Add dmu_tx_hold_append() interface
[zfs.git] / include / sys / dmu.h
bloba5a5c378279aa4587cbe91642969f8f365fefd00
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2020 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2012, Joyent, Inc. All rights reserved.
26 * Copyright 2014 HybridCluster. All rights reserved.
27 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
28 * Copyright 2013 Saso Kiselkov. All rights reserved.
29 * Copyright (c) 2017, Intel Corporation.
30 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
33 /* Portions Copyright 2010 Robert Milkowski */
35 #ifndef _SYS_DMU_H
36 #define _SYS_DMU_H
39 * This file describes the interface that the DMU provides for its
40 * consumers.
42 * The DMU also interacts with the SPA. That interface is described in
43 * dmu_spa.h.
46 #include <sys/zfs_context.h>
47 #include <sys/inttypes.h>
48 #include <sys/cred.h>
49 #include <sys/fs/zfs.h>
50 #include <sys/zio_compress.h>
51 #include <sys/zio_priority.h>
52 #include <sys/uio.h>
53 #include <sys/zfs_file.h>
55 #ifdef __cplusplus
56 extern "C" {
57 #endif
59 struct page;
60 struct vnode;
61 struct spa;
62 struct zilog;
63 struct zio;
64 struct blkptr;
65 struct zap_cursor;
66 struct dsl_dataset;
67 struct dsl_pool;
68 struct dnode;
69 struct drr_begin;
70 struct drr_end;
71 struct zbookmark_phys;
72 struct spa;
73 struct nvlist;
74 struct arc_buf;
75 struct zio_prop;
76 struct sa_handle;
77 struct dsl_crypto_params;
78 struct locked_range;
80 typedef struct objset objset_t;
81 typedef struct dmu_tx dmu_tx_t;
82 typedef struct dsl_dir dsl_dir_t;
83 typedef struct dnode dnode_t;
85 typedef enum dmu_object_byteswap {
86 DMU_BSWAP_UINT8,
87 DMU_BSWAP_UINT16,
88 DMU_BSWAP_UINT32,
89 DMU_BSWAP_UINT64,
90 DMU_BSWAP_ZAP,
91 DMU_BSWAP_DNODE,
92 DMU_BSWAP_OBJSET,
93 DMU_BSWAP_ZNODE,
94 DMU_BSWAP_OLDACL,
95 DMU_BSWAP_ACL,
97 * Allocating a new byteswap type number makes the on-disk format
98 * incompatible with any other format that uses the same number.
100 * Data can usually be structured to work with one of the
101 * DMU_BSWAP_UINT* or DMU_BSWAP_ZAP types.
103 DMU_BSWAP_NUMFUNCS
104 } dmu_object_byteswap_t;
106 #define DMU_OT_NEWTYPE 0x80
107 #define DMU_OT_METADATA 0x40
108 #define DMU_OT_ENCRYPTED 0x20
109 #define DMU_OT_BYTESWAP_MASK 0x1f
112 * Defines a uint8_t object type. Object types specify if the data
113 * in the object is metadata (boolean) and how to byteswap the data
114 * (dmu_object_byteswap_t). All of the types created by this method
115 * are cached in the dbuf metadata cache.
117 #define DMU_OT(byteswap, metadata, encrypted) \
118 (DMU_OT_NEWTYPE | \
119 ((metadata) ? DMU_OT_METADATA : 0) | \
120 ((encrypted) ? DMU_OT_ENCRYPTED : 0) | \
121 ((byteswap) & DMU_OT_BYTESWAP_MASK))
123 #define DMU_OT_IS_VALID(ot) (((ot) & DMU_OT_NEWTYPE) ? \
124 ((ot) & DMU_OT_BYTESWAP_MASK) < DMU_BSWAP_NUMFUNCS : \
125 (ot) < DMU_OT_NUMTYPES)
127 #define DMU_OT_IS_METADATA_CACHED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
128 B_TRUE : dmu_ot[(ot)].ot_dbuf_metadata_cache)
131 * MDB doesn't have dmu_ot; it defines these macros itself.
133 #ifndef ZFS_MDB
134 #define DMU_OT_IS_METADATA_IMPL(ot) (dmu_ot[ot].ot_metadata)
135 #define DMU_OT_IS_ENCRYPTED_IMPL(ot) (dmu_ot[ot].ot_encrypt)
136 #define DMU_OT_BYTESWAP_IMPL(ot) (dmu_ot[ot].ot_byteswap)
137 #endif
139 #define DMU_OT_IS_METADATA(ot) (((ot) & DMU_OT_NEWTYPE) ? \
140 (((ot) & DMU_OT_METADATA) != 0) : \
141 DMU_OT_IS_METADATA_IMPL(ot))
143 #define DMU_OT_IS_DDT(ot) \
144 ((ot) == DMU_OT_DDT_ZAP)
146 #define DMU_OT_IS_CRITICAL(ot) \
147 (DMU_OT_IS_METADATA(ot) && \
148 (ot) != DMU_OT_DNODE && \
149 (ot) != DMU_OT_DIRECTORY_CONTENTS && \
150 (ot) != DMU_OT_SA)
152 /* Note: ztest uses DMU_OT_UINT64_OTHER as a proxy for file blocks */
153 #define DMU_OT_IS_FILE(ot) \
154 ((ot) == DMU_OT_PLAIN_FILE_CONTENTS || (ot) == DMU_OT_UINT64_OTHER)
156 #define DMU_OT_IS_ENCRYPTED(ot) (((ot) & DMU_OT_NEWTYPE) ? \
157 (((ot) & DMU_OT_ENCRYPTED) != 0) : \
158 DMU_OT_IS_ENCRYPTED_IMPL(ot))
161 * These object types use bp_fill != 1 for their L0 bp's. Therefore they can't
162 * have their data embedded (i.e. use a BP_IS_EMBEDDED() bp), because bp_fill
163 * is repurposed for embedded BPs.
165 #define DMU_OT_HAS_FILL(ot) \
166 ((ot) == DMU_OT_DNODE || (ot) == DMU_OT_OBJSET)
168 #define DMU_OT_BYTESWAP(ot) (((ot) & DMU_OT_NEWTYPE) ? \
169 ((ot) & DMU_OT_BYTESWAP_MASK) : \
170 DMU_OT_BYTESWAP_IMPL(ot))
172 typedef enum dmu_object_type {
173 DMU_OT_NONE,
174 /* general: */
175 DMU_OT_OBJECT_DIRECTORY, /* ZAP */
176 DMU_OT_OBJECT_ARRAY, /* UINT64 */
177 DMU_OT_PACKED_NVLIST, /* UINT8 (XDR by nvlist_pack/unpack) */
178 DMU_OT_PACKED_NVLIST_SIZE, /* UINT64 */
179 DMU_OT_BPOBJ, /* UINT64 */
180 DMU_OT_BPOBJ_HDR, /* UINT64 */
181 /* spa: */
182 DMU_OT_SPACE_MAP_HEADER, /* UINT64 */
183 DMU_OT_SPACE_MAP, /* UINT64 */
184 /* zil: */
185 DMU_OT_INTENT_LOG, /* UINT64 */
186 /* dmu: */
187 DMU_OT_DNODE, /* DNODE */
188 DMU_OT_OBJSET, /* OBJSET */
189 /* dsl: */
190 DMU_OT_DSL_DIR, /* UINT64 */
191 DMU_OT_DSL_DIR_CHILD_MAP, /* ZAP */
192 DMU_OT_DSL_DS_SNAP_MAP, /* ZAP */
193 DMU_OT_DSL_PROPS, /* ZAP */
194 DMU_OT_DSL_DATASET, /* UINT64 */
195 /* zpl: */
196 DMU_OT_ZNODE, /* ZNODE */
197 DMU_OT_OLDACL, /* Old ACL */
198 DMU_OT_PLAIN_FILE_CONTENTS, /* UINT8 */
199 DMU_OT_DIRECTORY_CONTENTS, /* ZAP */
200 DMU_OT_MASTER_NODE, /* ZAP */
201 DMU_OT_UNLINKED_SET, /* ZAP */
202 /* zvol: */
203 DMU_OT_ZVOL, /* UINT8 */
204 DMU_OT_ZVOL_PROP, /* ZAP */
205 /* other; for testing only! */
206 DMU_OT_PLAIN_OTHER, /* UINT8 */
207 DMU_OT_UINT64_OTHER, /* UINT64 */
208 DMU_OT_ZAP_OTHER, /* ZAP */
209 /* new object types: */
210 DMU_OT_ERROR_LOG, /* ZAP */
211 DMU_OT_SPA_HISTORY, /* UINT8 */
212 DMU_OT_SPA_HISTORY_OFFSETS, /* spa_his_phys_t */
213 DMU_OT_POOL_PROPS, /* ZAP */
214 DMU_OT_DSL_PERMS, /* ZAP */
215 DMU_OT_ACL, /* ACL */
216 DMU_OT_SYSACL, /* SYSACL */
217 DMU_OT_FUID, /* FUID table (Packed NVLIST UINT8) */
218 DMU_OT_FUID_SIZE, /* FUID table size UINT64 */
219 DMU_OT_NEXT_CLONES, /* ZAP */
220 DMU_OT_SCAN_QUEUE, /* ZAP */
221 DMU_OT_USERGROUP_USED, /* ZAP */
222 DMU_OT_USERGROUP_QUOTA, /* ZAP */
223 DMU_OT_USERREFS, /* ZAP */
224 DMU_OT_DDT_ZAP, /* ZAP */
225 DMU_OT_DDT_STATS, /* ZAP */
226 DMU_OT_SA, /* System attr */
227 DMU_OT_SA_MASTER_NODE, /* ZAP */
228 DMU_OT_SA_ATTR_REGISTRATION, /* ZAP */
229 DMU_OT_SA_ATTR_LAYOUTS, /* ZAP */
230 DMU_OT_SCAN_XLATE, /* ZAP */
231 DMU_OT_DEDUP, /* fake dedup BP from ddt_bp_create() */
232 DMU_OT_DEADLIST, /* ZAP */
233 DMU_OT_DEADLIST_HDR, /* UINT64 */
234 DMU_OT_DSL_CLONES, /* ZAP */
235 DMU_OT_BPOBJ_SUBOBJ, /* UINT64 */
237 * Do not allocate new object types here. Doing so makes the on-disk
238 * format incompatible with any other format that uses the same object
239 * type number.
241 * When creating an object which does not have one of the above types
242 * use the DMU_OTN_* type with the correct byteswap and metadata
243 * values.
245 * The DMU_OTN_* types do not have entries in the dmu_ot table,
246 * use the DMU_OT_IS_METADATA() and DMU_OT_BYTESWAP() macros instead
247 * of indexing into dmu_ot directly (this works for both DMU_OT_* types
248 * and DMU_OTN_* types).
250 DMU_OT_NUMTYPES,
253 * Names for valid types declared with DMU_OT().
255 DMU_OTN_UINT8_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_FALSE),
256 DMU_OTN_UINT8_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_FALSE),
257 DMU_OTN_UINT16_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_FALSE),
258 DMU_OTN_UINT16_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_FALSE),
259 DMU_OTN_UINT32_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_FALSE),
260 DMU_OTN_UINT32_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_FALSE),
261 DMU_OTN_UINT64_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_FALSE),
262 DMU_OTN_UINT64_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_FALSE),
263 DMU_OTN_ZAP_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_FALSE),
264 DMU_OTN_ZAP_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_FALSE),
266 DMU_OTN_UINT8_ENC_DATA = DMU_OT(DMU_BSWAP_UINT8, B_FALSE, B_TRUE),
267 DMU_OTN_UINT8_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT8, B_TRUE, B_TRUE),
268 DMU_OTN_UINT16_ENC_DATA = DMU_OT(DMU_BSWAP_UINT16, B_FALSE, B_TRUE),
269 DMU_OTN_UINT16_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT16, B_TRUE, B_TRUE),
270 DMU_OTN_UINT32_ENC_DATA = DMU_OT(DMU_BSWAP_UINT32, B_FALSE, B_TRUE),
271 DMU_OTN_UINT32_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT32, B_TRUE, B_TRUE),
272 DMU_OTN_UINT64_ENC_DATA = DMU_OT(DMU_BSWAP_UINT64, B_FALSE, B_TRUE),
273 DMU_OTN_UINT64_ENC_METADATA = DMU_OT(DMU_BSWAP_UINT64, B_TRUE, B_TRUE),
274 DMU_OTN_ZAP_ENC_DATA = DMU_OT(DMU_BSWAP_ZAP, B_FALSE, B_TRUE),
275 DMU_OTN_ZAP_ENC_METADATA = DMU_OT(DMU_BSWAP_ZAP, B_TRUE, B_TRUE),
276 } dmu_object_type_t;
279 * These flags are intended to be used to specify the "txg_how"
280 * parameter when calling the dmu_tx_assign() function. See the comment
281 * above dmu_tx_assign() for more details on the meaning of these flags.
283 #define TXG_NOWAIT (0ULL)
284 #define TXG_WAIT (1ULL<<0)
285 #define TXG_NOTHROTTLE (1ULL<<1)
287 void byteswap_uint64_array(void *buf, size_t size);
288 void byteswap_uint32_array(void *buf, size_t size);
289 void byteswap_uint16_array(void *buf, size_t size);
290 void byteswap_uint8_array(void *buf, size_t size);
291 void zap_byteswap(void *buf, size_t size);
292 void zfs_oldacl_byteswap(void *buf, size_t size);
293 void zfs_acl_byteswap(void *buf, size_t size);
294 void zfs_znode_byteswap(void *buf, size_t size);
296 #define DS_FIND_SNAPSHOTS (1<<0)
297 #define DS_FIND_CHILDREN (1<<1)
298 #define DS_FIND_SERIALIZE (1<<2)
301 * The maximum number of bytes that can be accessed as part of one
302 * operation, including metadata.
304 #define DMU_MAX_ACCESS (64 * 1024 * 1024) /* 64MB */
305 #define DMU_MAX_DELETEBLKCNT (20480) /* ~5MB of indirect blocks */
307 #define DMU_USERUSED_OBJECT (-1ULL)
308 #define DMU_GROUPUSED_OBJECT (-2ULL)
309 #define DMU_PROJECTUSED_OBJECT (-3ULL)
312 * Zap prefix for object accounting in DMU_{USER,GROUP,PROJECT}USED_OBJECT.
314 #define DMU_OBJACCT_PREFIX "obj-"
315 #define DMU_OBJACCT_PREFIX_LEN 4
318 * artificial blkids for bonus buffer and spill blocks
320 #define DMU_BONUS_BLKID (-1ULL)
321 #define DMU_SPILL_BLKID (-2ULL)
324 * Public routines to create, destroy, open, and close objsets.
326 typedef void dmu_objset_create_sync_func_t(objset_t *os, void *arg,
327 cred_t *cr, dmu_tx_t *tx);
329 int dmu_objset_hold(const char *name, const void *tag, objset_t **osp);
330 int dmu_objset_own(const char *name, dmu_objset_type_t type,
331 boolean_t readonly, boolean_t key_required, const void *tag,
332 objset_t **osp);
333 void dmu_objset_rele(objset_t *os, const void *tag);
334 void dmu_objset_disown(objset_t *os, boolean_t key_required, const void *tag);
335 int dmu_objset_open_ds(struct dsl_dataset *ds, objset_t **osp);
337 void dmu_objset_evict_dbufs(objset_t *os);
338 int dmu_objset_create(const char *name, dmu_objset_type_t type, uint64_t flags,
339 struct dsl_crypto_params *dcp, dmu_objset_create_sync_func_t func,
340 void *arg);
341 int dmu_objset_clone(const char *name, const char *origin);
342 int dsl_destroy_snapshots_nvl(struct nvlist *snaps, boolean_t defer,
343 struct nvlist *errlist);
344 int dmu_objset_snapshot_one(const char *fsname, const char *snapname);
345 int dmu_objset_find(const char *name, int func(const char *, void *), void *arg,
346 int flags);
347 void dmu_objset_byteswap(void *buf, size_t size);
348 int dsl_dataset_rename_snapshot(const char *fsname,
349 const char *oldsnapname, const char *newsnapname, boolean_t recursive);
351 typedef struct dmu_buf {
352 uint64_t db_object; /* object that this buffer is part of */
353 uint64_t db_offset; /* byte offset in this object */
354 uint64_t db_size; /* size of buffer in bytes */
355 void *db_data; /* data in buffer */
356 } dmu_buf_t;
359 * The names of zap entries in the DIRECTORY_OBJECT of the MOS.
361 #define DMU_POOL_DIRECTORY_OBJECT 1
362 #define DMU_POOL_CONFIG "config"
363 #define DMU_POOL_FEATURES_FOR_WRITE "features_for_write"
364 #define DMU_POOL_FEATURES_FOR_READ "features_for_read"
365 #define DMU_POOL_FEATURE_DESCRIPTIONS "feature_descriptions"
366 #define DMU_POOL_FEATURE_ENABLED_TXG "feature_enabled_txg"
367 #define DMU_POOL_ROOT_DATASET "root_dataset"
368 #define DMU_POOL_SYNC_BPOBJ "sync_bplist"
369 #define DMU_POOL_ERRLOG_SCRUB "errlog_scrub"
370 #define DMU_POOL_ERRLOG_LAST "errlog_last"
371 #define DMU_POOL_SPARES "spares"
372 #define DMU_POOL_DEFLATE "deflate"
373 #define DMU_POOL_HISTORY "history"
374 #define DMU_POOL_PROPS "pool_props"
375 #define DMU_POOL_L2CACHE "l2cache"
376 #define DMU_POOL_TMP_USERREFS "tmp_userrefs"
377 #define DMU_POOL_DDT "DDT-%s-%s-%s"
378 #define DMU_POOL_DDT_STATS "DDT-statistics"
379 #define DMU_POOL_CREATION_VERSION "creation_version"
380 #define DMU_POOL_SCAN "scan"
381 #define DMU_POOL_FREE_BPOBJ "free_bpobj"
382 #define DMU_POOL_BPTREE_OBJ "bptree_obj"
383 #define DMU_POOL_EMPTY_BPOBJ "empty_bpobj"
384 #define DMU_POOL_CHECKSUM_SALT "org.illumos:checksum_salt"
385 #define DMU_POOL_VDEV_ZAP_MAP "com.delphix:vdev_zap_map"
386 #define DMU_POOL_REMOVING "com.delphix:removing"
387 #define DMU_POOL_OBSOLETE_BPOBJ "com.delphix:obsolete_bpobj"
388 #define DMU_POOL_CONDENSING_INDIRECT "com.delphix:condensing_indirect"
389 #define DMU_POOL_ZPOOL_CHECKPOINT "com.delphix:zpool_checkpoint"
390 #define DMU_POOL_LOG_SPACEMAP_ZAP "com.delphix:log_spacemap_zap"
391 #define DMU_POOL_DELETED_CLONES "com.delphix:deleted_clones"
394 * Allocate an object from this objset. The range of object numbers
395 * available is (0, DN_MAX_OBJECT). Object 0 is the meta-dnode.
397 * The transaction must be assigned to a txg. The newly allocated
398 * object will be "held" in the transaction (ie. you can modify the
399 * newly allocated object in this transaction).
401 * dmu_object_alloc() chooses an object and returns it in *objectp.
403 * dmu_object_claim() allocates a specific object number. If that
404 * number is already allocated, it fails and returns EEXIST.
406 * Return 0 on success, or ENOSPC or EEXIST as specified above.
408 uint64_t dmu_object_alloc(objset_t *os, dmu_object_type_t ot,
409 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
410 uint64_t dmu_object_alloc_ibs(objset_t *os, dmu_object_type_t ot, int blocksize,
411 int indirect_blockshift,
412 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx);
413 uint64_t dmu_object_alloc_dnsize(objset_t *os, dmu_object_type_t ot,
414 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
415 int dnodesize, dmu_tx_t *tx);
416 uint64_t dmu_object_alloc_hold(objset_t *os, dmu_object_type_t ot,
417 int blocksize, int indirect_blockshift, dmu_object_type_t bonustype,
418 int bonuslen, int dnodesize, dnode_t **allocated_dnode, const void *tag,
419 dmu_tx_t *tx);
420 int dmu_object_claim(objset_t *os, uint64_t object, dmu_object_type_t ot,
421 int blocksize, dmu_object_type_t bonus_type, int bonus_len, dmu_tx_t *tx);
422 int dmu_object_claim_dnsize(objset_t *os, uint64_t object, dmu_object_type_t ot,
423 int blocksize, dmu_object_type_t bonus_type, int bonus_len,
424 int dnodesize, dmu_tx_t *tx);
425 int dmu_object_reclaim(objset_t *os, uint64_t object, dmu_object_type_t ot,
426 int blocksize, dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *txp);
427 int dmu_object_reclaim_dnsize(objset_t *os, uint64_t object,
428 dmu_object_type_t ot, int blocksize, dmu_object_type_t bonustype,
429 int bonuslen, int dnodesize, boolean_t keep_spill, dmu_tx_t *tx);
430 int dmu_object_rm_spill(objset_t *os, uint64_t object, dmu_tx_t *tx);
433 * Free an object from this objset.
435 * The object's data will be freed as well (ie. you don't need to call
436 * dmu_free(object, 0, -1, tx)).
438 * The object need not be held in the transaction.
440 * If there are any holds on this object's buffers (via dmu_buf_hold()),
441 * or tx holds on the object (via dmu_tx_hold_object()), you can not
442 * free it; it fails and returns EBUSY.
444 * If the object is not allocated, it fails and returns ENOENT.
446 * Return 0 on success, or EBUSY or ENOENT as specified above.
448 int dmu_object_free(objset_t *os, uint64_t object, dmu_tx_t *tx);
451 * Find the next allocated or free object.
453 * The objectp parameter is in-out. It will be updated to be the next
454 * object which is allocated. Ignore objects which have not been
455 * modified since txg.
457 * XXX Can only be called on a objset with no dirty data.
459 * Returns 0 on success, or ENOENT if there are no more objects.
461 int dmu_object_next(objset_t *os, uint64_t *objectp,
462 boolean_t hole, uint64_t txg);
465 * Set the number of levels on a dnode. nlevels must be greater than the
466 * current number of levels or an EINVAL will be returned.
468 int dmu_object_set_nlevels(objset_t *os, uint64_t object, int nlevels,
469 dmu_tx_t *tx);
472 * Set the data blocksize for an object.
474 * The object cannot have any blocks allocated beyond the first. If
475 * the first block is allocated already, the new size must be greater
476 * than the current block size. If these conditions are not met,
477 * ENOTSUP will be returned.
479 * Returns 0 on success, or EBUSY if there are any holds on the object
480 * contents, or ENOTSUP as described above.
482 int dmu_object_set_blocksize(objset_t *os, uint64_t object, uint64_t size,
483 int ibs, dmu_tx_t *tx);
486 * Manually set the maxblkid on a dnode. This will adjust nlevels accordingly
487 * to accommodate the change. When calling this function, the caller must
488 * ensure that the object's nlevels can sufficiently support the new maxblkid.
490 int dmu_object_set_maxblkid(objset_t *os, uint64_t object, uint64_t maxblkid,
491 dmu_tx_t *tx);
494 * Set the checksum property on a dnode. The new checksum algorithm will
495 * apply to all newly written blocks; existing blocks will not be affected.
497 void dmu_object_set_checksum(objset_t *os, uint64_t object, uint8_t checksum,
498 dmu_tx_t *tx);
501 * Set the compress property on a dnode. The new compression algorithm will
502 * apply to all newly written blocks; existing blocks will not be affected.
504 void dmu_object_set_compress(objset_t *os, uint64_t object, uint8_t compress,
505 dmu_tx_t *tx);
507 void dmu_write_embedded(objset_t *os, uint64_t object, uint64_t offset,
508 void *data, uint8_t etype, uint8_t comp, int uncompressed_size,
509 int compressed_size, int byteorder, dmu_tx_t *tx);
510 void dmu_redact(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
511 dmu_tx_t *tx);
514 * Decide how to write a block: checksum, compression, number of copies, etc.
516 #define WP_NOFILL 0x1
517 #define WP_DMU_SYNC 0x2
518 #define WP_SPILL 0x4
520 void dmu_write_policy(objset_t *os, dnode_t *dn, int level, int wp,
521 struct zio_prop *zp);
524 * The bonus data is accessed more or less like a regular buffer.
525 * You must dmu_bonus_hold() to get the buffer, which will give you a
526 * dmu_buf_t with db_offset==-1ULL, and db_size = the size of the bonus
527 * data. As with any normal buffer, you must call dmu_buf_will_dirty()
528 * before modifying it, and the
529 * object must be held in an assigned transaction before calling
530 * dmu_buf_will_dirty. You may use dmu_buf_set_user() on the bonus
531 * buffer as well. You must release what you hold with dmu_buf_rele().
533 * Returns ENOENT, EIO, or 0.
535 int dmu_bonus_hold(objset_t *os, uint64_t object, const void *tag,
536 dmu_buf_t **dbp);
537 int dmu_bonus_hold_by_dnode(dnode_t *dn, const void *tag, dmu_buf_t **dbp,
538 uint32_t flags);
539 int dmu_bonus_max(void);
540 int dmu_set_bonus(dmu_buf_t *, int, dmu_tx_t *);
541 int dmu_set_bonustype(dmu_buf_t *, dmu_object_type_t, dmu_tx_t *);
542 dmu_object_type_t dmu_get_bonustype(dmu_buf_t *);
543 int dmu_rm_spill(objset_t *, uint64_t, dmu_tx_t *);
546 * Special spill buffer support used by "SA" framework
549 int dmu_spill_hold_by_bonus(dmu_buf_t *bonus, uint32_t flags, const void *tag,
550 dmu_buf_t **dbp);
551 int dmu_spill_hold_by_dnode(dnode_t *dn, uint32_t flags,
552 const void *tag, dmu_buf_t **dbp);
553 int dmu_spill_hold_existing(dmu_buf_t *bonus, const void *tag, dmu_buf_t **dbp);
556 * Obtain the DMU buffer from the specified object which contains the
557 * specified offset. dmu_buf_hold() puts a "hold" on the buffer, so
558 * that it will remain in memory. You must release the hold with
559 * dmu_buf_rele(). You must not access the dmu_buf_t after releasing
560 * what you hold. You must have a hold on any dmu_buf_t* you pass to the DMU.
562 * You must call dmu_buf_read, dmu_buf_will_dirty, or dmu_buf_will_fill
563 * on the returned buffer before reading or writing the buffer's
564 * db_data. The comments for those routines describe what particular
565 * operations are valid after calling them.
567 * The object number must be a valid, allocated object number.
569 int dmu_buf_hold(objset_t *os, uint64_t object, uint64_t offset,
570 const void *tag, dmu_buf_t **, int flags);
571 int dmu_buf_hold_array(objset_t *os, uint64_t object, uint64_t offset,
572 uint64_t length, int read, const void *tag, int *numbufsp,
573 dmu_buf_t ***dbpp);
574 int dmu_buf_hold_by_dnode(dnode_t *dn, uint64_t offset,
575 const void *tag, dmu_buf_t **dbp, int flags);
576 int dmu_buf_hold_array_by_dnode(dnode_t *dn, uint64_t offset,
577 uint64_t length, boolean_t read, const void *tag, int *numbufsp,
578 dmu_buf_t ***dbpp, uint32_t flags);
580 * Add a reference to a dmu buffer that has already been held via
581 * dmu_buf_hold() in the current context.
583 void dmu_buf_add_ref(dmu_buf_t *db, const void *tag);
586 * Attempt to add a reference to a dmu buffer that is in an unknown state,
587 * using a pointer that may have been invalidated by eviction processing.
588 * The request will succeed if the passed in dbuf still represents the
589 * same os/object/blkid, is ineligible for eviction, and has at least
590 * one hold by a user other than the syncer.
592 boolean_t dmu_buf_try_add_ref(dmu_buf_t *, objset_t *os, uint64_t object,
593 uint64_t blkid, const void *tag);
595 void dmu_buf_rele(dmu_buf_t *db, const void *tag);
596 uint64_t dmu_buf_refcount(dmu_buf_t *db);
597 uint64_t dmu_buf_user_refcount(dmu_buf_t *db);
600 * dmu_buf_hold_array holds the DMU buffers which contain all bytes in a
601 * range of an object. A pointer to an array of dmu_buf_t*'s is
602 * returned (in *dbpp).
604 * dmu_buf_rele_array releases the hold on an array of dmu_buf_t*'s, and
605 * frees the array. The hold on the array of buffers MUST be released
606 * with dmu_buf_rele_array. You can NOT release the hold on each buffer
607 * individually with dmu_buf_rele.
609 int dmu_buf_hold_array_by_bonus(dmu_buf_t *db, uint64_t offset,
610 uint64_t length, boolean_t read, const void *tag,
611 int *numbufsp, dmu_buf_t ***dbpp);
612 void dmu_buf_rele_array(dmu_buf_t **, int numbufs, const void *tag);
614 typedef void dmu_buf_evict_func_t(void *user_ptr);
617 * A DMU buffer user object may be associated with a dbuf for the
618 * duration of its lifetime. This allows the user of a dbuf (client)
619 * to attach private data to a dbuf (e.g. in-core only data such as a
620 * dnode_children_t, zap_t, or zap_leaf_t) and be optionally notified
621 * when that dbuf has been evicted. Clients typically respond to the
622 * eviction notification by freeing their private data, thus ensuring
623 * the same lifetime for both dbuf and private data.
625 * The mapping from a dmu_buf_user_t to any client private data is the
626 * client's responsibility. All current consumers of the API with private
627 * data embed a dmu_buf_user_t as the first member of the structure for
628 * their private data. This allows conversions between the two types
629 * with a simple cast. Since the DMU buf user API never needs access
630 * to the private data, other strategies can be employed if necessary
631 * or convenient for the client (e.g. using container_of() to do the
632 * conversion for private data that cannot have the dmu_buf_user_t as
633 * its first member).
635 * Eviction callbacks are executed without the dbuf mutex held or any
636 * other type of mechanism to guarantee that the dbuf is still available.
637 * For this reason, users must assume the dbuf has already been freed
638 * and not reference the dbuf from the callback context.
640 * Users requesting "immediate eviction" are notified as soon as the dbuf
641 * is only referenced by dirty records (dirties == holds). Otherwise the
642 * notification occurs after eviction processing for the dbuf begins.
644 typedef struct dmu_buf_user {
646 * Asynchronous user eviction callback state.
648 taskq_ent_t dbu_tqent;
651 * This instance's eviction function pointers.
653 * dbu_evict_func_sync is called synchronously and then
654 * dbu_evict_func_async is executed asynchronously on a taskq.
656 dmu_buf_evict_func_t *dbu_evict_func_sync;
657 dmu_buf_evict_func_t *dbu_evict_func_async;
658 #ifdef ZFS_DEBUG
660 * Pointer to user's dbuf pointer. NULL for clients that do
661 * not associate a dbuf with their user data.
663 * The dbuf pointer is cleared upon eviction so as to catch
664 * use-after-evict bugs in clients.
666 dmu_buf_t **dbu_clear_on_evict_dbufp;
667 #endif
668 } dmu_buf_user_t;
671 * Initialize the given dmu_buf_user_t instance with the eviction function
672 * evict_func, to be called when the user is evicted.
674 * NOTE: This function should only be called once on a given dmu_buf_user_t.
675 * To allow enforcement of this, dbu must already be zeroed on entry.
677 static inline void
678 dmu_buf_init_user(dmu_buf_user_t *dbu, dmu_buf_evict_func_t *evict_func_sync,
679 dmu_buf_evict_func_t *evict_func_async,
680 dmu_buf_t **clear_on_evict_dbufp __maybe_unused)
682 ASSERT(dbu->dbu_evict_func_sync == NULL);
683 ASSERT(dbu->dbu_evict_func_async == NULL);
685 /* must have at least one evict func */
686 IMPLY(evict_func_sync == NULL, evict_func_async != NULL);
687 dbu->dbu_evict_func_sync = evict_func_sync;
688 dbu->dbu_evict_func_async = evict_func_async;
689 taskq_init_ent(&dbu->dbu_tqent);
690 #ifdef ZFS_DEBUG
691 dbu->dbu_clear_on_evict_dbufp = clear_on_evict_dbufp;
692 #endif
696 * Attach user data to a dbuf and mark it for normal (when the dbuf's
697 * data is cleared or its reference count goes to zero) eviction processing.
699 * Returns NULL on success, or the existing user if another user currently
700 * owns the buffer.
702 void *dmu_buf_set_user(dmu_buf_t *db, dmu_buf_user_t *user);
705 * Attach user data to a dbuf and mark it for immediate (its dirty and
706 * reference counts are equal) eviction processing.
708 * Returns NULL on success, or the existing user if another user currently
709 * owns the buffer.
711 void *dmu_buf_set_user_ie(dmu_buf_t *db, dmu_buf_user_t *user);
714 * Replace the current user of a dbuf.
716 * If given the current user of a dbuf, replaces the dbuf's user with
717 * "new_user" and returns the user data pointer that was replaced.
718 * Otherwise returns the current, and unmodified, dbuf user pointer.
720 void *dmu_buf_replace_user(dmu_buf_t *db,
721 dmu_buf_user_t *old_user, dmu_buf_user_t *new_user);
724 * Remove the specified user data for a DMU buffer.
726 * Returns the user that was removed on success, or the current user if
727 * another user currently owns the buffer.
729 void *dmu_buf_remove_user(dmu_buf_t *db, dmu_buf_user_t *user);
732 * Returns the user data (dmu_buf_user_t *) associated with this dbuf.
734 void *dmu_buf_get_user(dmu_buf_t *db);
736 objset_t *dmu_buf_get_objset(dmu_buf_t *db);
737 dnode_t *dmu_buf_dnode_enter(dmu_buf_t *db);
738 void dmu_buf_dnode_exit(dmu_buf_t *db);
740 /* Block until any in-progress dmu buf user evictions complete. */
741 void dmu_buf_user_evict_wait(void);
744 * Returns the blkptr associated with this dbuf, or NULL if not set.
746 struct blkptr *dmu_buf_get_blkptr(dmu_buf_t *db);
749 * Indicate that you are going to modify the buffer's data (db_data).
751 * The transaction (tx) must be assigned to a txg (ie. you've called
752 * dmu_tx_assign()). The buffer's object must be held in the tx
753 * (ie. you've called dmu_tx_hold_object(tx, db->db_object)).
755 void dmu_buf_will_dirty(dmu_buf_t *db, dmu_tx_t *tx);
756 boolean_t dmu_buf_is_dirty(dmu_buf_t *db, dmu_tx_t *tx);
757 void dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
758 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx);
761 * You must create a transaction, then hold the objects which you will
762 * (or might) modify as part of this transaction. Then you must assign
763 * the transaction to a transaction group. Once the transaction has
764 * been assigned, you can modify buffers which belong to held objects as
765 * part of this transaction. You can't modify buffers before the
766 * transaction has been assigned; you can't modify buffers which don't
767 * belong to objects which this transaction holds; you can't hold
768 * objects once the transaction has been assigned. You may hold an
769 * object which you are going to free (with dmu_object_free()), but you
770 * don't have to.
772 * You can abort the transaction before it has been assigned.
774 * Note that you may hold buffers (with dmu_buf_hold) at any time,
775 * regardless of transaction state.
778 #define DMU_NEW_OBJECT (-1ULL)
779 #define DMU_OBJECT_END (-1ULL)
781 dmu_tx_t *dmu_tx_create(objset_t *os);
782 void dmu_tx_hold_write(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
783 void dmu_tx_hold_write_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
784 int len);
785 void dmu_tx_hold_append(dmu_tx_t *tx, uint64_t object, uint64_t off, int len);
786 void dmu_tx_hold_append_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
787 int len);
788 void dmu_tx_hold_clone_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
789 int len);
790 void dmu_tx_hold_free(dmu_tx_t *tx, uint64_t object, uint64_t off,
791 uint64_t len);
792 void dmu_tx_hold_free_by_dnode(dmu_tx_t *tx, dnode_t *dn, uint64_t off,
793 uint64_t len);
794 void dmu_tx_hold_zap(dmu_tx_t *tx, uint64_t object, int add, const char *name);
795 void dmu_tx_hold_zap_by_dnode(dmu_tx_t *tx, dnode_t *dn, int add,
796 const char *name);
797 void dmu_tx_hold_bonus(dmu_tx_t *tx, uint64_t object);
798 void dmu_tx_hold_bonus_by_dnode(dmu_tx_t *tx, dnode_t *dn);
799 void dmu_tx_hold_spill(dmu_tx_t *tx, uint64_t object);
800 void dmu_tx_hold_sa(dmu_tx_t *tx, struct sa_handle *hdl, boolean_t may_grow);
801 void dmu_tx_hold_sa_create(dmu_tx_t *tx, int total_size);
802 void dmu_tx_abort(dmu_tx_t *tx);
803 int dmu_tx_assign(dmu_tx_t *tx, uint64_t txg_how);
804 void dmu_tx_wait(dmu_tx_t *tx);
805 void dmu_tx_commit(dmu_tx_t *tx);
806 void dmu_tx_mark_netfree(dmu_tx_t *tx);
809 * To register a commit callback, dmu_tx_callback_register() must be called.
811 * dcb_data is a pointer to caller private data that is passed on as a
812 * callback parameter. The caller is responsible for properly allocating and
813 * freeing it.
815 * When registering a callback, the transaction must be already created, but
816 * it cannot be committed or aborted. It can be assigned to a txg or not.
818 * The callback will be called after the transaction has been safely written
819 * to stable storage and will also be called if the dmu_tx is aborted.
820 * If there is any error which prevents the transaction from being committed to
821 * disk, the callback will be called with a value of error != 0.
823 * When multiple callbacks are registered to the transaction, the callbacks
824 * will be called in reverse order to let Lustre, the only user of commit
825 * callback currently, take the fast path of its commit callback handling.
827 typedef void dmu_tx_callback_func_t(void *dcb_data, int error);
829 void dmu_tx_callback_register(dmu_tx_t *tx, dmu_tx_callback_func_t *dcb_func,
830 void *dcb_data);
831 void dmu_tx_do_callbacks(list_t *cb_list, int error);
834 * Free up the data blocks for a defined range of a file. If size is
835 * -1, the range from offset to end-of-file is freed.
837 int dmu_free_range(objset_t *os, uint64_t object, uint64_t offset,
838 uint64_t size, dmu_tx_t *tx);
839 int dmu_free_long_range(objset_t *os, uint64_t object, uint64_t offset,
840 uint64_t size);
841 int dmu_free_long_object(objset_t *os, uint64_t object);
844 * Convenience functions.
846 * Canfail routines will return 0 on success, or an errno if there is a
847 * nonrecoverable I/O error.
849 #define DMU_READ_PREFETCH 0 /* prefetch */
850 #define DMU_READ_NO_PREFETCH 1 /* don't prefetch */
851 #define DMU_READ_NO_DECRYPT 2 /* don't decrypt */
852 int dmu_read(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
853 void *buf, uint32_t flags);
854 int dmu_read_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size, void *buf,
855 uint32_t flags);
856 void dmu_write(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
857 const void *buf, dmu_tx_t *tx);
858 void dmu_write_by_dnode(dnode_t *dn, uint64_t offset, uint64_t size,
859 const void *buf, dmu_tx_t *tx);
860 void dmu_prealloc(objset_t *os, uint64_t object, uint64_t offset, uint64_t size,
861 dmu_tx_t *tx);
862 #ifdef _KERNEL
863 int dmu_read_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size);
864 int dmu_read_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size);
865 int dmu_read_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size);
866 int dmu_write_uio(objset_t *os, uint64_t object, zfs_uio_t *uio, uint64_t size,
867 dmu_tx_t *tx);
868 int dmu_write_uio_dbuf(dmu_buf_t *zdb, zfs_uio_t *uio, uint64_t size,
869 dmu_tx_t *tx);
870 int dmu_write_uio_dnode(dnode_t *dn, zfs_uio_t *uio, uint64_t size,
871 dmu_tx_t *tx);
872 #endif
873 struct arc_buf *dmu_request_arcbuf(dmu_buf_t *handle, int size);
874 void dmu_return_arcbuf(struct arc_buf *buf);
875 int dmu_assign_arcbuf_by_dnode(dnode_t *dn, uint64_t offset,
876 struct arc_buf *buf, dmu_tx_t *tx);
877 int dmu_assign_arcbuf_by_dbuf(dmu_buf_t *handle, uint64_t offset,
878 struct arc_buf *buf, dmu_tx_t *tx);
879 #define dmu_assign_arcbuf dmu_assign_arcbuf_by_dbuf
880 extern uint_t zfs_max_recordsize;
883 * Asynchronously try to read in the data.
885 void dmu_prefetch(objset_t *os, uint64_t object, int64_t level, uint64_t offset,
886 uint64_t len, enum zio_priority pri);
888 typedef struct dmu_object_info {
889 /* All sizes are in bytes unless otherwise indicated. */
890 uint32_t doi_data_block_size;
891 uint32_t doi_metadata_block_size;
892 dmu_object_type_t doi_type;
893 dmu_object_type_t doi_bonus_type;
894 uint64_t doi_bonus_size;
895 uint8_t doi_indirection; /* 2 = dnode->indirect->data */
896 uint8_t doi_checksum;
897 uint8_t doi_compress;
898 uint8_t doi_nblkptr;
899 uint8_t doi_pad[4];
900 uint64_t doi_dnodesize;
901 uint64_t doi_physical_blocks_512; /* data + metadata, 512b blks */
902 uint64_t doi_max_offset;
903 uint64_t doi_fill_count; /* number of non-empty blocks */
904 } dmu_object_info_t;
906 typedef void (*const arc_byteswap_func_t)(void *buf, size_t size);
908 typedef struct dmu_object_type_info {
909 dmu_object_byteswap_t ot_byteswap;
910 boolean_t ot_metadata;
911 boolean_t ot_dbuf_metadata_cache;
912 boolean_t ot_encrypt;
913 const char *ot_name;
914 } dmu_object_type_info_t;
916 typedef const struct dmu_object_byteswap_info {
917 arc_byteswap_func_t ob_func;
918 const char *ob_name;
919 } dmu_object_byteswap_info_t;
921 extern const dmu_object_type_info_t dmu_ot[DMU_OT_NUMTYPES];
922 extern dmu_object_byteswap_info_t dmu_ot_byteswap[DMU_BSWAP_NUMFUNCS];
925 * Get information on a DMU object.
927 * Return 0 on success or ENOENT if object is not allocated.
929 * If doi is NULL, just indicates whether the object exists.
931 int dmu_object_info(objset_t *os, uint64_t object, dmu_object_info_t *doi);
932 void __dmu_object_info_from_dnode(struct dnode *dn, dmu_object_info_t *doi);
933 /* Like dmu_object_info, but faster if you have a held dnode in hand. */
934 void dmu_object_info_from_dnode(dnode_t *dn, dmu_object_info_t *doi);
935 /* Like dmu_object_info, but faster if you have a held dbuf in hand. */
936 void dmu_object_info_from_db(dmu_buf_t *db, dmu_object_info_t *doi);
938 * Like dmu_object_info_from_db, but faster still when you only care about
939 * the size.
941 void dmu_object_size_from_db(dmu_buf_t *db, uint32_t *blksize,
942 u_longlong_t *nblk512);
944 void dmu_object_dnsize_from_db(dmu_buf_t *db, int *dnsize);
946 typedef struct dmu_objset_stats {
947 uint64_t dds_num_clones; /* number of clones of this */
948 uint64_t dds_creation_txg;
949 uint64_t dds_guid;
950 dmu_objset_type_t dds_type;
951 uint8_t dds_is_snapshot;
952 uint8_t dds_inconsistent;
953 uint8_t dds_redacted;
954 char dds_origin[ZFS_MAX_DATASET_NAME_LEN];
955 } dmu_objset_stats_t;
958 * Get stats on a dataset.
960 void dmu_objset_fast_stat(objset_t *os, dmu_objset_stats_t *stat);
963 * Add entries to the nvlist for all the objset's properties. See
964 * zfs_prop_table[] and zfs(1m) for details on the properties.
966 void dmu_objset_stats(objset_t *os, struct nvlist *nv);
969 * Get the space usage statistics for statvfs().
971 * refdbytes is the amount of space "referenced" by this objset.
972 * availbytes is the amount of space available to this objset, taking
973 * into account quotas & reservations, assuming that no other objsets
974 * use the space first. These values correspond to the 'referenced' and
975 * 'available' properties, described in the zfs(1m) manpage.
977 * usedobjs and availobjs are the number of objects currently allocated,
978 * and available.
980 void dmu_objset_space(objset_t *os, uint64_t *refdbytesp, uint64_t *availbytesp,
981 uint64_t *usedobjsp, uint64_t *availobjsp);
984 * The fsid_guid is a 56-bit ID that can change to avoid collisions.
985 * (Contrast with the ds_guid which is a 64-bit ID that will never
986 * change, so there is a small probability that it will collide.)
988 uint64_t dmu_objset_fsid_guid(objset_t *os);
991 * Get the [cm]time for an objset's snapshot dir
993 inode_timespec_t dmu_objset_snap_cmtime(objset_t *os);
995 int dmu_objset_is_snapshot(objset_t *os);
997 extern struct spa *dmu_objset_spa(objset_t *os);
998 extern struct zilog *dmu_objset_zil(objset_t *os);
999 extern struct dsl_pool *dmu_objset_pool(objset_t *os);
1000 extern struct dsl_dataset *dmu_objset_ds(objset_t *os);
1001 extern void dmu_objset_name(objset_t *os, char *buf);
1002 extern dmu_objset_type_t dmu_objset_type(objset_t *os);
1003 extern uint64_t dmu_objset_id(objset_t *os);
1004 extern uint64_t dmu_objset_dnodesize(objset_t *os);
1005 extern zfs_sync_type_t dmu_objset_syncprop(objset_t *os);
1006 extern zfs_logbias_op_t dmu_objset_logbias(objset_t *os);
1007 extern int dmu_objset_blksize(objset_t *os);
1008 extern int dmu_snapshot_list_next(objset_t *os, int namelen, char *name,
1009 uint64_t *id, uint64_t *offp, boolean_t *case_conflict);
1010 extern int dmu_snapshot_lookup(objset_t *os, const char *name, uint64_t *val);
1011 extern int dmu_snapshot_realname(objset_t *os, const char *name, char *real,
1012 int maxlen, boolean_t *conflict);
1013 extern int dmu_dir_list_next(objset_t *os, int namelen, char *name,
1014 uint64_t *idp, uint64_t *offp);
1016 typedef struct zfs_file_info {
1017 uint64_t zfi_user;
1018 uint64_t zfi_group;
1019 uint64_t zfi_project;
1020 uint64_t zfi_generation;
1021 } zfs_file_info_t;
1023 typedef int file_info_cb_t(dmu_object_type_t bonustype, const void *data,
1024 struct zfs_file_info *zoi);
1025 extern void dmu_objset_register_type(dmu_objset_type_t ost,
1026 file_info_cb_t *cb);
1027 extern void dmu_objset_set_user(objset_t *os, void *user_ptr);
1028 extern void *dmu_objset_get_user(objset_t *os);
1031 * Return the txg number for the given assigned transaction.
1033 uint64_t dmu_tx_get_txg(dmu_tx_t *tx);
1036 * Synchronous write.
1037 * If a parent zio is provided this function initiates a write on the
1038 * provided buffer as a child of the parent zio.
1039 * In the absence of a parent zio, the write is completed synchronously.
1040 * At write completion, blk is filled with the bp of the written block.
1041 * Note that while the data covered by this function will be on stable
1042 * storage when the write completes this new data does not become a
1043 * permanent part of the file until the associated transaction commits.
1047 * {zfs,zvol,ztest}_get_done() args
1049 typedef struct zgd {
1050 struct lwb *zgd_lwb;
1051 struct blkptr *zgd_bp;
1052 dmu_buf_t *zgd_db;
1053 struct zfs_locked_range *zgd_lr;
1054 void *zgd_private;
1055 } zgd_t;
1057 typedef void dmu_sync_cb_t(zgd_t *arg, int error);
1058 int dmu_sync(struct zio *zio, uint64_t txg, dmu_sync_cb_t *done, zgd_t *zgd);
1061 * Find the next hole or data block in file starting at *off
1062 * Return found offset in *off. Return ESRCH for end of file.
1064 int dmu_offset_next(objset_t *os, uint64_t object, boolean_t hole,
1065 uint64_t *off);
1067 int dmu_read_l0_bps(objset_t *os, uint64_t object, uint64_t offset,
1068 uint64_t length, dmu_tx_t *tx, struct blkptr *bps, size_t *nbpsp);
1069 void dmu_brt_clone(objset_t *os, uint64_t object, uint64_t offset,
1070 uint64_t length, dmu_tx_t *tx, const struct blkptr *bps, size_t nbps,
1071 boolean_t replay);
1074 * Initial setup and final teardown.
1076 extern void dmu_init(void);
1077 extern void dmu_fini(void);
1079 typedef void (*dmu_traverse_cb_t)(objset_t *os, void *arg, struct blkptr *bp,
1080 uint64_t object, uint64_t offset, int len);
1081 void dmu_traverse_objset(objset_t *os, uint64_t txg_start,
1082 dmu_traverse_cb_t cb, void *arg);
1084 int dmu_diff(const char *tosnap_name, const char *fromsnap_name,
1085 zfs_file_t *fp, offset_t *offp);
1087 /* CRC64 table */
1088 #define ZFS_CRC64_POLY 0xC96C5795D7870F42ULL /* ECMA-182, reflected form */
1089 extern uint64_t zfs_crc64_table[256];
1091 extern uint_t dmu_prefetch_max;
1093 #ifdef __cplusplus
1095 #endif
1097 #endif /* _SYS_DMU_H */