4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2016 by Delphix. All rights reserved.
24 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
25 * Copyright (c) 2013, Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014, Nexenta Systems, Inc. All rights reserved.
27 * Copyright (c) 2015 by Chunwei Chen. All rights reserved.
31 #include <sys/dmu_impl.h>
32 #include <sys/dmu_tx.h>
34 #include <sys/dnode.h>
35 #include <sys/zfs_context.h>
36 #include <sys/dmu_objset.h>
37 #include <sys/dmu_traverse.h>
38 #include <sys/dsl_dataset.h>
39 #include <sys/dsl_dir.h>
40 #include <sys/dsl_pool.h>
41 #include <sys/dsl_synctask.h>
42 #include <sys/dsl_prop.h>
43 #include <sys/dmu_zfetch.h>
44 #include <sys/zfs_ioctl.h>
46 #include <sys/zio_checksum.h>
47 #include <sys/zio_compress.h>
49 #include <sys/zfeature.h>
51 #include <sys/vmsystm.h>
52 #include <sys/zfs_znode.h>
56 * Enable/disable nopwrite feature.
58 int zfs_nopwrite_enabled
= 1;
60 const dmu_object_type_info_t dmu_ot
[DMU_OT_NUMTYPES
] = {
61 { DMU_BSWAP_UINT8
, TRUE
, "unallocated" },
62 { DMU_BSWAP_ZAP
, TRUE
, "object directory" },
63 { DMU_BSWAP_UINT64
, TRUE
, "object array" },
64 { DMU_BSWAP_UINT8
, TRUE
, "packed nvlist" },
65 { DMU_BSWAP_UINT64
, TRUE
, "packed nvlist size" },
66 { DMU_BSWAP_UINT64
, TRUE
, "bpobj" },
67 { DMU_BSWAP_UINT64
, TRUE
, "bpobj header" },
68 { DMU_BSWAP_UINT64
, TRUE
, "SPA space map header" },
69 { DMU_BSWAP_UINT64
, TRUE
, "SPA space map" },
70 { DMU_BSWAP_UINT64
, TRUE
, "ZIL intent log" },
71 { DMU_BSWAP_DNODE
, TRUE
, "DMU dnode" },
72 { DMU_BSWAP_OBJSET
, TRUE
, "DMU objset" },
73 { DMU_BSWAP_UINT64
, TRUE
, "DSL directory" },
74 { DMU_BSWAP_ZAP
, TRUE
, "DSL directory child map"},
75 { DMU_BSWAP_ZAP
, TRUE
, "DSL dataset snap map" },
76 { DMU_BSWAP_ZAP
, TRUE
, "DSL props" },
77 { DMU_BSWAP_UINT64
, TRUE
, "DSL dataset" },
78 { DMU_BSWAP_ZNODE
, TRUE
, "ZFS znode" },
79 { DMU_BSWAP_OLDACL
, TRUE
, "ZFS V0 ACL" },
80 { DMU_BSWAP_UINT8
, FALSE
, "ZFS plain file" },
81 { DMU_BSWAP_ZAP
, TRUE
, "ZFS directory" },
82 { DMU_BSWAP_ZAP
, TRUE
, "ZFS master node" },
83 { DMU_BSWAP_ZAP
, TRUE
, "ZFS delete queue" },
84 { DMU_BSWAP_UINT8
, FALSE
, "zvol object" },
85 { DMU_BSWAP_ZAP
, TRUE
, "zvol prop" },
86 { DMU_BSWAP_UINT8
, FALSE
, "other uint8[]" },
87 { DMU_BSWAP_UINT64
, FALSE
, "other uint64[]" },
88 { DMU_BSWAP_ZAP
, TRUE
, "other ZAP" },
89 { DMU_BSWAP_ZAP
, TRUE
, "persistent error log" },
90 { DMU_BSWAP_UINT8
, TRUE
, "SPA history" },
91 { DMU_BSWAP_UINT64
, TRUE
, "SPA history offsets" },
92 { DMU_BSWAP_ZAP
, TRUE
, "Pool properties" },
93 { DMU_BSWAP_ZAP
, TRUE
, "DSL permissions" },
94 { DMU_BSWAP_ACL
, TRUE
, "ZFS ACL" },
95 { DMU_BSWAP_UINT8
, TRUE
, "ZFS SYSACL" },
96 { DMU_BSWAP_UINT8
, TRUE
, "FUID table" },
97 { DMU_BSWAP_UINT64
, TRUE
, "FUID table size" },
98 { DMU_BSWAP_ZAP
, TRUE
, "DSL dataset next clones"},
99 { DMU_BSWAP_ZAP
, TRUE
, "scan work queue" },
100 { DMU_BSWAP_ZAP
, TRUE
, "ZFS user/group used" },
101 { DMU_BSWAP_ZAP
, TRUE
, "ZFS user/group quota" },
102 { DMU_BSWAP_ZAP
, TRUE
, "snapshot refcount tags"},
103 { DMU_BSWAP_ZAP
, TRUE
, "DDT ZAP algorithm" },
104 { DMU_BSWAP_ZAP
, TRUE
, "DDT statistics" },
105 { DMU_BSWAP_UINT8
, TRUE
, "System attributes" },
106 { DMU_BSWAP_ZAP
, TRUE
, "SA master node" },
107 { DMU_BSWAP_ZAP
, TRUE
, "SA attr registration" },
108 { DMU_BSWAP_ZAP
, TRUE
, "SA attr layouts" },
109 { DMU_BSWAP_ZAP
, TRUE
, "scan translations" },
110 { DMU_BSWAP_UINT8
, FALSE
, "deduplicated block" },
111 { DMU_BSWAP_ZAP
, TRUE
, "DSL deadlist map" },
112 { DMU_BSWAP_UINT64
, TRUE
, "DSL deadlist map hdr" },
113 { DMU_BSWAP_ZAP
, TRUE
, "DSL dir clones" },
114 { DMU_BSWAP_UINT64
, TRUE
, "bpobj subobj" }
117 const dmu_object_byteswap_info_t dmu_ot_byteswap
[DMU_BSWAP_NUMFUNCS
] = {
118 { byteswap_uint8_array
, "uint8" },
119 { byteswap_uint16_array
, "uint16" },
120 { byteswap_uint32_array
, "uint32" },
121 { byteswap_uint64_array
, "uint64" },
122 { zap_byteswap
, "zap" },
123 { dnode_buf_byteswap
, "dnode" },
124 { dmu_objset_byteswap
, "objset" },
125 { zfs_znode_byteswap
, "znode" },
126 { zfs_oldacl_byteswap
, "oldacl" },
127 { zfs_acl_byteswap
, "acl" }
131 dmu_buf_hold_noread(objset_t
*os
, uint64_t object
, uint64_t offset
,
132 void *tag
, dmu_buf_t
**dbp
)
139 err
= dnode_hold(os
, object
, FTAG
, &dn
);
142 blkid
= dbuf_whichblock(dn
, 0, offset
);
143 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
144 db
= dbuf_hold(dn
, blkid
, tag
);
145 rw_exit(&dn
->dn_struct_rwlock
);
146 dnode_rele(dn
, FTAG
);
150 return (SET_ERROR(EIO
));
158 dmu_buf_hold(objset_t
*os
, uint64_t object
, uint64_t offset
,
159 void *tag
, dmu_buf_t
**dbp
, int flags
)
162 int db_flags
= DB_RF_CANFAIL
;
164 if (flags
& DMU_READ_NO_PREFETCH
)
165 db_flags
|= DB_RF_NOPREFETCH
;
167 err
= dmu_buf_hold_noread(os
, object
, offset
, tag
, dbp
);
169 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)(*dbp
);
170 err
= dbuf_read(db
, NULL
, db_flags
);
183 return (DN_OLD_MAX_BONUSLEN
);
187 dmu_set_bonus(dmu_buf_t
*db_fake
, int newsize
, dmu_tx_t
*tx
)
189 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
196 if (dn
->dn_bonus
!= db
) {
197 error
= SET_ERROR(EINVAL
);
198 } else if (newsize
< 0 || newsize
> db_fake
->db_size
) {
199 error
= SET_ERROR(EINVAL
);
201 dnode_setbonuslen(dn
, newsize
, tx
);
210 dmu_set_bonustype(dmu_buf_t
*db_fake
, dmu_object_type_t type
, dmu_tx_t
*tx
)
212 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
219 if (!DMU_OT_IS_VALID(type
)) {
220 error
= SET_ERROR(EINVAL
);
221 } else if (dn
->dn_bonus
!= db
) {
222 error
= SET_ERROR(EINVAL
);
224 dnode_setbonus_type(dn
, type
, tx
);
233 dmu_get_bonustype(dmu_buf_t
*db_fake
)
235 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
237 dmu_object_type_t type
;
241 type
= dn
->dn_bonustype
;
248 dmu_rm_spill(objset_t
*os
, uint64_t object
, dmu_tx_t
*tx
)
253 error
= dnode_hold(os
, object
, FTAG
, &dn
);
254 dbuf_rm_spill(dn
, tx
);
255 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
256 dnode_rm_spill(dn
, tx
);
257 rw_exit(&dn
->dn_struct_rwlock
);
258 dnode_rele(dn
, FTAG
);
263 * returns ENOENT, EIO, or 0.
266 dmu_bonus_hold(objset_t
*os
, uint64_t object
, void *tag
, dmu_buf_t
**dbp
)
272 error
= dnode_hold(os
, object
, FTAG
, &dn
);
276 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
277 if (dn
->dn_bonus
== NULL
) {
278 rw_exit(&dn
->dn_struct_rwlock
);
279 rw_enter(&dn
->dn_struct_rwlock
, RW_WRITER
);
280 if (dn
->dn_bonus
== NULL
)
281 dbuf_create_bonus(dn
);
285 /* as long as the bonus buf is held, the dnode will be held */
286 if (refcount_add(&db
->db_holds
, tag
) == 1) {
287 VERIFY(dnode_add_ref(dn
, db
));
288 atomic_inc_32(&dn
->dn_dbufs_count
);
292 * Wait to drop dn_struct_rwlock until after adding the bonus dbuf's
293 * hold and incrementing the dbuf count to ensure that dnode_move() sees
294 * a dnode hold for every dbuf.
296 rw_exit(&dn
->dn_struct_rwlock
);
298 dnode_rele(dn
, FTAG
);
300 VERIFY(0 == dbuf_read(db
, NULL
, DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
));
307 * returns ENOENT, EIO, or 0.
309 * This interface will allocate a blank spill dbuf when a spill blk
310 * doesn't already exist on the dnode.
312 * if you only want to find an already existing spill db, then
313 * dmu_spill_hold_existing() should be used.
316 dmu_spill_hold_by_dnode(dnode_t
*dn
, uint32_t flags
, void *tag
, dmu_buf_t
**dbp
)
318 dmu_buf_impl_t
*db
= NULL
;
321 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
322 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
324 db
= dbuf_hold(dn
, DMU_SPILL_BLKID
, tag
);
326 if ((flags
& DB_RF_HAVESTRUCT
) == 0)
327 rw_exit(&dn
->dn_struct_rwlock
);
330 err
= dbuf_read(db
, NULL
, flags
);
339 dmu_spill_hold_existing(dmu_buf_t
*bonus
, void *tag
, dmu_buf_t
**dbp
)
341 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
348 if (spa_version(dn
->dn_objset
->os_spa
) < SPA_VERSION_SA
) {
349 err
= SET_ERROR(EINVAL
);
351 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
353 if (!dn
->dn_have_spill
) {
354 err
= SET_ERROR(ENOENT
);
356 err
= dmu_spill_hold_by_dnode(dn
,
357 DB_RF_HAVESTRUCT
| DB_RF_CANFAIL
, tag
, dbp
);
360 rw_exit(&dn
->dn_struct_rwlock
);
368 dmu_spill_hold_by_bonus(dmu_buf_t
*bonus
, void *tag
, dmu_buf_t
**dbp
)
370 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)bonus
;
376 err
= dmu_spill_hold_by_dnode(dn
, DB_RF_CANFAIL
, tag
, dbp
);
383 * Note: longer-term, we should modify all of the dmu_buf_*() interfaces
384 * to take a held dnode rather than <os, object> -- the lookup is wasteful,
385 * and can induce severe lock contention when writing to several files
386 * whose dnodes are in the same block.
389 dmu_buf_hold_array_by_dnode(dnode_t
*dn
, uint64_t offset
, uint64_t length
,
390 boolean_t read
, void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
, uint32_t flags
)
393 uint64_t blkid
, nblks
, i
;
398 ASSERT(length
<= DMU_MAX_ACCESS
);
401 * Note: We directly notify the prefetch code of this read, so that
402 * we can tell it about the multi-block read. dbuf_read() only knows
403 * about the one block it is accessing.
405 dbuf_flags
= DB_RF_CANFAIL
| DB_RF_NEVERWAIT
| DB_RF_HAVESTRUCT
|
408 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
409 if (dn
->dn_datablkshift
) {
410 int blkshift
= dn
->dn_datablkshift
;
411 nblks
= (P2ROUNDUP(offset
+ length
, 1ULL << blkshift
) -
412 P2ALIGN(offset
, 1ULL << blkshift
)) >> blkshift
;
414 if (offset
+ length
> dn
->dn_datablksz
) {
415 zfs_panic_recover("zfs: accessing past end of object "
416 "%llx/%llx (size=%u access=%llu+%llu)",
417 (longlong_t
)dn
->dn_objset
->
418 os_dsl_dataset
->ds_object
,
419 (longlong_t
)dn
->dn_object
, dn
->dn_datablksz
,
420 (longlong_t
)offset
, (longlong_t
)length
);
421 rw_exit(&dn
->dn_struct_rwlock
);
422 return (SET_ERROR(EIO
));
426 dbp
= kmem_zalloc(sizeof (dmu_buf_t
*) * nblks
, KM_SLEEP
);
428 zio
= zio_root(dn
->dn_objset
->os_spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
429 blkid
= dbuf_whichblock(dn
, 0, offset
);
430 for (i
= 0; i
< nblks
; i
++) {
431 dmu_buf_impl_t
*db
= dbuf_hold(dn
, blkid
+ i
, tag
);
433 rw_exit(&dn
->dn_struct_rwlock
);
434 dmu_buf_rele_array(dbp
, nblks
, tag
);
436 return (SET_ERROR(EIO
));
439 /* initiate async i/o */
441 (void) dbuf_read(db
, zio
, dbuf_flags
);
445 if ((flags
& DMU_READ_NO_PREFETCH
) == 0 && read
&&
446 length
<= zfetch_array_rd_sz
) {
447 dmu_zfetch(&dn
->dn_zfetch
, blkid
, nblks
);
449 rw_exit(&dn
->dn_struct_rwlock
);
451 /* wait for async i/o */
454 dmu_buf_rele_array(dbp
, nblks
, tag
);
458 /* wait for other io to complete */
460 for (i
= 0; i
< nblks
; i
++) {
461 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbp
[i
];
462 mutex_enter(&db
->db_mtx
);
463 while (db
->db_state
== DB_READ
||
464 db
->db_state
== DB_FILL
)
465 cv_wait(&db
->db_changed
, &db
->db_mtx
);
466 if (db
->db_state
== DB_UNCACHED
)
467 err
= SET_ERROR(EIO
);
468 mutex_exit(&db
->db_mtx
);
470 dmu_buf_rele_array(dbp
, nblks
, tag
);
482 dmu_buf_hold_array(objset_t
*os
, uint64_t object
, uint64_t offset
,
483 uint64_t length
, int read
, void *tag
, int *numbufsp
, dmu_buf_t
***dbpp
)
488 err
= dnode_hold(os
, object
, FTAG
, &dn
);
492 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
493 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
495 dnode_rele(dn
, FTAG
);
501 dmu_buf_hold_array_by_bonus(dmu_buf_t
*db_fake
, uint64_t offset
,
502 uint64_t length
, boolean_t read
, void *tag
, int *numbufsp
,
505 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
511 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, length
, read
, tag
,
512 numbufsp
, dbpp
, DMU_READ_PREFETCH
);
519 dmu_buf_rele_array(dmu_buf_t
**dbp_fake
, int numbufs
, void *tag
)
522 dmu_buf_impl_t
**dbp
= (dmu_buf_impl_t
**)dbp_fake
;
527 for (i
= 0; i
< numbufs
; i
++) {
529 dbuf_rele(dbp
[i
], tag
);
532 kmem_free(dbp
, sizeof (dmu_buf_t
*) * numbufs
);
536 * Issue prefetch i/os for the given blocks. If level is greater than 0, the
537 * indirect blocks prefeteched will be those that point to the blocks containing
538 * the data starting at offset, and continuing to offset + len.
540 * Note that if the indirect blocks above the blocks being prefetched are not in
541 * cache, they will be asychronously read in.
544 dmu_prefetch(objset_t
*os
, uint64_t object
, int64_t level
, uint64_t offset
,
545 uint64_t len
, zio_priority_t pri
)
551 if (len
== 0) { /* they're interested in the bonus buffer */
552 dn
= DMU_META_DNODE(os
);
554 if (object
== 0 || object
>= DN_MAX_OBJECT
)
557 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
558 blkid
= dbuf_whichblock(dn
, level
,
559 object
* sizeof (dnode_phys_t
));
560 dbuf_prefetch(dn
, level
, blkid
, pri
, 0);
561 rw_exit(&dn
->dn_struct_rwlock
);
566 * XXX - Note, if the dnode for the requested object is not
567 * already cached, we will do a *synchronous* read in the
568 * dnode_hold() call. The same is true for any indirects.
570 err
= dnode_hold(os
, object
, FTAG
, &dn
);
574 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
576 * offset + len - 1 is the last byte we want to prefetch for, and offset
577 * is the first. Then dbuf_whichblk(dn, level, off + len - 1) is the
578 * last block we want to prefetch, and dbuf_whichblock(dn, level,
579 * offset) is the first. Then the number we need to prefetch is the
582 if (level
> 0 || dn
->dn_datablkshift
!= 0) {
583 nblks
= dbuf_whichblock(dn
, level
, offset
+ len
- 1) -
584 dbuf_whichblock(dn
, level
, offset
) + 1;
586 nblks
= (offset
< dn
->dn_datablksz
);
592 blkid
= dbuf_whichblock(dn
, level
, offset
);
593 for (i
= 0; i
< nblks
; i
++)
594 dbuf_prefetch(dn
, level
, blkid
+ i
, pri
, 0);
597 rw_exit(&dn
->dn_struct_rwlock
);
599 dnode_rele(dn
, FTAG
);
603 * Get the next "chunk" of file data to free. We traverse the file from
604 * the end so that the file gets shorter over time (if we crashes in the
605 * middle, this will leave us in a better state). We find allocated file
606 * data by simply searching the allocated level 1 indirects.
608 * On input, *start should be the first offset that does not need to be
609 * freed (e.g. "offset + length"). On return, *start will be the first
610 * offset that should be freed.
613 get_next_chunk(dnode_t
*dn
, uint64_t *start
, uint64_t minimum
)
615 uint64_t maxblks
= DMU_MAX_ACCESS
>> (dn
->dn_indblkshift
+ 1);
616 /* bytes of data covered by a level-1 indirect block */
618 dn
->dn_datablksz
* EPB(dn
->dn_indblkshift
, SPA_BLKPTRSHIFT
);
621 ASSERT3U(minimum
, <=, *start
);
623 if (*start
- minimum
<= iblkrange
* maxblks
) {
627 ASSERT(ISP2(iblkrange
));
629 for (blks
= 0; *start
> minimum
&& blks
< maxblks
; blks
++) {
633 * dnode_next_offset(BACKWARDS) will find an allocated L1
634 * indirect block at or before the input offset. We must
635 * decrement *start so that it is at the end of the region
639 err
= dnode_next_offset(dn
,
640 DNODE_FIND_BACKWARDS
, start
, 2, 1, 0);
642 /* if there are no indirect blocks before start, we are done */
646 } else if (err
!= 0) {
650 /* set start to the beginning of this L1 indirect */
651 *start
= P2ALIGN(*start
, iblkrange
);
653 if (*start
< minimum
)
659 dmu_free_long_range_impl(objset_t
*os
, dnode_t
*dn
, uint64_t offset
,
662 uint64_t object_size
;
666 return (SET_ERROR(EINVAL
));
668 object_size
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
669 if (offset
>= object_size
)
672 if (length
== DMU_OBJECT_END
|| offset
+ length
> object_size
)
673 length
= object_size
- offset
;
675 while (length
!= 0) {
676 uint64_t chunk_end
, chunk_begin
;
679 chunk_end
= chunk_begin
= offset
+ length
;
681 /* move chunk_begin backwards to the beginning of this chunk */
682 err
= get_next_chunk(dn
, &chunk_begin
, offset
);
685 ASSERT3U(chunk_begin
, >=, offset
);
686 ASSERT3U(chunk_begin
, <=, chunk_end
);
688 tx
= dmu_tx_create(os
);
689 dmu_tx_hold_free(tx
, dn
->dn_object
,
690 chunk_begin
, chunk_end
- chunk_begin
);
693 * Mark this transaction as typically resulting in a net
694 * reduction in space used.
696 dmu_tx_mark_netfree(tx
);
697 err
= dmu_tx_assign(tx
, TXG_WAIT
);
702 dnode_free_range(dn
, chunk_begin
, chunk_end
- chunk_begin
, tx
);
705 length
-= chunk_end
- chunk_begin
;
711 dmu_free_long_range(objset_t
*os
, uint64_t object
,
712 uint64_t offset
, uint64_t length
)
717 err
= dnode_hold(os
, object
, FTAG
, &dn
);
720 err
= dmu_free_long_range_impl(os
, dn
, offset
, length
);
723 * It is important to zero out the maxblkid when freeing the entire
724 * file, so that (a) subsequent calls to dmu_free_long_range_impl()
725 * will take the fast path, and (b) dnode_reallocate() can verify
726 * that the entire file has been freed.
728 if (err
== 0 && offset
== 0 && length
== DMU_OBJECT_END
)
731 dnode_rele(dn
, FTAG
);
736 dmu_free_long_object(objset_t
*os
, uint64_t object
)
741 err
= dmu_free_long_range(os
, object
, 0, DMU_OBJECT_END
);
745 tx
= dmu_tx_create(os
);
746 dmu_tx_hold_bonus(tx
, object
);
747 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
748 dmu_tx_mark_netfree(tx
);
749 err
= dmu_tx_assign(tx
, TXG_WAIT
);
751 err
= dmu_object_free(os
, object
, tx
);
761 dmu_free_range(objset_t
*os
, uint64_t object
, uint64_t offset
,
762 uint64_t size
, dmu_tx_t
*tx
)
765 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
768 ASSERT(offset
< UINT64_MAX
);
769 ASSERT(size
== -1ULL || size
<= UINT64_MAX
- offset
);
770 dnode_free_range(dn
, offset
, size
, tx
);
771 dnode_rele(dn
, FTAG
);
776 dmu_read(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
777 void *buf
, uint32_t flags
)
783 err
= dnode_hold(os
, object
, FTAG
, &dn
);
788 * Deal with odd block sizes, where there can't be data past the first
789 * block. If we ever do the tail block optimization, we will need to
790 * handle that here as well.
792 if (dn
->dn_maxblkid
== 0) {
793 uint64_t newsz
= offset
> dn
->dn_datablksz
? 0 :
794 MIN(size
, dn
->dn_datablksz
- offset
);
795 bzero((char *)buf
+ newsz
, size
- newsz
);
800 uint64_t mylen
= MIN(size
, DMU_MAX_ACCESS
/ 2);
804 * NB: we could do this block-at-a-time, but it's nice
805 * to be reading in parallel.
807 err
= dmu_buf_hold_array_by_dnode(dn
, offset
, mylen
,
808 TRUE
, FTAG
, &numbufs
, &dbp
, flags
);
812 for (i
= 0; i
< numbufs
; i
++) {
815 dmu_buf_t
*db
= dbp
[i
];
819 bufoff
= offset
- db
->db_offset
;
820 tocpy
= MIN(db
->db_size
- bufoff
, size
);
822 (void) memcpy(buf
, (char *)db
->db_data
+ bufoff
, tocpy
);
826 buf
= (char *)buf
+ tocpy
;
828 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
830 dnode_rele(dn
, FTAG
);
835 dmu_write(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
836 const void *buf
, dmu_tx_t
*tx
)
844 VERIFY0(dmu_buf_hold_array(os
, object
, offset
, size
,
845 FALSE
, FTAG
, &numbufs
, &dbp
));
847 for (i
= 0; i
< numbufs
; i
++) {
850 dmu_buf_t
*db
= dbp
[i
];
854 bufoff
= offset
- db
->db_offset
;
855 tocpy
= MIN(db
->db_size
- bufoff
, size
);
857 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
859 if (tocpy
== db
->db_size
)
860 dmu_buf_will_fill(db
, tx
);
862 dmu_buf_will_dirty(db
, tx
);
864 (void) memcpy((char *)db
->db_data
+ bufoff
, buf
, tocpy
);
866 if (tocpy
== db
->db_size
)
867 dmu_buf_fill_done(db
, tx
);
871 buf
= (char *)buf
+ tocpy
;
873 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
877 dmu_prealloc(objset_t
*os
, uint64_t object
, uint64_t offset
, uint64_t size
,
886 VERIFY(0 == dmu_buf_hold_array(os
, object
, offset
, size
,
887 FALSE
, FTAG
, &numbufs
, &dbp
));
889 for (i
= 0; i
< numbufs
; i
++) {
890 dmu_buf_t
*db
= dbp
[i
];
892 dmu_buf_will_not_fill(db
, tx
);
894 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
898 dmu_write_embedded(objset_t
*os
, uint64_t object
, uint64_t offset
,
899 void *data
, uint8_t etype
, uint8_t comp
, int uncompressed_size
,
900 int compressed_size
, int byteorder
, dmu_tx_t
*tx
)
904 ASSERT3U(etype
, <, NUM_BP_EMBEDDED_TYPES
);
905 ASSERT3U(comp
, <, ZIO_COMPRESS_FUNCTIONS
);
906 VERIFY0(dmu_buf_hold_noread(os
, object
, offset
,
909 dmu_buf_write_embedded(db
,
910 data
, (bp_embedded_type_t
)etype
, (enum zio_compress
)comp
,
911 uncompressed_size
, compressed_size
, byteorder
, tx
);
913 dmu_buf_rele(db
, FTAG
);
917 * DMU support for xuio
919 kstat_t
*xuio_ksp
= NULL
;
921 typedef struct xuio_stats
{
922 /* loaned yet not returned arc_buf */
923 kstat_named_t xuiostat_onloan_rbuf
;
924 kstat_named_t xuiostat_onloan_wbuf
;
925 /* whether a copy is made when loaning out a read buffer */
926 kstat_named_t xuiostat_rbuf_copied
;
927 kstat_named_t xuiostat_rbuf_nocopy
;
928 /* whether a copy is made when assigning a write buffer */
929 kstat_named_t xuiostat_wbuf_copied
;
930 kstat_named_t xuiostat_wbuf_nocopy
;
933 static xuio_stats_t xuio_stats
= {
934 { "onloan_read_buf", KSTAT_DATA_UINT64
},
935 { "onloan_write_buf", KSTAT_DATA_UINT64
},
936 { "read_buf_copied", KSTAT_DATA_UINT64
},
937 { "read_buf_nocopy", KSTAT_DATA_UINT64
},
938 { "write_buf_copied", KSTAT_DATA_UINT64
},
939 { "write_buf_nocopy", KSTAT_DATA_UINT64
}
942 #define XUIOSTAT_INCR(stat, val) \
943 atomic_add_64(&xuio_stats.stat.value.ui64, (val))
944 #define XUIOSTAT_BUMP(stat) XUIOSTAT_INCR(stat, 1)
947 dmu_xuio_init(xuio_t
*xuio
, int nblk
)
950 uio_t
*uio
= &xuio
->xu_uio
;
952 uio
->uio_iovcnt
= nblk
;
953 uio
->uio_iov
= kmem_zalloc(nblk
* sizeof (iovec_t
), KM_SLEEP
);
955 priv
= kmem_zalloc(sizeof (dmu_xuio_t
), KM_SLEEP
);
957 priv
->bufs
= kmem_zalloc(nblk
* sizeof (arc_buf_t
*), KM_SLEEP
);
958 priv
->iovp
= (iovec_t
*)uio
->uio_iov
;
959 XUIO_XUZC_PRIV(xuio
) = priv
;
961 if (XUIO_XUZC_RW(xuio
) == UIO_READ
)
962 XUIOSTAT_INCR(xuiostat_onloan_rbuf
, nblk
);
964 XUIOSTAT_INCR(xuiostat_onloan_wbuf
, nblk
);
970 dmu_xuio_fini(xuio_t
*xuio
)
972 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
973 int nblk
= priv
->cnt
;
975 kmem_free(priv
->iovp
, nblk
* sizeof (iovec_t
));
976 kmem_free(priv
->bufs
, nblk
* sizeof (arc_buf_t
*));
977 kmem_free(priv
, sizeof (dmu_xuio_t
));
979 if (XUIO_XUZC_RW(xuio
) == UIO_READ
)
980 XUIOSTAT_INCR(xuiostat_onloan_rbuf
, -nblk
);
982 XUIOSTAT_INCR(xuiostat_onloan_wbuf
, -nblk
);
986 * Initialize iov[priv->next] and priv->bufs[priv->next] with { off, n, abuf }
987 * and increase priv->next by 1.
990 dmu_xuio_add(xuio_t
*xuio
, arc_buf_t
*abuf
, offset_t off
, size_t n
)
993 uio_t
*uio
= &xuio
->xu_uio
;
994 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
995 int i
= priv
->next
++;
997 ASSERT(i
< priv
->cnt
);
998 ASSERT(off
+ n
<= arc_buf_size(abuf
));
999 iov
= (iovec_t
*)uio
->uio_iov
+ i
;
1000 iov
->iov_base
= (char *)abuf
->b_data
+ off
;
1002 priv
->bufs
[i
] = abuf
;
1007 dmu_xuio_cnt(xuio_t
*xuio
)
1009 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
1014 dmu_xuio_arcbuf(xuio_t
*xuio
, int i
)
1016 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
1018 ASSERT(i
< priv
->cnt
);
1019 return (priv
->bufs
[i
]);
1023 dmu_xuio_clear(xuio_t
*xuio
, int i
)
1025 dmu_xuio_t
*priv
= XUIO_XUZC_PRIV(xuio
);
1027 ASSERT(i
< priv
->cnt
);
1028 priv
->bufs
[i
] = NULL
;
1032 xuio_stat_init(void)
1034 xuio_ksp
= kstat_create("zfs", 0, "xuio_stats", "misc",
1035 KSTAT_TYPE_NAMED
, sizeof (xuio_stats
) / sizeof (kstat_named_t
),
1036 KSTAT_FLAG_VIRTUAL
);
1037 if (xuio_ksp
!= NULL
) {
1038 xuio_ksp
->ks_data
= &xuio_stats
;
1039 kstat_install(xuio_ksp
);
1044 xuio_stat_fini(void)
1046 if (xuio_ksp
!= NULL
) {
1047 kstat_delete(xuio_ksp
);
1053 xuio_stat_wbuf_copied()
1055 XUIOSTAT_BUMP(xuiostat_wbuf_copied
);
1059 xuio_stat_wbuf_nocopy()
1061 XUIOSTAT_BUMP(xuiostat_wbuf_nocopy
);
1066 dmu_read_uio_dnode(dnode_t
*dn
, uio_t
*uio
, uint64_t size
)
1069 int numbufs
, i
, err
;
1070 xuio_t
*xuio
= NULL
;
1073 * NB: we could do this block-at-a-time, but it's nice
1074 * to be reading in parallel.
1076 err
= dmu_buf_hold_array_by_dnode(dn
, uio
->uio_loffset
, size
,
1077 TRUE
, FTAG
, &numbufs
, &dbp
, 0);
1081 for (i
= 0; i
< numbufs
; i
++) {
1084 dmu_buf_t
*db
= dbp
[i
];
1088 bufoff
= uio
->uio_loffset
- db
->db_offset
;
1089 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1092 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
1093 arc_buf_t
*dbuf_abuf
= dbi
->db_buf
;
1094 arc_buf_t
*abuf
= dbuf_loan_arcbuf(dbi
);
1095 err
= dmu_xuio_add(xuio
, abuf
, bufoff
, tocpy
);
1097 uio
->uio_resid
-= tocpy
;
1098 uio
->uio_loffset
+= tocpy
;
1101 if (abuf
== dbuf_abuf
)
1102 XUIOSTAT_BUMP(xuiostat_rbuf_nocopy
);
1104 XUIOSTAT_BUMP(xuiostat_rbuf_copied
);
1106 err
= uiomove((char *)db
->db_data
+ bufoff
, tocpy
,
1114 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1120 * Read 'size' bytes into the uio buffer.
1121 * From object zdb->db_object.
1122 * Starting at offset uio->uio_loffset.
1124 * If the caller already has a dbuf in the target object
1125 * (e.g. its bonus buffer), this routine is faster than dmu_read_uio(),
1126 * because we don't have to find the dnode_t for the object.
1129 dmu_read_uio_dbuf(dmu_buf_t
*zdb
, uio_t
*uio
, uint64_t size
)
1131 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1140 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1147 * Read 'size' bytes into the uio buffer.
1148 * From the specified object
1149 * Starting at offset uio->uio_loffset.
1152 dmu_read_uio(objset_t
*os
, uint64_t object
, uio_t
*uio
, uint64_t size
)
1160 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1164 err
= dmu_read_uio_dnode(dn
, uio
, size
);
1166 dnode_rele(dn
, FTAG
);
1172 dmu_write_uio_dnode(dnode_t
*dn
, uio_t
*uio
, uint64_t size
, dmu_tx_t
*tx
)
1179 err
= dmu_buf_hold_array_by_dnode(dn
, uio
->uio_loffset
, size
,
1180 FALSE
, FTAG
, &numbufs
, &dbp
, DMU_READ_PREFETCH
);
1184 for (i
= 0; i
< numbufs
; i
++) {
1187 dmu_buf_t
*db
= dbp
[i
];
1191 bufoff
= uio
->uio_loffset
- db
->db_offset
;
1192 tocpy
= MIN(db
->db_size
- bufoff
, size
);
1194 ASSERT(i
== 0 || i
== numbufs
-1 || tocpy
== db
->db_size
);
1196 if (tocpy
== db
->db_size
)
1197 dmu_buf_will_fill(db
, tx
);
1199 dmu_buf_will_dirty(db
, tx
);
1202 * XXX uiomove could block forever (eg.nfs-backed
1203 * pages). There needs to be a uiolockdown() function
1204 * to lock the pages in memory, so that uiomove won't
1207 err
= uiomove((char *)db
->db_data
+ bufoff
, tocpy
,
1210 if (tocpy
== db
->db_size
)
1211 dmu_buf_fill_done(db
, tx
);
1219 dmu_buf_rele_array(dbp
, numbufs
, FTAG
);
1224 * Write 'size' bytes from the uio buffer.
1225 * To object zdb->db_object.
1226 * Starting at offset uio->uio_loffset.
1228 * If the caller already has a dbuf in the target object
1229 * (e.g. its bonus buffer), this routine is faster than dmu_write_uio(),
1230 * because we don't have to find the dnode_t for the object.
1233 dmu_write_uio_dbuf(dmu_buf_t
*zdb
, uio_t
*uio
, uint64_t size
,
1236 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zdb
;
1245 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1252 * Write 'size' bytes from the uio buffer.
1253 * To the specified object.
1254 * Starting at offset uio->uio_loffset.
1257 dmu_write_uio(objset_t
*os
, uint64_t object
, uio_t
*uio
, uint64_t size
,
1266 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1270 err
= dmu_write_uio_dnode(dn
, uio
, size
, tx
);
1272 dnode_rele(dn
, FTAG
);
1276 #endif /* _KERNEL */
1279 * Allocate a loaned anonymous arc buffer.
1282 dmu_request_arcbuf(dmu_buf_t
*handle
, int size
)
1284 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)handle
;
1286 return (arc_loan_buf(db
->db_objset
->os_spa
, size
));
1290 * Free a loaned arc buffer.
1293 dmu_return_arcbuf(arc_buf_t
*buf
)
1295 arc_return_buf(buf
, FTAG
);
1296 VERIFY(arc_buf_remove_ref(buf
, FTAG
));
1300 * When possible directly assign passed loaned arc buffer to a dbuf.
1301 * If this is not possible copy the contents of passed arc buf via
1305 dmu_assign_arcbuf(dmu_buf_t
*handle
, uint64_t offset
, arc_buf_t
*buf
,
1308 dmu_buf_impl_t
*dbuf
= (dmu_buf_impl_t
*)handle
;
1311 uint32_t blksz
= (uint32_t)arc_buf_size(buf
);
1314 DB_DNODE_ENTER(dbuf
);
1315 dn
= DB_DNODE(dbuf
);
1316 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1317 blkid
= dbuf_whichblock(dn
, 0, offset
);
1318 VERIFY((db
= dbuf_hold(dn
, blkid
, FTAG
)) != NULL
);
1319 rw_exit(&dn
->dn_struct_rwlock
);
1320 DB_DNODE_EXIT(dbuf
);
1323 * We can only assign if the offset is aligned, the arc buf is the
1324 * same size as the dbuf, and the dbuf is not metadata. It
1325 * can't be metadata because the loaned arc buf comes from the
1326 * user-data kmem area.
1328 if (offset
== db
->db
.db_offset
&& blksz
== db
->db
.db_size
&&
1329 DBUF_GET_BUFC_TYPE(db
) == ARC_BUFC_DATA
) {
1330 dbuf_assign_arcbuf(db
, buf
, tx
);
1331 dbuf_rele(db
, FTAG
);
1336 DB_DNODE_ENTER(dbuf
);
1337 dn
= DB_DNODE(dbuf
);
1339 object
= dn
->dn_object
;
1340 DB_DNODE_EXIT(dbuf
);
1342 dbuf_rele(db
, FTAG
);
1343 dmu_write(os
, object
, offset
, blksz
, buf
->b_data
, tx
);
1344 dmu_return_arcbuf(buf
);
1345 XUIOSTAT_BUMP(xuiostat_wbuf_copied
);
1350 dbuf_dirty_record_t
*dsa_dr
;
1351 dmu_sync_cb_t
*dsa_done
;
1358 dmu_sync_ready(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1360 dmu_sync_arg_t
*dsa
= varg
;
1361 dmu_buf_t
*db
= dsa
->dsa_zgd
->zgd_db
;
1362 blkptr_t
*bp
= zio
->io_bp
;
1364 if (zio
->io_error
== 0) {
1365 if (BP_IS_HOLE(bp
)) {
1367 * A block of zeros may compress to a hole, but the
1368 * block size still needs to be known for replay.
1370 BP_SET_LSIZE(bp
, db
->db_size
);
1371 } else if (!BP_IS_EMBEDDED(bp
)) {
1372 ASSERT(BP_GET_LEVEL(bp
) == 0);
1379 dmu_sync_late_arrival_ready(zio_t
*zio
)
1381 dmu_sync_ready(zio
, NULL
, zio
->io_private
);
1386 dmu_sync_done(zio_t
*zio
, arc_buf_t
*buf
, void *varg
)
1388 dmu_sync_arg_t
*dsa
= varg
;
1389 dbuf_dirty_record_t
*dr
= dsa
->dsa_dr
;
1390 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1392 mutex_enter(&db
->db_mtx
);
1393 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
);
1394 if (zio
->io_error
== 0) {
1395 dr
->dt
.dl
.dr_nopwrite
= !!(zio
->io_flags
& ZIO_FLAG_NOPWRITE
);
1396 if (dr
->dt
.dl
.dr_nopwrite
) {
1397 ASSERTV(blkptr_t
*bp
= zio
->io_bp
);
1398 ASSERTV(blkptr_t
*bp_orig
= &zio
->io_bp_orig
);
1399 ASSERTV(uint8_t chksum
= BP_GET_CHECKSUM(bp_orig
));
1401 ASSERT(BP_EQUAL(bp
, bp_orig
));
1402 ASSERT(zio
->io_prop
.zp_compress
!= ZIO_COMPRESS_OFF
);
1403 ASSERT(zio_checksum_table
[chksum
].ci_dedup
);
1405 dr
->dt
.dl
.dr_overridden_by
= *zio
->io_bp
;
1406 dr
->dt
.dl
.dr_override_state
= DR_OVERRIDDEN
;
1407 dr
->dt
.dl
.dr_copies
= zio
->io_prop
.zp_copies
;
1410 * Old style holes are filled with all zeros, whereas
1411 * new-style holes maintain their lsize, type, level,
1412 * and birth time (see zio_write_compress). While we
1413 * need to reset the BP_SET_LSIZE() call that happened
1414 * in dmu_sync_ready for old style holes, we do *not*
1415 * want to wipe out the information contained in new
1416 * style holes. Thus, only zero out the block pointer if
1417 * it's an old style hole.
1419 if (BP_IS_HOLE(&dr
->dt
.dl
.dr_overridden_by
) &&
1420 dr
->dt
.dl
.dr_overridden_by
.blk_birth
== 0)
1421 BP_ZERO(&dr
->dt
.dl
.dr_overridden_by
);
1423 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1425 cv_broadcast(&db
->db_changed
);
1426 mutex_exit(&db
->db_mtx
);
1428 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1430 kmem_free(dsa
, sizeof (*dsa
));
1434 dmu_sync_late_arrival_done(zio_t
*zio
)
1436 blkptr_t
*bp
= zio
->io_bp
;
1437 dmu_sync_arg_t
*dsa
= zio
->io_private
;
1438 ASSERTV(blkptr_t
*bp_orig
= &zio
->io_bp_orig
);
1440 if (zio
->io_error
== 0 && !BP_IS_HOLE(bp
)) {
1442 * If we didn't allocate a new block (i.e. ZIO_FLAG_NOPWRITE)
1443 * then there is nothing to do here. Otherwise, free the
1444 * newly allocated block in this txg.
1446 if (zio
->io_flags
& ZIO_FLAG_NOPWRITE
) {
1447 ASSERT(BP_EQUAL(bp
, bp_orig
));
1449 ASSERT(BP_IS_HOLE(bp_orig
) || !BP_EQUAL(bp
, bp_orig
));
1450 ASSERT(zio
->io_bp
->blk_birth
== zio
->io_txg
);
1451 ASSERT(zio
->io_txg
> spa_syncing_txg(zio
->io_spa
));
1452 zio_free(zio
->io_spa
, zio
->io_txg
, zio
->io_bp
);
1456 dmu_tx_commit(dsa
->dsa_tx
);
1458 dsa
->dsa_done(dsa
->dsa_zgd
, zio
->io_error
);
1460 kmem_free(dsa
, sizeof (*dsa
));
1464 dmu_sync_late_arrival(zio_t
*pio
, objset_t
*os
, dmu_sync_cb_t
*done
, zgd_t
*zgd
,
1465 zio_prop_t
*zp
, zbookmark_phys_t
*zb
)
1467 dmu_sync_arg_t
*dsa
;
1470 tx
= dmu_tx_create(os
);
1471 dmu_tx_hold_space(tx
, zgd
->zgd_db
->db_size
);
1472 if (dmu_tx_assign(tx
, TXG_WAIT
) != 0) {
1474 /* Make zl_get_data do txg_waited_synced() */
1475 return (SET_ERROR(EIO
));
1478 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1480 dsa
->dsa_done
= done
;
1484 zio_nowait(zio_write(pio
, os
->os_spa
, dmu_tx_get_txg(tx
),
1485 zgd
->zgd_bp
, zgd
->zgd_db
->db_data
, zgd
->zgd_db
->db_size
,
1486 zp
, dmu_sync_late_arrival_ready
, NULL
,
1487 NULL
, dmu_sync_late_arrival_done
, dsa
, ZIO_PRIORITY_SYNC_WRITE
,
1488 ZIO_FLAG_CANFAIL
, zb
));
1494 * Intent log support: sync the block associated with db to disk.
1495 * N.B. and XXX: the caller is responsible for making sure that the
1496 * data isn't changing while dmu_sync() is writing it.
1500 * EEXIST: this txg has already been synced, so there's nothing to do.
1501 * The caller should not log the write.
1503 * ENOENT: the block was dbuf_free_range()'d, so there's nothing to do.
1504 * The caller should not log the write.
1506 * EALREADY: this block is already in the process of being synced.
1507 * The caller should track its progress (somehow).
1509 * EIO: could not do the I/O.
1510 * The caller should do a txg_wait_synced().
1512 * 0: the I/O has been initiated.
1513 * The caller should log this blkptr in the done callback.
1514 * It is possible that the I/O will fail, in which case
1515 * the error will be reported to the done callback and
1516 * propagated to pio from zio_done().
1519 dmu_sync(zio_t
*pio
, uint64_t txg
, dmu_sync_cb_t
*done
, zgd_t
*zgd
)
1521 blkptr_t
*bp
= zgd
->zgd_bp
;
1522 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)zgd
->zgd_db
;
1523 objset_t
*os
= db
->db_objset
;
1524 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
1525 dbuf_dirty_record_t
*dr
;
1526 dmu_sync_arg_t
*dsa
;
1527 zbookmark_phys_t zb
;
1531 ASSERT(pio
!= NULL
);
1534 SET_BOOKMARK(&zb
, ds
->ds_object
,
1535 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1539 dmu_write_policy(os
, dn
, db
->db_level
, WP_DMU_SYNC
, &zp
);
1543 * If we're frozen (running ziltest), we always need to generate a bp.
1545 if (txg
> spa_freeze_txg(os
->os_spa
))
1546 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1549 * Grabbing db_mtx now provides a barrier between dbuf_sync_leaf()
1550 * and us. If we determine that this txg is not yet syncing,
1551 * but it begins to sync a moment later, that's OK because the
1552 * sync thread will block in dbuf_sync_leaf() until we drop db_mtx.
1554 mutex_enter(&db
->db_mtx
);
1556 if (txg
<= spa_last_synced_txg(os
->os_spa
)) {
1558 * This txg has already synced. There's nothing to do.
1560 mutex_exit(&db
->db_mtx
);
1561 return (SET_ERROR(EEXIST
));
1564 if (txg
<= spa_syncing_txg(os
->os_spa
)) {
1566 * This txg is currently syncing, so we can't mess with
1567 * the dirty record anymore; just write a new log block.
1569 mutex_exit(&db
->db_mtx
);
1570 return (dmu_sync_late_arrival(pio
, os
, done
, zgd
, &zp
, &zb
));
1573 dr
= db
->db_last_dirty
;
1574 while (dr
&& dr
->dr_txg
!= txg
)
1579 * There's no dr for this dbuf, so it must have been freed.
1580 * There's no need to log writes to freed blocks, so we're done.
1582 mutex_exit(&db
->db_mtx
);
1583 return (SET_ERROR(ENOENT
));
1586 ASSERT(dr
->dr_next
== NULL
|| dr
->dr_next
->dr_txg
< txg
);
1589 * Assume the on-disk data is X, the current syncing data (in
1590 * txg - 1) is Y, and the current in-memory data is Z (currently
1593 * We usually want to perform a nopwrite if X and Z are the
1594 * same. However, if Y is different (i.e. the BP is going to
1595 * change before this write takes effect), then a nopwrite will
1596 * be incorrect - we would override with X, which could have
1597 * been freed when Y was written.
1599 * (Note that this is not a concern when we are nop-writing from
1600 * syncing context, because X and Y must be identical, because
1601 * all previous txgs have been synced.)
1603 * Therefore, we disable nopwrite if the current BP could change
1604 * before this TXG. There are two ways it could change: by
1605 * being dirty (dr_next is non-NULL), or by being freed
1606 * (dnode_block_freed()). This behavior is verified by
1607 * zio_done(), which VERIFYs that the override BP is identical
1608 * to the on-disk BP.
1612 if (dr
->dr_next
!= NULL
|| dnode_block_freed(dn
, db
->db_blkid
))
1613 zp
.zp_nopwrite
= B_FALSE
;
1616 ASSERT(dr
->dr_txg
== txg
);
1617 if (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
||
1618 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
1620 * We have already issued a sync write for this buffer,
1621 * or this buffer has already been synced. It could not
1622 * have been dirtied since, or we would have cleared the state.
1624 mutex_exit(&db
->db_mtx
);
1625 return (SET_ERROR(EALREADY
));
1628 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
1629 dr
->dt
.dl
.dr_override_state
= DR_IN_DMU_SYNC
;
1630 mutex_exit(&db
->db_mtx
);
1632 dsa
= kmem_alloc(sizeof (dmu_sync_arg_t
), KM_SLEEP
);
1634 dsa
->dsa_done
= done
;
1638 zio_nowait(arc_write(pio
, os
->os_spa
, txg
,
1639 bp
, dr
->dt
.dl
.dr_data
, DBUF_IS_L2CACHEABLE(db
),
1640 DBUF_IS_L2COMPRESSIBLE(db
), &zp
, dmu_sync_ready
,
1641 NULL
, NULL
, dmu_sync_done
, dsa
,
1642 ZIO_PRIORITY_SYNC_WRITE
, ZIO_FLAG_CANFAIL
, &zb
));
1648 dmu_object_set_blocksize(objset_t
*os
, uint64_t object
, uint64_t size
, int ibs
,
1654 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1657 err
= dnode_set_blksz(dn
, size
, ibs
, tx
);
1658 dnode_rele(dn
, FTAG
);
1663 dmu_object_set_checksum(objset_t
*os
, uint64_t object
, uint8_t checksum
,
1669 * Send streams include each object's checksum function. This
1670 * check ensures that the receiving system can understand the
1671 * checksum function transmitted.
1673 ASSERT3U(checksum
, <, ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
1675 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1676 ASSERT3U(checksum
, <, ZIO_CHECKSUM_FUNCTIONS
);
1677 dn
->dn_checksum
= checksum
;
1678 dnode_setdirty(dn
, tx
);
1679 dnode_rele(dn
, FTAG
);
1683 dmu_object_set_compress(objset_t
*os
, uint64_t object
, uint8_t compress
,
1689 * Send streams include each object's compression function. This
1690 * check ensures that the receiving system can understand the
1691 * compression function transmitted.
1693 ASSERT3U(compress
, <, ZIO_COMPRESS_LEGACY_FUNCTIONS
);
1695 VERIFY0(dnode_hold(os
, object
, FTAG
, &dn
));
1696 dn
->dn_compress
= compress
;
1697 dnode_setdirty(dn
, tx
);
1698 dnode_rele(dn
, FTAG
);
1701 int zfs_mdcomp_disable
= 0;
1704 * When the "redundant_metadata" property is set to "most", only indirect
1705 * blocks of this level and higher will have an additional ditto block.
1707 int zfs_redundant_metadata_most_ditto_level
= 2;
1710 dmu_write_policy(objset_t
*os
, dnode_t
*dn
, int level
, int wp
, zio_prop_t
*zp
)
1712 dmu_object_type_t type
= dn
? dn
->dn_type
: DMU_OT_OBJSET
;
1713 boolean_t ismd
= (level
> 0 || DMU_OT_IS_METADATA(type
) ||
1715 enum zio_checksum checksum
= os
->os_checksum
;
1716 enum zio_compress compress
= os
->os_compress
;
1717 enum zio_checksum dedup_checksum
= os
->os_dedup_checksum
;
1718 boolean_t dedup
= B_FALSE
;
1719 boolean_t nopwrite
= B_FALSE
;
1720 boolean_t dedup_verify
= os
->os_dedup_verify
;
1721 int copies
= os
->os_copies
;
1724 * We maintain different write policies for each of the following
1727 * 2. preallocated blocks (i.e. level-0 blocks of a dump device)
1728 * 3. all other level 0 blocks
1731 if (zfs_mdcomp_disable
) {
1732 compress
= ZIO_COMPRESS_EMPTY
;
1735 * XXX -- we should design a compression algorithm
1736 * that specializes in arrays of bps.
1738 compress
= zio_compress_select(os
->os_spa
,
1739 ZIO_COMPRESS_ON
, ZIO_COMPRESS_ON
);
1743 * Metadata always gets checksummed. If the data
1744 * checksum is multi-bit correctable, and it's not a
1745 * ZBT-style checksum, then it's suitable for metadata
1746 * as well. Otherwise, the metadata checksum defaults
1749 if (zio_checksum_table
[checksum
].ci_correctable
< 1 ||
1750 zio_checksum_table
[checksum
].ci_eck
)
1751 checksum
= ZIO_CHECKSUM_FLETCHER_4
;
1753 if (os
->os_redundant_metadata
== ZFS_REDUNDANT_METADATA_ALL
||
1754 (os
->os_redundant_metadata
==
1755 ZFS_REDUNDANT_METADATA_MOST
&&
1756 (level
>= zfs_redundant_metadata_most_ditto_level
||
1757 DMU_OT_IS_METADATA(type
) || (wp
& WP_SPILL
))))
1759 } else if (wp
& WP_NOFILL
) {
1763 * If we're writing preallocated blocks, we aren't actually
1764 * writing them so don't set any policy properties. These
1765 * blocks are currently only used by an external subsystem
1766 * outside of zfs (i.e. dump) and not written by the zio
1769 compress
= ZIO_COMPRESS_OFF
;
1770 checksum
= ZIO_CHECKSUM_OFF
;
1772 compress
= zio_compress_select(os
->os_spa
, dn
->dn_compress
,
1775 checksum
= (dedup_checksum
== ZIO_CHECKSUM_OFF
) ?
1776 zio_checksum_select(dn
->dn_checksum
, checksum
) :
1780 * Determine dedup setting. If we are in dmu_sync(),
1781 * we won't actually dedup now because that's all
1782 * done in syncing context; but we do want to use the
1783 * dedup checkum. If the checksum is not strong
1784 * enough to ensure unique signatures, force
1787 if (dedup_checksum
!= ZIO_CHECKSUM_OFF
) {
1788 dedup
= (wp
& WP_DMU_SYNC
) ? B_FALSE
: B_TRUE
;
1789 if (!zio_checksum_table
[checksum
].ci_dedup
)
1790 dedup_verify
= B_TRUE
;
1794 * Enable nopwrite if we have a cryptographically secure
1795 * checksum that has no known collisions (i.e. SHA-256)
1796 * and compression is enabled. We don't enable nopwrite if
1797 * dedup is enabled as the two features are mutually exclusive.
1799 nopwrite
= (!dedup
&& zio_checksum_table
[checksum
].ci_dedup
&&
1800 compress
!= ZIO_COMPRESS_OFF
&& zfs_nopwrite_enabled
);
1803 zp
->zp_checksum
= checksum
;
1804 zp
->zp_compress
= compress
;
1805 zp
->zp_type
= (wp
& WP_SPILL
) ? dn
->dn_bonustype
: type
;
1806 zp
->zp_level
= level
;
1807 zp
->zp_copies
= MIN(copies
, spa_max_replication(os
->os_spa
));
1808 zp
->zp_dedup
= dedup
;
1809 zp
->zp_dedup_verify
= dedup
&& dedup_verify
;
1810 zp
->zp_nopwrite
= nopwrite
;
1814 dmu_offset_next(objset_t
*os
, uint64_t object
, boolean_t hole
, uint64_t *off
)
1819 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1823 * Sync any current changes before
1824 * we go trundling through the block pointers.
1826 for (i
= 0; i
< TXG_SIZE
; i
++) {
1827 if (list_link_active(&dn
->dn_dirty_link
[i
]))
1830 if (i
!= TXG_SIZE
) {
1831 dnode_rele(dn
, FTAG
);
1832 txg_wait_synced(dmu_objset_pool(os
), 0);
1833 err
= dnode_hold(os
, object
, FTAG
, &dn
);
1838 err
= dnode_next_offset(dn
, (hole
? DNODE_FIND_HOLE
: 0), off
, 1, 1, 0);
1839 dnode_rele(dn
, FTAG
);
1845 __dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
1847 dnode_phys_t
*dnp
= dn
->dn_phys
;
1850 doi
->doi_data_block_size
= dn
->dn_datablksz
;
1851 doi
->doi_metadata_block_size
= dn
->dn_indblkshift
?
1852 1ULL << dn
->dn_indblkshift
: 0;
1853 doi
->doi_type
= dn
->dn_type
;
1854 doi
->doi_bonus_type
= dn
->dn_bonustype
;
1855 doi
->doi_bonus_size
= dn
->dn_bonuslen
;
1856 doi
->doi_dnodesize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
1857 doi
->doi_indirection
= dn
->dn_nlevels
;
1858 doi
->doi_checksum
= dn
->dn_checksum
;
1859 doi
->doi_compress
= dn
->dn_compress
;
1860 doi
->doi_nblkptr
= dn
->dn_nblkptr
;
1861 doi
->doi_physical_blocks_512
= (DN_USED_BYTES(dnp
) + 256) >> 9;
1862 doi
->doi_max_offset
= (dn
->dn_maxblkid
+ 1) * dn
->dn_datablksz
;
1863 doi
->doi_fill_count
= 0;
1864 for (i
= 0; i
< dnp
->dn_nblkptr
; i
++)
1865 doi
->doi_fill_count
+= BP_GET_FILL(&dnp
->dn_blkptr
[i
]);
1869 dmu_object_info_from_dnode(dnode_t
*dn
, dmu_object_info_t
*doi
)
1871 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
1872 mutex_enter(&dn
->dn_mtx
);
1874 __dmu_object_info_from_dnode(dn
, doi
);
1876 mutex_exit(&dn
->dn_mtx
);
1877 rw_exit(&dn
->dn_struct_rwlock
);
1881 * Get information on a DMU object.
1882 * If doi is NULL, just indicates whether the object exists.
1885 dmu_object_info(objset_t
*os
, uint64_t object
, dmu_object_info_t
*doi
)
1888 int err
= dnode_hold(os
, object
, FTAG
, &dn
);
1894 dmu_object_info_from_dnode(dn
, doi
);
1896 dnode_rele(dn
, FTAG
);
1901 * As above, but faster; can be used when you have a held dbuf in hand.
1904 dmu_object_info_from_db(dmu_buf_t
*db_fake
, dmu_object_info_t
*doi
)
1906 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
1909 dmu_object_info_from_dnode(DB_DNODE(db
), doi
);
1914 * Faster still when you only care about the size.
1915 * This is specifically optimized for zfs_getattr().
1918 dmu_object_size_from_db(dmu_buf_t
*db_fake
, uint32_t *blksize
,
1919 u_longlong_t
*nblk512
)
1921 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
1927 *blksize
= dn
->dn_datablksz
;
1928 /* add in number of slots used for the dnode itself */
1929 *nblk512
= ((DN_USED_BYTES(dn
->dn_phys
) + SPA_MINBLOCKSIZE
/2) >>
1930 SPA_MINBLOCKSHIFT
) + dn
->dn_num_slots
;
1935 dmu_object_dnsize_from_db(dmu_buf_t
*db_fake
, int *dnsize
)
1937 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
1942 *dnsize
= dn
->dn_num_slots
<< DNODE_SHIFT
;
1947 byteswap_uint64_array(void *vbuf
, size_t size
)
1949 uint64_t *buf
= vbuf
;
1950 size_t count
= size
>> 3;
1953 ASSERT((size
& 7) == 0);
1955 for (i
= 0; i
< count
; i
++)
1956 buf
[i
] = BSWAP_64(buf
[i
]);
1960 byteswap_uint32_array(void *vbuf
, size_t size
)
1962 uint32_t *buf
= vbuf
;
1963 size_t count
= size
>> 2;
1966 ASSERT((size
& 3) == 0);
1968 for (i
= 0; i
< count
; i
++)
1969 buf
[i
] = BSWAP_32(buf
[i
]);
1973 byteswap_uint16_array(void *vbuf
, size_t size
)
1975 uint16_t *buf
= vbuf
;
1976 size_t count
= size
>> 1;
1979 ASSERT((size
& 1) == 0);
1981 for (i
= 0; i
< count
; i
++)
1982 buf
[i
] = BSWAP_16(buf
[i
]);
1987 byteswap_uint8_array(void *vbuf
, size_t size
)
2009 arc_fini(); /* arc depends on l2arc, so arc must go first */
2021 #if defined(_KERNEL) && defined(HAVE_SPL)
2022 EXPORT_SYMBOL(dmu_bonus_hold
);
2023 EXPORT_SYMBOL(dmu_buf_hold_array_by_bonus
);
2024 EXPORT_SYMBOL(dmu_buf_rele_array
);
2025 EXPORT_SYMBOL(dmu_prefetch
);
2026 EXPORT_SYMBOL(dmu_free_range
);
2027 EXPORT_SYMBOL(dmu_free_long_range
);
2028 EXPORT_SYMBOL(dmu_free_long_object
);
2029 EXPORT_SYMBOL(dmu_read
);
2030 EXPORT_SYMBOL(dmu_write
);
2031 EXPORT_SYMBOL(dmu_prealloc
);
2032 EXPORT_SYMBOL(dmu_object_info
);
2033 EXPORT_SYMBOL(dmu_object_info_from_dnode
);
2034 EXPORT_SYMBOL(dmu_object_info_from_db
);
2035 EXPORT_SYMBOL(dmu_object_size_from_db
);
2036 EXPORT_SYMBOL(dmu_object_dnsize_from_db
);
2037 EXPORT_SYMBOL(dmu_object_set_blocksize
);
2038 EXPORT_SYMBOL(dmu_object_set_checksum
);
2039 EXPORT_SYMBOL(dmu_object_set_compress
);
2040 EXPORT_SYMBOL(dmu_write_policy
);
2041 EXPORT_SYMBOL(dmu_sync
);
2042 EXPORT_SYMBOL(dmu_request_arcbuf
);
2043 EXPORT_SYMBOL(dmu_return_arcbuf
);
2044 EXPORT_SYMBOL(dmu_assign_arcbuf
);
2045 EXPORT_SYMBOL(dmu_buf_hold
);
2046 EXPORT_SYMBOL(dmu_ot
);
2048 module_param(zfs_mdcomp_disable
, int, 0644);
2049 MODULE_PARM_DESC(zfs_mdcomp_disable
, "Disable meta data compression");
2051 module_param(zfs_nopwrite_enabled
, int, 0644);
2052 MODULE_PARM_DESC(zfs_nopwrite_enabled
, "Enable NOP writes");