Fix -Wformat-overflow warning in zfs_project_handle_dir()
[zfs.git] / module / zfs / dbuf.c
blobd10e87652e6aef239f5a6425594cc60f3378170d
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
31 #include <sys/zfs_context.h>
32 #include <sys/arc.h>
33 #include <sys/dmu.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_impl.h>
36 #include <sys/dbuf.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dmu_tx.h>
41 #include <sys/spa.h>
42 #include <sys/zio.h>
43 #include <sys/dmu_zfetch.h>
44 #include <sys/sa.h>
45 #include <sys/sa_impl.h>
46 #include <sys/zfeature.h>
47 #include <sys/blkptr.h>
48 #include <sys/range_tree.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/callb.h>
51 #include <sys/abd.h>
52 #include <sys/vdev.h>
53 #include <cityhash.h>
54 #include <sys/spa_impl.h>
55 #include <sys/wmsum.h>
56 #include <sys/vdev_impl.h>
58 static kstat_t *dbuf_ksp;
60 typedef struct dbuf_stats {
62 * Various statistics about the size of the dbuf cache.
64 kstat_named_t cache_count;
65 kstat_named_t cache_size_bytes;
66 kstat_named_t cache_size_bytes_max;
68 * Statistics regarding the bounds on the dbuf cache size.
70 kstat_named_t cache_target_bytes;
71 kstat_named_t cache_lowater_bytes;
72 kstat_named_t cache_hiwater_bytes;
74 * Total number of dbuf cache evictions that have occurred.
76 kstat_named_t cache_total_evicts;
78 * The distribution of dbuf levels in the dbuf cache and
79 * the total size of all dbufs at each level.
81 kstat_named_t cache_levels[DN_MAX_LEVELS];
82 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
84 * Statistics about the dbuf hash table.
86 kstat_named_t hash_hits;
87 kstat_named_t hash_misses;
88 kstat_named_t hash_collisions;
89 kstat_named_t hash_elements;
90 kstat_named_t hash_elements_max;
92 * Number of sublists containing more than one dbuf in the dbuf
93 * hash table. Keep track of the longest hash chain.
95 kstat_named_t hash_chains;
96 kstat_named_t hash_chain_max;
98 * Number of times a dbuf_create() discovers that a dbuf was
99 * already created and in the dbuf hash table.
101 kstat_named_t hash_insert_race;
103 * Statistics about the size of the metadata dbuf cache.
105 kstat_named_t metadata_cache_count;
106 kstat_named_t metadata_cache_size_bytes;
107 kstat_named_t metadata_cache_size_bytes_max;
109 * For diagnostic purposes, this is incremented whenever we can't add
110 * something to the metadata cache because it's full, and instead put
111 * the data in the regular dbuf cache.
113 kstat_named_t metadata_cache_overflow;
114 } dbuf_stats_t;
116 dbuf_stats_t dbuf_stats = {
117 { "cache_count", KSTAT_DATA_UINT64 },
118 { "cache_size_bytes", KSTAT_DATA_UINT64 },
119 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
120 { "cache_target_bytes", KSTAT_DATA_UINT64 },
121 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
122 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
123 { "cache_total_evicts", KSTAT_DATA_UINT64 },
124 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
125 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
126 { "hash_hits", KSTAT_DATA_UINT64 },
127 { "hash_misses", KSTAT_DATA_UINT64 },
128 { "hash_collisions", KSTAT_DATA_UINT64 },
129 { "hash_elements", KSTAT_DATA_UINT64 },
130 { "hash_elements_max", KSTAT_DATA_UINT64 },
131 { "hash_chains", KSTAT_DATA_UINT64 },
132 { "hash_chain_max", KSTAT_DATA_UINT64 },
133 { "hash_insert_race", KSTAT_DATA_UINT64 },
134 { "metadata_cache_count", KSTAT_DATA_UINT64 },
135 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
136 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
137 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
140 struct {
141 wmsum_t cache_count;
142 wmsum_t cache_total_evicts;
143 wmsum_t cache_levels[DN_MAX_LEVELS];
144 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
145 wmsum_t hash_hits;
146 wmsum_t hash_misses;
147 wmsum_t hash_collisions;
148 wmsum_t hash_chains;
149 wmsum_t hash_insert_race;
150 wmsum_t metadata_cache_count;
151 wmsum_t metadata_cache_overflow;
152 } dbuf_sums;
154 #define DBUF_STAT_INCR(stat, val) \
155 wmsum_add(&dbuf_sums.stat, val);
156 #define DBUF_STAT_DECR(stat, val) \
157 DBUF_STAT_INCR(stat, -(val));
158 #define DBUF_STAT_BUMP(stat) \
159 DBUF_STAT_INCR(stat, 1);
160 #define DBUF_STAT_BUMPDOWN(stat) \
161 DBUF_STAT_INCR(stat, -1);
162 #define DBUF_STAT_MAX(stat, v) { \
163 uint64_t _m; \
164 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
165 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
166 continue; \
169 static boolean_t dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx);
170 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
171 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
172 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags);
175 * Global data structures and functions for the dbuf cache.
177 static kmem_cache_t *dbuf_kmem_cache;
178 static taskq_t *dbu_evict_taskq;
180 static kthread_t *dbuf_cache_evict_thread;
181 static kmutex_t dbuf_evict_lock;
182 static kcondvar_t dbuf_evict_cv;
183 static boolean_t dbuf_evict_thread_exit;
186 * There are two dbuf caches; each dbuf can only be in one of them at a time.
188 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
189 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
190 * that represent the metadata that describes filesystems/snapshots/
191 * bookmarks/properties/etc. We only evict from this cache when we export a
192 * pool, to short-circuit as much I/O as possible for all administrative
193 * commands that need the metadata. There is no eviction policy for this
194 * cache, because we try to only include types in it which would occupy a
195 * very small amount of space per object but create a large impact on the
196 * performance of these commands. Instead, after it reaches a maximum size
197 * (which should only happen on very small memory systems with a very large
198 * number of filesystem objects), we stop taking new dbufs into the
199 * metadata cache, instead putting them in the normal dbuf cache.
201 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
202 * are not currently held but have been recently released. These dbufs
203 * are not eligible for arc eviction until they are aged out of the cache.
204 * Dbufs that are aged out of the cache will be immediately destroyed and
205 * become eligible for arc eviction.
207 * Dbufs are added to these caches once the last hold is released. If a dbuf is
208 * later accessed and still exists in the dbuf cache, then it will be removed
209 * from the cache and later re-added to the head of the cache.
211 * If a given dbuf meets the requirements for the metadata cache, it will go
212 * there, otherwise it will be considered for the generic LRU dbuf cache. The
213 * caches and the refcounts tracking their sizes are stored in an array indexed
214 * by those caches' matching enum values (from dbuf_cached_state_t).
216 typedef struct dbuf_cache {
217 multilist_t cache;
218 zfs_refcount_t size ____cacheline_aligned;
219 } dbuf_cache_t;
220 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
222 /* Size limits for the caches */
223 static unsigned long dbuf_cache_max_bytes = ULONG_MAX;
224 static unsigned long dbuf_metadata_cache_max_bytes = ULONG_MAX;
226 /* Set the default sizes of the caches to log2 fraction of arc size */
227 static int dbuf_cache_shift = 5;
228 static int dbuf_metadata_cache_shift = 6;
230 static unsigned long dbuf_cache_target_bytes(void);
231 static unsigned long dbuf_metadata_cache_target_bytes(void);
234 * The LRU dbuf cache uses a three-stage eviction policy:
235 * - A low water marker designates when the dbuf eviction thread
236 * should stop evicting from the dbuf cache.
237 * - When we reach the maximum size (aka mid water mark), we
238 * signal the eviction thread to run.
239 * - The high water mark indicates when the eviction thread
240 * is unable to keep up with the incoming load and eviction must
241 * happen in the context of the calling thread.
243 * The dbuf cache:
244 * (max size)
245 * low water mid water hi water
246 * +----------------------------------------+----------+----------+
247 * | | | |
248 * | | | |
249 * | | | |
250 * | | | |
251 * +----------------------------------------+----------+----------+
252 * stop signal evict
253 * evicting eviction directly
254 * thread
256 * The high and low water marks indicate the operating range for the eviction
257 * thread. The low water mark is, by default, 90% of the total size of the
258 * cache and the high water mark is at 110% (both of these percentages can be
259 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
260 * respectively). The eviction thread will try to ensure that the cache remains
261 * within this range by waking up every second and checking if the cache is
262 * above the low water mark. The thread can also be woken up by callers adding
263 * elements into the cache if the cache is larger than the mid water (i.e max
264 * cache size). Once the eviction thread is woken up and eviction is required,
265 * it will continue evicting buffers until it's able to reduce the cache size
266 * to the low water mark. If the cache size continues to grow and hits the high
267 * water mark, then callers adding elements to the cache will begin to evict
268 * directly from the cache until the cache is no longer above the high water
269 * mark.
273 * The percentage above and below the maximum cache size.
275 static uint_t dbuf_cache_hiwater_pct = 10;
276 static uint_t dbuf_cache_lowater_pct = 10;
278 static int
279 dbuf_cons(void *vdb, void *unused, int kmflag)
281 (void) unused, (void) kmflag;
282 dmu_buf_impl_t *db = vdb;
283 memset(db, 0, sizeof (dmu_buf_impl_t));
285 mutex_init(&db->db_mtx, NULL, MUTEX_DEFAULT, NULL);
286 rw_init(&db->db_rwlock, NULL, RW_DEFAULT, NULL);
287 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
288 multilist_link_init(&db->db_cache_link);
289 zfs_refcount_create(&db->db_holds);
291 return (0);
294 static void
295 dbuf_dest(void *vdb, void *unused)
297 (void) unused;
298 dmu_buf_impl_t *db = vdb;
299 mutex_destroy(&db->db_mtx);
300 rw_destroy(&db->db_rwlock);
301 cv_destroy(&db->db_changed);
302 ASSERT(!multilist_link_active(&db->db_cache_link));
303 zfs_refcount_destroy(&db->db_holds);
307 * dbuf hash table routines
309 static dbuf_hash_table_t dbuf_hash_table;
312 * We use Cityhash for this. It's fast, and has good hash properties without
313 * requiring any large static buffers.
315 static uint64_t
316 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
318 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
321 #define DTRACE_SET_STATE(db, why) \
322 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
323 const char *, why)
325 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
326 ((dbuf)->db.db_object == (obj) && \
327 (dbuf)->db_objset == (os) && \
328 (dbuf)->db_level == (level) && \
329 (dbuf)->db_blkid == (blkid))
331 dmu_buf_impl_t *
332 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid)
334 dbuf_hash_table_t *h = &dbuf_hash_table;
335 uint64_t hv;
336 uint64_t idx;
337 dmu_buf_impl_t *db;
339 hv = dbuf_hash(os, obj, level, blkid);
340 idx = hv & h->hash_table_mask;
342 rw_enter(DBUF_HASH_RWLOCK(h, idx), RW_READER);
343 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
344 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
345 mutex_enter(&db->db_mtx);
346 if (db->db_state != DB_EVICTING) {
347 rw_exit(DBUF_HASH_RWLOCK(h, idx));
348 return (db);
350 mutex_exit(&db->db_mtx);
353 rw_exit(DBUF_HASH_RWLOCK(h, idx));
354 return (NULL);
357 static dmu_buf_impl_t *
358 dbuf_find_bonus(objset_t *os, uint64_t object)
360 dnode_t *dn;
361 dmu_buf_impl_t *db = NULL;
363 if (dnode_hold(os, object, FTAG, &dn) == 0) {
364 rw_enter(&dn->dn_struct_rwlock, RW_READER);
365 if (dn->dn_bonus != NULL) {
366 db = dn->dn_bonus;
367 mutex_enter(&db->db_mtx);
369 rw_exit(&dn->dn_struct_rwlock);
370 dnode_rele(dn, FTAG);
372 return (db);
376 * Insert an entry into the hash table. If there is already an element
377 * equal to elem in the hash table, then the already existing element
378 * will be returned and the new element will not be inserted.
379 * Otherwise returns NULL.
381 static dmu_buf_impl_t *
382 dbuf_hash_insert(dmu_buf_impl_t *db)
384 dbuf_hash_table_t *h = &dbuf_hash_table;
385 objset_t *os = db->db_objset;
386 uint64_t obj = db->db.db_object;
387 int level = db->db_level;
388 uint64_t blkid, hv, idx;
389 dmu_buf_impl_t *dbf;
390 uint32_t i;
392 blkid = db->db_blkid;
393 hv = dbuf_hash(os, obj, level, blkid);
394 idx = hv & h->hash_table_mask;
396 rw_enter(DBUF_HASH_RWLOCK(h, idx), RW_WRITER);
397 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
398 dbf = dbf->db_hash_next, i++) {
399 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
400 mutex_enter(&dbf->db_mtx);
401 if (dbf->db_state != DB_EVICTING) {
402 rw_exit(DBUF_HASH_RWLOCK(h, idx));
403 return (dbf);
405 mutex_exit(&dbf->db_mtx);
409 if (i > 0) {
410 DBUF_STAT_BUMP(hash_collisions);
411 if (i == 1)
412 DBUF_STAT_BUMP(hash_chains);
414 DBUF_STAT_MAX(hash_chain_max, i);
417 mutex_enter(&db->db_mtx);
418 db->db_hash_next = h->hash_table[idx];
419 h->hash_table[idx] = db;
420 rw_exit(DBUF_HASH_RWLOCK(h, idx));
421 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
422 DBUF_STAT_MAX(hash_elements_max, he);
424 return (NULL);
428 * This returns whether this dbuf should be stored in the metadata cache, which
429 * is based on whether it's from one of the dnode types that store data related
430 * to traversing dataset hierarchies.
432 static boolean_t
433 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
435 DB_DNODE_ENTER(db);
436 dmu_object_type_t type = DB_DNODE(db)->dn_type;
437 DB_DNODE_EXIT(db);
439 /* Check if this dbuf is one of the types we care about */
440 if (DMU_OT_IS_METADATA_CACHED(type)) {
441 /* If we hit this, then we set something up wrong in dmu_ot */
442 ASSERT(DMU_OT_IS_METADATA(type));
445 * Sanity check for small-memory systems: don't allocate too
446 * much memory for this purpose.
448 if (zfs_refcount_count(
449 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
450 dbuf_metadata_cache_target_bytes()) {
451 DBUF_STAT_BUMP(metadata_cache_overflow);
452 return (B_FALSE);
455 return (B_TRUE);
458 return (B_FALSE);
462 * Remove an entry from the hash table. It must be in the EVICTING state.
464 static void
465 dbuf_hash_remove(dmu_buf_impl_t *db)
467 dbuf_hash_table_t *h = &dbuf_hash_table;
468 uint64_t hv, idx;
469 dmu_buf_impl_t *dbf, **dbp;
471 hv = dbuf_hash(db->db_objset, db->db.db_object,
472 db->db_level, db->db_blkid);
473 idx = hv & h->hash_table_mask;
476 * We mustn't hold db_mtx to maintain lock ordering:
477 * DBUF_HASH_RWLOCK > db_mtx.
479 ASSERT(zfs_refcount_is_zero(&db->db_holds));
480 ASSERT(db->db_state == DB_EVICTING);
481 ASSERT(!MUTEX_HELD(&db->db_mtx));
483 rw_enter(DBUF_HASH_RWLOCK(h, idx), RW_WRITER);
484 dbp = &h->hash_table[idx];
485 while ((dbf = *dbp) != db) {
486 dbp = &dbf->db_hash_next;
487 ASSERT(dbf != NULL);
489 *dbp = db->db_hash_next;
490 db->db_hash_next = NULL;
491 if (h->hash_table[idx] &&
492 h->hash_table[idx]->db_hash_next == NULL)
493 DBUF_STAT_BUMPDOWN(hash_chains);
494 rw_exit(DBUF_HASH_RWLOCK(h, idx));
495 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
498 typedef enum {
499 DBVU_EVICTING,
500 DBVU_NOT_EVICTING
501 } dbvu_verify_type_t;
503 static void
504 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
506 #ifdef ZFS_DEBUG
507 int64_t holds;
509 if (db->db_user == NULL)
510 return;
512 /* Only data blocks support the attachment of user data. */
513 ASSERT(db->db_level == 0);
515 /* Clients must resolve a dbuf before attaching user data. */
516 ASSERT(db->db.db_data != NULL);
517 ASSERT3U(db->db_state, ==, DB_CACHED);
519 holds = zfs_refcount_count(&db->db_holds);
520 if (verify_type == DBVU_EVICTING) {
522 * Immediate eviction occurs when holds == dirtycnt.
523 * For normal eviction buffers, holds is zero on
524 * eviction, except when dbuf_fix_old_data() calls
525 * dbuf_clear_data(). However, the hold count can grow
526 * during eviction even though db_mtx is held (see
527 * dmu_bonus_hold() for an example), so we can only
528 * test the generic invariant that holds >= dirtycnt.
530 ASSERT3U(holds, >=, db->db_dirtycnt);
531 } else {
532 if (db->db_user_immediate_evict == TRUE)
533 ASSERT3U(holds, >=, db->db_dirtycnt);
534 else
535 ASSERT3U(holds, >, 0);
537 #endif
540 static void
541 dbuf_evict_user(dmu_buf_impl_t *db)
543 dmu_buf_user_t *dbu = db->db_user;
545 ASSERT(MUTEX_HELD(&db->db_mtx));
547 if (dbu == NULL)
548 return;
550 dbuf_verify_user(db, DBVU_EVICTING);
551 db->db_user = NULL;
553 #ifdef ZFS_DEBUG
554 if (dbu->dbu_clear_on_evict_dbufp != NULL)
555 *dbu->dbu_clear_on_evict_dbufp = NULL;
556 #endif
559 * There are two eviction callbacks - one that we call synchronously
560 * and one that we invoke via a taskq. The async one is useful for
561 * avoiding lock order reversals and limiting stack depth.
563 * Note that if we have a sync callback but no async callback,
564 * it's likely that the sync callback will free the structure
565 * containing the dbu. In that case we need to take care to not
566 * dereference dbu after calling the sync evict func.
568 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
570 if (dbu->dbu_evict_func_sync != NULL)
571 dbu->dbu_evict_func_sync(dbu);
573 if (has_async) {
574 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
575 dbu, 0, &dbu->dbu_tqent);
579 boolean_t
580 dbuf_is_metadata(dmu_buf_impl_t *db)
583 * Consider indirect blocks and spill blocks to be meta data.
585 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
586 return (B_TRUE);
587 } else {
588 boolean_t is_metadata;
590 DB_DNODE_ENTER(db);
591 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
592 DB_DNODE_EXIT(db);
594 return (is_metadata);
599 * We want to exclude buffers that are on a special allocation class from
600 * L2ARC.
602 boolean_t
603 dbuf_is_l2cacheable(dmu_buf_impl_t *db)
605 vdev_t *vd = NULL;
606 zfs_cache_type_t cache = db->db_objset->os_secondary_cache;
607 blkptr_t *bp = db->db_blkptr;
609 if (bp != NULL && !BP_IS_HOLE(bp)) {
610 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
611 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
613 if (vdev < rvd->vdev_children)
614 vd = rvd->vdev_child[vdev];
616 if (cache == ZFS_CACHE_ALL ||
617 (dbuf_is_metadata(db) && cache == ZFS_CACHE_METADATA)) {
618 if (vd == NULL)
619 return (B_TRUE);
621 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
622 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
623 l2arc_exclude_special == 0)
624 return (B_TRUE);
628 return (B_FALSE);
631 static inline boolean_t
632 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
634 vdev_t *vd = NULL;
635 zfs_cache_type_t cache = dn->dn_objset->os_secondary_cache;
637 if (bp != NULL && !BP_IS_HOLE(bp)) {
638 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
639 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
641 if (vdev < rvd->vdev_children)
642 vd = rvd->vdev_child[vdev];
644 if (cache == ZFS_CACHE_ALL || ((level > 0 ||
645 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)) &&
646 cache == ZFS_CACHE_METADATA)) {
647 if (vd == NULL)
648 return (B_TRUE);
650 if ((vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
651 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP) ||
652 l2arc_exclude_special == 0)
653 return (B_TRUE);
657 return (B_FALSE);
662 * This function *must* return indices evenly distributed between all
663 * sublists of the multilist. This is needed due to how the dbuf eviction
664 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
665 * distributed between all sublists and uses this assumption when
666 * deciding which sublist to evict from and how much to evict from it.
668 static unsigned int
669 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
671 dmu_buf_impl_t *db = obj;
674 * The assumption here, is the hash value for a given
675 * dmu_buf_impl_t will remain constant throughout it's lifetime
676 * (i.e. it's objset, object, level and blkid fields don't change).
677 * Thus, we don't need to store the dbuf's sublist index
678 * on insertion, as this index can be recalculated on removal.
680 * Also, the low order bits of the hash value are thought to be
681 * distributed evenly. Otherwise, in the case that the multilist
682 * has a power of two number of sublists, each sublists' usage
683 * would not be evenly distributed. In this context full 64bit
684 * division would be a waste of time, so limit it to 32 bits.
686 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
687 db->db_level, db->db_blkid) %
688 multilist_get_num_sublists(ml));
692 * The target size of the dbuf cache can grow with the ARC target,
693 * unless limited by the tunable dbuf_cache_max_bytes.
695 static inline unsigned long
696 dbuf_cache_target_bytes(void)
698 return (MIN(dbuf_cache_max_bytes,
699 arc_target_bytes() >> dbuf_cache_shift));
703 * The target size of the dbuf metadata cache can grow with the ARC target,
704 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
706 static inline unsigned long
707 dbuf_metadata_cache_target_bytes(void)
709 return (MIN(dbuf_metadata_cache_max_bytes,
710 arc_target_bytes() >> dbuf_metadata_cache_shift));
713 static inline uint64_t
714 dbuf_cache_hiwater_bytes(void)
716 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
717 return (dbuf_cache_target +
718 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
721 static inline uint64_t
722 dbuf_cache_lowater_bytes(void)
724 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
725 return (dbuf_cache_target -
726 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
729 static inline boolean_t
730 dbuf_cache_above_lowater(void)
732 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
733 dbuf_cache_lowater_bytes());
737 * Evict the oldest eligible dbuf from the dbuf cache.
739 static void
740 dbuf_evict_one(void)
742 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
743 multilist_sublist_t *mls = multilist_sublist_lock(
744 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
746 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
748 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
749 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
750 db = multilist_sublist_prev(mls, db);
753 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
754 multilist_sublist_t *, mls);
756 if (db != NULL) {
757 multilist_sublist_remove(mls, db);
758 multilist_sublist_unlock(mls);
759 (void) zfs_refcount_remove_many(
760 &dbuf_caches[DB_DBUF_CACHE].size, db->db.db_size, db);
761 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
762 DBUF_STAT_BUMPDOWN(cache_count);
763 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
764 db->db.db_size);
765 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
766 db->db_caching_status = DB_NO_CACHE;
767 dbuf_destroy(db);
768 DBUF_STAT_BUMP(cache_total_evicts);
769 } else {
770 multilist_sublist_unlock(mls);
775 * The dbuf evict thread is responsible for aging out dbufs from the
776 * cache. Once the cache has reached it's maximum size, dbufs are removed
777 * and destroyed. The eviction thread will continue running until the size
778 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
779 * out of the cache it is destroyed and becomes eligible for arc eviction.
781 static __attribute__((noreturn)) void
782 dbuf_evict_thread(void *unused)
784 (void) unused;
785 callb_cpr_t cpr;
787 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
789 mutex_enter(&dbuf_evict_lock);
790 while (!dbuf_evict_thread_exit) {
791 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
792 CALLB_CPR_SAFE_BEGIN(&cpr);
793 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
794 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
795 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
797 mutex_exit(&dbuf_evict_lock);
800 * Keep evicting as long as we're above the low water mark
801 * for the cache. We do this without holding the locks to
802 * minimize lock contention.
804 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
805 dbuf_evict_one();
808 mutex_enter(&dbuf_evict_lock);
811 dbuf_evict_thread_exit = B_FALSE;
812 cv_broadcast(&dbuf_evict_cv);
813 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
814 thread_exit();
818 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
819 * If the dbuf cache is at its high water mark, then evict a dbuf from the
820 * dbuf cache using the caller's context.
822 static void
823 dbuf_evict_notify(uint64_t size)
826 * We check if we should evict without holding the dbuf_evict_lock,
827 * because it's OK to occasionally make the wrong decision here,
828 * and grabbing the lock results in massive lock contention.
830 if (size > dbuf_cache_target_bytes()) {
831 if (size > dbuf_cache_hiwater_bytes())
832 dbuf_evict_one();
833 cv_signal(&dbuf_evict_cv);
837 static int
838 dbuf_kstat_update(kstat_t *ksp, int rw)
840 dbuf_stats_t *ds = ksp->ks_data;
842 if (rw == KSTAT_WRITE)
843 return (SET_ERROR(EACCES));
845 ds->cache_count.value.ui64 =
846 wmsum_value(&dbuf_sums.cache_count);
847 ds->cache_size_bytes.value.ui64 =
848 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
849 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
850 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
851 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
852 ds->cache_total_evicts.value.ui64 =
853 wmsum_value(&dbuf_sums.cache_total_evicts);
854 for (int i = 0; i < DN_MAX_LEVELS; i++) {
855 ds->cache_levels[i].value.ui64 =
856 wmsum_value(&dbuf_sums.cache_levels[i]);
857 ds->cache_levels_bytes[i].value.ui64 =
858 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
860 ds->hash_hits.value.ui64 =
861 wmsum_value(&dbuf_sums.hash_hits);
862 ds->hash_misses.value.ui64 =
863 wmsum_value(&dbuf_sums.hash_misses);
864 ds->hash_collisions.value.ui64 =
865 wmsum_value(&dbuf_sums.hash_collisions);
866 ds->hash_chains.value.ui64 =
867 wmsum_value(&dbuf_sums.hash_chains);
868 ds->hash_insert_race.value.ui64 =
869 wmsum_value(&dbuf_sums.hash_insert_race);
870 ds->metadata_cache_count.value.ui64 =
871 wmsum_value(&dbuf_sums.metadata_cache_count);
872 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
873 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
874 ds->metadata_cache_overflow.value.ui64 =
875 wmsum_value(&dbuf_sums.metadata_cache_overflow);
876 return (0);
879 void
880 dbuf_init(void)
882 uint64_t hsize = 1ULL << 16;
883 dbuf_hash_table_t *h = &dbuf_hash_table;
884 int i;
887 * The hash table is big enough to fill one eighth of physical memory
888 * with an average block size of zfs_arc_average_blocksize (default 8K).
889 * By default, the table will take up
890 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
892 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
893 hsize <<= 1;
895 retry:
896 h->hash_table_mask = hsize - 1;
897 #if defined(_KERNEL)
899 * Large allocations which do not require contiguous pages
900 * should be using vmem_alloc() in the linux kernel
902 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
903 #else
904 h->hash_table = kmem_zalloc(hsize * sizeof (void *), KM_NOSLEEP);
905 #endif
906 if (h->hash_table == NULL) {
907 /* XXX - we should really return an error instead of assert */
908 ASSERT(hsize > (1ULL << 10));
909 hsize >>= 1;
910 goto retry;
913 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
914 sizeof (dmu_buf_impl_t),
915 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
917 for (i = 0; i < DBUF_RWLOCKS; i++)
918 rw_init(&h->hash_rwlocks[i], NULL, RW_DEFAULT, NULL);
920 dbuf_stats_init(h);
923 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
924 * configuration is not required.
926 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
928 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
929 multilist_create(&dbuf_caches[dcs].cache,
930 sizeof (dmu_buf_impl_t),
931 offsetof(dmu_buf_impl_t, db_cache_link),
932 dbuf_cache_multilist_index_func);
933 zfs_refcount_create(&dbuf_caches[dcs].size);
936 dbuf_evict_thread_exit = B_FALSE;
937 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
938 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
939 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
940 NULL, 0, &p0, TS_RUN, minclsyspri);
942 wmsum_init(&dbuf_sums.cache_count, 0);
943 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
944 for (i = 0; i < DN_MAX_LEVELS; i++) {
945 wmsum_init(&dbuf_sums.cache_levels[i], 0);
946 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
948 wmsum_init(&dbuf_sums.hash_hits, 0);
949 wmsum_init(&dbuf_sums.hash_misses, 0);
950 wmsum_init(&dbuf_sums.hash_collisions, 0);
951 wmsum_init(&dbuf_sums.hash_chains, 0);
952 wmsum_init(&dbuf_sums.hash_insert_race, 0);
953 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
954 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
956 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
957 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
958 KSTAT_FLAG_VIRTUAL);
959 if (dbuf_ksp != NULL) {
960 for (i = 0; i < DN_MAX_LEVELS; i++) {
961 snprintf(dbuf_stats.cache_levels[i].name,
962 KSTAT_STRLEN, "cache_level_%d", i);
963 dbuf_stats.cache_levels[i].data_type =
964 KSTAT_DATA_UINT64;
965 snprintf(dbuf_stats.cache_levels_bytes[i].name,
966 KSTAT_STRLEN, "cache_level_%d_bytes", i);
967 dbuf_stats.cache_levels_bytes[i].data_type =
968 KSTAT_DATA_UINT64;
970 dbuf_ksp->ks_data = &dbuf_stats;
971 dbuf_ksp->ks_update = dbuf_kstat_update;
972 kstat_install(dbuf_ksp);
976 void
977 dbuf_fini(void)
979 dbuf_hash_table_t *h = &dbuf_hash_table;
980 int i;
982 dbuf_stats_destroy();
984 for (i = 0; i < DBUF_RWLOCKS; i++)
985 rw_destroy(&h->hash_rwlocks[i]);
986 #if defined(_KERNEL)
988 * Large allocations which do not require contiguous pages
989 * should be using vmem_free() in the linux kernel
991 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
992 #else
993 kmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
994 #endif
995 kmem_cache_destroy(dbuf_kmem_cache);
996 taskq_destroy(dbu_evict_taskq);
998 mutex_enter(&dbuf_evict_lock);
999 dbuf_evict_thread_exit = B_TRUE;
1000 while (dbuf_evict_thread_exit) {
1001 cv_signal(&dbuf_evict_cv);
1002 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1004 mutex_exit(&dbuf_evict_lock);
1006 mutex_destroy(&dbuf_evict_lock);
1007 cv_destroy(&dbuf_evict_cv);
1009 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1010 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1011 multilist_destroy(&dbuf_caches[dcs].cache);
1014 if (dbuf_ksp != NULL) {
1015 kstat_delete(dbuf_ksp);
1016 dbuf_ksp = NULL;
1019 wmsum_fini(&dbuf_sums.cache_count);
1020 wmsum_fini(&dbuf_sums.cache_total_evicts);
1021 for (i = 0; i < DN_MAX_LEVELS; i++) {
1022 wmsum_fini(&dbuf_sums.cache_levels[i]);
1023 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1025 wmsum_fini(&dbuf_sums.hash_hits);
1026 wmsum_fini(&dbuf_sums.hash_misses);
1027 wmsum_fini(&dbuf_sums.hash_collisions);
1028 wmsum_fini(&dbuf_sums.hash_chains);
1029 wmsum_fini(&dbuf_sums.hash_insert_race);
1030 wmsum_fini(&dbuf_sums.metadata_cache_count);
1031 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1035 * Other stuff.
1038 #ifdef ZFS_DEBUG
1039 static void
1040 dbuf_verify(dmu_buf_impl_t *db)
1042 dnode_t *dn;
1043 dbuf_dirty_record_t *dr;
1044 uint32_t txg_prev;
1046 ASSERT(MUTEX_HELD(&db->db_mtx));
1048 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1049 return;
1051 ASSERT(db->db_objset != NULL);
1052 DB_DNODE_ENTER(db);
1053 dn = DB_DNODE(db);
1054 if (dn == NULL) {
1055 ASSERT(db->db_parent == NULL);
1056 ASSERT(db->db_blkptr == NULL);
1057 } else {
1058 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1059 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1060 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1061 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1062 db->db_blkid == DMU_SPILL_BLKID ||
1063 !avl_is_empty(&dn->dn_dbufs));
1065 if (db->db_blkid == DMU_BONUS_BLKID) {
1066 ASSERT(dn != NULL);
1067 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1068 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1069 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1070 ASSERT(dn != NULL);
1071 ASSERT0(db->db.db_offset);
1072 } else {
1073 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1076 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1077 ASSERT(dr->dr_dbuf == db);
1078 txg_prev = dr->dr_txg;
1079 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1080 dr = list_next(&db->db_dirty_records, dr)) {
1081 ASSERT(dr->dr_dbuf == db);
1082 ASSERT(txg_prev > dr->dr_txg);
1083 txg_prev = dr->dr_txg;
1088 * We can't assert that db_size matches dn_datablksz because it
1089 * can be momentarily different when another thread is doing
1090 * dnode_set_blksz().
1092 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1093 dr = db->db_data_pending;
1095 * It should only be modified in syncing context, so
1096 * make sure we only have one copy of the data.
1098 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1101 /* verify db->db_blkptr */
1102 if (db->db_blkptr) {
1103 if (db->db_parent == dn->dn_dbuf) {
1104 /* db is pointed to by the dnode */
1105 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1106 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1107 ASSERT(db->db_parent == NULL);
1108 else
1109 ASSERT(db->db_parent != NULL);
1110 if (db->db_blkid != DMU_SPILL_BLKID)
1111 ASSERT3P(db->db_blkptr, ==,
1112 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1113 } else {
1114 /* db is pointed to by an indirect block */
1115 int epb __maybe_unused = db->db_parent->db.db_size >>
1116 SPA_BLKPTRSHIFT;
1117 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1118 ASSERT3U(db->db_parent->db.db_object, ==,
1119 db->db.db_object);
1121 * dnode_grow_indblksz() can make this fail if we don't
1122 * have the parent's rwlock. XXX indblksz no longer
1123 * grows. safe to do this now?
1125 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1126 ASSERT3P(db->db_blkptr, ==,
1127 ((blkptr_t *)db->db_parent->db.db_data +
1128 db->db_blkid % epb));
1132 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1133 (db->db_buf == NULL || db->db_buf->b_data) &&
1134 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1135 db->db_state != DB_FILL && !dn->dn_free_txg) {
1137 * If the blkptr isn't set but they have nonzero data,
1138 * it had better be dirty, otherwise we'll lose that
1139 * data when we evict this buffer.
1141 * There is an exception to this rule for indirect blocks; in
1142 * this case, if the indirect block is a hole, we fill in a few
1143 * fields on each of the child blocks (importantly, birth time)
1144 * to prevent hole birth times from being lost when you
1145 * partially fill in a hole.
1147 if (db->db_dirtycnt == 0) {
1148 if (db->db_level == 0) {
1149 uint64_t *buf = db->db.db_data;
1150 int i;
1152 for (i = 0; i < db->db.db_size >> 3; i++) {
1153 ASSERT(buf[i] == 0);
1155 } else {
1156 blkptr_t *bps = db->db.db_data;
1157 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1158 db->db.db_size);
1160 * We want to verify that all the blkptrs in the
1161 * indirect block are holes, but we may have
1162 * automatically set up a few fields for them.
1163 * We iterate through each blkptr and verify
1164 * they only have those fields set.
1166 for (int i = 0;
1167 i < db->db.db_size / sizeof (blkptr_t);
1168 i++) {
1169 blkptr_t *bp = &bps[i];
1170 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1171 &bp->blk_cksum));
1172 ASSERT(
1173 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1174 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1175 DVA_IS_EMPTY(&bp->blk_dva[2]));
1176 ASSERT0(bp->blk_fill);
1177 ASSERT0(bp->blk_pad[0]);
1178 ASSERT0(bp->blk_pad[1]);
1179 ASSERT(!BP_IS_EMBEDDED(bp));
1180 ASSERT(BP_IS_HOLE(bp));
1181 ASSERT0(bp->blk_phys_birth);
1186 DB_DNODE_EXIT(db);
1188 #endif
1190 static void
1191 dbuf_clear_data(dmu_buf_impl_t *db)
1193 ASSERT(MUTEX_HELD(&db->db_mtx));
1194 dbuf_evict_user(db);
1195 ASSERT3P(db->db_buf, ==, NULL);
1196 db->db.db_data = NULL;
1197 if (db->db_state != DB_NOFILL) {
1198 db->db_state = DB_UNCACHED;
1199 DTRACE_SET_STATE(db, "clear data");
1203 static void
1204 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1206 ASSERT(MUTEX_HELD(&db->db_mtx));
1207 ASSERT(buf != NULL);
1209 db->db_buf = buf;
1210 ASSERT(buf->b_data != NULL);
1211 db->db.db_data = buf->b_data;
1214 static arc_buf_t *
1215 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1217 spa_t *spa = db->db_objset->os_spa;
1219 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1223 * Loan out an arc_buf for read. Return the loaned arc_buf.
1225 arc_buf_t *
1226 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1228 arc_buf_t *abuf;
1230 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1231 mutex_enter(&db->db_mtx);
1232 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1233 int blksz = db->db.db_size;
1234 spa_t *spa = db->db_objset->os_spa;
1236 mutex_exit(&db->db_mtx);
1237 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1238 memcpy(abuf->b_data, db->db.db_data, blksz);
1239 } else {
1240 abuf = db->db_buf;
1241 arc_loan_inuse_buf(abuf, db);
1242 db->db_buf = NULL;
1243 dbuf_clear_data(db);
1244 mutex_exit(&db->db_mtx);
1246 return (abuf);
1250 * Calculate which level n block references the data at the level 0 offset
1251 * provided.
1253 uint64_t
1254 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1256 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1258 * The level n blkid is equal to the level 0 blkid divided by
1259 * the number of level 0s in a level n block.
1261 * The level 0 blkid is offset >> datablkshift =
1262 * offset / 2^datablkshift.
1264 * The number of level 0s in a level n is the number of block
1265 * pointers in an indirect block, raised to the power of level.
1266 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1267 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1269 * Thus, the level n blkid is: offset /
1270 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1271 * = offset / 2^(datablkshift + level *
1272 * (indblkshift - SPA_BLKPTRSHIFT))
1273 * = offset >> (datablkshift + level *
1274 * (indblkshift - SPA_BLKPTRSHIFT))
1277 const unsigned exp = dn->dn_datablkshift +
1278 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1280 if (exp >= 8 * sizeof (offset)) {
1281 /* This only happens on the highest indirection level */
1282 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1283 return (0);
1286 ASSERT3U(exp, <, 8 * sizeof (offset));
1288 return (offset >> exp);
1289 } else {
1290 ASSERT3U(offset, <, dn->dn_datablksz);
1291 return (0);
1296 * This function is used to lock the parent of the provided dbuf. This should be
1297 * used when modifying or reading db_blkptr.
1299 db_lock_type_t
1300 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, void *tag)
1302 enum db_lock_type ret = DLT_NONE;
1303 if (db->db_parent != NULL) {
1304 rw_enter(&db->db_parent->db_rwlock, rw);
1305 ret = DLT_PARENT;
1306 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1307 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1308 tag);
1309 ret = DLT_OBJSET;
1312 * We only return a DLT_NONE lock when it's the top-most indirect block
1313 * of the meta-dnode of the MOS.
1315 return (ret);
1319 * We need to pass the lock type in because it's possible that the block will
1320 * move from being the topmost indirect block in a dnode (and thus, have no
1321 * parent) to not the top-most via an indirection increase. This would cause a
1322 * panic if we didn't pass the lock type in.
1324 void
1325 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, void *tag)
1327 if (type == DLT_PARENT)
1328 rw_exit(&db->db_parent->db_rwlock);
1329 else if (type == DLT_OBJSET)
1330 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1333 static void
1334 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1335 arc_buf_t *buf, void *vdb)
1337 (void) zb, (void) bp;
1338 dmu_buf_impl_t *db = vdb;
1340 mutex_enter(&db->db_mtx);
1341 ASSERT3U(db->db_state, ==, DB_READ);
1343 * All reads are synchronous, so we must have a hold on the dbuf
1345 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1346 ASSERT(db->db_buf == NULL);
1347 ASSERT(db->db.db_data == NULL);
1348 if (buf == NULL) {
1349 /* i/o error */
1350 ASSERT(zio == NULL || zio->io_error != 0);
1351 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1352 ASSERT3P(db->db_buf, ==, NULL);
1353 db->db_state = DB_UNCACHED;
1354 DTRACE_SET_STATE(db, "i/o error");
1355 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1356 /* freed in flight */
1357 ASSERT(zio == NULL || zio->io_error == 0);
1358 arc_release(buf, db);
1359 memset(buf->b_data, 0, db->db.db_size);
1360 arc_buf_freeze(buf);
1361 db->db_freed_in_flight = FALSE;
1362 dbuf_set_data(db, buf);
1363 db->db_state = DB_CACHED;
1364 DTRACE_SET_STATE(db, "freed in flight");
1365 } else {
1366 /* success */
1367 ASSERT(zio == NULL || zio->io_error == 0);
1368 dbuf_set_data(db, buf);
1369 db->db_state = DB_CACHED;
1370 DTRACE_SET_STATE(db, "successful read");
1372 cv_broadcast(&db->db_changed);
1373 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1377 * Shortcut for performing reads on bonus dbufs. Returns
1378 * an error if we fail to verify the dnode associated with
1379 * a decrypted block. Otherwise success.
1381 static int
1382 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1384 int bonuslen, max_bonuslen, err;
1386 err = dbuf_read_verify_dnode_crypt(db, flags);
1387 if (err)
1388 return (err);
1390 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1391 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1392 ASSERT(MUTEX_HELD(&db->db_mtx));
1393 ASSERT(DB_DNODE_HELD(db));
1394 ASSERT3U(bonuslen, <=, db->db.db_size);
1395 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1396 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1397 if (bonuslen < max_bonuslen)
1398 memset(db->db.db_data, 0, max_bonuslen);
1399 if (bonuslen)
1400 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1401 db->db_state = DB_CACHED;
1402 DTRACE_SET_STATE(db, "bonus buffer filled");
1403 return (0);
1406 static void
1407 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn)
1409 blkptr_t *bps = db->db.db_data;
1410 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1411 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1413 for (int i = 0; i < n_bps; i++) {
1414 blkptr_t *bp = &bps[i];
1416 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==, indbs);
1417 BP_SET_LSIZE(bp, BP_GET_LEVEL(db->db_blkptr) == 1 ?
1418 dn->dn_datablksz : BP_GET_LSIZE(db->db_blkptr));
1419 BP_SET_TYPE(bp, BP_GET_TYPE(db->db_blkptr));
1420 BP_SET_LEVEL(bp, BP_GET_LEVEL(db->db_blkptr) - 1);
1421 BP_SET_BIRTH(bp, db->db_blkptr->blk_birth, 0);
1426 * Handle reads on dbufs that are holes, if necessary. This function
1427 * requires that the dbuf's mutex is held. Returns success (0) if action
1428 * was taken, ENOENT if no action was taken.
1430 static int
1431 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn)
1433 ASSERT(MUTEX_HELD(&db->db_mtx));
1435 int is_hole = db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr);
1437 * For level 0 blocks only, if the above check fails:
1438 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1439 * processes the delete record and clears the bp while we are waiting
1440 * for the dn_mtx (resulting in a "no" from block_freed).
1442 if (!is_hole && db->db_level == 0) {
1443 is_hole = dnode_block_freed(dn, db->db_blkid) ||
1444 BP_IS_HOLE(db->db_blkptr);
1447 if (is_hole) {
1448 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1449 memset(db->db.db_data, 0, db->db.db_size);
1451 if (db->db_blkptr != NULL && db->db_level > 0 &&
1452 BP_IS_HOLE(db->db_blkptr) &&
1453 db->db_blkptr->blk_birth != 0) {
1454 dbuf_handle_indirect_hole(db, dn);
1456 db->db_state = DB_CACHED;
1457 DTRACE_SET_STATE(db, "hole read satisfied");
1458 return (0);
1460 return (ENOENT);
1464 * This function ensures that, when doing a decrypting read of a block,
1465 * we make sure we have decrypted the dnode associated with it. We must do
1466 * this so that we ensure we are fully authenticating the checksum-of-MACs
1467 * tree from the root of the objset down to this block. Indirect blocks are
1468 * always verified against their secure checksum-of-MACs assuming that the
1469 * dnode containing them is correct. Now that we are doing a decrypting read,
1470 * we can be sure that the key is loaded and verify that assumption. This is
1471 * especially important considering that we always read encrypted dnode
1472 * blocks as raw data (without verifying their MACs) to start, and
1473 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1475 static int
1476 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, uint32_t flags)
1478 int err = 0;
1479 objset_t *os = db->db_objset;
1480 arc_buf_t *dnode_abuf;
1481 dnode_t *dn;
1482 zbookmark_phys_t zb;
1484 ASSERT(MUTEX_HELD(&db->db_mtx));
1486 if (!os->os_encrypted || os->os_raw_receive ||
1487 (flags & DB_RF_NO_DECRYPT) != 0)
1488 return (0);
1490 DB_DNODE_ENTER(db);
1491 dn = DB_DNODE(db);
1492 dnode_abuf = (dn->dn_dbuf != NULL) ? dn->dn_dbuf->db_buf : NULL;
1494 if (dnode_abuf == NULL || !arc_is_encrypted(dnode_abuf)) {
1495 DB_DNODE_EXIT(db);
1496 return (0);
1499 SET_BOOKMARK(&zb, dmu_objset_id(os),
1500 DMU_META_DNODE_OBJECT, 0, dn->dn_dbuf->db_blkid);
1501 err = arc_untransform(dnode_abuf, os->os_spa, &zb, B_TRUE);
1504 * An error code of EACCES tells us that the key is still not
1505 * available. This is ok if we are only reading authenticated
1506 * (and therefore non-encrypted) blocks.
1508 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1509 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1510 (db->db_blkid == DMU_BONUS_BLKID &&
1511 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1512 err = 0;
1514 DB_DNODE_EXIT(db);
1516 return (err);
1520 * Drops db_mtx and the parent lock specified by dblt and tag before
1521 * returning.
1523 static int
1524 dbuf_read_impl(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags,
1525 db_lock_type_t dblt, void *tag)
1527 dnode_t *dn;
1528 zbookmark_phys_t zb;
1529 uint32_t aflags = ARC_FLAG_NOWAIT;
1530 int err, zio_flags;
1532 err = zio_flags = 0;
1533 DB_DNODE_ENTER(db);
1534 dn = DB_DNODE(db);
1535 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1536 ASSERT(MUTEX_HELD(&db->db_mtx));
1537 ASSERT(db->db_state == DB_UNCACHED);
1538 ASSERT(db->db_buf == NULL);
1539 ASSERT(db->db_parent == NULL ||
1540 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1542 if (db->db_blkid == DMU_BONUS_BLKID) {
1543 err = dbuf_read_bonus(db, dn, flags);
1544 goto early_unlock;
1547 err = dbuf_read_hole(db, dn);
1548 if (err == 0)
1549 goto early_unlock;
1552 * Any attempt to read a redacted block should result in an error. This
1553 * will never happen under normal conditions, but can be useful for
1554 * debugging purposes.
1556 if (BP_IS_REDACTED(db->db_blkptr)) {
1557 ASSERT(dsl_dataset_feature_is_active(
1558 db->db_objset->os_dsl_dataset,
1559 SPA_FEATURE_REDACTED_DATASETS));
1560 err = SET_ERROR(EIO);
1561 goto early_unlock;
1564 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1565 db->db.db_object, db->db_level, db->db_blkid);
1568 * All bps of an encrypted os should have the encryption bit set.
1569 * If this is not true it indicates tampering and we report an error.
1571 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(db->db_blkptr)) {
1572 spa_log_error(db->db_objset->os_spa, &zb);
1573 zfs_panic_recover("unencrypted block in encrypted "
1574 "object set %llu", dmu_objset_id(db->db_objset));
1575 err = SET_ERROR(EIO);
1576 goto early_unlock;
1579 err = dbuf_read_verify_dnode_crypt(db, flags);
1580 if (err != 0)
1581 goto early_unlock;
1583 DB_DNODE_EXIT(db);
1585 db->db_state = DB_READ;
1586 DTRACE_SET_STATE(db, "read issued");
1587 mutex_exit(&db->db_mtx);
1589 if (dbuf_is_l2cacheable(db))
1590 aflags |= ARC_FLAG_L2CACHE;
1592 dbuf_add_ref(db, NULL);
1594 zio_flags = (flags & DB_RF_CANFAIL) ?
1595 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1597 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(db->db_blkptr))
1598 zio_flags |= ZIO_FLAG_RAW;
1600 * The zio layer will copy the provided blkptr later, but we need to
1601 * do this now so that we can release the parent's rwlock. We have to
1602 * do that now so that if dbuf_read_done is called synchronously (on
1603 * an l1 cache hit) we don't acquire the db_mtx while holding the
1604 * parent's rwlock, which would be a lock ordering violation.
1606 blkptr_t bp = *db->db_blkptr;
1607 dmu_buf_unlock_parent(db, dblt, tag);
1608 (void) arc_read(zio, db->db_objset->os_spa, &bp,
1609 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1610 &aflags, &zb);
1611 return (err);
1612 early_unlock:
1613 DB_DNODE_EXIT(db);
1614 mutex_exit(&db->db_mtx);
1615 dmu_buf_unlock_parent(db, dblt, tag);
1616 return (err);
1620 * This is our just-in-time copy function. It makes a copy of buffers that
1621 * have been modified in a previous transaction group before we access them in
1622 * the current active group.
1624 * This function is used in three places: when we are dirtying a buffer for the
1625 * first time in a txg, when we are freeing a range in a dnode that includes
1626 * this buffer, and when we are accessing a buffer which was received compressed
1627 * and later referenced in a WRITE_BYREF record.
1629 * Note that when we are called from dbuf_free_range() we do not put a hold on
1630 * the buffer, we just traverse the active dbuf list for the dnode.
1632 static void
1633 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1635 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1637 ASSERT(MUTEX_HELD(&db->db_mtx));
1638 ASSERT(db->db.db_data != NULL);
1639 ASSERT(db->db_level == 0);
1640 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1642 if (dr == NULL ||
1643 (dr->dt.dl.dr_data !=
1644 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1645 return;
1648 * If the last dirty record for this dbuf has not yet synced
1649 * and its referencing the dbuf data, either:
1650 * reset the reference to point to a new copy,
1651 * or (if there a no active holders)
1652 * just null out the current db_data pointer.
1654 ASSERT3U(dr->dr_txg, >=, txg - 2);
1655 if (db->db_blkid == DMU_BONUS_BLKID) {
1656 dnode_t *dn = DB_DNODE(db);
1657 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1658 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1659 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1660 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1661 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1662 dnode_t *dn = DB_DNODE(db);
1663 int size = arc_buf_size(db->db_buf);
1664 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1665 spa_t *spa = db->db_objset->os_spa;
1666 enum zio_compress compress_type =
1667 arc_get_compression(db->db_buf);
1668 uint8_t complevel = arc_get_complevel(db->db_buf);
1670 if (arc_is_encrypted(db->db_buf)) {
1671 boolean_t byteorder;
1672 uint8_t salt[ZIO_DATA_SALT_LEN];
1673 uint8_t iv[ZIO_DATA_IV_LEN];
1674 uint8_t mac[ZIO_DATA_MAC_LEN];
1676 arc_get_raw_params(db->db_buf, &byteorder, salt,
1677 iv, mac);
1678 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1679 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1680 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1681 compress_type, complevel);
1682 } else if (compress_type != ZIO_COMPRESS_OFF) {
1683 ASSERT3U(type, ==, ARC_BUFC_DATA);
1684 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1685 size, arc_buf_lsize(db->db_buf), compress_type,
1686 complevel);
1687 } else {
1688 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1690 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1691 } else {
1692 db->db_buf = NULL;
1693 dbuf_clear_data(db);
1698 dbuf_read(dmu_buf_impl_t *db, zio_t *zio, uint32_t flags)
1700 int err = 0;
1701 boolean_t prefetch;
1702 dnode_t *dn;
1705 * We don't have to hold the mutex to check db_state because it
1706 * can't be freed while we have a hold on the buffer.
1708 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1710 if (db->db_state == DB_NOFILL)
1711 return (SET_ERROR(EIO));
1713 DB_DNODE_ENTER(db);
1714 dn = DB_DNODE(db);
1716 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1717 (flags & DB_RF_NOPREFETCH) == 0 && dn != NULL &&
1718 DBUF_IS_CACHEABLE(db);
1720 mutex_enter(&db->db_mtx);
1721 if (db->db_state == DB_CACHED) {
1722 spa_t *spa = dn->dn_objset->os_spa;
1725 * Ensure that this block's dnode has been decrypted if
1726 * the caller has requested decrypted data.
1728 err = dbuf_read_verify_dnode_crypt(db, flags);
1731 * If the arc buf is compressed or encrypted and the caller
1732 * requested uncompressed data, we need to untransform it
1733 * before returning. We also call arc_untransform() on any
1734 * unauthenticated blocks, which will verify their MAC if
1735 * the key is now available.
1737 if (err == 0 && db->db_buf != NULL &&
1738 (flags & DB_RF_NO_DECRYPT) == 0 &&
1739 (arc_is_encrypted(db->db_buf) ||
1740 arc_is_unauthenticated(db->db_buf) ||
1741 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1742 zbookmark_phys_t zb;
1744 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1745 db->db.db_object, db->db_level, db->db_blkid);
1746 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1747 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1748 dbuf_set_data(db, db->db_buf);
1750 mutex_exit(&db->db_mtx);
1751 if (err == 0 && prefetch) {
1752 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1753 B_FALSE, flags & DB_RF_HAVESTRUCT);
1755 DB_DNODE_EXIT(db);
1756 DBUF_STAT_BUMP(hash_hits);
1757 } else if (db->db_state == DB_UNCACHED) {
1758 spa_t *spa = dn->dn_objset->os_spa;
1759 boolean_t need_wait = B_FALSE;
1761 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1763 if (zio == NULL &&
1764 db->db_blkptr != NULL && !BP_IS_HOLE(db->db_blkptr)) {
1765 zio = zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1766 need_wait = B_TRUE;
1768 err = dbuf_read_impl(db, zio, flags, dblt, FTAG);
1770 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1771 * for us
1773 if (!err && prefetch) {
1774 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1775 db->db_state != DB_CACHED,
1776 flags & DB_RF_HAVESTRUCT);
1779 DB_DNODE_EXIT(db);
1780 DBUF_STAT_BUMP(hash_misses);
1783 * If we created a zio_root we must execute it to avoid
1784 * leaking it, even if it isn't attached to any work due
1785 * to an error in dbuf_read_impl().
1787 if (need_wait) {
1788 if (err == 0)
1789 err = zio_wait(zio);
1790 else
1791 VERIFY0(zio_wait(zio));
1793 } else {
1795 * Another reader came in while the dbuf was in flight
1796 * between UNCACHED and CACHED. Either a writer will finish
1797 * writing the buffer (sending the dbuf to CACHED) or the
1798 * first reader's request will reach the read_done callback
1799 * and send the dbuf to CACHED. Otherwise, a failure
1800 * occurred and the dbuf went to UNCACHED.
1802 mutex_exit(&db->db_mtx);
1803 if (prefetch) {
1804 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE,
1805 B_TRUE, flags & DB_RF_HAVESTRUCT);
1807 DB_DNODE_EXIT(db);
1808 DBUF_STAT_BUMP(hash_misses);
1810 /* Skip the wait per the caller's request. */
1811 if ((flags & DB_RF_NEVERWAIT) == 0) {
1812 mutex_enter(&db->db_mtx);
1813 while (db->db_state == DB_READ ||
1814 db->db_state == DB_FILL) {
1815 ASSERT(db->db_state == DB_READ ||
1816 (flags & DB_RF_HAVESTRUCT) == 0);
1817 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *,
1818 db, zio_t *, zio);
1819 cv_wait(&db->db_changed, &db->db_mtx);
1821 if (db->db_state == DB_UNCACHED)
1822 err = SET_ERROR(EIO);
1823 mutex_exit(&db->db_mtx);
1827 return (err);
1830 static void
1831 dbuf_noread(dmu_buf_impl_t *db)
1833 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1834 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1835 mutex_enter(&db->db_mtx);
1836 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1837 cv_wait(&db->db_changed, &db->db_mtx);
1838 if (db->db_state == DB_UNCACHED) {
1839 ASSERT(db->db_buf == NULL);
1840 ASSERT(db->db.db_data == NULL);
1841 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1842 db->db_state = DB_FILL;
1843 DTRACE_SET_STATE(db, "assigning filled buffer");
1844 } else if (db->db_state == DB_NOFILL) {
1845 dbuf_clear_data(db);
1846 } else {
1847 ASSERT3U(db->db_state, ==, DB_CACHED);
1849 mutex_exit(&db->db_mtx);
1852 void
1853 dbuf_unoverride(dbuf_dirty_record_t *dr)
1855 dmu_buf_impl_t *db = dr->dr_dbuf;
1856 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1857 uint64_t txg = dr->dr_txg;
1859 ASSERT(MUTEX_HELD(&db->db_mtx));
1861 * This assert is valid because dmu_sync() expects to be called by
1862 * a zilog's get_data while holding a range lock. This call only
1863 * comes from dbuf_dirty() callers who must also hold a range lock.
1865 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1866 ASSERT(db->db_level == 0);
1868 if (db->db_blkid == DMU_BONUS_BLKID ||
1869 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1870 return;
1872 ASSERT(db->db_data_pending != dr);
1874 /* free this block */
1875 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1876 zio_free(db->db_objset->os_spa, txg, bp);
1878 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1879 dr->dt.dl.dr_nopwrite = B_FALSE;
1880 dr->dt.dl.dr_has_raw_params = B_FALSE;
1883 * Release the already-written buffer, so we leave it in
1884 * a consistent dirty state. Note that all callers are
1885 * modifying the buffer, so they will immediately do
1886 * another (redundant) arc_release(). Therefore, leave
1887 * the buf thawed to save the effort of freezing &
1888 * immediately re-thawing it.
1890 arc_release(dr->dt.dl.dr_data, db);
1894 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1895 * data blocks in the free range, so that any future readers will find
1896 * empty blocks.
1898 void
1899 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1900 dmu_tx_t *tx)
1902 dmu_buf_impl_t *db_search;
1903 dmu_buf_impl_t *db, *db_next;
1904 uint64_t txg = tx->tx_txg;
1905 avl_index_t where;
1906 dbuf_dirty_record_t *dr;
1908 if (end_blkid > dn->dn_maxblkid &&
1909 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1910 end_blkid = dn->dn_maxblkid;
1911 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1912 (u_longlong_t)end_blkid);
1914 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1915 db_search->db_level = 0;
1916 db_search->db_blkid = start_blkid;
1917 db_search->db_state = DB_SEARCH;
1919 mutex_enter(&dn->dn_dbufs_mtx);
1920 db = avl_find(&dn->dn_dbufs, db_search, &where);
1921 ASSERT3P(db, ==, NULL);
1923 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1925 for (; db != NULL; db = db_next) {
1926 db_next = AVL_NEXT(&dn->dn_dbufs, db);
1927 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1929 if (db->db_level != 0 || db->db_blkid > end_blkid) {
1930 break;
1932 ASSERT3U(db->db_blkid, >=, start_blkid);
1934 /* found a level 0 buffer in the range */
1935 mutex_enter(&db->db_mtx);
1936 if (dbuf_undirty(db, tx)) {
1937 /* mutex has been dropped and dbuf destroyed */
1938 continue;
1941 if (db->db_state == DB_UNCACHED ||
1942 db->db_state == DB_NOFILL ||
1943 db->db_state == DB_EVICTING) {
1944 ASSERT(db->db.db_data == NULL);
1945 mutex_exit(&db->db_mtx);
1946 continue;
1948 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1949 /* will be handled in dbuf_read_done or dbuf_rele */
1950 db->db_freed_in_flight = TRUE;
1951 mutex_exit(&db->db_mtx);
1952 continue;
1954 if (zfs_refcount_count(&db->db_holds) == 0) {
1955 ASSERT(db->db_buf);
1956 dbuf_destroy(db);
1957 continue;
1959 /* The dbuf is referenced */
1961 dr = list_head(&db->db_dirty_records);
1962 if (dr != NULL) {
1963 if (dr->dr_txg == txg) {
1965 * This buffer is "in-use", re-adjust the file
1966 * size to reflect that this buffer may
1967 * contain new data when we sync.
1969 if (db->db_blkid != DMU_SPILL_BLKID &&
1970 db->db_blkid > dn->dn_maxblkid)
1971 dn->dn_maxblkid = db->db_blkid;
1972 dbuf_unoverride(dr);
1973 } else {
1975 * This dbuf is not dirty in the open context.
1976 * Either uncache it (if its not referenced in
1977 * the open context) or reset its contents to
1978 * empty.
1980 dbuf_fix_old_data(db, txg);
1983 /* clear the contents if its cached */
1984 if (db->db_state == DB_CACHED) {
1985 ASSERT(db->db.db_data != NULL);
1986 arc_release(db->db_buf, db);
1987 rw_enter(&db->db_rwlock, RW_WRITER);
1988 memset(db->db.db_data, 0, db->db.db_size);
1989 rw_exit(&db->db_rwlock);
1990 arc_buf_freeze(db->db_buf);
1993 mutex_exit(&db->db_mtx);
1996 mutex_exit(&dn->dn_dbufs_mtx);
1997 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2000 void
2001 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2003 arc_buf_t *buf, *old_buf;
2004 dbuf_dirty_record_t *dr;
2005 int osize = db->db.db_size;
2006 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2007 dnode_t *dn;
2009 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2011 DB_DNODE_ENTER(db);
2012 dn = DB_DNODE(db);
2015 * XXX we should be doing a dbuf_read, checking the return
2016 * value and returning that up to our callers
2018 dmu_buf_will_dirty(&db->db, tx);
2020 /* create the data buffer for the new block */
2021 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2023 /* copy old block data to the new block */
2024 old_buf = db->db_buf;
2025 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2026 /* zero the remainder */
2027 if (size > osize)
2028 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2030 mutex_enter(&db->db_mtx);
2031 dbuf_set_data(db, buf);
2032 arc_buf_destroy(old_buf, db);
2033 db->db.db_size = size;
2035 dr = list_head(&db->db_dirty_records);
2036 /* dirty record added by dmu_buf_will_dirty() */
2037 VERIFY(dr != NULL);
2038 if (db->db_level == 0)
2039 dr->dt.dl.dr_data = buf;
2040 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2041 ASSERT3U(dr->dr_accounted, ==, osize);
2042 dr->dr_accounted = size;
2043 mutex_exit(&db->db_mtx);
2045 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2046 DB_DNODE_EXIT(db);
2049 void
2050 dbuf_release_bp(dmu_buf_impl_t *db)
2052 objset_t *os __maybe_unused = db->db_objset;
2054 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2055 ASSERT(arc_released(os->os_phys_buf) ||
2056 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2057 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2059 (void) arc_release(db->db_buf, db);
2063 * We already have a dirty record for this TXG, and we are being
2064 * dirtied again.
2066 static void
2067 dbuf_redirty(dbuf_dirty_record_t *dr)
2069 dmu_buf_impl_t *db = dr->dr_dbuf;
2071 ASSERT(MUTEX_HELD(&db->db_mtx));
2073 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2075 * If this buffer has already been written out,
2076 * we now need to reset its state.
2078 dbuf_unoverride(dr);
2079 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2080 db->db_state != DB_NOFILL) {
2081 /* Already released on initial dirty, so just thaw. */
2082 ASSERT(arc_released(db->db_buf));
2083 arc_buf_thaw(db->db_buf);
2088 dbuf_dirty_record_t *
2089 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2091 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2092 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2093 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2094 ASSERT(dn->dn_maxblkid >= blkid);
2096 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2097 list_link_init(&dr->dr_dirty_node);
2098 list_link_init(&dr->dr_dbuf_node);
2099 dr->dr_dnode = dn;
2100 dr->dr_txg = tx->tx_txg;
2101 dr->dt.dll.dr_blkid = blkid;
2102 dr->dr_accounted = dn->dn_datablksz;
2105 * There should not be any dbuf for the block that we're dirtying.
2106 * Otherwise the buffer contents could be inconsistent between the
2107 * dbuf and the lightweight dirty record.
2109 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid));
2111 mutex_enter(&dn->dn_mtx);
2112 int txgoff = tx->tx_txg & TXG_MASK;
2113 if (dn->dn_free_ranges[txgoff] != NULL) {
2114 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2117 if (dn->dn_nlevels == 1) {
2118 ASSERT3U(blkid, <, dn->dn_nblkptr);
2119 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2120 mutex_exit(&dn->dn_mtx);
2121 rw_exit(&dn->dn_struct_rwlock);
2122 dnode_setdirty(dn, tx);
2123 } else {
2124 mutex_exit(&dn->dn_mtx);
2126 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2127 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2128 1, blkid >> epbs, FTAG);
2129 rw_exit(&dn->dn_struct_rwlock);
2130 if (parent_db == NULL) {
2131 kmem_free(dr, sizeof (*dr));
2132 return (NULL);
2134 int err = dbuf_read(parent_db, NULL,
2135 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2136 if (err != 0) {
2137 dbuf_rele(parent_db, FTAG);
2138 kmem_free(dr, sizeof (*dr));
2139 return (NULL);
2142 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2143 dbuf_rele(parent_db, FTAG);
2144 mutex_enter(&parent_dr->dt.di.dr_mtx);
2145 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2146 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2147 mutex_exit(&parent_dr->dt.di.dr_mtx);
2148 dr->dr_parent = parent_dr;
2151 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2153 return (dr);
2156 dbuf_dirty_record_t *
2157 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2159 dnode_t *dn;
2160 objset_t *os;
2161 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2162 int txgoff = tx->tx_txg & TXG_MASK;
2163 boolean_t drop_struct_rwlock = B_FALSE;
2165 ASSERT(tx->tx_txg != 0);
2166 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2167 DMU_TX_DIRTY_BUF(tx, db);
2169 DB_DNODE_ENTER(db);
2170 dn = DB_DNODE(db);
2172 * Shouldn't dirty a regular buffer in syncing context. Private
2173 * objects may be dirtied in syncing context, but only if they
2174 * were already pre-dirtied in open context.
2176 #ifdef ZFS_DEBUG
2177 if (dn->dn_objset->os_dsl_dataset != NULL) {
2178 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2179 RW_READER, FTAG);
2181 ASSERT(!dmu_tx_is_syncing(tx) ||
2182 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2183 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2184 dn->dn_objset->os_dsl_dataset == NULL);
2185 if (dn->dn_objset->os_dsl_dataset != NULL)
2186 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2187 #endif
2189 * We make this assert for private objects as well, but after we
2190 * check if we're already dirty. They are allowed to re-dirty
2191 * in syncing context.
2193 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2194 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2195 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2197 mutex_enter(&db->db_mtx);
2199 * XXX make this true for indirects too? The problem is that
2200 * transactions created with dmu_tx_create_assigned() from
2201 * syncing context don't bother holding ahead.
2203 ASSERT(db->db_level != 0 ||
2204 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2205 db->db_state == DB_NOFILL);
2207 mutex_enter(&dn->dn_mtx);
2208 dnode_set_dirtyctx(dn, tx, db);
2209 if (tx->tx_txg > dn->dn_dirty_txg)
2210 dn->dn_dirty_txg = tx->tx_txg;
2211 mutex_exit(&dn->dn_mtx);
2213 if (db->db_blkid == DMU_SPILL_BLKID)
2214 dn->dn_have_spill = B_TRUE;
2217 * If this buffer is already dirty, we're done.
2219 dr_head = list_head(&db->db_dirty_records);
2220 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2221 db->db.db_object == DMU_META_DNODE_OBJECT);
2222 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2223 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2224 DB_DNODE_EXIT(db);
2226 dbuf_redirty(dr_next);
2227 mutex_exit(&db->db_mtx);
2228 return (dr_next);
2232 * Only valid if not already dirty.
2234 ASSERT(dn->dn_object == 0 ||
2235 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2236 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2238 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2241 * We should only be dirtying in syncing context if it's the
2242 * mos or we're initializing the os or it's a special object.
2243 * However, we are allowed to dirty in syncing context provided
2244 * we already dirtied it in open context. Hence we must make
2245 * this assertion only if we're not already dirty.
2247 os = dn->dn_objset;
2248 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2249 #ifdef ZFS_DEBUG
2250 if (dn->dn_objset->os_dsl_dataset != NULL)
2251 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2252 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2253 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2254 if (dn->dn_objset->os_dsl_dataset != NULL)
2255 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2256 #endif
2257 ASSERT(db->db.db_size != 0);
2259 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2261 if (db->db_blkid != DMU_BONUS_BLKID) {
2262 dmu_objset_willuse_space(os, db->db.db_size, tx);
2266 * If this buffer is dirty in an old transaction group we need
2267 * to make a copy of it so that the changes we make in this
2268 * transaction group won't leak out when we sync the older txg.
2270 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2271 list_link_init(&dr->dr_dirty_node);
2272 list_link_init(&dr->dr_dbuf_node);
2273 dr->dr_dnode = dn;
2274 if (db->db_level == 0) {
2275 void *data_old = db->db_buf;
2277 if (db->db_state != DB_NOFILL) {
2278 if (db->db_blkid == DMU_BONUS_BLKID) {
2279 dbuf_fix_old_data(db, tx->tx_txg);
2280 data_old = db->db.db_data;
2281 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2283 * Release the data buffer from the cache so
2284 * that we can modify it without impacting
2285 * possible other users of this cached data
2286 * block. Note that indirect blocks and
2287 * private objects are not released until the
2288 * syncing state (since they are only modified
2289 * then).
2291 arc_release(db->db_buf, db);
2292 dbuf_fix_old_data(db, tx->tx_txg);
2293 data_old = db->db_buf;
2295 ASSERT(data_old != NULL);
2297 dr->dt.dl.dr_data = data_old;
2298 } else {
2299 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2300 list_create(&dr->dt.di.dr_children,
2301 sizeof (dbuf_dirty_record_t),
2302 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2304 if (db->db_blkid != DMU_BONUS_BLKID)
2305 dr->dr_accounted = db->db.db_size;
2306 dr->dr_dbuf = db;
2307 dr->dr_txg = tx->tx_txg;
2308 list_insert_before(&db->db_dirty_records, dr_next, dr);
2311 * We could have been freed_in_flight between the dbuf_noread
2312 * and dbuf_dirty. We win, as though the dbuf_noread() had
2313 * happened after the free.
2315 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2316 db->db_blkid != DMU_SPILL_BLKID) {
2317 mutex_enter(&dn->dn_mtx);
2318 if (dn->dn_free_ranges[txgoff] != NULL) {
2319 range_tree_clear(dn->dn_free_ranges[txgoff],
2320 db->db_blkid, 1);
2322 mutex_exit(&dn->dn_mtx);
2323 db->db_freed_in_flight = FALSE;
2327 * This buffer is now part of this txg
2329 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2330 db->db_dirtycnt += 1;
2331 ASSERT3U(db->db_dirtycnt, <=, 3);
2333 mutex_exit(&db->db_mtx);
2335 if (db->db_blkid == DMU_BONUS_BLKID ||
2336 db->db_blkid == DMU_SPILL_BLKID) {
2337 mutex_enter(&dn->dn_mtx);
2338 ASSERT(!list_link_active(&dr->dr_dirty_node));
2339 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2340 mutex_exit(&dn->dn_mtx);
2341 dnode_setdirty(dn, tx);
2342 DB_DNODE_EXIT(db);
2343 return (dr);
2346 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2347 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2348 drop_struct_rwlock = B_TRUE;
2352 * If we are overwriting a dedup BP, then unless it is snapshotted,
2353 * when we get to syncing context we will need to decrement its
2354 * refcount in the DDT. Prefetch the relevant DDT block so that
2355 * syncing context won't have to wait for the i/o.
2357 if (db->db_blkptr != NULL) {
2358 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2359 ddt_prefetch(os->os_spa, db->db_blkptr);
2360 dmu_buf_unlock_parent(db, dblt, FTAG);
2364 * We need to hold the dn_struct_rwlock to make this assertion,
2365 * because it protects dn_phys / dn_next_nlevels from changing.
2367 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2368 dn->dn_phys->dn_nlevels > db->db_level ||
2369 dn->dn_next_nlevels[txgoff] > db->db_level ||
2370 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2371 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2374 if (db->db_level == 0) {
2375 ASSERT(!db->db_objset->os_raw_receive ||
2376 dn->dn_maxblkid >= db->db_blkid);
2377 dnode_new_blkid(dn, db->db_blkid, tx,
2378 drop_struct_rwlock, B_FALSE);
2379 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2382 if (db->db_level+1 < dn->dn_nlevels) {
2383 dmu_buf_impl_t *parent = db->db_parent;
2384 dbuf_dirty_record_t *di;
2385 int parent_held = FALSE;
2387 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2388 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2389 parent = dbuf_hold_level(dn, db->db_level + 1,
2390 db->db_blkid >> epbs, FTAG);
2391 ASSERT(parent != NULL);
2392 parent_held = TRUE;
2394 if (drop_struct_rwlock)
2395 rw_exit(&dn->dn_struct_rwlock);
2396 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2397 di = dbuf_dirty(parent, tx);
2398 if (parent_held)
2399 dbuf_rele(parent, FTAG);
2401 mutex_enter(&db->db_mtx);
2403 * Since we've dropped the mutex, it's possible that
2404 * dbuf_undirty() might have changed this out from under us.
2406 if (list_head(&db->db_dirty_records) == dr ||
2407 dn->dn_object == DMU_META_DNODE_OBJECT) {
2408 mutex_enter(&di->dt.di.dr_mtx);
2409 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2410 ASSERT(!list_link_active(&dr->dr_dirty_node));
2411 list_insert_tail(&di->dt.di.dr_children, dr);
2412 mutex_exit(&di->dt.di.dr_mtx);
2413 dr->dr_parent = di;
2415 mutex_exit(&db->db_mtx);
2416 } else {
2417 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2418 ASSERT(db->db_blkid < dn->dn_nblkptr);
2419 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2420 mutex_enter(&dn->dn_mtx);
2421 ASSERT(!list_link_active(&dr->dr_dirty_node));
2422 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2423 mutex_exit(&dn->dn_mtx);
2424 if (drop_struct_rwlock)
2425 rw_exit(&dn->dn_struct_rwlock);
2428 dnode_setdirty(dn, tx);
2429 DB_DNODE_EXIT(db);
2430 return (dr);
2433 static void
2434 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2436 dmu_buf_impl_t *db = dr->dr_dbuf;
2438 if (dr->dt.dl.dr_data != db->db.db_data) {
2439 struct dnode *dn = dr->dr_dnode;
2440 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2442 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2443 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2445 db->db_data_pending = NULL;
2446 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2447 list_remove(&db->db_dirty_records, dr);
2448 if (dr->dr_dbuf->db_level != 0) {
2449 mutex_destroy(&dr->dt.di.dr_mtx);
2450 list_destroy(&dr->dt.di.dr_children);
2452 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2453 ASSERT3U(db->db_dirtycnt, >, 0);
2454 db->db_dirtycnt -= 1;
2458 * Undirty a buffer in the transaction group referenced by the given
2459 * transaction. Return whether this evicted the dbuf.
2461 static boolean_t
2462 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2464 uint64_t txg = tx->tx_txg;
2466 ASSERT(txg != 0);
2469 * Due to our use of dn_nlevels below, this can only be called
2470 * in open context, unless we are operating on the MOS.
2471 * From syncing context, dn_nlevels may be different from the
2472 * dn_nlevels used when dbuf was dirtied.
2474 ASSERT(db->db_objset ==
2475 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2476 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2477 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2478 ASSERT0(db->db_level);
2479 ASSERT(MUTEX_HELD(&db->db_mtx));
2482 * If this buffer is not dirty, we're done.
2484 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2485 if (dr == NULL)
2486 return (B_FALSE);
2487 ASSERT(dr->dr_dbuf == db);
2489 dnode_t *dn = dr->dr_dnode;
2491 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2493 ASSERT(db->db.db_size != 0);
2495 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2496 dr->dr_accounted, txg);
2498 list_remove(&db->db_dirty_records, dr);
2501 * Note that there are three places in dbuf_dirty()
2502 * where this dirty record may be put on a list.
2503 * Make sure to do a list_remove corresponding to
2504 * every one of those list_insert calls.
2506 if (dr->dr_parent) {
2507 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2508 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2509 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2510 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2511 db->db_level + 1 == dn->dn_nlevels) {
2512 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2513 mutex_enter(&dn->dn_mtx);
2514 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2515 mutex_exit(&dn->dn_mtx);
2518 if (db->db_state != DB_NOFILL) {
2519 dbuf_unoverride(dr);
2521 ASSERT(db->db_buf != NULL);
2522 ASSERT(dr->dt.dl.dr_data != NULL);
2523 if (dr->dt.dl.dr_data != db->db_buf)
2524 arc_buf_destroy(dr->dt.dl.dr_data, db);
2527 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2529 ASSERT(db->db_dirtycnt > 0);
2530 db->db_dirtycnt -= 1;
2532 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2533 ASSERT(db->db_state == DB_NOFILL || arc_released(db->db_buf));
2534 dbuf_destroy(db);
2535 return (B_TRUE);
2538 return (B_FALSE);
2541 static void
2542 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2544 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2546 ASSERT(tx->tx_txg != 0);
2547 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2550 * Quick check for dirtiness. For already dirty blocks, this
2551 * reduces runtime of this function by >90%, and overall performance
2552 * by 50% for some workloads (e.g. file deletion with indirect blocks
2553 * cached).
2555 mutex_enter(&db->db_mtx);
2557 if (db->db_state == DB_CACHED) {
2558 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2560 * It's possible that it is already dirty but not cached,
2561 * because there are some calls to dbuf_dirty() that don't
2562 * go through dmu_buf_will_dirty().
2564 if (dr != NULL) {
2565 /* This dbuf is already dirty and cached. */
2566 dbuf_redirty(dr);
2567 mutex_exit(&db->db_mtx);
2568 return;
2571 mutex_exit(&db->db_mtx);
2573 DB_DNODE_ENTER(db);
2574 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2575 flags |= DB_RF_HAVESTRUCT;
2576 DB_DNODE_EXIT(db);
2577 (void) dbuf_read(db, NULL, flags);
2578 (void) dbuf_dirty(db, tx);
2581 void
2582 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2584 dmu_buf_will_dirty_impl(db_fake,
2585 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2588 boolean_t
2589 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2591 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2592 dbuf_dirty_record_t *dr;
2594 mutex_enter(&db->db_mtx);
2595 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2596 mutex_exit(&db->db_mtx);
2597 return (dr != NULL);
2600 void
2601 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2603 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2605 db->db_state = DB_NOFILL;
2606 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2607 dmu_buf_will_fill(db_fake, tx);
2610 void
2611 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2613 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2615 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2616 ASSERT(tx->tx_txg != 0);
2617 ASSERT(db->db_level == 0);
2618 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2620 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2621 dmu_tx_private_ok(tx));
2623 dbuf_noread(db);
2624 (void) dbuf_dirty(db, tx);
2628 * This function is effectively the same as dmu_buf_will_dirty(), but
2629 * indicates the caller expects raw encrypted data in the db, and provides
2630 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2631 * blkptr_t when this dbuf is written. This is only used for blocks of
2632 * dnodes, during raw receive.
2634 void
2635 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2636 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2638 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2639 dbuf_dirty_record_t *dr;
2642 * dr_has_raw_params is only processed for blocks of dnodes
2643 * (see dbuf_sync_dnode_leaf_crypt()).
2645 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2646 ASSERT3U(db->db_level, ==, 0);
2647 ASSERT(db->db_objset->os_raw_receive);
2649 dmu_buf_will_dirty_impl(db_fake,
2650 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2652 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2654 ASSERT3P(dr, !=, NULL);
2656 dr->dt.dl.dr_has_raw_params = B_TRUE;
2657 dr->dt.dl.dr_byteorder = byteorder;
2658 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2659 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2660 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2663 static void
2664 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2666 struct dirty_leaf *dl;
2667 dbuf_dirty_record_t *dr;
2669 dr = list_head(&db->db_dirty_records);
2670 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2671 dl = &dr->dt.dl;
2672 dl->dr_overridden_by = *bp;
2673 dl->dr_override_state = DR_OVERRIDDEN;
2674 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2677 void
2678 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx)
2680 (void) tx;
2681 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2682 dbuf_states_t old_state;
2683 mutex_enter(&db->db_mtx);
2684 DBUF_VERIFY(db);
2686 old_state = db->db_state;
2687 db->db_state = DB_CACHED;
2688 if (old_state == DB_FILL) {
2689 if (db->db_level == 0 && db->db_freed_in_flight) {
2690 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2691 /* we were freed while filling */
2692 /* XXX dbuf_undirty? */
2693 memset(db->db.db_data, 0, db->db.db_size);
2694 db->db_freed_in_flight = FALSE;
2695 DTRACE_SET_STATE(db,
2696 "fill done handling freed in flight");
2697 } else {
2698 DTRACE_SET_STATE(db, "fill done");
2700 cv_broadcast(&db->db_changed);
2702 mutex_exit(&db->db_mtx);
2705 void
2706 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
2707 bp_embedded_type_t etype, enum zio_compress comp,
2708 int uncompressed_size, int compressed_size, int byteorder,
2709 dmu_tx_t *tx)
2711 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2712 struct dirty_leaf *dl;
2713 dmu_object_type_t type;
2714 dbuf_dirty_record_t *dr;
2716 if (etype == BP_EMBEDDED_TYPE_DATA) {
2717 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
2718 SPA_FEATURE_EMBEDDED_DATA));
2721 DB_DNODE_ENTER(db);
2722 type = DB_DNODE(db)->dn_type;
2723 DB_DNODE_EXIT(db);
2725 ASSERT0(db->db_level);
2726 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2728 dmu_buf_will_not_fill(dbuf, tx);
2730 dr = list_head(&db->db_dirty_records);
2731 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2732 dl = &dr->dt.dl;
2733 encode_embedded_bp_compressed(&dl->dr_overridden_by,
2734 data, comp, uncompressed_size, compressed_size);
2735 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
2736 BP_SET_TYPE(&dl->dr_overridden_by, type);
2737 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
2738 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
2740 dl->dr_override_state = DR_OVERRIDDEN;
2741 dl->dr_overridden_by.blk_birth = dr->dr_txg;
2744 void
2745 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
2747 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2748 dmu_object_type_t type;
2749 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
2750 SPA_FEATURE_REDACTED_DATASETS));
2752 DB_DNODE_ENTER(db);
2753 type = DB_DNODE(db)->dn_type;
2754 DB_DNODE_EXIT(db);
2756 ASSERT0(db->db_level);
2757 dmu_buf_will_not_fill(dbuf, tx);
2759 blkptr_t bp = { { { {0} } } };
2760 BP_SET_TYPE(&bp, type);
2761 BP_SET_LEVEL(&bp, 0);
2762 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
2763 BP_SET_REDACTED(&bp);
2764 BPE_SET_LSIZE(&bp, dbuf->db_size);
2766 dbuf_override_impl(db, &bp, tx);
2770 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2771 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2773 void
2774 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
2776 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2777 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2778 ASSERT(db->db_level == 0);
2779 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
2780 ASSERT(buf != NULL);
2781 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
2782 ASSERT(tx->tx_txg != 0);
2784 arc_return_buf(buf, db);
2785 ASSERT(arc_released(buf));
2787 mutex_enter(&db->db_mtx);
2789 while (db->db_state == DB_READ || db->db_state == DB_FILL)
2790 cv_wait(&db->db_changed, &db->db_mtx);
2792 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED);
2794 if (db->db_state == DB_CACHED &&
2795 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
2797 * In practice, we will never have a case where we have an
2798 * encrypted arc buffer while additional holds exist on the
2799 * dbuf. We don't handle this here so we simply assert that
2800 * fact instead.
2802 ASSERT(!arc_is_encrypted(buf));
2803 mutex_exit(&db->db_mtx);
2804 (void) dbuf_dirty(db, tx);
2805 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
2806 arc_buf_destroy(buf, db);
2807 return;
2810 if (db->db_state == DB_CACHED) {
2811 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2813 ASSERT(db->db_buf != NULL);
2814 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
2815 ASSERT(dr->dt.dl.dr_data == db->db_buf);
2817 if (!arc_released(db->db_buf)) {
2818 ASSERT(dr->dt.dl.dr_override_state ==
2819 DR_OVERRIDDEN);
2820 arc_release(db->db_buf, db);
2822 dr->dt.dl.dr_data = buf;
2823 arc_buf_destroy(db->db_buf, db);
2824 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
2825 arc_release(db->db_buf, db);
2826 arc_buf_destroy(db->db_buf, db);
2828 db->db_buf = NULL;
2830 ASSERT(db->db_buf == NULL);
2831 dbuf_set_data(db, buf);
2832 db->db_state = DB_FILL;
2833 DTRACE_SET_STATE(db, "filling assigned arcbuf");
2834 mutex_exit(&db->db_mtx);
2835 (void) dbuf_dirty(db, tx);
2836 dmu_buf_fill_done(&db->db, tx);
2839 void
2840 dbuf_destroy(dmu_buf_impl_t *db)
2842 dnode_t *dn;
2843 dmu_buf_impl_t *parent = db->db_parent;
2844 dmu_buf_impl_t *dndb;
2846 ASSERT(MUTEX_HELD(&db->db_mtx));
2847 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2849 if (db->db_buf != NULL) {
2850 arc_buf_destroy(db->db_buf, db);
2851 db->db_buf = NULL;
2854 if (db->db_blkid == DMU_BONUS_BLKID) {
2855 int slots = DB_DNODE(db)->dn_num_slots;
2856 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
2857 if (db->db.db_data != NULL) {
2858 kmem_free(db->db.db_data, bonuslen);
2859 arc_space_return(bonuslen, ARC_SPACE_BONUS);
2860 db->db_state = DB_UNCACHED;
2861 DTRACE_SET_STATE(db, "buffer cleared");
2865 dbuf_clear_data(db);
2867 if (multilist_link_active(&db->db_cache_link)) {
2868 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
2869 db->db_caching_status == DB_DBUF_METADATA_CACHE);
2871 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
2872 (void) zfs_refcount_remove_many(
2873 &dbuf_caches[db->db_caching_status].size,
2874 db->db.db_size, db);
2876 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
2877 DBUF_STAT_BUMPDOWN(metadata_cache_count);
2878 } else {
2879 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
2880 DBUF_STAT_BUMPDOWN(cache_count);
2881 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
2882 db->db.db_size);
2884 db->db_caching_status = DB_NO_CACHE;
2887 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
2888 ASSERT(db->db_data_pending == NULL);
2889 ASSERT(list_is_empty(&db->db_dirty_records));
2891 db->db_state = DB_EVICTING;
2892 DTRACE_SET_STATE(db, "buffer eviction started");
2893 db->db_blkptr = NULL;
2896 * Now that db_state is DB_EVICTING, nobody else can find this via
2897 * the hash table. We can now drop db_mtx, which allows us to
2898 * acquire the dn_dbufs_mtx.
2900 mutex_exit(&db->db_mtx);
2902 DB_DNODE_ENTER(db);
2903 dn = DB_DNODE(db);
2904 dndb = dn->dn_dbuf;
2905 if (db->db_blkid != DMU_BONUS_BLKID) {
2906 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
2907 if (needlock)
2908 mutex_enter_nested(&dn->dn_dbufs_mtx,
2909 NESTED_SINGLE);
2910 avl_remove(&dn->dn_dbufs, db);
2911 membar_producer();
2912 DB_DNODE_EXIT(db);
2913 if (needlock)
2914 mutex_exit(&dn->dn_dbufs_mtx);
2916 * Decrementing the dbuf count means that the hold corresponding
2917 * to the removed dbuf is no longer discounted in dnode_move(),
2918 * so the dnode cannot be moved until after we release the hold.
2919 * The membar_producer() ensures visibility of the decremented
2920 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2921 * release any lock.
2923 mutex_enter(&dn->dn_mtx);
2924 dnode_rele_and_unlock(dn, db, B_TRUE);
2925 db->db_dnode_handle = NULL;
2927 dbuf_hash_remove(db);
2928 } else {
2929 DB_DNODE_EXIT(db);
2932 ASSERT(zfs_refcount_is_zero(&db->db_holds));
2934 db->db_parent = NULL;
2936 ASSERT(db->db_buf == NULL);
2937 ASSERT(db->db.db_data == NULL);
2938 ASSERT(db->db_hash_next == NULL);
2939 ASSERT(db->db_blkptr == NULL);
2940 ASSERT(db->db_data_pending == NULL);
2941 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
2942 ASSERT(!multilist_link_active(&db->db_cache_link));
2945 * If this dbuf is referenced from an indirect dbuf,
2946 * decrement the ref count on the indirect dbuf.
2948 if (parent && parent != dndb) {
2949 mutex_enter(&parent->db_mtx);
2950 dbuf_rele_and_unlock(parent, db, B_TRUE);
2953 kmem_cache_free(dbuf_kmem_cache, db);
2954 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
2958 * Note: While bpp will always be updated if the function returns success,
2959 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2960 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2961 * object.
2963 __attribute__((always_inline))
2964 static inline int
2965 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
2966 dmu_buf_impl_t **parentp, blkptr_t **bpp)
2968 *parentp = NULL;
2969 *bpp = NULL;
2971 ASSERT(blkid != DMU_BONUS_BLKID);
2973 if (blkid == DMU_SPILL_BLKID) {
2974 mutex_enter(&dn->dn_mtx);
2975 if (dn->dn_have_spill &&
2976 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
2977 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
2978 else
2979 *bpp = NULL;
2980 dbuf_add_ref(dn->dn_dbuf, NULL);
2981 *parentp = dn->dn_dbuf;
2982 mutex_exit(&dn->dn_mtx);
2983 return (0);
2986 int nlevels =
2987 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
2988 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2990 ASSERT3U(level * epbs, <, 64);
2991 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
2993 * This assertion shouldn't trip as long as the max indirect block size
2994 * is less than 1M. The reason for this is that up to that point,
2995 * the number of levels required to address an entire object with blocks
2996 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2997 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2998 * (i.e. we can address the entire object), objects will all use at most
2999 * N-1 levels and the assertion won't overflow. However, once epbs is
3000 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3001 * enough to address an entire object, so objects will have 5 levels,
3002 * but then this assertion will overflow.
3004 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3005 * need to redo this logic to handle overflows.
3007 ASSERT(level >= nlevels ||
3008 ((nlevels - level - 1) * epbs) +
3009 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3010 if (level >= nlevels ||
3011 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3012 ((nlevels - level - 1) * epbs)) ||
3013 (fail_sparse &&
3014 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3015 /* the buffer has no parent yet */
3016 return (SET_ERROR(ENOENT));
3017 } else if (level < nlevels-1) {
3018 /* this block is referenced from an indirect block */
3019 int err;
3021 err = dbuf_hold_impl(dn, level + 1,
3022 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3024 if (err)
3025 return (err);
3026 err = dbuf_read(*parentp, NULL,
3027 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3028 if (err) {
3029 dbuf_rele(*parentp, NULL);
3030 *parentp = NULL;
3031 return (err);
3033 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3034 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3035 (blkid & ((1ULL << epbs) - 1));
3036 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3037 ASSERT(BP_IS_HOLE(*bpp));
3038 rw_exit(&(*parentp)->db_rwlock);
3039 return (0);
3040 } else {
3041 /* the block is referenced from the dnode */
3042 ASSERT3U(level, ==, nlevels-1);
3043 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3044 blkid < dn->dn_phys->dn_nblkptr);
3045 if (dn->dn_dbuf) {
3046 dbuf_add_ref(dn->dn_dbuf, NULL);
3047 *parentp = dn->dn_dbuf;
3049 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3050 return (0);
3054 static dmu_buf_impl_t *
3055 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3056 dmu_buf_impl_t *parent, blkptr_t *blkptr)
3058 objset_t *os = dn->dn_objset;
3059 dmu_buf_impl_t *db, *odb;
3061 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3062 ASSERT(dn->dn_type != DMU_OT_NONE);
3064 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3066 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3067 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3069 db->db_objset = os;
3070 db->db.db_object = dn->dn_object;
3071 db->db_level = level;
3072 db->db_blkid = blkid;
3073 db->db_dirtycnt = 0;
3074 db->db_dnode_handle = dn->dn_handle;
3075 db->db_parent = parent;
3076 db->db_blkptr = blkptr;
3078 db->db_user = NULL;
3079 db->db_user_immediate_evict = FALSE;
3080 db->db_freed_in_flight = FALSE;
3081 db->db_pending_evict = FALSE;
3083 if (blkid == DMU_BONUS_BLKID) {
3084 ASSERT3P(parent, ==, dn->dn_dbuf);
3085 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3086 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3087 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3088 db->db.db_offset = DMU_BONUS_BLKID;
3089 db->db_state = DB_UNCACHED;
3090 DTRACE_SET_STATE(db, "bonus buffer created");
3091 db->db_caching_status = DB_NO_CACHE;
3092 /* the bonus dbuf is not placed in the hash table */
3093 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3094 return (db);
3095 } else if (blkid == DMU_SPILL_BLKID) {
3096 db->db.db_size = (blkptr != NULL) ?
3097 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3098 db->db.db_offset = 0;
3099 } else {
3100 int blocksize =
3101 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3102 db->db.db_size = blocksize;
3103 db->db.db_offset = db->db_blkid * blocksize;
3107 * Hold the dn_dbufs_mtx while we get the new dbuf
3108 * in the hash table *and* added to the dbufs list.
3109 * This prevents a possible deadlock with someone
3110 * trying to look up this dbuf before it's added to the
3111 * dn_dbufs list.
3113 mutex_enter(&dn->dn_dbufs_mtx);
3114 db->db_state = DB_EVICTING; /* not worth logging this state change */
3115 if ((odb = dbuf_hash_insert(db)) != NULL) {
3116 /* someone else inserted it first */
3117 mutex_exit(&dn->dn_dbufs_mtx);
3118 kmem_cache_free(dbuf_kmem_cache, db);
3119 DBUF_STAT_BUMP(hash_insert_race);
3120 return (odb);
3122 avl_add(&dn->dn_dbufs, db);
3124 db->db_state = DB_UNCACHED;
3125 DTRACE_SET_STATE(db, "regular buffer created");
3126 db->db_caching_status = DB_NO_CACHE;
3127 mutex_exit(&dn->dn_dbufs_mtx);
3128 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3130 if (parent && parent != dn->dn_dbuf)
3131 dbuf_add_ref(parent, db);
3133 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3134 zfs_refcount_count(&dn->dn_holds) > 0);
3135 (void) zfs_refcount_add(&dn->dn_holds, db);
3137 dprintf_dbuf(db, "db=%p\n", db);
3139 return (db);
3143 * This function returns a block pointer and information about the object,
3144 * given a dnode and a block. This is a publicly accessible version of
3145 * dbuf_findbp that only returns some information, rather than the
3146 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3147 * should be locked as (at least) a reader.
3150 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3151 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3153 dmu_buf_impl_t *dbp = NULL;
3154 blkptr_t *bp2;
3155 int err = 0;
3156 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3158 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3159 if (err == 0) {
3160 *bp = *bp2;
3161 if (dbp != NULL)
3162 dbuf_rele(dbp, NULL);
3163 if (datablkszsec != NULL)
3164 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3165 if (indblkshift != NULL)
3166 *indblkshift = dn->dn_phys->dn_indblkshift;
3169 return (err);
3172 typedef struct dbuf_prefetch_arg {
3173 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3174 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3175 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3176 int dpa_curlevel; /* The current level that we're reading */
3177 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3178 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3179 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3180 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3181 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3182 void *dpa_arg; /* prefetch completion arg */
3183 } dbuf_prefetch_arg_t;
3185 static void
3186 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3188 if (dpa->dpa_cb != NULL) {
3189 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3190 dpa->dpa_zb.zb_blkid, io_done);
3192 kmem_free(dpa, sizeof (*dpa));
3195 static void
3196 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3197 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3199 (void) zio, (void) zb, (void) iobp;
3200 dbuf_prefetch_arg_t *dpa = private;
3202 if (abuf != NULL)
3203 arc_buf_destroy(abuf, private);
3205 dbuf_prefetch_fini(dpa, B_TRUE);
3209 * Actually issue the prefetch read for the block given.
3211 static void
3212 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3214 ASSERT(!BP_IS_REDACTED(bp) ||
3215 dsl_dataset_feature_is_active(
3216 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3217 SPA_FEATURE_REDACTED_DATASETS));
3219 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3220 return (dbuf_prefetch_fini(dpa, B_FALSE));
3222 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3223 arc_flags_t aflags =
3224 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3225 ARC_FLAG_NO_BUF;
3227 /* dnodes are always read as raw and then converted later */
3228 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3229 dpa->dpa_curlevel == 0)
3230 zio_flags |= ZIO_FLAG_RAW;
3232 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3233 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3234 ASSERT(dpa->dpa_zio != NULL);
3235 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3236 dbuf_issue_final_prefetch_done, dpa,
3237 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3241 * Called when an indirect block above our prefetch target is read in. This
3242 * will either read in the next indirect block down the tree or issue the actual
3243 * prefetch if the next block down is our target.
3245 static void
3246 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3247 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3249 (void) zb, (void) iobp;
3250 dbuf_prefetch_arg_t *dpa = private;
3252 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3253 ASSERT3S(dpa->dpa_curlevel, >, 0);
3255 if (abuf == NULL) {
3256 ASSERT(zio == NULL || zio->io_error != 0);
3257 return (dbuf_prefetch_fini(dpa, B_TRUE));
3259 ASSERT(zio == NULL || zio->io_error == 0);
3262 * The dpa_dnode is only valid if we are called with a NULL
3263 * zio. This indicates that the arc_read() returned without
3264 * first calling zio_read() to issue a physical read. Once
3265 * a physical read is made the dpa_dnode must be invalidated
3266 * as the locks guarding it may have been dropped. If the
3267 * dpa_dnode is still valid, then we want to add it to the dbuf
3268 * cache. To do so, we must hold the dbuf associated with the block
3269 * we just prefetched, read its contents so that we associate it
3270 * with an arc_buf_t, and then release it.
3272 if (zio != NULL) {
3273 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3274 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3275 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3276 } else {
3277 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3279 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3281 dpa->dpa_dnode = NULL;
3282 } else if (dpa->dpa_dnode != NULL) {
3283 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3284 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3285 dpa->dpa_zb.zb_level));
3286 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3287 dpa->dpa_curlevel, curblkid, FTAG);
3288 if (db == NULL) {
3289 arc_buf_destroy(abuf, private);
3290 return (dbuf_prefetch_fini(dpa, B_TRUE));
3292 (void) dbuf_read(db, NULL,
3293 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3294 dbuf_rele(db, FTAG);
3297 dpa->dpa_curlevel--;
3298 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3299 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3300 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3301 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3303 ASSERT(!BP_IS_REDACTED(bp) ||
3304 dsl_dataset_feature_is_active(
3305 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3306 SPA_FEATURE_REDACTED_DATASETS));
3307 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3308 dbuf_prefetch_fini(dpa, B_TRUE);
3309 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3310 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3311 dbuf_issue_final_prefetch(dpa, bp);
3312 } else {
3313 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3314 zbookmark_phys_t zb;
3316 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3317 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3318 iter_aflags |= ARC_FLAG_L2CACHE;
3320 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3322 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3323 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3325 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3326 bp, dbuf_prefetch_indirect_done, dpa,
3327 ZIO_PRIORITY_SYNC_READ,
3328 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3329 &iter_aflags, &zb);
3332 arc_buf_destroy(abuf, private);
3336 * Issue prefetch reads for the given block on the given level. If the indirect
3337 * blocks above that block are not in memory, we will read them in
3338 * asynchronously. As a result, this call never blocks waiting for a read to
3339 * complete. Note that the prefetch might fail if the dataset is encrypted and
3340 * the encryption key is unmapped before the IO completes.
3343 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3344 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3345 void *arg)
3347 blkptr_t bp;
3348 int epbs, nlevels, curlevel;
3349 uint64_t curblkid;
3351 ASSERT(blkid != DMU_BONUS_BLKID);
3352 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3354 if (blkid > dn->dn_maxblkid)
3355 goto no_issue;
3357 if (level == 0 && dnode_block_freed(dn, blkid))
3358 goto no_issue;
3361 * This dnode hasn't been written to disk yet, so there's nothing to
3362 * prefetch.
3364 nlevels = dn->dn_phys->dn_nlevels;
3365 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3366 goto no_issue;
3368 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3369 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3370 goto no_issue;
3372 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3373 level, blkid);
3374 if (db != NULL) {
3375 mutex_exit(&db->db_mtx);
3377 * This dbuf already exists. It is either CACHED, or
3378 * (we assume) about to be read or filled.
3380 goto no_issue;
3384 * Find the closest ancestor (indirect block) of the target block
3385 * that is present in the cache. In this indirect block, we will
3386 * find the bp that is at curlevel, curblkid.
3388 curlevel = level;
3389 curblkid = blkid;
3390 while (curlevel < nlevels - 1) {
3391 int parent_level = curlevel + 1;
3392 uint64_t parent_blkid = curblkid >> epbs;
3393 dmu_buf_impl_t *db;
3395 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3396 FALSE, TRUE, FTAG, &db) == 0) {
3397 blkptr_t *bpp = db->db_buf->b_data;
3398 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3399 dbuf_rele(db, FTAG);
3400 break;
3403 curlevel = parent_level;
3404 curblkid = parent_blkid;
3407 if (curlevel == nlevels - 1) {
3408 /* No cached indirect blocks found. */
3409 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3410 bp = dn->dn_phys->dn_blkptr[curblkid];
3412 ASSERT(!BP_IS_REDACTED(&bp) ||
3413 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3414 SPA_FEATURE_REDACTED_DATASETS));
3415 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3416 goto no_issue;
3418 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3420 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3421 ZIO_FLAG_CANFAIL);
3423 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3424 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3425 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3426 dn->dn_object, level, blkid);
3427 dpa->dpa_curlevel = curlevel;
3428 dpa->dpa_prio = prio;
3429 dpa->dpa_aflags = aflags;
3430 dpa->dpa_spa = dn->dn_objset->os_spa;
3431 dpa->dpa_dnode = dn;
3432 dpa->dpa_epbs = epbs;
3433 dpa->dpa_zio = pio;
3434 dpa->dpa_cb = cb;
3435 dpa->dpa_arg = arg;
3437 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3438 if (dnode_level_is_l2cacheable(&bp, dn, level))
3439 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3442 * If we have the indirect just above us, no need to do the asynchronous
3443 * prefetch chain; we'll just run the last step ourselves. If we're at
3444 * a higher level, though, we want to issue the prefetches for all the
3445 * indirect blocks asynchronously, so we can go on with whatever we were
3446 * doing.
3448 if (curlevel == level) {
3449 ASSERT3U(curblkid, ==, blkid);
3450 dbuf_issue_final_prefetch(dpa, &bp);
3451 } else {
3452 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3453 zbookmark_phys_t zb;
3455 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3456 if (dnode_level_is_l2cacheable(&bp, dn, level))
3457 iter_aflags |= ARC_FLAG_L2CACHE;
3459 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3460 dn->dn_object, curlevel, curblkid);
3461 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3462 &bp, dbuf_prefetch_indirect_done, dpa,
3463 ZIO_PRIORITY_SYNC_READ,
3464 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3465 &iter_aflags, &zb);
3468 * We use pio here instead of dpa_zio since it's possible that
3469 * dpa may have already been freed.
3471 zio_nowait(pio);
3472 return (1);
3473 no_issue:
3474 if (cb != NULL)
3475 cb(arg, level, blkid, B_FALSE);
3476 return (0);
3480 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3481 arc_flags_t aflags)
3484 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3488 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3489 * the case of encrypted, compressed and uncompressed buffers by
3490 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3491 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3493 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3495 noinline static void
3496 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3498 dbuf_dirty_record_t *dr = db->db_data_pending;
3499 arc_buf_t *data = dr->dt.dl.dr_data;
3500 enum zio_compress compress_type = arc_get_compression(data);
3501 uint8_t complevel = arc_get_complevel(data);
3503 if (arc_is_encrypted(data)) {
3504 boolean_t byteorder;
3505 uint8_t salt[ZIO_DATA_SALT_LEN];
3506 uint8_t iv[ZIO_DATA_IV_LEN];
3507 uint8_t mac[ZIO_DATA_MAC_LEN];
3509 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3510 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3511 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3512 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3513 compress_type, complevel));
3514 } else if (compress_type != ZIO_COMPRESS_OFF) {
3515 dbuf_set_data(db, arc_alloc_compressed_buf(
3516 dn->dn_objset->os_spa, db, arc_buf_size(data),
3517 arc_buf_lsize(data), compress_type, complevel));
3518 } else {
3519 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3520 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3523 rw_enter(&db->db_rwlock, RW_WRITER);
3524 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3525 rw_exit(&db->db_rwlock);
3529 * Returns with db_holds incremented, and db_mtx not held.
3530 * Note: dn_struct_rwlock must be held.
3533 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3534 boolean_t fail_sparse, boolean_t fail_uncached,
3535 void *tag, dmu_buf_impl_t **dbp)
3537 dmu_buf_impl_t *db, *parent = NULL;
3539 /* If the pool has been created, verify the tx_sync_lock is not held */
3540 spa_t *spa = dn->dn_objset->os_spa;
3541 dsl_pool_t *dp = spa->spa_dsl_pool;
3542 if (dp != NULL) {
3543 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3546 ASSERT(blkid != DMU_BONUS_BLKID);
3547 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3548 ASSERT3U(dn->dn_nlevels, >, level);
3550 *dbp = NULL;
3552 /* dbuf_find() returns with db_mtx held */
3553 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid);
3555 if (db == NULL) {
3556 blkptr_t *bp = NULL;
3557 int err;
3559 if (fail_uncached)
3560 return (SET_ERROR(ENOENT));
3562 ASSERT3P(parent, ==, NULL);
3563 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3564 if (fail_sparse) {
3565 if (err == 0 && bp && BP_IS_HOLE(bp))
3566 err = SET_ERROR(ENOENT);
3567 if (err) {
3568 if (parent)
3569 dbuf_rele(parent, NULL);
3570 return (err);
3573 if (err && err != ENOENT)
3574 return (err);
3575 db = dbuf_create(dn, level, blkid, parent, bp);
3578 if (fail_uncached && db->db_state != DB_CACHED) {
3579 mutex_exit(&db->db_mtx);
3580 return (SET_ERROR(ENOENT));
3583 if (db->db_buf != NULL) {
3584 arc_buf_access(db->db_buf);
3585 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3588 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3591 * If this buffer is currently syncing out, and we are
3592 * still referencing it from db_data, we need to make a copy
3593 * of it in case we decide we want to dirty it again in this txg.
3595 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3596 dn->dn_object != DMU_META_DNODE_OBJECT &&
3597 db->db_state == DB_CACHED && db->db_data_pending) {
3598 dbuf_dirty_record_t *dr = db->db_data_pending;
3599 if (dr->dt.dl.dr_data == db->db_buf)
3600 dbuf_hold_copy(dn, db);
3603 if (multilist_link_active(&db->db_cache_link)) {
3604 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3605 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3606 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3608 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3609 (void) zfs_refcount_remove_many(
3610 &dbuf_caches[db->db_caching_status].size,
3611 db->db.db_size, db);
3613 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3614 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3615 } else {
3616 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3617 DBUF_STAT_BUMPDOWN(cache_count);
3618 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3619 db->db.db_size);
3621 db->db_caching_status = DB_NO_CACHE;
3623 (void) zfs_refcount_add(&db->db_holds, tag);
3624 DBUF_VERIFY(db);
3625 mutex_exit(&db->db_mtx);
3627 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3628 if (parent)
3629 dbuf_rele(parent, NULL);
3631 ASSERT3P(DB_DNODE(db), ==, dn);
3632 ASSERT3U(db->db_blkid, ==, blkid);
3633 ASSERT3U(db->db_level, ==, level);
3634 *dbp = db;
3636 return (0);
3639 dmu_buf_impl_t *
3640 dbuf_hold(dnode_t *dn, uint64_t blkid, void *tag)
3642 return (dbuf_hold_level(dn, 0, blkid, tag));
3645 dmu_buf_impl_t *
3646 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, void *tag)
3648 dmu_buf_impl_t *db;
3649 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3650 return (err ? NULL : db);
3653 void
3654 dbuf_create_bonus(dnode_t *dn)
3656 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
3658 ASSERT(dn->dn_bonus == NULL);
3659 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL);
3663 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
3665 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3667 if (db->db_blkid != DMU_SPILL_BLKID)
3668 return (SET_ERROR(ENOTSUP));
3669 if (blksz == 0)
3670 blksz = SPA_MINBLOCKSIZE;
3671 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
3672 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
3674 dbuf_new_size(db, blksz, tx);
3676 return (0);
3679 void
3680 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
3682 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
3685 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3686 void
3687 dbuf_add_ref(dmu_buf_impl_t *db, void *tag)
3689 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
3690 VERIFY3S(holds, >, 1);
3693 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3694 boolean_t
3695 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
3696 void *tag)
3698 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3699 dmu_buf_impl_t *found_db;
3700 boolean_t result = B_FALSE;
3702 if (blkid == DMU_BONUS_BLKID)
3703 found_db = dbuf_find_bonus(os, obj);
3704 else
3705 found_db = dbuf_find(os, obj, 0, blkid);
3707 if (found_db != NULL) {
3708 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
3709 (void) zfs_refcount_add(&db->db_holds, tag);
3710 result = B_TRUE;
3712 mutex_exit(&found_db->db_mtx);
3714 return (result);
3718 * If you call dbuf_rele() you had better not be referencing the dnode handle
3719 * unless you have some other direct or indirect hold on the dnode. (An indirect
3720 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3721 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3722 * dnode's parent dbuf evicting its dnode handles.
3724 void
3725 dbuf_rele(dmu_buf_impl_t *db, void *tag)
3727 mutex_enter(&db->db_mtx);
3728 dbuf_rele_and_unlock(db, tag, B_FALSE);
3731 void
3732 dmu_buf_rele(dmu_buf_t *db, void *tag)
3734 dbuf_rele((dmu_buf_impl_t *)db, tag);
3738 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3739 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3740 * argument should be set if we are already in the dbuf-evicting code
3741 * path, in which case we don't want to recursively evict. This allows us to
3742 * avoid deeply nested stacks that would have a call flow similar to this:
3744 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3745 * ^ |
3746 * | |
3747 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3750 void
3751 dbuf_rele_and_unlock(dmu_buf_impl_t *db, void *tag, boolean_t evicting)
3753 int64_t holds;
3754 uint64_t size;
3756 ASSERT(MUTEX_HELD(&db->db_mtx));
3757 DBUF_VERIFY(db);
3760 * Remove the reference to the dbuf before removing its hold on the
3761 * dnode so we can guarantee in dnode_move() that a referenced bonus
3762 * buffer has a corresponding dnode hold.
3764 holds = zfs_refcount_remove(&db->db_holds, tag);
3765 ASSERT(holds >= 0);
3768 * We can't freeze indirects if there is a possibility that they
3769 * may be modified in the current syncing context.
3771 if (db->db_buf != NULL &&
3772 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
3773 arc_buf_freeze(db->db_buf);
3776 if (holds == db->db_dirtycnt &&
3777 db->db_level == 0 && db->db_user_immediate_evict)
3778 dbuf_evict_user(db);
3780 if (holds == 0) {
3781 if (db->db_blkid == DMU_BONUS_BLKID) {
3782 dnode_t *dn;
3783 boolean_t evict_dbuf = db->db_pending_evict;
3786 * If the dnode moves here, we cannot cross this
3787 * barrier until the move completes.
3789 DB_DNODE_ENTER(db);
3791 dn = DB_DNODE(db);
3792 atomic_dec_32(&dn->dn_dbufs_count);
3795 * Decrementing the dbuf count means that the bonus
3796 * buffer's dnode hold is no longer discounted in
3797 * dnode_move(). The dnode cannot move until after
3798 * the dnode_rele() below.
3800 DB_DNODE_EXIT(db);
3803 * Do not reference db after its lock is dropped.
3804 * Another thread may evict it.
3806 mutex_exit(&db->db_mtx);
3808 if (evict_dbuf)
3809 dnode_evict_bonus(dn);
3811 dnode_rele(dn, db);
3812 } else if (db->db_buf == NULL) {
3814 * This is a special case: we never associated this
3815 * dbuf with any data allocated from the ARC.
3817 ASSERT(db->db_state == DB_UNCACHED ||
3818 db->db_state == DB_NOFILL);
3819 dbuf_destroy(db);
3820 } else if (arc_released(db->db_buf)) {
3822 * This dbuf has anonymous data associated with it.
3824 dbuf_destroy(db);
3825 } else {
3826 boolean_t do_arc_evict = B_FALSE;
3827 blkptr_t bp;
3828 spa_t *spa = dmu_objset_spa(db->db_objset);
3830 if (!DBUF_IS_CACHEABLE(db) &&
3831 db->db_blkptr != NULL &&
3832 !BP_IS_HOLE(db->db_blkptr) &&
3833 !BP_IS_EMBEDDED(db->db_blkptr)) {
3834 do_arc_evict = B_TRUE;
3835 bp = *db->db_blkptr;
3838 if (!DBUF_IS_CACHEABLE(db) ||
3839 db->db_pending_evict) {
3840 dbuf_destroy(db);
3841 } else if (!multilist_link_active(&db->db_cache_link)) {
3842 ASSERT3U(db->db_caching_status, ==,
3843 DB_NO_CACHE);
3845 dbuf_cached_state_t dcs =
3846 dbuf_include_in_metadata_cache(db) ?
3847 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
3848 db->db_caching_status = dcs;
3850 multilist_insert(&dbuf_caches[dcs].cache, db);
3851 uint64_t db_size = db->db.db_size;
3852 size = zfs_refcount_add_many(
3853 &dbuf_caches[dcs].size, db_size, db);
3854 uint8_t db_level = db->db_level;
3855 mutex_exit(&db->db_mtx);
3857 if (dcs == DB_DBUF_METADATA_CACHE) {
3858 DBUF_STAT_BUMP(metadata_cache_count);
3859 DBUF_STAT_MAX(
3860 metadata_cache_size_bytes_max,
3861 size);
3862 } else {
3863 DBUF_STAT_BUMP(cache_count);
3864 DBUF_STAT_MAX(cache_size_bytes_max,
3865 size);
3866 DBUF_STAT_BUMP(cache_levels[db_level]);
3867 DBUF_STAT_INCR(
3868 cache_levels_bytes[db_level],
3869 db_size);
3872 if (dcs == DB_DBUF_CACHE && !evicting)
3873 dbuf_evict_notify(size);
3876 if (do_arc_evict)
3877 arc_freed(spa, &bp);
3879 } else {
3880 mutex_exit(&db->db_mtx);
3885 #pragma weak dmu_buf_refcount = dbuf_refcount
3886 uint64_t
3887 dbuf_refcount(dmu_buf_impl_t *db)
3889 return (zfs_refcount_count(&db->db_holds));
3892 uint64_t
3893 dmu_buf_user_refcount(dmu_buf_t *db_fake)
3895 uint64_t holds;
3896 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3898 mutex_enter(&db->db_mtx);
3899 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
3900 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
3901 mutex_exit(&db->db_mtx);
3903 return (holds);
3906 void *
3907 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
3908 dmu_buf_user_t *new_user)
3910 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3912 mutex_enter(&db->db_mtx);
3913 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3914 if (db->db_user == old_user)
3915 db->db_user = new_user;
3916 else
3917 old_user = db->db_user;
3918 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3919 mutex_exit(&db->db_mtx);
3921 return (old_user);
3924 void *
3925 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3927 return (dmu_buf_replace_user(db_fake, NULL, user));
3930 void *
3931 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3933 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3935 db->db_user_immediate_evict = TRUE;
3936 return (dmu_buf_set_user(db_fake, user));
3939 void *
3940 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
3942 return (dmu_buf_replace_user(db_fake, user, NULL));
3945 void *
3946 dmu_buf_get_user(dmu_buf_t *db_fake)
3948 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
3950 dbuf_verify_user(db, DBVU_NOT_EVICTING);
3951 return (db->db_user);
3954 void
3955 dmu_buf_user_evict_wait(void)
3957 taskq_wait(dbu_evict_taskq);
3960 blkptr_t *
3961 dmu_buf_get_blkptr(dmu_buf_t *db)
3963 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3964 return (dbi->db_blkptr);
3967 objset_t *
3968 dmu_buf_get_objset(dmu_buf_t *db)
3970 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3971 return (dbi->db_objset);
3974 dnode_t *
3975 dmu_buf_dnode_enter(dmu_buf_t *db)
3977 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3978 DB_DNODE_ENTER(dbi);
3979 return (DB_DNODE(dbi));
3982 void
3983 dmu_buf_dnode_exit(dmu_buf_t *db)
3985 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
3986 DB_DNODE_EXIT(dbi);
3989 static void
3990 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
3992 /* ASSERT(dmu_tx_is_syncing(tx) */
3993 ASSERT(MUTEX_HELD(&db->db_mtx));
3995 if (db->db_blkptr != NULL)
3996 return;
3998 if (db->db_blkid == DMU_SPILL_BLKID) {
3999 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4000 BP_ZERO(db->db_blkptr);
4001 return;
4003 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4005 * This buffer was allocated at a time when there was
4006 * no available blkptrs from the dnode, or it was
4007 * inappropriate to hook it in (i.e., nlevels mismatch).
4009 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4010 ASSERT(db->db_parent == NULL);
4011 db->db_parent = dn->dn_dbuf;
4012 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4013 DBUF_VERIFY(db);
4014 } else {
4015 dmu_buf_impl_t *parent = db->db_parent;
4016 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4018 ASSERT(dn->dn_phys->dn_nlevels > 1);
4019 if (parent == NULL) {
4020 mutex_exit(&db->db_mtx);
4021 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4022 parent = dbuf_hold_level(dn, db->db_level + 1,
4023 db->db_blkid >> epbs, db);
4024 rw_exit(&dn->dn_struct_rwlock);
4025 mutex_enter(&db->db_mtx);
4026 db->db_parent = parent;
4028 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4029 (db->db_blkid & ((1ULL << epbs) - 1));
4030 DBUF_VERIFY(db);
4034 static void
4035 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4037 dmu_buf_impl_t *db = dr->dr_dbuf;
4038 void *data = dr->dt.dl.dr_data;
4040 ASSERT0(db->db_level);
4041 ASSERT(MUTEX_HELD(&db->db_mtx));
4042 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4043 ASSERT(data != NULL);
4045 dnode_t *dn = dr->dr_dnode;
4046 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4047 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4048 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4050 dbuf_sync_leaf_verify_bonus_dnode(dr);
4052 dbuf_undirty_bonus(dr);
4053 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4057 * When syncing out a blocks of dnodes, adjust the block to deal with
4058 * encryption. Normally, we make sure the block is decrypted before writing
4059 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4060 * from a raw receive. In this case, set the ARC buf's crypt params so
4061 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4063 static void
4064 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4066 int err;
4067 dmu_buf_impl_t *db = dr->dr_dbuf;
4069 ASSERT(MUTEX_HELD(&db->db_mtx));
4070 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4071 ASSERT3U(db->db_level, ==, 0);
4073 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4074 zbookmark_phys_t zb;
4077 * Unfortunately, there is currently no mechanism for
4078 * syncing context to handle decryption errors. An error
4079 * here is only possible if an attacker maliciously
4080 * changed a dnode block and updated the associated
4081 * checksums going up the block tree.
4083 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4084 db->db.db_object, db->db_level, db->db_blkid);
4085 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4086 &zb, B_TRUE);
4087 if (err)
4088 panic("Invalid dnode block MAC");
4089 } else if (dr->dt.dl.dr_has_raw_params) {
4090 (void) arc_release(dr->dt.dl.dr_data, db);
4091 arc_convert_to_raw(dr->dt.dl.dr_data,
4092 dmu_objset_id(db->db_objset),
4093 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4094 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4099 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4100 * is critical the we not allow the compiler to inline this function in to
4101 * dbuf_sync_list() thereby drastically bloating the stack usage.
4103 noinline static void
4104 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4106 dmu_buf_impl_t *db = dr->dr_dbuf;
4107 dnode_t *dn = dr->dr_dnode;
4109 ASSERT(dmu_tx_is_syncing(tx));
4111 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4113 mutex_enter(&db->db_mtx);
4115 ASSERT(db->db_level > 0);
4116 DBUF_VERIFY(db);
4118 /* Read the block if it hasn't been read yet. */
4119 if (db->db_buf == NULL) {
4120 mutex_exit(&db->db_mtx);
4121 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4122 mutex_enter(&db->db_mtx);
4124 ASSERT3U(db->db_state, ==, DB_CACHED);
4125 ASSERT(db->db_buf != NULL);
4127 /* Indirect block size must match what the dnode thinks it is. */
4128 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4129 dbuf_check_blkptr(dn, db);
4131 /* Provide the pending dirty record to child dbufs */
4132 db->db_data_pending = dr;
4134 mutex_exit(&db->db_mtx);
4136 dbuf_write(dr, db->db_buf, tx);
4138 zio_t *zio = dr->dr_zio;
4139 mutex_enter(&dr->dt.di.dr_mtx);
4140 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4141 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4142 mutex_exit(&dr->dt.di.dr_mtx);
4143 zio_nowait(zio);
4147 * Verify that the size of the data in our bonus buffer does not exceed
4148 * its recorded size.
4150 * The purpose of this verification is to catch any cases in development
4151 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4152 * due to incorrect feature management, older pools expect to read more
4153 * data even though they didn't actually write it to begin with.
4155 * For a example, this would catch an error in the feature logic where we
4156 * open an older pool and we expect to write the space map histogram of
4157 * a space map with size SPACE_MAP_SIZE_V0.
4159 static void
4160 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4162 #ifdef ZFS_DEBUG
4163 dnode_t *dn = dr->dr_dnode;
4166 * Encrypted bonus buffers can have data past their bonuslen.
4167 * Skip the verification of these blocks.
4169 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4170 return;
4172 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4173 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4174 ASSERT3U(bonuslen, <=, maxbonuslen);
4176 arc_buf_t *datap = dr->dt.dl.dr_data;
4177 char *datap_end = ((char *)datap) + bonuslen;
4178 char *datap_max = ((char *)datap) + maxbonuslen;
4180 /* ensure that everything is zero after our data */
4181 for (; datap_end < datap_max; datap_end++)
4182 ASSERT(*datap_end == 0);
4183 #endif
4186 static blkptr_t *
4187 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4189 /* This must be a lightweight dirty record. */
4190 ASSERT3P(dr->dr_dbuf, ==, NULL);
4191 dnode_t *dn = dr->dr_dnode;
4193 if (dn->dn_phys->dn_nlevels == 1) {
4194 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4195 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4196 } else {
4197 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4198 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4199 VERIFY3U(parent_db->db_level, ==, 1);
4200 VERIFY3P(parent_db->db_dnode_handle->dnh_dnode, ==, dn);
4201 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4202 blkptr_t *bp = parent_db->db.db_data;
4203 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4207 static void
4208 dbuf_lightweight_ready(zio_t *zio)
4210 dbuf_dirty_record_t *dr = zio->io_private;
4211 blkptr_t *bp = zio->io_bp;
4213 if (zio->io_error != 0)
4214 return;
4216 dnode_t *dn = dr->dr_dnode;
4218 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4219 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4220 int64_t delta = bp_get_dsize_sync(spa, bp) -
4221 bp_get_dsize_sync(spa, bp_orig);
4222 dnode_diduse_space(dn, delta);
4224 uint64_t blkid = dr->dt.dll.dr_blkid;
4225 mutex_enter(&dn->dn_mtx);
4226 if (blkid > dn->dn_phys->dn_maxblkid) {
4227 ASSERT0(dn->dn_objset->os_raw_receive);
4228 dn->dn_phys->dn_maxblkid = blkid;
4230 mutex_exit(&dn->dn_mtx);
4232 if (!BP_IS_EMBEDDED(bp)) {
4233 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4234 BP_SET_FILL(bp, fill);
4237 dmu_buf_impl_t *parent_db;
4238 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4239 if (dr->dr_parent == NULL) {
4240 parent_db = dn->dn_dbuf;
4241 } else {
4242 parent_db = dr->dr_parent->dr_dbuf;
4244 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4245 *bp_orig = *bp;
4246 rw_exit(&parent_db->db_rwlock);
4249 static void
4250 dbuf_lightweight_physdone(zio_t *zio)
4252 dbuf_dirty_record_t *dr = zio->io_private;
4253 dsl_pool_t *dp = spa_get_dsl(zio->io_spa);
4254 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4257 * The callback will be called io_phys_children times. Retire one
4258 * portion of our dirty space each time we are called. Any rounding
4259 * error will be cleaned up by dbuf_lightweight_done().
4261 int delta = dr->dr_accounted / zio->io_phys_children;
4262 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4265 static void
4266 dbuf_lightweight_done(zio_t *zio)
4268 dbuf_dirty_record_t *dr = zio->io_private;
4270 VERIFY0(zio->io_error);
4272 objset_t *os = dr->dr_dnode->dn_objset;
4273 dmu_tx_t *tx = os->os_synctx;
4275 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4276 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4277 } else {
4278 dsl_dataset_t *ds = os->os_dsl_dataset;
4279 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4280 dsl_dataset_block_born(ds, zio->io_bp, tx);
4284 * See comment in dbuf_write_done().
4286 if (zio->io_phys_children == 0) {
4287 dsl_pool_undirty_space(dmu_objset_pool(os),
4288 dr->dr_accounted, zio->io_txg);
4289 } else {
4290 dsl_pool_undirty_space(dmu_objset_pool(os),
4291 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4294 abd_free(dr->dt.dll.dr_abd);
4295 kmem_free(dr, sizeof (*dr));
4298 noinline static void
4299 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4301 dnode_t *dn = dr->dr_dnode;
4302 zio_t *pio;
4303 if (dn->dn_phys->dn_nlevels == 1) {
4304 pio = dn->dn_zio;
4305 } else {
4306 pio = dr->dr_parent->dr_zio;
4309 zbookmark_phys_t zb = {
4310 .zb_objset = dmu_objset_id(dn->dn_objset),
4311 .zb_object = dn->dn_object,
4312 .zb_level = 0,
4313 .zb_blkid = dr->dt.dll.dr_blkid,
4317 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4318 * will have the old BP in dbuf_lightweight_done().
4320 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4322 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4323 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4324 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4325 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4326 dbuf_lightweight_physdone, dbuf_lightweight_done, dr,
4327 ZIO_PRIORITY_ASYNC_WRITE,
4328 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4330 zio_nowait(dr->dr_zio);
4334 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4335 * critical the we not allow the compiler to inline this function in to
4336 * dbuf_sync_list() thereby drastically bloating the stack usage.
4338 noinline static void
4339 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4341 arc_buf_t **datap = &dr->dt.dl.dr_data;
4342 dmu_buf_impl_t *db = dr->dr_dbuf;
4343 dnode_t *dn = dr->dr_dnode;
4344 objset_t *os;
4345 uint64_t txg = tx->tx_txg;
4347 ASSERT(dmu_tx_is_syncing(tx));
4349 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4351 mutex_enter(&db->db_mtx);
4353 * To be synced, we must be dirtied. But we
4354 * might have been freed after the dirty.
4356 if (db->db_state == DB_UNCACHED) {
4357 /* This buffer has been freed since it was dirtied */
4358 ASSERT(db->db.db_data == NULL);
4359 } else if (db->db_state == DB_FILL) {
4360 /* This buffer was freed and is now being re-filled */
4361 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4362 } else {
4363 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4365 DBUF_VERIFY(db);
4367 if (db->db_blkid == DMU_SPILL_BLKID) {
4368 mutex_enter(&dn->dn_mtx);
4369 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4371 * In the previous transaction group, the bonus buffer
4372 * was entirely used to store the attributes for the
4373 * dnode which overrode the dn_spill field. However,
4374 * when adding more attributes to the file a spill
4375 * block was required to hold the extra attributes.
4377 * Make sure to clear the garbage left in the dn_spill
4378 * field from the previous attributes in the bonus
4379 * buffer. Otherwise, after writing out the spill
4380 * block to the new allocated dva, it will free
4381 * the old block pointed to by the invalid dn_spill.
4383 db->db_blkptr = NULL;
4385 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4386 mutex_exit(&dn->dn_mtx);
4390 * If this is a bonus buffer, simply copy the bonus data into the
4391 * dnode. It will be written out when the dnode is synced (and it
4392 * will be synced, since it must have been dirty for dbuf_sync to
4393 * be called).
4395 if (db->db_blkid == DMU_BONUS_BLKID) {
4396 ASSERT(dr->dr_dbuf == db);
4397 dbuf_sync_bonus(dr, tx);
4398 return;
4401 os = dn->dn_objset;
4404 * This function may have dropped the db_mtx lock allowing a dmu_sync
4405 * operation to sneak in. As a result, we need to ensure that we
4406 * don't check the dr_override_state until we have returned from
4407 * dbuf_check_blkptr.
4409 dbuf_check_blkptr(dn, db);
4412 * If this buffer is in the middle of an immediate write,
4413 * wait for the synchronous IO to complete.
4415 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4416 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4417 cv_wait(&db->db_changed, &db->db_mtx);
4418 ASSERT(dr->dt.dl.dr_override_state != DR_NOT_OVERRIDDEN);
4422 * If this is a dnode block, ensure it is appropriately encrypted
4423 * or decrypted, depending on what we are writing to it this txg.
4425 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4426 dbuf_prepare_encrypted_dnode_leaf(dr);
4428 if (db->db_state != DB_NOFILL &&
4429 dn->dn_object != DMU_META_DNODE_OBJECT &&
4430 zfs_refcount_count(&db->db_holds) > 1 &&
4431 dr->dt.dl.dr_override_state != DR_OVERRIDDEN &&
4432 *datap == db->db_buf) {
4434 * If this buffer is currently "in use" (i.e., there
4435 * are active holds and db_data still references it),
4436 * then make a copy before we start the write so that
4437 * any modifications from the open txg will not leak
4438 * into this write.
4440 * NOTE: this copy does not need to be made for
4441 * objects only modified in the syncing context (e.g.
4442 * DNONE_DNODE blocks).
4444 int psize = arc_buf_size(*datap);
4445 int lsize = arc_buf_lsize(*datap);
4446 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4447 enum zio_compress compress_type = arc_get_compression(*datap);
4448 uint8_t complevel = arc_get_complevel(*datap);
4450 if (arc_is_encrypted(*datap)) {
4451 boolean_t byteorder;
4452 uint8_t salt[ZIO_DATA_SALT_LEN];
4453 uint8_t iv[ZIO_DATA_IV_LEN];
4454 uint8_t mac[ZIO_DATA_MAC_LEN];
4456 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4457 *datap = arc_alloc_raw_buf(os->os_spa, db,
4458 dmu_objset_id(os), byteorder, salt, iv, mac,
4459 dn->dn_type, psize, lsize, compress_type,
4460 complevel);
4461 } else if (compress_type != ZIO_COMPRESS_OFF) {
4462 ASSERT3U(type, ==, ARC_BUFC_DATA);
4463 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4464 psize, lsize, compress_type, complevel);
4465 } else {
4466 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4468 memcpy((*datap)->b_data, db->db.db_data, psize);
4470 db->db_data_pending = dr;
4472 mutex_exit(&db->db_mtx);
4474 dbuf_write(dr, *datap, tx);
4476 ASSERT(!list_link_active(&dr->dr_dirty_node));
4477 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4478 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4479 } else {
4480 zio_nowait(dr->dr_zio);
4484 void
4485 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4487 dbuf_dirty_record_t *dr;
4489 while ((dr = list_head(list))) {
4490 if (dr->dr_zio != NULL) {
4492 * If we find an already initialized zio then we
4493 * are processing the meta-dnode, and we have finished.
4494 * The dbufs for all dnodes are put back on the list
4495 * during processing, so that we can zio_wait()
4496 * these IOs after initiating all child IOs.
4498 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4499 DMU_META_DNODE_OBJECT);
4500 break;
4502 list_remove(list, dr);
4503 if (dr->dr_dbuf == NULL) {
4504 dbuf_sync_lightweight(dr, tx);
4505 } else {
4506 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4507 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4508 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4510 if (dr->dr_dbuf->db_level > 0)
4511 dbuf_sync_indirect(dr, tx);
4512 else
4513 dbuf_sync_leaf(dr, tx);
4518 static void
4519 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4521 (void) buf;
4522 dmu_buf_impl_t *db = vdb;
4523 dnode_t *dn;
4524 blkptr_t *bp = zio->io_bp;
4525 blkptr_t *bp_orig = &zio->io_bp_orig;
4526 spa_t *spa = zio->io_spa;
4527 int64_t delta;
4528 uint64_t fill = 0;
4529 int i;
4531 ASSERT3P(db->db_blkptr, !=, NULL);
4532 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4534 DB_DNODE_ENTER(db);
4535 dn = DB_DNODE(db);
4536 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4537 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4538 zio->io_prev_space_delta = delta;
4540 if (bp->blk_birth != 0) {
4541 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4542 BP_GET_TYPE(bp) == dn->dn_type) ||
4543 (db->db_blkid == DMU_SPILL_BLKID &&
4544 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4545 BP_IS_EMBEDDED(bp));
4546 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4549 mutex_enter(&db->db_mtx);
4551 #ifdef ZFS_DEBUG
4552 if (db->db_blkid == DMU_SPILL_BLKID) {
4553 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4554 ASSERT(!(BP_IS_HOLE(bp)) &&
4555 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4557 #endif
4559 if (db->db_level == 0) {
4560 mutex_enter(&dn->dn_mtx);
4561 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4562 db->db_blkid != DMU_SPILL_BLKID) {
4563 ASSERT0(db->db_objset->os_raw_receive);
4564 dn->dn_phys->dn_maxblkid = db->db_blkid;
4566 mutex_exit(&dn->dn_mtx);
4568 if (dn->dn_type == DMU_OT_DNODE) {
4569 i = 0;
4570 while (i < db->db.db_size) {
4571 dnode_phys_t *dnp =
4572 (void *)(((char *)db->db.db_data) + i);
4574 i += DNODE_MIN_SIZE;
4575 if (dnp->dn_type != DMU_OT_NONE) {
4576 fill++;
4577 i += dnp->dn_extra_slots *
4578 DNODE_MIN_SIZE;
4581 } else {
4582 if (BP_IS_HOLE(bp)) {
4583 fill = 0;
4584 } else {
4585 fill = 1;
4588 } else {
4589 blkptr_t *ibp = db->db.db_data;
4590 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4591 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4592 if (BP_IS_HOLE(ibp))
4593 continue;
4594 fill += BP_GET_FILL(ibp);
4597 DB_DNODE_EXIT(db);
4599 if (!BP_IS_EMBEDDED(bp))
4600 BP_SET_FILL(bp, fill);
4602 mutex_exit(&db->db_mtx);
4604 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4605 *db->db_blkptr = *bp;
4606 dmu_buf_unlock_parent(db, dblt, FTAG);
4610 * This function gets called just prior to running through the compression
4611 * stage of the zio pipeline. If we're an indirect block comprised of only
4612 * holes, then we want this indirect to be compressed away to a hole. In
4613 * order to do that we must zero out any information about the holes that
4614 * this indirect points to prior to before we try to compress it.
4616 static void
4617 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4619 (void) zio, (void) buf;
4620 dmu_buf_impl_t *db = vdb;
4621 dnode_t *dn;
4622 blkptr_t *bp;
4623 unsigned int epbs, i;
4625 ASSERT3U(db->db_level, >, 0);
4626 DB_DNODE_ENTER(db);
4627 dn = DB_DNODE(db);
4628 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4629 ASSERT3U(epbs, <, 31);
4631 /* Determine if all our children are holes */
4632 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4633 if (!BP_IS_HOLE(bp))
4634 break;
4638 * If all the children are holes, then zero them all out so that
4639 * we may get compressed away.
4641 if (i == 1ULL << epbs) {
4643 * We only found holes. Grab the rwlock to prevent
4644 * anybody from reading the blocks we're about to
4645 * zero out.
4647 rw_enter(&db->db_rwlock, RW_WRITER);
4648 memset(db->db.db_data, 0, db->db.db_size);
4649 rw_exit(&db->db_rwlock);
4651 DB_DNODE_EXIT(db);
4655 * The SPA will call this callback several times for each zio - once
4656 * for every physical child i/o (zio->io_phys_children times). This
4657 * allows the DMU to monitor the progress of each logical i/o. For example,
4658 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4659 * block. There may be a long delay before all copies/fragments are completed,
4660 * so this callback allows us to retire dirty space gradually, as the physical
4661 * i/os complete.
4663 static void
4664 dbuf_write_physdone(zio_t *zio, arc_buf_t *buf, void *arg)
4666 (void) buf;
4667 dmu_buf_impl_t *db = arg;
4668 objset_t *os = db->db_objset;
4669 dsl_pool_t *dp = dmu_objset_pool(os);
4670 dbuf_dirty_record_t *dr;
4671 int delta = 0;
4673 dr = db->db_data_pending;
4674 ASSERT3U(dr->dr_txg, ==, zio->io_txg);
4677 * The callback will be called io_phys_children times. Retire one
4678 * portion of our dirty space each time we are called. Any rounding
4679 * error will be cleaned up by dbuf_write_done().
4681 delta = dr->dr_accounted / zio->io_phys_children;
4682 dsl_pool_undirty_space(dp, delta, zio->io_txg);
4685 static void
4686 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
4688 (void) buf;
4689 dmu_buf_impl_t *db = vdb;
4690 blkptr_t *bp_orig = &zio->io_bp_orig;
4691 blkptr_t *bp = db->db_blkptr;
4692 objset_t *os = db->db_objset;
4693 dmu_tx_t *tx = os->os_synctx;
4695 ASSERT0(zio->io_error);
4696 ASSERT(db->db_blkptr == bp);
4699 * For nopwrites and rewrites we ensure that the bp matches our
4700 * original and bypass all the accounting.
4702 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4703 ASSERT(BP_EQUAL(bp, bp_orig));
4704 } else {
4705 dsl_dataset_t *ds = os->os_dsl_dataset;
4706 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
4707 dsl_dataset_block_born(ds, bp, tx);
4710 mutex_enter(&db->db_mtx);
4712 DBUF_VERIFY(db);
4714 dbuf_dirty_record_t *dr = db->db_data_pending;
4715 dnode_t *dn = dr->dr_dnode;
4716 ASSERT(!list_link_active(&dr->dr_dirty_node));
4717 ASSERT(dr->dr_dbuf == db);
4718 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
4719 list_remove(&db->db_dirty_records, dr);
4721 #ifdef ZFS_DEBUG
4722 if (db->db_blkid == DMU_SPILL_BLKID) {
4723 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4724 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
4725 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4727 #endif
4729 if (db->db_level == 0) {
4730 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
4731 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
4732 if (db->db_state != DB_NOFILL) {
4733 if (dr->dt.dl.dr_data != db->db_buf)
4734 arc_buf_destroy(dr->dt.dl.dr_data, db);
4736 } else {
4737 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4738 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
4739 if (!BP_IS_HOLE(db->db_blkptr)) {
4740 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
4741 SPA_BLKPTRSHIFT;
4742 ASSERT3U(db->db_blkid, <=,
4743 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
4744 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
4745 db->db.db_size);
4747 mutex_destroy(&dr->dt.di.dr_mtx);
4748 list_destroy(&dr->dt.di.dr_children);
4751 cv_broadcast(&db->db_changed);
4752 ASSERT(db->db_dirtycnt > 0);
4753 db->db_dirtycnt -= 1;
4754 db->db_data_pending = NULL;
4755 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4758 * If we didn't do a physical write in this ZIO and we
4759 * still ended up here, it means that the space of the
4760 * dbuf that we just released (and undirtied) above hasn't
4761 * been marked as undirtied in the pool's accounting.
4763 * Thus, we undirty that space in the pool's view of the
4764 * world here. For physical writes this type of update
4765 * happens in dbuf_write_physdone().
4767 * If we did a physical write, cleanup any rounding errors
4768 * that came up due to writing multiple copies of a block
4769 * on disk [see dbuf_write_physdone()].
4771 if (zio->io_phys_children == 0) {
4772 dsl_pool_undirty_space(dmu_objset_pool(os),
4773 dr->dr_accounted, zio->io_txg);
4774 } else {
4775 dsl_pool_undirty_space(dmu_objset_pool(os),
4776 dr->dr_accounted % zio->io_phys_children, zio->io_txg);
4779 kmem_free(dr, sizeof (dbuf_dirty_record_t));
4782 static void
4783 dbuf_write_nofill_ready(zio_t *zio)
4785 dbuf_write_ready(zio, NULL, zio->io_private);
4788 static void
4789 dbuf_write_nofill_done(zio_t *zio)
4791 dbuf_write_done(zio, NULL, zio->io_private);
4794 static void
4795 dbuf_write_override_ready(zio_t *zio)
4797 dbuf_dirty_record_t *dr = zio->io_private;
4798 dmu_buf_impl_t *db = dr->dr_dbuf;
4800 dbuf_write_ready(zio, NULL, db);
4803 static void
4804 dbuf_write_override_done(zio_t *zio)
4806 dbuf_dirty_record_t *dr = zio->io_private;
4807 dmu_buf_impl_t *db = dr->dr_dbuf;
4808 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
4810 mutex_enter(&db->db_mtx);
4811 if (!BP_EQUAL(zio->io_bp, obp)) {
4812 if (!BP_IS_HOLE(obp))
4813 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
4814 arc_release(dr->dt.dl.dr_data, db);
4816 mutex_exit(&db->db_mtx);
4818 dbuf_write_done(zio, NULL, db);
4820 if (zio->io_abd != NULL)
4821 abd_free(zio->io_abd);
4824 typedef struct dbuf_remap_impl_callback_arg {
4825 objset_t *drica_os;
4826 uint64_t drica_blk_birth;
4827 dmu_tx_t *drica_tx;
4828 } dbuf_remap_impl_callback_arg_t;
4830 static void
4831 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
4832 void *arg)
4834 dbuf_remap_impl_callback_arg_t *drica = arg;
4835 objset_t *os = drica->drica_os;
4836 spa_t *spa = dmu_objset_spa(os);
4837 dmu_tx_t *tx = drica->drica_tx;
4839 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4841 if (os == spa_meta_objset(spa)) {
4842 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
4843 } else {
4844 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
4845 size, drica->drica_blk_birth, tx);
4849 static void
4850 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
4852 blkptr_t bp_copy = *bp;
4853 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4854 dbuf_remap_impl_callback_arg_t drica;
4856 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4858 drica.drica_os = dn->dn_objset;
4859 drica.drica_blk_birth = bp->blk_birth;
4860 drica.drica_tx = tx;
4861 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
4862 &drica)) {
4864 * If the blkptr being remapped is tracked by a livelist,
4865 * then we need to make sure the livelist reflects the update.
4866 * First, cancel out the old blkptr by appending a 'FREE'
4867 * entry. Next, add an 'ALLOC' to track the new version. This
4868 * way we avoid trying to free an inaccurate blkptr at delete.
4869 * Note that embedded blkptrs are not tracked in livelists.
4871 if (dn->dn_objset != spa_meta_objset(spa)) {
4872 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
4873 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
4874 bp->blk_birth > ds->ds_dir->dd_origin_txg) {
4875 ASSERT(!BP_IS_EMBEDDED(bp));
4876 ASSERT(dsl_dir_is_clone(ds->ds_dir));
4877 ASSERT(spa_feature_is_enabled(spa,
4878 SPA_FEATURE_LIVELIST));
4879 bplist_append(&ds->ds_dir->dd_pending_frees,
4880 bp);
4881 bplist_append(&ds->ds_dir->dd_pending_allocs,
4882 &bp_copy);
4887 * The db_rwlock prevents dbuf_read_impl() from
4888 * dereferencing the BP while we are changing it. To
4889 * avoid lock contention, only grab it when we are actually
4890 * changing the BP.
4892 if (rw != NULL)
4893 rw_enter(rw, RW_WRITER);
4894 *bp = bp_copy;
4895 if (rw != NULL)
4896 rw_exit(rw);
4901 * Remap any existing BP's to concrete vdevs, if possible.
4903 static void
4904 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
4906 spa_t *spa = dmu_objset_spa(db->db_objset);
4907 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
4909 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
4910 return;
4912 if (db->db_level > 0) {
4913 blkptr_t *bp = db->db.db_data;
4914 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
4915 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
4917 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
4918 dnode_phys_t *dnp = db->db.db_data;
4919 ASSERT3U(db->db_dnode_handle->dnh_dnode->dn_type, ==,
4920 DMU_OT_DNODE);
4921 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
4922 i += dnp[i].dn_extra_slots + 1) {
4923 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
4924 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
4925 &dn->dn_dbuf->db_rwlock);
4926 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
4927 tx);
4934 /* Issue I/O to commit a dirty buffer to disk. */
4935 static void
4936 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
4938 dmu_buf_impl_t *db = dr->dr_dbuf;
4939 dnode_t *dn = dr->dr_dnode;
4940 objset_t *os;
4941 dmu_buf_impl_t *parent = db->db_parent;
4942 uint64_t txg = tx->tx_txg;
4943 zbookmark_phys_t zb;
4944 zio_prop_t zp;
4945 zio_t *pio; /* parent I/O */
4946 int wp_flag = 0;
4948 ASSERT(dmu_tx_is_syncing(tx));
4950 os = dn->dn_objset;
4952 if (db->db_state != DB_NOFILL) {
4953 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
4955 * Private object buffers are released here rather
4956 * than in dbuf_dirty() since they are only modified
4957 * in the syncing context and we don't want the
4958 * overhead of making multiple copies of the data.
4960 if (BP_IS_HOLE(db->db_blkptr)) {
4961 arc_buf_thaw(data);
4962 } else {
4963 dbuf_release_bp(db);
4965 dbuf_remap(dn, db, tx);
4969 if (parent != dn->dn_dbuf) {
4970 /* Our parent is an indirect block. */
4971 /* We have a dirty parent that has been scheduled for write. */
4972 ASSERT(parent && parent->db_data_pending);
4973 /* Our parent's buffer is one level closer to the dnode. */
4974 ASSERT(db->db_level == parent->db_level-1);
4976 * We're about to modify our parent's db_data by modifying
4977 * our block pointer, so the parent must be released.
4979 ASSERT(arc_released(parent->db_buf));
4980 pio = parent->db_data_pending->dr_zio;
4981 } else {
4982 /* Our parent is the dnode itself. */
4983 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
4984 db->db_blkid != DMU_SPILL_BLKID) ||
4985 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
4986 if (db->db_blkid != DMU_SPILL_BLKID)
4987 ASSERT3P(db->db_blkptr, ==,
4988 &dn->dn_phys->dn_blkptr[db->db_blkid]);
4989 pio = dn->dn_zio;
4992 ASSERT(db->db_level == 0 || data == db->db_buf);
4993 ASSERT3U(db->db_blkptr->blk_birth, <=, txg);
4994 ASSERT(pio);
4996 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
4997 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
4998 db->db.db_object, db->db_level, db->db_blkid);
5000 if (db->db_blkid == DMU_SPILL_BLKID)
5001 wp_flag = WP_SPILL;
5002 wp_flag |= (db->db_state == DB_NOFILL) ? WP_NOFILL : 0;
5004 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5007 * We copy the blkptr now (rather than when we instantiate the dirty
5008 * record), because its value can change between open context and
5009 * syncing context. We do not need to hold dn_struct_rwlock to read
5010 * db_blkptr because we are in syncing context.
5012 dr->dr_bp_copy = *db->db_blkptr;
5014 if (db->db_level == 0 &&
5015 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5017 * The BP for this block has been provided by open context
5018 * (by dmu_sync() or dmu_buf_write_embedded()).
5020 abd_t *contents = (data != NULL) ?
5021 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5023 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5024 contents, db->db.db_size, db->db.db_size, &zp,
5025 dbuf_write_override_ready, NULL, NULL,
5026 dbuf_write_override_done,
5027 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5028 mutex_enter(&db->db_mtx);
5029 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5030 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5031 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite);
5032 mutex_exit(&db->db_mtx);
5033 } else if (db->db_state == DB_NOFILL) {
5034 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5035 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5036 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5037 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5038 dbuf_write_nofill_ready, NULL, NULL,
5039 dbuf_write_nofill_done, db,
5040 ZIO_PRIORITY_ASYNC_WRITE,
5041 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5042 } else {
5043 ASSERT(arc_released(data));
5046 * For indirect blocks, we want to setup the children
5047 * ready callback so that we can properly handle an indirect
5048 * block that only contains holes.
5050 arc_write_done_func_t *children_ready_cb = NULL;
5051 if (db->db_level != 0)
5052 children_ready_cb = dbuf_write_children_ready;
5054 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5055 &dr->dr_bp_copy, data, dbuf_is_l2cacheable(db),
5056 &zp, dbuf_write_ready,
5057 children_ready_cb, dbuf_write_physdone,
5058 dbuf_write_done, db, ZIO_PRIORITY_ASYNC_WRITE,
5059 ZIO_FLAG_MUSTSUCCEED, &zb);
5063 EXPORT_SYMBOL(dbuf_find);
5064 EXPORT_SYMBOL(dbuf_is_metadata);
5065 EXPORT_SYMBOL(dbuf_destroy);
5066 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5067 EXPORT_SYMBOL(dbuf_whichblock);
5068 EXPORT_SYMBOL(dbuf_read);
5069 EXPORT_SYMBOL(dbuf_unoverride);
5070 EXPORT_SYMBOL(dbuf_free_range);
5071 EXPORT_SYMBOL(dbuf_new_size);
5072 EXPORT_SYMBOL(dbuf_release_bp);
5073 EXPORT_SYMBOL(dbuf_dirty);
5074 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5075 EXPORT_SYMBOL(dmu_buf_will_dirty);
5076 EXPORT_SYMBOL(dmu_buf_is_dirty);
5077 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5078 EXPORT_SYMBOL(dmu_buf_will_fill);
5079 EXPORT_SYMBOL(dmu_buf_fill_done);
5080 EXPORT_SYMBOL(dmu_buf_rele);
5081 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5082 EXPORT_SYMBOL(dbuf_prefetch);
5083 EXPORT_SYMBOL(dbuf_hold_impl);
5084 EXPORT_SYMBOL(dbuf_hold);
5085 EXPORT_SYMBOL(dbuf_hold_level);
5086 EXPORT_SYMBOL(dbuf_create_bonus);
5087 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5088 EXPORT_SYMBOL(dbuf_rm_spill);
5089 EXPORT_SYMBOL(dbuf_add_ref);
5090 EXPORT_SYMBOL(dbuf_rele);
5091 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5092 EXPORT_SYMBOL(dbuf_refcount);
5093 EXPORT_SYMBOL(dbuf_sync_list);
5094 EXPORT_SYMBOL(dmu_buf_set_user);
5095 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5096 EXPORT_SYMBOL(dmu_buf_get_user);
5097 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5099 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, ULONG, ZMOD_RW,
5100 "Maximum size in bytes of the dbuf cache.");
5102 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5103 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5105 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5106 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5108 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, ULONG, ZMOD_RW,
5109 "Maximum size in bytes of dbuf metadata cache.");
5111 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, INT, ZMOD_RW,
5112 "Set size of dbuf cache to log2 fraction of arc size.");
5114 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, INT, ZMOD_RW,
5115 "Set size of dbuf metadata cache to log2 fraction of arc size.");