4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
31 #include <sys/zfs_context.h>
34 #include <sys/dmu_send.h>
35 #include <sys/dmu_impl.h>
37 #include <sys/dmu_objset.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dmu_tx.h>
43 #include <sys/dmu_zfetch.h>
45 #include <sys/sa_impl.h>
46 #include <sys/zfeature.h>
47 #include <sys/blkptr.h>
48 #include <sys/range_tree.h>
49 #include <sys/trace_zfs.h>
50 #include <sys/callb.h>
54 #include <sys/spa_impl.h>
55 #include <sys/wmsum.h>
56 #include <sys/vdev_impl.h>
58 static kstat_t
*dbuf_ksp
;
60 typedef struct dbuf_stats
{
62 * Various statistics about the size of the dbuf cache.
64 kstat_named_t cache_count
;
65 kstat_named_t cache_size_bytes
;
66 kstat_named_t cache_size_bytes_max
;
68 * Statistics regarding the bounds on the dbuf cache size.
70 kstat_named_t cache_target_bytes
;
71 kstat_named_t cache_lowater_bytes
;
72 kstat_named_t cache_hiwater_bytes
;
74 * Total number of dbuf cache evictions that have occurred.
76 kstat_named_t cache_total_evicts
;
78 * The distribution of dbuf levels in the dbuf cache and
79 * the total size of all dbufs at each level.
81 kstat_named_t cache_levels
[DN_MAX_LEVELS
];
82 kstat_named_t cache_levels_bytes
[DN_MAX_LEVELS
];
84 * Statistics about the dbuf hash table.
86 kstat_named_t hash_hits
;
87 kstat_named_t hash_misses
;
88 kstat_named_t hash_collisions
;
89 kstat_named_t hash_elements
;
90 kstat_named_t hash_elements_max
;
92 * Number of sublists containing more than one dbuf in the dbuf
93 * hash table. Keep track of the longest hash chain.
95 kstat_named_t hash_chains
;
96 kstat_named_t hash_chain_max
;
98 * Number of times a dbuf_create() discovers that a dbuf was
99 * already created and in the dbuf hash table.
101 kstat_named_t hash_insert_race
;
103 * Statistics about the size of the metadata dbuf cache.
105 kstat_named_t metadata_cache_count
;
106 kstat_named_t metadata_cache_size_bytes
;
107 kstat_named_t metadata_cache_size_bytes_max
;
109 * For diagnostic purposes, this is incremented whenever we can't add
110 * something to the metadata cache because it's full, and instead put
111 * the data in the regular dbuf cache.
113 kstat_named_t metadata_cache_overflow
;
116 dbuf_stats_t dbuf_stats
= {
117 { "cache_count", KSTAT_DATA_UINT64
},
118 { "cache_size_bytes", KSTAT_DATA_UINT64
},
119 { "cache_size_bytes_max", KSTAT_DATA_UINT64
},
120 { "cache_target_bytes", KSTAT_DATA_UINT64
},
121 { "cache_lowater_bytes", KSTAT_DATA_UINT64
},
122 { "cache_hiwater_bytes", KSTAT_DATA_UINT64
},
123 { "cache_total_evicts", KSTAT_DATA_UINT64
},
124 { { "cache_levels_N", KSTAT_DATA_UINT64
} },
125 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64
} },
126 { "hash_hits", KSTAT_DATA_UINT64
},
127 { "hash_misses", KSTAT_DATA_UINT64
},
128 { "hash_collisions", KSTAT_DATA_UINT64
},
129 { "hash_elements", KSTAT_DATA_UINT64
},
130 { "hash_elements_max", KSTAT_DATA_UINT64
},
131 { "hash_chains", KSTAT_DATA_UINT64
},
132 { "hash_chain_max", KSTAT_DATA_UINT64
},
133 { "hash_insert_race", KSTAT_DATA_UINT64
},
134 { "metadata_cache_count", KSTAT_DATA_UINT64
},
135 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64
},
136 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64
},
137 { "metadata_cache_overflow", KSTAT_DATA_UINT64
}
142 wmsum_t cache_total_evicts
;
143 wmsum_t cache_levels
[DN_MAX_LEVELS
];
144 wmsum_t cache_levels_bytes
[DN_MAX_LEVELS
];
147 wmsum_t hash_collisions
;
149 wmsum_t hash_insert_race
;
150 wmsum_t metadata_cache_count
;
151 wmsum_t metadata_cache_overflow
;
154 #define DBUF_STAT_INCR(stat, val) \
155 wmsum_add(&dbuf_sums.stat, val);
156 #define DBUF_STAT_DECR(stat, val) \
157 DBUF_STAT_INCR(stat, -(val));
158 #define DBUF_STAT_BUMP(stat) \
159 DBUF_STAT_INCR(stat, 1);
160 #define DBUF_STAT_BUMPDOWN(stat) \
161 DBUF_STAT_INCR(stat, -1);
162 #define DBUF_STAT_MAX(stat, v) { \
164 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
165 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
169 static boolean_t
dbuf_undirty(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
);
170 static void dbuf_write(dbuf_dirty_record_t
*dr
, arc_buf_t
*data
, dmu_tx_t
*tx
);
171 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t
*dr
);
172 static int dbuf_read_verify_dnode_crypt(dmu_buf_impl_t
*db
, uint32_t flags
);
175 * Global data structures and functions for the dbuf cache.
177 static kmem_cache_t
*dbuf_kmem_cache
;
178 static taskq_t
*dbu_evict_taskq
;
180 static kthread_t
*dbuf_cache_evict_thread
;
181 static kmutex_t dbuf_evict_lock
;
182 static kcondvar_t dbuf_evict_cv
;
183 static boolean_t dbuf_evict_thread_exit
;
186 * There are two dbuf caches; each dbuf can only be in one of them at a time.
188 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
189 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
190 * that represent the metadata that describes filesystems/snapshots/
191 * bookmarks/properties/etc. We only evict from this cache when we export a
192 * pool, to short-circuit as much I/O as possible for all administrative
193 * commands that need the metadata. There is no eviction policy for this
194 * cache, because we try to only include types in it which would occupy a
195 * very small amount of space per object but create a large impact on the
196 * performance of these commands. Instead, after it reaches a maximum size
197 * (which should only happen on very small memory systems with a very large
198 * number of filesystem objects), we stop taking new dbufs into the
199 * metadata cache, instead putting them in the normal dbuf cache.
201 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
202 * are not currently held but have been recently released. These dbufs
203 * are not eligible for arc eviction until they are aged out of the cache.
204 * Dbufs that are aged out of the cache will be immediately destroyed and
205 * become eligible for arc eviction.
207 * Dbufs are added to these caches once the last hold is released. If a dbuf is
208 * later accessed and still exists in the dbuf cache, then it will be removed
209 * from the cache and later re-added to the head of the cache.
211 * If a given dbuf meets the requirements for the metadata cache, it will go
212 * there, otherwise it will be considered for the generic LRU dbuf cache. The
213 * caches and the refcounts tracking their sizes are stored in an array indexed
214 * by those caches' matching enum values (from dbuf_cached_state_t).
216 typedef struct dbuf_cache
{
218 zfs_refcount_t size ____cacheline_aligned
;
220 dbuf_cache_t dbuf_caches
[DB_CACHE_MAX
];
222 /* Size limits for the caches */
223 static unsigned long dbuf_cache_max_bytes
= ULONG_MAX
;
224 static unsigned long dbuf_metadata_cache_max_bytes
= ULONG_MAX
;
226 /* Set the default sizes of the caches to log2 fraction of arc size */
227 static int dbuf_cache_shift
= 5;
228 static int dbuf_metadata_cache_shift
= 6;
230 static unsigned long dbuf_cache_target_bytes(void);
231 static unsigned long dbuf_metadata_cache_target_bytes(void);
234 * The LRU dbuf cache uses a three-stage eviction policy:
235 * - A low water marker designates when the dbuf eviction thread
236 * should stop evicting from the dbuf cache.
237 * - When we reach the maximum size (aka mid water mark), we
238 * signal the eviction thread to run.
239 * - The high water mark indicates when the eviction thread
240 * is unable to keep up with the incoming load and eviction must
241 * happen in the context of the calling thread.
245 * low water mid water hi water
246 * +----------------------------------------+----------+----------+
251 * +----------------------------------------+----------+----------+
253 * evicting eviction directly
256 * The high and low water marks indicate the operating range for the eviction
257 * thread. The low water mark is, by default, 90% of the total size of the
258 * cache and the high water mark is at 110% (both of these percentages can be
259 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
260 * respectively). The eviction thread will try to ensure that the cache remains
261 * within this range by waking up every second and checking if the cache is
262 * above the low water mark. The thread can also be woken up by callers adding
263 * elements into the cache if the cache is larger than the mid water (i.e max
264 * cache size). Once the eviction thread is woken up and eviction is required,
265 * it will continue evicting buffers until it's able to reduce the cache size
266 * to the low water mark. If the cache size continues to grow and hits the high
267 * water mark, then callers adding elements to the cache will begin to evict
268 * directly from the cache until the cache is no longer above the high water
273 * The percentage above and below the maximum cache size.
275 static uint_t dbuf_cache_hiwater_pct
= 10;
276 static uint_t dbuf_cache_lowater_pct
= 10;
279 dbuf_cons(void *vdb
, void *unused
, int kmflag
)
281 (void) unused
, (void) kmflag
;
282 dmu_buf_impl_t
*db
= vdb
;
283 memset(db
, 0, sizeof (dmu_buf_impl_t
));
285 mutex_init(&db
->db_mtx
, NULL
, MUTEX_DEFAULT
, NULL
);
286 rw_init(&db
->db_rwlock
, NULL
, RW_DEFAULT
, NULL
);
287 cv_init(&db
->db_changed
, NULL
, CV_DEFAULT
, NULL
);
288 multilist_link_init(&db
->db_cache_link
);
289 zfs_refcount_create(&db
->db_holds
);
295 dbuf_dest(void *vdb
, void *unused
)
298 dmu_buf_impl_t
*db
= vdb
;
299 mutex_destroy(&db
->db_mtx
);
300 rw_destroy(&db
->db_rwlock
);
301 cv_destroy(&db
->db_changed
);
302 ASSERT(!multilist_link_active(&db
->db_cache_link
));
303 zfs_refcount_destroy(&db
->db_holds
);
307 * dbuf hash table routines
309 static dbuf_hash_table_t dbuf_hash_table
;
312 * We use Cityhash for this. It's fast, and has good hash properties without
313 * requiring any large static buffers.
316 dbuf_hash(void *os
, uint64_t obj
, uint8_t lvl
, uint64_t blkid
)
318 return (cityhash4((uintptr_t)os
, obj
, (uint64_t)lvl
, blkid
));
321 #define DTRACE_SET_STATE(db, why) \
322 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
325 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
326 ((dbuf)->db.db_object == (obj) && \
327 (dbuf)->db_objset == (os) && \
328 (dbuf)->db_level == (level) && \
329 (dbuf)->db_blkid == (blkid))
332 dbuf_find(objset_t
*os
, uint64_t obj
, uint8_t level
, uint64_t blkid
)
334 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
339 hv
= dbuf_hash(os
, obj
, level
, blkid
);
340 idx
= hv
& h
->hash_table_mask
;
342 rw_enter(DBUF_HASH_RWLOCK(h
, idx
), RW_READER
);
343 for (db
= h
->hash_table
[idx
]; db
!= NULL
; db
= db
->db_hash_next
) {
344 if (DBUF_EQUAL(db
, os
, obj
, level
, blkid
)) {
345 mutex_enter(&db
->db_mtx
);
346 if (db
->db_state
!= DB_EVICTING
) {
347 rw_exit(DBUF_HASH_RWLOCK(h
, idx
));
350 mutex_exit(&db
->db_mtx
);
353 rw_exit(DBUF_HASH_RWLOCK(h
, idx
));
357 static dmu_buf_impl_t
*
358 dbuf_find_bonus(objset_t
*os
, uint64_t object
)
361 dmu_buf_impl_t
*db
= NULL
;
363 if (dnode_hold(os
, object
, FTAG
, &dn
) == 0) {
364 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
365 if (dn
->dn_bonus
!= NULL
) {
367 mutex_enter(&db
->db_mtx
);
369 rw_exit(&dn
->dn_struct_rwlock
);
370 dnode_rele(dn
, FTAG
);
376 * Insert an entry into the hash table. If there is already an element
377 * equal to elem in the hash table, then the already existing element
378 * will be returned and the new element will not be inserted.
379 * Otherwise returns NULL.
381 static dmu_buf_impl_t
*
382 dbuf_hash_insert(dmu_buf_impl_t
*db
)
384 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
385 objset_t
*os
= db
->db_objset
;
386 uint64_t obj
= db
->db
.db_object
;
387 int level
= db
->db_level
;
388 uint64_t blkid
, hv
, idx
;
392 blkid
= db
->db_blkid
;
393 hv
= dbuf_hash(os
, obj
, level
, blkid
);
394 idx
= hv
& h
->hash_table_mask
;
396 rw_enter(DBUF_HASH_RWLOCK(h
, idx
), RW_WRITER
);
397 for (dbf
= h
->hash_table
[idx
], i
= 0; dbf
!= NULL
;
398 dbf
= dbf
->db_hash_next
, i
++) {
399 if (DBUF_EQUAL(dbf
, os
, obj
, level
, blkid
)) {
400 mutex_enter(&dbf
->db_mtx
);
401 if (dbf
->db_state
!= DB_EVICTING
) {
402 rw_exit(DBUF_HASH_RWLOCK(h
, idx
));
405 mutex_exit(&dbf
->db_mtx
);
410 DBUF_STAT_BUMP(hash_collisions
);
412 DBUF_STAT_BUMP(hash_chains
);
414 DBUF_STAT_MAX(hash_chain_max
, i
);
417 mutex_enter(&db
->db_mtx
);
418 db
->db_hash_next
= h
->hash_table
[idx
];
419 h
->hash_table
[idx
] = db
;
420 rw_exit(DBUF_HASH_RWLOCK(h
, idx
));
421 uint64_t he
= atomic_inc_64_nv(&dbuf_stats
.hash_elements
.value
.ui64
);
422 DBUF_STAT_MAX(hash_elements_max
, he
);
428 * This returns whether this dbuf should be stored in the metadata cache, which
429 * is based on whether it's from one of the dnode types that store data related
430 * to traversing dataset hierarchies.
433 dbuf_include_in_metadata_cache(dmu_buf_impl_t
*db
)
436 dmu_object_type_t type
= DB_DNODE(db
)->dn_type
;
439 /* Check if this dbuf is one of the types we care about */
440 if (DMU_OT_IS_METADATA_CACHED(type
)) {
441 /* If we hit this, then we set something up wrong in dmu_ot */
442 ASSERT(DMU_OT_IS_METADATA(type
));
445 * Sanity check for small-memory systems: don't allocate too
446 * much memory for this purpose.
448 if (zfs_refcount_count(
449 &dbuf_caches
[DB_DBUF_METADATA_CACHE
].size
) >
450 dbuf_metadata_cache_target_bytes()) {
451 DBUF_STAT_BUMP(metadata_cache_overflow
);
462 * Remove an entry from the hash table. It must be in the EVICTING state.
465 dbuf_hash_remove(dmu_buf_impl_t
*db
)
467 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
469 dmu_buf_impl_t
*dbf
, **dbp
;
471 hv
= dbuf_hash(db
->db_objset
, db
->db
.db_object
,
472 db
->db_level
, db
->db_blkid
);
473 idx
= hv
& h
->hash_table_mask
;
476 * We mustn't hold db_mtx to maintain lock ordering:
477 * DBUF_HASH_RWLOCK > db_mtx.
479 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
480 ASSERT(db
->db_state
== DB_EVICTING
);
481 ASSERT(!MUTEX_HELD(&db
->db_mtx
));
483 rw_enter(DBUF_HASH_RWLOCK(h
, idx
), RW_WRITER
);
484 dbp
= &h
->hash_table
[idx
];
485 while ((dbf
= *dbp
) != db
) {
486 dbp
= &dbf
->db_hash_next
;
489 *dbp
= db
->db_hash_next
;
490 db
->db_hash_next
= NULL
;
491 if (h
->hash_table
[idx
] &&
492 h
->hash_table
[idx
]->db_hash_next
== NULL
)
493 DBUF_STAT_BUMPDOWN(hash_chains
);
494 rw_exit(DBUF_HASH_RWLOCK(h
, idx
));
495 atomic_dec_64(&dbuf_stats
.hash_elements
.value
.ui64
);
501 } dbvu_verify_type_t
;
504 dbuf_verify_user(dmu_buf_impl_t
*db
, dbvu_verify_type_t verify_type
)
509 if (db
->db_user
== NULL
)
512 /* Only data blocks support the attachment of user data. */
513 ASSERT(db
->db_level
== 0);
515 /* Clients must resolve a dbuf before attaching user data. */
516 ASSERT(db
->db
.db_data
!= NULL
);
517 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
519 holds
= zfs_refcount_count(&db
->db_holds
);
520 if (verify_type
== DBVU_EVICTING
) {
522 * Immediate eviction occurs when holds == dirtycnt.
523 * For normal eviction buffers, holds is zero on
524 * eviction, except when dbuf_fix_old_data() calls
525 * dbuf_clear_data(). However, the hold count can grow
526 * during eviction even though db_mtx is held (see
527 * dmu_bonus_hold() for an example), so we can only
528 * test the generic invariant that holds >= dirtycnt.
530 ASSERT3U(holds
, >=, db
->db_dirtycnt
);
532 if (db
->db_user_immediate_evict
== TRUE
)
533 ASSERT3U(holds
, >=, db
->db_dirtycnt
);
535 ASSERT3U(holds
, >, 0);
541 dbuf_evict_user(dmu_buf_impl_t
*db
)
543 dmu_buf_user_t
*dbu
= db
->db_user
;
545 ASSERT(MUTEX_HELD(&db
->db_mtx
));
550 dbuf_verify_user(db
, DBVU_EVICTING
);
554 if (dbu
->dbu_clear_on_evict_dbufp
!= NULL
)
555 *dbu
->dbu_clear_on_evict_dbufp
= NULL
;
559 * There are two eviction callbacks - one that we call synchronously
560 * and one that we invoke via a taskq. The async one is useful for
561 * avoiding lock order reversals and limiting stack depth.
563 * Note that if we have a sync callback but no async callback,
564 * it's likely that the sync callback will free the structure
565 * containing the dbu. In that case we need to take care to not
566 * dereference dbu after calling the sync evict func.
568 boolean_t has_async
= (dbu
->dbu_evict_func_async
!= NULL
);
570 if (dbu
->dbu_evict_func_sync
!= NULL
)
571 dbu
->dbu_evict_func_sync(dbu
);
574 taskq_dispatch_ent(dbu_evict_taskq
, dbu
->dbu_evict_func_async
,
575 dbu
, 0, &dbu
->dbu_tqent
);
580 dbuf_is_metadata(dmu_buf_impl_t
*db
)
583 * Consider indirect blocks and spill blocks to be meta data.
585 if (db
->db_level
> 0 || db
->db_blkid
== DMU_SPILL_BLKID
) {
588 boolean_t is_metadata
;
591 is_metadata
= DMU_OT_IS_METADATA(DB_DNODE(db
)->dn_type
);
594 return (is_metadata
);
599 * We want to exclude buffers that are on a special allocation class from
603 dbuf_is_l2cacheable(dmu_buf_impl_t
*db
)
606 zfs_cache_type_t cache
= db
->db_objset
->os_secondary_cache
;
607 blkptr_t
*bp
= db
->db_blkptr
;
609 if (bp
!= NULL
&& !BP_IS_HOLE(bp
)) {
610 uint64_t vdev
= DVA_GET_VDEV(bp
->blk_dva
);
611 vdev_t
*rvd
= db
->db_objset
->os_spa
->spa_root_vdev
;
613 if (vdev
< rvd
->vdev_children
)
614 vd
= rvd
->vdev_child
[vdev
];
616 if (cache
== ZFS_CACHE_ALL
||
617 (dbuf_is_metadata(db
) && cache
== ZFS_CACHE_METADATA
)) {
621 if ((vd
->vdev_alloc_bias
!= VDEV_BIAS_SPECIAL
&&
622 vd
->vdev_alloc_bias
!= VDEV_BIAS_DEDUP
) ||
623 l2arc_exclude_special
== 0)
631 static inline boolean_t
632 dnode_level_is_l2cacheable(blkptr_t
*bp
, dnode_t
*dn
, int64_t level
)
635 zfs_cache_type_t cache
= dn
->dn_objset
->os_secondary_cache
;
637 if (bp
!= NULL
&& !BP_IS_HOLE(bp
)) {
638 uint64_t vdev
= DVA_GET_VDEV(bp
->blk_dva
);
639 vdev_t
*rvd
= dn
->dn_objset
->os_spa
->spa_root_vdev
;
641 if (vdev
< rvd
->vdev_children
)
642 vd
= rvd
->vdev_child
[vdev
];
644 if (cache
== ZFS_CACHE_ALL
|| ((level
> 0 ||
645 DMU_OT_IS_METADATA(dn
->dn_handle
->dnh_dnode
->dn_type
)) &&
646 cache
== ZFS_CACHE_METADATA
)) {
650 if ((vd
->vdev_alloc_bias
!= VDEV_BIAS_SPECIAL
&&
651 vd
->vdev_alloc_bias
!= VDEV_BIAS_DEDUP
) ||
652 l2arc_exclude_special
== 0)
662 * This function *must* return indices evenly distributed between all
663 * sublists of the multilist. This is needed due to how the dbuf eviction
664 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
665 * distributed between all sublists and uses this assumption when
666 * deciding which sublist to evict from and how much to evict from it.
669 dbuf_cache_multilist_index_func(multilist_t
*ml
, void *obj
)
671 dmu_buf_impl_t
*db
= obj
;
674 * The assumption here, is the hash value for a given
675 * dmu_buf_impl_t will remain constant throughout it's lifetime
676 * (i.e. it's objset, object, level and blkid fields don't change).
677 * Thus, we don't need to store the dbuf's sublist index
678 * on insertion, as this index can be recalculated on removal.
680 * Also, the low order bits of the hash value are thought to be
681 * distributed evenly. Otherwise, in the case that the multilist
682 * has a power of two number of sublists, each sublists' usage
683 * would not be evenly distributed. In this context full 64bit
684 * division would be a waste of time, so limit it to 32 bits.
686 return ((unsigned int)dbuf_hash(db
->db_objset
, db
->db
.db_object
,
687 db
->db_level
, db
->db_blkid
) %
688 multilist_get_num_sublists(ml
));
692 * The target size of the dbuf cache can grow with the ARC target,
693 * unless limited by the tunable dbuf_cache_max_bytes.
695 static inline unsigned long
696 dbuf_cache_target_bytes(void)
698 return (MIN(dbuf_cache_max_bytes
,
699 arc_target_bytes() >> dbuf_cache_shift
));
703 * The target size of the dbuf metadata cache can grow with the ARC target,
704 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
706 static inline unsigned long
707 dbuf_metadata_cache_target_bytes(void)
709 return (MIN(dbuf_metadata_cache_max_bytes
,
710 arc_target_bytes() >> dbuf_metadata_cache_shift
));
713 static inline uint64_t
714 dbuf_cache_hiwater_bytes(void)
716 uint64_t dbuf_cache_target
= dbuf_cache_target_bytes();
717 return (dbuf_cache_target
+
718 (dbuf_cache_target
* dbuf_cache_hiwater_pct
) / 100);
721 static inline uint64_t
722 dbuf_cache_lowater_bytes(void)
724 uint64_t dbuf_cache_target
= dbuf_cache_target_bytes();
725 return (dbuf_cache_target
-
726 (dbuf_cache_target
* dbuf_cache_lowater_pct
) / 100);
729 static inline boolean_t
730 dbuf_cache_above_lowater(void)
732 return (zfs_refcount_count(&dbuf_caches
[DB_DBUF_CACHE
].size
) >
733 dbuf_cache_lowater_bytes());
737 * Evict the oldest eligible dbuf from the dbuf cache.
742 int idx
= multilist_get_random_index(&dbuf_caches
[DB_DBUF_CACHE
].cache
);
743 multilist_sublist_t
*mls
= multilist_sublist_lock(
744 &dbuf_caches
[DB_DBUF_CACHE
].cache
, idx
);
746 ASSERT(!MUTEX_HELD(&dbuf_evict_lock
));
748 dmu_buf_impl_t
*db
= multilist_sublist_tail(mls
);
749 while (db
!= NULL
&& mutex_tryenter(&db
->db_mtx
) == 0) {
750 db
= multilist_sublist_prev(mls
, db
);
753 DTRACE_PROBE2(dbuf__evict__one
, dmu_buf_impl_t
*, db
,
754 multilist_sublist_t
*, mls
);
757 multilist_sublist_remove(mls
, db
);
758 multilist_sublist_unlock(mls
);
759 (void) zfs_refcount_remove_many(
760 &dbuf_caches
[DB_DBUF_CACHE
].size
, db
->db
.db_size
, db
);
761 DBUF_STAT_BUMPDOWN(cache_levels
[db
->db_level
]);
762 DBUF_STAT_BUMPDOWN(cache_count
);
763 DBUF_STAT_DECR(cache_levels_bytes
[db
->db_level
],
765 ASSERT3U(db
->db_caching_status
, ==, DB_DBUF_CACHE
);
766 db
->db_caching_status
= DB_NO_CACHE
;
768 DBUF_STAT_BUMP(cache_total_evicts
);
770 multilist_sublist_unlock(mls
);
775 * The dbuf evict thread is responsible for aging out dbufs from the
776 * cache. Once the cache has reached it's maximum size, dbufs are removed
777 * and destroyed. The eviction thread will continue running until the size
778 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
779 * out of the cache it is destroyed and becomes eligible for arc eviction.
781 static __attribute__((noreturn
)) void
782 dbuf_evict_thread(void *unused
)
787 CALLB_CPR_INIT(&cpr
, &dbuf_evict_lock
, callb_generic_cpr
, FTAG
);
789 mutex_enter(&dbuf_evict_lock
);
790 while (!dbuf_evict_thread_exit
) {
791 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit
) {
792 CALLB_CPR_SAFE_BEGIN(&cpr
);
793 (void) cv_timedwait_idle_hires(&dbuf_evict_cv
,
794 &dbuf_evict_lock
, SEC2NSEC(1), MSEC2NSEC(1), 0);
795 CALLB_CPR_SAFE_END(&cpr
, &dbuf_evict_lock
);
797 mutex_exit(&dbuf_evict_lock
);
800 * Keep evicting as long as we're above the low water mark
801 * for the cache. We do this without holding the locks to
802 * minimize lock contention.
804 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit
) {
808 mutex_enter(&dbuf_evict_lock
);
811 dbuf_evict_thread_exit
= B_FALSE
;
812 cv_broadcast(&dbuf_evict_cv
);
813 CALLB_CPR_EXIT(&cpr
); /* drops dbuf_evict_lock */
818 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
819 * If the dbuf cache is at its high water mark, then evict a dbuf from the
820 * dbuf cache using the caller's context.
823 dbuf_evict_notify(uint64_t size
)
826 * We check if we should evict without holding the dbuf_evict_lock,
827 * because it's OK to occasionally make the wrong decision here,
828 * and grabbing the lock results in massive lock contention.
830 if (size
> dbuf_cache_target_bytes()) {
831 if (size
> dbuf_cache_hiwater_bytes())
833 cv_signal(&dbuf_evict_cv
);
838 dbuf_kstat_update(kstat_t
*ksp
, int rw
)
840 dbuf_stats_t
*ds
= ksp
->ks_data
;
842 if (rw
== KSTAT_WRITE
)
843 return (SET_ERROR(EACCES
));
845 ds
->cache_count
.value
.ui64
=
846 wmsum_value(&dbuf_sums
.cache_count
);
847 ds
->cache_size_bytes
.value
.ui64
=
848 zfs_refcount_count(&dbuf_caches
[DB_DBUF_CACHE
].size
);
849 ds
->cache_target_bytes
.value
.ui64
= dbuf_cache_target_bytes();
850 ds
->cache_hiwater_bytes
.value
.ui64
= dbuf_cache_hiwater_bytes();
851 ds
->cache_lowater_bytes
.value
.ui64
= dbuf_cache_lowater_bytes();
852 ds
->cache_total_evicts
.value
.ui64
=
853 wmsum_value(&dbuf_sums
.cache_total_evicts
);
854 for (int i
= 0; i
< DN_MAX_LEVELS
; i
++) {
855 ds
->cache_levels
[i
].value
.ui64
=
856 wmsum_value(&dbuf_sums
.cache_levels
[i
]);
857 ds
->cache_levels_bytes
[i
].value
.ui64
=
858 wmsum_value(&dbuf_sums
.cache_levels_bytes
[i
]);
860 ds
->hash_hits
.value
.ui64
=
861 wmsum_value(&dbuf_sums
.hash_hits
);
862 ds
->hash_misses
.value
.ui64
=
863 wmsum_value(&dbuf_sums
.hash_misses
);
864 ds
->hash_collisions
.value
.ui64
=
865 wmsum_value(&dbuf_sums
.hash_collisions
);
866 ds
->hash_chains
.value
.ui64
=
867 wmsum_value(&dbuf_sums
.hash_chains
);
868 ds
->hash_insert_race
.value
.ui64
=
869 wmsum_value(&dbuf_sums
.hash_insert_race
);
870 ds
->metadata_cache_count
.value
.ui64
=
871 wmsum_value(&dbuf_sums
.metadata_cache_count
);
872 ds
->metadata_cache_size_bytes
.value
.ui64
= zfs_refcount_count(
873 &dbuf_caches
[DB_DBUF_METADATA_CACHE
].size
);
874 ds
->metadata_cache_overflow
.value
.ui64
=
875 wmsum_value(&dbuf_sums
.metadata_cache_overflow
);
882 uint64_t hsize
= 1ULL << 16;
883 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
887 * The hash table is big enough to fill one eighth of physical memory
888 * with an average block size of zfs_arc_average_blocksize (default 8K).
889 * By default, the table will take up
890 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
892 while (hsize
* zfs_arc_average_blocksize
< arc_all_memory() / 8)
896 h
->hash_table_mask
= hsize
- 1;
899 * Large allocations which do not require contiguous pages
900 * should be using vmem_alloc() in the linux kernel
902 h
->hash_table
= vmem_zalloc(hsize
* sizeof (void *), KM_SLEEP
);
904 h
->hash_table
= kmem_zalloc(hsize
* sizeof (void *), KM_NOSLEEP
);
906 if (h
->hash_table
== NULL
) {
907 /* XXX - we should really return an error instead of assert */
908 ASSERT(hsize
> (1ULL << 10));
913 dbuf_kmem_cache
= kmem_cache_create("dmu_buf_impl_t",
914 sizeof (dmu_buf_impl_t
),
915 0, dbuf_cons
, dbuf_dest
, NULL
, NULL
, NULL
, 0);
917 for (i
= 0; i
< DBUF_RWLOCKS
; i
++)
918 rw_init(&h
->hash_rwlocks
[i
], NULL
, RW_DEFAULT
, NULL
);
923 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
924 * configuration is not required.
926 dbu_evict_taskq
= taskq_create("dbu_evict", 1, defclsyspri
, 0, 0, 0);
928 for (dbuf_cached_state_t dcs
= 0; dcs
< DB_CACHE_MAX
; dcs
++) {
929 multilist_create(&dbuf_caches
[dcs
].cache
,
930 sizeof (dmu_buf_impl_t
),
931 offsetof(dmu_buf_impl_t
, db_cache_link
),
932 dbuf_cache_multilist_index_func
);
933 zfs_refcount_create(&dbuf_caches
[dcs
].size
);
936 dbuf_evict_thread_exit
= B_FALSE
;
937 mutex_init(&dbuf_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
938 cv_init(&dbuf_evict_cv
, NULL
, CV_DEFAULT
, NULL
);
939 dbuf_cache_evict_thread
= thread_create(NULL
, 0, dbuf_evict_thread
,
940 NULL
, 0, &p0
, TS_RUN
, minclsyspri
);
942 wmsum_init(&dbuf_sums
.cache_count
, 0);
943 wmsum_init(&dbuf_sums
.cache_total_evicts
, 0);
944 for (i
= 0; i
< DN_MAX_LEVELS
; i
++) {
945 wmsum_init(&dbuf_sums
.cache_levels
[i
], 0);
946 wmsum_init(&dbuf_sums
.cache_levels_bytes
[i
], 0);
948 wmsum_init(&dbuf_sums
.hash_hits
, 0);
949 wmsum_init(&dbuf_sums
.hash_misses
, 0);
950 wmsum_init(&dbuf_sums
.hash_collisions
, 0);
951 wmsum_init(&dbuf_sums
.hash_chains
, 0);
952 wmsum_init(&dbuf_sums
.hash_insert_race
, 0);
953 wmsum_init(&dbuf_sums
.metadata_cache_count
, 0);
954 wmsum_init(&dbuf_sums
.metadata_cache_overflow
, 0);
956 dbuf_ksp
= kstat_create("zfs", 0, "dbufstats", "misc",
957 KSTAT_TYPE_NAMED
, sizeof (dbuf_stats
) / sizeof (kstat_named_t
),
959 if (dbuf_ksp
!= NULL
) {
960 for (i
= 0; i
< DN_MAX_LEVELS
; i
++) {
961 snprintf(dbuf_stats
.cache_levels
[i
].name
,
962 KSTAT_STRLEN
, "cache_level_%d", i
);
963 dbuf_stats
.cache_levels
[i
].data_type
=
965 snprintf(dbuf_stats
.cache_levels_bytes
[i
].name
,
966 KSTAT_STRLEN
, "cache_level_%d_bytes", i
);
967 dbuf_stats
.cache_levels_bytes
[i
].data_type
=
970 dbuf_ksp
->ks_data
= &dbuf_stats
;
971 dbuf_ksp
->ks_update
= dbuf_kstat_update
;
972 kstat_install(dbuf_ksp
);
979 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
982 dbuf_stats_destroy();
984 for (i
= 0; i
< DBUF_RWLOCKS
; i
++)
985 rw_destroy(&h
->hash_rwlocks
[i
]);
988 * Large allocations which do not require contiguous pages
989 * should be using vmem_free() in the linux kernel
991 vmem_free(h
->hash_table
, (h
->hash_table_mask
+ 1) * sizeof (void *));
993 kmem_free(h
->hash_table
, (h
->hash_table_mask
+ 1) * sizeof (void *));
995 kmem_cache_destroy(dbuf_kmem_cache
);
996 taskq_destroy(dbu_evict_taskq
);
998 mutex_enter(&dbuf_evict_lock
);
999 dbuf_evict_thread_exit
= B_TRUE
;
1000 while (dbuf_evict_thread_exit
) {
1001 cv_signal(&dbuf_evict_cv
);
1002 cv_wait(&dbuf_evict_cv
, &dbuf_evict_lock
);
1004 mutex_exit(&dbuf_evict_lock
);
1006 mutex_destroy(&dbuf_evict_lock
);
1007 cv_destroy(&dbuf_evict_cv
);
1009 for (dbuf_cached_state_t dcs
= 0; dcs
< DB_CACHE_MAX
; dcs
++) {
1010 zfs_refcount_destroy(&dbuf_caches
[dcs
].size
);
1011 multilist_destroy(&dbuf_caches
[dcs
].cache
);
1014 if (dbuf_ksp
!= NULL
) {
1015 kstat_delete(dbuf_ksp
);
1019 wmsum_fini(&dbuf_sums
.cache_count
);
1020 wmsum_fini(&dbuf_sums
.cache_total_evicts
);
1021 for (i
= 0; i
< DN_MAX_LEVELS
; i
++) {
1022 wmsum_fini(&dbuf_sums
.cache_levels
[i
]);
1023 wmsum_fini(&dbuf_sums
.cache_levels_bytes
[i
]);
1025 wmsum_fini(&dbuf_sums
.hash_hits
);
1026 wmsum_fini(&dbuf_sums
.hash_misses
);
1027 wmsum_fini(&dbuf_sums
.hash_collisions
);
1028 wmsum_fini(&dbuf_sums
.hash_chains
);
1029 wmsum_fini(&dbuf_sums
.hash_insert_race
);
1030 wmsum_fini(&dbuf_sums
.metadata_cache_count
);
1031 wmsum_fini(&dbuf_sums
.metadata_cache_overflow
);
1040 dbuf_verify(dmu_buf_impl_t
*db
)
1043 dbuf_dirty_record_t
*dr
;
1046 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1048 if (!(zfs_flags
& ZFS_DEBUG_DBUF_VERIFY
))
1051 ASSERT(db
->db_objset
!= NULL
);
1055 ASSERT(db
->db_parent
== NULL
);
1056 ASSERT(db
->db_blkptr
== NULL
);
1058 ASSERT3U(db
->db
.db_object
, ==, dn
->dn_object
);
1059 ASSERT3P(db
->db_objset
, ==, dn
->dn_objset
);
1060 ASSERT3U(db
->db_level
, <, dn
->dn_nlevels
);
1061 ASSERT(db
->db_blkid
== DMU_BONUS_BLKID
||
1062 db
->db_blkid
== DMU_SPILL_BLKID
||
1063 !avl_is_empty(&dn
->dn_dbufs
));
1065 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1067 ASSERT3U(db
->db
.db_size
, >=, dn
->dn_bonuslen
);
1068 ASSERT3U(db
->db
.db_offset
, ==, DMU_BONUS_BLKID
);
1069 } else if (db
->db_blkid
== DMU_SPILL_BLKID
) {
1071 ASSERT0(db
->db
.db_offset
);
1073 ASSERT3U(db
->db
.db_offset
, ==, db
->db_blkid
* db
->db
.db_size
);
1076 if ((dr
= list_head(&db
->db_dirty_records
)) != NULL
) {
1077 ASSERT(dr
->dr_dbuf
== db
);
1078 txg_prev
= dr
->dr_txg
;
1079 for (dr
= list_next(&db
->db_dirty_records
, dr
); dr
!= NULL
;
1080 dr
= list_next(&db
->db_dirty_records
, dr
)) {
1081 ASSERT(dr
->dr_dbuf
== db
);
1082 ASSERT(txg_prev
> dr
->dr_txg
);
1083 txg_prev
= dr
->dr_txg
;
1088 * We can't assert that db_size matches dn_datablksz because it
1089 * can be momentarily different when another thread is doing
1090 * dnode_set_blksz().
1092 if (db
->db_level
== 0 && db
->db
.db_object
== DMU_META_DNODE_OBJECT
) {
1093 dr
= db
->db_data_pending
;
1095 * It should only be modified in syncing context, so
1096 * make sure we only have one copy of the data.
1098 ASSERT(dr
== NULL
|| dr
->dt
.dl
.dr_data
== db
->db_buf
);
1101 /* verify db->db_blkptr */
1102 if (db
->db_blkptr
) {
1103 if (db
->db_parent
== dn
->dn_dbuf
) {
1104 /* db is pointed to by the dnode */
1105 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1106 if (DMU_OBJECT_IS_SPECIAL(db
->db
.db_object
))
1107 ASSERT(db
->db_parent
== NULL
);
1109 ASSERT(db
->db_parent
!= NULL
);
1110 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
1111 ASSERT3P(db
->db_blkptr
, ==,
1112 &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
]);
1114 /* db is pointed to by an indirect block */
1115 int epb __maybe_unused
= db
->db_parent
->db
.db_size
>>
1117 ASSERT3U(db
->db_parent
->db_level
, ==, db
->db_level
+1);
1118 ASSERT3U(db
->db_parent
->db
.db_object
, ==,
1121 * dnode_grow_indblksz() can make this fail if we don't
1122 * have the parent's rwlock. XXX indblksz no longer
1123 * grows. safe to do this now?
1125 if (RW_LOCK_HELD(&db
->db_parent
->db_rwlock
)) {
1126 ASSERT3P(db
->db_blkptr
, ==,
1127 ((blkptr_t
*)db
->db_parent
->db
.db_data
+
1128 db
->db_blkid
% epb
));
1132 if ((db
->db_blkptr
== NULL
|| BP_IS_HOLE(db
->db_blkptr
)) &&
1133 (db
->db_buf
== NULL
|| db
->db_buf
->b_data
) &&
1134 db
->db
.db_data
&& db
->db_blkid
!= DMU_BONUS_BLKID
&&
1135 db
->db_state
!= DB_FILL
&& !dn
->dn_free_txg
) {
1137 * If the blkptr isn't set but they have nonzero data,
1138 * it had better be dirty, otherwise we'll lose that
1139 * data when we evict this buffer.
1141 * There is an exception to this rule for indirect blocks; in
1142 * this case, if the indirect block is a hole, we fill in a few
1143 * fields on each of the child blocks (importantly, birth time)
1144 * to prevent hole birth times from being lost when you
1145 * partially fill in a hole.
1147 if (db
->db_dirtycnt
== 0) {
1148 if (db
->db_level
== 0) {
1149 uint64_t *buf
= db
->db
.db_data
;
1152 for (i
= 0; i
< db
->db
.db_size
>> 3; i
++) {
1153 ASSERT(buf
[i
] == 0);
1156 blkptr_t
*bps
= db
->db
.db_data
;
1157 ASSERT3U(1 << DB_DNODE(db
)->dn_indblkshift
, ==,
1160 * We want to verify that all the blkptrs in the
1161 * indirect block are holes, but we may have
1162 * automatically set up a few fields for them.
1163 * We iterate through each blkptr and verify
1164 * they only have those fields set.
1167 i
< db
->db
.db_size
/ sizeof (blkptr_t
);
1169 blkptr_t
*bp
= &bps
[i
];
1170 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1173 DVA_IS_EMPTY(&bp
->blk_dva
[0]) &&
1174 DVA_IS_EMPTY(&bp
->blk_dva
[1]) &&
1175 DVA_IS_EMPTY(&bp
->blk_dva
[2]));
1176 ASSERT0(bp
->blk_fill
);
1177 ASSERT0(bp
->blk_pad
[0]);
1178 ASSERT0(bp
->blk_pad
[1]);
1179 ASSERT(!BP_IS_EMBEDDED(bp
));
1180 ASSERT(BP_IS_HOLE(bp
));
1181 ASSERT0(bp
->blk_phys_birth
);
1191 dbuf_clear_data(dmu_buf_impl_t
*db
)
1193 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1194 dbuf_evict_user(db
);
1195 ASSERT3P(db
->db_buf
, ==, NULL
);
1196 db
->db
.db_data
= NULL
;
1197 if (db
->db_state
!= DB_NOFILL
) {
1198 db
->db_state
= DB_UNCACHED
;
1199 DTRACE_SET_STATE(db
, "clear data");
1204 dbuf_set_data(dmu_buf_impl_t
*db
, arc_buf_t
*buf
)
1206 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1207 ASSERT(buf
!= NULL
);
1210 ASSERT(buf
->b_data
!= NULL
);
1211 db
->db
.db_data
= buf
->b_data
;
1215 dbuf_alloc_arcbuf(dmu_buf_impl_t
*db
)
1217 spa_t
*spa
= db
->db_objset
->os_spa
;
1219 return (arc_alloc_buf(spa
, db
, DBUF_GET_BUFC_TYPE(db
), db
->db
.db_size
));
1223 * Loan out an arc_buf for read. Return the loaned arc_buf.
1226 dbuf_loan_arcbuf(dmu_buf_impl_t
*db
)
1230 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1231 mutex_enter(&db
->db_mtx
);
1232 if (arc_released(db
->db_buf
) || zfs_refcount_count(&db
->db_holds
) > 1) {
1233 int blksz
= db
->db
.db_size
;
1234 spa_t
*spa
= db
->db_objset
->os_spa
;
1236 mutex_exit(&db
->db_mtx
);
1237 abuf
= arc_loan_buf(spa
, B_FALSE
, blksz
);
1238 memcpy(abuf
->b_data
, db
->db
.db_data
, blksz
);
1241 arc_loan_inuse_buf(abuf
, db
);
1243 dbuf_clear_data(db
);
1244 mutex_exit(&db
->db_mtx
);
1250 * Calculate which level n block references the data at the level 0 offset
1254 dbuf_whichblock(const dnode_t
*dn
, const int64_t level
, const uint64_t offset
)
1256 if (dn
->dn_datablkshift
!= 0 && dn
->dn_indblkshift
!= 0) {
1258 * The level n blkid is equal to the level 0 blkid divided by
1259 * the number of level 0s in a level n block.
1261 * The level 0 blkid is offset >> datablkshift =
1262 * offset / 2^datablkshift.
1264 * The number of level 0s in a level n is the number of block
1265 * pointers in an indirect block, raised to the power of level.
1266 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1267 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1269 * Thus, the level n blkid is: offset /
1270 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1271 * = offset / 2^(datablkshift + level *
1272 * (indblkshift - SPA_BLKPTRSHIFT))
1273 * = offset >> (datablkshift + level *
1274 * (indblkshift - SPA_BLKPTRSHIFT))
1277 const unsigned exp
= dn
->dn_datablkshift
+
1278 level
* (dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
);
1280 if (exp
>= 8 * sizeof (offset
)) {
1281 /* This only happens on the highest indirection level */
1282 ASSERT3U(level
, ==, dn
->dn_nlevels
- 1);
1286 ASSERT3U(exp
, <, 8 * sizeof (offset
));
1288 return (offset
>> exp
);
1290 ASSERT3U(offset
, <, dn
->dn_datablksz
);
1296 * This function is used to lock the parent of the provided dbuf. This should be
1297 * used when modifying or reading db_blkptr.
1300 dmu_buf_lock_parent(dmu_buf_impl_t
*db
, krw_t rw
, void *tag
)
1302 enum db_lock_type ret
= DLT_NONE
;
1303 if (db
->db_parent
!= NULL
) {
1304 rw_enter(&db
->db_parent
->db_rwlock
, rw
);
1306 } else if (dmu_objset_ds(db
->db_objset
) != NULL
) {
1307 rrw_enter(&dmu_objset_ds(db
->db_objset
)->ds_bp_rwlock
, rw
,
1312 * We only return a DLT_NONE lock when it's the top-most indirect block
1313 * of the meta-dnode of the MOS.
1319 * We need to pass the lock type in because it's possible that the block will
1320 * move from being the topmost indirect block in a dnode (and thus, have no
1321 * parent) to not the top-most via an indirection increase. This would cause a
1322 * panic if we didn't pass the lock type in.
1325 dmu_buf_unlock_parent(dmu_buf_impl_t
*db
, db_lock_type_t type
, void *tag
)
1327 if (type
== DLT_PARENT
)
1328 rw_exit(&db
->db_parent
->db_rwlock
);
1329 else if (type
== DLT_OBJSET
)
1330 rrw_exit(&dmu_objset_ds(db
->db_objset
)->ds_bp_rwlock
, tag
);
1334 dbuf_read_done(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
1335 arc_buf_t
*buf
, void *vdb
)
1337 (void) zb
, (void) bp
;
1338 dmu_buf_impl_t
*db
= vdb
;
1340 mutex_enter(&db
->db_mtx
);
1341 ASSERT3U(db
->db_state
, ==, DB_READ
);
1343 * All reads are synchronous, so we must have a hold on the dbuf
1345 ASSERT(zfs_refcount_count(&db
->db_holds
) > 0);
1346 ASSERT(db
->db_buf
== NULL
);
1347 ASSERT(db
->db
.db_data
== NULL
);
1350 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
1351 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1352 ASSERT3P(db
->db_buf
, ==, NULL
);
1353 db
->db_state
= DB_UNCACHED
;
1354 DTRACE_SET_STATE(db
, "i/o error");
1355 } else if (db
->db_level
== 0 && db
->db_freed_in_flight
) {
1356 /* freed in flight */
1357 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
1358 arc_release(buf
, db
);
1359 memset(buf
->b_data
, 0, db
->db
.db_size
);
1360 arc_buf_freeze(buf
);
1361 db
->db_freed_in_flight
= FALSE
;
1362 dbuf_set_data(db
, buf
);
1363 db
->db_state
= DB_CACHED
;
1364 DTRACE_SET_STATE(db
, "freed in flight");
1367 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
1368 dbuf_set_data(db
, buf
);
1369 db
->db_state
= DB_CACHED
;
1370 DTRACE_SET_STATE(db
, "successful read");
1372 cv_broadcast(&db
->db_changed
);
1373 dbuf_rele_and_unlock(db
, NULL
, B_FALSE
);
1377 * Shortcut for performing reads on bonus dbufs. Returns
1378 * an error if we fail to verify the dnode associated with
1379 * a decrypted block. Otherwise success.
1382 dbuf_read_bonus(dmu_buf_impl_t
*db
, dnode_t
*dn
, uint32_t flags
)
1384 int bonuslen
, max_bonuslen
, err
;
1386 err
= dbuf_read_verify_dnode_crypt(db
, flags
);
1390 bonuslen
= MIN(dn
->dn_bonuslen
, dn
->dn_phys
->dn_bonuslen
);
1391 max_bonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
1392 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1393 ASSERT(DB_DNODE_HELD(db
));
1394 ASSERT3U(bonuslen
, <=, db
->db
.db_size
);
1395 db
->db
.db_data
= kmem_alloc(max_bonuslen
, KM_SLEEP
);
1396 arc_space_consume(max_bonuslen
, ARC_SPACE_BONUS
);
1397 if (bonuslen
< max_bonuslen
)
1398 memset(db
->db
.db_data
, 0, max_bonuslen
);
1400 memcpy(db
->db
.db_data
, DN_BONUS(dn
->dn_phys
), bonuslen
);
1401 db
->db_state
= DB_CACHED
;
1402 DTRACE_SET_STATE(db
, "bonus buffer filled");
1407 dbuf_handle_indirect_hole(dmu_buf_impl_t
*db
, dnode_t
*dn
)
1409 blkptr_t
*bps
= db
->db
.db_data
;
1410 uint32_t indbs
= 1ULL << dn
->dn_indblkshift
;
1411 int n_bps
= indbs
>> SPA_BLKPTRSHIFT
;
1413 for (int i
= 0; i
< n_bps
; i
++) {
1414 blkptr_t
*bp
= &bps
[i
];
1416 ASSERT3U(BP_GET_LSIZE(db
->db_blkptr
), ==, indbs
);
1417 BP_SET_LSIZE(bp
, BP_GET_LEVEL(db
->db_blkptr
) == 1 ?
1418 dn
->dn_datablksz
: BP_GET_LSIZE(db
->db_blkptr
));
1419 BP_SET_TYPE(bp
, BP_GET_TYPE(db
->db_blkptr
));
1420 BP_SET_LEVEL(bp
, BP_GET_LEVEL(db
->db_blkptr
) - 1);
1421 BP_SET_BIRTH(bp
, db
->db_blkptr
->blk_birth
, 0);
1426 * Handle reads on dbufs that are holes, if necessary. This function
1427 * requires that the dbuf's mutex is held. Returns success (0) if action
1428 * was taken, ENOENT if no action was taken.
1431 dbuf_read_hole(dmu_buf_impl_t
*db
, dnode_t
*dn
)
1433 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1435 int is_hole
= db
->db_blkptr
== NULL
|| BP_IS_HOLE(db
->db_blkptr
);
1437 * For level 0 blocks only, if the above check fails:
1438 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1439 * processes the delete record and clears the bp while we are waiting
1440 * for the dn_mtx (resulting in a "no" from block_freed).
1442 if (!is_hole
&& db
->db_level
== 0) {
1443 is_hole
= dnode_block_freed(dn
, db
->db_blkid
) ||
1444 BP_IS_HOLE(db
->db_blkptr
);
1448 dbuf_set_data(db
, dbuf_alloc_arcbuf(db
));
1449 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
1451 if (db
->db_blkptr
!= NULL
&& db
->db_level
> 0 &&
1452 BP_IS_HOLE(db
->db_blkptr
) &&
1453 db
->db_blkptr
->blk_birth
!= 0) {
1454 dbuf_handle_indirect_hole(db
, dn
);
1456 db
->db_state
= DB_CACHED
;
1457 DTRACE_SET_STATE(db
, "hole read satisfied");
1464 * This function ensures that, when doing a decrypting read of a block,
1465 * we make sure we have decrypted the dnode associated with it. We must do
1466 * this so that we ensure we are fully authenticating the checksum-of-MACs
1467 * tree from the root of the objset down to this block. Indirect blocks are
1468 * always verified against their secure checksum-of-MACs assuming that the
1469 * dnode containing them is correct. Now that we are doing a decrypting read,
1470 * we can be sure that the key is loaded and verify that assumption. This is
1471 * especially important considering that we always read encrypted dnode
1472 * blocks as raw data (without verifying their MACs) to start, and
1473 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1476 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t
*db
, uint32_t flags
)
1479 objset_t
*os
= db
->db_objset
;
1480 arc_buf_t
*dnode_abuf
;
1482 zbookmark_phys_t zb
;
1484 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1486 if (!os
->os_encrypted
|| os
->os_raw_receive
||
1487 (flags
& DB_RF_NO_DECRYPT
) != 0)
1492 dnode_abuf
= (dn
->dn_dbuf
!= NULL
) ? dn
->dn_dbuf
->db_buf
: NULL
;
1494 if (dnode_abuf
== NULL
|| !arc_is_encrypted(dnode_abuf
)) {
1499 SET_BOOKMARK(&zb
, dmu_objset_id(os
),
1500 DMU_META_DNODE_OBJECT
, 0, dn
->dn_dbuf
->db_blkid
);
1501 err
= arc_untransform(dnode_abuf
, os
->os_spa
, &zb
, B_TRUE
);
1504 * An error code of EACCES tells us that the key is still not
1505 * available. This is ok if we are only reading authenticated
1506 * (and therefore non-encrypted) blocks.
1508 if (err
== EACCES
&& ((db
->db_blkid
!= DMU_BONUS_BLKID
&&
1509 !DMU_OT_IS_ENCRYPTED(dn
->dn_type
)) ||
1510 (db
->db_blkid
== DMU_BONUS_BLKID
&&
1511 !DMU_OT_IS_ENCRYPTED(dn
->dn_bonustype
))))
1520 * Drops db_mtx and the parent lock specified by dblt and tag before
1524 dbuf_read_impl(dmu_buf_impl_t
*db
, zio_t
*zio
, uint32_t flags
,
1525 db_lock_type_t dblt
, void *tag
)
1528 zbookmark_phys_t zb
;
1529 uint32_t aflags
= ARC_FLAG_NOWAIT
;
1532 err
= zio_flags
= 0;
1535 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
1536 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1537 ASSERT(db
->db_state
== DB_UNCACHED
);
1538 ASSERT(db
->db_buf
== NULL
);
1539 ASSERT(db
->db_parent
== NULL
||
1540 RW_LOCK_HELD(&db
->db_parent
->db_rwlock
));
1542 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1543 err
= dbuf_read_bonus(db
, dn
, flags
);
1547 err
= dbuf_read_hole(db
, dn
);
1552 * Any attempt to read a redacted block should result in an error. This
1553 * will never happen under normal conditions, but can be useful for
1554 * debugging purposes.
1556 if (BP_IS_REDACTED(db
->db_blkptr
)) {
1557 ASSERT(dsl_dataset_feature_is_active(
1558 db
->db_objset
->os_dsl_dataset
,
1559 SPA_FEATURE_REDACTED_DATASETS
));
1560 err
= SET_ERROR(EIO
);
1564 SET_BOOKMARK(&zb
, dmu_objset_id(db
->db_objset
),
1565 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1568 * All bps of an encrypted os should have the encryption bit set.
1569 * If this is not true it indicates tampering and we report an error.
1571 if (db
->db_objset
->os_encrypted
&& !BP_USES_CRYPT(db
->db_blkptr
)) {
1572 spa_log_error(db
->db_objset
->os_spa
, &zb
);
1573 zfs_panic_recover("unencrypted block in encrypted "
1574 "object set %llu", dmu_objset_id(db
->db_objset
));
1575 err
= SET_ERROR(EIO
);
1579 err
= dbuf_read_verify_dnode_crypt(db
, flags
);
1585 db
->db_state
= DB_READ
;
1586 DTRACE_SET_STATE(db
, "read issued");
1587 mutex_exit(&db
->db_mtx
);
1589 if (dbuf_is_l2cacheable(db
))
1590 aflags
|= ARC_FLAG_L2CACHE
;
1592 dbuf_add_ref(db
, NULL
);
1594 zio_flags
= (flags
& DB_RF_CANFAIL
) ?
1595 ZIO_FLAG_CANFAIL
: ZIO_FLAG_MUSTSUCCEED
;
1597 if ((flags
& DB_RF_NO_DECRYPT
) && BP_IS_PROTECTED(db
->db_blkptr
))
1598 zio_flags
|= ZIO_FLAG_RAW
;
1600 * The zio layer will copy the provided blkptr later, but we need to
1601 * do this now so that we can release the parent's rwlock. We have to
1602 * do that now so that if dbuf_read_done is called synchronously (on
1603 * an l1 cache hit) we don't acquire the db_mtx while holding the
1604 * parent's rwlock, which would be a lock ordering violation.
1606 blkptr_t bp
= *db
->db_blkptr
;
1607 dmu_buf_unlock_parent(db
, dblt
, tag
);
1608 (void) arc_read(zio
, db
->db_objset
->os_spa
, &bp
,
1609 dbuf_read_done
, db
, ZIO_PRIORITY_SYNC_READ
, zio_flags
,
1614 mutex_exit(&db
->db_mtx
);
1615 dmu_buf_unlock_parent(db
, dblt
, tag
);
1620 * This is our just-in-time copy function. It makes a copy of buffers that
1621 * have been modified in a previous transaction group before we access them in
1622 * the current active group.
1624 * This function is used in three places: when we are dirtying a buffer for the
1625 * first time in a txg, when we are freeing a range in a dnode that includes
1626 * this buffer, and when we are accessing a buffer which was received compressed
1627 * and later referenced in a WRITE_BYREF record.
1629 * Note that when we are called from dbuf_free_range() we do not put a hold on
1630 * the buffer, we just traverse the active dbuf list for the dnode.
1633 dbuf_fix_old_data(dmu_buf_impl_t
*db
, uint64_t txg
)
1635 dbuf_dirty_record_t
*dr
= list_head(&db
->db_dirty_records
);
1637 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1638 ASSERT(db
->db
.db_data
!= NULL
);
1639 ASSERT(db
->db_level
== 0);
1640 ASSERT(db
->db
.db_object
!= DMU_META_DNODE_OBJECT
);
1643 (dr
->dt
.dl
.dr_data
!=
1644 ((db
->db_blkid
== DMU_BONUS_BLKID
) ? db
->db
.db_data
: db
->db_buf
)))
1648 * If the last dirty record for this dbuf has not yet synced
1649 * and its referencing the dbuf data, either:
1650 * reset the reference to point to a new copy,
1651 * or (if there a no active holders)
1652 * just null out the current db_data pointer.
1654 ASSERT3U(dr
->dr_txg
, >=, txg
- 2);
1655 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1656 dnode_t
*dn
= DB_DNODE(db
);
1657 int bonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
1658 dr
->dt
.dl
.dr_data
= kmem_alloc(bonuslen
, KM_SLEEP
);
1659 arc_space_consume(bonuslen
, ARC_SPACE_BONUS
);
1660 memcpy(dr
->dt
.dl
.dr_data
, db
->db
.db_data
, bonuslen
);
1661 } else if (zfs_refcount_count(&db
->db_holds
) > db
->db_dirtycnt
) {
1662 dnode_t
*dn
= DB_DNODE(db
);
1663 int size
= arc_buf_size(db
->db_buf
);
1664 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
1665 spa_t
*spa
= db
->db_objset
->os_spa
;
1666 enum zio_compress compress_type
=
1667 arc_get_compression(db
->db_buf
);
1668 uint8_t complevel
= arc_get_complevel(db
->db_buf
);
1670 if (arc_is_encrypted(db
->db_buf
)) {
1671 boolean_t byteorder
;
1672 uint8_t salt
[ZIO_DATA_SALT_LEN
];
1673 uint8_t iv
[ZIO_DATA_IV_LEN
];
1674 uint8_t mac
[ZIO_DATA_MAC_LEN
];
1676 arc_get_raw_params(db
->db_buf
, &byteorder
, salt
,
1678 dr
->dt
.dl
.dr_data
= arc_alloc_raw_buf(spa
, db
,
1679 dmu_objset_id(dn
->dn_objset
), byteorder
, salt
, iv
,
1680 mac
, dn
->dn_type
, size
, arc_buf_lsize(db
->db_buf
),
1681 compress_type
, complevel
);
1682 } else if (compress_type
!= ZIO_COMPRESS_OFF
) {
1683 ASSERT3U(type
, ==, ARC_BUFC_DATA
);
1684 dr
->dt
.dl
.dr_data
= arc_alloc_compressed_buf(spa
, db
,
1685 size
, arc_buf_lsize(db
->db_buf
), compress_type
,
1688 dr
->dt
.dl
.dr_data
= arc_alloc_buf(spa
, db
, type
, size
);
1690 memcpy(dr
->dt
.dl
.dr_data
->b_data
, db
->db
.db_data
, size
);
1693 dbuf_clear_data(db
);
1698 dbuf_read(dmu_buf_impl_t
*db
, zio_t
*zio
, uint32_t flags
)
1705 * We don't have to hold the mutex to check db_state because it
1706 * can't be freed while we have a hold on the buffer.
1708 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
1710 if (db
->db_state
== DB_NOFILL
)
1711 return (SET_ERROR(EIO
));
1716 prefetch
= db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
1717 (flags
& DB_RF_NOPREFETCH
) == 0 && dn
!= NULL
&&
1718 DBUF_IS_CACHEABLE(db
);
1720 mutex_enter(&db
->db_mtx
);
1721 if (db
->db_state
== DB_CACHED
) {
1722 spa_t
*spa
= dn
->dn_objset
->os_spa
;
1725 * Ensure that this block's dnode has been decrypted if
1726 * the caller has requested decrypted data.
1728 err
= dbuf_read_verify_dnode_crypt(db
, flags
);
1731 * If the arc buf is compressed or encrypted and the caller
1732 * requested uncompressed data, we need to untransform it
1733 * before returning. We also call arc_untransform() on any
1734 * unauthenticated blocks, which will verify their MAC if
1735 * the key is now available.
1737 if (err
== 0 && db
->db_buf
!= NULL
&&
1738 (flags
& DB_RF_NO_DECRYPT
) == 0 &&
1739 (arc_is_encrypted(db
->db_buf
) ||
1740 arc_is_unauthenticated(db
->db_buf
) ||
1741 arc_get_compression(db
->db_buf
) != ZIO_COMPRESS_OFF
)) {
1742 zbookmark_phys_t zb
;
1744 SET_BOOKMARK(&zb
, dmu_objset_id(db
->db_objset
),
1745 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1746 dbuf_fix_old_data(db
, spa_syncing_txg(spa
));
1747 err
= arc_untransform(db
->db_buf
, spa
, &zb
, B_FALSE
);
1748 dbuf_set_data(db
, db
->db_buf
);
1750 mutex_exit(&db
->db_mtx
);
1751 if (err
== 0 && prefetch
) {
1752 dmu_zfetch(&dn
->dn_zfetch
, db
->db_blkid
, 1, B_TRUE
,
1753 B_FALSE
, flags
& DB_RF_HAVESTRUCT
);
1756 DBUF_STAT_BUMP(hash_hits
);
1757 } else if (db
->db_state
== DB_UNCACHED
) {
1758 spa_t
*spa
= dn
->dn_objset
->os_spa
;
1759 boolean_t need_wait
= B_FALSE
;
1761 db_lock_type_t dblt
= dmu_buf_lock_parent(db
, RW_READER
, FTAG
);
1764 db
->db_blkptr
!= NULL
&& !BP_IS_HOLE(db
->db_blkptr
)) {
1765 zio
= zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
1768 err
= dbuf_read_impl(db
, zio
, flags
, dblt
, FTAG
);
1770 * dbuf_read_impl has dropped db_mtx and our parent's rwlock
1773 if (!err
&& prefetch
) {
1774 dmu_zfetch(&dn
->dn_zfetch
, db
->db_blkid
, 1, B_TRUE
,
1775 db
->db_state
!= DB_CACHED
,
1776 flags
& DB_RF_HAVESTRUCT
);
1780 DBUF_STAT_BUMP(hash_misses
);
1783 * If we created a zio_root we must execute it to avoid
1784 * leaking it, even if it isn't attached to any work due
1785 * to an error in dbuf_read_impl().
1789 err
= zio_wait(zio
);
1791 VERIFY0(zio_wait(zio
));
1795 * Another reader came in while the dbuf was in flight
1796 * between UNCACHED and CACHED. Either a writer will finish
1797 * writing the buffer (sending the dbuf to CACHED) or the
1798 * first reader's request will reach the read_done callback
1799 * and send the dbuf to CACHED. Otherwise, a failure
1800 * occurred and the dbuf went to UNCACHED.
1802 mutex_exit(&db
->db_mtx
);
1804 dmu_zfetch(&dn
->dn_zfetch
, db
->db_blkid
, 1, B_TRUE
,
1805 B_TRUE
, flags
& DB_RF_HAVESTRUCT
);
1808 DBUF_STAT_BUMP(hash_misses
);
1810 /* Skip the wait per the caller's request. */
1811 if ((flags
& DB_RF_NEVERWAIT
) == 0) {
1812 mutex_enter(&db
->db_mtx
);
1813 while (db
->db_state
== DB_READ
||
1814 db
->db_state
== DB_FILL
) {
1815 ASSERT(db
->db_state
== DB_READ
||
1816 (flags
& DB_RF_HAVESTRUCT
) == 0);
1817 DTRACE_PROBE2(blocked__read
, dmu_buf_impl_t
*,
1819 cv_wait(&db
->db_changed
, &db
->db_mtx
);
1821 if (db
->db_state
== DB_UNCACHED
)
1822 err
= SET_ERROR(EIO
);
1823 mutex_exit(&db
->db_mtx
);
1831 dbuf_noread(dmu_buf_impl_t
*db
)
1833 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
1834 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1835 mutex_enter(&db
->db_mtx
);
1836 while (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
)
1837 cv_wait(&db
->db_changed
, &db
->db_mtx
);
1838 if (db
->db_state
== DB_UNCACHED
) {
1839 ASSERT(db
->db_buf
== NULL
);
1840 ASSERT(db
->db
.db_data
== NULL
);
1841 dbuf_set_data(db
, dbuf_alloc_arcbuf(db
));
1842 db
->db_state
= DB_FILL
;
1843 DTRACE_SET_STATE(db
, "assigning filled buffer");
1844 } else if (db
->db_state
== DB_NOFILL
) {
1845 dbuf_clear_data(db
);
1847 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
1849 mutex_exit(&db
->db_mtx
);
1853 dbuf_unoverride(dbuf_dirty_record_t
*dr
)
1855 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1856 blkptr_t
*bp
= &dr
->dt
.dl
.dr_overridden_by
;
1857 uint64_t txg
= dr
->dr_txg
;
1859 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1861 * This assert is valid because dmu_sync() expects to be called by
1862 * a zilog's get_data while holding a range lock. This call only
1863 * comes from dbuf_dirty() callers who must also hold a range lock.
1865 ASSERT(dr
->dt
.dl
.dr_override_state
!= DR_IN_DMU_SYNC
);
1866 ASSERT(db
->db_level
== 0);
1868 if (db
->db_blkid
== DMU_BONUS_BLKID
||
1869 dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
)
1872 ASSERT(db
->db_data_pending
!= dr
);
1874 /* free this block */
1875 if (!BP_IS_HOLE(bp
) && !dr
->dt
.dl
.dr_nopwrite
)
1876 zio_free(db
->db_objset
->os_spa
, txg
, bp
);
1878 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1879 dr
->dt
.dl
.dr_nopwrite
= B_FALSE
;
1880 dr
->dt
.dl
.dr_has_raw_params
= B_FALSE
;
1883 * Release the already-written buffer, so we leave it in
1884 * a consistent dirty state. Note that all callers are
1885 * modifying the buffer, so they will immediately do
1886 * another (redundant) arc_release(). Therefore, leave
1887 * the buf thawed to save the effort of freezing &
1888 * immediately re-thawing it.
1890 arc_release(dr
->dt
.dl
.dr_data
, db
);
1894 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1895 * data blocks in the free range, so that any future readers will find
1899 dbuf_free_range(dnode_t
*dn
, uint64_t start_blkid
, uint64_t end_blkid
,
1902 dmu_buf_impl_t
*db_search
;
1903 dmu_buf_impl_t
*db
, *db_next
;
1904 uint64_t txg
= tx
->tx_txg
;
1906 dbuf_dirty_record_t
*dr
;
1908 if (end_blkid
> dn
->dn_maxblkid
&&
1909 !(start_blkid
== DMU_SPILL_BLKID
|| end_blkid
== DMU_SPILL_BLKID
))
1910 end_blkid
= dn
->dn_maxblkid
;
1911 dprintf_dnode(dn
, "start=%llu end=%llu\n", (u_longlong_t
)start_blkid
,
1912 (u_longlong_t
)end_blkid
);
1914 db_search
= kmem_alloc(sizeof (dmu_buf_impl_t
), KM_SLEEP
);
1915 db_search
->db_level
= 0;
1916 db_search
->db_blkid
= start_blkid
;
1917 db_search
->db_state
= DB_SEARCH
;
1919 mutex_enter(&dn
->dn_dbufs_mtx
);
1920 db
= avl_find(&dn
->dn_dbufs
, db_search
, &where
);
1921 ASSERT3P(db
, ==, NULL
);
1923 db
= avl_nearest(&dn
->dn_dbufs
, where
, AVL_AFTER
);
1925 for (; db
!= NULL
; db
= db_next
) {
1926 db_next
= AVL_NEXT(&dn
->dn_dbufs
, db
);
1927 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1929 if (db
->db_level
!= 0 || db
->db_blkid
> end_blkid
) {
1932 ASSERT3U(db
->db_blkid
, >=, start_blkid
);
1934 /* found a level 0 buffer in the range */
1935 mutex_enter(&db
->db_mtx
);
1936 if (dbuf_undirty(db
, tx
)) {
1937 /* mutex has been dropped and dbuf destroyed */
1941 if (db
->db_state
== DB_UNCACHED
||
1942 db
->db_state
== DB_NOFILL
||
1943 db
->db_state
== DB_EVICTING
) {
1944 ASSERT(db
->db
.db_data
== NULL
);
1945 mutex_exit(&db
->db_mtx
);
1948 if (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
) {
1949 /* will be handled in dbuf_read_done or dbuf_rele */
1950 db
->db_freed_in_flight
= TRUE
;
1951 mutex_exit(&db
->db_mtx
);
1954 if (zfs_refcount_count(&db
->db_holds
) == 0) {
1959 /* The dbuf is referenced */
1961 dr
= list_head(&db
->db_dirty_records
);
1963 if (dr
->dr_txg
== txg
) {
1965 * This buffer is "in-use", re-adjust the file
1966 * size to reflect that this buffer may
1967 * contain new data when we sync.
1969 if (db
->db_blkid
!= DMU_SPILL_BLKID
&&
1970 db
->db_blkid
> dn
->dn_maxblkid
)
1971 dn
->dn_maxblkid
= db
->db_blkid
;
1972 dbuf_unoverride(dr
);
1975 * This dbuf is not dirty in the open context.
1976 * Either uncache it (if its not referenced in
1977 * the open context) or reset its contents to
1980 dbuf_fix_old_data(db
, txg
);
1983 /* clear the contents if its cached */
1984 if (db
->db_state
== DB_CACHED
) {
1985 ASSERT(db
->db
.db_data
!= NULL
);
1986 arc_release(db
->db_buf
, db
);
1987 rw_enter(&db
->db_rwlock
, RW_WRITER
);
1988 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
1989 rw_exit(&db
->db_rwlock
);
1990 arc_buf_freeze(db
->db_buf
);
1993 mutex_exit(&db
->db_mtx
);
1996 mutex_exit(&dn
->dn_dbufs_mtx
);
1997 kmem_free(db_search
, sizeof (dmu_buf_impl_t
));
2001 dbuf_new_size(dmu_buf_impl_t
*db
, int size
, dmu_tx_t
*tx
)
2003 arc_buf_t
*buf
, *old_buf
;
2004 dbuf_dirty_record_t
*dr
;
2005 int osize
= db
->db
.db_size
;
2006 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
2009 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2015 * XXX we should be doing a dbuf_read, checking the return
2016 * value and returning that up to our callers
2018 dmu_buf_will_dirty(&db
->db
, tx
);
2020 /* create the data buffer for the new block */
2021 buf
= arc_alloc_buf(dn
->dn_objset
->os_spa
, db
, type
, size
);
2023 /* copy old block data to the new block */
2024 old_buf
= db
->db_buf
;
2025 memcpy(buf
->b_data
, old_buf
->b_data
, MIN(osize
, size
));
2026 /* zero the remainder */
2028 memset((uint8_t *)buf
->b_data
+ osize
, 0, size
- osize
);
2030 mutex_enter(&db
->db_mtx
);
2031 dbuf_set_data(db
, buf
);
2032 arc_buf_destroy(old_buf
, db
);
2033 db
->db
.db_size
= size
;
2035 dr
= list_head(&db
->db_dirty_records
);
2036 /* dirty record added by dmu_buf_will_dirty() */
2038 if (db
->db_level
== 0)
2039 dr
->dt
.dl
.dr_data
= buf
;
2040 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2041 ASSERT3U(dr
->dr_accounted
, ==, osize
);
2042 dr
->dr_accounted
= size
;
2043 mutex_exit(&db
->db_mtx
);
2045 dmu_objset_willuse_space(dn
->dn_objset
, size
- osize
, tx
);
2050 dbuf_release_bp(dmu_buf_impl_t
*db
)
2052 objset_t
*os __maybe_unused
= db
->db_objset
;
2054 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os
)));
2055 ASSERT(arc_released(os
->os_phys_buf
) ||
2056 list_link_active(&os
->os_dsl_dataset
->ds_synced_link
));
2057 ASSERT(db
->db_parent
== NULL
|| arc_released(db
->db_parent
->db_buf
));
2059 (void) arc_release(db
->db_buf
, db
);
2063 * We already have a dirty record for this TXG, and we are being
2067 dbuf_redirty(dbuf_dirty_record_t
*dr
)
2069 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
2071 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2073 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
) {
2075 * If this buffer has already been written out,
2076 * we now need to reset its state.
2078 dbuf_unoverride(dr
);
2079 if (db
->db
.db_object
!= DMU_META_DNODE_OBJECT
&&
2080 db
->db_state
!= DB_NOFILL
) {
2081 /* Already released on initial dirty, so just thaw. */
2082 ASSERT(arc_released(db
->db_buf
));
2083 arc_buf_thaw(db
->db_buf
);
2088 dbuf_dirty_record_t
*
2089 dbuf_dirty_lightweight(dnode_t
*dn
, uint64_t blkid
, dmu_tx_t
*tx
)
2091 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2092 IMPLY(dn
->dn_objset
->os_raw_receive
, dn
->dn_maxblkid
>= blkid
);
2093 dnode_new_blkid(dn
, blkid
, tx
, B_TRUE
, B_FALSE
);
2094 ASSERT(dn
->dn_maxblkid
>= blkid
);
2096 dbuf_dirty_record_t
*dr
= kmem_zalloc(sizeof (*dr
), KM_SLEEP
);
2097 list_link_init(&dr
->dr_dirty_node
);
2098 list_link_init(&dr
->dr_dbuf_node
);
2100 dr
->dr_txg
= tx
->tx_txg
;
2101 dr
->dt
.dll
.dr_blkid
= blkid
;
2102 dr
->dr_accounted
= dn
->dn_datablksz
;
2105 * There should not be any dbuf for the block that we're dirtying.
2106 * Otherwise the buffer contents could be inconsistent between the
2107 * dbuf and the lightweight dirty record.
2109 ASSERT3P(NULL
, ==, dbuf_find(dn
->dn_objset
, dn
->dn_object
, 0, blkid
));
2111 mutex_enter(&dn
->dn_mtx
);
2112 int txgoff
= tx
->tx_txg
& TXG_MASK
;
2113 if (dn
->dn_free_ranges
[txgoff
] != NULL
) {
2114 range_tree_clear(dn
->dn_free_ranges
[txgoff
], blkid
, 1);
2117 if (dn
->dn_nlevels
== 1) {
2118 ASSERT3U(blkid
, <, dn
->dn_nblkptr
);
2119 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
2120 mutex_exit(&dn
->dn_mtx
);
2121 rw_exit(&dn
->dn_struct_rwlock
);
2122 dnode_setdirty(dn
, tx
);
2124 mutex_exit(&dn
->dn_mtx
);
2126 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2127 dmu_buf_impl_t
*parent_db
= dbuf_hold_level(dn
,
2128 1, blkid
>> epbs
, FTAG
);
2129 rw_exit(&dn
->dn_struct_rwlock
);
2130 if (parent_db
== NULL
) {
2131 kmem_free(dr
, sizeof (*dr
));
2134 int err
= dbuf_read(parent_db
, NULL
,
2135 (DB_RF_NOPREFETCH
| DB_RF_CANFAIL
));
2137 dbuf_rele(parent_db
, FTAG
);
2138 kmem_free(dr
, sizeof (*dr
));
2142 dbuf_dirty_record_t
*parent_dr
= dbuf_dirty(parent_db
, tx
);
2143 dbuf_rele(parent_db
, FTAG
);
2144 mutex_enter(&parent_dr
->dt
.di
.dr_mtx
);
2145 ASSERT3U(parent_dr
->dr_txg
, ==, tx
->tx_txg
);
2146 list_insert_tail(&parent_dr
->dt
.di
.dr_children
, dr
);
2147 mutex_exit(&parent_dr
->dt
.di
.dr_mtx
);
2148 dr
->dr_parent
= parent_dr
;
2151 dmu_objset_willuse_space(dn
->dn_objset
, dr
->dr_accounted
, tx
);
2156 dbuf_dirty_record_t
*
2157 dbuf_dirty(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
2161 dbuf_dirty_record_t
*dr
, *dr_next
, *dr_head
;
2162 int txgoff
= tx
->tx_txg
& TXG_MASK
;
2163 boolean_t drop_struct_rwlock
= B_FALSE
;
2165 ASSERT(tx
->tx_txg
!= 0);
2166 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2167 DMU_TX_DIRTY_BUF(tx
, db
);
2172 * Shouldn't dirty a regular buffer in syncing context. Private
2173 * objects may be dirtied in syncing context, but only if they
2174 * were already pre-dirtied in open context.
2177 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
) {
2178 rrw_enter(&dn
->dn_objset
->os_dsl_dataset
->ds_bp_rwlock
,
2181 ASSERT(!dmu_tx_is_syncing(tx
) ||
2182 BP_IS_HOLE(dn
->dn_objset
->os_rootbp
) ||
2183 DMU_OBJECT_IS_SPECIAL(dn
->dn_object
) ||
2184 dn
->dn_objset
->os_dsl_dataset
== NULL
);
2185 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
2186 rrw_exit(&dn
->dn_objset
->os_dsl_dataset
->ds_bp_rwlock
, FTAG
);
2189 * We make this assert for private objects as well, but after we
2190 * check if we're already dirty. They are allowed to re-dirty
2191 * in syncing context.
2193 ASSERT(dn
->dn_object
== DMU_META_DNODE_OBJECT
||
2194 dn
->dn_dirtyctx
== DN_UNDIRTIED
|| dn
->dn_dirtyctx
==
2195 (dmu_tx_is_syncing(tx
) ? DN_DIRTY_SYNC
: DN_DIRTY_OPEN
));
2197 mutex_enter(&db
->db_mtx
);
2199 * XXX make this true for indirects too? The problem is that
2200 * transactions created with dmu_tx_create_assigned() from
2201 * syncing context don't bother holding ahead.
2203 ASSERT(db
->db_level
!= 0 ||
2204 db
->db_state
== DB_CACHED
|| db
->db_state
== DB_FILL
||
2205 db
->db_state
== DB_NOFILL
);
2207 mutex_enter(&dn
->dn_mtx
);
2208 dnode_set_dirtyctx(dn
, tx
, db
);
2209 if (tx
->tx_txg
> dn
->dn_dirty_txg
)
2210 dn
->dn_dirty_txg
= tx
->tx_txg
;
2211 mutex_exit(&dn
->dn_mtx
);
2213 if (db
->db_blkid
== DMU_SPILL_BLKID
)
2214 dn
->dn_have_spill
= B_TRUE
;
2217 * If this buffer is already dirty, we're done.
2219 dr_head
= list_head(&db
->db_dirty_records
);
2220 ASSERT(dr_head
== NULL
|| dr_head
->dr_txg
<= tx
->tx_txg
||
2221 db
->db
.db_object
== DMU_META_DNODE_OBJECT
);
2222 dr_next
= dbuf_find_dirty_lte(db
, tx
->tx_txg
);
2223 if (dr_next
&& dr_next
->dr_txg
== tx
->tx_txg
) {
2226 dbuf_redirty(dr_next
);
2227 mutex_exit(&db
->db_mtx
);
2232 * Only valid if not already dirty.
2234 ASSERT(dn
->dn_object
== 0 ||
2235 dn
->dn_dirtyctx
== DN_UNDIRTIED
|| dn
->dn_dirtyctx
==
2236 (dmu_tx_is_syncing(tx
) ? DN_DIRTY_SYNC
: DN_DIRTY_OPEN
));
2238 ASSERT3U(dn
->dn_nlevels
, >, db
->db_level
);
2241 * We should only be dirtying in syncing context if it's the
2242 * mos or we're initializing the os or it's a special object.
2243 * However, we are allowed to dirty in syncing context provided
2244 * we already dirtied it in open context. Hence we must make
2245 * this assertion only if we're not already dirty.
2248 VERIFY3U(tx
->tx_txg
, <=, spa_final_dirty_txg(os
->os_spa
));
2250 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
2251 rrw_enter(&os
->os_dsl_dataset
->ds_bp_rwlock
, RW_READER
, FTAG
);
2252 ASSERT(!dmu_tx_is_syncing(tx
) || DMU_OBJECT_IS_SPECIAL(dn
->dn_object
) ||
2253 os
->os_dsl_dataset
== NULL
|| BP_IS_HOLE(os
->os_rootbp
));
2254 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
2255 rrw_exit(&os
->os_dsl_dataset
->ds_bp_rwlock
, FTAG
);
2257 ASSERT(db
->db
.db_size
!= 0);
2259 dprintf_dbuf(db
, "size=%llx\n", (u_longlong_t
)db
->db
.db_size
);
2261 if (db
->db_blkid
!= DMU_BONUS_BLKID
) {
2262 dmu_objset_willuse_space(os
, db
->db
.db_size
, tx
);
2266 * If this buffer is dirty in an old transaction group we need
2267 * to make a copy of it so that the changes we make in this
2268 * transaction group won't leak out when we sync the older txg.
2270 dr
= kmem_zalloc(sizeof (dbuf_dirty_record_t
), KM_SLEEP
);
2271 list_link_init(&dr
->dr_dirty_node
);
2272 list_link_init(&dr
->dr_dbuf_node
);
2274 if (db
->db_level
== 0) {
2275 void *data_old
= db
->db_buf
;
2277 if (db
->db_state
!= DB_NOFILL
) {
2278 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
2279 dbuf_fix_old_data(db
, tx
->tx_txg
);
2280 data_old
= db
->db
.db_data
;
2281 } else if (db
->db
.db_object
!= DMU_META_DNODE_OBJECT
) {
2283 * Release the data buffer from the cache so
2284 * that we can modify it without impacting
2285 * possible other users of this cached data
2286 * block. Note that indirect blocks and
2287 * private objects are not released until the
2288 * syncing state (since they are only modified
2291 arc_release(db
->db_buf
, db
);
2292 dbuf_fix_old_data(db
, tx
->tx_txg
);
2293 data_old
= db
->db_buf
;
2295 ASSERT(data_old
!= NULL
);
2297 dr
->dt
.dl
.dr_data
= data_old
;
2299 mutex_init(&dr
->dt
.di
.dr_mtx
, NULL
, MUTEX_NOLOCKDEP
, NULL
);
2300 list_create(&dr
->dt
.di
.dr_children
,
2301 sizeof (dbuf_dirty_record_t
),
2302 offsetof(dbuf_dirty_record_t
, dr_dirty_node
));
2304 if (db
->db_blkid
!= DMU_BONUS_BLKID
)
2305 dr
->dr_accounted
= db
->db
.db_size
;
2307 dr
->dr_txg
= tx
->tx_txg
;
2308 list_insert_before(&db
->db_dirty_records
, dr_next
, dr
);
2311 * We could have been freed_in_flight between the dbuf_noread
2312 * and dbuf_dirty. We win, as though the dbuf_noread() had
2313 * happened after the free.
2315 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
2316 db
->db_blkid
!= DMU_SPILL_BLKID
) {
2317 mutex_enter(&dn
->dn_mtx
);
2318 if (dn
->dn_free_ranges
[txgoff
] != NULL
) {
2319 range_tree_clear(dn
->dn_free_ranges
[txgoff
],
2322 mutex_exit(&dn
->dn_mtx
);
2323 db
->db_freed_in_flight
= FALSE
;
2327 * This buffer is now part of this txg
2329 dbuf_add_ref(db
, (void *)(uintptr_t)tx
->tx_txg
);
2330 db
->db_dirtycnt
+= 1;
2331 ASSERT3U(db
->db_dirtycnt
, <=, 3);
2333 mutex_exit(&db
->db_mtx
);
2335 if (db
->db_blkid
== DMU_BONUS_BLKID
||
2336 db
->db_blkid
== DMU_SPILL_BLKID
) {
2337 mutex_enter(&dn
->dn_mtx
);
2338 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
2339 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
2340 mutex_exit(&dn
->dn_mtx
);
2341 dnode_setdirty(dn
, tx
);
2346 if (!RW_WRITE_HELD(&dn
->dn_struct_rwlock
)) {
2347 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2348 drop_struct_rwlock
= B_TRUE
;
2352 * If we are overwriting a dedup BP, then unless it is snapshotted,
2353 * when we get to syncing context we will need to decrement its
2354 * refcount in the DDT. Prefetch the relevant DDT block so that
2355 * syncing context won't have to wait for the i/o.
2357 if (db
->db_blkptr
!= NULL
) {
2358 db_lock_type_t dblt
= dmu_buf_lock_parent(db
, RW_READER
, FTAG
);
2359 ddt_prefetch(os
->os_spa
, db
->db_blkptr
);
2360 dmu_buf_unlock_parent(db
, dblt
, FTAG
);
2364 * We need to hold the dn_struct_rwlock to make this assertion,
2365 * because it protects dn_phys / dn_next_nlevels from changing.
2367 ASSERT((dn
->dn_phys
->dn_nlevels
== 0 && db
->db_level
== 0) ||
2368 dn
->dn_phys
->dn_nlevels
> db
->db_level
||
2369 dn
->dn_next_nlevels
[txgoff
] > db
->db_level
||
2370 dn
->dn_next_nlevels
[(tx
->tx_txg
-1) & TXG_MASK
] > db
->db_level
||
2371 dn
->dn_next_nlevels
[(tx
->tx_txg
-2) & TXG_MASK
] > db
->db_level
);
2374 if (db
->db_level
== 0) {
2375 ASSERT(!db
->db_objset
->os_raw_receive
||
2376 dn
->dn_maxblkid
>= db
->db_blkid
);
2377 dnode_new_blkid(dn
, db
->db_blkid
, tx
,
2378 drop_struct_rwlock
, B_FALSE
);
2379 ASSERT(dn
->dn_maxblkid
>= db
->db_blkid
);
2382 if (db
->db_level
+1 < dn
->dn_nlevels
) {
2383 dmu_buf_impl_t
*parent
= db
->db_parent
;
2384 dbuf_dirty_record_t
*di
;
2385 int parent_held
= FALSE
;
2387 if (db
->db_parent
== NULL
|| db
->db_parent
== dn
->dn_dbuf
) {
2388 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2389 parent
= dbuf_hold_level(dn
, db
->db_level
+ 1,
2390 db
->db_blkid
>> epbs
, FTAG
);
2391 ASSERT(parent
!= NULL
);
2394 if (drop_struct_rwlock
)
2395 rw_exit(&dn
->dn_struct_rwlock
);
2396 ASSERT3U(db
->db_level
+ 1, ==, parent
->db_level
);
2397 di
= dbuf_dirty(parent
, tx
);
2399 dbuf_rele(parent
, FTAG
);
2401 mutex_enter(&db
->db_mtx
);
2403 * Since we've dropped the mutex, it's possible that
2404 * dbuf_undirty() might have changed this out from under us.
2406 if (list_head(&db
->db_dirty_records
) == dr
||
2407 dn
->dn_object
== DMU_META_DNODE_OBJECT
) {
2408 mutex_enter(&di
->dt
.di
.dr_mtx
);
2409 ASSERT3U(di
->dr_txg
, ==, tx
->tx_txg
);
2410 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
2411 list_insert_tail(&di
->dt
.di
.dr_children
, dr
);
2412 mutex_exit(&di
->dt
.di
.dr_mtx
);
2415 mutex_exit(&db
->db_mtx
);
2417 ASSERT(db
->db_level
+ 1 == dn
->dn_nlevels
);
2418 ASSERT(db
->db_blkid
< dn
->dn_nblkptr
);
2419 ASSERT(db
->db_parent
== NULL
|| db
->db_parent
== dn
->dn_dbuf
);
2420 mutex_enter(&dn
->dn_mtx
);
2421 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
2422 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
2423 mutex_exit(&dn
->dn_mtx
);
2424 if (drop_struct_rwlock
)
2425 rw_exit(&dn
->dn_struct_rwlock
);
2428 dnode_setdirty(dn
, tx
);
2434 dbuf_undirty_bonus(dbuf_dirty_record_t
*dr
)
2436 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
2438 if (dr
->dt
.dl
.dr_data
!= db
->db
.db_data
) {
2439 struct dnode
*dn
= dr
->dr_dnode
;
2440 int max_bonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
2442 kmem_free(dr
->dt
.dl
.dr_data
, max_bonuslen
);
2443 arc_space_return(max_bonuslen
, ARC_SPACE_BONUS
);
2445 db
->db_data_pending
= NULL
;
2446 ASSERT(list_next(&db
->db_dirty_records
, dr
) == NULL
);
2447 list_remove(&db
->db_dirty_records
, dr
);
2448 if (dr
->dr_dbuf
->db_level
!= 0) {
2449 mutex_destroy(&dr
->dt
.di
.dr_mtx
);
2450 list_destroy(&dr
->dt
.di
.dr_children
);
2452 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
2453 ASSERT3U(db
->db_dirtycnt
, >, 0);
2454 db
->db_dirtycnt
-= 1;
2458 * Undirty a buffer in the transaction group referenced by the given
2459 * transaction. Return whether this evicted the dbuf.
2462 dbuf_undirty(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
2464 uint64_t txg
= tx
->tx_txg
;
2469 * Due to our use of dn_nlevels below, this can only be called
2470 * in open context, unless we are operating on the MOS.
2471 * From syncing context, dn_nlevels may be different from the
2472 * dn_nlevels used when dbuf was dirtied.
2474 ASSERT(db
->db_objset
==
2475 dmu_objset_pool(db
->db_objset
)->dp_meta_objset
||
2476 txg
!= spa_syncing_txg(dmu_objset_spa(db
->db_objset
)));
2477 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2478 ASSERT0(db
->db_level
);
2479 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2482 * If this buffer is not dirty, we're done.
2484 dbuf_dirty_record_t
*dr
= dbuf_find_dirty_eq(db
, txg
);
2487 ASSERT(dr
->dr_dbuf
== db
);
2489 dnode_t
*dn
= dr
->dr_dnode
;
2491 dprintf_dbuf(db
, "size=%llx\n", (u_longlong_t
)db
->db
.db_size
);
2493 ASSERT(db
->db
.db_size
!= 0);
2495 dsl_pool_undirty_space(dmu_objset_pool(dn
->dn_objset
),
2496 dr
->dr_accounted
, txg
);
2498 list_remove(&db
->db_dirty_records
, dr
);
2501 * Note that there are three places in dbuf_dirty()
2502 * where this dirty record may be put on a list.
2503 * Make sure to do a list_remove corresponding to
2504 * every one of those list_insert calls.
2506 if (dr
->dr_parent
) {
2507 mutex_enter(&dr
->dr_parent
->dt
.di
.dr_mtx
);
2508 list_remove(&dr
->dr_parent
->dt
.di
.dr_children
, dr
);
2509 mutex_exit(&dr
->dr_parent
->dt
.di
.dr_mtx
);
2510 } else if (db
->db_blkid
== DMU_SPILL_BLKID
||
2511 db
->db_level
+ 1 == dn
->dn_nlevels
) {
2512 ASSERT(db
->db_blkptr
== NULL
|| db
->db_parent
== dn
->dn_dbuf
);
2513 mutex_enter(&dn
->dn_mtx
);
2514 list_remove(&dn
->dn_dirty_records
[txg
& TXG_MASK
], dr
);
2515 mutex_exit(&dn
->dn_mtx
);
2518 if (db
->db_state
!= DB_NOFILL
) {
2519 dbuf_unoverride(dr
);
2521 ASSERT(db
->db_buf
!= NULL
);
2522 ASSERT(dr
->dt
.dl
.dr_data
!= NULL
);
2523 if (dr
->dt
.dl
.dr_data
!= db
->db_buf
)
2524 arc_buf_destroy(dr
->dt
.dl
.dr_data
, db
);
2527 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
2529 ASSERT(db
->db_dirtycnt
> 0);
2530 db
->db_dirtycnt
-= 1;
2532 if (zfs_refcount_remove(&db
->db_holds
, (void *)(uintptr_t)txg
) == 0) {
2533 ASSERT(db
->db_state
== DB_NOFILL
|| arc_released(db
->db_buf
));
2542 dmu_buf_will_dirty_impl(dmu_buf_t
*db_fake
, int flags
, dmu_tx_t
*tx
)
2544 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2546 ASSERT(tx
->tx_txg
!= 0);
2547 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2550 * Quick check for dirtiness. For already dirty blocks, this
2551 * reduces runtime of this function by >90%, and overall performance
2552 * by 50% for some workloads (e.g. file deletion with indirect blocks
2555 mutex_enter(&db
->db_mtx
);
2557 if (db
->db_state
== DB_CACHED
) {
2558 dbuf_dirty_record_t
*dr
= dbuf_find_dirty_eq(db
, tx
->tx_txg
);
2560 * It's possible that it is already dirty but not cached,
2561 * because there are some calls to dbuf_dirty() that don't
2562 * go through dmu_buf_will_dirty().
2565 /* This dbuf is already dirty and cached. */
2567 mutex_exit(&db
->db_mtx
);
2571 mutex_exit(&db
->db_mtx
);
2574 if (RW_WRITE_HELD(&DB_DNODE(db
)->dn_struct_rwlock
))
2575 flags
|= DB_RF_HAVESTRUCT
;
2577 (void) dbuf_read(db
, NULL
, flags
);
2578 (void) dbuf_dirty(db
, tx
);
2582 dmu_buf_will_dirty(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2584 dmu_buf_will_dirty_impl(db_fake
,
2585 DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
, tx
);
2589 dmu_buf_is_dirty(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2591 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2592 dbuf_dirty_record_t
*dr
;
2594 mutex_enter(&db
->db_mtx
);
2595 dr
= dbuf_find_dirty_eq(db
, tx
->tx_txg
);
2596 mutex_exit(&db
->db_mtx
);
2597 return (dr
!= NULL
);
2601 dmu_buf_will_not_fill(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2603 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2605 db
->db_state
= DB_NOFILL
;
2606 DTRACE_SET_STATE(db
, "allocating NOFILL buffer");
2607 dmu_buf_will_fill(db_fake
, tx
);
2611 dmu_buf_will_fill(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2613 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2615 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2616 ASSERT(tx
->tx_txg
!= 0);
2617 ASSERT(db
->db_level
== 0);
2618 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2620 ASSERT(db
->db
.db_object
!= DMU_META_DNODE_OBJECT
||
2621 dmu_tx_private_ok(tx
));
2624 (void) dbuf_dirty(db
, tx
);
2628 * This function is effectively the same as dmu_buf_will_dirty(), but
2629 * indicates the caller expects raw encrypted data in the db, and provides
2630 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2631 * blkptr_t when this dbuf is written. This is only used for blocks of
2632 * dnodes, during raw receive.
2635 dmu_buf_set_crypt_params(dmu_buf_t
*db_fake
, boolean_t byteorder
,
2636 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
, dmu_tx_t
*tx
)
2638 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2639 dbuf_dirty_record_t
*dr
;
2642 * dr_has_raw_params is only processed for blocks of dnodes
2643 * (see dbuf_sync_dnode_leaf_crypt()).
2645 ASSERT3U(db
->db
.db_object
, ==, DMU_META_DNODE_OBJECT
);
2646 ASSERT3U(db
->db_level
, ==, 0);
2647 ASSERT(db
->db_objset
->os_raw_receive
);
2649 dmu_buf_will_dirty_impl(db_fake
,
2650 DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
| DB_RF_NO_DECRYPT
, tx
);
2652 dr
= dbuf_find_dirty_eq(db
, tx
->tx_txg
);
2654 ASSERT3P(dr
, !=, NULL
);
2656 dr
->dt
.dl
.dr_has_raw_params
= B_TRUE
;
2657 dr
->dt
.dl
.dr_byteorder
= byteorder
;
2658 memcpy(dr
->dt
.dl
.dr_salt
, salt
, ZIO_DATA_SALT_LEN
);
2659 memcpy(dr
->dt
.dl
.dr_iv
, iv
, ZIO_DATA_IV_LEN
);
2660 memcpy(dr
->dt
.dl
.dr_mac
, mac
, ZIO_DATA_MAC_LEN
);
2664 dbuf_override_impl(dmu_buf_impl_t
*db
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
2666 struct dirty_leaf
*dl
;
2667 dbuf_dirty_record_t
*dr
;
2669 dr
= list_head(&db
->db_dirty_records
);
2670 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2672 dl
->dr_overridden_by
= *bp
;
2673 dl
->dr_override_state
= DR_OVERRIDDEN
;
2674 dl
->dr_overridden_by
.blk_birth
= dr
->dr_txg
;
2678 dmu_buf_fill_done(dmu_buf_t
*dbuf
, dmu_tx_t
*tx
)
2681 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbuf
;
2682 dbuf_states_t old_state
;
2683 mutex_enter(&db
->db_mtx
);
2686 old_state
= db
->db_state
;
2687 db
->db_state
= DB_CACHED
;
2688 if (old_state
== DB_FILL
) {
2689 if (db
->db_level
== 0 && db
->db_freed_in_flight
) {
2690 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2691 /* we were freed while filling */
2692 /* XXX dbuf_undirty? */
2693 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
2694 db
->db_freed_in_flight
= FALSE
;
2695 DTRACE_SET_STATE(db
,
2696 "fill done handling freed in flight");
2698 DTRACE_SET_STATE(db
, "fill done");
2700 cv_broadcast(&db
->db_changed
);
2702 mutex_exit(&db
->db_mtx
);
2706 dmu_buf_write_embedded(dmu_buf_t
*dbuf
, void *data
,
2707 bp_embedded_type_t etype
, enum zio_compress comp
,
2708 int uncompressed_size
, int compressed_size
, int byteorder
,
2711 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbuf
;
2712 struct dirty_leaf
*dl
;
2713 dmu_object_type_t type
;
2714 dbuf_dirty_record_t
*dr
;
2716 if (etype
== BP_EMBEDDED_TYPE_DATA
) {
2717 ASSERT(spa_feature_is_active(dmu_objset_spa(db
->db_objset
),
2718 SPA_FEATURE_EMBEDDED_DATA
));
2722 type
= DB_DNODE(db
)->dn_type
;
2725 ASSERT0(db
->db_level
);
2726 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2728 dmu_buf_will_not_fill(dbuf
, tx
);
2730 dr
= list_head(&db
->db_dirty_records
);
2731 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2733 encode_embedded_bp_compressed(&dl
->dr_overridden_by
,
2734 data
, comp
, uncompressed_size
, compressed_size
);
2735 BPE_SET_ETYPE(&dl
->dr_overridden_by
, etype
);
2736 BP_SET_TYPE(&dl
->dr_overridden_by
, type
);
2737 BP_SET_LEVEL(&dl
->dr_overridden_by
, 0);
2738 BP_SET_BYTEORDER(&dl
->dr_overridden_by
, byteorder
);
2740 dl
->dr_override_state
= DR_OVERRIDDEN
;
2741 dl
->dr_overridden_by
.blk_birth
= dr
->dr_txg
;
2745 dmu_buf_redact(dmu_buf_t
*dbuf
, dmu_tx_t
*tx
)
2747 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbuf
;
2748 dmu_object_type_t type
;
2749 ASSERT(dsl_dataset_feature_is_active(db
->db_objset
->os_dsl_dataset
,
2750 SPA_FEATURE_REDACTED_DATASETS
));
2753 type
= DB_DNODE(db
)->dn_type
;
2756 ASSERT0(db
->db_level
);
2757 dmu_buf_will_not_fill(dbuf
, tx
);
2759 blkptr_t bp
= { { { {0} } } };
2760 BP_SET_TYPE(&bp
, type
);
2761 BP_SET_LEVEL(&bp
, 0);
2762 BP_SET_BIRTH(&bp
, tx
->tx_txg
, 0);
2763 BP_SET_REDACTED(&bp
);
2764 BPE_SET_LSIZE(&bp
, dbuf
->db_size
);
2766 dbuf_override_impl(db
, &bp
, tx
);
2770 * Directly assign a provided arc buf to a given dbuf if it's not referenced
2771 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
2774 dbuf_assign_arcbuf(dmu_buf_impl_t
*db
, arc_buf_t
*buf
, dmu_tx_t
*tx
)
2776 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2777 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2778 ASSERT(db
->db_level
== 0);
2779 ASSERT3U(dbuf_is_metadata(db
), ==, arc_is_metadata(buf
));
2780 ASSERT(buf
!= NULL
);
2781 ASSERT3U(arc_buf_lsize(buf
), ==, db
->db
.db_size
);
2782 ASSERT(tx
->tx_txg
!= 0);
2784 arc_return_buf(buf
, db
);
2785 ASSERT(arc_released(buf
));
2787 mutex_enter(&db
->db_mtx
);
2789 while (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
)
2790 cv_wait(&db
->db_changed
, &db
->db_mtx
);
2792 ASSERT(db
->db_state
== DB_CACHED
|| db
->db_state
== DB_UNCACHED
);
2794 if (db
->db_state
== DB_CACHED
&&
2795 zfs_refcount_count(&db
->db_holds
) - 1 > db
->db_dirtycnt
) {
2797 * In practice, we will never have a case where we have an
2798 * encrypted arc buffer while additional holds exist on the
2799 * dbuf. We don't handle this here so we simply assert that
2802 ASSERT(!arc_is_encrypted(buf
));
2803 mutex_exit(&db
->db_mtx
);
2804 (void) dbuf_dirty(db
, tx
);
2805 memcpy(db
->db
.db_data
, buf
->b_data
, db
->db
.db_size
);
2806 arc_buf_destroy(buf
, db
);
2810 if (db
->db_state
== DB_CACHED
) {
2811 dbuf_dirty_record_t
*dr
= list_head(&db
->db_dirty_records
);
2813 ASSERT(db
->db_buf
!= NULL
);
2814 if (dr
!= NULL
&& dr
->dr_txg
== tx
->tx_txg
) {
2815 ASSERT(dr
->dt
.dl
.dr_data
== db
->db_buf
);
2817 if (!arc_released(db
->db_buf
)) {
2818 ASSERT(dr
->dt
.dl
.dr_override_state
==
2820 arc_release(db
->db_buf
, db
);
2822 dr
->dt
.dl
.dr_data
= buf
;
2823 arc_buf_destroy(db
->db_buf
, db
);
2824 } else if (dr
== NULL
|| dr
->dt
.dl
.dr_data
!= db
->db_buf
) {
2825 arc_release(db
->db_buf
, db
);
2826 arc_buf_destroy(db
->db_buf
, db
);
2830 ASSERT(db
->db_buf
== NULL
);
2831 dbuf_set_data(db
, buf
);
2832 db
->db_state
= DB_FILL
;
2833 DTRACE_SET_STATE(db
, "filling assigned arcbuf");
2834 mutex_exit(&db
->db_mtx
);
2835 (void) dbuf_dirty(db
, tx
);
2836 dmu_buf_fill_done(&db
->db
, tx
);
2840 dbuf_destroy(dmu_buf_impl_t
*db
)
2843 dmu_buf_impl_t
*parent
= db
->db_parent
;
2844 dmu_buf_impl_t
*dndb
;
2846 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2847 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
2849 if (db
->db_buf
!= NULL
) {
2850 arc_buf_destroy(db
->db_buf
, db
);
2854 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
2855 int slots
= DB_DNODE(db
)->dn_num_slots
;
2856 int bonuslen
= DN_SLOTS_TO_BONUSLEN(slots
);
2857 if (db
->db
.db_data
!= NULL
) {
2858 kmem_free(db
->db
.db_data
, bonuslen
);
2859 arc_space_return(bonuslen
, ARC_SPACE_BONUS
);
2860 db
->db_state
= DB_UNCACHED
;
2861 DTRACE_SET_STATE(db
, "buffer cleared");
2865 dbuf_clear_data(db
);
2867 if (multilist_link_active(&db
->db_cache_link
)) {
2868 ASSERT(db
->db_caching_status
== DB_DBUF_CACHE
||
2869 db
->db_caching_status
== DB_DBUF_METADATA_CACHE
);
2871 multilist_remove(&dbuf_caches
[db
->db_caching_status
].cache
, db
);
2872 (void) zfs_refcount_remove_many(
2873 &dbuf_caches
[db
->db_caching_status
].size
,
2874 db
->db
.db_size
, db
);
2876 if (db
->db_caching_status
== DB_DBUF_METADATA_CACHE
) {
2877 DBUF_STAT_BUMPDOWN(metadata_cache_count
);
2879 DBUF_STAT_BUMPDOWN(cache_levels
[db
->db_level
]);
2880 DBUF_STAT_BUMPDOWN(cache_count
);
2881 DBUF_STAT_DECR(cache_levels_bytes
[db
->db_level
],
2884 db
->db_caching_status
= DB_NO_CACHE
;
2887 ASSERT(db
->db_state
== DB_UNCACHED
|| db
->db_state
== DB_NOFILL
);
2888 ASSERT(db
->db_data_pending
== NULL
);
2889 ASSERT(list_is_empty(&db
->db_dirty_records
));
2891 db
->db_state
= DB_EVICTING
;
2892 DTRACE_SET_STATE(db
, "buffer eviction started");
2893 db
->db_blkptr
= NULL
;
2896 * Now that db_state is DB_EVICTING, nobody else can find this via
2897 * the hash table. We can now drop db_mtx, which allows us to
2898 * acquire the dn_dbufs_mtx.
2900 mutex_exit(&db
->db_mtx
);
2905 if (db
->db_blkid
!= DMU_BONUS_BLKID
) {
2906 boolean_t needlock
= !MUTEX_HELD(&dn
->dn_dbufs_mtx
);
2908 mutex_enter_nested(&dn
->dn_dbufs_mtx
,
2910 avl_remove(&dn
->dn_dbufs
, db
);
2914 mutex_exit(&dn
->dn_dbufs_mtx
);
2916 * Decrementing the dbuf count means that the hold corresponding
2917 * to the removed dbuf is no longer discounted in dnode_move(),
2918 * so the dnode cannot be moved until after we release the hold.
2919 * The membar_producer() ensures visibility of the decremented
2920 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
2923 mutex_enter(&dn
->dn_mtx
);
2924 dnode_rele_and_unlock(dn
, db
, B_TRUE
);
2925 db
->db_dnode_handle
= NULL
;
2927 dbuf_hash_remove(db
);
2932 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
2934 db
->db_parent
= NULL
;
2936 ASSERT(db
->db_buf
== NULL
);
2937 ASSERT(db
->db
.db_data
== NULL
);
2938 ASSERT(db
->db_hash_next
== NULL
);
2939 ASSERT(db
->db_blkptr
== NULL
);
2940 ASSERT(db
->db_data_pending
== NULL
);
2941 ASSERT3U(db
->db_caching_status
, ==, DB_NO_CACHE
);
2942 ASSERT(!multilist_link_active(&db
->db_cache_link
));
2945 * If this dbuf is referenced from an indirect dbuf,
2946 * decrement the ref count on the indirect dbuf.
2948 if (parent
&& parent
!= dndb
) {
2949 mutex_enter(&parent
->db_mtx
);
2950 dbuf_rele_and_unlock(parent
, db
, B_TRUE
);
2953 kmem_cache_free(dbuf_kmem_cache
, db
);
2954 arc_space_return(sizeof (dmu_buf_impl_t
), ARC_SPACE_DBUF
);
2958 * Note: While bpp will always be updated if the function returns success,
2959 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
2960 * this happens when the dnode is the meta-dnode, or {user|group|project}used
2963 __attribute__((always_inline
))
2965 dbuf_findbp(dnode_t
*dn
, int level
, uint64_t blkid
, int fail_sparse
,
2966 dmu_buf_impl_t
**parentp
, blkptr_t
**bpp
)
2971 ASSERT(blkid
!= DMU_BONUS_BLKID
);
2973 if (blkid
== DMU_SPILL_BLKID
) {
2974 mutex_enter(&dn
->dn_mtx
);
2975 if (dn
->dn_have_spill
&&
2976 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
))
2977 *bpp
= DN_SPILL_BLKPTR(dn
->dn_phys
);
2980 dbuf_add_ref(dn
->dn_dbuf
, NULL
);
2981 *parentp
= dn
->dn_dbuf
;
2982 mutex_exit(&dn
->dn_mtx
);
2987 (dn
->dn_phys
->dn_nlevels
== 0) ? 1 : dn
->dn_phys
->dn_nlevels
;
2988 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2990 ASSERT3U(level
* epbs
, <, 64);
2991 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
2993 * This assertion shouldn't trip as long as the max indirect block size
2994 * is less than 1M. The reason for this is that up to that point,
2995 * the number of levels required to address an entire object with blocks
2996 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
2997 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
2998 * (i.e. we can address the entire object), objects will all use at most
2999 * N-1 levels and the assertion won't overflow. However, once epbs is
3000 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3001 * enough to address an entire object, so objects will have 5 levels,
3002 * but then this assertion will overflow.
3004 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3005 * need to redo this logic to handle overflows.
3007 ASSERT(level
>= nlevels
||
3008 ((nlevels
- level
- 1) * epbs
) +
3009 highbit64(dn
->dn_phys
->dn_nblkptr
) <= 64);
3010 if (level
>= nlevels
||
3011 blkid
>= ((uint64_t)dn
->dn_phys
->dn_nblkptr
<<
3012 ((nlevels
- level
- 1) * epbs
)) ||
3014 blkid
> (dn
->dn_phys
->dn_maxblkid
>> (level
* epbs
)))) {
3015 /* the buffer has no parent yet */
3016 return (SET_ERROR(ENOENT
));
3017 } else if (level
< nlevels
-1) {
3018 /* this block is referenced from an indirect block */
3021 err
= dbuf_hold_impl(dn
, level
+ 1,
3022 blkid
>> epbs
, fail_sparse
, FALSE
, NULL
, parentp
);
3026 err
= dbuf_read(*parentp
, NULL
,
3027 (DB_RF_HAVESTRUCT
| DB_RF_NOPREFETCH
| DB_RF_CANFAIL
));
3029 dbuf_rele(*parentp
, NULL
);
3033 rw_enter(&(*parentp
)->db_rwlock
, RW_READER
);
3034 *bpp
= ((blkptr_t
*)(*parentp
)->db
.db_data
) +
3035 (blkid
& ((1ULL << epbs
) - 1));
3036 if (blkid
> (dn
->dn_phys
->dn_maxblkid
>> (level
* epbs
)))
3037 ASSERT(BP_IS_HOLE(*bpp
));
3038 rw_exit(&(*parentp
)->db_rwlock
);
3041 /* the block is referenced from the dnode */
3042 ASSERT3U(level
, ==, nlevels
-1);
3043 ASSERT(dn
->dn_phys
->dn_nblkptr
== 0 ||
3044 blkid
< dn
->dn_phys
->dn_nblkptr
);
3046 dbuf_add_ref(dn
->dn_dbuf
, NULL
);
3047 *parentp
= dn
->dn_dbuf
;
3049 *bpp
= &dn
->dn_phys
->dn_blkptr
[blkid
];
3054 static dmu_buf_impl_t
*
3055 dbuf_create(dnode_t
*dn
, uint8_t level
, uint64_t blkid
,
3056 dmu_buf_impl_t
*parent
, blkptr_t
*blkptr
)
3058 objset_t
*os
= dn
->dn_objset
;
3059 dmu_buf_impl_t
*db
, *odb
;
3061 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3062 ASSERT(dn
->dn_type
!= DMU_OT_NONE
);
3064 db
= kmem_cache_alloc(dbuf_kmem_cache
, KM_SLEEP
);
3066 list_create(&db
->db_dirty_records
, sizeof (dbuf_dirty_record_t
),
3067 offsetof(dbuf_dirty_record_t
, dr_dbuf_node
));
3070 db
->db
.db_object
= dn
->dn_object
;
3071 db
->db_level
= level
;
3072 db
->db_blkid
= blkid
;
3073 db
->db_dirtycnt
= 0;
3074 db
->db_dnode_handle
= dn
->dn_handle
;
3075 db
->db_parent
= parent
;
3076 db
->db_blkptr
= blkptr
;
3079 db
->db_user_immediate_evict
= FALSE
;
3080 db
->db_freed_in_flight
= FALSE
;
3081 db
->db_pending_evict
= FALSE
;
3083 if (blkid
== DMU_BONUS_BLKID
) {
3084 ASSERT3P(parent
, ==, dn
->dn_dbuf
);
3085 db
->db
.db_size
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
) -
3086 (dn
->dn_nblkptr
-1) * sizeof (blkptr_t
);
3087 ASSERT3U(db
->db
.db_size
, >=, dn
->dn_bonuslen
);
3088 db
->db
.db_offset
= DMU_BONUS_BLKID
;
3089 db
->db_state
= DB_UNCACHED
;
3090 DTRACE_SET_STATE(db
, "bonus buffer created");
3091 db
->db_caching_status
= DB_NO_CACHE
;
3092 /* the bonus dbuf is not placed in the hash table */
3093 arc_space_consume(sizeof (dmu_buf_impl_t
), ARC_SPACE_DBUF
);
3095 } else if (blkid
== DMU_SPILL_BLKID
) {
3096 db
->db
.db_size
= (blkptr
!= NULL
) ?
3097 BP_GET_LSIZE(blkptr
) : SPA_MINBLOCKSIZE
;
3098 db
->db
.db_offset
= 0;
3101 db
->db_level
? 1 << dn
->dn_indblkshift
: dn
->dn_datablksz
;
3102 db
->db
.db_size
= blocksize
;
3103 db
->db
.db_offset
= db
->db_blkid
* blocksize
;
3107 * Hold the dn_dbufs_mtx while we get the new dbuf
3108 * in the hash table *and* added to the dbufs list.
3109 * This prevents a possible deadlock with someone
3110 * trying to look up this dbuf before it's added to the
3113 mutex_enter(&dn
->dn_dbufs_mtx
);
3114 db
->db_state
= DB_EVICTING
; /* not worth logging this state change */
3115 if ((odb
= dbuf_hash_insert(db
)) != NULL
) {
3116 /* someone else inserted it first */
3117 mutex_exit(&dn
->dn_dbufs_mtx
);
3118 kmem_cache_free(dbuf_kmem_cache
, db
);
3119 DBUF_STAT_BUMP(hash_insert_race
);
3122 avl_add(&dn
->dn_dbufs
, db
);
3124 db
->db_state
= DB_UNCACHED
;
3125 DTRACE_SET_STATE(db
, "regular buffer created");
3126 db
->db_caching_status
= DB_NO_CACHE
;
3127 mutex_exit(&dn
->dn_dbufs_mtx
);
3128 arc_space_consume(sizeof (dmu_buf_impl_t
), ARC_SPACE_DBUF
);
3130 if (parent
&& parent
!= dn
->dn_dbuf
)
3131 dbuf_add_ref(parent
, db
);
3133 ASSERT(dn
->dn_object
== DMU_META_DNODE_OBJECT
||
3134 zfs_refcount_count(&dn
->dn_holds
) > 0);
3135 (void) zfs_refcount_add(&dn
->dn_holds
, db
);
3137 dprintf_dbuf(db
, "db=%p\n", db
);
3143 * This function returns a block pointer and information about the object,
3144 * given a dnode and a block. This is a publicly accessible version of
3145 * dbuf_findbp that only returns some information, rather than the
3146 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3147 * should be locked as (at least) a reader.
3150 dbuf_dnode_findbp(dnode_t
*dn
, uint64_t level
, uint64_t blkid
,
3151 blkptr_t
*bp
, uint16_t *datablkszsec
, uint8_t *indblkshift
)
3153 dmu_buf_impl_t
*dbp
= NULL
;
3156 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3158 err
= dbuf_findbp(dn
, level
, blkid
, B_FALSE
, &dbp
, &bp2
);
3162 dbuf_rele(dbp
, NULL
);
3163 if (datablkszsec
!= NULL
)
3164 *datablkszsec
= dn
->dn_phys
->dn_datablkszsec
;
3165 if (indblkshift
!= NULL
)
3166 *indblkshift
= dn
->dn_phys
->dn_indblkshift
;
3172 typedef struct dbuf_prefetch_arg
{
3173 spa_t
*dpa_spa
; /* The spa to issue the prefetch in. */
3174 zbookmark_phys_t dpa_zb
; /* The target block to prefetch. */
3175 int dpa_epbs
; /* Entries (blkptr_t's) Per Block Shift. */
3176 int dpa_curlevel
; /* The current level that we're reading */
3177 dnode_t
*dpa_dnode
; /* The dnode associated with the prefetch */
3178 zio_priority_t dpa_prio
; /* The priority I/Os should be issued at. */
3179 zio_t
*dpa_zio
; /* The parent zio_t for all prefetches. */
3180 arc_flags_t dpa_aflags
; /* Flags to pass to the final prefetch. */
3181 dbuf_prefetch_fn dpa_cb
; /* prefetch completion callback */
3182 void *dpa_arg
; /* prefetch completion arg */
3183 } dbuf_prefetch_arg_t
;
3186 dbuf_prefetch_fini(dbuf_prefetch_arg_t
*dpa
, boolean_t io_done
)
3188 if (dpa
->dpa_cb
!= NULL
) {
3189 dpa
->dpa_cb(dpa
->dpa_arg
, dpa
->dpa_zb
.zb_level
,
3190 dpa
->dpa_zb
.zb_blkid
, io_done
);
3192 kmem_free(dpa
, sizeof (*dpa
));
3196 dbuf_issue_final_prefetch_done(zio_t
*zio
, const zbookmark_phys_t
*zb
,
3197 const blkptr_t
*iobp
, arc_buf_t
*abuf
, void *private)
3199 (void) zio
, (void) zb
, (void) iobp
;
3200 dbuf_prefetch_arg_t
*dpa
= private;
3203 arc_buf_destroy(abuf
, private);
3205 dbuf_prefetch_fini(dpa
, B_TRUE
);
3209 * Actually issue the prefetch read for the block given.
3212 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t
*dpa
, blkptr_t
*bp
)
3214 ASSERT(!BP_IS_REDACTED(bp
) ||
3215 dsl_dataset_feature_is_active(
3216 dpa
->dpa_dnode
->dn_objset
->os_dsl_dataset
,
3217 SPA_FEATURE_REDACTED_DATASETS
));
3219 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
) || BP_IS_REDACTED(bp
))
3220 return (dbuf_prefetch_fini(dpa
, B_FALSE
));
3222 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
;
3223 arc_flags_t aflags
=
3224 dpa
->dpa_aflags
| ARC_FLAG_NOWAIT
| ARC_FLAG_PREFETCH
|
3227 /* dnodes are always read as raw and then converted later */
3228 if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
&& BP_IS_PROTECTED(bp
) &&
3229 dpa
->dpa_curlevel
== 0)
3230 zio_flags
|= ZIO_FLAG_RAW
;
3232 ASSERT3U(dpa
->dpa_curlevel
, ==, BP_GET_LEVEL(bp
));
3233 ASSERT3U(dpa
->dpa_curlevel
, ==, dpa
->dpa_zb
.zb_level
);
3234 ASSERT(dpa
->dpa_zio
!= NULL
);
3235 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
, bp
,
3236 dbuf_issue_final_prefetch_done
, dpa
,
3237 dpa
->dpa_prio
, zio_flags
, &aflags
, &dpa
->dpa_zb
);
3241 * Called when an indirect block above our prefetch target is read in. This
3242 * will either read in the next indirect block down the tree or issue the actual
3243 * prefetch if the next block down is our target.
3246 dbuf_prefetch_indirect_done(zio_t
*zio
, const zbookmark_phys_t
*zb
,
3247 const blkptr_t
*iobp
, arc_buf_t
*abuf
, void *private)
3249 (void) zb
, (void) iobp
;
3250 dbuf_prefetch_arg_t
*dpa
= private;
3252 ASSERT3S(dpa
->dpa_zb
.zb_level
, <, dpa
->dpa_curlevel
);
3253 ASSERT3S(dpa
->dpa_curlevel
, >, 0);
3256 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
3257 return (dbuf_prefetch_fini(dpa
, B_TRUE
));
3259 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
3262 * The dpa_dnode is only valid if we are called with a NULL
3263 * zio. This indicates that the arc_read() returned without
3264 * first calling zio_read() to issue a physical read. Once
3265 * a physical read is made the dpa_dnode must be invalidated
3266 * as the locks guarding it may have been dropped. If the
3267 * dpa_dnode is still valid, then we want to add it to the dbuf
3268 * cache. To do so, we must hold the dbuf associated with the block
3269 * we just prefetched, read its contents so that we associate it
3270 * with an arc_buf_t, and then release it.
3273 ASSERT3S(BP_GET_LEVEL(zio
->io_bp
), ==, dpa
->dpa_curlevel
);
3274 if (zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
) {
3275 ASSERT3U(BP_GET_PSIZE(zio
->io_bp
), ==, zio
->io_size
);
3277 ASSERT3U(BP_GET_LSIZE(zio
->io_bp
), ==, zio
->io_size
);
3279 ASSERT3P(zio
->io_spa
, ==, dpa
->dpa_spa
);
3281 dpa
->dpa_dnode
= NULL
;
3282 } else if (dpa
->dpa_dnode
!= NULL
) {
3283 uint64_t curblkid
= dpa
->dpa_zb
.zb_blkid
>>
3284 (dpa
->dpa_epbs
* (dpa
->dpa_curlevel
-
3285 dpa
->dpa_zb
.zb_level
));
3286 dmu_buf_impl_t
*db
= dbuf_hold_level(dpa
->dpa_dnode
,
3287 dpa
->dpa_curlevel
, curblkid
, FTAG
);
3289 arc_buf_destroy(abuf
, private);
3290 return (dbuf_prefetch_fini(dpa
, B_TRUE
));
3292 (void) dbuf_read(db
, NULL
,
3293 DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
| DB_RF_HAVESTRUCT
);
3294 dbuf_rele(db
, FTAG
);
3297 dpa
->dpa_curlevel
--;
3298 uint64_t nextblkid
= dpa
->dpa_zb
.zb_blkid
>>
3299 (dpa
->dpa_epbs
* (dpa
->dpa_curlevel
- dpa
->dpa_zb
.zb_level
));
3300 blkptr_t
*bp
= ((blkptr_t
*)abuf
->b_data
) +
3301 P2PHASE(nextblkid
, 1ULL << dpa
->dpa_epbs
);
3303 ASSERT(!BP_IS_REDACTED(bp
) ||
3304 dsl_dataset_feature_is_active(
3305 dpa
->dpa_dnode
->dn_objset
->os_dsl_dataset
,
3306 SPA_FEATURE_REDACTED_DATASETS
));
3307 if (BP_IS_HOLE(bp
) || BP_IS_REDACTED(bp
)) {
3308 dbuf_prefetch_fini(dpa
, B_TRUE
);
3309 } else if (dpa
->dpa_curlevel
== dpa
->dpa_zb
.zb_level
) {
3310 ASSERT3U(nextblkid
, ==, dpa
->dpa_zb
.zb_blkid
);
3311 dbuf_issue_final_prefetch(dpa
, bp
);
3313 arc_flags_t iter_aflags
= ARC_FLAG_NOWAIT
;
3314 zbookmark_phys_t zb
;
3316 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3317 if (dpa
->dpa_aflags
& ARC_FLAG_L2CACHE
)
3318 iter_aflags
|= ARC_FLAG_L2CACHE
;
3320 ASSERT3U(dpa
->dpa_curlevel
, ==, BP_GET_LEVEL(bp
));
3322 SET_BOOKMARK(&zb
, dpa
->dpa_zb
.zb_objset
,
3323 dpa
->dpa_zb
.zb_object
, dpa
->dpa_curlevel
, nextblkid
);
3325 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
,
3326 bp
, dbuf_prefetch_indirect_done
, dpa
,
3327 ZIO_PRIORITY_SYNC_READ
,
3328 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
3332 arc_buf_destroy(abuf
, private);
3336 * Issue prefetch reads for the given block on the given level. If the indirect
3337 * blocks above that block are not in memory, we will read them in
3338 * asynchronously. As a result, this call never blocks waiting for a read to
3339 * complete. Note that the prefetch might fail if the dataset is encrypted and
3340 * the encryption key is unmapped before the IO completes.
3343 dbuf_prefetch_impl(dnode_t
*dn
, int64_t level
, uint64_t blkid
,
3344 zio_priority_t prio
, arc_flags_t aflags
, dbuf_prefetch_fn cb
,
3348 int epbs
, nlevels
, curlevel
;
3351 ASSERT(blkid
!= DMU_BONUS_BLKID
);
3352 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3354 if (blkid
> dn
->dn_maxblkid
)
3357 if (level
== 0 && dnode_block_freed(dn
, blkid
))
3361 * This dnode hasn't been written to disk yet, so there's nothing to
3364 nlevels
= dn
->dn_phys
->dn_nlevels
;
3365 if (level
>= nlevels
|| dn
->dn_phys
->dn_nblkptr
== 0)
3368 epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
3369 if (dn
->dn_phys
->dn_maxblkid
< blkid
<< (epbs
* level
))
3372 dmu_buf_impl_t
*db
= dbuf_find(dn
->dn_objset
, dn
->dn_object
,
3375 mutex_exit(&db
->db_mtx
);
3377 * This dbuf already exists. It is either CACHED, or
3378 * (we assume) about to be read or filled.
3384 * Find the closest ancestor (indirect block) of the target block
3385 * that is present in the cache. In this indirect block, we will
3386 * find the bp that is at curlevel, curblkid.
3390 while (curlevel
< nlevels
- 1) {
3391 int parent_level
= curlevel
+ 1;
3392 uint64_t parent_blkid
= curblkid
>> epbs
;
3395 if (dbuf_hold_impl(dn
, parent_level
, parent_blkid
,
3396 FALSE
, TRUE
, FTAG
, &db
) == 0) {
3397 blkptr_t
*bpp
= db
->db_buf
->b_data
;
3398 bp
= bpp
[P2PHASE(curblkid
, 1 << epbs
)];
3399 dbuf_rele(db
, FTAG
);
3403 curlevel
= parent_level
;
3404 curblkid
= parent_blkid
;
3407 if (curlevel
== nlevels
- 1) {
3408 /* No cached indirect blocks found. */
3409 ASSERT3U(curblkid
, <, dn
->dn_phys
->dn_nblkptr
);
3410 bp
= dn
->dn_phys
->dn_blkptr
[curblkid
];
3412 ASSERT(!BP_IS_REDACTED(&bp
) ||
3413 dsl_dataset_feature_is_active(dn
->dn_objset
->os_dsl_dataset
,
3414 SPA_FEATURE_REDACTED_DATASETS
));
3415 if (BP_IS_HOLE(&bp
) || BP_IS_REDACTED(&bp
))
3418 ASSERT3U(curlevel
, ==, BP_GET_LEVEL(&bp
));
3420 zio_t
*pio
= zio_root(dmu_objset_spa(dn
->dn_objset
), NULL
, NULL
,
3423 dbuf_prefetch_arg_t
*dpa
= kmem_zalloc(sizeof (*dpa
), KM_SLEEP
);
3424 dsl_dataset_t
*ds
= dn
->dn_objset
->os_dsl_dataset
;
3425 SET_BOOKMARK(&dpa
->dpa_zb
, ds
!= NULL
? ds
->ds_object
: DMU_META_OBJSET
,
3426 dn
->dn_object
, level
, blkid
);
3427 dpa
->dpa_curlevel
= curlevel
;
3428 dpa
->dpa_prio
= prio
;
3429 dpa
->dpa_aflags
= aflags
;
3430 dpa
->dpa_spa
= dn
->dn_objset
->os_spa
;
3431 dpa
->dpa_dnode
= dn
;
3432 dpa
->dpa_epbs
= epbs
;
3437 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3438 if (dnode_level_is_l2cacheable(&bp
, dn
, level
))
3439 dpa
->dpa_aflags
|= ARC_FLAG_L2CACHE
;
3442 * If we have the indirect just above us, no need to do the asynchronous
3443 * prefetch chain; we'll just run the last step ourselves. If we're at
3444 * a higher level, though, we want to issue the prefetches for all the
3445 * indirect blocks asynchronously, so we can go on with whatever we were
3448 if (curlevel
== level
) {
3449 ASSERT3U(curblkid
, ==, blkid
);
3450 dbuf_issue_final_prefetch(dpa
, &bp
);
3452 arc_flags_t iter_aflags
= ARC_FLAG_NOWAIT
;
3453 zbookmark_phys_t zb
;
3455 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3456 if (dnode_level_is_l2cacheable(&bp
, dn
, level
))
3457 iter_aflags
|= ARC_FLAG_L2CACHE
;
3459 SET_BOOKMARK(&zb
, ds
!= NULL
? ds
->ds_object
: DMU_META_OBJSET
,
3460 dn
->dn_object
, curlevel
, curblkid
);
3461 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
,
3462 &bp
, dbuf_prefetch_indirect_done
, dpa
,
3463 ZIO_PRIORITY_SYNC_READ
,
3464 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
3468 * We use pio here instead of dpa_zio since it's possible that
3469 * dpa may have already been freed.
3475 cb(arg
, level
, blkid
, B_FALSE
);
3480 dbuf_prefetch(dnode_t
*dn
, int64_t level
, uint64_t blkid
, zio_priority_t prio
,
3484 return (dbuf_prefetch_impl(dn
, level
, blkid
, prio
, aflags
, NULL
, NULL
));
3488 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3489 * the case of encrypted, compressed and uncompressed buffers by
3490 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3491 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3493 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3495 noinline
static void
3496 dbuf_hold_copy(dnode_t
*dn
, dmu_buf_impl_t
*db
)
3498 dbuf_dirty_record_t
*dr
= db
->db_data_pending
;
3499 arc_buf_t
*data
= dr
->dt
.dl
.dr_data
;
3500 enum zio_compress compress_type
= arc_get_compression(data
);
3501 uint8_t complevel
= arc_get_complevel(data
);
3503 if (arc_is_encrypted(data
)) {
3504 boolean_t byteorder
;
3505 uint8_t salt
[ZIO_DATA_SALT_LEN
];
3506 uint8_t iv
[ZIO_DATA_IV_LEN
];
3507 uint8_t mac
[ZIO_DATA_MAC_LEN
];
3509 arc_get_raw_params(data
, &byteorder
, salt
, iv
, mac
);
3510 dbuf_set_data(db
, arc_alloc_raw_buf(dn
->dn_objset
->os_spa
, db
,
3511 dmu_objset_id(dn
->dn_objset
), byteorder
, salt
, iv
, mac
,
3512 dn
->dn_type
, arc_buf_size(data
), arc_buf_lsize(data
),
3513 compress_type
, complevel
));
3514 } else if (compress_type
!= ZIO_COMPRESS_OFF
) {
3515 dbuf_set_data(db
, arc_alloc_compressed_buf(
3516 dn
->dn_objset
->os_spa
, db
, arc_buf_size(data
),
3517 arc_buf_lsize(data
), compress_type
, complevel
));
3519 dbuf_set_data(db
, arc_alloc_buf(dn
->dn_objset
->os_spa
, db
,
3520 DBUF_GET_BUFC_TYPE(db
), db
->db
.db_size
));
3523 rw_enter(&db
->db_rwlock
, RW_WRITER
);
3524 memcpy(db
->db
.db_data
, data
->b_data
, arc_buf_size(data
));
3525 rw_exit(&db
->db_rwlock
);
3529 * Returns with db_holds incremented, and db_mtx not held.
3530 * Note: dn_struct_rwlock must be held.
3533 dbuf_hold_impl(dnode_t
*dn
, uint8_t level
, uint64_t blkid
,
3534 boolean_t fail_sparse
, boolean_t fail_uncached
,
3535 void *tag
, dmu_buf_impl_t
**dbp
)
3537 dmu_buf_impl_t
*db
, *parent
= NULL
;
3539 /* If the pool has been created, verify the tx_sync_lock is not held */
3540 spa_t
*spa
= dn
->dn_objset
->os_spa
;
3541 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
3543 ASSERT(!MUTEX_HELD(&dp
->dp_tx
.tx_sync_lock
));
3546 ASSERT(blkid
!= DMU_BONUS_BLKID
);
3547 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3548 ASSERT3U(dn
->dn_nlevels
, >, level
);
3552 /* dbuf_find() returns with db_mtx held */
3553 db
= dbuf_find(dn
->dn_objset
, dn
->dn_object
, level
, blkid
);
3556 blkptr_t
*bp
= NULL
;
3560 return (SET_ERROR(ENOENT
));
3562 ASSERT3P(parent
, ==, NULL
);
3563 err
= dbuf_findbp(dn
, level
, blkid
, fail_sparse
, &parent
, &bp
);
3565 if (err
== 0 && bp
&& BP_IS_HOLE(bp
))
3566 err
= SET_ERROR(ENOENT
);
3569 dbuf_rele(parent
, NULL
);
3573 if (err
&& err
!= ENOENT
)
3575 db
= dbuf_create(dn
, level
, blkid
, parent
, bp
);
3578 if (fail_uncached
&& db
->db_state
!= DB_CACHED
) {
3579 mutex_exit(&db
->db_mtx
);
3580 return (SET_ERROR(ENOENT
));
3583 if (db
->db_buf
!= NULL
) {
3584 arc_buf_access(db
->db_buf
);
3585 ASSERT3P(db
->db
.db_data
, ==, db
->db_buf
->b_data
);
3588 ASSERT(db
->db_buf
== NULL
|| arc_referenced(db
->db_buf
));
3591 * If this buffer is currently syncing out, and we are
3592 * still referencing it from db_data, we need to make a copy
3593 * of it in case we decide we want to dirty it again in this txg.
3595 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
3596 dn
->dn_object
!= DMU_META_DNODE_OBJECT
&&
3597 db
->db_state
== DB_CACHED
&& db
->db_data_pending
) {
3598 dbuf_dirty_record_t
*dr
= db
->db_data_pending
;
3599 if (dr
->dt
.dl
.dr_data
== db
->db_buf
)
3600 dbuf_hold_copy(dn
, db
);
3603 if (multilist_link_active(&db
->db_cache_link
)) {
3604 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
3605 ASSERT(db
->db_caching_status
== DB_DBUF_CACHE
||
3606 db
->db_caching_status
== DB_DBUF_METADATA_CACHE
);
3608 multilist_remove(&dbuf_caches
[db
->db_caching_status
].cache
, db
);
3609 (void) zfs_refcount_remove_many(
3610 &dbuf_caches
[db
->db_caching_status
].size
,
3611 db
->db
.db_size
, db
);
3613 if (db
->db_caching_status
== DB_DBUF_METADATA_CACHE
) {
3614 DBUF_STAT_BUMPDOWN(metadata_cache_count
);
3616 DBUF_STAT_BUMPDOWN(cache_levels
[db
->db_level
]);
3617 DBUF_STAT_BUMPDOWN(cache_count
);
3618 DBUF_STAT_DECR(cache_levels_bytes
[db
->db_level
],
3621 db
->db_caching_status
= DB_NO_CACHE
;
3623 (void) zfs_refcount_add(&db
->db_holds
, tag
);
3625 mutex_exit(&db
->db_mtx
);
3627 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3629 dbuf_rele(parent
, NULL
);
3631 ASSERT3P(DB_DNODE(db
), ==, dn
);
3632 ASSERT3U(db
->db_blkid
, ==, blkid
);
3633 ASSERT3U(db
->db_level
, ==, level
);
3640 dbuf_hold(dnode_t
*dn
, uint64_t blkid
, void *tag
)
3642 return (dbuf_hold_level(dn
, 0, blkid
, tag
));
3646 dbuf_hold_level(dnode_t
*dn
, int level
, uint64_t blkid
, void *tag
)
3649 int err
= dbuf_hold_impl(dn
, level
, blkid
, FALSE
, FALSE
, tag
, &db
);
3650 return (err
? NULL
: db
);
3654 dbuf_create_bonus(dnode_t
*dn
)
3656 ASSERT(RW_WRITE_HELD(&dn
->dn_struct_rwlock
));
3658 ASSERT(dn
->dn_bonus
== NULL
);
3659 dn
->dn_bonus
= dbuf_create(dn
, 0, DMU_BONUS_BLKID
, dn
->dn_dbuf
, NULL
);
3663 dbuf_spill_set_blksz(dmu_buf_t
*db_fake
, uint64_t blksz
, dmu_tx_t
*tx
)
3665 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3667 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
3668 return (SET_ERROR(ENOTSUP
));
3670 blksz
= SPA_MINBLOCKSIZE
;
3671 ASSERT3U(blksz
, <=, spa_maxblocksize(dmu_objset_spa(db
->db_objset
)));
3672 blksz
= P2ROUNDUP(blksz
, SPA_MINBLOCKSIZE
);
3674 dbuf_new_size(db
, blksz
, tx
);
3680 dbuf_rm_spill(dnode_t
*dn
, dmu_tx_t
*tx
)
3682 dbuf_free_range(dn
, DMU_SPILL_BLKID
, DMU_SPILL_BLKID
, tx
);
3685 #pragma weak dmu_buf_add_ref = dbuf_add_ref
3687 dbuf_add_ref(dmu_buf_impl_t
*db
, void *tag
)
3689 int64_t holds
= zfs_refcount_add(&db
->db_holds
, tag
);
3690 VERIFY3S(holds
, >, 1);
3693 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
3695 dbuf_try_add_ref(dmu_buf_t
*db_fake
, objset_t
*os
, uint64_t obj
, uint64_t blkid
,
3698 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3699 dmu_buf_impl_t
*found_db
;
3700 boolean_t result
= B_FALSE
;
3702 if (blkid
== DMU_BONUS_BLKID
)
3703 found_db
= dbuf_find_bonus(os
, obj
);
3705 found_db
= dbuf_find(os
, obj
, 0, blkid
);
3707 if (found_db
!= NULL
) {
3708 if (db
== found_db
&& dbuf_refcount(db
) > db
->db_dirtycnt
) {
3709 (void) zfs_refcount_add(&db
->db_holds
, tag
);
3712 mutex_exit(&found_db
->db_mtx
);
3718 * If you call dbuf_rele() you had better not be referencing the dnode handle
3719 * unless you have some other direct or indirect hold on the dnode. (An indirect
3720 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
3721 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
3722 * dnode's parent dbuf evicting its dnode handles.
3725 dbuf_rele(dmu_buf_impl_t
*db
, void *tag
)
3727 mutex_enter(&db
->db_mtx
);
3728 dbuf_rele_and_unlock(db
, tag
, B_FALSE
);
3732 dmu_buf_rele(dmu_buf_t
*db
, void *tag
)
3734 dbuf_rele((dmu_buf_impl_t
*)db
, tag
);
3738 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
3739 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
3740 * argument should be set if we are already in the dbuf-evicting code
3741 * path, in which case we don't want to recursively evict. This allows us to
3742 * avoid deeply nested stacks that would have a call flow similar to this:
3744 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
3747 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
3751 dbuf_rele_and_unlock(dmu_buf_impl_t
*db
, void *tag
, boolean_t evicting
)
3756 ASSERT(MUTEX_HELD(&db
->db_mtx
));
3760 * Remove the reference to the dbuf before removing its hold on the
3761 * dnode so we can guarantee in dnode_move() that a referenced bonus
3762 * buffer has a corresponding dnode hold.
3764 holds
= zfs_refcount_remove(&db
->db_holds
, tag
);
3768 * We can't freeze indirects if there is a possibility that they
3769 * may be modified in the current syncing context.
3771 if (db
->db_buf
!= NULL
&&
3772 holds
== (db
->db_level
== 0 ? db
->db_dirtycnt
: 0)) {
3773 arc_buf_freeze(db
->db_buf
);
3776 if (holds
== db
->db_dirtycnt
&&
3777 db
->db_level
== 0 && db
->db_user_immediate_evict
)
3778 dbuf_evict_user(db
);
3781 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
3783 boolean_t evict_dbuf
= db
->db_pending_evict
;
3786 * If the dnode moves here, we cannot cross this
3787 * barrier until the move completes.
3792 atomic_dec_32(&dn
->dn_dbufs_count
);
3795 * Decrementing the dbuf count means that the bonus
3796 * buffer's dnode hold is no longer discounted in
3797 * dnode_move(). The dnode cannot move until after
3798 * the dnode_rele() below.
3803 * Do not reference db after its lock is dropped.
3804 * Another thread may evict it.
3806 mutex_exit(&db
->db_mtx
);
3809 dnode_evict_bonus(dn
);
3812 } else if (db
->db_buf
== NULL
) {
3814 * This is a special case: we never associated this
3815 * dbuf with any data allocated from the ARC.
3817 ASSERT(db
->db_state
== DB_UNCACHED
||
3818 db
->db_state
== DB_NOFILL
);
3820 } else if (arc_released(db
->db_buf
)) {
3822 * This dbuf has anonymous data associated with it.
3826 boolean_t do_arc_evict
= B_FALSE
;
3828 spa_t
*spa
= dmu_objset_spa(db
->db_objset
);
3830 if (!DBUF_IS_CACHEABLE(db
) &&
3831 db
->db_blkptr
!= NULL
&&
3832 !BP_IS_HOLE(db
->db_blkptr
) &&
3833 !BP_IS_EMBEDDED(db
->db_blkptr
)) {
3834 do_arc_evict
= B_TRUE
;
3835 bp
= *db
->db_blkptr
;
3838 if (!DBUF_IS_CACHEABLE(db
) ||
3839 db
->db_pending_evict
) {
3841 } else if (!multilist_link_active(&db
->db_cache_link
)) {
3842 ASSERT3U(db
->db_caching_status
, ==,
3845 dbuf_cached_state_t dcs
=
3846 dbuf_include_in_metadata_cache(db
) ?
3847 DB_DBUF_METADATA_CACHE
: DB_DBUF_CACHE
;
3848 db
->db_caching_status
= dcs
;
3850 multilist_insert(&dbuf_caches
[dcs
].cache
, db
);
3851 uint64_t db_size
= db
->db
.db_size
;
3852 size
= zfs_refcount_add_many(
3853 &dbuf_caches
[dcs
].size
, db_size
, db
);
3854 uint8_t db_level
= db
->db_level
;
3855 mutex_exit(&db
->db_mtx
);
3857 if (dcs
== DB_DBUF_METADATA_CACHE
) {
3858 DBUF_STAT_BUMP(metadata_cache_count
);
3860 metadata_cache_size_bytes_max
,
3863 DBUF_STAT_BUMP(cache_count
);
3864 DBUF_STAT_MAX(cache_size_bytes_max
,
3866 DBUF_STAT_BUMP(cache_levels
[db_level
]);
3868 cache_levels_bytes
[db_level
],
3872 if (dcs
== DB_DBUF_CACHE
&& !evicting
)
3873 dbuf_evict_notify(size
);
3877 arc_freed(spa
, &bp
);
3880 mutex_exit(&db
->db_mtx
);
3885 #pragma weak dmu_buf_refcount = dbuf_refcount
3887 dbuf_refcount(dmu_buf_impl_t
*db
)
3889 return (zfs_refcount_count(&db
->db_holds
));
3893 dmu_buf_user_refcount(dmu_buf_t
*db_fake
)
3896 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3898 mutex_enter(&db
->db_mtx
);
3899 ASSERT3U(zfs_refcount_count(&db
->db_holds
), >=, db
->db_dirtycnt
);
3900 holds
= zfs_refcount_count(&db
->db_holds
) - db
->db_dirtycnt
;
3901 mutex_exit(&db
->db_mtx
);
3907 dmu_buf_replace_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*old_user
,
3908 dmu_buf_user_t
*new_user
)
3910 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3912 mutex_enter(&db
->db_mtx
);
3913 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
3914 if (db
->db_user
== old_user
)
3915 db
->db_user
= new_user
;
3917 old_user
= db
->db_user
;
3918 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
3919 mutex_exit(&db
->db_mtx
);
3925 dmu_buf_set_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
3927 return (dmu_buf_replace_user(db_fake
, NULL
, user
));
3931 dmu_buf_set_user_ie(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
3933 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3935 db
->db_user_immediate_evict
= TRUE
;
3936 return (dmu_buf_set_user(db_fake
, user
));
3940 dmu_buf_remove_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
3942 return (dmu_buf_replace_user(db_fake
, user
, NULL
));
3946 dmu_buf_get_user(dmu_buf_t
*db_fake
)
3948 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
3950 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
3951 return (db
->db_user
);
3955 dmu_buf_user_evict_wait(void)
3957 taskq_wait(dbu_evict_taskq
);
3961 dmu_buf_get_blkptr(dmu_buf_t
*db
)
3963 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
3964 return (dbi
->db_blkptr
);
3968 dmu_buf_get_objset(dmu_buf_t
*db
)
3970 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
3971 return (dbi
->db_objset
);
3975 dmu_buf_dnode_enter(dmu_buf_t
*db
)
3977 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
3978 DB_DNODE_ENTER(dbi
);
3979 return (DB_DNODE(dbi
));
3983 dmu_buf_dnode_exit(dmu_buf_t
*db
)
3985 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
3990 dbuf_check_blkptr(dnode_t
*dn
, dmu_buf_impl_t
*db
)
3992 /* ASSERT(dmu_tx_is_syncing(tx) */
3993 ASSERT(MUTEX_HELD(&db
->db_mtx
));
3995 if (db
->db_blkptr
!= NULL
)
3998 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
3999 db
->db_blkptr
= DN_SPILL_BLKPTR(dn
->dn_phys
);
4000 BP_ZERO(db
->db_blkptr
);
4003 if (db
->db_level
== dn
->dn_phys
->dn_nlevels
-1) {
4005 * This buffer was allocated at a time when there was
4006 * no available blkptrs from the dnode, or it was
4007 * inappropriate to hook it in (i.e., nlevels mismatch).
4009 ASSERT(db
->db_blkid
< dn
->dn_phys
->dn_nblkptr
);
4010 ASSERT(db
->db_parent
== NULL
);
4011 db
->db_parent
= dn
->dn_dbuf
;
4012 db
->db_blkptr
= &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
];
4015 dmu_buf_impl_t
*parent
= db
->db_parent
;
4016 int epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
4018 ASSERT(dn
->dn_phys
->dn_nlevels
> 1);
4019 if (parent
== NULL
) {
4020 mutex_exit(&db
->db_mtx
);
4021 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
4022 parent
= dbuf_hold_level(dn
, db
->db_level
+ 1,
4023 db
->db_blkid
>> epbs
, db
);
4024 rw_exit(&dn
->dn_struct_rwlock
);
4025 mutex_enter(&db
->db_mtx
);
4026 db
->db_parent
= parent
;
4028 db
->db_blkptr
= (blkptr_t
*)parent
->db
.db_data
+
4029 (db
->db_blkid
& ((1ULL << epbs
) - 1));
4035 dbuf_sync_bonus(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4037 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4038 void *data
= dr
->dt
.dl
.dr_data
;
4040 ASSERT0(db
->db_level
);
4041 ASSERT(MUTEX_HELD(&db
->db_mtx
));
4042 ASSERT(db
->db_blkid
== DMU_BONUS_BLKID
);
4043 ASSERT(data
!= NULL
);
4045 dnode_t
*dn
= dr
->dr_dnode
;
4046 ASSERT3U(DN_MAX_BONUS_LEN(dn
->dn_phys
), <=,
4047 DN_SLOTS_TO_BONUSLEN(dn
->dn_phys
->dn_extra_slots
+ 1));
4048 memcpy(DN_BONUS(dn
->dn_phys
), data
, DN_MAX_BONUS_LEN(dn
->dn_phys
));
4050 dbuf_sync_leaf_verify_bonus_dnode(dr
);
4052 dbuf_undirty_bonus(dr
);
4053 dbuf_rele_and_unlock(db
, (void *)(uintptr_t)tx
->tx_txg
, B_FALSE
);
4057 * When syncing out a blocks of dnodes, adjust the block to deal with
4058 * encryption. Normally, we make sure the block is decrypted before writing
4059 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4060 * from a raw receive. In this case, set the ARC buf's crypt params so
4061 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4064 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t
*dr
)
4067 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4069 ASSERT(MUTEX_HELD(&db
->db_mtx
));
4070 ASSERT3U(db
->db
.db_object
, ==, DMU_META_DNODE_OBJECT
);
4071 ASSERT3U(db
->db_level
, ==, 0);
4073 if (!db
->db_objset
->os_raw_receive
&& arc_is_encrypted(db
->db_buf
)) {
4074 zbookmark_phys_t zb
;
4077 * Unfortunately, there is currently no mechanism for
4078 * syncing context to handle decryption errors. An error
4079 * here is only possible if an attacker maliciously
4080 * changed a dnode block and updated the associated
4081 * checksums going up the block tree.
4083 SET_BOOKMARK(&zb
, dmu_objset_id(db
->db_objset
),
4084 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
4085 err
= arc_untransform(db
->db_buf
, db
->db_objset
->os_spa
,
4088 panic("Invalid dnode block MAC");
4089 } else if (dr
->dt
.dl
.dr_has_raw_params
) {
4090 (void) arc_release(dr
->dt
.dl
.dr_data
, db
);
4091 arc_convert_to_raw(dr
->dt
.dl
.dr_data
,
4092 dmu_objset_id(db
->db_objset
),
4093 dr
->dt
.dl
.dr_byteorder
, DMU_OT_DNODE
,
4094 dr
->dt
.dl
.dr_salt
, dr
->dt
.dl
.dr_iv
, dr
->dt
.dl
.dr_mac
);
4099 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4100 * is critical the we not allow the compiler to inline this function in to
4101 * dbuf_sync_list() thereby drastically bloating the stack usage.
4103 noinline
static void
4104 dbuf_sync_indirect(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4106 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4107 dnode_t
*dn
= dr
->dr_dnode
;
4109 ASSERT(dmu_tx_is_syncing(tx
));
4111 dprintf_dbuf_bp(db
, db
->db_blkptr
, "blkptr=%p", db
->db_blkptr
);
4113 mutex_enter(&db
->db_mtx
);
4115 ASSERT(db
->db_level
> 0);
4118 /* Read the block if it hasn't been read yet. */
4119 if (db
->db_buf
== NULL
) {
4120 mutex_exit(&db
->db_mtx
);
4121 (void) dbuf_read(db
, NULL
, DB_RF_MUST_SUCCEED
);
4122 mutex_enter(&db
->db_mtx
);
4124 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
4125 ASSERT(db
->db_buf
!= NULL
);
4127 /* Indirect block size must match what the dnode thinks it is. */
4128 ASSERT3U(db
->db
.db_size
, ==, 1<<dn
->dn_phys
->dn_indblkshift
);
4129 dbuf_check_blkptr(dn
, db
);
4131 /* Provide the pending dirty record to child dbufs */
4132 db
->db_data_pending
= dr
;
4134 mutex_exit(&db
->db_mtx
);
4136 dbuf_write(dr
, db
->db_buf
, tx
);
4138 zio_t
*zio
= dr
->dr_zio
;
4139 mutex_enter(&dr
->dt
.di
.dr_mtx
);
4140 dbuf_sync_list(&dr
->dt
.di
.dr_children
, db
->db_level
- 1, tx
);
4141 ASSERT(list_head(&dr
->dt
.di
.dr_children
) == NULL
);
4142 mutex_exit(&dr
->dt
.di
.dr_mtx
);
4147 * Verify that the size of the data in our bonus buffer does not exceed
4148 * its recorded size.
4150 * The purpose of this verification is to catch any cases in development
4151 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4152 * due to incorrect feature management, older pools expect to read more
4153 * data even though they didn't actually write it to begin with.
4155 * For a example, this would catch an error in the feature logic where we
4156 * open an older pool and we expect to write the space map histogram of
4157 * a space map with size SPACE_MAP_SIZE_V0.
4160 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t
*dr
)
4163 dnode_t
*dn
= dr
->dr_dnode
;
4166 * Encrypted bonus buffers can have data past their bonuslen.
4167 * Skip the verification of these blocks.
4169 if (DMU_OT_IS_ENCRYPTED(dn
->dn_bonustype
))
4172 uint16_t bonuslen
= dn
->dn_phys
->dn_bonuslen
;
4173 uint16_t maxbonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
4174 ASSERT3U(bonuslen
, <=, maxbonuslen
);
4176 arc_buf_t
*datap
= dr
->dt
.dl
.dr_data
;
4177 char *datap_end
= ((char *)datap
) + bonuslen
;
4178 char *datap_max
= ((char *)datap
) + maxbonuslen
;
4180 /* ensure that everything is zero after our data */
4181 for (; datap_end
< datap_max
; datap_end
++)
4182 ASSERT(*datap_end
== 0);
4187 dbuf_lightweight_bp(dbuf_dirty_record_t
*dr
)
4189 /* This must be a lightweight dirty record. */
4190 ASSERT3P(dr
->dr_dbuf
, ==, NULL
);
4191 dnode_t
*dn
= dr
->dr_dnode
;
4193 if (dn
->dn_phys
->dn_nlevels
== 1) {
4194 VERIFY3U(dr
->dt
.dll
.dr_blkid
, <, dn
->dn_phys
->dn_nblkptr
);
4195 return (&dn
->dn_phys
->dn_blkptr
[dr
->dt
.dll
.dr_blkid
]);
4197 dmu_buf_impl_t
*parent_db
= dr
->dr_parent
->dr_dbuf
;
4198 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
4199 VERIFY3U(parent_db
->db_level
, ==, 1);
4200 VERIFY3P(parent_db
->db_dnode_handle
->dnh_dnode
, ==, dn
);
4201 VERIFY3U(dr
->dt
.dll
.dr_blkid
>> epbs
, ==, parent_db
->db_blkid
);
4202 blkptr_t
*bp
= parent_db
->db
.db_data
;
4203 return (&bp
[dr
->dt
.dll
.dr_blkid
& ((1 << epbs
) - 1)]);
4208 dbuf_lightweight_ready(zio_t
*zio
)
4210 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4211 blkptr_t
*bp
= zio
->io_bp
;
4213 if (zio
->io_error
!= 0)
4216 dnode_t
*dn
= dr
->dr_dnode
;
4218 blkptr_t
*bp_orig
= dbuf_lightweight_bp(dr
);
4219 spa_t
*spa
= dmu_objset_spa(dn
->dn_objset
);
4220 int64_t delta
= bp_get_dsize_sync(spa
, bp
) -
4221 bp_get_dsize_sync(spa
, bp_orig
);
4222 dnode_diduse_space(dn
, delta
);
4224 uint64_t blkid
= dr
->dt
.dll
.dr_blkid
;
4225 mutex_enter(&dn
->dn_mtx
);
4226 if (blkid
> dn
->dn_phys
->dn_maxblkid
) {
4227 ASSERT0(dn
->dn_objset
->os_raw_receive
);
4228 dn
->dn_phys
->dn_maxblkid
= blkid
;
4230 mutex_exit(&dn
->dn_mtx
);
4232 if (!BP_IS_EMBEDDED(bp
)) {
4233 uint64_t fill
= BP_IS_HOLE(bp
) ? 0 : 1;
4234 BP_SET_FILL(bp
, fill
);
4237 dmu_buf_impl_t
*parent_db
;
4238 EQUIV(dr
->dr_parent
== NULL
, dn
->dn_phys
->dn_nlevels
== 1);
4239 if (dr
->dr_parent
== NULL
) {
4240 parent_db
= dn
->dn_dbuf
;
4242 parent_db
= dr
->dr_parent
->dr_dbuf
;
4244 rw_enter(&parent_db
->db_rwlock
, RW_WRITER
);
4246 rw_exit(&parent_db
->db_rwlock
);
4250 dbuf_lightweight_physdone(zio_t
*zio
)
4252 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4253 dsl_pool_t
*dp
= spa_get_dsl(zio
->io_spa
);
4254 ASSERT3U(dr
->dr_txg
, ==, zio
->io_txg
);
4257 * The callback will be called io_phys_children times. Retire one
4258 * portion of our dirty space each time we are called. Any rounding
4259 * error will be cleaned up by dbuf_lightweight_done().
4261 int delta
= dr
->dr_accounted
/ zio
->io_phys_children
;
4262 dsl_pool_undirty_space(dp
, delta
, zio
->io_txg
);
4266 dbuf_lightweight_done(zio_t
*zio
)
4268 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4270 VERIFY0(zio
->io_error
);
4272 objset_t
*os
= dr
->dr_dnode
->dn_objset
;
4273 dmu_tx_t
*tx
= os
->os_synctx
;
4275 if (zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)) {
4276 ASSERT(BP_EQUAL(zio
->io_bp
, &zio
->io_bp_orig
));
4278 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
4279 (void) dsl_dataset_block_kill(ds
, &zio
->io_bp_orig
, tx
, B_TRUE
);
4280 dsl_dataset_block_born(ds
, zio
->io_bp
, tx
);
4284 * See comment in dbuf_write_done().
4286 if (zio
->io_phys_children
== 0) {
4287 dsl_pool_undirty_space(dmu_objset_pool(os
),
4288 dr
->dr_accounted
, zio
->io_txg
);
4290 dsl_pool_undirty_space(dmu_objset_pool(os
),
4291 dr
->dr_accounted
% zio
->io_phys_children
, zio
->io_txg
);
4294 abd_free(dr
->dt
.dll
.dr_abd
);
4295 kmem_free(dr
, sizeof (*dr
));
4298 noinline
static void
4299 dbuf_sync_lightweight(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4301 dnode_t
*dn
= dr
->dr_dnode
;
4303 if (dn
->dn_phys
->dn_nlevels
== 1) {
4306 pio
= dr
->dr_parent
->dr_zio
;
4309 zbookmark_phys_t zb
= {
4310 .zb_objset
= dmu_objset_id(dn
->dn_objset
),
4311 .zb_object
= dn
->dn_object
,
4313 .zb_blkid
= dr
->dt
.dll
.dr_blkid
,
4317 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4318 * will have the old BP in dbuf_lightweight_done().
4320 dr
->dr_bp_copy
= *dbuf_lightweight_bp(dr
);
4322 dr
->dr_zio
= zio_write(pio
, dmu_objset_spa(dn
->dn_objset
),
4323 dmu_tx_get_txg(tx
), &dr
->dr_bp_copy
, dr
->dt
.dll
.dr_abd
,
4324 dn
->dn_datablksz
, abd_get_size(dr
->dt
.dll
.dr_abd
),
4325 &dr
->dt
.dll
.dr_props
, dbuf_lightweight_ready
, NULL
,
4326 dbuf_lightweight_physdone
, dbuf_lightweight_done
, dr
,
4327 ZIO_PRIORITY_ASYNC_WRITE
,
4328 ZIO_FLAG_MUSTSUCCEED
| dr
->dt
.dll
.dr_flags
, &zb
);
4330 zio_nowait(dr
->dr_zio
);
4334 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4335 * critical the we not allow the compiler to inline this function in to
4336 * dbuf_sync_list() thereby drastically bloating the stack usage.
4338 noinline
static void
4339 dbuf_sync_leaf(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4341 arc_buf_t
**datap
= &dr
->dt
.dl
.dr_data
;
4342 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4343 dnode_t
*dn
= dr
->dr_dnode
;
4345 uint64_t txg
= tx
->tx_txg
;
4347 ASSERT(dmu_tx_is_syncing(tx
));
4349 dprintf_dbuf_bp(db
, db
->db_blkptr
, "blkptr=%p", db
->db_blkptr
);
4351 mutex_enter(&db
->db_mtx
);
4353 * To be synced, we must be dirtied. But we
4354 * might have been freed after the dirty.
4356 if (db
->db_state
== DB_UNCACHED
) {
4357 /* This buffer has been freed since it was dirtied */
4358 ASSERT(db
->db
.db_data
== NULL
);
4359 } else if (db
->db_state
== DB_FILL
) {
4360 /* This buffer was freed and is now being re-filled */
4361 ASSERT(db
->db
.db_data
!= dr
->dt
.dl
.dr_data
);
4363 ASSERT(db
->db_state
== DB_CACHED
|| db
->db_state
== DB_NOFILL
);
4367 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
4368 mutex_enter(&dn
->dn_mtx
);
4369 if (!(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
)) {
4371 * In the previous transaction group, the bonus buffer
4372 * was entirely used to store the attributes for the
4373 * dnode which overrode the dn_spill field. However,
4374 * when adding more attributes to the file a spill
4375 * block was required to hold the extra attributes.
4377 * Make sure to clear the garbage left in the dn_spill
4378 * field from the previous attributes in the bonus
4379 * buffer. Otherwise, after writing out the spill
4380 * block to the new allocated dva, it will free
4381 * the old block pointed to by the invalid dn_spill.
4383 db
->db_blkptr
= NULL
;
4385 dn
->dn_phys
->dn_flags
|= DNODE_FLAG_SPILL_BLKPTR
;
4386 mutex_exit(&dn
->dn_mtx
);
4390 * If this is a bonus buffer, simply copy the bonus data into the
4391 * dnode. It will be written out when the dnode is synced (and it
4392 * will be synced, since it must have been dirty for dbuf_sync to
4395 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
4396 ASSERT(dr
->dr_dbuf
== db
);
4397 dbuf_sync_bonus(dr
, tx
);
4404 * This function may have dropped the db_mtx lock allowing a dmu_sync
4405 * operation to sneak in. As a result, we need to ensure that we
4406 * don't check the dr_override_state until we have returned from
4407 * dbuf_check_blkptr.
4409 dbuf_check_blkptr(dn
, db
);
4412 * If this buffer is in the middle of an immediate write,
4413 * wait for the synchronous IO to complete.
4415 while (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
) {
4416 ASSERT(dn
->dn_object
!= DMU_META_DNODE_OBJECT
);
4417 cv_wait(&db
->db_changed
, &db
->db_mtx
);
4418 ASSERT(dr
->dt
.dl
.dr_override_state
!= DR_NOT_OVERRIDDEN
);
4422 * If this is a dnode block, ensure it is appropriately encrypted
4423 * or decrypted, depending on what we are writing to it this txg.
4425 if (os
->os_encrypted
&& dn
->dn_object
== DMU_META_DNODE_OBJECT
)
4426 dbuf_prepare_encrypted_dnode_leaf(dr
);
4428 if (db
->db_state
!= DB_NOFILL
&&
4429 dn
->dn_object
!= DMU_META_DNODE_OBJECT
&&
4430 zfs_refcount_count(&db
->db_holds
) > 1 &&
4431 dr
->dt
.dl
.dr_override_state
!= DR_OVERRIDDEN
&&
4432 *datap
== db
->db_buf
) {
4434 * If this buffer is currently "in use" (i.e., there
4435 * are active holds and db_data still references it),
4436 * then make a copy before we start the write so that
4437 * any modifications from the open txg will not leak
4440 * NOTE: this copy does not need to be made for
4441 * objects only modified in the syncing context (e.g.
4442 * DNONE_DNODE blocks).
4444 int psize
= arc_buf_size(*datap
);
4445 int lsize
= arc_buf_lsize(*datap
);
4446 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
4447 enum zio_compress compress_type
= arc_get_compression(*datap
);
4448 uint8_t complevel
= arc_get_complevel(*datap
);
4450 if (arc_is_encrypted(*datap
)) {
4451 boolean_t byteorder
;
4452 uint8_t salt
[ZIO_DATA_SALT_LEN
];
4453 uint8_t iv
[ZIO_DATA_IV_LEN
];
4454 uint8_t mac
[ZIO_DATA_MAC_LEN
];
4456 arc_get_raw_params(*datap
, &byteorder
, salt
, iv
, mac
);
4457 *datap
= arc_alloc_raw_buf(os
->os_spa
, db
,
4458 dmu_objset_id(os
), byteorder
, salt
, iv
, mac
,
4459 dn
->dn_type
, psize
, lsize
, compress_type
,
4461 } else if (compress_type
!= ZIO_COMPRESS_OFF
) {
4462 ASSERT3U(type
, ==, ARC_BUFC_DATA
);
4463 *datap
= arc_alloc_compressed_buf(os
->os_spa
, db
,
4464 psize
, lsize
, compress_type
, complevel
);
4466 *datap
= arc_alloc_buf(os
->os_spa
, db
, type
, psize
);
4468 memcpy((*datap
)->b_data
, db
->db
.db_data
, psize
);
4470 db
->db_data_pending
= dr
;
4472 mutex_exit(&db
->db_mtx
);
4474 dbuf_write(dr
, *datap
, tx
);
4476 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
4477 if (dn
->dn_object
== DMU_META_DNODE_OBJECT
) {
4478 list_insert_tail(&dn
->dn_dirty_records
[txg
& TXG_MASK
], dr
);
4480 zio_nowait(dr
->dr_zio
);
4485 dbuf_sync_list(list_t
*list
, int level
, dmu_tx_t
*tx
)
4487 dbuf_dirty_record_t
*dr
;
4489 while ((dr
= list_head(list
))) {
4490 if (dr
->dr_zio
!= NULL
) {
4492 * If we find an already initialized zio then we
4493 * are processing the meta-dnode, and we have finished.
4494 * The dbufs for all dnodes are put back on the list
4495 * during processing, so that we can zio_wait()
4496 * these IOs after initiating all child IOs.
4498 ASSERT3U(dr
->dr_dbuf
->db
.db_object
, ==,
4499 DMU_META_DNODE_OBJECT
);
4502 list_remove(list
, dr
);
4503 if (dr
->dr_dbuf
== NULL
) {
4504 dbuf_sync_lightweight(dr
, tx
);
4506 if (dr
->dr_dbuf
->db_blkid
!= DMU_BONUS_BLKID
&&
4507 dr
->dr_dbuf
->db_blkid
!= DMU_SPILL_BLKID
) {
4508 VERIFY3U(dr
->dr_dbuf
->db_level
, ==, level
);
4510 if (dr
->dr_dbuf
->db_level
> 0)
4511 dbuf_sync_indirect(dr
, tx
);
4513 dbuf_sync_leaf(dr
, tx
);
4519 dbuf_write_ready(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
4522 dmu_buf_impl_t
*db
= vdb
;
4524 blkptr_t
*bp
= zio
->io_bp
;
4525 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
4526 spa_t
*spa
= zio
->io_spa
;
4531 ASSERT3P(db
->db_blkptr
, !=, NULL
);
4532 ASSERT3P(&db
->db_data_pending
->dr_bp_copy
, ==, bp
);
4536 delta
= bp_get_dsize_sync(spa
, bp
) - bp_get_dsize_sync(spa
, bp_orig
);
4537 dnode_diduse_space(dn
, delta
- zio
->io_prev_space_delta
);
4538 zio
->io_prev_space_delta
= delta
;
4540 if (bp
->blk_birth
!= 0) {
4541 ASSERT((db
->db_blkid
!= DMU_SPILL_BLKID
&&
4542 BP_GET_TYPE(bp
) == dn
->dn_type
) ||
4543 (db
->db_blkid
== DMU_SPILL_BLKID
&&
4544 BP_GET_TYPE(bp
) == dn
->dn_bonustype
) ||
4545 BP_IS_EMBEDDED(bp
));
4546 ASSERT(BP_GET_LEVEL(bp
) == db
->db_level
);
4549 mutex_enter(&db
->db_mtx
);
4552 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
4553 ASSERT(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
);
4554 ASSERT(!(BP_IS_HOLE(bp
)) &&
4555 db
->db_blkptr
== DN_SPILL_BLKPTR(dn
->dn_phys
));
4559 if (db
->db_level
== 0) {
4560 mutex_enter(&dn
->dn_mtx
);
4561 if (db
->db_blkid
> dn
->dn_phys
->dn_maxblkid
&&
4562 db
->db_blkid
!= DMU_SPILL_BLKID
) {
4563 ASSERT0(db
->db_objset
->os_raw_receive
);
4564 dn
->dn_phys
->dn_maxblkid
= db
->db_blkid
;
4566 mutex_exit(&dn
->dn_mtx
);
4568 if (dn
->dn_type
== DMU_OT_DNODE
) {
4570 while (i
< db
->db
.db_size
) {
4572 (void *)(((char *)db
->db
.db_data
) + i
);
4574 i
+= DNODE_MIN_SIZE
;
4575 if (dnp
->dn_type
!= DMU_OT_NONE
) {
4577 i
+= dnp
->dn_extra_slots
*
4582 if (BP_IS_HOLE(bp
)) {
4589 blkptr_t
*ibp
= db
->db
.db_data
;
4590 ASSERT3U(db
->db
.db_size
, ==, 1<<dn
->dn_phys
->dn_indblkshift
);
4591 for (i
= db
->db
.db_size
>> SPA_BLKPTRSHIFT
; i
> 0; i
--, ibp
++) {
4592 if (BP_IS_HOLE(ibp
))
4594 fill
+= BP_GET_FILL(ibp
);
4599 if (!BP_IS_EMBEDDED(bp
))
4600 BP_SET_FILL(bp
, fill
);
4602 mutex_exit(&db
->db_mtx
);
4604 db_lock_type_t dblt
= dmu_buf_lock_parent(db
, RW_WRITER
, FTAG
);
4605 *db
->db_blkptr
= *bp
;
4606 dmu_buf_unlock_parent(db
, dblt
, FTAG
);
4610 * This function gets called just prior to running through the compression
4611 * stage of the zio pipeline. If we're an indirect block comprised of only
4612 * holes, then we want this indirect to be compressed away to a hole. In
4613 * order to do that we must zero out any information about the holes that
4614 * this indirect points to prior to before we try to compress it.
4617 dbuf_write_children_ready(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
4619 (void) zio
, (void) buf
;
4620 dmu_buf_impl_t
*db
= vdb
;
4623 unsigned int epbs
, i
;
4625 ASSERT3U(db
->db_level
, >, 0);
4628 epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
4629 ASSERT3U(epbs
, <, 31);
4631 /* Determine if all our children are holes */
4632 for (i
= 0, bp
= db
->db
.db_data
; i
< 1ULL << epbs
; i
++, bp
++) {
4633 if (!BP_IS_HOLE(bp
))
4638 * If all the children are holes, then zero them all out so that
4639 * we may get compressed away.
4641 if (i
== 1ULL << epbs
) {
4643 * We only found holes. Grab the rwlock to prevent
4644 * anybody from reading the blocks we're about to
4647 rw_enter(&db
->db_rwlock
, RW_WRITER
);
4648 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
4649 rw_exit(&db
->db_rwlock
);
4655 * The SPA will call this callback several times for each zio - once
4656 * for every physical child i/o (zio->io_phys_children times). This
4657 * allows the DMU to monitor the progress of each logical i/o. For example,
4658 * there may be 2 copies of an indirect block, or many fragments of a RAID-Z
4659 * block. There may be a long delay before all copies/fragments are completed,
4660 * so this callback allows us to retire dirty space gradually, as the physical
4664 dbuf_write_physdone(zio_t
*zio
, arc_buf_t
*buf
, void *arg
)
4667 dmu_buf_impl_t
*db
= arg
;
4668 objset_t
*os
= db
->db_objset
;
4669 dsl_pool_t
*dp
= dmu_objset_pool(os
);
4670 dbuf_dirty_record_t
*dr
;
4673 dr
= db
->db_data_pending
;
4674 ASSERT3U(dr
->dr_txg
, ==, zio
->io_txg
);
4677 * The callback will be called io_phys_children times. Retire one
4678 * portion of our dirty space each time we are called. Any rounding
4679 * error will be cleaned up by dbuf_write_done().
4681 delta
= dr
->dr_accounted
/ zio
->io_phys_children
;
4682 dsl_pool_undirty_space(dp
, delta
, zio
->io_txg
);
4686 dbuf_write_done(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
4689 dmu_buf_impl_t
*db
= vdb
;
4690 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
4691 blkptr_t
*bp
= db
->db_blkptr
;
4692 objset_t
*os
= db
->db_objset
;
4693 dmu_tx_t
*tx
= os
->os_synctx
;
4695 ASSERT0(zio
->io_error
);
4696 ASSERT(db
->db_blkptr
== bp
);
4699 * For nopwrites and rewrites we ensure that the bp matches our
4700 * original and bypass all the accounting.
4702 if (zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)) {
4703 ASSERT(BP_EQUAL(bp
, bp_orig
));
4705 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
4706 (void) dsl_dataset_block_kill(ds
, bp_orig
, tx
, B_TRUE
);
4707 dsl_dataset_block_born(ds
, bp
, tx
);
4710 mutex_enter(&db
->db_mtx
);
4714 dbuf_dirty_record_t
*dr
= db
->db_data_pending
;
4715 dnode_t
*dn
= dr
->dr_dnode
;
4716 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
4717 ASSERT(dr
->dr_dbuf
== db
);
4718 ASSERT(list_next(&db
->db_dirty_records
, dr
) == NULL
);
4719 list_remove(&db
->db_dirty_records
, dr
);
4722 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
4723 ASSERT(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
);
4724 ASSERT(!(BP_IS_HOLE(db
->db_blkptr
)) &&
4725 db
->db_blkptr
== DN_SPILL_BLKPTR(dn
->dn_phys
));
4729 if (db
->db_level
== 0) {
4730 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
4731 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
4732 if (db
->db_state
!= DB_NOFILL
) {
4733 if (dr
->dt
.dl
.dr_data
!= db
->db_buf
)
4734 arc_buf_destroy(dr
->dt
.dl
.dr_data
, db
);
4737 ASSERT(list_head(&dr
->dt
.di
.dr_children
) == NULL
);
4738 ASSERT3U(db
->db
.db_size
, ==, 1 << dn
->dn_phys
->dn_indblkshift
);
4739 if (!BP_IS_HOLE(db
->db_blkptr
)) {
4740 int epbs __maybe_unused
= dn
->dn_phys
->dn_indblkshift
-
4742 ASSERT3U(db
->db_blkid
, <=,
4743 dn
->dn_phys
->dn_maxblkid
>> (db
->db_level
* epbs
));
4744 ASSERT3U(BP_GET_LSIZE(db
->db_blkptr
), ==,
4747 mutex_destroy(&dr
->dt
.di
.dr_mtx
);
4748 list_destroy(&dr
->dt
.di
.dr_children
);
4751 cv_broadcast(&db
->db_changed
);
4752 ASSERT(db
->db_dirtycnt
> 0);
4753 db
->db_dirtycnt
-= 1;
4754 db
->db_data_pending
= NULL
;
4755 dbuf_rele_and_unlock(db
, (void *)(uintptr_t)tx
->tx_txg
, B_FALSE
);
4758 * If we didn't do a physical write in this ZIO and we
4759 * still ended up here, it means that the space of the
4760 * dbuf that we just released (and undirtied) above hasn't
4761 * been marked as undirtied in the pool's accounting.
4763 * Thus, we undirty that space in the pool's view of the
4764 * world here. For physical writes this type of update
4765 * happens in dbuf_write_physdone().
4767 * If we did a physical write, cleanup any rounding errors
4768 * that came up due to writing multiple copies of a block
4769 * on disk [see dbuf_write_physdone()].
4771 if (zio
->io_phys_children
== 0) {
4772 dsl_pool_undirty_space(dmu_objset_pool(os
),
4773 dr
->dr_accounted
, zio
->io_txg
);
4775 dsl_pool_undirty_space(dmu_objset_pool(os
),
4776 dr
->dr_accounted
% zio
->io_phys_children
, zio
->io_txg
);
4779 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
4783 dbuf_write_nofill_ready(zio_t
*zio
)
4785 dbuf_write_ready(zio
, NULL
, zio
->io_private
);
4789 dbuf_write_nofill_done(zio_t
*zio
)
4791 dbuf_write_done(zio
, NULL
, zio
->io_private
);
4795 dbuf_write_override_ready(zio_t
*zio
)
4797 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4798 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4800 dbuf_write_ready(zio
, NULL
, db
);
4804 dbuf_write_override_done(zio_t
*zio
)
4806 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4807 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4808 blkptr_t
*obp
= &dr
->dt
.dl
.dr_overridden_by
;
4810 mutex_enter(&db
->db_mtx
);
4811 if (!BP_EQUAL(zio
->io_bp
, obp
)) {
4812 if (!BP_IS_HOLE(obp
))
4813 dsl_free(spa_get_dsl(zio
->io_spa
), zio
->io_txg
, obp
);
4814 arc_release(dr
->dt
.dl
.dr_data
, db
);
4816 mutex_exit(&db
->db_mtx
);
4818 dbuf_write_done(zio
, NULL
, db
);
4820 if (zio
->io_abd
!= NULL
)
4821 abd_free(zio
->io_abd
);
4824 typedef struct dbuf_remap_impl_callback_arg
{
4826 uint64_t drica_blk_birth
;
4828 } dbuf_remap_impl_callback_arg_t
;
4831 dbuf_remap_impl_callback(uint64_t vdev
, uint64_t offset
, uint64_t size
,
4834 dbuf_remap_impl_callback_arg_t
*drica
= arg
;
4835 objset_t
*os
= drica
->drica_os
;
4836 spa_t
*spa
= dmu_objset_spa(os
);
4837 dmu_tx_t
*tx
= drica
->drica_tx
;
4839 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa
)));
4841 if (os
== spa_meta_objset(spa
)) {
4842 spa_vdev_indirect_mark_obsolete(spa
, vdev
, offset
, size
, tx
);
4844 dsl_dataset_block_remapped(dmu_objset_ds(os
), vdev
, offset
,
4845 size
, drica
->drica_blk_birth
, tx
);
4850 dbuf_remap_impl(dnode_t
*dn
, blkptr_t
*bp
, krwlock_t
*rw
, dmu_tx_t
*tx
)
4852 blkptr_t bp_copy
= *bp
;
4853 spa_t
*spa
= dmu_objset_spa(dn
->dn_objset
);
4854 dbuf_remap_impl_callback_arg_t drica
;
4856 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa
)));
4858 drica
.drica_os
= dn
->dn_objset
;
4859 drica
.drica_blk_birth
= bp
->blk_birth
;
4860 drica
.drica_tx
= tx
;
4861 if (spa_remap_blkptr(spa
, &bp_copy
, dbuf_remap_impl_callback
,
4864 * If the blkptr being remapped is tracked by a livelist,
4865 * then we need to make sure the livelist reflects the update.
4866 * First, cancel out the old blkptr by appending a 'FREE'
4867 * entry. Next, add an 'ALLOC' to track the new version. This
4868 * way we avoid trying to free an inaccurate blkptr at delete.
4869 * Note that embedded blkptrs are not tracked in livelists.
4871 if (dn
->dn_objset
!= spa_meta_objset(spa
)) {
4872 dsl_dataset_t
*ds
= dmu_objset_ds(dn
->dn_objset
);
4873 if (dsl_deadlist_is_open(&ds
->ds_dir
->dd_livelist
) &&
4874 bp
->blk_birth
> ds
->ds_dir
->dd_origin_txg
) {
4875 ASSERT(!BP_IS_EMBEDDED(bp
));
4876 ASSERT(dsl_dir_is_clone(ds
->ds_dir
));
4877 ASSERT(spa_feature_is_enabled(spa
,
4878 SPA_FEATURE_LIVELIST
));
4879 bplist_append(&ds
->ds_dir
->dd_pending_frees
,
4881 bplist_append(&ds
->ds_dir
->dd_pending_allocs
,
4887 * The db_rwlock prevents dbuf_read_impl() from
4888 * dereferencing the BP while we are changing it. To
4889 * avoid lock contention, only grab it when we are actually
4893 rw_enter(rw
, RW_WRITER
);
4901 * Remap any existing BP's to concrete vdevs, if possible.
4904 dbuf_remap(dnode_t
*dn
, dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
4906 spa_t
*spa
= dmu_objset_spa(db
->db_objset
);
4907 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa
)));
4909 if (!spa_feature_is_active(spa
, SPA_FEATURE_DEVICE_REMOVAL
))
4912 if (db
->db_level
> 0) {
4913 blkptr_t
*bp
= db
->db
.db_data
;
4914 for (int i
= 0; i
< db
->db
.db_size
>> SPA_BLKPTRSHIFT
; i
++) {
4915 dbuf_remap_impl(dn
, &bp
[i
], &db
->db_rwlock
, tx
);
4917 } else if (db
->db
.db_object
== DMU_META_DNODE_OBJECT
) {
4918 dnode_phys_t
*dnp
= db
->db
.db_data
;
4919 ASSERT3U(db
->db_dnode_handle
->dnh_dnode
->dn_type
, ==,
4921 for (int i
= 0; i
< db
->db
.db_size
>> DNODE_SHIFT
;
4922 i
+= dnp
[i
].dn_extra_slots
+ 1) {
4923 for (int j
= 0; j
< dnp
[i
].dn_nblkptr
; j
++) {
4924 krwlock_t
*lock
= (dn
->dn_dbuf
== NULL
? NULL
:
4925 &dn
->dn_dbuf
->db_rwlock
);
4926 dbuf_remap_impl(dn
, &dnp
[i
].dn_blkptr
[j
], lock
,
4934 /* Issue I/O to commit a dirty buffer to disk. */
4936 dbuf_write(dbuf_dirty_record_t
*dr
, arc_buf_t
*data
, dmu_tx_t
*tx
)
4938 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4939 dnode_t
*dn
= dr
->dr_dnode
;
4941 dmu_buf_impl_t
*parent
= db
->db_parent
;
4942 uint64_t txg
= tx
->tx_txg
;
4943 zbookmark_phys_t zb
;
4945 zio_t
*pio
; /* parent I/O */
4948 ASSERT(dmu_tx_is_syncing(tx
));
4952 if (db
->db_state
!= DB_NOFILL
) {
4953 if (db
->db_level
> 0 || dn
->dn_type
== DMU_OT_DNODE
) {
4955 * Private object buffers are released here rather
4956 * than in dbuf_dirty() since they are only modified
4957 * in the syncing context and we don't want the
4958 * overhead of making multiple copies of the data.
4960 if (BP_IS_HOLE(db
->db_blkptr
)) {
4963 dbuf_release_bp(db
);
4965 dbuf_remap(dn
, db
, tx
);
4969 if (parent
!= dn
->dn_dbuf
) {
4970 /* Our parent is an indirect block. */
4971 /* We have a dirty parent that has been scheduled for write. */
4972 ASSERT(parent
&& parent
->db_data_pending
);
4973 /* Our parent's buffer is one level closer to the dnode. */
4974 ASSERT(db
->db_level
== parent
->db_level
-1);
4976 * We're about to modify our parent's db_data by modifying
4977 * our block pointer, so the parent must be released.
4979 ASSERT(arc_released(parent
->db_buf
));
4980 pio
= parent
->db_data_pending
->dr_zio
;
4982 /* Our parent is the dnode itself. */
4983 ASSERT((db
->db_level
== dn
->dn_phys
->dn_nlevels
-1 &&
4984 db
->db_blkid
!= DMU_SPILL_BLKID
) ||
4985 (db
->db_blkid
== DMU_SPILL_BLKID
&& db
->db_level
== 0));
4986 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
4987 ASSERT3P(db
->db_blkptr
, ==,
4988 &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
]);
4992 ASSERT(db
->db_level
== 0 || data
== db
->db_buf
);
4993 ASSERT3U(db
->db_blkptr
->blk_birth
, <=, txg
);
4996 SET_BOOKMARK(&zb
, os
->os_dsl_dataset
?
4997 os
->os_dsl_dataset
->ds_object
: DMU_META_OBJSET
,
4998 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
5000 if (db
->db_blkid
== DMU_SPILL_BLKID
)
5002 wp_flag
|= (db
->db_state
== DB_NOFILL
) ? WP_NOFILL
: 0;
5004 dmu_write_policy(os
, dn
, db
->db_level
, wp_flag
, &zp
);
5007 * We copy the blkptr now (rather than when we instantiate the dirty
5008 * record), because its value can change between open context and
5009 * syncing context. We do not need to hold dn_struct_rwlock to read
5010 * db_blkptr because we are in syncing context.
5012 dr
->dr_bp_copy
= *db
->db_blkptr
;
5014 if (db
->db_level
== 0 &&
5015 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
5017 * The BP for this block has been provided by open context
5018 * (by dmu_sync() or dmu_buf_write_embedded()).
5020 abd_t
*contents
= (data
!= NULL
) ?
5021 abd_get_from_buf(data
->b_data
, arc_buf_size(data
)) : NULL
;
5023 dr
->dr_zio
= zio_write(pio
, os
->os_spa
, txg
, &dr
->dr_bp_copy
,
5024 contents
, db
->db
.db_size
, db
->db
.db_size
, &zp
,
5025 dbuf_write_override_ready
, NULL
, NULL
,
5026 dbuf_write_override_done
,
5027 dr
, ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_MUSTSUCCEED
, &zb
);
5028 mutex_enter(&db
->db_mtx
);
5029 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
5030 zio_write_override(dr
->dr_zio
, &dr
->dt
.dl
.dr_overridden_by
,
5031 dr
->dt
.dl
.dr_copies
, dr
->dt
.dl
.dr_nopwrite
);
5032 mutex_exit(&db
->db_mtx
);
5033 } else if (db
->db_state
== DB_NOFILL
) {
5034 ASSERT(zp
.zp_checksum
== ZIO_CHECKSUM_OFF
||
5035 zp
.zp_checksum
== ZIO_CHECKSUM_NOPARITY
);
5036 dr
->dr_zio
= zio_write(pio
, os
->os_spa
, txg
,
5037 &dr
->dr_bp_copy
, NULL
, db
->db
.db_size
, db
->db
.db_size
, &zp
,
5038 dbuf_write_nofill_ready
, NULL
, NULL
,
5039 dbuf_write_nofill_done
, db
,
5040 ZIO_PRIORITY_ASYNC_WRITE
,
5041 ZIO_FLAG_MUSTSUCCEED
| ZIO_FLAG_NODATA
, &zb
);
5043 ASSERT(arc_released(data
));
5046 * For indirect blocks, we want to setup the children
5047 * ready callback so that we can properly handle an indirect
5048 * block that only contains holes.
5050 arc_write_done_func_t
*children_ready_cb
= NULL
;
5051 if (db
->db_level
!= 0)
5052 children_ready_cb
= dbuf_write_children_ready
;
5054 dr
->dr_zio
= arc_write(pio
, os
->os_spa
, txg
,
5055 &dr
->dr_bp_copy
, data
, dbuf_is_l2cacheable(db
),
5056 &zp
, dbuf_write_ready
,
5057 children_ready_cb
, dbuf_write_physdone
,
5058 dbuf_write_done
, db
, ZIO_PRIORITY_ASYNC_WRITE
,
5059 ZIO_FLAG_MUSTSUCCEED
, &zb
);
5063 EXPORT_SYMBOL(dbuf_find
);
5064 EXPORT_SYMBOL(dbuf_is_metadata
);
5065 EXPORT_SYMBOL(dbuf_destroy
);
5066 EXPORT_SYMBOL(dbuf_loan_arcbuf
);
5067 EXPORT_SYMBOL(dbuf_whichblock
);
5068 EXPORT_SYMBOL(dbuf_read
);
5069 EXPORT_SYMBOL(dbuf_unoverride
);
5070 EXPORT_SYMBOL(dbuf_free_range
);
5071 EXPORT_SYMBOL(dbuf_new_size
);
5072 EXPORT_SYMBOL(dbuf_release_bp
);
5073 EXPORT_SYMBOL(dbuf_dirty
);
5074 EXPORT_SYMBOL(dmu_buf_set_crypt_params
);
5075 EXPORT_SYMBOL(dmu_buf_will_dirty
);
5076 EXPORT_SYMBOL(dmu_buf_is_dirty
);
5077 EXPORT_SYMBOL(dmu_buf_will_not_fill
);
5078 EXPORT_SYMBOL(dmu_buf_will_fill
);
5079 EXPORT_SYMBOL(dmu_buf_fill_done
);
5080 EXPORT_SYMBOL(dmu_buf_rele
);
5081 EXPORT_SYMBOL(dbuf_assign_arcbuf
);
5082 EXPORT_SYMBOL(dbuf_prefetch
);
5083 EXPORT_SYMBOL(dbuf_hold_impl
);
5084 EXPORT_SYMBOL(dbuf_hold
);
5085 EXPORT_SYMBOL(dbuf_hold_level
);
5086 EXPORT_SYMBOL(dbuf_create_bonus
);
5087 EXPORT_SYMBOL(dbuf_spill_set_blksz
);
5088 EXPORT_SYMBOL(dbuf_rm_spill
);
5089 EXPORT_SYMBOL(dbuf_add_ref
);
5090 EXPORT_SYMBOL(dbuf_rele
);
5091 EXPORT_SYMBOL(dbuf_rele_and_unlock
);
5092 EXPORT_SYMBOL(dbuf_refcount
);
5093 EXPORT_SYMBOL(dbuf_sync_list
);
5094 EXPORT_SYMBOL(dmu_buf_set_user
);
5095 EXPORT_SYMBOL(dmu_buf_set_user_ie
);
5096 EXPORT_SYMBOL(dmu_buf_get_user
);
5097 EXPORT_SYMBOL(dmu_buf_get_blkptr
);
5099 ZFS_MODULE_PARAM(zfs_dbuf_cache
, dbuf_cache_
, max_bytes
, ULONG
, ZMOD_RW
,
5100 "Maximum size in bytes of the dbuf cache.");
5102 ZFS_MODULE_PARAM(zfs_dbuf_cache
, dbuf_cache_
, hiwater_pct
, UINT
, ZMOD_RW
,
5103 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5105 ZFS_MODULE_PARAM(zfs_dbuf_cache
, dbuf_cache_
, lowater_pct
, UINT
, ZMOD_RW
,
5106 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5108 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, metadata_cache_max_bytes
, ULONG
, ZMOD_RW
,
5109 "Maximum size in bytes of dbuf metadata cache.");
5111 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, cache_shift
, INT
, ZMOD_RW
,
5112 "Set size of dbuf cache to log2 fraction of arc size.");
5114 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, metadata_cache_shift
, INT
, ZMOD_RW
,
5115 "Set size of dbuf metadata cache to log2 fraction of arc size.");