uint64_t reserve
)
7176 atomic_add_64(&arc_tempreserve
, -reserve
);
7177 ASSERT((int64_t)arc_tempreserve
>= 0);
7181 arc_tempreserve_space(spa_t
*spa
, uint64_t reserve
, uint64_t txg
)
7187 reserve
> arc_c
/4 &&
7188 reserve
* 4 > (2ULL << SPA_MAXBLOCKSHIFT
))
7189 arc_c
= MIN(arc_c_max
, reserve
* 4);
7192 * Throttle when the calculated memory footprint for the TXG
7193 * exceeds the target ARC size.
7195 if (reserve
> arc_c
) {
7196 DMU_TX_STAT_BUMP(dmu_tx_memory_reserve
);
7197 return (SET_ERROR(ERESTART
));
7201 * Don't count loaned bufs as in flight dirty data to prevent long
7202 * network delays from blocking transactions that are ready to be
7203 * assigned to a txg.
7206 /* assert that it has not wrapped around */
7207 ASSERT3S(atomic_add_64_nv(&arc_loaned_bytes
, 0), >=, 0);
7209 anon_size
= MAX((int64_t)(zfs_refcount_count(&arc_anon
->arcs_size
) -
7210 arc_loaned_bytes
), 0);
7213 * Writes will, almost always, require additional memory allocations
7214 * in order to compress/encrypt/etc the data. We therefore need to
7215 * make sure that there is sufficient available memory for this.
7217 error
= arc_memory_throttle(spa
, reserve
, txg
);
7222 * Throttle writes when the amount of dirty data in the cache
7223 * gets too large. We try to keep the cache less than half full
7224 * of dirty blocks so that our sync times don't grow too large.
7226 * In the case of one pool being built on another pool, we want
7227 * to make sure we don't end up throttling the lower (backing)
7228 * pool when the upper pool is the majority contributor to dirty
7229 * data. To insure we make forward progress during throttling, we
7230 * also check the current pool's net dirty data and only throttle
7231 * if it exceeds zfs_arc_pool_dirty_percent of the anonymous dirty
7232 * data in the cache.
7234 * Note: if two requests come in concurrently, we might let them
7235 * both succeed, when one of them should fail. Not a huge deal.
7237 uint64_t total_dirty
= reserve
+ arc_tempreserve
+ anon_size
;
7238 uint64_t spa_dirty_anon
= spa_dirty_data(spa
);
7239 uint64_t rarc_c
= arc_warm
? arc_c
: arc_c_max
;
7240 if (total_dirty
> rarc_c
* zfs_arc_dirty_limit_percent
/ 100 &&
7241 anon_size
> rarc_c
* zfs_arc_anon_limit_percent
/ 100 &&
7242 spa_dirty_anon
> anon_size
* zfs_arc_pool_dirty_percent
/ 100) {
7244 uint64_t meta_esize
= zfs_refcount_count(
7245 &arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7246 uint64_t data_esize
=
7247 zfs_refcount_count(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7248 dprintf("failing, arc_tempreserve=%lluK anon_meta=%lluK "
7249 "anon_data=%lluK tempreserve=%lluK rarc_c=%lluK\n",
7250 (u_longlong_t
)arc_tempreserve
>> 10,
7251 (u_longlong_t
)meta_esize
>> 10,
7252 (u_longlong_t
)data_esize
>> 10,
7253 (u_longlong_t
)reserve
>> 10,
7254 (u_longlong_t
)rarc_c
>> 10);
7256 DMU_TX_STAT_BUMP(dmu_tx_dirty_throttle
);
7257 return (SET_ERROR(ERESTART
));
7259 atomic_add_64(&arc_tempreserve
, reserve
);
7264 arc_kstat_update_state(arc_state_t
*state
, kstat_named_t
*size
,
7265 kstat_named_t
*evict_data
, kstat_named_t
*evict_metadata
)
7267 size
->value
.ui64
= zfs_refcount_count(&state
->arcs_size
);
7268 evict_data
->value
.ui64
=
7269 zfs_refcount_count(&state
->arcs_esize
[ARC_BUFC_DATA
]);
7270 evict_metadata
->value
.ui64
=
7271 zfs_refcount_count(&state
->arcs_esize
[ARC_BUFC_METADATA
]);
7275 arc_kstat_update(kstat_t
*ksp
, int rw
)
7277 arc_stats_t
*as
= ksp
->ks_data
;
7279 if (rw
== KSTAT_WRITE
)
7280 return (SET_ERROR(EACCES
));
7282 as
->arcstat_hits
.value
.ui64
=
7283 wmsum_value(&arc_sums
.arcstat_hits
);
7284 as
->arcstat_misses
.value
.ui64
=
7285 wmsum_value(&arc_sums
.arcstat_misses
);
7286 as
->arcstat_demand_data_hits
.value
.ui64
=
7287 wmsum_value(&arc_sums
.arcstat_demand_data_hits
);
7288 as
->arcstat_demand_data_misses
.value
.ui64
=
7289 wmsum_value(&arc_sums
.arcstat_demand_data_misses
);
7290 as
->arcstat_demand_metadata_hits
.value
.ui64
=
7291 wmsum_value(&arc_sums
.arcstat_demand_metadata_hits
);
7292 as
->arcstat_demand_metadata_misses
.value
.ui64
=
7293 wmsum_value(&arc_sums
.arcstat_demand_metadata_misses
);
7294 as
->arcstat_prefetch_data_hits
.value
.ui64
=
7295 wmsum_value(&arc_sums
.arcstat_prefetch_data_hits
);
7296 as
->arcstat_prefetch_data_misses
.value
.ui64
=
7297 wmsum_value(&arc_sums
.arcstat_prefetch_data_misses
);
7298 as
->arcstat_prefetch_metadata_hits
.value
.ui64
=
7299 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_hits
);
7300 as
->arcstat_prefetch_metadata_misses
.value
.ui64
=
7301 wmsum_value(&arc_sums
.arcstat_prefetch_metadata_misses
);
7302 as
->arcstat_mru_hits
.value
.ui64
=
7303 wmsum_value(&arc_sums
.arcstat_mru_hits
);
7304 as
->arcstat_mru_ghost_hits
.value
.ui64
=
7305 wmsum_value(&arc_sums
.arcstat_mru_ghost_hits
);
7306 as
->arcstat_mfu_hits
.value
.ui64
=
7307 wmsum_value(&arc_sums
.arcstat_mfu_hits
);
7308 as
->arcstat_mfu_ghost_hits
.value
.ui64
=
7309 wmsum_value(&arc_sums
.arcstat_mfu_ghost_hits
);
7310 as
->arcstat_deleted
.value
.ui64
=
7311 wmsum_value(&arc_sums
.arcstat_deleted
);
7312 as
->arcstat_mutex_miss
.value
.ui64
=
7313 wmsum_value(&arc_sums
.arcstat_mutex_miss
);
7314 as
->arcstat_access_skip
.value
.ui64
=
7315 wmsum_value(&arc_sums
.arcstat_access_skip
);
7316 as
->arcstat_evict_skip
.value
.ui64
=
7317 wmsum_value(&arc_sums
.arcstat_evict_skip
);
7318 as
->arcstat_evict_not_enough
.value
.ui64
=
7319 wmsum_value(&arc_sums
.arcstat_evict_not_enough
);
7320 as
->arcstat_evict_l2_cached
.value
.ui64
=
7321 wmsum_value(&arc_sums
.arcstat_evict_l2_cached
);
7322 as
->arcstat_evict_l2_eligible
.value
.ui64
=
7323 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible
);
7324 as
->arcstat_evict_l2_eligible_mfu
.value
.ui64
=
7325 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible_mfu
);
7326 as
->arcstat_evict_l2_eligible_mru
.value
.ui64
=
7327 wmsum_value(&arc_sums
.arcstat_evict_l2_eligible_mru
);
7328 as
->arcstat_evict_l2_ineligible
.value
.ui64
=
7329 wmsum_value(&arc_sums
.arcstat_evict_l2_ineligible
);
7330 as
->arcstat_evict_l2_skip
.value
.ui64
=
7331 wmsum_value(&arc_sums
.arcstat_evict_l2_skip
);
7332 as
->arcstat_hash_collisions
.value
.ui64
=
7333 wmsum_value(&arc_sums
.arcstat_hash_collisions
);
7334 as
->arcstat_hash_chains
.value
.ui64
=
7335 wmsum_value(&arc_sums
.arcstat_hash_chains
);
7336 as
->arcstat_size
.value
.ui64
=
7337 aggsum_value(&arc_sums
.arcstat_size
);
7338 as
->arcstat_compressed_size
.value
.ui64
=
7339 wmsum_value(&arc_sums
.arcstat_compressed_size
);
7340 as
->arcstat_uncompressed_size
.value
.ui64
=
7341 wmsum_value(&arc_sums
.arcstat_uncompressed_size
);
7342 as
->arcstat_overhead_size
.value
.ui64
=
7343 wmsum_value(&arc_sums
.arcstat_overhead_size
);
7344 as
->arcstat_hdr_size
.value
.ui64
=
7345 wmsum_value(&arc_sums
.arcstat_hdr_size
);
7346 as
->arcstat_data_size
.value
.ui64
=
7347 wmsum_value(&arc_sums
.arcstat_data_size
);
7348 as
->arcstat_metadata_size
.value
.ui64
=
7349 wmsum_value(&arc_sums
.arcstat_metadata_size
);
7350 as
->arcstat_dbuf_size
.value
.ui64
=
7351 wmsum_value(&arc_sums
.arcstat_dbuf_size
);
7352 #if defined(COMPAT_FREEBSD11)
7353 as
->arcstat_other_size
.value
.ui64
=
7354 wmsum_value(&arc_sums
.arcstat_bonus_size
) +
7355 aggsum_value(&arc_sums
.arcstat_dnode_size
) +
7356 wmsum_value(&arc_sums
.arcstat_dbuf_size
);
7359 arc_kstat_update_state(arc_anon
,
7360 &as
->arcstat_anon_size
,
7361 &as
->arcstat_anon_evictable_data
,
7362 &as
->arcstat_anon_evictable_metadata
);
7363 arc_kstat_update_state(arc_mru
,
7364 &as
->arcstat_mru_size
,
7365 &as
->arcstat_mru_evictable_data
,
7366 &as
->arcstat_mru_evictable_metadata
);
7367 arc_kstat_update_state(arc_mru_ghost
,
7368 &as
->arcstat_mru_ghost_size
,
7369 &as
->arcstat_mru_ghost_evictable_data
,
7370 &as
->arcstat_mru_ghost_evictable_metadata
);
7371 arc_kstat_update_state(arc_mfu
,
7372 &as
->arcstat_mfu_size
,
7373 &as
->arcstat_mfu_evictable_data
,
7374 &as
->arcstat_mfu_evictable_metadata
);
7375 arc_kstat_update_state(arc_mfu_ghost
,
7376 &as
->arcstat_mfu_ghost_size
,
7377 &as
->arcstat_mfu_ghost_evictable_data
,
7378 &as
->arcstat_mfu_ghost_evictable_metadata
);
7380 as
->arcstat_dnode_size
.value
.ui64
=
7381 aggsum_value(&arc_sums
.arcstat_dnode_size
);
7382 as
->arcstat_bonus_size
.value
.ui64
=
7383 wmsum_value(&arc_sums
.arcstat_bonus_size
);
7384 as
->arcstat_l2_hits
.value
.ui64
=
7385 wmsum_value(&arc_sums
.arcstat_l2_hits
);
7386 as
->arcstat_l2_misses
.value
.ui64
=
7387 wmsum_value(&arc_sums
.arcstat_l2_misses
);
7388 as
->arcstat_l2_prefetch_asize
.value
.ui64
=
7389 wmsum_value(&arc_sums
.arcstat_l2_prefetch_asize
);
7390 as
->arcstat_l2_mru_asize
.value
.ui64
=
7391 wmsum_value(&arc_sums
.arcstat_l2_mru_asize
);
7392 as
->arcstat_l2_mfu_asize
.value
.ui64
=
7393 wmsum_value(&arc_sums
.arcstat_l2_mfu_asize
);
7394 as
->arcstat_l2_bufc_data_asize
.value
.ui64
=
7395 wmsum_value(&arc_sums
.arcstat_l2_bufc_data_asize
);
7396 as
->arcstat_l2_bufc_metadata_asize
.value
.ui64
=
7397 wmsum_value(&arc_sums
.arcstat_l2_bufc_metadata_asize
);
7398 as
->arcstat_l2_feeds
.value
.ui64
=
7399 wmsum_value(&arc_sums
.arcstat_l2_feeds
);
7400 as
->arcstat_l2_rw_clash
.value
.ui64
=
7401 wmsum_value(&arc_sums
.arcstat_l2_rw_clash
);
7402 as
->arcstat_l2_read_bytes
.value
.ui64
=
7403 wmsum_value(&arc_sums
.arcstat_l2_read_bytes
);
7404 as
->arcstat_l2_write_bytes
.value
.ui64
=
7405 wmsum_value(&arc_sums
.arcstat_l2_write_bytes
);
7406 as
->arcstat_l2_writes_sent
.value
.ui64
=
7407 wmsum_value(&arc_sums
.arcstat_l2_writes_sent
);
7408 as
->arcstat_l2_writes_done
.value
.ui64
=
7409 wmsum_value(&arc_sums
.arcstat_l2_writes_done
);
7410 as
->arcstat_l2_writes_error
.value
.ui64
=
7411 wmsum_value(&arc_sums
.arcstat_l2_writes_error
);
7412 as
->arcstat_l2_writes_lock_retry
.value
.ui64
=
7413 wmsum_value(&arc_sums
.arcstat_l2_writes_lock_retry
);
7414 as
->arcstat_l2_evict_lock_retry
.value
.ui64
=
7415 wmsum_value(&arc_sums
.arcstat_l2_evict_lock_retry
);
7416 as
->arcstat_l2_evict_reading
.value
.ui64
=
7417 wmsum_value(&arc_sums
.arcstat_l2_evict_reading
);
7418 as
->arcstat_l2_evict_l1cached
.value
.ui64
=
7419 wmsum_value(&arc_sums
.arcstat_l2_evict_l1cached
);
7420 as
->arcstat_l2_free_on_write
.value
.ui64
=
7421 wmsum_value(&arc_sums
.arcstat_l2_free_on_write
);
7422 as
->arcstat_l2_abort_lowmem
.value
.ui64
=
7423 wmsum_value(&arc_sums
.arcstat_l2_abort_lowmem
);
7424 as
->arcstat_l2_cksum_bad
.value
.ui64
=
7425 wmsum_value(&arc_sums
.arcstat_l2_cksum_bad
);
7426 as
->arcstat_l2_io_error
.value
.ui64
=
7427 wmsum_value(&arc_sums
.arcstat_l2_io_error
);
7428 as
->arcstat_l2_lsize
.value
.ui64
=
7429 wmsum_value(&arc_sums
.arcstat_l2_lsize
);
7430 as
->arcstat_l2_psize
.value
.ui64
=
7431 wmsum_value(&arc_sums
.arcstat_l2_psize
);
7432 as
->arcstat_l2_hdr_size
.value
.ui64
=
7433 aggsum_value(&arc_sums
.arcstat_l2_hdr_size
);
7434 as
->arcstat_l2_log_blk_writes
.value
.ui64
=
7435 wmsum_value(&arc_sums
.arcstat_l2_log_blk_writes
);
7436 as
->arcstat_l2_log_blk_asize
.value
.ui64
=
7437 wmsum_value(&arc_sums
.arcstat_l2_log_blk_asize
);
7438 as
->arcstat_l2_log_blk_count
.value
.ui64
=
7439 wmsum_value(&arc_sums
.arcstat_l2_log_blk_count
);
7440 as
->arcstat_l2_rebuild_success
.value
.ui64
=
7441 wmsum_value(&arc_sums
.arcstat_l2_rebuild_success
);
7442 as
->arcstat_l2_rebuild_abort_unsupported
.value
.ui64
=
7443 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
);
7444 as
->arcstat_l2_rebuild_abort_io_errors
.value
.ui64
=
7445 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
);
7446 as
->arcstat_l2_rebuild_abort_dh_errors
.value
.ui64
=
7447 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
);
7448 as
->arcstat_l2_rebuild_abort_cksum_lb_errors
.value
.ui64
=
7449 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
);
7450 as
->arcstat_l2_rebuild_abort_lowmem
.value
.ui64
=
7451 wmsum_value(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
);
7452 as
->arcstat_l2_rebuild_size
.value
.ui64
=
7453 wmsum_value(&arc_sums
.arcstat_l2_rebuild_size
);
7454 as
->arcstat_l2_rebuild_asize
.value
.ui64
=
7455 wmsum_value(&arc_sums
.arcstat_l2_rebuild_asize
);
7456 as
->arcstat_l2_rebuild_bufs
.value
.ui64
=
7457 wmsum_value(&arc_sums
.arcstat_l2_rebuild_bufs
);
7458 as
->arcstat_l2_rebuild_bufs_precached
.value
.ui64
=
7459 wmsum_value(&arc_sums
.arcstat_l2_rebuild_bufs_precached
);
7460 as
->arcstat_l2_rebuild_log_blks
.value
.ui64
=
7461 wmsum_value(&arc_sums
.arcstat_l2_rebuild_log_blks
);
7462 as
->arcstat_memory_throttle_count
.value
.ui64
=
7463 wmsum_value(&arc_sums
.arcstat_memory_throttle_count
);
7464 as
->arcstat_memory_direct_count
.value
.ui64
=
7465 wmsum_value(&arc_sums
.arcstat_memory_direct_count
);
7466 as
->arcstat_memory_indirect_count
.value
.ui64
=
7467 wmsum_value(&arc_sums
.arcstat_memory_indirect_count
);
7469 as
->arcstat_memory_all_bytes
.value
.ui64
=
7471 as
->arcstat_memory_free_bytes
.value
.ui64
=
7473 as
->arcstat_memory_available_bytes
.value
.i64
=
7474 arc_available_memory();
7476 as
->arcstat_prune
.value
.ui64
=
7477 wmsum_value(&arc_sums
.arcstat_prune
);
7478 as
->arcstat_meta_used
.value
.ui64
=
7479 aggsum_value(&arc_sums
.arcstat_meta_used
);
7480 as
->arcstat_async_upgrade_sync
.value
.ui64
=
7481 wmsum_value(&arc_sums
.arcstat_async_upgrade_sync
);
7482 as
->arcstat_demand_hit_predictive_prefetch
.value
.ui64
=
7483 wmsum_value(&arc_sums
.arcstat_demand_hit_predictive_prefetch
);
7484 as
->arcstat_demand_hit_prescient_prefetch
.value
.ui64
=
7485 wmsum_value(&arc_sums
.arcstat_demand_hit_prescient_prefetch
);
7486 as
->arcstat_raw_size
.value
.ui64
=
7487 wmsum_value(&arc_sums
.arcstat_raw_size
);
7488 as
->arcstat_cached_only_in_progress
.value
.ui64
=
7489 wmsum_value(&arc_sums
.arcstat_cached_only_in_progress
);
7490 as
->arcstat_abd_chunk_waste_size
.value
.ui64
=
7491 wmsum_value(&arc_sums
.arcstat_abd_chunk_waste_size
);
7497 * This function *must* return indices evenly distributed between all
7498 * sublists of the multilist. This is needed due to how the ARC eviction
7499 * code is laid out; arc_evict_state() assumes ARC buffers are evenly
7500 * distributed between all sublists and uses this assumption when
7501 * deciding which sublist to evict from and how much to evict from it.
7504 arc_state_multilist_index_func(multilist_t
*ml
, void *obj
)
7506 arc_buf_hdr_t
*hdr
= obj
;
7509 * We rely on b_dva to generate evenly distributed index
7510 * numbers using buf_hash below. So, as an added precaution,
7511 * let's make sure we never add empty buffers to the arc lists.
7513 ASSERT(!HDR_EMPTY(hdr
));
7516 * The assumption here, is the hash value for a given
7517 * arc_buf_hdr_t will remain constant throughout its lifetime
7518 * (i.e. its b_spa, b_dva, and b_birth fields don't change).
7519 * Thus, we don't need to store the header's sublist index
7520 * on insertion, as this index can be recalculated on removal.
7522 * Also, the low order bits of the hash value are thought to be
7523 * distributed evenly. Otherwise, in the case that the multilist
7524 * has a power of two number of sublists, each sublists' usage
7525 * would not be evenly distributed. In this context full 64bit
7526 * division would be a waste of time, so limit it to 32 bits.
7528 return ((unsigned int)buf_hash(hdr
->b_spa
, &hdr
->b_dva
, hdr
->b_birth
) %
7529 multilist_get_num_sublists(ml
));
7533 arc_state_l2c_multilist_index_func(multilist_t
*ml
, void *obj
)
7535 panic("Header %p insert into arc_l2c_only %p", obj
, ml
);
7538 #define WARN_IF_TUNING_IGNORED(tuning, value, do_warn) do { \
7539 if ((do_warn) && (tuning) && ((tuning) != (value))) { \
7541 "ignoring tunable %s (using %llu instead)", \
7542 (#tuning), (u_longlong_t)(value)); \
7547 * Called during module initialization and periodically thereafter to
7548 * apply reasonable changes to the exposed performance tunings. Can also be
7549 * called explicitly by param_set_arc_*() functions when ARC tunables are
7550 * updated manually. Non-zero zfs_* values which differ from the currently set
7551 * values will be applied.
7554 arc_tuning_update(boolean_t verbose
)
7556 uint64_t allmem
= arc_all_memory();
7557 unsigned long limit
;
7559 /* Valid range: 32M - <arc_c_max> */
7560 if ((zfs_arc_min
) && (zfs_arc_min
!= arc_c_min
) &&
7561 (zfs_arc_min
>= 2ULL << SPA_MAXBLOCKSHIFT
) &&
7562 (zfs_arc_min
<= arc_c_max
)) {
7563 arc_c_min
= zfs_arc_min
;
7564 arc_c
= MAX(arc_c
, arc_c_min
);
7566 WARN_IF_TUNING_IGNORED(zfs_arc_min
, arc_c_min
, verbose
);
7568 /* Valid range: 64M - <all physical memory> */
7569 if ((zfs_arc_max
) && (zfs_arc_max
!= arc_c_max
) &&
7570 (zfs_arc_max
>= MIN_ARC_MAX
) && (zfs_arc_max
< allmem
) &&
7571 (zfs_arc_max
> arc_c_min
)) {
7572 arc_c_max
= zfs_arc_max
;
7573 arc_c
= MIN(arc_c
, arc_c_max
);
7574 arc_p
= (arc_c
>> 1);
7575 if (arc_meta_limit
> arc_c_max
)
7576 arc_meta_limit
= arc_c_max
;
7577 if (arc_dnode_size_limit
> arc_meta_limit
)
7578 arc_dnode_size_limit
= arc_meta_limit
;
7580 WARN_IF_TUNING_IGNORED(zfs_arc_max
, arc_c_max
, verbose
);
7582 /* Valid range: 16M - <arc_c_max> */
7583 if ((zfs_arc_meta_min
) && (zfs_arc_meta_min
!= arc_meta_min
) &&
7584 (zfs_arc_meta_min
>= 1ULL << SPA_MAXBLOCKSHIFT
) &&
7585 (zfs_arc_meta_min
<= arc_c_max
)) {
7586 arc_meta_min
= zfs_arc_meta_min
;
7587 if (arc_meta_limit
< arc_meta_min
)
7588 arc_meta_limit
= arc_meta_min
;
7589 if (arc_dnode_size_limit
< arc_meta_min
)
7590 arc_dnode_size_limit
= arc_meta_min
;
7592 WARN_IF_TUNING_IGNORED(zfs_arc_meta_min
, arc_meta_min
, verbose
);
7594 /* Valid range: <arc_meta_min> - <arc_c_max> */
7595 limit
= zfs_arc_meta_limit
? zfs_arc_meta_limit
:
7596 MIN(zfs_arc_meta_limit_percent
, 100) * arc_c_max
/ 100;
7597 if ((limit
!= arc_meta_limit
) &&
7598 (limit
>= arc_meta_min
) &&
7599 (limit
<= arc_c_max
))
7600 arc_meta_limit
= limit
;
7601 WARN_IF_TUNING_IGNORED(zfs_arc_meta_limit
, arc_meta_limit
, verbose
);
7603 /* Valid range: <arc_meta_min> - <arc_meta_limit> */
7604 limit
= zfs_arc_dnode_limit
? zfs_arc_dnode_limit
:
7605 MIN(zfs_arc_dnode_limit_percent
, 100) * arc_meta_limit
/ 100;
7606 if ((limit
!= arc_dnode_size_limit
) &&
7607 (limit
>= arc_meta_min
) &&
7608 (limit
<= arc_meta_limit
))
7609 arc_dnode_size_limit
= limit
;
7610 WARN_IF_TUNING_IGNORED(zfs_arc_dnode_limit
, arc_dnode_size_limit
,
7613 /* Valid range: 1 - N */
7614 if (zfs_arc_grow_retry
)
7615 arc_grow_retry
= zfs_arc_grow_retry
;
7617 /* Valid range: 1 - N */
7618 if (zfs_arc_shrink_shift
) {
7619 arc_shrink_shift
= zfs_arc_shrink_shift
;
7620 arc_no_grow_shift
= MIN(arc_no_grow_shift
, arc_shrink_shift
-1);
7623 /* Valid range: 1 - N */
7624 if (zfs_arc_p_min_shift
)
7625 arc_p_min_shift
= zfs_arc_p_min_shift
;
7627 /* Valid range: 1 - N ms */
7628 if (zfs_arc_min_prefetch_ms
)
7629 arc_min_prefetch_ms
= zfs_arc_min_prefetch_ms
;
7631 /* Valid range: 1 - N ms */
7632 if (zfs_arc_min_prescient_prefetch_ms
) {
7633 arc_min_prescient_prefetch_ms
=
7634 zfs_arc_min_prescient_prefetch_ms
;
7637 /* Valid range: 0 - 100 */
7638 if ((zfs_arc_lotsfree_percent
>= 0) &&
7639 (zfs_arc_lotsfree_percent
<= 100))
7640 arc_lotsfree_percent
= zfs_arc_lotsfree_percent
;
7641 WARN_IF_TUNING_IGNORED(zfs_arc_lotsfree_percent
, arc_lotsfree_percent
,
7644 /* Valid range: 0 - <all physical memory> */
7645 if ((zfs_arc_sys_free
) && (zfs_arc_sys_free
!= arc_sys_free
))
7646 arc_sys_free
= MIN(MAX(zfs_arc_sys_free
, 0), allmem
);
7647 WARN_IF_TUNING_IGNORED(zfs_arc_sys_free
, arc_sys_free
, verbose
);
7651 arc_state_multilist_init(multilist_t
*ml
,
7652 multilist_sublist_index_func_t
*index_func
, int *maxcountp
)
7654 multilist_create(ml
, sizeof (arc_buf_hdr_t
),
7655 offsetof(arc_buf_hdr_t
, b_l1hdr
.b_arc_node
), index_func
);
7656 *maxcountp
= MAX(*maxcountp
, multilist_get_num_sublists(ml
));
7660 arc_state_init(void)
7662 int num_sublists
= 0;
7664 arc_state_multilist_init(&arc_mru
->arcs_list
[ARC_BUFC_METADATA
],
7665 arc_state_multilist_index_func
, &num_sublists
);
7666 arc_state_multilist_init(&arc_mru
->arcs_list
[ARC_BUFC_DATA
],
7667 arc_state_multilist_index_func
, &num_sublists
);
7668 arc_state_multilist_init(&arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
],
7669 arc_state_multilist_index_func
, &num_sublists
);
7670 arc_state_multilist_init(&arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
],
7671 arc_state_multilist_index_func
, &num_sublists
);
7672 arc_state_multilist_init(&arc_mfu
->arcs_list
[ARC_BUFC_METADATA
],
7673 arc_state_multilist_index_func
, &num_sublists
);
7674 arc_state_multilist_init(&arc_mfu
->arcs_list
[ARC_BUFC_DATA
],
7675 arc_state_multilist_index_func
, &num_sublists
);
7676 arc_state_multilist_init(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
],
7677 arc_state_multilist_index_func
, &num_sublists
);
7678 arc_state_multilist_init(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
],
7679 arc_state_multilist_index_func
, &num_sublists
);
7682 * L2 headers should never be on the L2 state list since they don't
7683 * have L1 headers allocated. Special index function asserts that.
7685 arc_state_multilist_init(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
],
7686 arc_state_l2c_multilist_index_func
, &num_sublists
);
7687 arc_state_multilist_init(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
],
7688 arc_state_l2c_multilist_index_func
, &num_sublists
);
7691 * Keep track of the number of markers needed to reclaim buffers from
7692 * any ARC state. The markers will be pre-allocated so as to minimize
7693 * the number of memory allocations performed by the eviction thread.
7695 arc_state_evict_marker_count
= num_sublists
;
7697 zfs_refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7698 zfs_refcount_create(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7699 zfs_refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7700 zfs_refcount_create(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7701 zfs_refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7702 zfs_refcount_create(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7703 zfs_refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7704 zfs_refcount_create(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7705 zfs_refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7706 zfs_refcount_create(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7707 zfs_refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7708 zfs_refcount_create(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7710 zfs_refcount_create(&arc_anon
->arcs_size
);
7711 zfs_refcount_create(&arc_mru
->arcs_size
);
7712 zfs_refcount_create(&arc_mru_ghost
->arcs_size
);
7713 zfs_refcount_create(&arc_mfu
->arcs_size
);
7714 zfs_refcount_create(&arc_mfu_ghost
->arcs_size
);
7715 zfs_refcount_create(&arc_l2c_only
->arcs_size
);
7717 wmsum_init(&arc_sums
.arcstat_hits
, 0);
7718 wmsum_init(&arc_sums
.arcstat_misses
, 0);
7719 wmsum_init(&arc_sums
.arcstat_demand_data_hits
, 0);
7720 wmsum_init(&arc_sums
.arcstat_demand_data_misses
, 0);
7721 wmsum_init(&arc_sums
.arcstat_demand_metadata_hits
, 0);
7722 wmsum_init(&arc_sums
.arcstat_demand_metadata_misses
, 0);
7723 wmsum_init(&arc_sums
.arcstat_prefetch_data_hits
, 0);
7724 wmsum_init(&arc_sums
.arcstat_prefetch_data_misses
, 0);
7725 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_hits
, 0);
7726 wmsum_init(&arc_sums
.arcstat_prefetch_metadata_misses
, 0);
7727 wmsum_init(&arc_sums
.arcstat_mru_hits
, 0);
7728 wmsum_init(&arc_sums
.arcstat_mru_ghost_hits
, 0);
7729 wmsum_init(&arc_sums
.arcstat_mfu_hits
, 0);
7730 wmsum_init(&arc_sums
.arcstat_mfu_ghost_hits
, 0);
7731 wmsum_init(&arc_sums
.arcstat_deleted
, 0);
7732 wmsum_init(&arc_sums
.arcstat_mutex_miss
, 0);
7733 wmsum_init(&arc_sums
.arcstat_access_skip
, 0);
7734 wmsum_init(&arc_sums
.arcstat_evict_skip
, 0);
7735 wmsum_init(&arc_sums
.arcstat_evict_not_enough
, 0);
7736 wmsum_init(&arc_sums
.arcstat_evict_l2_cached
, 0);
7737 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible
, 0);
7738 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible_mfu
, 0);
7739 wmsum_init(&arc_sums
.arcstat_evict_l2_eligible_mru
, 0);
7740 wmsum_init(&arc_sums
.arcstat_evict_l2_ineligible
, 0);
7741 wmsum_init(&arc_sums
.arcstat_evict_l2_skip
, 0);
7742 wmsum_init(&arc_sums
.arcstat_hash_collisions
, 0);
7743 wmsum_init(&arc_sums
.arcstat_hash_chains
, 0);
7744 aggsum_init(&arc_sums
.arcstat_size
, 0);
7745 wmsum_init(&arc_sums
.arcstat_compressed_size
, 0);
7746 wmsum_init(&arc_sums
.arcstat_uncompressed_size
, 0);
7747 wmsum_init(&arc_sums
.arcstat_overhead_size
, 0);
7748 wmsum_init(&arc_sums
.arcstat_hdr_size
, 0);
7749 wmsum_init(&arc_sums
.arcstat_data_size
, 0);
7750 wmsum_init(&arc_sums
.arcstat_metadata_size
, 0);
7751 wmsum_init(&arc_sums
.arcstat_dbuf_size
, 0);
7752 aggsum_init(&arc_sums
.arcstat_dnode_size
, 0);
7753 wmsum_init(&arc_sums
.arcstat_bonus_size
, 0);
7754 wmsum_init(&arc_sums
.arcstat_l2_hits
, 0);
7755 wmsum_init(&arc_sums
.arcstat_l2_misses
, 0);
7756 wmsum_init(&arc_sums
.arcstat_l2_prefetch_asize
, 0);
7757 wmsum_init(&arc_sums
.arcstat_l2_mru_asize
, 0);
7758 wmsum_init(&arc_sums
.arcstat_l2_mfu_asize
, 0);
7759 wmsum_init(&arc_sums
.arcstat_l2_bufc_data_asize
, 0);
7760 wmsum_init(&arc_sums
.arcstat_l2_bufc_metadata_asize
, 0);
7761 wmsum_init(&arc_sums
.arcstat_l2_feeds
, 0);
7762 wmsum_init(&arc_sums
.arcstat_l2_rw_clash
, 0);
7763 wmsum_init(&arc_sums
.arcstat_l2_read_bytes
, 0);
7764 wmsum_init(&arc_sums
.arcstat_l2_write_bytes
, 0);
7765 wmsum_init(&arc_sums
.arcstat_l2_writes_sent
, 0);
7766 wmsum_init(&arc_sums
.arcstat_l2_writes_done
, 0);
7767 wmsum_init(&arc_sums
.arcstat_l2_writes_error
, 0);
7768 wmsum_init(&arc_sums
.arcstat_l2_writes_lock_retry
, 0);
7769 wmsum_init(&arc_sums
.arcstat_l2_evict_lock_retry
, 0);
7770 wmsum_init(&arc_sums
.arcstat_l2_evict_reading
, 0);
7771 wmsum_init(&arc_sums
.arcstat_l2_evict_l1cached
, 0);
7772 wmsum_init(&arc_sums
.arcstat_l2_free_on_write
, 0);
7773 wmsum_init(&arc_sums
.arcstat_l2_abort_lowmem
, 0);
7774 wmsum_init(&arc_sums
.arcstat_l2_cksum_bad
, 0);
7775 wmsum_init(&arc_sums
.arcstat_l2_io_error
, 0);
7776 wmsum_init(&arc_sums
.arcstat_l2_lsize
, 0);
7777 wmsum_init(&arc_sums
.arcstat_l2_psize
, 0);
7778 aggsum_init(&arc_sums
.arcstat_l2_hdr_size
, 0);
7779 wmsum_init(&arc_sums
.arcstat_l2_log_blk_writes
, 0);
7780 wmsum_init(&arc_sums
.arcstat_l2_log_blk_asize
, 0);
7781 wmsum_init(&arc_sums
.arcstat_l2_log_blk_count
, 0);
7782 wmsum_init(&arc_sums
.arcstat_l2_rebuild_success
, 0);
7783 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
, 0);
7784 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
, 0);
7785 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
, 0);
7786 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
, 0);
7787 wmsum_init(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
, 0);
7788 wmsum_init(&arc_sums
.arcstat_l2_rebuild_size
, 0);
7789 wmsum_init(&arc_sums
.arcstat_l2_rebuild_asize
, 0);
7790 wmsum_init(&arc_sums
.arcstat_l2_rebuild_bufs
, 0);
7791 wmsum_init(&arc_sums
.arcstat_l2_rebuild_bufs_precached
, 0);
7792 wmsum_init(&arc_sums
.arcstat_l2_rebuild_log_blks
, 0);
7793 wmsum_init(&arc_sums
.arcstat_memory_throttle_count
, 0);
7794 wmsum_init(&arc_sums
.arcstat_memory_direct_count
, 0);
7795 wmsum_init(&arc_sums
.arcstat_memory_indirect_count
, 0);
7796 wmsum_init(&arc_sums
.arcstat_prune
, 0);
7797 aggsum_init(&arc_sums
.arcstat_meta_used
, 0);
7798 wmsum_init(&arc_sums
.arcstat_async_upgrade_sync
, 0);
7799 wmsum_init(&arc_sums
.arcstat_demand_hit_predictive_prefetch
, 0);
7800 wmsum_init(&arc_sums
.arcstat_demand_hit_prescient_prefetch
, 0);
7801 wmsum_init(&arc_sums
.arcstat_raw_size
, 0);
7802 wmsum_init(&arc_sums
.arcstat_cached_only_in_progress
, 0);
7803 wmsum_init(&arc_sums
.arcstat_abd_chunk_waste_size
, 0);
7805 arc_anon
->arcs_state
= ARC_STATE_ANON
;
7806 arc_mru
->arcs_state
= ARC_STATE_MRU
;
7807 arc_mru_ghost
->arcs_state
= ARC_STATE_MRU_GHOST
;
7808 arc_mfu
->arcs_state
= ARC_STATE_MFU
;
7809 arc_mfu_ghost
->arcs_state
= ARC_STATE_MFU_GHOST
;
7810 arc_l2c_only
->arcs_state
= ARC_STATE_L2C_ONLY
;
7814 arc_state_fini(void)
7816 zfs_refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_METADATA
]);
7817 zfs_refcount_destroy(&arc_anon
->arcs_esize
[ARC_BUFC_DATA
]);
7818 zfs_refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_METADATA
]);
7819 zfs_refcount_destroy(&arc_mru
->arcs_esize
[ARC_BUFC_DATA
]);
7820 zfs_refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7821 zfs_refcount_destroy(&arc_mru_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7822 zfs_refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_METADATA
]);
7823 zfs_refcount_destroy(&arc_mfu
->arcs_esize
[ARC_BUFC_DATA
]);
7824 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_METADATA
]);
7825 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_esize
[ARC_BUFC_DATA
]);
7826 zfs_refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_METADATA
]);
7827 zfs_refcount_destroy(&arc_l2c_only
->arcs_esize
[ARC_BUFC_DATA
]);
7829 zfs_refcount_destroy(&arc_anon
->arcs_size
);
7830 zfs_refcount_destroy(&arc_mru
->arcs_size
);
7831 zfs_refcount_destroy(&arc_mru_ghost
->arcs_size
);
7832 zfs_refcount_destroy(&arc_mfu
->arcs_size
);
7833 zfs_refcount_destroy(&arc_mfu_ghost
->arcs_size
);
7834 zfs_refcount_destroy(&arc_l2c_only
->arcs_size
);
7836 multilist_destroy(&arc_mru
->arcs_list
[ARC_BUFC_METADATA
]);
7837 multilist_destroy(&arc_mru_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7838 multilist_destroy(&arc_mfu
->arcs_list
[ARC_BUFC_METADATA
]);
7839 multilist_destroy(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_METADATA
]);
7840 multilist_destroy(&arc_mru
->arcs_list
[ARC_BUFC_DATA
]);
7841 multilist_destroy(&arc_mru_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7842 multilist_destroy(&arc_mfu
->arcs_list
[ARC_BUFC_DATA
]);
7843 multilist_destroy(&arc_mfu_ghost
->arcs_list
[ARC_BUFC_DATA
]);
7844 multilist_destroy(&arc_l2c_only
->arcs_list
[ARC_BUFC_METADATA
]);
7845 multilist_destroy(&arc_l2c_only
->arcs_list
[ARC_BUFC_DATA
]);
7847 wmsum_fini(&arc_sums
.arcstat_hits
);
7848 wmsum_fini(&arc_sums
.arcstat_misses
);
7849 wmsum_fini(&arc_sums
.arcstat_demand_data_hits
);
7850 wmsum_fini(&arc_sums
.arcstat_demand_data_misses
);
7851 wmsum_fini(&arc_sums
.arcstat_demand_metadata_hits
);
7852 wmsum_fini(&arc_sums
.arcstat_demand_metadata_misses
);
7853 wmsum_fini(&arc_sums
.arcstat_prefetch_data_hits
);
7854 wmsum_fini(&arc_sums
.arcstat_prefetch_data_misses
);
7855 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_hits
);
7856 wmsum_fini(&arc_sums
.arcstat_prefetch_metadata_misses
);
7857 wmsum_fini(&arc_sums
.arcstat_mru_hits
);
7858 wmsum_fini(&arc_sums
.arcstat_mru_ghost_hits
);
7859 wmsum_fini(&arc_sums
.arcstat_mfu_hits
);
7860 wmsum_fini(&arc_sums
.arcstat_mfu_ghost_hits
);
7861 wmsum_fini(&arc_sums
.arcstat_deleted
);
7862 wmsum_fini(&arc_sums
.arcstat_mutex_miss
);
7863 wmsum_fini(&arc_sums
.arcstat_access_skip
);
7864 wmsum_fini(&arc_sums
.arcstat_evict_skip
);
7865 wmsum_fini(&arc_sums
.arcstat_evict_not_enough
);
7866 wmsum_fini(&arc_sums
.arcstat_evict_l2_cached
);
7867 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible
);
7868 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible_mfu
);
7869 wmsum_fini(&arc_sums
.arcstat_evict_l2_eligible_mru
);
7870 wmsum_fini(&arc_sums
.arcstat_evict_l2_ineligible
);
7871 wmsum_fini(&arc_sums
.arcstat_evict_l2_skip
);
7872 wmsum_fini(&arc_sums
.arcstat_hash_collisions
);
7873 wmsum_fini(&arc_sums
.arcstat_hash_chains
);
7874 aggsum_fini(&arc_sums
.arcstat_size
);
7875 wmsum_fini(&arc_sums
.arcstat_compressed_size
);
7876 wmsum_fini(&arc_sums
.arcstat_uncompressed_size
);
7877 wmsum_fini(&arc_sums
.arcstat_overhead_size
);
7878 wmsum_fini(&arc_sums
.arcstat_hdr_size
);
7879 wmsum_fini(&arc_sums
.arcstat_data_size
);
7880 wmsum_fini(&arc_sums
.arcstat_metadata_size
);
7881 wmsum_fini(&arc_sums
.arcstat_dbuf_size
);
7882 aggsum_fini(&arc_sums
.arcstat_dnode_size
);
7883 wmsum_fini(&arc_sums
.arcstat_bonus_size
);
7884 wmsum_fini(&arc_sums
.arcstat_l2_hits
);
7885 wmsum_fini(&arc_sums
.arcstat_l2_misses
);
7886 wmsum_fini(&arc_sums
.arcstat_l2_prefetch_asize
);
7887 wmsum_fini(&arc_sums
.arcstat_l2_mru_asize
);
7888 wmsum_fini(&arc_sums
.arcstat_l2_mfu_asize
);
7889 wmsum_fini(&arc_sums
.arcstat_l2_bufc_data_asize
);
7890 wmsum_fini(&arc_sums
.arcstat_l2_bufc_metadata_asize
);
7891 wmsum_fini(&arc_sums
.arcstat_l2_feeds
);
7892 wmsum_fini(&arc_sums
.arcstat_l2_rw_clash
);
7893 wmsum_fini(&arc_sums
.arcstat_l2_read_bytes
);
7894 wmsum_fini(&arc_sums
.arcstat_l2_write_bytes
);
7895 wmsum_fini(&arc_sums
.arcstat_l2_writes_sent
);
7896 wmsum_fini(&arc_sums
.arcstat_l2_writes_done
);
7897 wmsum_fini(&arc_sums
.arcstat_l2_writes_error
);
7898 wmsum_fini(&arc_sums
.arcstat_l2_writes_lock_retry
);
7899 wmsum_fini(&arc_sums
.arcstat_l2_evict_lock_retry
);
7900 wmsum_fini(&arc_sums
.arcstat_l2_evict_reading
);
7901 wmsum_fini(&arc_sums
.arcstat_l2_evict_l1cached
);
7902 wmsum_fini(&arc_sums
.arcstat_l2_free_on_write
);
7903 wmsum_fini(&arc_sums
.arcstat_l2_abort_lowmem
);
7904 wmsum_fini(&arc_sums
.arcstat_l2_cksum_bad
);
7905 wmsum_fini(&arc_sums
.arcstat_l2_io_error
);
7906 wmsum_fini(&arc_sums
.arcstat_l2_lsize
);
7907 wmsum_fini(&arc_sums
.arcstat_l2_psize
);
7908 aggsum_fini(&arc_sums
.arcstat_l2_hdr_size
);
7909 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_writes
);
7910 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_asize
);
7911 wmsum_fini(&arc_sums
.arcstat_l2_log_blk_count
);
7912 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_success
);
7913 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_unsupported
);
7914 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_io_errors
);
7915 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_dh_errors
);
7916 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_cksum_lb_errors
);
7917 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_abort_lowmem
);
7918 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_size
);
7919 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_asize
);
7920 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_bufs
);
7921 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_bufs_precached
);
7922 wmsum_fini(&arc_sums
.arcstat_l2_rebuild_log_blks
);
7923 wmsum_fini(&arc_sums
.arcstat_memory_throttle_count
);
7924 wmsum_fini(&arc_sums
.arcstat_memory_direct_count
);
7925 wmsum_fini(&arc_sums
.arcstat_memory_indirect_count
);
7926 wmsum_fini(&arc_sums
.arcstat_prune
);
7927 aggsum_fini(&arc_sums
.arcstat_meta_used
);
7928 wmsum_fini(&arc_sums
.arcstat_async_upgrade_sync
);
7929 wmsum_fini(&arc_sums
.arcstat_demand_hit_predictive_prefetch
);
7930 wmsum_fini(&arc_sums
.arcstat_demand_hit_prescient_prefetch
);
7931 wmsum_fini(&arc_sums
.arcstat_raw_size
);
7932 wmsum_fini(&arc_sums
.arcstat_cached_only_in_progress
);
7933 wmsum_fini(&arc_sums
.arcstat_abd_chunk_waste_size
);
7937 arc_target_bytes(void)
7943 arc_set_limits(uint64_t allmem
)
7945 /* Set min cache to 1/32 of all memory, or 32MB, whichever is more. */
7946 arc_c_min
= MAX(allmem
/ 32, 2ULL << SPA_MAXBLOCKSHIFT
);
7948 /* How to set default max varies by platform. */
7949 arc_c_max
= arc_default_max(arc_c_min
, allmem
);
7954 uint64_t percent
, allmem
= arc_all_memory();
7955 mutex_init(&arc_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7956 list_create(&arc_evict_waiters
, sizeof (arc_evict_waiter_t
),
7957 offsetof(arc_evict_waiter_t
, aew_node
));
7959 arc_min_prefetch_ms
= 1000;
7960 arc_min_prescient_prefetch_ms
= 6000;
7962 #if defined(_KERNEL)
7966 arc_set_limits(allmem
);
7970 * If zfs_arc_max is non-zero at init, meaning it was set in the kernel
7971 * environment before the module was loaded, don't block setting the
7972 * maximum because it is less than arc_c_min, instead, reset arc_c_min
7974 * zfs_arc_min will be handled by arc_tuning_update().
7976 if (zfs_arc_max
!= 0 && zfs_arc_max
>= MIN_ARC_MAX
&&
7977 zfs_arc_max
< allmem
) {
7978 arc_c_max
= zfs_arc_max
;
7979 if (arc_c_min
>= arc_c_max
) {
7980 arc_c_min
= MAX(zfs_arc_max
/ 2,
7981 2ULL << SPA_MAXBLOCKSHIFT
);
7986 * In userland, there's only the memory pressure that we artificially
7987 * create (see arc_available_memory()). Don't let arc_c get too
7988 * small, because it can cause transactions to be larger than
7989 * arc_c, causing arc_tempreserve_space() to fail.
7991 arc_c_min
= MAX(arc_c_max
/ 2, 2ULL << SPA_MAXBLOCKSHIFT
);
7995 arc_p
= (arc_c
>> 1);
7997 /* Set min to 1/2 of arc_c_min */
7998 arc_meta_min
= 1ULL << SPA_MAXBLOCKSHIFT
;
8000 * Set arc_meta_limit to a percent of arc_c_max with a floor of
8001 * arc_meta_min, and a ceiling of arc_c_max.
8003 percent
= MIN(zfs_arc_meta_limit_percent
, 100);
8004 arc_meta_limit
= MAX(arc_meta_min
, (percent
* arc_c_max
) / 100);
8005 percent
= MIN(zfs_arc_dnode_limit_percent
, 100);
8006 arc_dnode_size_limit
= (percent
* arc_meta_limit
) / 100;
8008 /* Apply user specified tunings */
8009 arc_tuning_update(B_TRUE
);
8011 /* if kmem_flags are set, lets try to use less memory */
8012 if (kmem_debugging())
8014 if (arc_c
< arc_c_min
)
8017 arc_register_hotplug();
8023 list_create(&arc_prune_list
, sizeof (arc_prune_t
),
8024 offsetof(arc_prune_t
, p_node
));
8025 mutex_init(&arc_prune_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
8027 arc_prune_taskq
= taskq_create("arc_prune", zfs_arc_prune_task_threads
,
8028 defclsyspri
, 100, INT_MAX
, TASKQ_PREPOPULATE
| TASKQ_DYNAMIC
);
8030 arc_ksp
= kstat_create("zfs", 0, "arcstats", "misc", KSTAT_TYPE_NAMED
,
8031 sizeof (arc_stats
) / sizeof (kstat_named_t
), KSTAT_FLAG_VIRTUAL
);
8033 if (arc_ksp
!= NULL
) {
8034 arc_ksp
->ks_data
= &arc_stats
;
8035 arc_ksp
->ks_update
= arc_kstat_update
;
8036 kstat_install(arc_ksp
);
8039 arc_state_evict_markers
=
8040 arc_state_alloc_markers(arc_state_evict_marker_count
);
8041 arc_evict_zthr
= zthr_create("arc_evict",
8042 arc_evict_cb_check
, arc_evict_cb
, NULL
, defclsyspri
);
8043 arc_reap_zthr
= zthr_create_timer("arc_reap",
8044 arc_reap_cb_check
, arc_reap_cb
, NULL
, SEC2NSEC(1), minclsyspri
);
8049 * Calculate maximum amount of dirty data per pool.
8051 * If it has been set by a module parameter, take that.
8052 * Otherwise, use a percentage of physical memory defined by
8053 * zfs_dirty_data_max_percent (default 10%) with a cap at
8054 * zfs_dirty_data_max_max (default 4G or 25% of physical memory).
8057 if (zfs_dirty_data_max_max
== 0)
8058 zfs_dirty_data_max_max
= MIN(4ULL * 1024 * 1024 * 1024,
8059 allmem
* zfs_dirty_data_max_max_percent
/ 100);
8061 if (zfs_dirty_data_max_max
== 0)
8062 zfs_dirty_data_max_max
= MIN(1ULL * 1024 * 1024 * 1024,
8063 allmem
* zfs_dirty_data_max_max_percent
/ 100);
8066 if (zfs_dirty_data_max
== 0) {
8067 zfs_dirty_data_max
= allmem
*
8068 zfs_dirty_data_max_percent
/ 100;
8069 zfs_dirty_data_max
= MIN(zfs_dirty_data_max
,
8070 zfs_dirty_data_max_max
);
8073 if (zfs_wrlog_data_max
== 0) {
8076 * dp_wrlog_total is reduced for each txg at the end of
8077 * spa_sync(). However, dp_dirty_total is reduced every time
8078 * a block is written out. Thus under normal operation,
8079 * dp_wrlog_total could grow 2 times as big as
8080 * zfs_dirty_data_max.
8082 zfs_wrlog_data_max
= zfs_dirty_data_max
* 2;
8093 #endif /* _KERNEL */
8095 /* Use B_TRUE to ensure *all* buffers are evicted */
8096 arc_flush(NULL
, B_TRUE
);
8098 if (arc_ksp
!= NULL
) {
8099 kstat_delete(arc_ksp
);
8103 taskq_wait(arc_prune_taskq
);
8104 taskq_destroy(arc_prune_taskq
);
8106 mutex_enter(&arc_prune_mtx
);
8107 while ((p
= list_head(&arc_prune_list
)) != NULL
) {
8108 list_remove(&arc_prune_list
, p
);
8109 zfs_refcount_remove(&p
->p_refcnt
, &arc_prune_list
);
8110 zfs_refcount_destroy(&p
->p_refcnt
);
8111 kmem_free(p
, sizeof (*p
));
8113 mutex_exit(&arc_prune_mtx
);
8115 list_destroy(&arc_prune_list
);
8116 mutex_destroy(&arc_prune_mtx
);
8118 (void) zthr_cancel(arc_evict_zthr
);
8119 (void) zthr_cancel(arc_reap_zthr
);
8120 arc_state_free_markers(arc_state_evict_markers
,
8121 arc_state_evict_marker_count
);
8123 mutex_destroy(&arc_evict_lock
);
8124 list_destroy(&arc_evict_waiters
);
8127 * Free any buffers that were tagged for destruction. This needs
8128 * to occur before arc_state_fini() runs and destroys the aggsum
8129 * values which are updated when freeing scatter ABDs.
8131 l2arc_do_free_on_write();
8134 * buf_fini() must proceed arc_state_fini() because buf_fin() may
8135 * trigger the release of kmem magazines, which can callback to
8136 * arc_space_return() which accesses aggsums freed in act_state_fini().
8141 arc_unregister_hotplug();
8144 * We destroy the zthrs after all the ARC state has been
8145 * torn down to avoid the case of them receiving any
8146 * wakeup() signals after they are destroyed.
8148 zthr_destroy(arc_evict_zthr
);
8149 zthr_destroy(arc_reap_zthr
);
8151 ASSERT0(arc_loaned_bytes
);
8157 * The level 2 ARC (L2ARC) is a cache layer in-between main memory and disk.
8158 * It uses dedicated storage devices to hold cached data, which are populated
8159 * using large infrequent writes. The main role of this cache is to boost
8160 * the performance of random read workloads. The intended L2ARC devices
8161 * include short-stroked disks, solid state disks, and other media with
8162 * substantially faster read latency than disk.
8164 * +-----------------------+
8166 * +-----------------------+
8169 * l2arc_feed_thread() arc_read()
8173 * +---------------+ |
8175 * +---------------+ |
8180 * +-------+ +-------+
8182 * | cache | | cache |
8183 * +-------+ +-------+
8184 * +=========+ .-----.
8185 * : L2ARC : |-_____-|
8186 * : devices : | Disks |
8187 * +=========+ `-_____-'
8189 * Read requests are satisfied from the following sources, in order:
8192 * 2) vdev cache of L2ARC devices
8194 * 4) vdev cache of disks
8197 * Some L2ARC device types exhibit extremely slow write performance.
8198 * To accommodate for this there are some significant differences between
8199 * the L2ARC and traditional cache design:
8201 * 1. There is no eviction path from the ARC to the L2ARC. Evictions from
8202 * the ARC behave as usual, freeing buffers and placing headers on ghost
8203 * lists. The ARC does not send buffers to the L2ARC during eviction as
8204 * this would add inflated write latencies for all ARC memory pressure.
8206 * 2. The L2ARC attempts to cache data from the ARC before it is evicted.
8207 * It does this by periodically scanning buffers from the eviction-end of
8208 * the MFU and MRU ARC lists, copying them to the L2ARC devices if they are
8209 * not already there. It scans until a headroom of buffers is satisfied,
8210 * which itself is a buffer for ARC eviction. If a compressible buffer is
8211 * found during scanning and selected for writing to an L2ARC device, we
8212 * temporarily boost scanning headroom during the next scan cycle to make
8213 * sure we adapt to compression effects (which might significantly reduce
8214 * the data volume we write to L2ARC). The thread that does this is
8215 * l2arc_feed_thread(), illustrated below; example sizes are included to
8216 * provide a better sense of ratio than this diagram:
8219 * +---------------------+----------+
8220 * ARC_mfu |:::::#:::::::::::::::|o#o###o###|-->. # already on L2ARC
8221 * +---------------------+----------+ | o L2ARC eligible
8222 * ARC_mru |:#:::::::::::::::::::|#o#ooo####|-->| : ARC buffer
8223 * +---------------------+----------+ |
8224 * 15.9 Gbytes ^ 32 Mbytes |
8226 * l2arc_feed_thread()
8228 * l2arc write hand <--[oooo]--'
8232 * +==============================+
8233 * L2ARC dev |####|#|###|###| |####| ... |
8234 * +==============================+
8237 * 3. If an ARC buffer is copied to the L2ARC but then hit instead of
8238 * evicted, then the L2ARC has cached a buffer much sooner than it probably
8239 * needed to, potentially wasting L2ARC device bandwidth and storage. It is
8240 * safe to say that this is an uncommon case, since buffers at the end of
8241 * the ARC lists have moved there due to inactivity.
8243 * 4. If the ARC evicts faster than the L2ARC can maintain a headroom,
8244 * then the L2ARC simply misses copying some buffers. This serves as a
8245 * pressure valve to prevent heavy read workloads from both stalling the ARC
8246 * with waits and clogging the L2ARC with writes. This also helps prevent
8247 * the potential for the L2ARC to churn if it attempts to cache content too
8248 * quickly, such as during backups of the entire pool.
8250 * 5. After system boot and before the ARC has filled main memory, there are
8251 * no evictions from the ARC and so the tails of the ARC_mfu and ARC_mru
8252 * lists can remain mostly static. Instead of searching from tail of these
8253 * lists as pictured, the l2arc_feed_thread() will search from the list heads
8254 * for eligible buffers, greatly increasing its chance of finding them.
8256 * The L2ARC device write speed is also boosted during this time so that
8257 * the L2ARC warms up faster. Since there have been no ARC evictions yet,
8258 * there are no L2ARC reads, and no fear of degrading read performance
8259 * through increased writes.
8261 * 6. Writes to the L2ARC devices are grouped and sent in-sequence, so that
8262 * the vdev queue can aggregate them into larger and fewer writes. Each
8263 * device is written to in a rotor fashion, sweeping writes through
8264 * available space then repeating.
8266 * 7. The L2ARC does not store dirty content. It never needs to flush
8267 * write buffers back to disk based storage.
8269 * 8. If an ARC buffer is written (and dirtied) which also exists in the
8270 * L2ARC, the now stale L2ARC buffer is immediately dropped.
8272 * The performance of the L2ARC can be tweaked by a number of tunables, which
8273 * may be necessary for different workloads:
8275 * l2arc_write_max max write bytes per interval
8276 * l2arc_write_boost extra write bytes during device warmup
8277 * l2arc_noprefetch skip caching prefetched buffers
8278 * l2arc_headroom number of max device writes to precache
8279 * l2arc_headroom_boost when we find compressed buffers during ARC
8280 * scanning, we multiply headroom by this
8281 * percentage factor for the next scan cycle,
8282 * since more compressed buffers are likely to
8284 * l2arc_feed_secs seconds between L2ARC writing
8286 * Tunables may be removed or added as future performance improvements are
8287 * integrated, and also may become zpool properties.
8289 * There are three key functions that control how the L2ARC warms up:
8291 * l2arc_write_eligible() check if a buffer is eligible to cache
8292 * l2arc_write_size() calculate how much to write
8293 * l2arc_write_interval() calculate sleep delay between writes
8295 * These three functions determine what to write, how much, and how quickly
8298 * L2ARC persistence:
8300 * When writing buffers to L2ARC, we periodically add some metadata to
8301 * make sure we can pick them up after reboot, thus dramatically reducing
8302 * the impact that any downtime has on the performance of storage systems
8303 * with large caches.
8305 * The implementation works fairly simply by integrating the following two
8308 * *) When writing to the L2ARC, we occasionally write a "l2arc log block",
8309 * which is an additional piece of metadata which describes what's been
8310 * written. This allows us to rebuild the arc_buf_hdr_t structures of the
8311 * main ARC buffers. There are 2 linked-lists of log blocks headed by
8312 * dh_start_lbps[2]. We alternate which chain we append to, so they are
8313 * time-wise and offset-wise interleaved, but that is an optimization rather
8314 * than for correctness. The log block also includes a pointer to the
8315 * previous block in its chain.
8317 * *) We reserve SPA_MINBLOCKSIZE of space at the start of each L2ARC device
8318 * for our header bookkeeping purposes. This contains a device header,
8319 * which contains our top-level reference structures. We update it each
8320 * time we write a new log block, so that we're able to locate it in the
8321 * L2ARC device. If this write results in an inconsistent device header
8322 * (e.g. due to power failure), we detect this by verifying the header's
8323 * checksum and simply fail to reconstruct the L2ARC after reboot.
8325 * Implementation diagram:
8327 * +=== L2ARC device (not to scale) ======================================+
8328 * | ___two newest log block pointers__.__________ |
8329 * | / \dh_start_lbps[1] |
8330 * | / \ \dh_start_lbps[0]|
8332 * ||L2 dev|....|lb |bufs |lb |bufs |lb |bufs |lb |bufs |lb |---(empty)---|
8333 * || hdr| ^ /^ /^ / / |
8334 * |+------+ ...--\-------/ \-----/--\------/ / |
8335 * | \--------------/ \--------------/ |
8336 * +======================================================================+
8338 * As can be seen on the diagram, rather than using a simple linked list,
8339 * we use a pair of linked lists with alternating elements. This is a
8340 * performance enhancement due to the fact that we only find out the
8341 * address of the next log block access once the current block has been
8342 * completely read in. Obviously, this hurts performance, because we'd be
8343 * keeping the device's I/O queue at only a 1 operation deep, thus
8344 * incurring a large amount of I/O round-trip latency. Having two lists
8345 * allows us to fetch two log blocks ahead of where we are currently
8346 * rebuilding L2ARC buffers.
8348 * On-device data structures:
8350 * L2ARC device header: l2arc_dev_hdr_phys_t
8351 * L2ARC log block: l2arc_log_blk_phys_t
8353 * L2ARC reconstruction:
8355 * When writing data, we simply write in the standard rotary fashion,
8356 * evicting buffers as we go and simply writing new data over them (writing
8357 * a new log block every now and then). This obviously means that once we
8358 * loop around the end of the device, we will start cutting into an already
8359 * committed log block (and its referenced data buffers), like so:
8361 * current write head__ __old tail
8364 * <--|bufs |lb |bufs |lb | |bufs |lb |bufs |lb |-->
8365 * ^ ^^^^^^^^^___________________________________
8367 * <<nextwrite>> may overwrite this blk and/or its bufs --'
8369 * When importing the pool, we detect this situation and use it to stop
8370 * our scanning process (see l2arc_rebuild).
8372 * There is one significant caveat to consider when rebuilding ARC contents
8373 * from an L2ARC device: what about invalidated buffers? Given the above
8374 * construction, we cannot update blocks which we've already written to amend
8375 * them to remove buffers which were invalidated. Thus, during reconstruction,
8376 * we might be populating the cache with buffers for data that's not on the
8377 * main pool anymore, or may have been overwritten!
8379 * As it turns out, this isn't a problem. Every arc_read request includes
8380 * both the DVA and, crucially, the birth TXG of the BP the caller is
8381 * looking for. So even if the cache were populated by completely rotten
8382 * blocks for data that had been long deleted and/or overwritten, we'll
8383 * never actually return bad data from the cache, since the DVA with the
8384 * birth TXG uniquely identify a block in space and time - once created,
8385 * a block is immutable on disk. The worst thing we have done is wasted
8386 * some time and memory at l2arc rebuild to reconstruct outdated ARC
8387 * entries that will get dropped from the l2arc as it is being updated
8390 * L2ARC buffers that have been evicted by l2arc_evict() ahead of the write
8391 * hand are not restored. This is done by saving the offset (in bytes)
8392 * l2arc_evict() has evicted to in the L2ARC device header and taking it
8393 * into account when restoring buffers.
8397 l2arc_write_eligible(uint64_t spa_guid
, arc_buf_hdr_t
*hdr
)
8400 * A buffer is *not* eligible for the L2ARC if it:
8401 * 1. belongs to a different spa.
8402 * 2. is already cached on the L2ARC.
8403 * 3. has an I/O in progress (it may be an incomplete read).
8404 * 4. is flagged not eligible (zfs property).
8406 if (hdr
->b_spa
!= spa_guid
|| HDR_HAS_L2HDR(hdr
) ||
8407 HDR_IO_IN_PROGRESS(hdr
) || !HDR_L2CACHE(hdr
))
8414 l2arc_write_size(l2arc_dev_t
*dev
)
8416 uint64_t size
, dev_size
, tsize
;
8419 * Make sure our globals have meaningful values in case the user
8422 size
= l2arc_write_max
;
8424 cmn_err(CE_NOTE
, "Bad value for l2arc_write_max, value must "
8425 "be greater than zero, resetting it to the default (%d)",
8427 size
= l2arc_write_max
= L2ARC_WRITE_SIZE
;
8430 if (arc_warm
== B_FALSE
)
8431 size
+= l2arc_write_boost
;
8434 * Make sure the write size does not exceed the size of the cache
8435 * device. This is important in l2arc_evict(), otherwise infinite
8436 * iteration can occur.
8438 dev_size
= dev
->l2ad_end
- dev
->l2ad_start
;
8439 tsize
= size
+ l2arc_log_blk_overhead(size
, dev
);
8440 if (dev
->l2ad_vdev
->vdev_has_trim
&& l2arc_trim_ahead
> 0)
8441 tsize
+= MAX(64 * 1024 * 1024,
8442 (tsize
* l2arc_trim_ahead
) / 100);
8444 if (tsize
>= dev_size
) {
8445 cmn_err(CE_NOTE
, "l2arc_write_max or l2arc_write_boost "
8446 "plus the overhead of log blocks (persistent L2ARC, "
8447 "%llu bytes) exceeds the size of the cache device "
8448 "(guid %llu), resetting them to the default (%d)",
8449 (u_longlong_t
)l2arc_log_blk_overhead(size
, dev
),
8450 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
, L2ARC_WRITE_SIZE
);
8451 size
= l2arc_write_max
= l2arc_write_boost
= L2ARC_WRITE_SIZE
;
8453 if (arc_warm
== B_FALSE
)
8454 size
+= l2arc_write_boost
;
8462 l2arc_write_interval(clock_t began
, uint64_t wanted
, uint64_t wrote
)
8464 clock_t interval
, next
, now
;
8467 * If the ARC lists are busy, increase our write rate; if the
8468 * lists are stale, idle back. This is achieved by checking
8469 * how much we previously wrote - if it was more than half of
8470 * what we wanted, schedule the next write much sooner.
8472 if (l2arc_feed_again
&& wrote
> (wanted
/ 2))
8473 interval
= (hz
* l2arc_feed_min_ms
) / 1000;
8475 interval
= hz
* l2arc_feed_secs
;
8477 now
= ddi_get_lbolt();
8478 next
= MAX(now
, MIN(now
+ interval
, began
+ interval
));
8484 * Cycle through L2ARC devices. This is how L2ARC load balances.
8485 * If a device is returned, this also returns holding the spa config lock.
8487 static l2arc_dev_t
*
8488 l2arc_dev_get_next(void)
8490 l2arc_dev_t
*first
, *next
= NULL
;
8493 * Lock out the removal of spas (spa_namespace_lock), then removal
8494 * of cache devices (l2arc_dev_mtx). Once a device has been selected,
8495 * both locks will be dropped and a spa config lock held instead.
8497 mutex_enter(&spa_namespace_lock
);
8498 mutex_enter(&l2arc_dev_mtx
);
8500 /* if there are no vdevs, there is nothing to do */
8501 if (l2arc_ndev
== 0)
8505 next
= l2arc_dev_last
;
8507 /* loop around the list looking for a non-faulted vdev */
8509 next
= list_head(l2arc_dev_list
);
8511 next
= list_next(l2arc_dev_list
, next
);
8513 next
= list_head(l2arc_dev_list
);
8516 /* if we have come back to the start, bail out */
8519 else if (next
== first
)
8522 } while (vdev_is_dead(next
->l2ad_vdev
) || next
->l2ad_rebuild
||
8523 next
->l2ad_trim_all
);
8525 /* if we were unable to find any usable vdevs, return NULL */
8526 if (vdev_is_dead(next
->l2ad_vdev
) || next
->l2ad_rebuild
||
8527 next
->l2ad_trim_all
)
8530 l2arc_dev_last
= next
;
8533 mutex_exit(&l2arc_dev_mtx
);
8536 * Grab the config lock to prevent the 'next' device from being
8537 * removed while we are writing to it.
8540 spa_config_enter(next
->l2ad_spa
, SCL_L2ARC
, next
, RW_READER
);
8541 mutex_exit(&spa_namespace_lock
);
8547 * Free buffers that were tagged for destruction.
8550 l2arc_do_free_on_write(void)
8553 l2arc_data_free_t
*df
, *df_prev
;
8555 mutex_enter(&l2arc_free_on_write_mtx
);
8556 buflist
= l2arc_free_on_write
;
8558 for (df
= list_tail(buflist
); df
; df
= df_prev
) {
8559 df_prev
= list_prev(buflist
, df
);
8560 ASSERT3P(df
->l2df_abd
, !=, NULL
);
8561 abd_free(df
->l2df_abd
);
8562 list_remove(buflist
, df
);
8563 kmem_free(df
, sizeof (l2arc_data_free_t
));
8566 mutex_exit(&l2arc_free_on_write_mtx
);
8570 * A write to a cache device has completed. Update all headers to allow
8571 * reads from these buffers to begin.
8574 l2arc_write_done(zio_t
*zio
)
8576 l2arc_write_callback_t
*cb
;
8577 l2arc_lb_abd_buf_t
*abd_buf
;
8578 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
8580 l2arc_dev_hdr_phys_t
*l2dhdr
;
8582 arc_buf_hdr_t
*head
, *hdr
, *hdr_prev
;
8583 kmutex_t
*hash_lock
;
8584 int64_t bytes_dropped
= 0;
8586 cb
= zio
->io_private
;
8587 ASSERT3P(cb
, !=, NULL
);
8588 dev
= cb
->l2wcb_dev
;
8589 l2dhdr
= dev
->l2ad_dev_hdr
;
8590 ASSERT3P(dev
, !=, NULL
);
8591 head
= cb
->l2wcb_head
;
8592 ASSERT3P(head
, !=, NULL
);
8593 buflist
= &dev
->l2ad_buflist
;
8594 ASSERT3P(buflist
, !=, NULL
);
8595 DTRACE_PROBE2(l2arc__iodone
, zio_t
*, zio
,
8596 l2arc_write_callback_t
*, cb
);
8599 * All writes completed, or an error was hit.
8602 mutex_enter(&dev
->l2ad_mtx
);
8603 for (hdr
= list_prev(buflist
, head
); hdr
; hdr
= hdr_prev
) {
8604 hdr_prev
= list_prev(buflist
, hdr
);
8606 hash_lock
= HDR_LOCK(hdr
);
8609 * We cannot use mutex_enter or else we can deadlock
8610 * with l2arc_write_buffers (due to swapping the order
8611 * the hash lock and l2ad_mtx are taken).
8613 if (!mutex_tryenter(hash_lock
)) {
8615 * Missed the hash lock. We must retry so we
8616 * don't leave the ARC_FLAG_L2_WRITING bit set.
8618 ARCSTAT_BUMP(arcstat_l2_writes_lock_retry
);
8621 * We don't want to rescan the headers we've
8622 * already marked as having been written out, so
8623 * we reinsert the head node so we can pick up
8624 * where we left off.
8626 list_remove(buflist
, head
);
8627 list_insert_after(buflist
, hdr
, head
);
8629 mutex_exit(&dev
->l2ad_mtx
);
8632 * We wait for the hash lock to become available
8633 * to try and prevent busy waiting, and increase
8634 * the chance we'll be able to acquire the lock
8635 * the next time around.
8637 mutex_enter(hash_lock
);
8638 mutex_exit(hash_lock
);
8643 * We could not have been moved into the arc_l2c_only
8644 * state while in-flight due to our ARC_FLAG_L2_WRITING
8645 * bit being set. Let's just ensure that's being enforced.
8647 ASSERT(HDR_HAS_L1HDR(hdr
));
8650 * Skipped - drop L2ARC entry and mark the header as no
8651 * longer L2 eligibile.
8653 if (zio
->io_error
!= 0) {
8655 * Error - drop L2ARC entry.
8657 list_remove(buflist
, hdr
);
8658 arc_hdr_clear_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
8660 uint64_t psize
= HDR_GET_PSIZE(hdr
);
8661 l2arc_hdr_arcstats_decrement(hdr
);
8664 vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
8665 (void) zfs_refcount_remove_many(&dev
->l2ad_alloc
,
8666 arc_hdr_size(hdr
), hdr
);
8670 * Allow ARC to begin reads and ghost list evictions to
8673 arc_hdr_clear_flags(hdr
, ARC_FLAG_L2_WRITING
);
8675 mutex_exit(hash_lock
);
8679 * Free the allocated abd buffers for writing the log blocks.
8680 * If the zio failed reclaim the allocated space and remove the
8681 * pointers to these log blocks from the log block pointer list
8682 * of the L2ARC device.
8684 while ((abd_buf
= list_remove_tail(&cb
->l2wcb_abd_list
)) != NULL
) {
8685 abd_free(abd_buf
->abd
);
8686 zio_buf_free(abd_buf
, sizeof (*abd_buf
));
8687 if (zio
->io_error
!= 0) {
8688 lb_ptr_buf
= list_remove_head(&dev
->l2ad_lbptr_list
);
8690 * L2BLK_GET_PSIZE returns aligned size for log
8694 L2BLK_GET_PSIZE((lb_ptr_buf
->lb_ptr
)->lbp_prop
);
8695 bytes_dropped
+= asize
;
8696 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, -asize
);
8697 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count
);
8698 zfs_refcount_remove_many(&dev
->l2ad_lb_asize
, asize
,
8700 zfs_refcount_remove(&dev
->l2ad_lb_count
, lb_ptr_buf
);
8701 kmem_free(lb_ptr_buf
->lb_ptr
,
8702 sizeof (l2arc_log_blkptr_t
));
8703 kmem_free(lb_ptr_buf
, sizeof (l2arc_lb_ptr_buf_t
));
8706 list_destroy(&cb
->l2wcb_abd_list
);
8708 if (zio
->io_error
!= 0) {
8709 ARCSTAT_BUMP(arcstat_l2_writes_error
);
8712 * Restore the lbps array in the header to its previous state.
8713 * If the list of log block pointers is empty, zero out the
8714 * log block pointers in the device header.
8716 lb_ptr_buf
= list_head(&dev
->l2ad_lbptr_list
);
8717 for (int i
= 0; i
< 2; i
++) {
8718 if (lb_ptr_buf
== NULL
) {
8720 * If the list is empty zero out the device
8721 * header. Otherwise zero out the second log
8722 * block pointer in the header.
8726 dev
->l2ad_dev_hdr_asize
);
8728 memset(&l2dhdr
->dh_start_lbps
[i
], 0,
8729 sizeof (l2arc_log_blkptr_t
));
8733 memcpy(&l2dhdr
->dh_start_lbps
[i
], lb_ptr_buf
->lb_ptr
,
8734 sizeof (l2arc_log_blkptr_t
));
8735 lb_ptr_buf
= list_next(&dev
->l2ad_lbptr_list
,
8740 ARCSTAT_BUMP(arcstat_l2_writes_done
);
8741 list_remove(buflist
, head
);
8742 ASSERT(!HDR_HAS_L1HDR(head
));
8743 kmem_cache_free(hdr_l2only_cache
, head
);
8744 mutex_exit(&dev
->l2ad_mtx
);
8746 ASSERT(dev
->l2ad_vdev
!= NULL
);
8747 vdev_space_update(dev
->l2ad_vdev
, -bytes_dropped
, 0, 0);
8749 l2arc_do_free_on_write();
8751 kmem_free(cb
, sizeof (l2arc_write_callback_t
));
8755 l2arc_untransform(zio_t
*zio
, l2arc_read_callback_t
*cb
)
8758 spa_t
*spa
= zio
->io_spa
;
8759 arc_buf_hdr_t
*hdr
= cb
->l2rcb_hdr
;
8760 blkptr_t
*bp
= zio
->io_bp
;
8761 uint8_t salt
[ZIO_DATA_SALT_LEN
];
8762 uint8_t iv
[ZIO_DATA_IV_LEN
];
8763 uint8_t mac
[ZIO_DATA_MAC_LEN
];
8764 boolean_t no_crypt
= B_FALSE
;
8767 * ZIL data is never be written to the L2ARC, so we don't need
8768 * special handling for its unique MAC storage.
8770 ASSERT3U(BP_GET_TYPE(bp
), !=, DMU_OT_INTENT_LOG
);
8771 ASSERT(MUTEX_HELD(HDR_LOCK(hdr
)));
8772 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
8775 * If the data was encrypted, decrypt it now. Note that
8776 * we must check the bp here and not the hdr, since the
8777 * hdr does not have its encryption parameters updated
8778 * until arc_read_done().
8780 if (BP_IS_ENCRYPTED(bp
)) {
8781 abd_t
*eabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
8782 ARC_HDR_DO_ADAPT
| ARC_HDR_USE_RESERVE
);
8784 zio_crypt_decode_params_bp(bp
, salt
, iv
);
8785 zio_crypt_decode_mac_bp(bp
, mac
);
8787 ret
= spa_do_crypt_abd(B_FALSE
, spa
, &cb
->l2rcb_zb
,
8788 BP_GET_TYPE(bp
), BP_GET_DEDUP(bp
), BP_SHOULD_BYTESWAP(bp
),
8789 salt
, iv
, mac
, HDR_GET_PSIZE(hdr
), eabd
,
8790 hdr
->b_l1hdr
.b_pabd
, &no_crypt
);
8792 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8797 * If we actually performed decryption, replace b_pabd
8798 * with the decrypted data. Otherwise we can just throw
8799 * our decryption buffer away.
8802 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8803 arc_hdr_size(hdr
), hdr
);
8804 hdr
->b_l1hdr
.b_pabd
= eabd
;
8807 arc_free_data_abd(hdr
, eabd
, arc_hdr_size(hdr
), hdr
);
8812 * If the L2ARC block was compressed, but ARC compression
8813 * is disabled we decompress the data into a new buffer and
8814 * replace the existing data.
8816 if (HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
8817 !HDR_COMPRESSION_ENABLED(hdr
)) {
8818 abd_t
*cabd
= arc_get_data_abd(hdr
, arc_hdr_size(hdr
), hdr
,
8819 ARC_HDR_DO_ADAPT
| ARC_HDR_USE_RESERVE
);
8820 void *tmp
= abd_borrow_buf(cabd
, arc_hdr_size(hdr
));
8822 ret
= zio_decompress_data(HDR_GET_COMPRESS(hdr
),
8823 hdr
->b_l1hdr
.b_pabd
, tmp
, HDR_GET_PSIZE(hdr
),
8824 HDR_GET_LSIZE(hdr
), &hdr
->b_complevel
);
8826 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
8827 arc_free_data_abd(hdr
, cabd
, arc_hdr_size(hdr
), hdr
);
8831 abd_return_buf_copy(cabd
, tmp
, arc_hdr_size(hdr
));
8832 arc_free_data_abd(hdr
, hdr
->b_l1hdr
.b_pabd
,
8833 arc_hdr_size(hdr
), hdr
);
8834 hdr
->b_l1hdr
.b_pabd
= cabd
;
8836 zio
->io_size
= HDR_GET_LSIZE(hdr
);
8847 * A read to a cache device completed. Validate buffer contents before
8848 * handing over to the regular ARC routines.
8851 l2arc_read_done(zio_t
*zio
)
8854 l2arc_read_callback_t
*cb
= zio
->io_private
;
8856 kmutex_t
*hash_lock
;
8857 boolean_t valid_cksum
;
8858 boolean_t using_rdata
= (BP_IS_ENCRYPTED(&cb
->l2rcb_bp
) &&
8859 (cb
->l2rcb_flags
& ZIO_FLAG_RAW_ENCRYPT
));
8861 ASSERT3P(zio
->io_vd
, !=, NULL
);
8862 ASSERT(zio
->io_flags
& ZIO_FLAG_DONT_PROPAGATE
);
8864 spa_config_exit(zio
->io_spa
, SCL_L2ARC
, zio
->io_vd
);
8866 ASSERT3P(cb
, !=, NULL
);
8867 hdr
= cb
->l2rcb_hdr
;
8868 ASSERT3P(hdr
, !=, NULL
);
8870 hash_lock
= HDR_LOCK(hdr
);
8871 mutex_enter(hash_lock
);
8872 ASSERT3P(hash_lock
, ==, HDR_LOCK(hdr
));
8875 * If the data was read into a temporary buffer,
8876 * move it and free the buffer.
8878 if (cb
->l2rcb_abd
!= NULL
) {
8879 ASSERT3U(arc_hdr_size(hdr
), <, zio
->io_size
);
8880 if (zio
->io_error
== 0) {
8882 abd_copy(hdr
->b_crypt_hdr
.b_rabd
,
8883 cb
->l2rcb_abd
, arc_hdr_size(hdr
));
8885 abd_copy(hdr
->b_l1hdr
.b_pabd
,
8886 cb
->l2rcb_abd
, arc_hdr_size(hdr
));
8891 * The following must be done regardless of whether
8892 * there was an error:
8893 * - free the temporary buffer
8894 * - point zio to the real ARC buffer
8895 * - set zio size accordingly
8896 * These are required because zio is either re-used for
8897 * an I/O of the block in the case of the error
8898 * or the zio is passed to arc_read_done() and it
8901 abd_free(cb
->l2rcb_abd
);
8902 zio
->io_size
= zio
->io_orig_size
= arc_hdr_size(hdr
);
8905 ASSERT(HDR_HAS_RABD(hdr
));
8906 zio
->io_abd
= zio
->io_orig_abd
=
8907 hdr
->b_crypt_hdr
.b_rabd
;
8909 ASSERT3P(hdr
->b_l1hdr
.b_pabd
, !=, NULL
);
8910 zio
->io_abd
= zio
->io_orig_abd
= hdr
->b_l1hdr
.b_pabd
;
8914 ASSERT3P(zio
->io_abd
, !=, NULL
);
8917 * Check this survived the L2ARC journey.
8919 ASSERT(zio
->io_abd
== hdr
->b_l1hdr
.b_pabd
||
8920 (HDR_HAS_RABD(hdr
) && zio
->io_abd
== hdr
->b_crypt_hdr
.b_rabd
));
8921 zio
->io_bp_copy
= cb
->l2rcb_bp
; /* XXX fix in L2ARC 2.0 */
8922 zio
->io_bp
= &zio
->io_bp_copy
; /* XXX fix in L2ARC 2.0 */
8923 zio
->io_prop
.zp_complevel
= hdr
->b_complevel
;
8925 valid_cksum
= arc_cksum_is_equal(hdr
, zio
);
8928 * b_rabd will always match the data as it exists on disk if it is
8929 * being used. Therefore if we are reading into b_rabd we do not
8930 * attempt to untransform the data.
8932 if (valid_cksum
&& !using_rdata
)
8933 tfm_error
= l2arc_untransform(zio
, cb
);
8935 if (valid_cksum
&& tfm_error
== 0 && zio
->io_error
== 0 &&
8936 !HDR_L2_EVICTED(hdr
)) {
8937 mutex_exit(hash_lock
);
8938 zio
->io_private
= hdr
;
8942 * Buffer didn't survive caching. Increment stats and
8943 * reissue to the original storage device.
8945 if (zio
->io_error
!= 0) {
8946 ARCSTAT_BUMP(arcstat_l2_io_error
);
8948 zio
->io_error
= SET_ERROR(EIO
);
8950 if (!valid_cksum
|| tfm_error
!= 0)
8951 ARCSTAT_BUMP(arcstat_l2_cksum_bad
);
8954 * If there's no waiter, issue an async i/o to the primary
8955 * storage now. If there *is* a waiter, the caller must
8956 * issue the i/o in a context where it's OK to block.
8958 if (zio
->io_waiter
== NULL
) {
8959 zio_t
*pio
= zio_unique_parent(zio
);
8960 void *abd
= (using_rdata
) ?
8961 hdr
->b_crypt_hdr
.b_rabd
: hdr
->b_l1hdr
.b_pabd
;
8963 ASSERT(!pio
|| pio
->io_child_type
== ZIO_CHILD_LOGICAL
);
8965 zio
= zio_read(pio
, zio
->io_spa
, zio
->io_bp
,
8966 abd
, zio
->io_size
, arc_read_done
,
8967 hdr
, zio
->io_priority
, cb
->l2rcb_flags
,
8971 * Original ZIO will be freed, so we need to update
8972 * ARC header with the new ZIO pointer to be used
8973 * by zio_change_priority() in arc_read().
8975 for (struct arc_callback
*acb
= hdr
->b_l1hdr
.b_acb
;
8976 acb
!= NULL
; acb
= acb
->acb_next
)
8977 acb
->acb_zio_head
= zio
;
8979 mutex_exit(hash_lock
);
8982 mutex_exit(hash_lock
);
8986 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
8990 * This is the list priority from which the L2ARC will search for pages to
8991 * cache. This is used within loops (0..3) to cycle through lists in the
8992 * desired order. This order can have a significant effect on cache
8995 * Currently the metadata lists are hit first, MFU then MRU, followed by
8996 * the data lists. This function returns a locked list, and also returns
8999 static multilist_sublist_t
*
9000 l2arc_sublist_lock(int list_num
)
9002 multilist_t
*ml
= NULL
;
9005 ASSERT(list_num
>= 0 && list_num
< L2ARC_FEED_TYPES
);
9009 ml
= &arc_mfu
->arcs_list
[ARC_BUFC_METADATA
];
9012 ml
= &arc_mru
->arcs_list
[ARC_BUFC_METADATA
];
9015 ml
= &arc_mfu
->arcs_list
[ARC_BUFC_DATA
];
9018 ml
= &arc_mru
->arcs_list
[ARC_BUFC_DATA
];
9025 * Return a randomly-selected sublist. This is acceptable
9026 * because the caller feeds only a little bit of data for each
9027 * call (8MB). Subsequent calls will result in different
9028 * sublists being selected.
9030 idx
= multilist_get_random_index(ml
);
9031 return (multilist_sublist_lock(ml
, idx
));
9035 * Calculates the maximum overhead of L2ARC metadata log blocks for a given
9036 * L2ARC write size. l2arc_evict and l2arc_write_size need to include this
9037 * overhead in processing to make sure there is enough headroom available
9038 * when writing buffers.
9040 static inline uint64_t
9041 l2arc_log_blk_overhead(uint64_t write_sz
, l2arc_dev_t
*dev
)
9043 if (dev
->l2ad_log_entries
== 0) {
9046 uint64_t log_entries
= write_sz
>> SPA_MINBLOCKSHIFT
;
9048 uint64_t log_blocks
= (log_entries
+
9049 dev
->l2ad_log_entries
- 1) /
9050 dev
->l2ad_log_entries
;
9052 return (vdev_psize_to_asize(dev
->l2ad_vdev
,
9053 sizeof (l2arc_log_blk_phys_t
)) * log_blocks
);
9058 * Evict buffers from the device write hand to the distance specified in
9059 * bytes. This distance may span populated buffers, it may span nothing.
9060 * This is clearing a region on the L2ARC device ready for writing.
9061 * If the 'all' boolean is set, every buffer is evicted.
9064 l2arc_evict(l2arc_dev_t
*dev
, uint64_t distance
, boolean_t all
)
9067 arc_buf_hdr_t
*hdr
, *hdr_prev
;
9068 kmutex_t
*hash_lock
;
9070 l2arc_lb_ptr_buf_t
*lb_ptr_buf
, *lb_ptr_buf_prev
;
9071 vdev_t
*vd
= dev
->l2ad_vdev
;
9074 buflist
= &dev
->l2ad_buflist
;
9077 * We need to add in the worst case scenario of log block overhead.
9079 distance
+= l2arc_log_blk_overhead(distance
, dev
);
9080 if (vd
->vdev_has_trim
&& l2arc_trim_ahead
> 0) {
9082 * Trim ahead of the write size 64MB or (l2arc_trim_ahead/100)
9083 * times the write size, whichever is greater.
9085 distance
+= MAX(64 * 1024 * 1024,
9086 (distance
* l2arc_trim_ahead
) / 100);
9091 if (dev
->l2ad_hand
>= (dev
->l2ad_end
- distance
)) {
9093 * When there is no space to accommodate upcoming writes,
9094 * evict to the end. Then bump the write and evict hands
9095 * to the start and iterate. This iteration does not
9096 * happen indefinitely as we make sure in
9097 * l2arc_write_size() that when the write hand is reset,
9098 * the write size does not exceed the end of the device.
9101 taddr
= dev
->l2ad_end
;
9103 taddr
= dev
->l2ad_hand
+ distance
;
9105 DTRACE_PROBE4(l2arc__evict
, l2arc_dev_t
*, dev
, list_t
*, buflist
,
9106 uint64_t, taddr
, boolean_t
, all
);
9110 * This check has to be placed after deciding whether to
9113 if (dev
->l2ad_first
) {
9115 * This is the first sweep through the device. There is
9116 * nothing to evict. We have already trimmmed the
9122 * Trim the space to be evicted.
9124 if (vd
->vdev_has_trim
&& dev
->l2ad_evict
< taddr
&&
9125 l2arc_trim_ahead
> 0) {
9127 * We have to drop the spa_config lock because
9128 * vdev_trim_range() will acquire it.
9129 * l2ad_evict already accounts for the label
9130 * size. To prevent vdev_trim_ranges() from
9131 * adding it again, we subtract it from
9134 spa_config_exit(dev
->l2ad_spa
, SCL_L2ARC
, dev
);
9135 vdev_trim_simple(vd
,
9136 dev
->l2ad_evict
- VDEV_LABEL_START_SIZE
,
9137 taddr
- dev
->l2ad_evict
);
9138 spa_config_enter(dev
->l2ad_spa
, SCL_L2ARC
, dev
,
9143 * When rebuilding L2ARC we retrieve the evict hand
9144 * from the header of the device. Of note, l2arc_evict()
9145 * does not actually delete buffers from the cache
9146 * device, but trimming may do so depending on the
9147 * hardware implementation. Thus keeping track of the
9148 * evict hand is useful.
9150 dev
->l2ad_evict
= MAX(dev
->l2ad_evict
, taddr
);
9155 mutex_enter(&dev
->l2ad_mtx
);
9157 * We have to account for evicted log blocks. Run vdev_space_update()
9158 * on log blocks whose offset (in bytes) is before the evicted offset
9159 * (in bytes) by searching in the list of pointers to log blocks
9160 * present in the L2ARC device.
9162 for (lb_ptr_buf
= list_tail(&dev
->l2ad_lbptr_list
); lb_ptr_buf
;
9163 lb_ptr_buf
= lb_ptr_buf_prev
) {
9165 lb_ptr_buf_prev
= list_prev(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
9167 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
9168 uint64_t asize
= L2BLK_GET_PSIZE(
9169 (lb_ptr_buf
->lb_ptr
)->lbp_prop
);
9172 * We don't worry about log blocks left behind (ie
9173 * lbp_payload_start < l2ad_hand) because l2arc_write_buffers()
9174 * will never write more than l2arc_evict() evicts.
9176 if (!all
&& l2arc_log_blkptr_valid(dev
, lb_ptr_buf
->lb_ptr
)) {
9179 vdev_space_update(vd
, -asize
, 0, 0);
9180 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, -asize
);
9181 ARCSTAT_BUMPDOWN(arcstat_l2_log_blk_count
);
9182 zfs_refcount_remove_many(&dev
->l2ad_lb_asize
, asize
,
9184 zfs_refcount_remove(&dev
->l2ad_lb_count
, lb_ptr_buf
);
9185 list_remove(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
9186 kmem_free(lb_ptr_buf
->lb_ptr
,
9187 sizeof (l2arc_log_blkptr_t
));
9188 kmem_free(lb_ptr_buf
, sizeof (l2arc_lb_ptr_buf_t
));
9192 for (hdr
= list_tail(buflist
); hdr
; hdr
= hdr_prev
) {
9193 hdr_prev
= list_prev(buflist
, hdr
);
9195 ASSERT(!HDR_EMPTY(hdr
));
9196 hash_lock
= HDR_LOCK(hdr
);
9199 * We cannot use mutex_enter or else we can deadlock
9200 * with l2arc_write_buffers (due to swapping the order
9201 * the hash lock and l2ad_mtx are taken).
9203 if (!mutex_tryenter(hash_lock
)) {
9205 * Missed the hash lock. Retry.
9207 ARCSTAT_BUMP(arcstat_l2_evict_lock_retry
);
9208 mutex_exit(&dev
->l2ad_mtx
);
9209 mutex_enter(hash_lock
);
9210 mutex_exit(hash_lock
);
9215 * A header can't be on this list if it doesn't have L2 header.
9217 ASSERT(HDR_HAS_L2HDR(hdr
));
9219 /* Ensure this header has finished being written. */
9220 ASSERT(!HDR_L2_WRITING(hdr
));
9221 ASSERT(!HDR_L2_WRITE_HEAD(hdr
));
9223 if (!all
&& (hdr
->b_l2hdr
.b_daddr
>= dev
->l2ad_evict
||
9224 hdr
->b_l2hdr
.b_daddr
< dev
->l2ad_hand
)) {
9226 * We've evicted to the target address,
9227 * or the end of the device.
9229 mutex_exit(hash_lock
);
9233 if (!HDR_HAS_L1HDR(hdr
)) {
9234 ASSERT(!HDR_L2_READING(hdr
));
9236 * This doesn't exist in the ARC. Destroy.
9237 * arc_hdr_destroy() will call list_remove()
9238 * and decrement arcstat_l2_lsize.
9240 arc_change_state(arc_anon
, hdr
, hash_lock
);
9241 arc_hdr_destroy(hdr
);
9243 ASSERT(hdr
->b_l1hdr
.b_state
!= arc_l2c_only
);
9244 ARCSTAT_BUMP(arcstat_l2_evict_l1cached
);
9246 * Invalidate issued or about to be issued
9247 * reads, since we may be about to write
9248 * over this location.
9250 if (HDR_L2_READING(hdr
)) {
9251 ARCSTAT_BUMP(arcstat_l2_evict_reading
);
9252 arc_hdr_set_flags(hdr
, ARC_FLAG_L2_EVICTED
);
9255 arc_hdr_l2hdr_destroy(hdr
);
9257 mutex_exit(hash_lock
);
9259 mutex_exit(&dev
->l2ad_mtx
);
9263 * We need to check if we evict all buffers, otherwise we may iterate
9266 if (!all
&& rerun
) {
9268 * Bump device hand to the device start if it is approaching the
9269 * end. l2arc_evict() has already evicted ahead for this case.
9271 dev
->l2ad_hand
= dev
->l2ad_start
;
9272 dev
->l2ad_evict
= dev
->l2ad_start
;
9273 dev
->l2ad_first
= B_FALSE
;
9279 * In case of cache device removal (all) the following
9280 * assertions may be violated without functional consequences
9281 * as the device is about to be removed.
9283 ASSERT3U(dev
->l2ad_hand
+ distance
, <, dev
->l2ad_end
);
9284 if (!dev
->l2ad_first
)
9285 ASSERT3U(dev
->l2ad_hand
, <, dev
->l2ad_evict
);
9290 * Handle any abd transforms that might be required for writing to the L2ARC.
9291 * If successful, this function will always return an abd with the data
9292 * transformed as it is on disk in a new abd of asize bytes.
9295 l2arc_apply_transforms(spa_t
*spa
, arc_buf_hdr_t
*hdr
, uint64_t asize
,
9300 abd_t
*cabd
= NULL
, *eabd
= NULL
, *to_write
= hdr
->b_l1hdr
.b_pabd
;
9301 enum zio_compress compress
= HDR_GET_COMPRESS(hdr
);
9302 uint64_t psize
= HDR_GET_PSIZE(hdr
);
9303 uint64_t size
= arc_hdr_size(hdr
);
9304 boolean_t ismd
= HDR_ISTYPE_METADATA(hdr
);
9305 boolean_t bswap
= (hdr
->b_l1hdr
.b_byteswap
!= DMU_BSWAP_NUMFUNCS
);
9306 dsl_crypto_key_t
*dck
= NULL
;
9307 uint8_t mac
[ZIO_DATA_MAC_LEN
] = { 0 };
9308 boolean_t no_crypt
= B_FALSE
;
9310 ASSERT((HDR_GET_COMPRESS(hdr
) != ZIO_COMPRESS_OFF
&&
9311 !HDR_COMPRESSION_ENABLED(hdr
)) ||
9312 HDR_ENCRYPTED(hdr
) || HDR_SHARED_DATA(hdr
) || psize
!= asize
);
9313 ASSERT3U(psize
, <=, asize
);
9316 * If this data simply needs its own buffer, we simply allocate it
9317 * and copy the data. This may be done to eliminate a dependency on a
9318 * shared buffer or to reallocate the buffer to match asize.
9320 if (HDR_HAS_RABD(hdr
) && asize
!= psize
) {
9321 ASSERT3U(asize
, >=, psize
);
9322 to_write
= abd_alloc_for_io(asize
, ismd
);
9323 abd_copy(to_write
, hdr
->b_crypt_hdr
.b_rabd
, psize
);
9325 abd_zero_off(to_write
, psize
, asize
- psize
);
9329 if ((compress
== ZIO_COMPRESS_OFF
|| HDR_COMPRESSION_ENABLED(hdr
)) &&
9330 !HDR_ENCRYPTED(hdr
)) {
9331 ASSERT3U(size
, ==, psize
);
9332 to_write
= abd_alloc_for_io(asize
, ismd
);
9333 abd_copy(to_write
, hdr
->b_l1hdr
.b_pabd
, size
);
9335 abd_zero_off(to_write
, size
, asize
- size
);
9339 if (compress
!= ZIO_COMPRESS_OFF
&& !HDR_COMPRESSION_ENABLED(hdr
)) {
9341 * In some cases, we can wind up with size > asize, so
9342 * we need to opt for the larger allocation option here.
9344 * (We also need abd_return_buf_copy in all cases because
9345 * it's an ASSERT() to modify the buffer before returning it
9346 * with arc_return_buf(), and all the compressors
9347 * write things before deciding to fail compression in nearly
9350 cabd
= abd_alloc_for_io(size
, ismd
);
9351 tmp
= abd_borrow_buf(cabd
, size
);
9353 psize
= zio_compress_data(compress
, to_write
, tmp
, size
,
9356 if (psize
>= asize
) {
9357 psize
= HDR_GET_PSIZE(hdr
);
9358 abd_return_buf_copy(cabd
, tmp
, size
);
9359 HDR_SET_COMPRESS(hdr
, ZIO_COMPRESS_OFF
);
9361 abd_copy(to_write
, hdr
->b_l1hdr
.b_pabd
, psize
);
9363 abd_zero_off(to_write
, psize
, asize
- psize
);
9366 ASSERT3U(psize
, <=, HDR_GET_PSIZE(hdr
));
9368 memset((char *)tmp
+ psize
, 0, asize
- psize
);
9369 psize
= HDR_GET_PSIZE(hdr
);
9370 abd_return_buf_copy(cabd
, tmp
, size
);
9375 if (HDR_ENCRYPTED(hdr
)) {
9376 eabd
= abd_alloc_for_io(asize
, ismd
);
9379 * If the dataset was disowned before the buffer
9380 * made it to this point, the key to re-encrypt
9381 * it won't be available. In this case we simply
9382 * won't write the buffer to the L2ARC.
9384 ret
= spa_keystore_lookup_key(spa
, hdr
->b_crypt_hdr
.b_dsobj
,
9389 ret
= zio_do_crypt_abd(B_TRUE
, &dck
->dck_key
,
9390 hdr
->b_crypt_hdr
.b_ot
, bswap
, hdr
->b_crypt_hdr
.b_salt
,
9391 hdr
->b_crypt_hdr
.b_iv
, mac
, psize
, to_write
, eabd
,
9397 abd_copy(eabd
, to_write
, psize
);
9400 abd_zero_off(eabd
, psize
, asize
- psize
);
9402 /* assert that the MAC we got here matches the one we saved */
9403 ASSERT0(memcmp(mac
, hdr
->b_crypt_hdr
.b_mac
, ZIO_DATA_MAC_LEN
));
9404 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
9406 if (to_write
== cabd
)
9413 ASSERT3P(to_write
, !=, hdr
->b_l1hdr
.b_pabd
);
9414 *abd_out
= to_write
;
9419 spa_keystore_dsl_key_rele(spa
, dck
, FTAG
);
9430 l2arc_blk_fetch_done(zio_t
*zio
)
9432 l2arc_read_callback_t
*cb
;
9434 cb
= zio
->io_private
;
9435 if (cb
->l2rcb_abd
!= NULL
)
9436 abd_free(cb
->l2rcb_abd
);
9437 kmem_free(cb
, sizeof (l2arc_read_callback_t
));
9441 * Find and write ARC buffers to the L2ARC device.
9443 * An ARC_FLAG_L2_WRITING flag is set so that the L2ARC buffers are not valid
9444 * for reading until they have completed writing.
9445 * The headroom_boost is an in-out parameter used to maintain headroom boost
9446 * state between calls to this function.
9448 * Returns the number of bytes actually written (which may be smaller than
9449 * the delta by which the device hand has changed due to alignment and the
9450 * writing of log blocks).
9453 l2arc_write_buffers(spa_t
*spa
, l2arc_dev_t
*dev
, uint64_t target_sz
)
9455 arc_buf_hdr_t
*hdr
, *hdr_prev
, *head
;
9456 uint64_t write_asize
, write_psize
, write_lsize
, headroom
;
9458 l2arc_write_callback_t
*cb
= NULL
;
9460 uint64_t guid
= spa_load_guid(spa
);
9461 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9463 ASSERT3P(dev
->l2ad_vdev
, !=, NULL
);
9466 write_lsize
= write_asize
= write_psize
= 0;
9468 head
= kmem_cache_alloc(hdr_l2only_cache
, KM_PUSHPAGE
);
9469 arc_hdr_set_flags(head
, ARC_FLAG_L2_WRITE_HEAD
| ARC_FLAG_HAS_L2HDR
);
9472 * Copy buffers for L2ARC writing.
9474 for (int pass
= 0; pass
< L2ARC_FEED_TYPES
; pass
++) {
9476 * If pass == 1 or 3, we cache MRU metadata and data
9479 if (l2arc_mfuonly
) {
9480 if (pass
== 1 || pass
== 3)
9484 multilist_sublist_t
*mls
= l2arc_sublist_lock(pass
);
9485 uint64_t passed_sz
= 0;
9487 VERIFY3P(mls
, !=, NULL
);
9490 * L2ARC fast warmup.
9492 * Until the ARC is warm and starts to evict, read from the
9493 * head of the ARC lists rather than the tail.
9495 if (arc_warm
== B_FALSE
)
9496 hdr
= multilist_sublist_head(mls
);
9498 hdr
= multilist_sublist_tail(mls
);
9500 headroom
= target_sz
* l2arc_headroom
;
9501 if (zfs_compressed_arc_enabled
)
9502 headroom
= (headroom
* l2arc_headroom_boost
) / 100;
9504 for (; hdr
; hdr
= hdr_prev
) {
9505 kmutex_t
*hash_lock
;
9506 abd_t
*to_write
= NULL
;
9508 if (arc_warm
== B_FALSE
)
9509 hdr_prev
= multilist_sublist_next(mls
, hdr
);
9511 hdr_prev
= multilist_sublist_prev(mls
, hdr
);
9513 hash_lock
= HDR_LOCK(hdr
);
9514 if (!mutex_tryenter(hash_lock
)) {
9516 * Skip this buffer rather than waiting.
9521 passed_sz
+= HDR_GET_LSIZE(hdr
);
9522 if (l2arc_headroom
!= 0 && passed_sz
> headroom
) {
9526 mutex_exit(hash_lock
);
9530 if (!l2arc_write_eligible(guid
, hdr
)) {
9531 mutex_exit(hash_lock
);
9535 ASSERT(HDR_HAS_L1HDR(hdr
));
9537 ASSERT3U(HDR_GET_PSIZE(hdr
), >, 0);
9538 ASSERT3U(arc_hdr_size(hdr
), >, 0);
9539 ASSERT(hdr
->b_l1hdr
.b_pabd
!= NULL
||
9541 uint64_t psize
= HDR_GET_PSIZE(hdr
);
9542 uint64_t asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
9545 if ((write_asize
+ asize
) > target_sz
) {
9547 mutex_exit(hash_lock
);
9552 * We rely on the L1 portion of the header below, so
9553 * it's invalid for this header to have been evicted out
9554 * of the ghost cache, prior to being written out. The
9555 * ARC_FLAG_L2_WRITING bit ensures this won't happen.
9557 arc_hdr_set_flags(hdr
, ARC_FLAG_L2_WRITING
);
9560 * If this header has b_rabd, we can use this since it
9561 * must always match the data exactly as it exists on
9562 * disk. Otherwise, the L2ARC can normally use the
9563 * hdr's data, but if we're sharing data between the
9564 * hdr and one of its bufs, L2ARC needs its own copy of
9565 * the data so that the ZIO below can't race with the
9566 * buf consumer. To ensure that this copy will be
9567 * available for the lifetime of the ZIO and be cleaned
9568 * up afterwards, we add it to the l2arc_free_on_write
9569 * queue. If we need to apply any transforms to the
9570 * data (compression, encryption) we will also need the
9573 if (HDR_HAS_RABD(hdr
) && psize
== asize
) {
9574 to_write
= hdr
->b_crypt_hdr
.b_rabd
;
9575 } else if ((HDR_COMPRESSION_ENABLED(hdr
) ||
9576 HDR_GET_COMPRESS(hdr
) == ZIO_COMPRESS_OFF
) &&
9577 !HDR_ENCRYPTED(hdr
) && !HDR_SHARED_DATA(hdr
) &&
9579 to_write
= hdr
->b_l1hdr
.b_pabd
;
9582 arc_buf_contents_t type
= arc_buf_type(hdr
);
9584 ret
= l2arc_apply_transforms(spa
, hdr
, asize
,
9587 arc_hdr_clear_flags(hdr
,
9588 ARC_FLAG_L2_WRITING
);
9589 mutex_exit(hash_lock
);
9593 l2arc_free_abd_on_write(to_write
, asize
, type
);
9598 * Insert a dummy header on the buflist so
9599 * l2arc_write_done() can find where the
9600 * write buffers begin without searching.
9602 mutex_enter(&dev
->l2ad_mtx
);
9603 list_insert_head(&dev
->l2ad_buflist
, head
);
9604 mutex_exit(&dev
->l2ad_mtx
);
9607 sizeof (l2arc_write_callback_t
), KM_SLEEP
);
9608 cb
->l2wcb_dev
= dev
;
9609 cb
->l2wcb_head
= head
;
9611 * Create a list to save allocated abd buffers
9612 * for l2arc_log_blk_commit().
9614 list_create(&cb
->l2wcb_abd_list
,
9615 sizeof (l2arc_lb_abd_buf_t
),
9616 offsetof(l2arc_lb_abd_buf_t
, node
));
9617 pio
= zio_root(spa
, l2arc_write_done
, cb
,
9621 hdr
->b_l2hdr
.b_dev
= dev
;
9622 hdr
->b_l2hdr
.b_hits
= 0;
9624 hdr
->b_l2hdr
.b_daddr
= dev
->l2ad_hand
;
9625 hdr
->b_l2hdr
.b_arcs_state
=
9626 hdr
->b_l1hdr
.b_state
->arcs_state
;
9627 arc_hdr_set_flags(hdr
, ARC_FLAG_HAS_L2HDR
);
9629 mutex_enter(&dev
->l2ad_mtx
);
9630 list_insert_head(&dev
->l2ad_buflist
, hdr
);
9631 mutex_exit(&dev
->l2ad_mtx
);
9633 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
9634 arc_hdr_size(hdr
), hdr
);
9636 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
,
9637 hdr
->b_l2hdr
.b_daddr
, asize
, to_write
,
9638 ZIO_CHECKSUM_OFF
, NULL
, hdr
,
9639 ZIO_PRIORITY_ASYNC_WRITE
,
9640 ZIO_FLAG_CANFAIL
, B_FALSE
);
9642 write_lsize
+= HDR_GET_LSIZE(hdr
);
9643 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
,
9646 write_psize
+= psize
;
9647 write_asize
+= asize
;
9648 dev
->l2ad_hand
+= asize
;
9649 l2arc_hdr_arcstats_increment(hdr
);
9650 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
9652 mutex_exit(hash_lock
);
9655 * Append buf info to current log and commit if full.
9656 * arcstat_l2_{size,asize} kstats are updated
9659 if (l2arc_log_blk_insert(dev
, hdr
))
9660 l2arc_log_blk_commit(dev
, pio
, cb
);
9665 multilist_sublist_unlock(mls
);
9671 /* No buffers selected for writing? */
9673 ASSERT0(write_lsize
);
9674 ASSERT(!HDR_HAS_L1HDR(head
));
9675 kmem_cache_free(hdr_l2only_cache
, head
);
9678 * Although we did not write any buffers l2ad_evict may
9681 if (dev
->l2ad_evict
!= l2dhdr
->dh_evict
)
9682 l2arc_dev_hdr_update(dev
);
9687 if (!dev
->l2ad_first
)
9688 ASSERT3U(dev
->l2ad_hand
, <=, dev
->l2ad_evict
);
9690 ASSERT3U(write_asize
, <=, target_sz
);
9691 ARCSTAT_BUMP(arcstat_l2_writes_sent
);
9692 ARCSTAT_INCR(arcstat_l2_write_bytes
, write_psize
);
9694 dev
->l2ad_writing
= B_TRUE
;
9695 (void) zio_wait(pio
);
9696 dev
->l2ad_writing
= B_FALSE
;
9699 * Update the device header after the zio completes as
9700 * l2arc_write_done() may have updated the memory holding the log block
9701 * pointers in the device header.
9703 l2arc_dev_hdr_update(dev
);
9705 return (write_asize
);
9709 l2arc_hdr_limit_reached(void)
9711 int64_t s
= aggsum_upper_bound(&arc_sums
.arcstat_l2_hdr_size
);
9713 return (arc_reclaim_needed() || (s
> arc_meta_limit
* 3 / 4) ||
9714 (s
> (arc_warm
? arc_c
: arc_c_max
) * l2arc_meta_percent
/ 100));
9718 * This thread feeds the L2ARC at regular intervals. This is the beating
9719 * heart of the L2ARC.
9721 static __attribute__((noreturn
)) void
9722 l2arc_feed_thread(void *unused
)
9728 uint64_t size
, wrote
;
9729 clock_t begin
, next
= ddi_get_lbolt();
9730 fstrans_cookie_t cookie
;
9732 CALLB_CPR_INIT(&cpr
, &l2arc_feed_thr_lock
, callb_generic_cpr
, FTAG
);
9734 mutex_enter(&l2arc_feed_thr_lock
);
9736 cookie
= spl_fstrans_mark();
9737 while (l2arc_thread_exit
== 0) {
9738 CALLB_CPR_SAFE_BEGIN(&cpr
);
9739 (void) cv_timedwait_idle(&l2arc_feed_thr_cv
,
9740 &l2arc_feed_thr_lock
, next
);
9741 CALLB_CPR_SAFE_END(&cpr
, &l2arc_feed_thr_lock
);
9742 next
= ddi_get_lbolt() + hz
;
9745 * Quick check for L2ARC devices.
9747 mutex_enter(&l2arc_dev_mtx
);
9748 if (l2arc_ndev
== 0) {
9749 mutex_exit(&l2arc_dev_mtx
);
9752 mutex_exit(&l2arc_dev_mtx
);
9753 begin
= ddi_get_lbolt();
9756 * This selects the next l2arc device to write to, and in
9757 * doing so the next spa to feed from: dev->l2ad_spa. This
9758 * will return NULL if there are now no l2arc devices or if
9759 * they are all faulted.
9761 * If a device is returned, its spa's config lock is also
9762 * held to prevent device removal. l2arc_dev_get_next()
9763 * will grab and release l2arc_dev_mtx.
9765 if ((dev
= l2arc_dev_get_next()) == NULL
)
9768 spa
= dev
->l2ad_spa
;
9769 ASSERT3P(spa
, !=, NULL
);
9772 * If the pool is read-only then force the feed thread to
9773 * sleep a little longer.
9775 if (!spa_writeable(spa
)) {
9776 next
= ddi_get_lbolt() + 5 * l2arc_feed_secs
* hz
;
9777 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9782 * Avoid contributing to memory pressure.
9784 if (l2arc_hdr_limit_reached()) {
9785 ARCSTAT_BUMP(arcstat_l2_abort_lowmem
);
9786 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9790 ARCSTAT_BUMP(arcstat_l2_feeds
);
9792 size
= l2arc_write_size(dev
);
9795 * Evict L2ARC buffers that will be overwritten.
9797 l2arc_evict(dev
, size
, B_FALSE
);
9800 * Write ARC buffers.
9802 wrote
= l2arc_write_buffers(spa
, dev
, size
);
9805 * Calculate interval between writes.
9807 next
= l2arc_write_interval(begin
, size
, wrote
);
9808 spa_config_exit(spa
, SCL_L2ARC
, dev
);
9810 spl_fstrans_unmark(cookie
);
9812 l2arc_thread_exit
= 0;
9813 cv_broadcast(&l2arc_feed_thr_cv
);
9814 CALLB_CPR_EXIT(&cpr
); /* drops l2arc_feed_thr_lock */
9819 l2arc_vdev_present(vdev_t
*vd
)
9821 return (l2arc_vdev_get(vd
) != NULL
);
9825 * Returns the l2arc_dev_t associated with a particular vdev_t or NULL if
9826 * the vdev_t isn't an L2ARC device.
9829 l2arc_vdev_get(vdev_t
*vd
)
9833 mutex_enter(&l2arc_dev_mtx
);
9834 for (dev
= list_head(l2arc_dev_list
); dev
!= NULL
;
9835 dev
= list_next(l2arc_dev_list
, dev
)) {
9836 if (dev
->l2ad_vdev
== vd
)
9839 mutex_exit(&l2arc_dev_mtx
);
9845 l2arc_rebuild_dev(l2arc_dev_t
*dev
, boolean_t reopen
)
9847 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
9848 uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
9849 spa_t
*spa
= dev
->l2ad_spa
;
9852 * The L2ARC has to hold at least the payload of one log block for
9853 * them to be restored (persistent L2ARC). The payload of a log block
9854 * depends on the amount of its log entries. We always write log blocks
9855 * with 1022 entries. How many of them are committed or restored depends
9856 * on the size of the L2ARC device. Thus the maximum payload of
9857 * one log block is 1022 * SPA_MAXBLOCKSIZE = 16GB. If the L2ARC device
9858 * is less than that, we reduce the amount of committed and restored
9859 * log entries per block so as to enable persistence.
9861 if (dev
->l2ad_end
< l2arc_rebuild_blocks_min_l2size
) {
9862 dev
->l2ad_log_entries
= 0;
9864 dev
->l2ad_log_entries
= MIN((dev
->l2ad_end
-
9865 dev
->l2ad_start
) >> SPA_MAXBLOCKSHIFT
,
9866 L2ARC_LOG_BLK_MAX_ENTRIES
);
9870 * Read the device header, if an error is returned do not rebuild L2ARC.
9872 if (l2arc_dev_hdr_read(dev
) == 0 && dev
->l2ad_log_entries
> 0) {
9874 * If we are onlining a cache device (vdev_reopen) that was
9875 * still present (l2arc_vdev_present()) and rebuild is enabled,
9876 * we should evict all ARC buffers and pointers to log blocks
9877 * and reclaim their space before restoring its contents to
9881 if (!l2arc_rebuild_enabled
) {
9884 l2arc_evict(dev
, 0, B_TRUE
);
9885 /* start a new log block */
9886 dev
->l2ad_log_ent_idx
= 0;
9887 dev
->l2ad_log_blk_payload_asize
= 0;
9888 dev
->l2ad_log_blk_payload_start
= 0;
9892 * Just mark the device as pending for a rebuild. We won't
9893 * be starting a rebuild in line here as it would block pool
9894 * import. Instead spa_load_impl will hand that off to an
9895 * async task which will call l2arc_spa_rebuild_start.
9897 dev
->l2ad_rebuild
= B_TRUE
;
9898 } else if (spa_writeable(spa
)) {
9900 * In this case TRIM the whole device if l2arc_trim_ahead > 0,
9901 * otherwise create a new header. We zero out the memory holding
9902 * the header to reset dh_start_lbps. If we TRIM the whole
9903 * device the new header will be written by
9904 * vdev_trim_l2arc_thread() at the end of the TRIM to update the
9905 * trim_state in the header too. When reading the header, if
9906 * trim_state is not VDEV_TRIM_COMPLETE and l2arc_trim_ahead > 0
9907 * we opt to TRIM the whole device again.
9909 if (l2arc_trim_ahead
> 0) {
9910 dev
->l2ad_trim_all
= B_TRUE
;
9912 memset(l2dhdr
, 0, l2dhdr_asize
);
9913 l2arc_dev_hdr_update(dev
);
9919 * Add a vdev for use by the L2ARC. By this point the spa has already
9920 * validated the vdev and opened it.
9923 l2arc_add_vdev(spa_t
*spa
, vdev_t
*vd
)
9925 l2arc_dev_t
*adddev
;
9926 uint64_t l2dhdr_asize
;
9928 ASSERT(!l2arc_vdev_present(vd
));
9931 * Create a new l2arc device entry.
9933 adddev
= vmem_zalloc(sizeof (l2arc_dev_t
), KM_SLEEP
);
9934 adddev
->l2ad_spa
= spa
;
9935 adddev
->l2ad_vdev
= vd
;
9936 /* leave extra size for an l2arc device header */
9937 l2dhdr_asize
= adddev
->l2ad_dev_hdr_asize
=
9938 MAX(sizeof (*adddev
->l2ad_dev_hdr
), 1 << vd
->vdev_ashift
);
9939 adddev
->l2ad_start
= VDEV_LABEL_START_SIZE
+ l2dhdr_asize
;
9940 adddev
->l2ad_end
= VDEV_LABEL_START_SIZE
+ vdev_get_min_asize(vd
);
9941 ASSERT3U(adddev
->l2ad_start
, <, adddev
->l2ad_end
);
9942 adddev
->l2ad_hand
= adddev
->l2ad_start
;
9943 adddev
->l2ad_evict
= adddev
->l2ad_start
;
9944 adddev
->l2ad_first
= B_TRUE
;
9945 adddev
->l2ad_writing
= B_FALSE
;
9946 adddev
->l2ad_trim_all
= B_FALSE
;
9947 list_link_init(&adddev
->l2ad_node
);
9948 adddev
->l2ad_dev_hdr
= kmem_zalloc(l2dhdr_asize
, KM_SLEEP
);
9950 mutex_init(&adddev
->l2ad_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
9952 * This is a list of all ARC buffers that are still valid on the
9955 list_create(&adddev
->l2ad_buflist
, sizeof (arc_buf_hdr_t
),
9956 offsetof(arc_buf_hdr_t
, b_l2hdr
.b_l2node
));
9959 * This is a list of pointers to log blocks that are still present
9962 list_create(&adddev
->l2ad_lbptr_list
, sizeof (l2arc_lb_ptr_buf_t
),
9963 offsetof(l2arc_lb_ptr_buf_t
, node
));
9965 vdev_space_update(vd
, 0, 0, adddev
->l2ad_end
- adddev
->l2ad_hand
);
9966 zfs_refcount_create(&adddev
->l2ad_alloc
);
9967 zfs_refcount_create(&adddev
->l2ad_lb_asize
);
9968 zfs_refcount_create(&adddev
->l2ad_lb_count
);
9971 * Decide if dev is eligible for L2ARC rebuild or whole device
9972 * trimming. This has to happen before the device is added in the
9973 * cache device list and l2arc_dev_mtx is released. Otherwise
9974 * l2arc_feed_thread() might already start writing on the
9977 l2arc_rebuild_dev(adddev
, B_FALSE
);
9980 * Add device to global list
9982 mutex_enter(&l2arc_dev_mtx
);
9983 list_insert_head(l2arc_dev_list
, adddev
);
9984 atomic_inc_64(&l2arc_ndev
);
9985 mutex_exit(&l2arc_dev_mtx
);
9989 * Decide if a vdev is eligible for L2ARC rebuild, called from vdev_reopen()
9990 * in case of onlining a cache device.
9993 l2arc_rebuild_vdev(vdev_t
*vd
, boolean_t reopen
)
9995 l2arc_dev_t
*dev
= NULL
;
9997 dev
= l2arc_vdev_get(vd
);
9998 ASSERT3P(dev
, !=, NULL
);
10001 * In contrast to l2arc_add_vdev() we do not have to worry about
10002 * l2arc_feed_thread() invalidating previous content when onlining a
10003 * cache device. The device parameters (l2ad*) are not cleared when
10004 * offlining the device and writing new buffers will not invalidate
10005 * all previous content. In worst case only buffers that have not had
10006 * their log block written to the device will be lost.
10007 * When onlining the cache device (ie offline->online without exporting
10008 * the pool in between) this happens:
10009 * vdev_reopen() -> vdev_open() -> l2arc_rebuild_vdev()
10011 * vdev_is_dead() = B_FALSE l2ad_rebuild = B_TRUE
10012 * During the time where vdev_is_dead = B_FALSE and until l2ad_rebuild
10013 * is set to B_TRUE we might write additional buffers to the device.
10015 l2arc_rebuild_dev(dev
, reopen
);
10019 * Remove a vdev from the L2ARC.
10022 l2arc_remove_vdev(vdev_t
*vd
)
10024 l2arc_dev_t
*remdev
= NULL
;
10027 * Find the device by vdev
10029 remdev
= l2arc_vdev_get(vd
);
10030 ASSERT3P(remdev
, !=, NULL
);
10033 * Cancel any ongoing or scheduled rebuild.
10035 mutex_enter(&l2arc_rebuild_thr_lock
);
10036 if (remdev
->l2ad_rebuild_began
== B_TRUE
) {
10037 remdev
->l2ad_rebuild_cancel
= B_TRUE
;
10038 while (remdev
->l2ad_rebuild
== B_TRUE
)
10039 cv_wait(&l2arc_rebuild_thr_cv
, &l2arc_rebuild_thr_lock
);
10041 mutex_exit(&l2arc_rebuild_thr_lock
);
10044 * Remove device from global list
10046 mutex_enter(&l2arc_dev_mtx
);
10047 list_remove(l2arc_dev_list
, remdev
);
10048 l2arc_dev_last
= NULL
; /* may have been invalidated */
10049 atomic_dec_64(&l2arc_ndev
);
10050 mutex_exit(&l2arc_dev_mtx
);
10053 * Clear all buflists and ARC references. L2ARC device flush.
10055 l2arc_evict(remdev
, 0, B_TRUE
);
10056 list_destroy(&remdev
->l2ad_buflist
);
10057 ASSERT(list_is_empty(&remdev
->l2ad_lbptr_list
));
10058 list_destroy(&remdev
->l2ad_lbptr_list
);
10059 mutex_destroy(&remdev
->l2ad_mtx
);
10060 zfs_refcount_destroy(&remdev
->l2ad_alloc
);
10061 zfs_refcount_destroy(&remdev
->l2ad_lb_asize
);
10062 zfs_refcount_destroy(&remdev
->l2ad_lb_count
);
10063 kmem_free(remdev
->l2ad_dev_hdr
, remdev
->l2ad_dev_hdr_asize
);
10064 vmem_free(remdev
, sizeof (l2arc_dev_t
));
10070 l2arc_thread_exit
= 0;
10073 mutex_init(&l2arc_feed_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
10074 cv_init(&l2arc_feed_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
10075 mutex_init(&l2arc_rebuild_thr_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
10076 cv_init(&l2arc_rebuild_thr_cv
, NULL
, CV_DEFAULT
, NULL
);
10077 mutex_init(&l2arc_dev_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
10078 mutex_init(&l2arc_free_on_write_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
10080 l2arc_dev_list
= &L2ARC_dev_list
;
10081 l2arc_free_on_write
= &L2ARC_free_on_write
;
10082 list_create(l2arc_dev_list
, sizeof (l2arc_dev_t
),
10083 offsetof(l2arc_dev_t
, l2ad_node
));
10084 list_create(l2arc_free_on_write
, sizeof (l2arc_data_free_t
),
10085 offsetof(l2arc_data_free_t
, l2df_list_node
));
10091 mutex_destroy(&l2arc_feed_thr_lock
);
10092 cv_destroy(&l2arc_feed_thr_cv
);
10093 mutex_destroy(&l2arc_rebuild_thr_lock
);
10094 cv_destroy(&l2arc_rebuild_thr_cv
);
10095 mutex_destroy(&l2arc_dev_mtx
);
10096 mutex_destroy(&l2arc_free_on_write_mtx
);
10098 list_destroy(l2arc_dev_list
);
10099 list_destroy(l2arc_free_on_write
);
10105 if (!(spa_mode_global
& SPA_MODE_WRITE
))
10108 (void) thread_create(NULL
, 0, l2arc_feed_thread
, NULL
, 0, &p0
,
10109 TS_RUN
, defclsyspri
);
10115 if (!(spa_mode_global
& SPA_MODE_WRITE
))
10118 mutex_enter(&l2arc_feed_thr_lock
);
10119 cv_signal(&l2arc_feed_thr_cv
); /* kick thread out of startup */
10120 l2arc_thread_exit
= 1;
10121 while (l2arc_thread_exit
!= 0)
10122 cv_wait(&l2arc_feed_thr_cv
, &l2arc_feed_thr_lock
);
10123 mutex_exit(&l2arc_feed_thr_lock
);
10127 * Punches out rebuild threads for the L2ARC devices in a spa. This should
10128 * be called after pool import from the spa async thread, since starting
10129 * these threads directly from spa_import() will make them part of the
10130 * "zpool import" context and delay process exit (and thus pool import).
10133 l2arc_spa_rebuild_start(spa_t
*spa
)
10135 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
10138 * Locate the spa's l2arc devices and kick off rebuild threads.
10140 for (int i
= 0; i
< spa
->spa_l2cache
.sav_count
; i
++) {
10142 l2arc_vdev_get(spa
->spa_l2cache
.sav_vdevs
[i
]);
10144 /* Don't attempt a rebuild if the vdev is UNAVAIL */
10147 mutex_enter(&l2arc_rebuild_thr_lock
);
10148 if (dev
->l2ad_rebuild
&& !dev
->l2ad_rebuild_cancel
) {
10149 dev
->l2ad_rebuild_began
= B_TRUE
;
10150 (void) thread_create(NULL
, 0, l2arc_dev_rebuild_thread
,
10151 dev
, 0, &p0
, TS_RUN
, minclsyspri
);
10153 mutex_exit(&l2arc_rebuild_thr_lock
);
10158 * Main entry point for L2ARC rebuilding.
10160 static __attribute__((noreturn
)) void
10161 l2arc_dev_rebuild_thread(void *arg
)
10163 l2arc_dev_t
*dev
= arg
;
10165 VERIFY(!dev
->l2ad_rebuild_cancel
);
10166 VERIFY(dev
->l2ad_rebuild
);
10167 (void) l2arc_rebuild(dev
);
10168 mutex_enter(&l2arc_rebuild_thr_lock
);
10169 dev
->l2ad_rebuild_began
= B_FALSE
;
10170 dev
->l2ad_rebuild
= B_FALSE
;
10171 mutex_exit(&l2arc_rebuild_thr_lock
);
10177 * This function implements the actual L2ARC metadata rebuild. It:
10178 * starts reading the log block chain and restores each block's contents
10179 * to memory (reconstructing arc_buf_hdr_t's).
10181 * Operation stops under any of the following conditions:
10183 * 1) We reach the end of the log block chain.
10184 * 2) We encounter *any* error condition (cksum errors, io errors)
10187 l2arc_rebuild(l2arc_dev_t
*dev
)
10189 vdev_t
*vd
= dev
->l2ad_vdev
;
10190 spa_t
*spa
= vd
->vdev_spa
;
10192 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10193 l2arc_log_blk_phys_t
*this_lb
, *next_lb
;
10194 zio_t
*this_io
= NULL
, *next_io
= NULL
;
10195 l2arc_log_blkptr_t lbps
[2];
10196 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
10197 boolean_t lock_held
;
10199 this_lb
= vmem_zalloc(sizeof (*this_lb
), KM_SLEEP
);
10200 next_lb
= vmem_zalloc(sizeof (*next_lb
), KM_SLEEP
);
10203 * We prevent device removal while issuing reads to the device,
10204 * then during the rebuilding phases we drop this lock again so
10205 * that a spa_unload or device remove can be initiated - this is
10206 * safe, because the spa will signal us to stop before removing
10207 * our device and wait for us to stop.
10209 spa_config_enter(spa
, SCL_L2ARC
, vd
, RW_READER
);
10210 lock_held
= B_TRUE
;
10213 * Retrieve the persistent L2ARC device state.
10214 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10216 dev
->l2ad_evict
= MAX(l2dhdr
->dh_evict
, dev
->l2ad_start
);
10217 dev
->l2ad_hand
= MAX(l2dhdr
->dh_start_lbps
[0].lbp_daddr
+
10218 L2BLK_GET_PSIZE((&l2dhdr
->dh_start_lbps
[0])->lbp_prop
),
10220 dev
->l2ad_first
= !!(l2dhdr
->dh_flags
& L2ARC_DEV_HDR_EVICT_FIRST
);
10222 vd
->vdev_trim_action_time
= l2dhdr
->dh_trim_action_time
;
10223 vd
->vdev_trim_state
= l2dhdr
->dh_trim_state
;
10226 * In case the zfs module parameter l2arc_rebuild_enabled is false
10227 * we do not start the rebuild process.
10229 if (!l2arc_rebuild_enabled
)
10232 /* Prepare the rebuild process */
10233 memcpy(lbps
, l2dhdr
->dh_start_lbps
, sizeof (lbps
));
10235 /* Start the rebuild process */
10237 if (!l2arc_log_blkptr_valid(dev
, &lbps
[0]))
10240 if ((err
= l2arc_log_blk_read(dev
, &lbps
[0], &lbps
[1],
10241 this_lb
, next_lb
, this_io
, &next_io
)) != 0)
10245 * Our memory pressure valve. If the system is running low
10246 * on memory, rather than swamping memory with new ARC buf
10247 * hdrs, we opt not to rebuild the L2ARC. At this point,
10248 * however, we have already set up our L2ARC dev to chain in
10249 * new metadata log blocks, so the user may choose to offline/
10250 * online the L2ARC dev at a later time (or re-import the pool)
10251 * to reconstruct it (when there's less memory pressure).
10253 if (l2arc_hdr_limit_reached()) {
10254 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_lowmem
);
10255 cmn_err(CE_NOTE
, "System running low on memory, "
10256 "aborting L2ARC rebuild.");
10257 err
= SET_ERROR(ENOMEM
);
10261 spa_config_exit(spa
, SCL_L2ARC
, vd
);
10262 lock_held
= B_FALSE
;
10265 * Now that we know that the next_lb checks out alright, we
10266 * can start reconstruction from this log block.
10267 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10269 uint64_t asize
= L2BLK_GET_PSIZE((&lbps
[0])->lbp_prop
);
10270 l2arc_log_blk_restore(dev
, this_lb
, asize
);
10273 * log block restored, include its pointer in the list of
10274 * pointers to log blocks present in the L2ARC device.
10276 lb_ptr_buf
= kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t
), KM_SLEEP
);
10277 lb_ptr_buf
->lb_ptr
= kmem_zalloc(sizeof (l2arc_log_blkptr_t
),
10279 memcpy(lb_ptr_buf
->lb_ptr
, &lbps
[0],
10280 sizeof (l2arc_log_blkptr_t
));
10281 mutex_enter(&dev
->l2ad_mtx
);
10282 list_insert_tail(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
10283 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, asize
);
10284 ARCSTAT_BUMP(arcstat_l2_log_blk_count
);
10285 zfs_refcount_add_many(&dev
->l2ad_lb_asize
, asize
, lb_ptr_buf
);
10286 zfs_refcount_add(&dev
->l2ad_lb_count
, lb_ptr_buf
);
10287 mutex_exit(&dev
->l2ad_mtx
);
10288 vdev_space_update(vd
, asize
, 0, 0);
10291 * Protection against loops of log blocks:
10293 * l2ad_hand l2ad_evict
10295 * l2ad_start |=======================================| l2ad_end
10296 * -----|||----|||---|||----|||
10298 * ---|||---|||----|||---|||
10301 * In this situation the pointer of log block (4) passes
10302 * l2arc_log_blkptr_valid() but the log block should not be
10303 * restored as it is overwritten by the payload of log block
10304 * (0). Only log blocks (0)-(3) should be restored. We check
10305 * whether l2ad_evict lies in between the payload starting
10306 * offset of the next log block (lbps[1].lbp_payload_start)
10307 * and the payload starting offset of the present log block
10308 * (lbps[0].lbp_payload_start). If true and this isn't the
10309 * first pass, we are looping from the beginning and we should
10312 if (l2arc_range_check_overlap(lbps
[1].lbp_payload_start
,
10313 lbps
[0].lbp_payload_start
, dev
->l2ad_evict
) &&
10319 mutex_enter(&l2arc_rebuild_thr_lock
);
10320 if (dev
->l2ad_rebuild_cancel
) {
10321 dev
->l2ad_rebuild
= B_FALSE
;
10322 cv_signal(&l2arc_rebuild_thr_cv
);
10323 mutex_exit(&l2arc_rebuild_thr_lock
);
10324 err
= SET_ERROR(ECANCELED
);
10327 mutex_exit(&l2arc_rebuild_thr_lock
);
10328 if (spa_config_tryenter(spa
, SCL_L2ARC
, vd
,
10330 lock_held
= B_TRUE
;
10334 * L2ARC config lock held by somebody in writer,
10335 * possibly due to them trying to remove us. They'll
10336 * likely to want us to shut down, so after a little
10337 * delay, we check l2ad_rebuild_cancel and retry
10344 * Continue with the next log block.
10347 lbps
[1] = this_lb
->lb_prev_lbp
;
10348 PTR_SWAP(this_lb
, next_lb
);
10353 if (this_io
!= NULL
)
10354 l2arc_log_blk_fetch_abort(this_io
);
10356 if (next_io
!= NULL
)
10357 l2arc_log_blk_fetch_abort(next_io
);
10358 vmem_free(this_lb
, sizeof (*this_lb
));
10359 vmem_free(next_lb
, sizeof (*next_lb
));
10361 if (!l2arc_rebuild_enabled
) {
10362 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10364 } else if (err
== 0 && zfs_refcount_count(&dev
->l2ad_lb_count
) > 0) {
10365 ARCSTAT_BUMP(arcstat_l2_rebuild_success
);
10366 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10367 "successful, restored %llu blocks",
10368 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10369 } else if (err
== 0 && zfs_refcount_count(&dev
->l2ad_lb_count
) == 0) {
10371 * No error but also nothing restored, meaning the lbps array
10372 * in the device header points to invalid/non-present log
10373 * blocks. Reset the header.
10375 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10376 "no valid log blocks");
10377 memset(l2dhdr
, 0, dev
->l2ad_dev_hdr_asize
);
10378 l2arc_dev_hdr_update(dev
);
10379 } else if (err
== ECANCELED
) {
10381 * In case the rebuild was canceled do not log to spa history
10382 * log as the pool may be in the process of being removed.
10384 zfs_dbgmsg("L2ARC rebuild aborted, restored %llu blocks",
10385 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10386 } else if (err
!= 0) {
10387 spa_history_log_internal(spa
, "L2ARC rebuild", NULL
,
10388 "aborted, restored %llu blocks",
10389 (u_longlong_t
)zfs_refcount_count(&dev
->l2ad_lb_count
));
10393 spa_config_exit(spa
, SCL_L2ARC
, vd
);
10399 * Attempts to read the device header on the provided L2ARC device and writes
10400 * it to `hdr'. On success, this function returns 0, otherwise the appropriate
10401 * error code is returned.
10404 l2arc_dev_hdr_read(l2arc_dev_t
*dev
)
10408 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10409 const uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
10412 guid
= spa_guid(dev
->l2ad_vdev
->vdev_spa
);
10414 abd
= abd_get_from_buf(l2dhdr
, l2dhdr_asize
);
10416 err
= zio_wait(zio_read_phys(NULL
, dev
->l2ad_vdev
,
10417 VDEV_LABEL_START_SIZE
, l2dhdr_asize
, abd
,
10418 ZIO_CHECKSUM_LABEL
, NULL
, NULL
, ZIO_PRIORITY_SYNC_READ
,
10419 ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_CANFAIL
|
10420 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
|
10421 ZIO_FLAG_SPECULATIVE
, B_FALSE
));
10426 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_dh_errors
);
10427 zfs_dbgmsg("L2ARC IO error (%d) while reading device header, "
10428 "vdev guid: %llu", err
,
10429 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10433 if (l2dhdr
->dh_magic
== BSWAP_64(L2ARC_DEV_HDR_MAGIC
))
10434 byteswap_uint64_array(l2dhdr
, sizeof (*l2dhdr
));
10436 if (l2dhdr
->dh_magic
!= L2ARC_DEV_HDR_MAGIC
||
10437 l2dhdr
->dh_spa_guid
!= guid
||
10438 l2dhdr
->dh_vdev_guid
!= dev
->l2ad_vdev
->vdev_guid
||
10439 l2dhdr
->dh_version
!= L2ARC_PERSISTENT_VERSION
||
10440 l2dhdr
->dh_log_entries
!= dev
->l2ad_log_entries
||
10441 l2dhdr
->dh_end
!= dev
->l2ad_end
||
10442 !l2arc_range_check_overlap(dev
->l2ad_start
, dev
->l2ad_end
,
10443 l2dhdr
->dh_evict
) ||
10444 (l2dhdr
->dh_trim_state
!= VDEV_TRIM_COMPLETE
&&
10445 l2arc_trim_ahead
> 0)) {
10447 * Attempt to rebuild a device containing no actual dev hdr
10448 * or containing a header from some other pool or from another
10449 * version of persistent L2ARC.
10451 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_unsupported
);
10452 return (SET_ERROR(ENOTSUP
));
10459 * Reads L2ARC log blocks from storage and validates their contents.
10461 * This function implements a simple fetcher to make sure that while
10462 * we're processing one buffer the L2ARC is already fetching the next
10463 * one in the chain.
10465 * The arguments this_lp and next_lp point to the current and next log block
10466 * address in the block chain. Similarly, this_lb and next_lb hold the
10467 * l2arc_log_blk_phys_t's of the current and next L2ARC blk.
10469 * The `this_io' and `next_io' arguments are used for block fetching.
10470 * When issuing the first blk IO during rebuild, you should pass NULL for
10471 * `this_io'. This function will then issue a sync IO to read the block and
10472 * also issue an async IO to fetch the next block in the block chain. The
10473 * fetched IO is returned in `next_io'. On subsequent calls to this
10474 * function, pass the value returned in `next_io' from the previous call
10475 * as `this_io' and a fresh `next_io' pointer to hold the next fetch IO.
10476 * Prior to the call, you should initialize your `next_io' pointer to be
10477 * NULL. If no fetch IO was issued, the pointer is left set at NULL.
10479 * On success, this function returns 0, otherwise it returns an appropriate
10480 * error code. On error the fetching IO is aborted and cleared before
10481 * returning from this function. Therefore, if we return `success', the
10482 * caller can assume that we have taken care of cleanup of fetch IOs.
10485 l2arc_log_blk_read(l2arc_dev_t
*dev
,
10486 const l2arc_log_blkptr_t
*this_lbp
, const l2arc_log_blkptr_t
*next_lbp
,
10487 l2arc_log_blk_phys_t
*this_lb
, l2arc_log_blk_phys_t
*next_lb
,
10488 zio_t
*this_io
, zio_t
**next_io
)
10495 ASSERT(this_lbp
!= NULL
&& next_lbp
!= NULL
);
10496 ASSERT(this_lb
!= NULL
&& next_lb
!= NULL
);
10497 ASSERT(next_io
!= NULL
&& *next_io
== NULL
);
10498 ASSERT(l2arc_log_blkptr_valid(dev
, this_lbp
));
10501 * Check to see if we have issued the IO for this log block in a
10502 * previous run. If not, this is the first call, so issue it now.
10504 if (this_io
== NULL
) {
10505 this_io
= l2arc_log_blk_fetch(dev
->l2ad_vdev
, this_lbp
,
10510 * Peek to see if we can start issuing the next IO immediately.
10512 if (l2arc_log_blkptr_valid(dev
, next_lbp
)) {
10514 * Start issuing IO for the next log block early - this
10515 * should help keep the L2ARC device busy while we
10516 * decompress and restore this log block.
10518 *next_io
= l2arc_log_blk_fetch(dev
->l2ad_vdev
, next_lbp
,
10522 /* Wait for the IO to read this log block to complete */
10523 if ((err
= zio_wait(this_io
)) != 0) {
10524 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_io_errors
);
10525 zfs_dbgmsg("L2ARC IO error (%d) while reading log block, "
10526 "offset: %llu, vdev guid: %llu", err
,
10527 (u_longlong_t
)this_lbp
->lbp_daddr
,
10528 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10533 * Make sure the buffer checks out.
10534 * L2BLK_GET_PSIZE returns aligned size for log blocks.
10536 asize
= L2BLK_GET_PSIZE((this_lbp
)->lbp_prop
);
10537 fletcher_4_native(this_lb
, asize
, NULL
, &cksum
);
10538 if (!ZIO_CHECKSUM_EQUAL(cksum
, this_lbp
->lbp_cksum
)) {
10539 ARCSTAT_BUMP(arcstat_l2_rebuild_abort_cksum_lb_errors
);
10540 zfs_dbgmsg("L2ARC log block cksum failed, offset: %llu, "
10541 "vdev guid: %llu, l2ad_hand: %llu, l2ad_evict: %llu",
10542 (u_longlong_t
)this_lbp
->lbp_daddr
,
10543 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
,
10544 (u_longlong_t
)dev
->l2ad_hand
,
10545 (u_longlong_t
)dev
->l2ad_evict
);
10546 err
= SET_ERROR(ECKSUM
);
10550 /* Now we can take our time decoding this buffer */
10551 switch (L2BLK_GET_COMPRESS((this_lbp
)->lbp_prop
)) {
10552 case ZIO_COMPRESS_OFF
:
10554 case ZIO_COMPRESS_LZ4
:
10555 abd
= abd_alloc_for_io(asize
, B_TRUE
);
10556 abd_copy_from_buf_off(abd
, this_lb
, 0, asize
);
10557 if ((err
= zio_decompress_data(
10558 L2BLK_GET_COMPRESS((this_lbp
)->lbp_prop
),
10559 abd
, this_lb
, asize
, sizeof (*this_lb
), NULL
)) != 0) {
10560 err
= SET_ERROR(EINVAL
);
10565 err
= SET_ERROR(EINVAL
);
10568 if (this_lb
->lb_magic
== BSWAP_64(L2ARC_LOG_BLK_MAGIC
))
10569 byteswap_uint64_array(this_lb
, sizeof (*this_lb
));
10570 if (this_lb
->lb_magic
!= L2ARC_LOG_BLK_MAGIC
) {
10571 err
= SET_ERROR(EINVAL
);
10575 /* Abort an in-flight fetch I/O in case of error */
10576 if (err
!= 0 && *next_io
!= NULL
) {
10577 l2arc_log_blk_fetch_abort(*next_io
);
10586 * Restores the payload of a log block to ARC. This creates empty ARC hdr
10587 * entries which only contain an l2arc hdr, essentially restoring the
10588 * buffers to their L2ARC evicted state. This function also updates space
10589 * usage on the L2ARC vdev to make sure it tracks restored buffers.
10592 l2arc_log_blk_restore(l2arc_dev_t
*dev
, const l2arc_log_blk_phys_t
*lb
,
10595 uint64_t size
= 0, asize
= 0;
10596 uint64_t log_entries
= dev
->l2ad_log_entries
;
10599 * Usually arc_adapt() is called only for data, not headers, but
10600 * since we may allocate significant amount of memory here, let ARC
10603 arc_adapt(log_entries
* HDR_L2ONLY_SIZE
, arc_l2c_only
);
10605 for (int i
= log_entries
- 1; i
>= 0; i
--) {
10607 * Restore goes in the reverse temporal direction to preserve
10608 * correct temporal ordering of buffers in the l2ad_buflist.
10609 * l2arc_hdr_restore also does a list_insert_tail instead of
10610 * list_insert_head on the l2ad_buflist:
10612 * LIST l2ad_buflist LIST
10613 * HEAD <------ (time) ------ TAIL
10614 * direction +-----+-----+-----+-----+-----+ direction
10615 * of l2arc <== | buf | buf | buf | buf | buf | ===> of rebuild
10616 * fill +-----+-----+-----+-----+-----+
10620 * l2arc_feed_thread l2arc_rebuild
10621 * will place new bufs here restores bufs here
10623 * During l2arc_rebuild() the device is not used by
10624 * l2arc_feed_thread() as dev->l2ad_rebuild is set to true.
10626 size
+= L2BLK_GET_LSIZE((&lb
->lb_entries
[i
])->le_prop
);
10627 asize
+= vdev_psize_to_asize(dev
->l2ad_vdev
,
10628 L2BLK_GET_PSIZE((&lb
->lb_entries
[i
])->le_prop
));
10629 l2arc_hdr_restore(&lb
->lb_entries
[i
], dev
);
10633 * Record rebuild stats:
10634 * size Logical size of restored buffers in the L2ARC
10635 * asize Aligned size of restored buffers in the L2ARC
10637 ARCSTAT_INCR(arcstat_l2_rebuild_size
, size
);
10638 ARCSTAT_INCR(arcstat_l2_rebuild_asize
, asize
);
10639 ARCSTAT_INCR(arcstat_l2_rebuild_bufs
, log_entries
);
10640 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize
, lb_asize
);
10641 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio
, asize
/ lb_asize
);
10642 ARCSTAT_BUMP(arcstat_l2_rebuild_log_blks
);
10646 * Restores a single ARC buf hdr from a log entry. The ARC buffer is put
10647 * into a state indicating that it has been evicted to L2ARC.
10650 l2arc_hdr_restore(const l2arc_log_ent_phys_t
*le
, l2arc_dev_t
*dev
)
10652 arc_buf_hdr_t
*hdr
, *exists
;
10653 kmutex_t
*hash_lock
;
10654 arc_buf_contents_t type
= L2BLK_GET_TYPE((le
)->le_prop
);
10658 * Do all the allocation before grabbing any locks, this lets us
10659 * sleep if memory is full and we don't have to deal with failed
10662 hdr
= arc_buf_alloc_l2only(L2BLK_GET_LSIZE((le
)->le_prop
), type
,
10663 dev
, le
->le_dva
, le
->le_daddr
,
10664 L2BLK_GET_PSIZE((le
)->le_prop
), le
->le_birth
,
10665 L2BLK_GET_COMPRESS((le
)->le_prop
), le
->le_complevel
,
10666 L2BLK_GET_PROTECTED((le
)->le_prop
),
10667 L2BLK_GET_PREFETCH((le
)->le_prop
),
10668 L2BLK_GET_STATE((le
)->le_prop
));
10669 asize
= vdev_psize_to_asize(dev
->l2ad_vdev
,
10670 L2BLK_GET_PSIZE((le
)->le_prop
));
10673 * vdev_space_update() has to be called before arc_hdr_destroy() to
10674 * avoid underflow since the latter also calls vdev_space_update().
10676 l2arc_hdr_arcstats_increment(hdr
);
10677 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10679 mutex_enter(&dev
->l2ad_mtx
);
10680 list_insert_tail(&dev
->l2ad_buflist
, hdr
);
10681 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
, arc_hdr_size(hdr
), hdr
);
10682 mutex_exit(&dev
->l2ad_mtx
);
10684 exists
= buf_hash_insert(hdr
, &hash_lock
);
10686 /* Buffer was already cached, no need to restore it. */
10687 arc_hdr_destroy(hdr
);
10689 * If the buffer is already cached, check whether it has
10690 * L2ARC metadata. If not, enter them and update the flag.
10691 * This is important is case of onlining a cache device, since
10692 * we previously evicted all L2ARC metadata from ARC.
10694 if (!HDR_HAS_L2HDR(exists
)) {
10695 arc_hdr_set_flags(exists
, ARC_FLAG_HAS_L2HDR
);
10696 exists
->b_l2hdr
.b_dev
= dev
;
10697 exists
->b_l2hdr
.b_daddr
= le
->le_daddr
;
10698 exists
->b_l2hdr
.b_arcs_state
=
10699 L2BLK_GET_STATE((le
)->le_prop
);
10700 mutex_enter(&dev
->l2ad_mtx
);
10701 list_insert_tail(&dev
->l2ad_buflist
, exists
);
10702 (void) zfs_refcount_add_many(&dev
->l2ad_alloc
,
10703 arc_hdr_size(exists
), exists
);
10704 mutex_exit(&dev
->l2ad_mtx
);
10705 l2arc_hdr_arcstats_increment(exists
);
10706 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10708 ARCSTAT_BUMP(arcstat_l2_rebuild_bufs_precached
);
10711 mutex_exit(hash_lock
);
10715 * Starts an asynchronous read IO to read a log block. This is used in log
10716 * block reconstruction to start reading the next block before we are done
10717 * decoding and reconstructing the current block, to keep the l2arc device
10718 * nice and hot with read IO to process.
10719 * The returned zio will contain a newly allocated memory buffers for the IO
10720 * data which should then be freed by the caller once the zio is no longer
10721 * needed (i.e. due to it having completed). If you wish to abort this
10722 * zio, you should do so using l2arc_log_blk_fetch_abort, which takes
10723 * care of disposing of the allocated buffers correctly.
10726 l2arc_log_blk_fetch(vdev_t
*vd
, const l2arc_log_blkptr_t
*lbp
,
10727 l2arc_log_blk_phys_t
*lb
)
10731 l2arc_read_callback_t
*cb
;
10733 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10734 asize
= L2BLK_GET_PSIZE((lbp
)->lbp_prop
);
10735 ASSERT(asize
<= sizeof (l2arc_log_blk_phys_t
));
10737 cb
= kmem_zalloc(sizeof (l2arc_read_callback_t
), KM_SLEEP
);
10738 cb
->l2rcb_abd
= abd_get_from_buf(lb
, asize
);
10739 pio
= zio_root(vd
->vdev_spa
, l2arc_blk_fetch_done
, cb
,
10740 ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_CANFAIL
| ZIO_FLAG_DONT_PROPAGATE
|
10741 ZIO_FLAG_DONT_RETRY
);
10742 (void) zio_nowait(zio_read_phys(pio
, vd
, lbp
->lbp_daddr
, asize
,
10743 cb
->l2rcb_abd
, ZIO_CHECKSUM_OFF
, NULL
, NULL
,
10744 ZIO_PRIORITY_ASYNC_READ
, ZIO_FLAG_DONT_CACHE
| ZIO_FLAG_CANFAIL
|
10745 ZIO_FLAG_DONT_PROPAGATE
| ZIO_FLAG_DONT_RETRY
, B_FALSE
));
10751 * Aborts a zio returned from l2arc_log_blk_fetch and frees the data
10752 * buffers allocated for it.
10755 l2arc_log_blk_fetch_abort(zio_t
*zio
)
10757 (void) zio_wait(zio
);
10761 * Creates a zio to update the device header on an l2arc device.
10764 l2arc_dev_hdr_update(l2arc_dev_t
*dev
)
10766 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10767 const uint64_t l2dhdr_asize
= dev
->l2ad_dev_hdr_asize
;
10771 VERIFY(spa_config_held(dev
->l2ad_spa
, SCL_STATE_ALL
, RW_READER
));
10773 l2dhdr
->dh_magic
= L2ARC_DEV_HDR_MAGIC
;
10774 l2dhdr
->dh_version
= L2ARC_PERSISTENT_VERSION
;
10775 l2dhdr
->dh_spa_guid
= spa_guid(dev
->l2ad_vdev
->vdev_spa
);
10776 l2dhdr
->dh_vdev_guid
= dev
->l2ad_vdev
->vdev_guid
;
10777 l2dhdr
->dh_log_entries
= dev
->l2ad_log_entries
;
10778 l2dhdr
->dh_evict
= dev
->l2ad_evict
;
10779 l2dhdr
->dh_start
= dev
->l2ad_start
;
10780 l2dhdr
->dh_end
= dev
->l2ad_end
;
10781 l2dhdr
->dh_lb_asize
= zfs_refcount_count(&dev
->l2ad_lb_asize
);
10782 l2dhdr
->dh_lb_count
= zfs_refcount_count(&dev
->l2ad_lb_count
);
10783 l2dhdr
->dh_flags
= 0;
10784 l2dhdr
->dh_trim_action_time
= dev
->l2ad_vdev
->vdev_trim_action_time
;
10785 l2dhdr
->dh_trim_state
= dev
->l2ad_vdev
->vdev_trim_state
;
10786 if (dev
->l2ad_first
)
10787 l2dhdr
->dh_flags
|= L2ARC_DEV_HDR_EVICT_FIRST
;
10789 abd
= abd_get_from_buf(l2dhdr
, l2dhdr_asize
);
10791 err
= zio_wait(zio_write_phys(NULL
, dev
->l2ad_vdev
,
10792 VDEV_LABEL_START_SIZE
, l2dhdr_asize
, abd
, ZIO_CHECKSUM_LABEL
, NULL
,
10793 NULL
, ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_CANFAIL
, B_FALSE
));
10798 zfs_dbgmsg("L2ARC IO error (%d) while writing device header, "
10799 "vdev guid: %llu", err
,
10800 (u_longlong_t
)dev
->l2ad_vdev
->vdev_guid
);
10805 * Commits a log block to the L2ARC device. This routine is invoked from
10806 * l2arc_write_buffers when the log block fills up.
10807 * This function allocates some memory to temporarily hold the serialized
10808 * buffer to be written. This is then released in l2arc_write_done.
10811 l2arc_log_blk_commit(l2arc_dev_t
*dev
, zio_t
*pio
, l2arc_write_callback_t
*cb
)
10813 l2arc_log_blk_phys_t
*lb
= &dev
->l2ad_log_blk
;
10814 l2arc_dev_hdr_phys_t
*l2dhdr
= dev
->l2ad_dev_hdr
;
10815 uint64_t psize
, asize
;
10817 l2arc_lb_abd_buf_t
*abd_buf
;
10819 l2arc_lb_ptr_buf_t
*lb_ptr_buf
;
10821 VERIFY3S(dev
->l2ad_log_ent_idx
, ==, dev
->l2ad_log_entries
);
10823 tmpbuf
= zio_buf_alloc(sizeof (*lb
));
10824 abd_buf
= zio_buf_alloc(sizeof (*abd_buf
));
10825 abd_buf
->abd
= abd_get_from_buf(lb
, sizeof (*lb
));
10826 lb_ptr_buf
= kmem_zalloc(sizeof (l2arc_lb_ptr_buf_t
), KM_SLEEP
);
10827 lb_ptr_buf
->lb_ptr
= kmem_zalloc(sizeof (l2arc_log_blkptr_t
), KM_SLEEP
);
10829 /* link the buffer into the block chain */
10830 lb
->lb_prev_lbp
= l2dhdr
->dh_start_lbps
[1];
10831 lb
->lb_magic
= L2ARC_LOG_BLK_MAGIC
;
10834 * l2arc_log_blk_commit() may be called multiple times during a single
10835 * l2arc_write_buffers() call. Save the allocated abd buffers in a list
10836 * so we can free them in l2arc_write_done() later on.
10838 list_insert_tail(&cb
->l2wcb_abd_list
, abd_buf
);
10840 /* try to compress the buffer */
10841 psize
= zio_compress_data(ZIO_COMPRESS_LZ4
,
10842 abd_buf
->abd
, tmpbuf
, sizeof (*lb
), 0);
10844 /* a log block is never entirely zero */
10845 ASSERT(psize
!= 0);
10846 asize
= vdev_psize_to_asize(dev
->l2ad_vdev
, psize
);
10847 ASSERT(asize
<= sizeof (*lb
));
10850 * Update the start log block pointer in the device header to point
10851 * to the log block we're about to write.
10853 l2dhdr
->dh_start_lbps
[1] = l2dhdr
->dh_start_lbps
[0];
10854 l2dhdr
->dh_start_lbps
[0].lbp_daddr
= dev
->l2ad_hand
;
10855 l2dhdr
->dh_start_lbps
[0].lbp_payload_asize
=
10856 dev
->l2ad_log_blk_payload_asize
;
10857 l2dhdr
->dh_start_lbps
[0].lbp_payload_start
=
10858 dev
->l2ad_log_blk_payload_start
;
10860 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
, sizeof (*lb
));
10862 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
, asize
);
10863 L2BLK_SET_CHECKSUM(
10864 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10865 ZIO_CHECKSUM_FLETCHER_4
);
10866 if (asize
< sizeof (*lb
)) {
10867 /* compression succeeded */
10868 memset(tmpbuf
+ psize
, 0, asize
- psize
);
10869 L2BLK_SET_COMPRESS(
10870 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10873 /* compression failed */
10874 memcpy(tmpbuf
, lb
, sizeof (*lb
));
10875 L2BLK_SET_COMPRESS(
10876 (&l2dhdr
->dh_start_lbps
[0])->lbp_prop
,
10880 /* checksum what we're about to write */
10881 fletcher_4_native(tmpbuf
, asize
, NULL
,
10882 &l2dhdr
->dh_start_lbps
[0].lbp_cksum
);
10884 abd_free(abd_buf
->abd
);
10886 /* perform the write itself */
10887 abd_buf
->abd
= abd_get_from_buf(tmpbuf
, sizeof (*lb
));
10888 abd_take_ownership_of_buf(abd_buf
->abd
, B_TRUE
);
10889 wzio
= zio_write_phys(pio
, dev
->l2ad_vdev
, dev
->l2ad_hand
,
10890 asize
, abd_buf
->abd
, ZIO_CHECKSUM_OFF
, NULL
, NULL
,
10891 ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_CANFAIL
, B_FALSE
);
10892 DTRACE_PROBE2(l2arc__write
, vdev_t
*, dev
->l2ad_vdev
, zio_t
*, wzio
);
10893 (void) zio_nowait(wzio
);
10895 dev
->l2ad_hand
+= asize
;
10897 * Include the committed log block's pointer in the list of pointers
10898 * to log blocks present in the L2ARC device.
10900 memcpy(lb_ptr_buf
->lb_ptr
, &l2dhdr
->dh_start_lbps
[0],
10901 sizeof (l2arc_log_blkptr_t
));
10902 mutex_enter(&dev
->l2ad_mtx
);
10903 list_insert_head(&dev
->l2ad_lbptr_list
, lb_ptr_buf
);
10904 ARCSTAT_INCR(arcstat_l2_log_blk_asize
, asize
);
10905 ARCSTAT_BUMP(arcstat_l2_log_blk_count
);
10906 zfs_refcount_add_many(&dev
->l2ad_lb_asize
, asize
, lb_ptr_buf
);
10907 zfs_refcount_add(&dev
->l2ad_lb_count
, lb_ptr_buf
);
10908 mutex_exit(&dev
->l2ad_mtx
);
10909 vdev_space_update(dev
->l2ad_vdev
, asize
, 0, 0);
10911 /* bump the kstats */
10912 ARCSTAT_INCR(arcstat_l2_write_bytes
, asize
);
10913 ARCSTAT_BUMP(arcstat_l2_log_blk_writes
);
10914 ARCSTAT_F_AVG(arcstat_l2_log_blk_avg_asize
, asize
);
10915 ARCSTAT_F_AVG(arcstat_l2_data_to_meta_ratio
,
10916 dev
->l2ad_log_blk_payload_asize
/ asize
);
10918 /* start a new log block */
10919 dev
->l2ad_log_ent_idx
= 0;
10920 dev
->l2ad_log_blk_payload_asize
= 0;
10921 dev
->l2ad_log_blk_payload_start
= 0;
10925 * Validates an L2ARC log block address to make sure that it can be read
10926 * from the provided L2ARC device.
10929 l2arc_log_blkptr_valid(l2arc_dev_t
*dev
, const l2arc_log_blkptr_t
*lbp
)
10931 /* L2BLK_GET_PSIZE returns aligned size for log blocks */
10932 uint64_t asize
= L2BLK_GET_PSIZE((lbp
)->lbp_prop
);
10933 uint64_t end
= lbp
->lbp_daddr
+ asize
- 1;
10934 uint64_t start
= lbp
->lbp_payload_start
;
10935 boolean_t evicted
= B_FALSE
;
10938 * A log block is valid if all of the following conditions are true:
10939 * - it fits entirely (including its payload) between l2ad_start and
10941 * - it has a valid size
10942 * - neither the log block itself nor part of its payload was evicted
10943 * by l2arc_evict():
10945 * l2ad_hand l2ad_evict
10950 * l2ad_start ============================================ l2ad_end
10951 * --------------------------||||
10958 l2arc_range_check_overlap(start
, end
, dev
->l2ad_hand
) ||
10959 l2arc_range_check_overlap(start
, end
, dev
->l2ad_evict
) ||
10960 l2arc_range_check_overlap(dev
->l2ad_hand
, dev
->l2ad_evict
, start
) ||
10961 l2arc_range_check_overlap(dev
->l2ad_hand
, dev
->l2ad_evict
, end
);
10963 return (start
>= dev
->l2ad_start
&& end
<= dev
->l2ad_end
&&
10964 asize
> 0 && asize
<= sizeof (l2arc_log_blk_phys_t
) &&
10965 (!evicted
|| dev
->l2ad_first
));
10969 * Inserts ARC buffer header `hdr' into the current L2ARC log block on
10970 * the device. The buffer being inserted must be present in L2ARC.
10971 * Returns B_TRUE if the L2ARC log block is full and needs to be committed
10972 * to L2ARC, or B_FALSE if it still has room for more ARC buffers.
10975 l2arc_log_blk_insert(l2arc_dev_t
*dev
, const arc_buf_hdr_t
*hdr
)
10977 l2arc_log_blk_phys_t
*lb
= &dev
->l2ad_log_blk
;
10978 l2arc_log_ent_phys_t
*le
;
10980 if (dev
->l2ad_log_entries
== 0)
10983 int index
= dev
->l2ad_log_ent_idx
++;
10985 ASSERT3S(index
, <, dev
->l2ad_log_entries
);
10986 ASSERT(HDR_HAS_L2HDR(hdr
));
10988 le
= &lb
->lb_entries
[index
];
10989 memset(le
, 0, sizeof (*le
));
10990 le
->le_dva
= hdr
->b_dva
;
10991 le
->le_birth
= hdr
->b_birth
;
10992 le
->le_daddr
= hdr
->b_l2hdr
.b_daddr
;
10994 dev
->l2ad_log_blk_payload_start
= le
->le_daddr
;
10995 L2BLK_SET_LSIZE((le
)->le_prop
, HDR_GET_LSIZE(hdr
));
10996 L2BLK_SET_PSIZE((le
)->le_prop
, HDR_GET_PSIZE(hdr
));
10997 L2BLK_SET_COMPRESS((le
)->le_prop
, HDR_GET_COMPRESS(hdr
));
10998 le
->le_complevel
= hdr
->b_complevel
;
10999 L2BLK_SET_TYPE((le
)->le_prop
, hdr
->b_type
);
11000 L2BLK_SET_PROTECTED((le
)->le_prop
, !!(HDR_PROTECTED(hdr
)));
11001 L2BLK_SET_PREFETCH((le
)->le_prop
, !!(HDR_PREFETCH(hdr
)));
11002 L2BLK_SET_STATE((le
)->le_prop
, hdr
->b_l1hdr
.b_state
->arcs_state
);
11004 dev
->l2ad_log_blk_payload_asize
+= vdev_psize_to_asize(dev
->l2ad_vdev
,
11005 HDR_GET_PSIZE(hdr
));
11007 return (dev
->l2ad_log_ent_idx
== dev
->l2ad_log_entries
);
11011 * Checks whether a given L2ARC device address sits in a time-sequential
11012 * range. The trick here is that the L2ARC is a rotary buffer, so we can't
11013 * just do a range comparison, we need to handle the situation in which the
11014 * range wraps around the end of the L2ARC device. Arguments:
11015 * bottom -- Lower end of the range to check (written to earlier).
11016 * top -- Upper end of the range to check (written to later).
11017 * check -- The address for which we want to determine if it sits in
11018 * between the top and bottom.
11020 * The 3-way conditional below represents the following cases:
11022 * bottom < top : Sequentially ordered case:
11023 * <check>--------+-------------------+
11024 * | (overlap here?) |
11026 * |---------------<bottom>============<top>--------------|
11028 * bottom > top: Looped-around case:
11029 * <check>--------+------------------+
11030 * | (overlap here?) |
11032 * |===============<top>---------------<bottom>===========|
11035 * +---------------+---------<check>
11037 * top == bottom : Just a single address comparison.
11040 l2arc_range_check_overlap(uint64_t bottom
, uint64_t top
, uint64_t check
)
11043 return (bottom
<= check
&& check
<= top
);
11044 else if (bottom
> top
)
11045 return (check
<= top
|| bottom
<= check
);
11047 return (check
== top
);
11050 EXPORT_SYMBOL(arc_buf_size
);
11051 EXPORT_SYMBOL(arc_write
);
11052 EXPORT_SYMBOL(arc_read
);
11053 EXPORT_SYMBOL(arc_buf_info
);
11054 EXPORT_SYMBOL(arc_getbuf_func
);
11055 EXPORT_SYMBOL(arc_add_prune_callback
);
11056 EXPORT_SYMBOL(arc_remove_prune_callback
);
11058 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min
, param_set_arc_min
,
11059 param_get_long
, ZMOD_RW
, "Minimum ARC size in bytes");
11061 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, max
, param_set_arc_max
,
11062 param_get_long
, ZMOD_RW
, "Maximum ARC size in bytes");
11064 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, meta_limit
, param_set_arc_long
,
11065 param_get_long
, ZMOD_RW
, "Metadata limit for ARC size in bytes");
11067 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, meta_limit_percent
,
11068 param_set_arc_long
, param_get_long
, ZMOD_RW
,
11069 "Percent of ARC size for ARC meta limit");
11071 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, meta_min
, param_set_arc_long
,
11072 param_get_long
, ZMOD_RW
, "Minimum ARC metadata size in bytes");
11074 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_prune
, INT
, ZMOD_RW
,
11075 "Meta objects to scan for prune");
11077 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_adjust_restarts
, INT
, ZMOD_RW
,
11078 "Limit number of restarts in arc_evict_meta");
11080 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, meta_strategy
, INT
, ZMOD_RW
,
11081 "Meta reclaim strategy");
11083 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, grow_retry
, param_set_arc_int
,
11084 param_get_int
, ZMOD_RW
, "Seconds before growing ARC size");
11086 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, p_dampener_disable
, INT
, ZMOD_RW
,
11087 "Disable arc_p adapt dampener");
11089 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, shrink_shift
, param_set_arc_int
,
11090 param_get_int
, ZMOD_RW
, "log2(fraction of ARC to reclaim)");
11092 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, pc_percent
, UINT
, ZMOD_RW
,
11093 "Percent of pagecache to reclaim ARC to");
11095 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, p_min_shift
, param_set_arc_int
,
11096 param_get_int
, ZMOD_RW
, "arc_c shift to calc min/max arc_p");
11098 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, average_blocksize
, INT
, ZMOD_RD
,
11099 "Target average block size");
11101 ZFS_MODULE_PARAM(zfs
, zfs_
, compressed_arc_enabled
, INT
, ZMOD_RW
,
11102 "Disable compressed ARC buffers");
11104 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min_prefetch_ms
, param_set_arc_int
,
11105 param_get_int
, ZMOD_RW
, "Min life of prefetch block in ms");
11107 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, min_prescient_prefetch_ms
,
11108 param_set_arc_int
, param_get_int
, ZMOD_RW
,
11109 "Min life of prescient prefetched block in ms");
11111 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, write_max
, ULONG
, ZMOD_RW
,
11112 "Max write bytes per interval");
11114 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, write_boost
, ULONG
, ZMOD_RW
,
11115 "Extra write bytes during device warmup");
11117 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, headroom
, ULONG
, ZMOD_RW
,
11118 "Number of max device writes to precache");
11120 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, headroom_boost
, ULONG
, ZMOD_RW
,
11121 "Compressed l2arc_headroom multiplier");
11123 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, trim_ahead
, ULONG
, ZMOD_RW
,
11124 "TRIM ahead L2ARC write size multiplier");
11126 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_secs
, ULONG
, ZMOD_RW
,
11127 "Seconds between L2ARC writing");
11129 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_min_ms
, ULONG
, ZMOD_RW
,
11130 "Min feed interval in milliseconds");
11132 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, noprefetch
, INT
, ZMOD_RW
,
11133 "Skip caching prefetched buffers");
11135 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, feed_again
, INT
, ZMOD_RW
,
11136 "Turbo L2ARC warmup");
11138 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, norw
, INT
, ZMOD_RW
,
11139 "No reads during writes");
11141 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, meta_percent
, INT
, ZMOD_RW
,
11142 "Percent of ARC size allowed for L2ARC-only headers");
11144 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, rebuild_enabled
, INT
, ZMOD_RW
,
11145 "Rebuild the L2ARC when importing a pool");
11147 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, rebuild_blocks_min_l2size
, ULONG
, ZMOD_RW
,
11148 "Min size in bytes to write rebuild log blocks in L2ARC");
11150 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, mfuonly
, INT
, ZMOD_RW
,
11151 "Cache only MFU data from ARC into L2ARC");
11153 ZFS_MODULE_PARAM(zfs_l2arc
, l2arc_
, exclude_special
, INT
, ZMOD_RW
,
11154 "Exclude dbufs on special vdevs from being cached to L2ARC if set.");
11156 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, lotsfree_percent
, param_set_arc_int
,
11157 param_get_int
, ZMOD_RW
, "System free memory I/O throttle in bytes");
11159 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, sys_free
, param_set_arc_long
,
11160 param_get_long
, ZMOD_RW
, "System free memory target size in bytes");
11162 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, dnode_limit
, param_set_arc_long
,
11163 param_get_long
, ZMOD_RW
, "Minimum bytes of dnodes in ARC");
11165 ZFS_MODULE_PARAM_CALL(zfs_arc
, zfs_arc_
, dnode_limit_percent
,
11166 param_set_arc_long
, param_get_long
, ZMOD_RW
,
11167 "Percent of ARC meta buffers for dnodes");
11169 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, dnode_reduce_percent
, ULONG
, ZMOD_RW
,
11170 "Percentage of excess dnodes to try to unpin");
11172 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, eviction_pct
, INT
, ZMOD_RW
,
11173 "When full, ARC allocation waits for eviction of this % of alloc size");
11175 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, evict_batch_limit
, INT
, ZMOD_RW
,
11176 "The number of headers to evict per sublist before moving to the next");
11178 ZFS_MODULE_PARAM(zfs_arc
, zfs_arc_
, prune_task_threads
, INT
, ZMOD_RW
,
11179 "Number of arc_prune threads");