zfs(4): remove "experimental" from zfs_bclone_enabled
[zfs.git] / module / zfs / dbuf.c
blobdf9368fc8bdbae391f5d2250878f481c20d1b1be
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
32 #include <sys/zfs_context.h>
33 #include <sys/arc.h>
34 #include <sys/dmu.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
37 #include <sys/dbuf.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
42 #include <sys/spa.h>
43 #include <sys/zio.h>
44 #include <sys/dmu_zfetch.h>
45 #include <sys/sa.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
52 #include <sys/abd.h>
53 #include <sys/brt.h>
54 #include <sys/vdev.h>
55 #include <cityhash.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
60 static kstat_t *dbuf_ksp;
62 typedef struct dbuf_stats {
64 * Various statistics about the size of the dbuf cache.
66 kstat_named_t cache_count;
67 kstat_named_t cache_size_bytes;
68 kstat_named_t cache_size_bytes_max;
70 * Statistics regarding the bounds on the dbuf cache size.
72 kstat_named_t cache_target_bytes;
73 kstat_named_t cache_lowater_bytes;
74 kstat_named_t cache_hiwater_bytes;
76 * Total number of dbuf cache evictions that have occurred.
78 kstat_named_t cache_total_evicts;
80 * The distribution of dbuf levels in the dbuf cache and
81 * the total size of all dbufs at each level.
83 kstat_named_t cache_levels[DN_MAX_LEVELS];
84 kstat_named_t cache_levels_bytes[DN_MAX_LEVELS];
86 * Statistics about the dbuf hash table.
88 kstat_named_t hash_hits;
89 kstat_named_t hash_misses;
90 kstat_named_t hash_collisions;
91 kstat_named_t hash_elements;
92 kstat_named_t hash_elements_max;
94 * Number of sublists containing more than one dbuf in the dbuf
95 * hash table. Keep track of the longest hash chain.
97 kstat_named_t hash_chains;
98 kstat_named_t hash_chain_max;
100 * Number of times a dbuf_create() discovers that a dbuf was
101 * already created and in the dbuf hash table.
103 kstat_named_t hash_insert_race;
105 * Number of entries in the hash table dbuf and mutex arrays.
107 kstat_named_t hash_table_count;
108 kstat_named_t hash_mutex_count;
110 * Statistics about the size of the metadata dbuf cache.
112 kstat_named_t metadata_cache_count;
113 kstat_named_t metadata_cache_size_bytes;
114 kstat_named_t metadata_cache_size_bytes_max;
116 * For diagnostic purposes, this is incremented whenever we can't add
117 * something to the metadata cache because it's full, and instead put
118 * the data in the regular dbuf cache.
120 kstat_named_t metadata_cache_overflow;
121 } dbuf_stats_t;
123 dbuf_stats_t dbuf_stats = {
124 { "cache_count", KSTAT_DATA_UINT64 },
125 { "cache_size_bytes", KSTAT_DATA_UINT64 },
126 { "cache_size_bytes_max", KSTAT_DATA_UINT64 },
127 { "cache_target_bytes", KSTAT_DATA_UINT64 },
128 { "cache_lowater_bytes", KSTAT_DATA_UINT64 },
129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64 },
130 { "cache_total_evicts", KSTAT_DATA_UINT64 },
131 { { "cache_levels_N", KSTAT_DATA_UINT64 } },
132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64 } },
133 { "hash_hits", KSTAT_DATA_UINT64 },
134 { "hash_misses", KSTAT_DATA_UINT64 },
135 { "hash_collisions", KSTAT_DATA_UINT64 },
136 { "hash_elements", KSTAT_DATA_UINT64 },
137 { "hash_elements_max", KSTAT_DATA_UINT64 },
138 { "hash_chains", KSTAT_DATA_UINT64 },
139 { "hash_chain_max", KSTAT_DATA_UINT64 },
140 { "hash_insert_race", KSTAT_DATA_UINT64 },
141 { "hash_table_count", KSTAT_DATA_UINT64 },
142 { "hash_mutex_count", KSTAT_DATA_UINT64 },
143 { "metadata_cache_count", KSTAT_DATA_UINT64 },
144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64 },
145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64 },
146 { "metadata_cache_overflow", KSTAT_DATA_UINT64 }
149 struct {
150 wmsum_t cache_count;
151 wmsum_t cache_total_evicts;
152 wmsum_t cache_levels[DN_MAX_LEVELS];
153 wmsum_t cache_levels_bytes[DN_MAX_LEVELS];
154 wmsum_t hash_hits;
155 wmsum_t hash_misses;
156 wmsum_t hash_collisions;
157 wmsum_t hash_chains;
158 wmsum_t hash_insert_race;
159 wmsum_t metadata_cache_count;
160 wmsum_t metadata_cache_overflow;
161 } dbuf_sums;
163 #define DBUF_STAT_INCR(stat, val) \
164 wmsum_add(&dbuf_sums.stat, val)
165 #define DBUF_STAT_DECR(stat, val) \
166 DBUF_STAT_INCR(stat, -(val))
167 #define DBUF_STAT_BUMP(stat) \
168 DBUF_STAT_INCR(stat, 1)
169 #define DBUF_STAT_BUMPDOWN(stat) \
170 DBUF_STAT_INCR(stat, -1)
171 #define DBUF_STAT_MAX(stat, v) { \
172 uint64_t _m; \
173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
175 continue; \
178 static void dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr);
182 * Global data structures and functions for the dbuf cache.
184 static kmem_cache_t *dbuf_kmem_cache;
185 static taskq_t *dbu_evict_taskq;
187 static kthread_t *dbuf_cache_evict_thread;
188 static kmutex_t dbuf_evict_lock;
189 static kcondvar_t dbuf_evict_cv;
190 static boolean_t dbuf_evict_thread_exit;
193 * There are two dbuf caches; each dbuf can only be in one of them at a time.
195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
197 * that represent the metadata that describes filesystems/snapshots/
198 * bookmarks/properties/etc. We only evict from this cache when we export a
199 * pool, to short-circuit as much I/O as possible for all administrative
200 * commands that need the metadata. There is no eviction policy for this
201 * cache, because we try to only include types in it which would occupy a
202 * very small amount of space per object but create a large impact on the
203 * performance of these commands. Instead, after it reaches a maximum size
204 * (which should only happen on very small memory systems with a very large
205 * number of filesystem objects), we stop taking new dbufs into the
206 * metadata cache, instead putting them in the normal dbuf cache.
208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
209 * are not currently held but have been recently released. These dbufs
210 * are not eligible for arc eviction until they are aged out of the cache.
211 * Dbufs that are aged out of the cache will be immediately destroyed and
212 * become eligible for arc eviction.
214 * Dbufs are added to these caches once the last hold is released. If a dbuf is
215 * later accessed and still exists in the dbuf cache, then it will be removed
216 * from the cache and later re-added to the head of the cache.
218 * If a given dbuf meets the requirements for the metadata cache, it will go
219 * there, otherwise it will be considered for the generic LRU dbuf cache. The
220 * caches and the refcounts tracking their sizes are stored in an array indexed
221 * by those caches' matching enum values (from dbuf_cached_state_t).
223 typedef struct dbuf_cache {
224 multilist_t cache;
225 zfs_refcount_t size ____cacheline_aligned;
226 } dbuf_cache_t;
227 dbuf_cache_t dbuf_caches[DB_CACHE_MAX];
229 /* Size limits for the caches */
230 static uint64_t dbuf_cache_max_bytes = UINT64_MAX;
231 static uint64_t dbuf_metadata_cache_max_bytes = UINT64_MAX;
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 static uint_t dbuf_cache_shift = 5;
235 static uint_t dbuf_metadata_cache_shift = 6;
237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
238 static uint_t dbuf_mutex_cache_shift = 0;
240 static unsigned long dbuf_cache_target_bytes(void);
241 static unsigned long dbuf_metadata_cache_target_bytes(void);
244 * The LRU dbuf cache uses a three-stage eviction policy:
245 * - A low water marker designates when the dbuf eviction thread
246 * should stop evicting from the dbuf cache.
247 * - When we reach the maximum size (aka mid water mark), we
248 * signal the eviction thread to run.
249 * - The high water mark indicates when the eviction thread
250 * is unable to keep up with the incoming load and eviction must
251 * happen in the context of the calling thread.
253 * The dbuf cache:
254 * (max size)
255 * low water mid water hi water
256 * +----------------------------------------+----------+----------+
257 * | | | |
258 * | | | |
259 * | | | |
260 * | | | |
261 * +----------------------------------------+----------+----------+
262 * stop signal evict
263 * evicting eviction directly
264 * thread
266 * The high and low water marks indicate the operating range for the eviction
267 * thread. The low water mark is, by default, 90% of the total size of the
268 * cache and the high water mark is at 110% (both of these percentages can be
269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
270 * respectively). The eviction thread will try to ensure that the cache remains
271 * within this range by waking up every second and checking if the cache is
272 * above the low water mark. The thread can also be woken up by callers adding
273 * elements into the cache if the cache is larger than the mid water (i.e max
274 * cache size). Once the eviction thread is woken up and eviction is required,
275 * it will continue evicting buffers until it's able to reduce the cache size
276 * to the low water mark. If the cache size continues to grow and hits the high
277 * water mark, then callers adding elements to the cache will begin to evict
278 * directly from the cache until the cache is no longer above the high water
279 * mark.
283 * The percentage above and below the maximum cache size.
285 static uint_t dbuf_cache_hiwater_pct = 10;
286 static uint_t dbuf_cache_lowater_pct = 10;
288 static int
289 dbuf_cons(void *vdb, void *unused, int kmflag)
291 (void) unused, (void) kmflag;
292 dmu_buf_impl_t *db = vdb;
293 memset(db, 0, sizeof (dmu_buf_impl_t));
295 mutex_init(&db->db_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
296 rw_init(&db->db_rwlock, NULL, RW_NOLOCKDEP, NULL);
297 cv_init(&db->db_changed, NULL, CV_DEFAULT, NULL);
298 multilist_link_init(&db->db_cache_link);
299 zfs_refcount_create(&db->db_holds);
301 return (0);
304 static void
305 dbuf_dest(void *vdb, void *unused)
307 (void) unused;
308 dmu_buf_impl_t *db = vdb;
309 mutex_destroy(&db->db_mtx);
310 rw_destroy(&db->db_rwlock);
311 cv_destroy(&db->db_changed);
312 ASSERT(!multilist_link_active(&db->db_cache_link));
313 zfs_refcount_destroy(&db->db_holds);
317 * dbuf hash table routines
319 static dbuf_hash_table_t dbuf_hash_table;
322 * We use Cityhash for this. It's fast, and has good hash properties without
323 * requiring any large static buffers.
325 static uint64_t
326 dbuf_hash(void *os, uint64_t obj, uint8_t lvl, uint64_t blkid)
328 return (cityhash4((uintptr_t)os, obj, (uint64_t)lvl, blkid));
331 #define DTRACE_SET_STATE(db, why) \
332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
333 const char *, why)
335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
336 ((dbuf)->db.db_object == (obj) && \
337 (dbuf)->db_objset == (os) && \
338 (dbuf)->db_level == (level) && \
339 (dbuf)->db_blkid == (blkid))
341 dmu_buf_impl_t *
342 dbuf_find(objset_t *os, uint64_t obj, uint8_t level, uint64_t blkid,
343 uint64_t *hash_out)
345 dbuf_hash_table_t *h = &dbuf_hash_table;
346 uint64_t hv;
347 uint64_t idx;
348 dmu_buf_impl_t *db;
350 hv = dbuf_hash(os, obj, level, blkid);
351 idx = hv & h->hash_table_mask;
353 mutex_enter(DBUF_HASH_MUTEX(h, idx));
354 for (db = h->hash_table[idx]; db != NULL; db = db->db_hash_next) {
355 if (DBUF_EQUAL(db, os, obj, level, blkid)) {
356 mutex_enter(&db->db_mtx);
357 if (db->db_state != DB_EVICTING) {
358 mutex_exit(DBUF_HASH_MUTEX(h, idx));
359 return (db);
361 mutex_exit(&db->db_mtx);
364 mutex_exit(DBUF_HASH_MUTEX(h, idx));
365 if (hash_out != NULL)
366 *hash_out = hv;
367 return (NULL);
370 static dmu_buf_impl_t *
371 dbuf_find_bonus(objset_t *os, uint64_t object)
373 dnode_t *dn;
374 dmu_buf_impl_t *db = NULL;
376 if (dnode_hold(os, object, FTAG, &dn) == 0) {
377 rw_enter(&dn->dn_struct_rwlock, RW_READER);
378 if (dn->dn_bonus != NULL) {
379 db = dn->dn_bonus;
380 mutex_enter(&db->db_mtx);
382 rw_exit(&dn->dn_struct_rwlock);
383 dnode_rele(dn, FTAG);
385 return (db);
389 * Insert an entry into the hash table. If there is already an element
390 * equal to elem in the hash table, then the already existing element
391 * will be returned and the new element will not be inserted.
392 * Otherwise returns NULL.
394 static dmu_buf_impl_t *
395 dbuf_hash_insert(dmu_buf_impl_t *db)
397 dbuf_hash_table_t *h = &dbuf_hash_table;
398 objset_t *os = db->db_objset;
399 uint64_t obj = db->db.db_object;
400 int level = db->db_level;
401 uint64_t blkid, idx;
402 dmu_buf_impl_t *dbf;
403 uint32_t i;
405 blkid = db->db_blkid;
406 ASSERT3U(dbuf_hash(os, obj, level, blkid), ==, db->db_hash);
407 idx = db->db_hash & h->hash_table_mask;
409 mutex_enter(DBUF_HASH_MUTEX(h, idx));
410 for (dbf = h->hash_table[idx], i = 0; dbf != NULL;
411 dbf = dbf->db_hash_next, i++) {
412 if (DBUF_EQUAL(dbf, os, obj, level, blkid)) {
413 mutex_enter(&dbf->db_mtx);
414 if (dbf->db_state != DB_EVICTING) {
415 mutex_exit(DBUF_HASH_MUTEX(h, idx));
416 return (dbf);
418 mutex_exit(&dbf->db_mtx);
422 if (i > 0) {
423 DBUF_STAT_BUMP(hash_collisions);
424 if (i == 1)
425 DBUF_STAT_BUMP(hash_chains);
427 DBUF_STAT_MAX(hash_chain_max, i);
430 mutex_enter(&db->db_mtx);
431 db->db_hash_next = h->hash_table[idx];
432 h->hash_table[idx] = db;
433 mutex_exit(DBUF_HASH_MUTEX(h, idx));
434 uint64_t he = atomic_inc_64_nv(&dbuf_stats.hash_elements.value.ui64);
435 DBUF_STAT_MAX(hash_elements_max, he);
437 return (NULL);
441 * This returns whether this dbuf should be stored in the metadata cache, which
442 * is based on whether it's from one of the dnode types that store data related
443 * to traversing dataset hierarchies.
445 static boolean_t
446 dbuf_include_in_metadata_cache(dmu_buf_impl_t *db)
448 DB_DNODE_ENTER(db);
449 dmu_object_type_t type = DB_DNODE(db)->dn_type;
450 DB_DNODE_EXIT(db);
452 /* Check if this dbuf is one of the types we care about */
453 if (DMU_OT_IS_METADATA_CACHED(type)) {
454 /* If we hit this, then we set something up wrong in dmu_ot */
455 ASSERT(DMU_OT_IS_METADATA(type));
458 * Sanity check for small-memory systems: don't allocate too
459 * much memory for this purpose.
461 if (zfs_refcount_count(
462 &dbuf_caches[DB_DBUF_METADATA_CACHE].size) >
463 dbuf_metadata_cache_target_bytes()) {
464 DBUF_STAT_BUMP(metadata_cache_overflow);
465 return (B_FALSE);
468 return (B_TRUE);
471 return (B_FALSE);
475 * Remove an entry from the hash table. It must be in the EVICTING state.
477 static void
478 dbuf_hash_remove(dmu_buf_impl_t *db)
480 dbuf_hash_table_t *h = &dbuf_hash_table;
481 uint64_t idx;
482 dmu_buf_impl_t *dbf, **dbp;
484 ASSERT3U(dbuf_hash(db->db_objset, db->db.db_object, db->db_level,
485 db->db_blkid), ==, db->db_hash);
486 idx = db->db_hash & h->hash_table_mask;
489 * We mustn't hold db_mtx to maintain lock ordering:
490 * DBUF_HASH_MUTEX > db_mtx.
492 ASSERT(zfs_refcount_is_zero(&db->db_holds));
493 ASSERT(db->db_state == DB_EVICTING);
494 ASSERT(!MUTEX_HELD(&db->db_mtx));
496 mutex_enter(DBUF_HASH_MUTEX(h, idx));
497 dbp = &h->hash_table[idx];
498 while ((dbf = *dbp) != db) {
499 dbp = &dbf->db_hash_next;
500 ASSERT(dbf != NULL);
502 *dbp = db->db_hash_next;
503 db->db_hash_next = NULL;
504 if (h->hash_table[idx] &&
505 h->hash_table[idx]->db_hash_next == NULL)
506 DBUF_STAT_BUMPDOWN(hash_chains);
507 mutex_exit(DBUF_HASH_MUTEX(h, idx));
508 atomic_dec_64(&dbuf_stats.hash_elements.value.ui64);
511 typedef enum {
512 DBVU_EVICTING,
513 DBVU_NOT_EVICTING
514 } dbvu_verify_type_t;
516 static void
517 dbuf_verify_user(dmu_buf_impl_t *db, dbvu_verify_type_t verify_type)
519 #ifdef ZFS_DEBUG
520 int64_t holds;
522 if (db->db_user == NULL)
523 return;
525 /* Only data blocks support the attachment of user data. */
526 ASSERT(db->db_level == 0);
528 /* Clients must resolve a dbuf before attaching user data. */
529 ASSERT(db->db.db_data != NULL);
530 ASSERT3U(db->db_state, ==, DB_CACHED);
532 holds = zfs_refcount_count(&db->db_holds);
533 if (verify_type == DBVU_EVICTING) {
535 * Immediate eviction occurs when holds == dirtycnt.
536 * For normal eviction buffers, holds is zero on
537 * eviction, except when dbuf_fix_old_data() calls
538 * dbuf_clear_data(). However, the hold count can grow
539 * during eviction even though db_mtx is held (see
540 * dmu_bonus_hold() for an example), so we can only
541 * test the generic invariant that holds >= dirtycnt.
543 ASSERT3U(holds, >=, db->db_dirtycnt);
544 } else {
545 if (db->db_user_immediate_evict == TRUE)
546 ASSERT3U(holds, >=, db->db_dirtycnt);
547 else
548 ASSERT3U(holds, >, 0);
550 #endif
553 static void
554 dbuf_evict_user(dmu_buf_impl_t *db)
556 dmu_buf_user_t *dbu = db->db_user;
558 ASSERT(MUTEX_HELD(&db->db_mtx));
560 if (dbu == NULL)
561 return;
563 dbuf_verify_user(db, DBVU_EVICTING);
564 db->db_user = NULL;
566 #ifdef ZFS_DEBUG
567 if (dbu->dbu_clear_on_evict_dbufp != NULL)
568 *dbu->dbu_clear_on_evict_dbufp = NULL;
569 #endif
571 if (db->db_caching_status != DB_NO_CACHE) {
573 * This is a cached dbuf, so the size of the user data is
574 * included in its cached amount. We adjust it here because the
575 * user data has already been detached from the dbuf, and the
576 * sync functions are not supposed to touch it (the dbuf might
577 * not exist anymore by the time the sync functions run.
579 uint64_t size = dbu->dbu_size;
580 (void) zfs_refcount_remove_many(
581 &dbuf_caches[db->db_caching_status].size, size, dbu);
582 if (db->db_caching_status == DB_DBUF_CACHE)
583 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size);
587 * There are two eviction callbacks - one that we call synchronously
588 * and one that we invoke via a taskq. The async one is useful for
589 * avoiding lock order reversals and limiting stack depth.
591 * Note that if we have a sync callback but no async callback,
592 * it's likely that the sync callback will free the structure
593 * containing the dbu. In that case we need to take care to not
594 * dereference dbu after calling the sync evict func.
596 boolean_t has_async = (dbu->dbu_evict_func_async != NULL);
598 if (dbu->dbu_evict_func_sync != NULL)
599 dbu->dbu_evict_func_sync(dbu);
601 if (has_async) {
602 taskq_dispatch_ent(dbu_evict_taskq, dbu->dbu_evict_func_async,
603 dbu, 0, &dbu->dbu_tqent);
607 boolean_t
608 dbuf_is_metadata(dmu_buf_impl_t *db)
611 * Consider indirect blocks and spill blocks to be meta data.
613 if (db->db_level > 0 || db->db_blkid == DMU_SPILL_BLKID) {
614 return (B_TRUE);
615 } else {
616 boolean_t is_metadata;
618 DB_DNODE_ENTER(db);
619 is_metadata = DMU_OT_IS_METADATA(DB_DNODE(db)->dn_type);
620 DB_DNODE_EXIT(db);
622 return (is_metadata);
627 * We want to exclude buffers that are on a special allocation class from
628 * L2ARC.
630 boolean_t
631 dbuf_is_l2cacheable(dmu_buf_impl_t *db, blkptr_t *bp)
633 if (db->db_objset->os_secondary_cache == ZFS_CACHE_ALL ||
634 (db->db_objset->os_secondary_cache ==
635 ZFS_CACHE_METADATA && dbuf_is_metadata(db))) {
636 if (l2arc_exclude_special == 0)
637 return (B_TRUE);
640 * bp must be checked in the event it was passed from
641 * dbuf_read_impl() as the result of a the BP being set from
642 * a Direct I/O write in dbuf_read(). See comments in
643 * dbuf_read().
645 blkptr_t *db_bp = bp == NULL ? db->db_blkptr : bp;
647 if (db_bp == NULL || BP_IS_HOLE(db_bp))
648 return (B_FALSE);
649 uint64_t vdev = DVA_GET_VDEV(db_bp->blk_dva);
650 vdev_t *rvd = db->db_objset->os_spa->spa_root_vdev;
651 vdev_t *vd = NULL;
653 if (vdev < rvd->vdev_children)
654 vd = rvd->vdev_child[vdev];
656 if (vd == NULL)
657 return (B_TRUE);
659 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
660 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
661 return (B_TRUE);
663 return (B_FALSE);
666 static inline boolean_t
667 dnode_level_is_l2cacheable(blkptr_t *bp, dnode_t *dn, int64_t level)
669 if (dn->dn_objset->os_secondary_cache == ZFS_CACHE_ALL ||
670 (dn->dn_objset->os_secondary_cache == ZFS_CACHE_METADATA &&
671 (level > 0 ||
672 DMU_OT_IS_METADATA(dn->dn_handle->dnh_dnode->dn_type)))) {
673 if (l2arc_exclude_special == 0)
674 return (B_TRUE);
676 if (bp == NULL || BP_IS_HOLE(bp))
677 return (B_FALSE);
678 uint64_t vdev = DVA_GET_VDEV(bp->blk_dva);
679 vdev_t *rvd = dn->dn_objset->os_spa->spa_root_vdev;
680 vdev_t *vd = NULL;
682 if (vdev < rvd->vdev_children)
683 vd = rvd->vdev_child[vdev];
685 if (vd == NULL)
686 return (B_TRUE);
688 if (vd->vdev_alloc_bias != VDEV_BIAS_SPECIAL &&
689 vd->vdev_alloc_bias != VDEV_BIAS_DEDUP)
690 return (B_TRUE);
692 return (B_FALSE);
697 * This function *must* return indices evenly distributed between all
698 * sublists of the multilist. This is needed due to how the dbuf eviction
699 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
700 * distributed between all sublists and uses this assumption when
701 * deciding which sublist to evict from and how much to evict from it.
703 static unsigned int
704 dbuf_cache_multilist_index_func(multilist_t *ml, void *obj)
706 dmu_buf_impl_t *db = obj;
709 * The assumption here, is the hash value for a given
710 * dmu_buf_impl_t will remain constant throughout it's lifetime
711 * (i.e. it's objset, object, level and blkid fields don't change).
712 * Thus, we don't need to store the dbuf's sublist index
713 * on insertion, as this index can be recalculated on removal.
715 * Also, the low order bits of the hash value are thought to be
716 * distributed evenly. Otherwise, in the case that the multilist
717 * has a power of two number of sublists, each sublists' usage
718 * would not be evenly distributed. In this context full 64bit
719 * division would be a waste of time, so limit it to 32 bits.
721 return ((unsigned int)dbuf_hash(db->db_objset, db->db.db_object,
722 db->db_level, db->db_blkid) %
723 multilist_get_num_sublists(ml));
727 * The target size of the dbuf cache can grow with the ARC target,
728 * unless limited by the tunable dbuf_cache_max_bytes.
730 static inline unsigned long
731 dbuf_cache_target_bytes(void)
733 return (MIN(dbuf_cache_max_bytes,
734 arc_target_bytes() >> dbuf_cache_shift));
738 * The target size of the dbuf metadata cache can grow with the ARC target,
739 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
741 static inline unsigned long
742 dbuf_metadata_cache_target_bytes(void)
744 return (MIN(dbuf_metadata_cache_max_bytes,
745 arc_target_bytes() >> dbuf_metadata_cache_shift));
748 static inline uint64_t
749 dbuf_cache_hiwater_bytes(void)
751 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
752 return (dbuf_cache_target +
753 (dbuf_cache_target * dbuf_cache_hiwater_pct) / 100);
756 static inline uint64_t
757 dbuf_cache_lowater_bytes(void)
759 uint64_t dbuf_cache_target = dbuf_cache_target_bytes();
760 return (dbuf_cache_target -
761 (dbuf_cache_target * dbuf_cache_lowater_pct) / 100);
764 static inline boolean_t
765 dbuf_cache_above_lowater(void)
767 return (zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size) >
768 dbuf_cache_lowater_bytes());
772 * Evict the oldest eligible dbuf from the dbuf cache.
774 static void
775 dbuf_evict_one(void)
777 int idx = multilist_get_random_index(&dbuf_caches[DB_DBUF_CACHE].cache);
778 multilist_sublist_t *mls = multilist_sublist_lock_idx(
779 &dbuf_caches[DB_DBUF_CACHE].cache, idx);
781 ASSERT(!MUTEX_HELD(&dbuf_evict_lock));
783 dmu_buf_impl_t *db = multilist_sublist_tail(mls);
784 while (db != NULL && mutex_tryenter(&db->db_mtx) == 0) {
785 db = multilist_sublist_prev(mls, db);
788 DTRACE_PROBE2(dbuf__evict__one, dmu_buf_impl_t *, db,
789 multilist_sublist_t *, mls);
791 if (db != NULL) {
792 multilist_sublist_remove(mls, db);
793 multilist_sublist_unlock(mls);
794 uint64_t size = db->db.db_size;
795 uint64_t usize = dmu_buf_user_size(&db->db);
796 (void) zfs_refcount_remove_many(
797 &dbuf_caches[DB_DBUF_CACHE].size, size, db);
798 (void) zfs_refcount_remove_many(
799 &dbuf_caches[DB_DBUF_CACHE].size, usize, db->db_user);
800 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
801 DBUF_STAT_BUMPDOWN(cache_count);
802 DBUF_STAT_DECR(cache_levels_bytes[db->db_level], size + usize);
803 ASSERT3U(db->db_caching_status, ==, DB_DBUF_CACHE);
804 db->db_caching_status = DB_NO_CACHE;
805 dbuf_destroy(db);
806 DBUF_STAT_BUMP(cache_total_evicts);
807 } else {
808 multilist_sublist_unlock(mls);
813 * The dbuf evict thread is responsible for aging out dbufs from the
814 * cache. Once the cache has reached it's maximum size, dbufs are removed
815 * and destroyed. The eviction thread will continue running until the size
816 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
817 * out of the cache it is destroyed and becomes eligible for arc eviction.
819 static __attribute__((noreturn)) void
820 dbuf_evict_thread(void *unused)
822 (void) unused;
823 callb_cpr_t cpr;
825 CALLB_CPR_INIT(&cpr, &dbuf_evict_lock, callb_generic_cpr, FTAG);
827 mutex_enter(&dbuf_evict_lock);
828 while (!dbuf_evict_thread_exit) {
829 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
830 CALLB_CPR_SAFE_BEGIN(&cpr);
831 (void) cv_timedwait_idle_hires(&dbuf_evict_cv,
832 &dbuf_evict_lock, SEC2NSEC(1), MSEC2NSEC(1), 0);
833 CALLB_CPR_SAFE_END(&cpr, &dbuf_evict_lock);
835 mutex_exit(&dbuf_evict_lock);
838 * Keep evicting as long as we're above the low water mark
839 * for the cache. We do this without holding the locks to
840 * minimize lock contention.
842 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit) {
843 dbuf_evict_one();
846 mutex_enter(&dbuf_evict_lock);
849 dbuf_evict_thread_exit = B_FALSE;
850 cv_broadcast(&dbuf_evict_cv);
851 CALLB_CPR_EXIT(&cpr); /* drops dbuf_evict_lock */
852 thread_exit();
856 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
857 * If the dbuf cache is at its high water mark, then evict a dbuf from the
858 * dbuf cache using the caller's context.
860 static void
861 dbuf_evict_notify(uint64_t size)
864 * We check if we should evict without holding the dbuf_evict_lock,
865 * because it's OK to occasionally make the wrong decision here,
866 * and grabbing the lock results in massive lock contention.
868 if (size > dbuf_cache_target_bytes()) {
869 if (size > dbuf_cache_hiwater_bytes())
870 dbuf_evict_one();
871 cv_signal(&dbuf_evict_cv);
875 static int
876 dbuf_kstat_update(kstat_t *ksp, int rw)
878 dbuf_stats_t *ds = ksp->ks_data;
879 dbuf_hash_table_t *h = &dbuf_hash_table;
881 if (rw == KSTAT_WRITE)
882 return (SET_ERROR(EACCES));
884 ds->cache_count.value.ui64 =
885 wmsum_value(&dbuf_sums.cache_count);
886 ds->cache_size_bytes.value.ui64 =
887 zfs_refcount_count(&dbuf_caches[DB_DBUF_CACHE].size);
888 ds->cache_target_bytes.value.ui64 = dbuf_cache_target_bytes();
889 ds->cache_hiwater_bytes.value.ui64 = dbuf_cache_hiwater_bytes();
890 ds->cache_lowater_bytes.value.ui64 = dbuf_cache_lowater_bytes();
891 ds->cache_total_evicts.value.ui64 =
892 wmsum_value(&dbuf_sums.cache_total_evicts);
893 for (int i = 0; i < DN_MAX_LEVELS; i++) {
894 ds->cache_levels[i].value.ui64 =
895 wmsum_value(&dbuf_sums.cache_levels[i]);
896 ds->cache_levels_bytes[i].value.ui64 =
897 wmsum_value(&dbuf_sums.cache_levels_bytes[i]);
899 ds->hash_hits.value.ui64 =
900 wmsum_value(&dbuf_sums.hash_hits);
901 ds->hash_misses.value.ui64 =
902 wmsum_value(&dbuf_sums.hash_misses);
903 ds->hash_collisions.value.ui64 =
904 wmsum_value(&dbuf_sums.hash_collisions);
905 ds->hash_chains.value.ui64 =
906 wmsum_value(&dbuf_sums.hash_chains);
907 ds->hash_insert_race.value.ui64 =
908 wmsum_value(&dbuf_sums.hash_insert_race);
909 ds->hash_table_count.value.ui64 = h->hash_table_mask + 1;
910 ds->hash_mutex_count.value.ui64 = h->hash_mutex_mask + 1;
911 ds->metadata_cache_count.value.ui64 =
912 wmsum_value(&dbuf_sums.metadata_cache_count);
913 ds->metadata_cache_size_bytes.value.ui64 = zfs_refcount_count(
914 &dbuf_caches[DB_DBUF_METADATA_CACHE].size);
915 ds->metadata_cache_overflow.value.ui64 =
916 wmsum_value(&dbuf_sums.metadata_cache_overflow);
917 return (0);
920 void
921 dbuf_init(void)
923 uint64_t hmsize, hsize = 1ULL << 16;
924 dbuf_hash_table_t *h = &dbuf_hash_table;
927 * The hash table is big enough to fill one eighth of physical memory
928 * with an average block size of zfs_arc_average_blocksize (default 8K).
929 * By default, the table will take up
930 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
932 while (hsize * zfs_arc_average_blocksize < arc_all_memory() / 8)
933 hsize <<= 1;
935 h->hash_table = NULL;
936 while (h->hash_table == NULL) {
937 h->hash_table_mask = hsize - 1;
939 h->hash_table = vmem_zalloc(hsize * sizeof (void *), KM_SLEEP);
940 if (h->hash_table == NULL)
941 hsize >>= 1;
943 ASSERT3U(hsize, >=, 1ULL << 10);
947 * The hash table buckets are protected by an array of mutexes where
948 * each mutex is reponsible for protecting 128 buckets. A minimum
949 * array size of 8192 is targeted to avoid contention.
951 if (dbuf_mutex_cache_shift == 0)
952 hmsize = MAX(hsize >> 7, 1ULL << 13);
953 else
954 hmsize = 1ULL << MIN(dbuf_mutex_cache_shift, 24);
956 h->hash_mutexes = NULL;
957 while (h->hash_mutexes == NULL) {
958 h->hash_mutex_mask = hmsize - 1;
960 h->hash_mutexes = vmem_zalloc(hmsize * sizeof (kmutex_t),
961 KM_SLEEP);
962 if (h->hash_mutexes == NULL)
963 hmsize >>= 1;
966 dbuf_kmem_cache = kmem_cache_create("dmu_buf_impl_t",
967 sizeof (dmu_buf_impl_t),
968 0, dbuf_cons, dbuf_dest, NULL, NULL, NULL, 0);
970 for (int i = 0; i < hmsize; i++)
971 mutex_init(&h->hash_mutexes[i], NULL, MUTEX_NOLOCKDEP, NULL);
973 dbuf_stats_init(h);
976 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
977 * configuration is not required.
979 dbu_evict_taskq = taskq_create("dbu_evict", 1, defclsyspri, 0, 0, 0);
981 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
982 multilist_create(&dbuf_caches[dcs].cache,
983 sizeof (dmu_buf_impl_t),
984 offsetof(dmu_buf_impl_t, db_cache_link),
985 dbuf_cache_multilist_index_func);
986 zfs_refcount_create(&dbuf_caches[dcs].size);
989 dbuf_evict_thread_exit = B_FALSE;
990 mutex_init(&dbuf_evict_lock, NULL, MUTEX_DEFAULT, NULL);
991 cv_init(&dbuf_evict_cv, NULL, CV_DEFAULT, NULL);
992 dbuf_cache_evict_thread = thread_create(NULL, 0, dbuf_evict_thread,
993 NULL, 0, &p0, TS_RUN, minclsyspri);
995 wmsum_init(&dbuf_sums.cache_count, 0);
996 wmsum_init(&dbuf_sums.cache_total_evicts, 0);
997 for (int i = 0; i < DN_MAX_LEVELS; i++) {
998 wmsum_init(&dbuf_sums.cache_levels[i], 0);
999 wmsum_init(&dbuf_sums.cache_levels_bytes[i], 0);
1001 wmsum_init(&dbuf_sums.hash_hits, 0);
1002 wmsum_init(&dbuf_sums.hash_misses, 0);
1003 wmsum_init(&dbuf_sums.hash_collisions, 0);
1004 wmsum_init(&dbuf_sums.hash_chains, 0);
1005 wmsum_init(&dbuf_sums.hash_insert_race, 0);
1006 wmsum_init(&dbuf_sums.metadata_cache_count, 0);
1007 wmsum_init(&dbuf_sums.metadata_cache_overflow, 0);
1009 dbuf_ksp = kstat_create("zfs", 0, "dbufstats", "misc",
1010 KSTAT_TYPE_NAMED, sizeof (dbuf_stats) / sizeof (kstat_named_t),
1011 KSTAT_FLAG_VIRTUAL);
1012 if (dbuf_ksp != NULL) {
1013 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1014 snprintf(dbuf_stats.cache_levels[i].name,
1015 KSTAT_STRLEN, "cache_level_%d", i);
1016 dbuf_stats.cache_levels[i].data_type =
1017 KSTAT_DATA_UINT64;
1018 snprintf(dbuf_stats.cache_levels_bytes[i].name,
1019 KSTAT_STRLEN, "cache_level_%d_bytes", i);
1020 dbuf_stats.cache_levels_bytes[i].data_type =
1021 KSTAT_DATA_UINT64;
1023 dbuf_ksp->ks_data = &dbuf_stats;
1024 dbuf_ksp->ks_update = dbuf_kstat_update;
1025 kstat_install(dbuf_ksp);
1029 void
1030 dbuf_fini(void)
1032 dbuf_hash_table_t *h = &dbuf_hash_table;
1034 dbuf_stats_destroy();
1036 for (int i = 0; i < (h->hash_mutex_mask + 1); i++)
1037 mutex_destroy(&h->hash_mutexes[i]);
1039 vmem_free(h->hash_table, (h->hash_table_mask + 1) * sizeof (void *));
1040 vmem_free(h->hash_mutexes, (h->hash_mutex_mask + 1) *
1041 sizeof (kmutex_t));
1043 kmem_cache_destroy(dbuf_kmem_cache);
1044 taskq_destroy(dbu_evict_taskq);
1046 mutex_enter(&dbuf_evict_lock);
1047 dbuf_evict_thread_exit = B_TRUE;
1048 while (dbuf_evict_thread_exit) {
1049 cv_signal(&dbuf_evict_cv);
1050 cv_wait(&dbuf_evict_cv, &dbuf_evict_lock);
1052 mutex_exit(&dbuf_evict_lock);
1054 mutex_destroy(&dbuf_evict_lock);
1055 cv_destroy(&dbuf_evict_cv);
1057 for (dbuf_cached_state_t dcs = 0; dcs < DB_CACHE_MAX; dcs++) {
1058 zfs_refcount_destroy(&dbuf_caches[dcs].size);
1059 multilist_destroy(&dbuf_caches[dcs].cache);
1062 if (dbuf_ksp != NULL) {
1063 kstat_delete(dbuf_ksp);
1064 dbuf_ksp = NULL;
1067 wmsum_fini(&dbuf_sums.cache_count);
1068 wmsum_fini(&dbuf_sums.cache_total_evicts);
1069 for (int i = 0; i < DN_MAX_LEVELS; i++) {
1070 wmsum_fini(&dbuf_sums.cache_levels[i]);
1071 wmsum_fini(&dbuf_sums.cache_levels_bytes[i]);
1073 wmsum_fini(&dbuf_sums.hash_hits);
1074 wmsum_fini(&dbuf_sums.hash_misses);
1075 wmsum_fini(&dbuf_sums.hash_collisions);
1076 wmsum_fini(&dbuf_sums.hash_chains);
1077 wmsum_fini(&dbuf_sums.hash_insert_race);
1078 wmsum_fini(&dbuf_sums.metadata_cache_count);
1079 wmsum_fini(&dbuf_sums.metadata_cache_overflow);
1083 * Other stuff.
1086 #ifdef ZFS_DEBUG
1087 static void
1088 dbuf_verify(dmu_buf_impl_t *db)
1090 dnode_t *dn;
1091 dbuf_dirty_record_t *dr;
1092 uint32_t txg_prev;
1094 ASSERT(MUTEX_HELD(&db->db_mtx));
1096 if (!(zfs_flags & ZFS_DEBUG_DBUF_VERIFY))
1097 return;
1099 ASSERT(db->db_objset != NULL);
1100 DB_DNODE_ENTER(db);
1101 dn = DB_DNODE(db);
1102 if (dn == NULL) {
1103 ASSERT(db->db_parent == NULL);
1104 ASSERT(db->db_blkptr == NULL);
1105 } else {
1106 ASSERT3U(db->db.db_object, ==, dn->dn_object);
1107 ASSERT3P(db->db_objset, ==, dn->dn_objset);
1108 ASSERT3U(db->db_level, <, dn->dn_nlevels);
1109 ASSERT(db->db_blkid == DMU_BONUS_BLKID ||
1110 db->db_blkid == DMU_SPILL_BLKID ||
1111 !avl_is_empty(&dn->dn_dbufs));
1113 if (db->db_blkid == DMU_BONUS_BLKID) {
1114 ASSERT(dn != NULL);
1115 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
1116 ASSERT3U(db->db.db_offset, ==, DMU_BONUS_BLKID);
1117 } else if (db->db_blkid == DMU_SPILL_BLKID) {
1118 ASSERT(dn != NULL);
1119 ASSERT0(db->db.db_offset);
1120 } else {
1121 ASSERT3U(db->db.db_offset, ==, db->db_blkid * db->db.db_size);
1124 if ((dr = list_head(&db->db_dirty_records)) != NULL) {
1125 ASSERT(dr->dr_dbuf == db);
1126 txg_prev = dr->dr_txg;
1127 for (dr = list_next(&db->db_dirty_records, dr); dr != NULL;
1128 dr = list_next(&db->db_dirty_records, dr)) {
1129 ASSERT(dr->dr_dbuf == db);
1130 ASSERT(txg_prev > dr->dr_txg);
1131 txg_prev = dr->dr_txg;
1136 * We can't assert that db_size matches dn_datablksz because it
1137 * can be momentarily different when another thread is doing
1138 * dnode_set_blksz().
1140 if (db->db_level == 0 && db->db.db_object == DMU_META_DNODE_OBJECT) {
1141 dr = db->db_data_pending;
1143 * It should only be modified in syncing context, so
1144 * make sure we only have one copy of the data.
1146 ASSERT(dr == NULL || dr->dt.dl.dr_data == db->db_buf);
1149 /* verify db->db_blkptr */
1150 if (db->db_blkptr) {
1151 if (db->db_parent == dn->dn_dbuf) {
1152 /* db is pointed to by the dnode */
1153 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1154 if (DMU_OBJECT_IS_SPECIAL(db->db.db_object))
1155 ASSERT(db->db_parent == NULL);
1156 else
1157 ASSERT(db->db_parent != NULL);
1158 if (db->db_blkid != DMU_SPILL_BLKID)
1159 ASSERT3P(db->db_blkptr, ==,
1160 &dn->dn_phys->dn_blkptr[db->db_blkid]);
1161 } else {
1162 /* db is pointed to by an indirect block */
1163 int epb __maybe_unused = db->db_parent->db.db_size >>
1164 SPA_BLKPTRSHIFT;
1165 ASSERT3U(db->db_parent->db_level, ==, db->db_level+1);
1166 ASSERT3U(db->db_parent->db.db_object, ==,
1167 db->db.db_object);
1169 * dnode_grow_indblksz() can make this fail if we don't
1170 * have the parent's rwlock. XXX indblksz no longer
1171 * grows. safe to do this now?
1173 if (RW_LOCK_HELD(&db->db_parent->db_rwlock)) {
1174 ASSERT3P(db->db_blkptr, ==,
1175 ((blkptr_t *)db->db_parent->db.db_data +
1176 db->db_blkid % epb));
1180 if ((db->db_blkptr == NULL || BP_IS_HOLE(db->db_blkptr)) &&
1181 (db->db_buf == NULL || db->db_buf->b_data) &&
1182 db->db.db_data && db->db_blkid != DMU_BONUS_BLKID &&
1183 db->db_state != DB_FILL && (dn == NULL || !dn->dn_free_txg)) {
1185 * If the blkptr isn't set but they have nonzero data,
1186 * it had better be dirty, otherwise we'll lose that
1187 * data when we evict this buffer.
1189 * There is an exception to this rule for indirect blocks; in
1190 * this case, if the indirect block is a hole, we fill in a few
1191 * fields on each of the child blocks (importantly, birth time)
1192 * to prevent hole birth times from being lost when you
1193 * partially fill in a hole.
1195 if (db->db_dirtycnt == 0) {
1196 if (db->db_level == 0) {
1197 uint64_t *buf = db->db.db_data;
1198 int i;
1200 for (i = 0; i < db->db.db_size >> 3; i++) {
1201 ASSERT(buf[i] == 0);
1203 } else {
1204 blkptr_t *bps = db->db.db_data;
1205 ASSERT3U(1 << DB_DNODE(db)->dn_indblkshift, ==,
1206 db->db.db_size);
1208 * We want to verify that all the blkptrs in the
1209 * indirect block are holes, but we may have
1210 * automatically set up a few fields for them.
1211 * We iterate through each blkptr and verify
1212 * they only have those fields set.
1214 for (int i = 0;
1215 i < db->db.db_size / sizeof (blkptr_t);
1216 i++) {
1217 blkptr_t *bp = &bps[i];
1218 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1219 &bp->blk_cksum));
1220 ASSERT(
1221 DVA_IS_EMPTY(&bp->blk_dva[0]) &&
1222 DVA_IS_EMPTY(&bp->blk_dva[1]) &&
1223 DVA_IS_EMPTY(&bp->blk_dva[2]));
1224 ASSERT0(bp->blk_fill);
1225 ASSERT0(bp->blk_pad[0]);
1226 ASSERT0(bp->blk_pad[1]);
1227 ASSERT(!BP_IS_EMBEDDED(bp));
1228 ASSERT(BP_IS_HOLE(bp));
1229 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp));
1234 DB_DNODE_EXIT(db);
1236 #endif
1238 static void
1239 dbuf_clear_data(dmu_buf_impl_t *db)
1241 ASSERT(MUTEX_HELD(&db->db_mtx));
1242 dbuf_evict_user(db);
1243 ASSERT3P(db->db_buf, ==, NULL);
1244 db->db.db_data = NULL;
1245 if (db->db_state != DB_NOFILL) {
1246 db->db_state = DB_UNCACHED;
1247 DTRACE_SET_STATE(db, "clear data");
1251 static void
1252 dbuf_set_data(dmu_buf_impl_t *db, arc_buf_t *buf)
1254 ASSERT(MUTEX_HELD(&db->db_mtx));
1255 ASSERT(buf != NULL);
1257 db->db_buf = buf;
1258 ASSERT(buf->b_data != NULL);
1259 db->db.db_data = buf->b_data;
1262 static arc_buf_t *
1263 dbuf_alloc_arcbuf(dmu_buf_impl_t *db)
1265 spa_t *spa = db->db_objset->os_spa;
1267 return (arc_alloc_buf(spa, db, DBUF_GET_BUFC_TYPE(db), db->db.db_size));
1271 * Loan out an arc_buf for read. Return the loaned arc_buf.
1273 arc_buf_t *
1274 dbuf_loan_arcbuf(dmu_buf_impl_t *db)
1276 arc_buf_t *abuf;
1278 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1279 mutex_enter(&db->db_mtx);
1280 if (arc_released(db->db_buf) || zfs_refcount_count(&db->db_holds) > 1) {
1281 int blksz = db->db.db_size;
1282 spa_t *spa = db->db_objset->os_spa;
1284 mutex_exit(&db->db_mtx);
1285 abuf = arc_loan_buf(spa, B_FALSE, blksz);
1286 memcpy(abuf->b_data, db->db.db_data, blksz);
1287 } else {
1288 abuf = db->db_buf;
1289 arc_loan_inuse_buf(abuf, db);
1290 db->db_buf = NULL;
1291 dbuf_clear_data(db);
1292 mutex_exit(&db->db_mtx);
1294 return (abuf);
1298 * Calculate which level n block references the data at the level 0 offset
1299 * provided.
1301 uint64_t
1302 dbuf_whichblock(const dnode_t *dn, const int64_t level, const uint64_t offset)
1304 if (dn->dn_datablkshift != 0 && dn->dn_indblkshift != 0) {
1306 * The level n blkid is equal to the level 0 blkid divided by
1307 * the number of level 0s in a level n block.
1309 * The level 0 blkid is offset >> datablkshift =
1310 * offset / 2^datablkshift.
1312 * The number of level 0s in a level n is the number of block
1313 * pointers in an indirect block, raised to the power of level.
1314 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1315 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1317 * Thus, the level n blkid is: offset /
1318 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1319 * = offset / 2^(datablkshift + level *
1320 * (indblkshift - SPA_BLKPTRSHIFT))
1321 * = offset >> (datablkshift + level *
1322 * (indblkshift - SPA_BLKPTRSHIFT))
1325 const unsigned exp = dn->dn_datablkshift +
1326 level * (dn->dn_indblkshift - SPA_BLKPTRSHIFT);
1328 if (exp >= 8 * sizeof (offset)) {
1329 /* This only happens on the highest indirection level */
1330 ASSERT3U(level, ==, dn->dn_nlevels - 1);
1331 return (0);
1334 ASSERT3U(exp, <, 8 * sizeof (offset));
1336 return (offset >> exp);
1337 } else {
1338 ASSERT3U(offset, <, dn->dn_datablksz);
1339 return (0);
1344 * This function is used to lock the parent of the provided dbuf. This should be
1345 * used when modifying or reading db_blkptr.
1347 db_lock_type_t
1348 dmu_buf_lock_parent(dmu_buf_impl_t *db, krw_t rw, const void *tag)
1350 enum db_lock_type ret = DLT_NONE;
1351 if (db->db_parent != NULL) {
1352 rw_enter(&db->db_parent->db_rwlock, rw);
1353 ret = DLT_PARENT;
1354 } else if (dmu_objset_ds(db->db_objset) != NULL) {
1355 rrw_enter(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, rw,
1356 tag);
1357 ret = DLT_OBJSET;
1360 * We only return a DLT_NONE lock when it's the top-most indirect block
1361 * of the meta-dnode of the MOS.
1363 return (ret);
1367 * We need to pass the lock type in because it's possible that the block will
1368 * move from being the topmost indirect block in a dnode (and thus, have no
1369 * parent) to not the top-most via an indirection increase. This would cause a
1370 * panic if we didn't pass the lock type in.
1372 void
1373 dmu_buf_unlock_parent(dmu_buf_impl_t *db, db_lock_type_t type, const void *tag)
1375 if (type == DLT_PARENT)
1376 rw_exit(&db->db_parent->db_rwlock);
1377 else if (type == DLT_OBJSET)
1378 rrw_exit(&dmu_objset_ds(db->db_objset)->ds_bp_rwlock, tag);
1381 static void
1382 dbuf_read_done(zio_t *zio, const zbookmark_phys_t *zb, const blkptr_t *bp,
1383 arc_buf_t *buf, void *vdb)
1385 (void) zb, (void) bp;
1386 dmu_buf_impl_t *db = vdb;
1388 mutex_enter(&db->db_mtx);
1389 ASSERT3U(db->db_state, ==, DB_READ);
1392 * All reads are synchronous, so we must have a hold on the dbuf
1394 ASSERT(zfs_refcount_count(&db->db_holds) > 0);
1395 ASSERT(db->db_buf == NULL);
1396 ASSERT(db->db.db_data == NULL);
1397 if (buf == NULL) {
1398 /* i/o error */
1399 ASSERT(zio == NULL || zio->io_error != 0);
1400 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1401 ASSERT3P(db->db_buf, ==, NULL);
1402 db->db_state = DB_UNCACHED;
1403 DTRACE_SET_STATE(db, "i/o error");
1404 } else if (db->db_level == 0 && db->db_freed_in_flight) {
1405 /* freed in flight */
1406 ASSERT(zio == NULL || zio->io_error == 0);
1407 arc_release(buf, db);
1408 memset(buf->b_data, 0, db->db.db_size);
1409 arc_buf_freeze(buf);
1410 db->db_freed_in_flight = FALSE;
1411 dbuf_set_data(db, buf);
1412 db->db_state = DB_CACHED;
1413 DTRACE_SET_STATE(db, "freed in flight");
1414 } else {
1415 /* success */
1416 ASSERT(zio == NULL || zio->io_error == 0);
1417 dbuf_set_data(db, buf);
1418 db->db_state = DB_CACHED;
1419 DTRACE_SET_STATE(db, "successful read");
1421 cv_broadcast(&db->db_changed);
1422 dbuf_rele_and_unlock(db, NULL, B_FALSE);
1426 * Shortcut for performing reads on bonus dbufs. Returns
1427 * an error if we fail to verify the dnode associated with
1428 * a decrypted block. Otherwise success.
1430 static int
1431 dbuf_read_bonus(dmu_buf_impl_t *db, dnode_t *dn)
1433 int bonuslen, max_bonuslen;
1435 bonuslen = MIN(dn->dn_bonuslen, dn->dn_phys->dn_bonuslen);
1436 max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1437 ASSERT(MUTEX_HELD(&db->db_mtx));
1438 ASSERT(DB_DNODE_HELD(db));
1439 ASSERT3U(bonuslen, <=, db->db.db_size);
1440 db->db.db_data = kmem_alloc(max_bonuslen, KM_SLEEP);
1441 arc_space_consume(max_bonuslen, ARC_SPACE_BONUS);
1442 if (bonuslen < max_bonuslen)
1443 memset(db->db.db_data, 0, max_bonuslen);
1444 if (bonuslen)
1445 memcpy(db->db.db_data, DN_BONUS(dn->dn_phys), bonuslen);
1446 db->db_state = DB_CACHED;
1447 DTRACE_SET_STATE(db, "bonus buffer filled");
1448 return (0);
1451 static void
1452 dbuf_handle_indirect_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *dbbp)
1454 blkptr_t *bps = db->db.db_data;
1455 uint32_t indbs = 1ULL << dn->dn_indblkshift;
1456 int n_bps = indbs >> SPA_BLKPTRSHIFT;
1458 for (int i = 0; i < n_bps; i++) {
1459 blkptr_t *bp = &bps[i];
1461 ASSERT3U(BP_GET_LSIZE(dbbp), ==, indbs);
1462 BP_SET_LSIZE(bp, BP_GET_LEVEL(dbbp) == 1 ?
1463 dn->dn_datablksz : BP_GET_LSIZE(dbbp));
1464 BP_SET_TYPE(bp, BP_GET_TYPE(dbbp));
1465 BP_SET_LEVEL(bp, BP_GET_LEVEL(dbbp) - 1);
1466 BP_SET_BIRTH(bp, BP_GET_LOGICAL_BIRTH(dbbp), 0);
1471 * Handle reads on dbufs that are holes, if necessary. This function
1472 * requires that the dbuf's mutex is held. Returns success (0) if action
1473 * was taken, ENOENT if no action was taken.
1475 static int
1476 dbuf_read_hole(dmu_buf_impl_t *db, dnode_t *dn, blkptr_t *bp)
1478 ASSERT(MUTEX_HELD(&db->db_mtx));
1480 int is_hole = bp == NULL || BP_IS_HOLE(bp);
1482 * For level 0 blocks only, if the above check fails:
1483 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1484 * processes the delete record and clears the bp while we are waiting
1485 * for the dn_mtx (resulting in a "no" from block_freed).
1487 if (!is_hole && db->db_level == 0)
1488 is_hole = dnode_block_freed(dn, db->db_blkid) || BP_IS_HOLE(bp);
1490 if (is_hole) {
1491 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1492 memset(db->db.db_data, 0, db->db.db_size);
1494 if (bp != NULL && db->db_level > 0 && BP_IS_HOLE(bp) &&
1495 BP_GET_LOGICAL_BIRTH(bp) != 0) {
1496 dbuf_handle_indirect_hole(db, dn, bp);
1498 db->db_state = DB_CACHED;
1499 DTRACE_SET_STATE(db, "hole read satisfied");
1500 return (0);
1502 return (ENOENT);
1506 * This function ensures that, when doing a decrypting read of a block,
1507 * we make sure we have decrypted the dnode associated with it. We must do
1508 * this so that we ensure we are fully authenticating the checksum-of-MACs
1509 * tree from the root of the objset down to this block. Indirect blocks are
1510 * always verified against their secure checksum-of-MACs assuming that the
1511 * dnode containing them is correct. Now that we are doing a decrypting read,
1512 * we can be sure that the key is loaded and verify that assumption. This is
1513 * especially important considering that we always read encrypted dnode
1514 * blocks as raw data (without verifying their MACs) to start, and
1515 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1517 static int
1518 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t *db, dnode_t *dn, uint32_t flags)
1520 objset_t *os = db->db_objset;
1521 dmu_buf_impl_t *dndb;
1522 arc_buf_t *dnbuf;
1523 zbookmark_phys_t zb;
1524 int err;
1526 if ((flags & DB_RF_NO_DECRYPT) != 0 ||
1527 !os->os_encrypted || os->os_raw_receive ||
1528 (dndb = dn->dn_dbuf) == NULL)
1529 return (0);
1531 dnbuf = dndb->db_buf;
1532 if (!arc_is_encrypted(dnbuf))
1533 return (0);
1535 mutex_enter(&dndb->db_mtx);
1538 * Since dnode buffer is modified by sync process, there can be only
1539 * one copy of it. It means we can not modify (decrypt) it while it
1540 * is being written. I don't see how this may happen now, since
1541 * encrypted dnode writes by receive should be completed before any
1542 * plain-text reads due to txg wait, but better be safe than sorry.
1544 while (1) {
1545 if (!arc_is_encrypted(dnbuf)) {
1546 mutex_exit(&dndb->db_mtx);
1547 return (0);
1549 dbuf_dirty_record_t *dr = dndb->db_data_pending;
1550 if (dr == NULL || dr->dt.dl.dr_data != dnbuf)
1551 break;
1552 cv_wait(&dndb->db_changed, &dndb->db_mtx);
1555 SET_BOOKMARK(&zb, dmu_objset_id(os),
1556 DMU_META_DNODE_OBJECT, 0, dndb->db_blkid);
1557 err = arc_untransform(dnbuf, os->os_spa, &zb, B_TRUE);
1560 * An error code of EACCES tells us that the key is still not
1561 * available. This is ok if we are only reading authenticated
1562 * (and therefore non-encrypted) blocks.
1564 if (err == EACCES && ((db->db_blkid != DMU_BONUS_BLKID &&
1565 !DMU_OT_IS_ENCRYPTED(dn->dn_type)) ||
1566 (db->db_blkid == DMU_BONUS_BLKID &&
1567 !DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))))
1568 err = 0;
1570 mutex_exit(&dndb->db_mtx);
1572 return (err);
1576 * Drops db_mtx and the parent lock specified by dblt and tag before
1577 * returning.
1579 static int
1580 dbuf_read_impl(dmu_buf_impl_t *db, dnode_t *dn, zio_t *zio, uint32_t flags,
1581 db_lock_type_t dblt, blkptr_t *bp, const void *tag)
1583 zbookmark_phys_t zb;
1584 uint32_t aflags = ARC_FLAG_NOWAIT;
1585 int err, zio_flags;
1587 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1588 ASSERT(MUTEX_HELD(&db->db_mtx));
1589 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
1590 ASSERT(db->db_buf == NULL);
1591 ASSERT(db->db_parent == NULL ||
1592 RW_LOCK_HELD(&db->db_parent->db_rwlock));
1594 if (db->db_blkid == DMU_BONUS_BLKID) {
1595 err = dbuf_read_bonus(db, dn);
1596 goto early_unlock;
1599 err = dbuf_read_hole(db, dn, bp);
1600 if (err == 0)
1601 goto early_unlock;
1603 ASSERT(bp != NULL);
1606 * Any attempt to read a redacted block should result in an error. This
1607 * will never happen under normal conditions, but can be useful for
1608 * debugging purposes.
1610 if (BP_IS_REDACTED(bp)) {
1611 ASSERT(dsl_dataset_feature_is_active(
1612 db->db_objset->os_dsl_dataset,
1613 SPA_FEATURE_REDACTED_DATASETS));
1614 err = SET_ERROR(EIO);
1615 goto early_unlock;
1618 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1619 db->db.db_object, db->db_level, db->db_blkid);
1622 * All bps of an encrypted os should have the encryption bit set.
1623 * If this is not true it indicates tampering and we report an error.
1625 if (db->db_objset->os_encrypted && !BP_USES_CRYPT(bp)) {
1626 spa_log_error(db->db_objset->os_spa, &zb,
1627 BP_GET_LOGICAL_BIRTH(bp));
1628 err = SET_ERROR(EIO);
1629 goto early_unlock;
1632 db->db_state = DB_READ;
1633 DTRACE_SET_STATE(db, "read issued");
1634 mutex_exit(&db->db_mtx);
1636 if (!DBUF_IS_CACHEABLE(db))
1637 aflags |= ARC_FLAG_UNCACHED;
1638 else if (dbuf_is_l2cacheable(db, bp))
1639 aflags |= ARC_FLAG_L2CACHE;
1641 dbuf_add_ref(db, NULL);
1643 zio_flags = (flags & DB_RF_CANFAIL) ?
1644 ZIO_FLAG_CANFAIL : ZIO_FLAG_MUSTSUCCEED;
1646 if ((flags & DB_RF_NO_DECRYPT) && BP_IS_PROTECTED(bp))
1647 zio_flags |= ZIO_FLAG_RAW;
1650 * The zio layer will copy the provided blkptr later, but we need to
1651 * do this now so that we can release the parent's rwlock. We have to
1652 * do that now so that if dbuf_read_done is called synchronously (on
1653 * an l1 cache hit) we don't acquire the db_mtx while holding the
1654 * parent's rwlock, which would be a lock ordering violation.
1656 blkptr_t copy = *bp;
1657 dmu_buf_unlock_parent(db, dblt, tag);
1658 return (arc_read(zio, db->db_objset->os_spa, &copy,
1659 dbuf_read_done, db, ZIO_PRIORITY_SYNC_READ, zio_flags,
1660 &aflags, &zb));
1662 early_unlock:
1663 mutex_exit(&db->db_mtx);
1664 dmu_buf_unlock_parent(db, dblt, tag);
1665 return (err);
1669 * This is our just-in-time copy function. It makes a copy of buffers that
1670 * have been modified in a previous transaction group before we access them in
1671 * the current active group.
1673 * This function is used in three places: when we are dirtying a buffer for the
1674 * first time in a txg, when we are freeing a range in a dnode that includes
1675 * this buffer, and when we are accessing a buffer which was received compressed
1676 * and later referenced in a WRITE_BYREF record.
1678 * Note that when we are called from dbuf_free_range() we do not put a hold on
1679 * the buffer, we just traverse the active dbuf list for the dnode.
1681 static void
1682 dbuf_fix_old_data(dmu_buf_impl_t *db, uint64_t txg)
1684 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
1686 ASSERT(MUTEX_HELD(&db->db_mtx));
1687 ASSERT(db->db.db_data != NULL);
1688 ASSERT(db->db_level == 0);
1689 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
1691 if (dr == NULL ||
1692 (dr->dt.dl.dr_data !=
1693 ((db->db_blkid == DMU_BONUS_BLKID) ? db->db.db_data : db->db_buf)))
1694 return;
1697 * If the last dirty record for this dbuf has not yet synced
1698 * and its referencing the dbuf data, either:
1699 * reset the reference to point to a new copy,
1700 * or (if there a no active holders)
1701 * just null out the current db_data pointer.
1703 ASSERT3U(dr->dr_txg, >=, txg - 2);
1704 if (db->db_blkid == DMU_BONUS_BLKID) {
1705 dnode_t *dn = DB_DNODE(db);
1706 int bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
1707 dr->dt.dl.dr_data = kmem_alloc(bonuslen, KM_SLEEP);
1708 arc_space_consume(bonuslen, ARC_SPACE_BONUS);
1709 memcpy(dr->dt.dl.dr_data, db->db.db_data, bonuslen);
1710 } else if (zfs_refcount_count(&db->db_holds) > db->db_dirtycnt) {
1711 dnode_t *dn = DB_DNODE(db);
1712 int size = arc_buf_size(db->db_buf);
1713 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
1714 spa_t *spa = db->db_objset->os_spa;
1715 enum zio_compress compress_type =
1716 arc_get_compression(db->db_buf);
1717 uint8_t complevel = arc_get_complevel(db->db_buf);
1719 if (arc_is_encrypted(db->db_buf)) {
1720 boolean_t byteorder;
1721 uint8_t salt[ZIO_DATA_SALT_LEN];
1722 uint8_t iv[ZIO_DATA_IV_LEN];
1723 uint8_t mac[ZIO_DATA_MAC_LEN];
1725 arc_get_raw_params(db->db_buf, &byteorder, salt,
1726 iv, mac);
1727 dr->dt.dl.dr_data = arc_alloc_raw_buf(spa, db,
1728 dmu_objset_id(dn->dn_objset), byteorder, salt, iv,
1729 mac, dn->dn_type, size, arc_buf_lsize(db->db_buf),
1730 compress_type, complevel);
1731 } else if (compress_type != ZIO_COMPRESS_OFF) {
1732 ASSERT3U(type, ==, ARC_BUFC_DATA);
1733 dr->dt.dl.dr_data = arc_alloc_compressed_buf(spa, db,
1734 size, arc_buf_lsize(db->db_buf), compress_type,
1735 complevel);
1736 } else {
1737 dr->dt.dl.dr_data = arc_alloc_buf(spa, db, type, size);
1739 memcpy(dr->dt.dl.dr_data->b_data, db->db.db_data, size);
1740 } else {
1741 db->db_buf = NULL;
1742 dbuf_clear_data(db);
1747 dbuf_read(dmu_buf_impl_t *db, zio_t *pio, uint32_t flags)
1749 dnode_t *dn;
1750 boolean_t miss = B_TRUE, need_wait = B_FALSE, prefetch;
1751 int err;
1753 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1755 DB_DNODE_ENTER(db);
1756 dn = DB_DNODE(db);
1759 * Ensure that this block's dnode has been decrypted if the caller
1760 * has requested decrypted data.
1762 err = dbuf_read_verify_dnode_crypt(db, dn, flags);
1763 if (err != 0)
1764 goto done;
1766 prefetch = db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
1767 (flags & DB_RF_NOPREFETCH) == 0;
1769 mutex_enter(&db->db_mtx);
1770 if (flags & DB_RF_PARTIAL_FIRST)
1771 db->db_partial_read = B_TRUE;
1772 else if (!(flags & DB_RF_PARTIAL_MORE))
1773 db->db_partial_read = B_FALSE;
1774 miss = (db->db_state != DB_CACHED);
1776 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
1778 * Another reader came in while the dbuf was in flight between
1779 * UNCACHED and CACHED. Either a writer will finish filling
1780 * the buffer, sending the dbuf to CACHED, or the first reader's
1781 * request will reach the read_done callback and send the dbuf
1782 * to CACHED. Otherwise, a failure occurred and the dbuf will
1783 * be sent to UNCACHED.
1785 if (flags & DB_RF_NEVERWAIT) {
1786 mutex_exit(&db->db_mtx);
1787 DB_DNODE_EXIT(db);
1788 goto done;
1790 do {
1791 ASSERT(db->db_state == DB_READ ||
1792 (flags & DB_RF_HAVESTRUCT) == 0);
1793 DTRACE_PROBE2(blocked__read, dmu_buf_impl_t *, db,
1794 zio_t *, pio);
1795 cv_wait(&db->db_changed, &db->db_mtx);
1796 } while (db->db_state == DB_READ || db->db_state == DB_FILL);
1797 if (db->db_state == DB_UNCACHED) {
1798 err = SET_ERROR(EIO);
1799 mutex_exit(&db->db_mtx);
1800 DB_DNODE_EXIT(db);
1801 goto done;
1805 if (db->db_state == DB_CACHED) {
1807 * If the arc buf is compressed or encrypted and the caller
1808 * requested uncompressed data, we need to untransform it
1809 * before returning. We also call arc_untransform() on any
1810 * unauthenticated blocks, which will verify their MAC if
1811 * the key is now available.
1813 if ((flags & DB_RF_NO_DECRYPT) == 0 && db->db_buf != NULL &&
1814 (arc_is_encrypted(db->db_buf) ||
1815 arc_is_unauthenticated(db->db_buf) ||
1816 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
1817 spa_t *spa = dn->dn_objset->os_spa;
1818 zbookmark_phys_t zb;
1820 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
1821 db->db.db_object, db->db_level, db->db_blkid);
1822 dbuf_fix_old_data(db, spa_syncing_txg(spa));
1823 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
1824 dbuf_set_data(db, db->db_buf);
1826 mutex_exit(&db->db_mtx);
1827 } else {
1828 ASSERT(db->db_state == DB_UNCACHED ||
1829 db->db_state == DB_NOFILL);
1830 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
1831 blkptr_t *bp;
1834 * If a block clone or Direct I/O write has occurred we will
1835 * get the dirty records overridden BP so we get the most
1836 * recent data.
1838 err = dmu_buf_get_bp_from_dbuf(db, &bp);
1840 if (!err) {
1841 if (pio == NULL && (db->db_state == DB_NOFILL ||
1842 (bp != NULL && !BP_IS_HOLE(bp)))) {
1843 spa_t *spa = dn->dn_objset->os_spa;
1844 pio =
1845 zio_root(spa, NULL, NULL, ZIO_FLAG_CANFAIL);
1846 need_wait = B_TRUE;
1849 err =
1850 dbuf_read_impl(db, dn, pio, flags, dblt, bp, FTAG);
1851 } else {
1852 mutex_exit(&db->db_mtx);
1853 dmu_buf_unlock_parent(db, dblt, FTAG);
1855 /* dbuf_read_impl drops db_mtx and parent's rwlock. */
1856 miss = (db->db_state != DB_CACHED);
1859 if (err == 0 && prefetch) {
1860 dmu_zfetch(&dn->dn_zfetch, db->db_blkid, 1, B_TRUE, miss,
1861 flags & DB_RF_HAVESTRUCT);
1863 DB_DNODE_EXIT(db);
1866 * If we created a zio we must execute it to avoid leaking it, even if
1867 * it isn't attached to any work due to an error in dbuf_read_impl().
1869 if (need_wait) {
1870 if (err == 0)
1871 err = zio_wait(pio);
1872 else
1873 (void) zio_wait(pio);
1874 pio = NULL;
1877 done:
1878 if (miss)
1879 DBUF_STAT_BUMP(hash_misses);
1880 else
1881 DBUF_STAT_BUMP(hash_hits);
1882 if (pio && err != 0) {
1883 zio_t *zio = zio_null(pio, pio->io_spa, NULL, NULL, NULL,
1884 ZIO_FLAG_CANFAIL);
1885 zio->io_error = err;
1886 zio_nowait(zio);
1889 return (err);
1892 static void
1893 dbuf_noread(dmu_buf_impl_t *db)
1895 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
1896 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
1897 mutex_enter(&db->db_mtx);
1898 while (db->db_state == DB_READ || db->db_state == DB_FILL)
1899 cv_wait(&db->db_changed, &db->db_mtx);
1900 if (db->db_state == DB_UNCACHED) {
1901 ASSERT(db->db_buf == NULL);
1902 ASSERT(db->db.db_data == NULL);
1903 dbuf_set_data(db, dbuf_alloc_arcbuf(db));
1904 db->db_state = DB_FILL;
1905 DTRACE_SET_STATE(db, "assigning filled buffer");
1906 } else if (db->db_state == DB_NOFILL) {
1907 dbuf_clear_data(db);
1908 } else {
1909 ASSERT3U(db->db_state, ==, DB_CACHED);
1911 mutex_exit(&db->db_mtx);
1914 void
1915 dbuf_unoverride(dbuf_dirty_record_t *dr)
1917 dmu_buf_impl_t *db = dr->dr_dbuf;
1918 blkptr_t *bp = &dr->dt.dl.dr_overridden_by;
1919 uint64_t txg = dr->dr_txg;
1921 ASSERT(MUTEX_HELD(&db->db_mtx));
1924 * This assert is valid because dmu_sync() expects to be called by
1925 * a zilog's get_data while holding a range lock. This call only
1926 * comes from dbuf_dirty() callers who must also hold a range lock.
1928 ASSERT(dr->dt.dl.dr_override_state != DR_IN_DMU_SYNC);
1929 ASSERT(db->db_level == 0);
1931 if (db->db_blkid == DMU_BONUS_BLKID ||
1932 dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN)
1933 return;
1935 ASSERT(db->db_data_pending != dr);
1937 /* free this block */
1938 if (!BP_IS_HOLE(bp) && !dr->dt.dl.dr_nopwrite)
1939 zio_free(db->db_objset->os_spa, txg, bp);
1941 if (dr->dt.dl.dr_brtwrite || dr->dt.dl.dr_diowrite) {
1942 ASSERT0P(dr->dt.dl.dr_data);
1943 dr->dt.dl.dr_data = db->db_buf;
1945 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
1946 dr->dt.dl.dr_nopwrite = B_FALSE;
1947 dr->dt.dl.dr_brtwrite = B_FALSE;
1948 dr->dt.dl.dr_diowrite = B_FALSE;
1949 dr->dt.dl.dr_has_raw_params = B_FALSE;
1952 * In the event that Direct I/O was used, we do not
1953 * need to release the buffer from the ARC.
1955 * Release the already-written buffer, so we leave it in
1956 * a consistent dirty state. Note that all callers are
1957 * modifying the buffer, so they will immediately do
1958 * another (redundant) arc_release(). Therefore, leave
1959 * the buf thawed to save the effort of freezing &
1960 * immediately re-thawing it.
1962 if (dr->dt.dl.dr_data)
1963 arc_release(dr->dt.dl.dr_data, db);
1967 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1968 * data blocks in the free range, so that any future readers will find
1969 * empty blocks.
1971 void
1972 dbuf_free_range(dnode_t *dn, uint64_t start_blkid, uint64_t end_blkid,
1973 dmu_tx_t *tx)
1975 dmu_buf_impl_t *db_search;
1976 dmu_buf_impl_t *db, *db_next;
1977 uint64_t txg = tx->tx_txg;
1978 avl_index_t where;
1979 dbuf_dirty_record_t *dr;
1981 if (end_blkid > dn->dn_maxblkid &&
1982 !(start_blkid == DMU_SPILL_BLKID || end_blkid == DMU_SPILL_BLKID))
1983 end_blkid = dn->dn_maxblkid;
1984 dprintf_dnode(dn, "start=%llu end=%llu\n", (u_longlong_t)start_blkid,
1985 (u_longlong_t)end_blkid);
1987 db_search = kmem_alloc(sizeof (dmu_buf_impl_t), KM_SLEEP);
1988 db_search->db_level = 0;
1989 db_search->db_blkid = start_blkid;
1990 db_search->db_state = DB_SEARCH;
1992 mutex_enter(&dn->dn_dbufs_mtx);
1993 db = avl_find(&dn->dn_dbufs, db_search, &where);
1994 ASSERT3P(db, ==, NULL);
1996 db = avl_nearest(&dn->dn_dbufs, where, AVL_AFTER);
1998 for (; db != NULL; db = db_next) {
1999 db_next = AVL_NEXT(&dn->dn_dbufs, db);
2000 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2002 if (db->db_level != 0 || db->db_blkid > end_blkid) {
2003 break;
2005 ASSERT3U(db->db_blkid, >=, start_blkid);
2007 /* found a level 0 buffer in the range */
2008 mutex_enter(&db->db_mtx);
2009 if (dbuf_undirty(db, tx)) {
2010 /* mutex has been dropped and dbuf destroyed */
2011 continue;
2014 if (db->db_state == DB_UNCACHED ||
2015 db->db_state == DB_NOFILL ||
2016 db->db_state == DB_EVICTING) {
2017 ASSERT(db->db.db_data == NULL);
2018 mutex_exit(&db->db_mtx);
2019 continue;
2021 if (db->db_state == DB_READ || db->db_state == DB_FILL) {
2022 /* will be handled in dbuf_read_done or dbuf_rele */
2023 db->db_freed_in_flight = TRUE;
2024 mutex_exit(&db->db_mtx);
2025 continue;
2027 if (zfs_refcount_count(&db->db_holds) == 0) {
2028 ASSERT(db->db_buf);
2029 dbuf_destroy(db);
2030 continue;
2032 /* The dbuf is referenced */
2034 dr = list_head(&db->db_dirty_records);
2035 if (dr != NULL) {
2036 if (dr->dr_txg == txg) {
2038 * This buffer is "in-use", re-adjust the file
2039 * size to reflect that this buffer may
2040 * contain new data when we sync.
2042 if (db->db_blkid != DMU_SPILL_BLKID &&
2043 db->db_blkid > dn->dn_maxblkid)
2044 dn->dn_maxblkid = db->db_blkid;
2045 dbuf_unoverride(dr);
2046 } else {
2048 * This dbuf is not dirty in the open context.
2049 * Either uncache it (if its not referenced in
2050 * the open context) or reset its contents to
2051 * empty.
2053 dbuf_fix_old_data(db, txg);
2056 /* clear the contents if its cached */
2057 if (db->db_state == DB_CACHED) {
2058 ASSERT(db->db.db_data != NULL);
2059 arc_release(db->db_buf, db);
2060 rw_enter(&db->db_rwlock, RW_WRITER);
2061 memset(db->db.db_data, 0, db->db.db_size);
2062 rw_exit(&db->db_rwlock);
2063 arc_buf_freeze(db->db_buf);
2066 mutex_exit(&db->db_mtx);
2069 mutex_exit(&dn->dn_dbufs_mtx);
2070 kmem_free(db_search, sizeof (dmu_buf_impl_t));
2073 void
2074 dbuf_new_size(dmu_buf_impl_t *db, int size, dmu_tx_t *tx)
2076 arc_buf_t *buf, *old_buf;
2077 dbuf_dirty_record_t *dr;
2078 int osize = db->db.db_size;
2079 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
2080 dnode_t *dn;
2082 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2084 DB_DNODE_ENTER(db);
2085 dn = DB_DNODE(db);
2088 * XXX we should be doing a dbuf_read, checking the return
2089 * value and returning that up to our callers
2091 dmu_buf_will_dirty(&db->db, tx);
2093 VERIFY3P(db->db_buf, !=, NULL);
2095 /* create the data buffer for the new block */
2096 buf = arc_alloc_buf(dn->dn_objset->os_spa, db, type, size);
2098 /* copy old block data to the new block */
2099 old_buf = db->db_buf;
2100 memcpy(buf->b_data, old_buf->b_data, MIN(osize, size));
2101 /* zero the remainder */
2102 if (size > osize)
2103 memset((uint8_t *)buf->b_data + osize, 0, size - osize);
2105 mutex_enter(&db->db_mtx);
2106 dbuf_set_data(db, buf);
2107 arc_buf_destroy(old_buf, db);
2108 db->db.db_size = size;
2110 dr = list_head(&db->db_dirty_records);
2111 /* dirty record added by dmu_buf_will_dirty() */
2112 VERIFY(dr != NULL);
2113 if (db->db_level == 0)
2114 dr->dt.dl.dr_data = buf;
2115 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2116 ASSERT3U(dr->dr_accounted, ==, osize);
2117 dr->dr_accounted = size;
2118 mutex_exit(&db->db_mtx);
2120 dmu_objset_willuse_space(dn->dn_objset, size - osize, tx);
2121 DB_DNODE_EXIT(db);
2124 void
2125 dbuf_release_bp(dmu_buf_impl_t *db)
2127 objset_t *os __maybe_unused = db->db_objset;
2129 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os)));
2130 ASSERT(arc_released(os->os_phys_buf) ||
2131 list_link_active(&os->os_dsl_dataset->ds_synced_link));
2132 ASSERT(db->db_parent == NULL || arc_released(db->db_parent->db_buf));
2134 (void) arc_release(db->db_buf, db);
2138 * We already have a dirty record for this TXG, and we are being
2139 * dirtied again.
2141 static void
2142 dbuf_redirty(dbuf_dirty_record_t *dr)
2144 dmu_buf_impl_t *db = dr->dr_dbuf;
2146 ASSERT(MUTEX_HELD(&db->db_mtx));
2148 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID) {
2150 * If this buffer has already been written out,
2151 * we now need to reset its state.
2153 dbuf_unoverride(dr);
2154 if (db->db.db_object != DMU_META_DNODE_OBJECT &&
2155 db->db_state != DB_NOFILL) {
2156 /* Already released on initial dirty, so just thaw. */
2157 ASSERT(arc_released(db->db_buf));
2158 arc_buf_thaw(db->db_buf);
2163 dbuf_dirty_record_t *
2164 dbuf_dirty_lightweight(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx)
2166 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2167 IMPLY(dn->dn_objset->os_raw_receive, dn->dn_maxblkid >= blkid);
2168 dnode_new_blkid(dn, blkid, tx, B_TRUE, B_FALSE);
2169 ASSERT(dn->dn_maxblkid >= blkid);
2171 dbuf_dirty_record_t *dr = kmem_zalloc(sizeof (*dr), KM_SLEEP);
2172 list_link_init(&dr->dr_dirty_node);
2173 list_link_init(&dr->dr_dbuf_node);
2174 dr->dr_dnode = dn;
2175 dr->dr_txg = tx->tx_txg;
2176 dr->dt.dll.dr_blkid = blkid;
2177 dr->dr_accounted = dn->dn_datablksz;
2180 * There should not be any dbuf for the block that we're dirtying.
2181 * Otherwise the buffer contents could be inconsistent between the
2182 * dbuf and the lightweight dirty record.
2184 ASSERT3P(NULL, ==, dbuf_find(dn->dn_objset, dn->dn_object, 0, blkid,
2185 NULL));
2187 mutex_enter(&dn->dn_mtx);
2188 int txgoff = tx->tx_txg & TXG_MASK;
2189 if (dn->dn_free_ranges[txgoff] != NULL) {
2190 range_tree_clear(dn->dn_free_ranges[txgoff], blkid, 1);
2193 if (dn->dn_nlevels == 1) {
2194 ASSERT3U(blkid, <, dn->dn_nblkptr);
2195 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2196 mutex_exit(&dn->dn_mtx);
2197 rw_exit(&dn->dn_struct_rwlock);
2198 dnode_setdirty(dn, tx);
2199 } else {
2200 mutex_exit(&dn->dn_mtx);
2202 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2203 dmu_buf_impl_t *parent_db = dbuf_hold_level(dn,
2204 1, blkid >> epbs, FTAG);
2205 rw_exit(&dn->dn_struct_rwlock);
2206 if (parent_db == NULL) {
2207 kmem_free(dr, sizeof (*dr));
2208 return (NULL);
2210 int err = dbuf_read(parent_db, NULL,
2211 (DB_RF_NOPREFETCH | DB_RF_CANFAIL));
2212 if (err != 0) {
2213 dbuf_rele(parent_db, FTAG);
2214 kmem_free(dr, sizeof (*dr));
2215 return (NULL);
2218 dbuf_dirty_record_t *parent_dr = dbuf_dirty(parent_db, tx);
2219 dbuf_rele(parent_db, FTAG);
2220 mutex_enter(&parent_dr->dt.di.dr_mtx);
2221 ASSERT3U(parent_dr->dr_txg, ==, tx->tx_txg);
2222 list_insert_tail(&parent_dr->dt.di.dr_children, dr);
2223 mutex_exit(&parent_dr->dt.di.dr_mtx);
2224 dr->dr_parent = parent_dr;
2227 dmu_objset_willuse_space(dn->dn_objset, dr->dr_accounted, tx);
2229 return (dr);
2232 dbuf_dirty_record_t *
2233 dbuf_dirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2235 dnode_t *dn;
2236 objset_t *os;
2237 dbuf_dirty_record_t *dr, *dr_next, *dr_head;
2238 int txgoff = tx->tx_txg & TXG_MASK;
2239 boolean_t drop_struct_rwlock = B_FALSE;
2241 ASSERT(tx->tx_txg != 0);
2242 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2243 DMU_TX_DIRTY_BUF(tx, db);
2245 DB_DNODE_ENTER(db);
2246 dn = DB_DNODE(db);
2248 * Shouldn't dirty a regular buffer in syncing context. Private
2249 * objects may be dirtied in syncing context, but only if they
2250 * were already pre-dirtied in open context.
2252 #ifdef ZFS_DEBUG
2253 if (dn->dn_objset->os_dsl_dataset != NULL) {
2254 rrw_enter(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock,
2255 RW_READER, FTAG);
2257 ASSERT(!dmu_tx_is_syncing(tx) ||
2258 BP_IS_HOLE(dn->dn_objset->os_rootbp) ||
2259 DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2260 dn->dn_objset->os_dsl_dataset == NULL);
2261 if (dn->dn_objset->os_dsl_dataset != NULL)
2262 rrw_exit(&dn->dn_objset->os_dsl_dataset->ds_bp_rwlock, FTAG);
2263 #endif
2265 * We make this assert for private objects as well, but after we
2266 * check if we're already dirty. They are allowed to re-dirty
2267 * in syncing context.
2269 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
2270 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2271 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2273 mutex_enter(&db->db_mtx);
2275 * XXX make this true for indirects too? The problem is that
2276 * transactions created with dmu_tx_create_assigned() from
2277 * syncing context don't bother holding ahead.
2279 ASSERT(db->db_level != 0 ||
2280 db->db_state == DB_CACHED || db->db_state == DB_FILL ||
2281 db->db_state == DB_NOFILL);
2283 mutex_enter(&dn->dn_mtx);
2284 dnode_set_dirtyctx(dn, tx, db);
2285 if (tx->tx_txg > dn->dn_dirty_txg)
2286 dn->dn_dirty_txg = tx->tx_txg;
2287 mutex_exit(&dn->dn_mtx);
2289 if (db->db_blkid == DMU_SPILL_BLKID)
2290 dn->dn_have_spill = B_TRUE;
2293 * If this buffer is already dirty, we're done.
2295 dr_head = list_head(&db->db_dirty_records);
2296 ASSERT(dr_head == NULL || dr_head->dr_txg <= tx->tx_txg ||
2297 db->db.db_object == DMU_META_DNODE_OBJECT);
2298 dr_next = dbuf_find_dirty_lte(db, tx->tx_txg);
2299 if (dr_next && dr_next->dr_txg == tx->tx_txg) {
2300 DB_DNODE_EXIT(db);
2302 dbuf_redirty(dr_next);
2303 mutex_exit(&db->db_mtx);
2304 return (dr_next);
2308 * Only valid if not already dirty.
2310 ASSERT(dn->dn_object == 0 ||
2311 dn->dn_dirtyctx == DN_UNDIRTIED || dn->dn_dirtyctx ==
2312 (dmu_tx_is_syncing(tx) ? DN_DIRTY_SYNC : DN_DIRTY_OPEN));
2314 ASSERT3U(dn->dn_nlevels, >, db->db_level);
2317 * We should only be dirtying in syncing context if it's the
2318 * mos or we're initializing the os or it's a special object.
2319 * However, we are allowed to dirty in syncing context provided
2320 * we already dirtied it in open context. Hence we must make
2321 * this assertion only if we're not already dirty.
2323 os = dn->dn_objset;
2324 VERIFY3U(tx->tx_txg, <=, spa_final_dirty_txg(os->os_spa));
2325 #ifdef ZFS_DEBUG
2326 if (dn->dn_objset->os_dsl_dataset != NULL)
2327 rrw_enter(&os->os_dsl_dataset->ds_bp_rwlock, RW_READER, FTAG);
2328 ASSERT(!dmu_tx_is_syncing(tx) || DMU_OBJECT_IS_SPECIAL(dn->dn_object) ||
2329 os->os_dsl_dataset == NULL || BP_IS_HOLE(os->os_rootbp));
2330 if (dn->dn_objset->os_dsl_dataset != NULL)
2331 rrw_exit(&os->os_dsl_dataset->ds_bp_rwlock, FTAG);
2332 #endif
2333 ASSERT(db->db.db_size != 0);
2335 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2337 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2338 dmu_objset_willuse_space(os, db->db.db_size, tx);
2342 * If this buffer is dirty in an old transaction group we need
2343 * to make a copy of it so that the changes we make in this
2344 * transaction group won't leak out when we sync the older txg.
2346 dr = kmem_zalloc(sizeof (dbuf_dirty_record_t), KM_SLEEP);
2347 list_link_init(&dr->dr_dirty_node);
2348 list_link_init(&dr->dr_dbuf_node);
2349 dr->dr_dnode = dn;
2350 if (db->db_level == 0) {
2351 void *data_old = db->db_buf;
2353 if (db->db_state != DB_NOFILL) {
2354 if (db->db_blkid == DMU_BONUS_BLKID) {
2355 dbuf_fix_old_data(db, tx->tx_txg);
2356 data_old = db->db.db_data;
2357 } else if (db->db.db_object != DMU_META_DNODE_OBJECT) {
2359 * Release the data buffer from the cache so
2360 * that we can modify it without impacting
2361 * possible other users of this cached data
2362 * block. Note that indirect blocks and
2363 * private objects are not released until the
2364 * syncing state (since they are only modified
2365 * then).
2367 arc_release(db->db_buf, db);
2368 dbuf_fix_old_data(db, tx->tx_txg);
2369 data_old = db->db_buf;
2371 ASSERT(data_old != NULL);
2373 dr->dt.dl.dr_data = data_old;
2374 } else {
2375 mutex_init(&dr->dt.di.dr_mtx, NULL, MUTEX_NOLOCKDEP, NULL);
2376 list_create(&dr->dt.di.dr_children,
2377 sizeof (dbuf_dirty_record_t),
2378 offsetof(dbuf_dirty_record_t, dr_dirty_node));
2380 if (db->db_blkid != DMU_BONUS_BLKID && db->db_state != DB_NOFILL) {
2381 dr->dr_accounted = db->db.db_size;
2383 dr->dr_dbuf = db;
2384 dr->dr_txg = tx->tx_txg;
2385 list_insert_before(&db->db_dirty_records, dr_next, dr);
2388 * We could have been freed_in_flight between the dbuf_noread
2389 * and dbuf_dirty. We win, as though the dbuf_noread() had
2390 * happened after the free.
2392 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
2393 db->db_blkid != DMU_SPILL_BLKID) {
2394 mutex_enter(&dn->dn_mtx);
2395 if (dn->dn_free_ranges[txgoff] != NULL) {
2396 range_tree_clear(dn->dn_free_ranges[txgoff],
2397 db->db_blkid, 1);
2399 mutex_exit(&dn->dn_mtx);
2400 db->db_freed_in_flight = FALSE;
2404 * This buffer is now part of this txg
2406 dbuf_add_ref(db, (void *)(uintptr_t)tx->tx_txg);
2407 db->db_dirtycnt += 1;
2408 ASSERT3U(db->db_dirtycnt, <=, 3);
2410 mutex_exit(&db->db_mtx);
2412 if (db->db_blkid == DMU_BONUS_BLKID ||
2413 db->db_blkid == DMU_SPILL_BLKID) {
2414 mutex_enter(&dn->dn_mtx);
2415 ASSERT(!list_link_active(&dr->dr_dirty_node));
2416 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2417 mutex_exit(&dn->dn_mtx);
2418 dnode_setdirty(dn, tx);
2419 DB_DNODE_EXIT(db);
2420 return (dr);
2423 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) {
2424 rw_enter(&dn->dn_struct_rwlock, RW_READER);
2425 drop_struct_rwlock = B_TRUE;
2429 * If we are overwriting a dedup BP, then unless it is snapshotted,
2430 * when we get to syncing context we will need to decrement its
2431 * refcount in the DDT. Prefetch the relevant DDT block so that
2432 * syncing context won't have to wait for the i/o.
2434 if (db->db_blkptr != NULL) {
2435 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_READER, FTAG);
2436 ddt_prefetch(os->os_spa, db->db_blkptr);
2437 dmu_buf_unlock_parent(db, dblt, FTAG);
2441 * We need to hold the dn_struct_rwlock to make this assertion,
2442 * because it protects dn_phys / dn_next_nlevels from changing.
2444 ASSERT((dn->dn_phys->dn_nlevels == 0 && db->db_level == 0) ||
2445 dn->dn_phys->dn_nlevels > db->db_level ||
2446 dn->dn_next_nlevels[txgoff] > db->db_level ||
2447 dn->dn_next_nlevels[(tx->tx_txg-1) & TXG_MASK] > db->db_level ||
2448 dn->dn_next_nlevels[(tx->tx_txg-2) & TXG_MASK] > db->db_level);
2451 if (db->db_level == 0) {
2452 ASSERT(!db->db_objset->os_raw_receive ||
2453 dn->dn_maxblkid >= db->db_blkid);
2454 dnode_new_blkid(dn, db->db_blkid, tx,
2455 drop_struct_rwlock, B_FALSE);
2456 ASSERT(dn->dn_maxblkid >= db->db_blkid);
2459 if (db->db_level+1 < dn->dn_nlevels) {
2460 dmu_buf_impl_t *parent = db->db_parent;
2461 dbuf_dirty_record_t *di;
2462 int parent_held = FALSE;
2464 if (db->db_parent == NULL || db->db_parent == dn->dn_dbuf) {
2465 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
2466 parent = dbuf_hold_level(dn, db->db_level + 1,
2467 db->db_blkid >> epbs, FTAG);
2468 ASSERT(parent != NULL);
2469 parent_held = TRUE;
2471 if (drop_struct_rwlock)
2472 rw_exit(&dn->dn_struct_rwlock);
2473 ASSERT3U(db->db_level + 1, ==, parent->db_level);
2474 di = dbuf_dirty(parent, tx);
2475 if (parent_held)
2476 dbuf_rele(parent, FTAG);
2478 mutex_enter(&db->db_mtx);
2480 * Since we've dropped the mutex, it's possible that
2481 * dbuf_undirty() might have changed this out from under us.
2483 if (list_head(&db->db_dirty_records) == dr ||
2484 dn->dn_object == DMU_META_DNODE_OBJECT) {
2485 mutex_enter(&di->dt.di.dr_mtx);
2486 ASSERT3U(di->dr_txg, ==, tx->tx_txg);
2487 ASSERT(!list_link_active(&dr->dr_dirty_node));
2488 list_insert_tail(&di->dt.di.dr_children, dr);
2489 mutex_exit(&di->dt.di.dr_mtx);
2490 dr->dr_parent = di;
2492 mutex_exit(&db->db_mtx);
2493 } else {
2494 ASSERT(db->db_level + 1 == dn->dn_nlevels);
2495 ASSERT(db->db_blkid < dn->dn_nblkptr);
2496 ASSERT(db->db_parent == NULL || db->db_parent == dn->dn_dbuf);
2497 mutex_enter(&dn->dn_mtx);
2498 ASSERT(!list_link_active(&dr->dr_dirty_node));
2499 list_insert_tail(&dn->dn_dirty_records[txgoff], dr);
2500 mutex_exit(&dn->dn_mtx);
2501 if (drop_struct_rwlock)
2502 rw_exit(&dn->dn_struct_rwlock);
2505 dnode_setdirty(dn, tx);
2506 DB_DNODE_EXIT(db);
2507 return (dr);
2510 static void
2511 dbuf_undirty_bonus(dbuf_dirty_record_t *dr)
2513 dmu_buf_impl_t *db = dr->dr_dbuf;
2515 if (dr->dt.dl.dr_data != db->db.db_data) {
2516 struct dnode *dn = dr->dr_dnode;
2517 int max_bonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
2519 kmem_free(dr->dt.dl.dr_data, max_bonuslen);
2520 arc_space_return(max_bonuslen, ARC_SPACE_BONUS);
2522 db->db_data_pending = NULL;
2523 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
2524 list_remove(&db->db_dirty_records, dr);
2525 if (dr->dr_dbuf->db_level != 0) {
2526 mutex_destroy(&dr->dt.di.dr_mtx);
2527 list_destroy(&dr->dt.di.dr_children);
2529 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2530 ASSERT3U(db->db_dirtycnt, >, 0);
2531 db->db_dirtycnt -= 1;
2535 * Undirty a buffer in the transaction group referenced by the given
2536 * transaction. Return whether this evicted the dbuf.
2538 boolean_t
2539 dbuf_undirty(dmu_buf_impl_t *db, dmu_tx_t *tx)
2541 uint64_t txg = tx->tx_txg;
2542 boolean_t brtwrite;
2543 boolean_t diowrite;
2545 ASSERT(txg != 0);
2548 * Due to our use of dn_nlevels below, this can only be called
2549 * in open context, unless we are operating on the MOS.
2550 * From syncing context, dn_nlevels may be different from the
2551 * dn_nlevels used when dbuf was dirtied.
2553 ASSERT(db->db_objset ==
2554 dmu_objset_pool(db->db_objset)->dp_meta_objset ||
2555 txg != spa_syncing_txg(dmu_objset_spa(db->db_objset)));
2556 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2557 ASSERT0(db->db_level);
2558 ASSERT(MUTEX_HELD(&db->db_mtx));
2561 * If this buffer is not dirty, we're done.
2563 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, txg);
2564 if (dr == NULL)
2565 return (B_FALSE);
2566 ASSERT(dr->dr_dbuf == db);
2568 brtwrite = dr->dt.dl.dr_brtwrite;
2569 diowrite = dr->dt.dl.dr_diowrite;
2570 if (brtwrite) {
2571 ASSERT3B(diowrite, ==, B_FALSE);
2573 * We are freeing a block that we cloned in the same
2574 * transaction group.
2576 brt_pending_remove(dmu_objset_spa(db->db_objset),
2577 &dr->dt.dl.dr_overridden_by, tx);
2580 dnode_t *dn = dr->dr_dnode;
2582 dprintf_dbuf(db, "size=%llx\n", (u_longlong_t)db->db.db_size);
2584 ASSERT(db->db.db_size != 0);
2586 dsl_pool_undirty_space(dmu_objset_pool(dn->dn_objset),
2587 dr->dr_accounted, txg);
2589 list_remove(&db->db_dirty_records, dr);
2592 * Note that there are three places in dbuf_dirty()
2593 * where this dirty record may be put on a list.
2594 * Make sure to do a list_remove corresponding to
2595 * every one of those list_insert calls.
2597 if (dr->dr_parent) {
2598 mutex_enter(&dr->dr_parent->dt.di.dr_mtx);
2599 list_remove(&dr->dr_parent->dt.di.dr_children, dr);
2600 mutex_exit(&dr->dr_parent->dt.di.dr_mtx);
2601 } else if (db->db_blkid == DMU_SPILL_BLKID ||
2602 db->db_level + 1 == dn->dn_nlevels) {
2603 ASSERT(db->db_blkptr == NULL || db->db_parent == dn->dn_dbuf);
2604 mutex_enter(&dn->dn_mtx);
2605 list_remove(&dn->dn_dirty_records[txg & TXG_MASK], dr);
2606 mutex_exit(&dn->dn_mtx);
2609 if (db->db_state != DB_NOFILL && !brtwrite) {
2610 dbuf_unoverride(dr);
2612 if (dr->dt.dl.dr_data != db->db_buf) {
2613 ASSERT(db->db_buf != NULL);
2614 ASSERT(dr->dt.dl.dr_data != NULL);
2615 arc_buf_destroy(dr->dt.dl.dr_data, db);
2619 kmem_free(dr, sizeof (dbuf_dirty_record_t));
2621 ASSERT(db->db_dirtycnt > 0);
2622 db->db_dirtycnt -= 1;
2624 if (zfs_refcount_remove(&db->db_holds, (void *)(uintptr_t)txg) == 0) {
2625 ASSERT(db->db_state == DB_NOFILL || brtwrite || diowrite ||
2626 arc_released(db->db_buf));
2627 dbuf_destroy(db);
2628 return (B_TRUE);
2631 return (B_FALSE);
2634 static void
2635 dmu_buf_will_dirty_impl(dmu_buf_t *db_fake, int flags, dmu_tx_t *tx)
2637 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2638 boolean_t undirty = B_FALSE;
2640 ASSERT(tx->tx_txg != 0);
2641 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2644 * Quick check for dirtiness to improve performance for some workloads
2645 * (e.g. file deletion with indirect blocks cached).
2647 mutex_enter(&db->db_mtx);
2648 if (db->db_state == DB_CACHED || db->db_state == DB_NOFILL) {
2650 * It's possible that the dbuf is already dirty but not cached,
2651 * because there are some calls to dbuf_dirty() that don't
2652 * go through dmu_buf_will_dirty().
2654 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2655 if (dr != NULL) {
2656 if (db->db_level == 0 &&
2657 dr->dt.dl.dr_brtwrite) {
2659 * Block cloning: If we are dirtying a cloned
2660 * level 0 block, we cannot simply redirty it,
2661 * because this dr has no associated data.
2662 * We will go through a full undirtying below,
2663 * before dirtying it again.
2665 undirty = B_TRUE;
2666 } else {
2667 /* This dbuf is already dirty and cached. */
2668 dbuf_redirty(dr);
2669 mutex_exit(&db->db_mtx);
2670 return;
2674 mutex_exit(&db->db_mtx);
2676 DB_DNODE_ENTER(db);
2677 if (RW_WRITE_HELD(&DB_DNODE(db)->dn_struct_rwlock))
2678 flags |= DB_RF_HAVESTRUCT;
2679 DB_DNODE_EXIT(db);
2682 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2683 * want to make sure dbuf_read() will read the pending cloned block and
2684 * not the uderlying block that is being replaced. dbuf_undirty() will
2685 * do brt_pending_remove() before removing the dirty record.
2687 (void) dbuf_read(db, NULL, flags);
2688 if (undirty) {
2689 mutex_enter(&db->db_mtx);
2690 VERIFY(!dbuf_undirty(db, tx));
2691 mutex_exit(&db->db_mtx);
2693 (void) dbuf_dirty(db, tx);
2696 void
2697 dmu_buf_will_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2699 dmu_buf_will_dirty_impl(db_fake,
2700 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH, tx);
2703 boolean_t
2704 dmu_buf_is_dirty(dmu_buf_t *db_fake, dmu_tx_t *tx)
2706 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2707 dbuf_dirty_record_t *dr;
2709 mutex_enter(&db->db_mtx);
2710 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2711 mutex_exit(&db->db_mtx);
2712 return (dr != NULL);
2716 * Normally the db_blkptr points to the most recent on-disk content for the
2717 * dbuf (and anything newer will be cached in the dbuf). However, a pending
2718 * block clone or not yet synced Direct I/O write will have a dirty record BP
2719 * pointing to the most recent data.
2722 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t *db, blkptr_t **bp)
2724 ASSERT(MUTEX_HELD(&db->db_mtx));
2725 int error = 0;
2727 if (db->db_level != 0) {
2728 *bp = db->db_blkptr;
2729 return (0);
2732 *bp = db->db_blkptr;
2733 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2734 if (dr && db->db_state == DB_NOFILL) {
2735 /* Block clone */
2736 if (!dr->dt.dl.dr_brtwrite)
2737 error = EIO;
2738 else
2739 *bp = &dr->dt.dl.dr_overridden_by;
2740 } else if (dr && db->db_state == DB_UNCACHED) {
2741 /* Direct I/O write */
2742 if (dr->dt.dl.dr_diowrite)
2743 *bp = &dr->dt.dl.dr_overridden_by;
2746 return (error);
2750 * Direct I/O reads can read directly from the ARC, but the data has
2751 * to be untransformed in order to copy it over into user pages.
2754 dmu_buf_untransform_direct(dmu_buf_impl_t *db, spa_t *spa)
2756 int err = 0;
2757 DB_DNODE_ENTER(db);
2758 dnode_t *dn = DB_DNODE(db);
2760 ASSERT3S(db->db_state, ==, DB_CACHED);
2761 ASSERT(MUTEX_HELD(&db->db_mtx));
2764 * Ensure that this block's dnode has been decrypted if
2765 * the caller has requested decrypted data.
2767 err = dbuf_read_verify_dnode_crypt(db, dn, 0);
2770 * If the arc buf is compressed or encrypted and the caller
2771 * requested uncompressed data, we need to untransform it
2772 * before returning. We also call arc_untransform() on any
2773 * unauthenticated blocks, which will verify their MAC if
2774 * the key is now available.
2776 if (err == 0 && db->db_buf != NULL &&
2777 (arc_is_encrypted(db->db_buf) ||
2778 arc_is_unauthenticated(db->db_buf) ||
2779 arc_get_compression(db->db_buf) != ZIO_COMPRESS_OFF)) {
2780 zbookmark_phys_t zb;
2782 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
2783 db->db.db_object, db->db_level, db->db_blkid);
2784 dbuf_fix_old_data(db, spa_syncing_txg(spa));
2785 err = arc_untransform(db->db_buf, spa, &zb, B_FALSE);
2786 dbuf_set_data(db, db->db_buf);
2788 DB_DNODE_EXIT(db);
2789 DBUF_STAT_BUMP(hash_hits);
2791 return (err);
2794 void
2795 dmu_buf_will_clone_or_dio(dmu_buf_t *db_fake, dmu_tx_t *tx)
2798 * Block clones and Direct I/O writes always happen in open-context.
2800 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2801 ASSERT0(db->db_level);
2802 ASSERT(!dmu_tx_is_syncing(tx));
2803 ASSERT0(db->db_level);
2804 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2805 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT);
2807 mutex_enter(&db->db_mtx);
2808 DBUF_VERIFY(db);
2811 * We are going to clone or issue a Direct I/O write on this block, so
2812 * undirty modifications done to this block so far in this txg. This
2813 * includes writes and clones into this block.
2815 * If there dirty record associated with this txg from a previous Direct
2816 * I/O write then space accounting cleanup takes place. It is important
2817 * to go ahead free up the space accounting through dbuf_undirty() ->
2818 * dbuf_unoverride() -> zio_free(). Space accountiung for determining
2819 * if a write can occur in zfs_write() happens through dmu_tx_assign().
2820 * This can cause an issue with Direct I/O writes in the case of
2821 * overwriting the same block, because all DVA allocations are being
2822 * done in open-context. Constantly allowing Direct I/O overwrites to
2823 * the same block can exhaust the pools available space leading to
2824 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which
2825 * will eventually suspend the pool. By cleaning up sapce acccounting
2826 * now, the ENOSPC error can be avoided.
2828 * Since we are undirtying the record in open-context, we must have a
2829 * hold on the db, so it should never be evicted after calling
2830 * dbuf_undirty().
2832 VERIFY3B(dbuf_undirty(db, tx), ==, B_FALSE);
2833 ASSERT0P(dbuf_find_dirty_eq(db, tx->tx_txg));
2835 if (db->db_buf != NULL) {
2837 * If there is an associated ARC buffer with this dbuf we can
2838 * only destroy it if the previous dirty record does not
2839 * reference it.
2841 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
2842 if (dr == NULL || dr->dt.dl.dr_data != db->db_buf)
2843 arc_buf_destroy(db->db_buf, db);
2846 * Setting the dbuf's data pointers to NULL will force all
2847 * future reads down to the devices to get the most up to date
2848 * version of the data after a Direct I/O write has completed.
2850 db->db_buf = NULL;
2851 dbuf_clear_data(db);
2854 ASSERT3P(db->db_buf, ==, NULL);
2855 ASSERT3P(db->db.db_data, ==, NULL);
2857 db->db_state = DB_NOFILL;
2858 DTRACE_SET_STATE(db,
2859 "allocating NOFILL buffer for clone or direct I/O write");
2861 DBUF_VERIFY(db);
2862 mutex_exit(&db->db_mtx);
2864 dbuf_noread(db);
2865 (void) dbuf_dirty(db, tx);
2868 void
2869 dmu_buf_will_not_fill(dmu_buf_t *db_fake, dmu_tx_t *tx)
2871 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2873 mutex_enter(&db->db_mtx);
2874 db->db_state = DB_NOFILL;
2875 DTRACE_SET_STATE(db, "allocating NOFILL buffer");
2876 mutex_exit(&db->db_mtx);
2878 dbuf_noread(db);
2879 (void) dbuf_dirty(db, tx);
2882 void
2883 dmu_buf_will_fill(dmu_buf_t *db_fake, dmu_tx_t *tx, boolean_t canfail)
2885 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2887 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2888 ASSERT(tx->tx_txg != 0);
2889 ASSERT(db->db_level == 0);
2890 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
2892 ASSERT(db->db.db_object != DMU_META_DNODE_OBJECT ||
2893 dmu_tx_private_ok(tx));
2895 mutex_enter(&db->db_mtx);
2896 dbuf_dirty_record_t *dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2897 if (db->db_state == DB_NOFILL ||
2898 (db->db_state == DB_UNCACHED && dr && dr->dt.dl.dr_diowrite)) {
2900 * If the fill can fail we should have a way to return back to
2901 * the cloned or Direct I/O write data.
2903 if (canfail && dr) {
2904 mutex_exit(&db->db_mtx);
2905 dmu_buf_will_dirty(db_fake, tx);
2906 return;
2909 * Block cloning: We will be completely overwriting a block
2910 * cloned in this transaction group, so let's undirty the
2911 * pending clone and mark the block as uncached. This will be
2912 * as if the clone was never done.
2914 if (dr && dr->dt.dl.dr_brtwrite) {
2915 VERIFY(!dbuf_undirty(db, tx));
2916 db->db_state = DB_UNCACHED;
2919 mutex_exit(&db->db_mtx);
2921 dbuf_noread(db);
2922 (void) dbuf_dirty(db, tx);
2926 * This function is effectively the same as dmu_buf_will_dirty(), but
2927 * indicates the caller expects raw encrypted data in the db, and provides
2928 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2929 * blkptr_t when this dbuf is written. This is only used for blocks of
2930 * dnodes, during raw receive.
2932 void
2933 dmu_buf_set_crypt_params(dmu_buf_t *db_fake, boolean_t byteorder,
2934 const uint8_t *salt, const uint8_t *iv, const uint8_t *mac, dmu_tx_t *tx)
2936 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
2937 dbuf_dirty_record_t *dr;
2940 * dr_has_raw_params is only processed for blocks of dnodes
2941 * (see dbuf_sync_dnode_leaf_crypt()).
2943 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
2944 ASSERT3U(db->db_level, ==, 0);
2945 ASSERT(db->db_objset->os_raw_receive);
2947 dmu_buf_will_dirty_impl(db_fake,
2948 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_NO_DECRYPT, tx);
2950 dr = dbuf_find_dirty_eq(db, tx->tx_txg);
2952 ASSERT3P(dr, !=, NULL);
2954 dr->dt.dl.dr_has_raw_params = B_TRUE;
2955 dr->dt.dl.dr_byteorder = byteorder;
2956 memcpy(dr->dt.dl.dr_salt, salt, ZIO_DATA_SALT_LEN);
2957 memcpy(dr->dt.dl.dr_iv, iv, ZIO_DATA_IV_LEN);
2958 memcpy(dr->dt.dl.dr_mac, mac, ZIO_DATA_MAC_LEN);
2961 static void
2962 dbuf_override_impl(dmu_buf_impl_t *db, const blkptr_t *bp, dmu_tx_t *tx)
2964 struct dirty_leaf *dl;
2965 dbuf_dirty_record_t *dr;
2967 dr = list_head(&db->db_dirty_records);
2968 ASSERT3P(dr, !=, NULL);
2969 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
2970 dl = &dr->dt.dl;
2971 dl->dr_overridden_by = *bp;
2972 dl->dr_override_state = DR_OVERRIDDEN;
2973 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
2976 boolean_t
2977 dmu_buf_fill_done(dmu_buf_t *dbuf, dmu_tx_t *tx, boolean_t failed)
2979 (void) tx;
2980 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
2981 mutex_enter(&db->db_mtx);
2982 DBUF_VERIFY(db);
2984 if (db->db_state == DB_FILL) {
2985 if (db->db_level == 0 && db->db_freed_in_flight) {
2986 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
2987 /* we were freed while filling */
2988 /* XXX dbuf_undirty? */
2989 memset(db->db.db_data, 0, db->db.db_size);
2990 db->db_freed_in_flight = FALSE;
2991 db->db_state = DB_CACHED;
2992 DTRACE_SET_STATE(db,
2993 "fill done handling freed in flight");
2994 failed = B_FALSE;
2995 } else if (failed) {
2996 VERIFY(!dbuf_undirty(db, tx));
2997 arc_buf_destroy(db->db_buf, db);
2998 db->db_buf = NULL;
2999 dbuf_clear_data(db);
3000 DTRACE_SET_STATE(db, "fill failed");
3001 } else {
3002 db->db_state = DB_CACHED;
3003 DTRACE_SET_STATE(db, "fill done");
3005 cv_broadcast(&db->db_changed);
3006 } else {
3007 db->db_state = DB_CACHED;
3008 failed = B_FALSE;
3010 mutex_exit(&db->db_mtx);
3011 return (failed);
3014 void
3015 dmu_buf_write_embedded(dmu_buf_t *dbuf, void *data,
3016 bp_embedded_type_t etype, enum zio_compress comp,
3017 int uncompressed_size, int compressed_size, int byteorder,
3018 dmu_tx_t *tx)
3020 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3021 struct dirty_leaf *dl;
3022 dmu_object_type_t type;
3023 dbuf_dirty_record_t *dr;
3025 if (etype == BP_EMBEDDED_TYPE_DATA) {
3026 ASSERT(spa_feature_is_active(dmu_objset_spa(db->db_objset),
3027 SPA_FEATURE_EMBEDDED_DATA));
3030 DB_DNODE_ENTER(db);
3031 type = DB_DNODE(db)->dn_type;
3032 DB_DNODE_EXIT(db);
3034 ASSERT0(db->db_level);
3035 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3037 dmu_buf_will_not_fill(dbuf, tx);
3039 dr = list_head(&db->db_dirty_records);
3040 ASSERT3P(dr, !=, NULL);
3041 ASSERT3U(dr->dr_txg, ==, tx->tx_txg);
3042 dl = &dr->dt.dl;
3043 encode_embedded_bp_compressed(&dl->dr_overridden_by,
3044 data, comp, uncompressed_size, compressed_size);
3045 BPE_SET_ETYPE(&dl->dr_overridden_by, etype);
3046 BP_SET_TYPE(&dl->dr_overridden_by, type);
3047 BP_SET_LEVEL(&dl->dr_overridden_by, 0);
3048 BP_SET_BYTEORDER(&dl->dr_overridden_by, byteorder);
3050 dl->dr_override_state = DR_OVERRIDDEN;
3051 BP_SET_LOGICAL_BIRTH(&dl->dr_overridden_by, dr->dr_txg);
3054 void
3055 dmu_buf_redact(dmu_buf_t *dbuf, dmu_tx_t *tx)
3057 dmu_buf_impl_t *db = (dmu_buf_impl_t *)dbuf;
3058 dmu_object_type_t type;
3059 ASSERT(dsl_dataset_feature_is_active(db->db_objset->os_dsl_dataset,
3060 SPA_FEATURE_REDACTED_DATASETS));
3062 DB_DNODE_ENTER(db);
3063 type = DB_DNODE(db)->dn_type;
3064 DB_DNODE_EXIT(db);
3066 ASSERT0(db->db_level);
3067 dmu_buf_will_not_fill(dbuf, tx);
3069 blkptr_t bp = { { { {0} } } };
3070 BP_SET_TYPE(&bp, type);
3071 BP_SET_LEVEL(&bp, 0);
3072 BP_SET_BIRTH(&bp, tx->tx_txg, 0);
3073 BP_SET_REDACTED(&bp);
3074 BPE_SET_LSIZE(&bp, dbuf->db_size);
3076 dbuf_override_impl(db, &bp, tx);
3080 * Directly assign a provided arc buf to a given dbuf if it's not referenced
3081 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
3083 void
3084 dbuf_assign_arcbuf(dmu_buf_impl_t *db, arc_buf_t *buf, dmu_tx_t *tx)
3086 ASSERT(!zfs_refcount_is_zero(&db->db_holds));
3087 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
3088 ASSERT(db->db_level == 0);
3089 ASSERT3U(dbuf_is_metadata(db), ==, arc_is_metadata(buf));
3090 ASSERT(buf != NULL);
3091 ASSERT3U(arc_buf_lsize(buf), ==, db->db.db_size);
3092 ASSERT(tx->tx_txg != 0);
3094 arc_return_buf(buf, db);
3095 ASSERT(arc_released(buf));
3097 mutex_enter(&db->db_mtx);
3099 while (db->db_state == DB_READ || db->db_state == DB_FILL)
3100 cv_wait(&db->db_changed, &db->db_mtx);
3102 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_UNCACHED ||
3103 db->db_state == DB_NOFILL);
3105 if (db->db_state == DB_CACHED &&
3106 zfs_refcount_count(&db->db_holds) - 1 > db->db_dirtycnt) {
3108 * In practice, we will never have a case where we have an
3109 * encrypted arc buffer while additional holds exist on the
3110 * dbuf. We don't handle this here so we simply assert that
3111 * fact instead.
3113 ASSERT(!arc_is_encrypted(buf));
3114 mutex_exit(&db->db_mtx);
3115 (void) dbuf_dirty(db, tx);
3116 memcpy(db->db.db_data, buf->b_data, db->db.db_size);
3117 arc_buf_destroy(buf, db);
3118 return;
3121 if (db->db_state == DB_CACHED) {
3122 dbuf_dirty_record_t *dr = list_head(&db->db_dirty_records);
3124 ASSERT(db->db_buf != NULL);
3125 if (dr != NULL && dr->dr_txg == tx->tx_txg) {
3126 ASSERT(dr->dt.dl.dr_data == db->db_buf);
3128 if (!arc_released(db->db_buf)) {
3129 ASSERT(dr->dt.dl.dr_override_state ==
3130 DR_OVERRIDDEN);
3131 arc_release(db->db_buf, db);
3133 dr->dt.dl.dr_data = buf;
3134 arc_buf_destroy(db->db_buf, db);
3135 } else if (dr == NULL || dr->dt.dl.dr_data != db->db_buf) {
3136 arc_release(db->db_buf, db);
3137 arc_buf_destroy(db->db_buf, db);
3139 db->db_buf = NULL;
3140 } else if (db->db_state == DB_NOFILL) {
3142 * We will be completely replacing the cloned block. In case
3143 * it was cloned in this transaction group, let's undirty the
3144 * pending clone and mark the block as uncached. This will be
3145 * as if the clone was never done.
3147 VERIFY(!dbuf_undirty(db, tx));
3148 db->db_state = DB_UNCACHED;
3150 ASSERT(db->db_buf == NULL);
3151 dbuf_set_data(db, buf);
3152 db->db_state = DB_FILL;
3153 DTRACE_SET_STATE(db, "filling assigned arcbuf");
3154 mutex_exit(&db->db_mtx);
3155 (void) dbuf_dirty(db, tx);
3156 dmu_buf_fill_done(&db->db, tx, B_FALSE);
3159 void
3160 dbuf_destroy(dmu_buf_impl_t *db)
3162 dnode_t *dn;
3163 dmu_buf_impl_t *parent = db->db_parent;
3164 dmu_buf_impl_t *dndb;
3166 ASSERT(MUTEX_HELD(&db->db_mtx));
3167 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3169 if (db->db_buf != NULL) {
3170 arc_buf_destroy(db->db_buf, db);
3171 db->db_buf = NULL;
3174 if (db->db_blkid == DMU_BONUS_BLKID) {
3175 int slots = DB_DNODE(db)->dn_num_slots;
3176 int bonuslen = DN_SLOTS_TO_BONUSLEN(slots);
3177 if (db->db.db_data != NULL) {
3178 kmem_free(db->db.db_data, bonuslen);
3179 arc_space_return(bonuslen, ARC_SPACE_BONUS);
3180 db->db_state = DB_UNCACHED;
3181 DTRACE_SET_STATE(db, "buffer cleared");
3185 dbuf_clear_data(db);
3187 if (multilist_link_active(&db->db_cache_link)) {
3188 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3189 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3191 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3193 ASSERT0(dmu_buf_user_size(&db->db));
3194 (void) zfs_refcount_remove_many(
3195 &dbuf_caches[db->db_caching_status].size,
3196 db->db.db_size, db);
3198 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3199 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3200 } else {
3201 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3202 DBUF_STAT_BUMPDOWN(cache_count);
3203 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3204 db->db.db_size);
3206 db->db_caching_status = DB_NO_CACHE;
3209 ASSERT(db->db_state == DB_UNCACHED || db->db_state == DB_NOFILL);
3210 ASSERT(db->db_data_pending == NULL);
3211 ASSERT(list_is_empty(&db->db_dirty_records));
3213 db->db_state = DB_EVICTING;
3214 DTRACE_SET_STATE(db, "buffer eviction started");
3215 db->db_blkptr = NULL;
3218 * Now that db_state is DB_EVICTING, nobody else can find this via
3219 * the hash table. We can now drop db_mtx, which allows us to
3220 * acquire the dn_dbufs_mtx.
3222 mutex_exit(&db->db_mtx);
3224 DB_DNODE_ENTER(db);
3225 dn = DB_DNODE(db);
3226 dndb = dn->dn_dbuf;
3227 if (db->db_blkid != DMU_BONUS_BLKID) {
3228 boolean_t needlock = !MUTEX_HELD(&dn->dn_dbufs_mtx);
3229 if (needlock)
3230 mutex_enter_nested(&dn->dn_dbufs_mtx,
3231 NESTED_SINGLE);
3232 avl_remove(&dn->dn_dbufs, db);
3233 membar_producer();
3234 DB_DNODE_EXIT(db);
3235 if (needlock)
3236 mutex_exit(&dn->dn_dbufs_mtx);
3238 * Decrementing the dbuf count means that the hold corresponding
3239 * to the removed dbuf is no longer discounted in dnode_move(),
3240 * so the dnode cannot be moved until after we release the hold.
3241 * The membar_producer() ensures visibility of the decremented
3242 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3243 * release any lock.
3245 mutex_enter(&dn->dn_mtx);
3246 dnode_rele_and_unlock(dn, db, B_TRUE);
3247 #ifdef USE_DNODE_HANDLE
3248 db->db_dnode_handle = NULL;
3249 #else
3250 db->db_dnode = NULL;
3251 #endif
3253 dbuf_hash_remove(db);
3254 } else {
3255 DB_DNODE_EXIT(db);
3258 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3260 db->db_parent = NULL;
3262 ASSERT(db->db_buf == NULL);
3263 ASSERT(db->db.db_data == NULL);
3264 ASSERT(db->db_hash_next == NULL);
3265 ASSERT(db->db_blkptr == NULL);
3266 ASSERT(db->db_data_pending == NULL);
3267 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
3268 ASSERT(!multilist_link_active(&db->db_cache_link));
3271 * If this dbuf is referenced from an indirect dbuf,
3272 * decrement the ref count on the indirect dbuf.
3274 if (parent && parent != dndb) {
3275 mutex_enter(&parent->db_mtx);
3276 dbuf_rele_and_unlock(parent, db, B_TRUE);
3279 kmem_cache_free(dbuf_kmem_cache, db);
3280 arc_space_return(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3284 * Note: While bpp will always be updated if the function returns success,
3285 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3286 * this happens when the dnode is the meta-dnode, or {user|group|project}used
3287 * object.
3289 __attribute__((always_inline))
3290 static inline int
3291 dbuf_findbp(dnode_t *dn, int level, uint64_t blkid, int fail_sparse,
3292 dmu_buf_impl_t **parentp, blkptr_t **bpp)
3294 *parentp = NULL;
3295 *bpp = NULL;
3297 ASSERT(blkid != DMU_BONUS_BLKID);
3299 if (blkid == DMU_SPILL_BLKID) {
3300 mutex_enter(&dn->dn_mtx);
3301 if (dn->dn_have_spill &&
3302 (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR))
3303 *bpp = DN_SPILL_BLKPTR(dn->dn_phys);
3304 else
3305 *bpp = NULL;
3306 dbuf_add_ref(dn->dn_dbuf, NULL);
3307 *parentp = dn->dn_dbuf;
3308 mutex_exit(&dn->dn_mtx);
3309 return (0);
3312 int nlevels =
3313 (dn->dn_phys->dn_nlevels == 0) ? 1 : dn->dn_phys->dn_nlevels;
3314 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
3316 ASSERT3U(level * epbs, <, 64);
3317 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3319 * This assertion shouldn't trip as long as the max indirect block size
3320 * is less than 1M. The reason for this is that up to that point,
3321 * the number of levels required to address an entire object with blocks
3322 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3323 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3324 * (i.e. we can address the entire object), objects will all use at most
3325 * N-1 levels and the assertion won't overflow. However, once epbs is
3326 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3327 * enough to address an entire object, so objects will have 5 levels,
3328 * but then this assertion will overflow.
3330 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3331 * need to redo this logic to handle overflows.
3333 ASSERT(level >= nlevels ||
3334 ((nlevels - level - 1) * epbs) +
3335 highbit64(dn->dn_phys->dn_nblkptr) <= 64);
3336 if (level >= nlevels ||
3337 blkid >= ((uint64_t)dn->dn_phys->dn_nblkptr <<
3338 ((nlevels - level - 1) * epbs)) ||
3339 (fail_sparse &&
3340 blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))) {
3341 /* the buffer has no parent yet */
3342 return (SET_ERROR(ENOENT));
3343 } else if (level < nlevels-1) {
3344 /* this block is referenced from an indirect block */
3345 int err;
3347 err = dbuf_hold_impl(dn, level + 1,
3348 blkid >> epbs, fail_sparse, FALSE, NULL, parentp);
3350 if (err)
3351 return (err);
3352 err = dbuf_read(*parentp, NULL,
3353 (DB_RF_HAVESTRUCT | DB_RF_NOPREFETCH | DB_RF_CANFAIL));
3354 if (err) {
3355 dbuf_rele(*parentp, NULL);
3356 *parentp = NULL;
3357 return (err);
3359 rw_enter(&(*parentp)->db_rwlock, RW_READER);
3360 *bpp = ((blkptr_t *)(*parentp)->db.db_data) +
3361 (blkid & ((1ULL << epbs) - 1));
3362 if (blkid > (dn->dn_phys->dn_maxblkid >> (level * epbs)))
3363 ASSERT(BP_IS_HOLE(*bpp));
3364 rw_exit(&(*parentp)->db_rwlock);
3365 return (0);
3366 } else {
3367 /* the block is referenced from the dnode */
3368 ASSERT3U(level, ==, nlevels-1);
3369 ASSERT(dn->dn_phys->dn_nblkptr == 0 ||
3370 blkid < dn->dn_phys->dn_nblkptr);
3371 if (dn->dn_dbuf) {
3372 dbuf_add_ref(dn->dn_dbuf, NULL);
3373 *parentp = dn->dn_dbuf;
3375 *bpp = &dn->dn_phys->dn_blkptr[blkid];
3376 return (0);
3380 static dmu_buf_impl_t *
3381 dbuf_create(dnode_t *dn, uint8_t level, uint64_t blkid,
3382 dmu_buf_impl_t *parent, blkptr_t *blkptr, uint64_t hash)
3384 objset_t *os = dn->dn_objset;
3385 dmu_buf_impl_t *db, *odb;
3387 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3388 ASSERT(dn->dn_type != DMU_OT_NONE);
3390 db = kmem_cache_alloc(dbuf_kmem_cache, KM_SLEEP);
3392 list_create(&db->db_dirty_records, sizeof (dbuf_dirty_record_t),
3393 offsetof(dbuf_dirty_record_t, dr_dbuf_node));
3395 db->db_objset = os;
3396 db->db.db_object = dn->dn_object;
3397 db->db_level = level;
3398 db->db_blkid = blkid;
3399 db->db_dirtycnt = 0;
3400 #ifdef USE_DNODE_HANDLE
3401 db->db_dnode_handle = dn->dn_handle;
3402 #else
3403 db->db_dnode = dn;
3404 #endif
3405 db->db_parent = parent;
3406 db->db_blkptr = blkptr;
3407 db->db_hash = hash;
3409 db->db_user = NULL;
3410 db->db_user_immediate_evict = FALSE;
3411 db->db_freed_in_flight = FALSE;
3412 db->db_pending_evict = FALSE;
3414 if (blkid == DMU_BONUS_BLKID) {
3415 ASSERT3P(parent, ==, dn->dn_dbuf);
3416 db->db.db_size = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots) -
3417 (dn->dn_nblkptr-1) * sizeof (blkptr_t);
3418 ASSERT3U(db->db.db_size, >=, dn->dn_bonuslen);
3419 db->db.db_offset = DMU_BONUS_BLKID;
3420 db->db_state = DB_UNCACHED;
3421 DTRACE_SET_STATE(db, "bonus buffer created");
3422 db->db_caching_status = DB_NO_CACHE;
3423 /* the bonus dbuf is not placed in the hash table */
3424 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3425 return (db);
3426 } else if (blkid == DMU_SPILL_BLKID) {
3427 db->db.db_size = (blkptr != NULL) ?
3428 BP_GET_LSIZE(blkptr) : SPA_MINBLOCKSIZE;
3429 db->db.db_offset = 0;
3430 } else {
3431 int blocksize =
3432 db->db_level ? 1 << dn->dn_indblkshift : dn->dn_datablksz;
3433 db->db.db_size = blocksize;
3434 db->db.db_offset = db->db_blkid * blocksize;
3438 * Hold the dn_dbufs_mtx while we get the new dbuf
3439 * in the hash table *and* added to the dbufs list.
3440 * This prevents a possible deadlock with someone
3441 * trying to look up this dbuf before it's added to the
3442 * dn_dbufs list.
3444 mutex_enter(&dn->dn_dbufs_mtx);
3445 db->db_state = DB_EVICTING; /* not worth logging this state change */
3446 if ((odb = dbuf_hash_insert(db)) != NULL) {
3447 /* someone else inserted it first */
3448 mutex_exit(&dn->dn_dbufs_mtx);
3449 kmem_cache_free(dbuf_kmem_cache, db);
3450 DBUF_STAT_BUMP(hash_insert_race);
3451 return (odb);
3453 avl_add(&dn->dn_dbufs, db);
3455 db->db_state = DB_UNCACHED;
3456 DTRACE_SET_STATE(db, "regular buffer created");
3457 db->db_caching_status = DB_NO_CACHE;
3458 mutex_exit(&dn->dn_dbufs_mtx);
3459 arc_space_consume(sizeof (dmu_buf_impl_t), ARC_SPACE_DBUF);
3461 if (parent && parent != dn->dn_dbuf)
3462 dbuf_add_ref(parent, db);
3464 ASSERT(dn->dn_object == DMU_META_DNODE_OBJECT ||
3465 zfs_refcount_count(&dn->dn_holds) > 0);
3466 (void) zfs_refcount_add(&dn->dn_holds, db);
3468 dprintf_dbuf(db, "db=%p\n", db);
3470 return (db);
3474 * This function returns a block pointer and information about the object,
3475 * given a dnode and a block. This is a publicly accessible version of
3476 * dbuf_findbp that only returns some information, rather than the
3477 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3478 * should be locked as (at least) a reader.
3481 dbuf_dnode_findbp(dnode_t *dn, uint64_t level, uint64_t blkid,
3482 blkptr_t *bp, uint16_t *datablkszsec, uint8_t *indblkshift)
3484 dmu_buf_impl_t *dbp = NULL;
3485 blkptr_t *bp2;
3486 int err = 0;
3487 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3489 err = dbuf_findbp(dn, level, blkid, B_FALSE, &dbp, &bp2);
3490 if (err == 0) {
3491 ASSERT3P(bp2, !=, NULL);
3492 *bp = *bp2;
3493 if (dbp != NULL)
3494 dbuf_rele(dbp, NULL);
3495 if (datablkszsec != NULL)
3496 *datablkszsec = dn->dn_phys->dn_datablkszsec;
3497 if (indblkshift != NULL)
3498 *indblkshift = dn->dn_phys->dn_indblkshift;
3501 return (err);
3504 typedef struct dbuf_prefetch_arg {
3505 spa_t *dpa_spa; /* The spa to issue the prefetch in. */
3506 zbookmark_phys_t dpa_zb; /* The target block to prefetch. */
3507 int dpa_epbs; /* Entries (blkptr_t's) Per Block Shift. */
3508 int dpa_curlevel; /* The current level that we're reading */
3509 dnode_t *dpa_dnode; /* The dnode associated with the prefetch */
3510 zio_priority_t dpa_prio; /* The priority I/Os should be issued at. */
3511 zio_t *dpa_zio; /* The parent zio_t for all prefetches. */
3512 arc_flags_t dpa_aflags; /* Flags to pass to the final prefetch. */
3513 dbuf_prefetch_fn dpa_cb; /* prefetch completion callback */
3514 void *dpa_arg; /* prefetch completion arg */
3515 } dbuf_prefetch_arg_t;
3517 static void
3518 dbuf_prefetch_fini(dbuf_prefetch_arg_t *dpa, boolean_t io_done)
3520 if (dpa->dpa_cb != NULL) {
3521 dpa->dpa_cb(dpa->dpa_arg, dpa->dpa_zb.zb_level,
3522 dpa->dpa_zb.zb_blkid, io_done);
3524 kmem_free(dpa, sizeof (*dpa));
3527 static void
3528 dbuf_issue_final_prefetch_done(zio_t *zio, const zbookmark_phys_t *zb,
3529 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3531 (void) zio, (void) zb, (void) iobp;
3532 dbuf_prefetch_arg_t *dpa = private;
3534 if (abuf != NULL)
3535 arc_buf_destroy(abuf, private);
3537 dbuf_prefetch_fini(dpa, B_TRUE);
3541 * Actually issue the prefetch read for the block given.
3543 static void
3544 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t *dpa, blkptr_t *bp)
3546 ASSERT(!BP_IS_REDACTED(bp) ||
3547 dsl_dataset_feature_is_active(
3548 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3549 SPA_FEATURE_REDACTED_DATASETS));
3551 if (BP_IS_HOLE(bp) || BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
3552 return (dbuf_prefetch_fini(dpa, B_FALSE));
3554 int zio_flags = ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE;
3555 arc_flags_t aflags =
3556 dpa->dpa_aflags | ARC_FLAG_NOWAIT | ARC_FLAG_PREFETCH |
3557 ARC_FLAG_NO_BUF;
3559 /* dnodes are always read as raw and then converted later */
3560 if (BP_GET_TYPE(bp) == DMU_OT_DNODE && BP_IS_PROTECTED(bp) &&
3561 dpa->dpa_curlevel == 0)
3562 zio_flags |= ZIO_FLAG_RAW;
3564 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3565 ASSERT3U(dpa->dpa_curlevel, ==, dpa->dpa_zb.zb_level);
3566 ASSERT(dpa->dpa_zio != NULL);
3567 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa, bp,
3568 dbuf_issue_final_prefetch_done, dpa,
3569 dpa->dpa_prio, zio_flags, &aflags, &dpa->dpa_zb);
3573 * Called when an indirect block above our prefetch target is read in. This
3574 * will either read in the next indirect block down the tree or issue the actual
3575 * prefetch if the next block down is our target.
3577 static void
3578 dbuf_prefetch_indirect_done(zio_t *zio, const zbookmark_phys_t *zb,
3579 const blkptr_t *iobp, arc_buf_t *abuf, void *private)
3581 (void) zb, (void) iobp;
3582 dbuf_prefetch_arg_t *dpa = private;
3584 ASSERT3S(dpa->dpa_zb.zb_level, <, dpa->dpa_curlevel);
3585 ASSERT3S(dpa->dpa_curlevel, >, 0);
3587 if (abuf == NULL) {
3588 ASSERT(zio == NULL || zio->io_error != 0);
3589 dbuf_prefetch_fini(dpa, B_TRUE);
3590 return;
3592 ASSERT(zio == NULL || zio->io_error == 0);
3595 * The dpa_dnode is only valid if we are called with a NULL
3596 * zio. This indicates that the arc_read() returned without
3597 * first calling zio_read() to issue a physical read. Once
3598 * a physical read is made the dpa_dnode must be invalidated
3599 * as the locks guarding it may have been dropped. If the
3600 * dpa_dnode is still valid, then we want to add it to the dbuf
3601 * cache. To do so, we must hold the dbuf associated with the block
3602 * we just prefetched, read its contents so that we associate it
3603 * with an arc_buf_t, and then release it.
3605 if (zio != NULL) {
3606 ASSERT3S(BP_GET_LEVEL(zio->io_bp), ==, dpa->dpa_curlevel);
3607 if (zio->io_flags & ZIO_FLAG_RAW_COMPRESS) {
3608 ASSERT3U(BP_GET_PSIZE(zio->io_bp), ==, zio->io_size);
3609 } else {
3610 ASSERT3U(BP_GET_LSIZE(zio->io_bp), ==, zio->io_size);
3612 ASSERT3P(zio->io_spa, ==, dpa->dpa_spa);
3614 dpa->dpa_dnode = NULL;
3615 } else if (dpa->dpa_dnode != NULL) {
3616 uint64_t curblkid = dpa->dpa_zb.zb_blkid >>
3617 (dpa->dpa_epbs * (dpa->dpa_curlevel -
3618 dpa->dpa_zb.zb_level));
3619 dmu_buf_impl_t *db = dbuf_hold_level(dpa->dpa_dnode,
3620 dpa->dpa_curlevel, curblkid, FTAG);
3621 if (db == NULL) {
3622 arc_buf_destroy(abuf, private);
3623 dbuf_prefetch_fini(dpa, B_TRUE);
3624 return;
3626 (void) dbuf_read(db, NULL,
3627 DB_RF_MUST_SUCCEED | DB_RF_NOPREFETCH | DB_RF_HAVESTRUCT);
3628 dbuf_rele(db, FTAG);
3631 dpa->dpa_curlevel--;
3632 uint64_t nextblkid = dpa->dpa_zb.zb_blkid >>
3633 (dpa->dpa_epbs * (dpa->dpa_curlevel - dpa->dpa_zb.zb_level));
3634 blkptr_t *bp = ((blkptr_t *)abuf->b_data) +
3635 P2PHASE(nextblkid, 1ULL << dpa->dpa_epbs);
3637 ASSERT(!BP_IS_REDACTED(bp) || (dpa->dpa_dnode &&
3638 dsl_dataset_feature_is_active(
3639 dpa->dpa_dnode->dn_objset->os_dsl_dataset,
3640 SPA_FEATURE_REDACTED_DATASETS)));
3641 if (BP_IS_HOLE(bp) || BP_IS_REDACTED(bp)) {
3642 arc_buf_destroy(abuf, private);
3643 dbuf_prefetch_fini(dpa, B_TRUE);
3644 return;
3645 } else if (dpa->dpa_curlevel == dpa->dpa_zb.zb_level) {
3646 ASSERT3U(nextblkid, ==, dpa->dpa_zb.zb_blkid);
3647 dbuf_issue_final_prefetch(dpa, bp);
3648 } else {
3649 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3650 zbookmark_phys_t zb;
3652 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3653 if (dpa->dpa_aflags & ARC_FLAG_L2CACHE)
3654 iter_aflags |= ARC_FLAG_L2CACHE;
3656 ASSERT3U(dpa->dpa_curlevel, ==, BP_GET_LEVEL(bp));
3658 SET_BOOKMARK(&zb, dpa->dpa_zb.zb_objset,
3659 dpa->dpa_zb.zb_object, dpa->dpa_curlevel, nextblkid);
3661 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3662 bp, dbuf_prefetch_indirect_done, dpa,
3663 ZIO_PRIORITY_SYNC_READ,
3664 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3665 &iter_aflags, &zb);
3668 arc_buf_destroy(abuf, private);
3672 * Issue prefetch reads for the given block on the given level. If the indirect
3673 * blocks above that block are not in memory, we will read them in
3674 * asynchronously. As a result, this call never blocks waiting for a read to
3675 * complete. Note that the prefetch might fail if the dataset is encrypted and
3676 * the encryption key is unmapped before the IO completes.
3679 dbuf_prefetch_impl(dnode_t *dn, int64_t level, uint64_t blkid,
3680 zio_priority_t prio, arc_flags_t aflags, dbuf_prefetch_fn cb,
3681 void *arg)
3683 blkptr_t bp;
3684 int epbs, nlevels, curlevel;
3685 uint64_t curblkid;
3687 ASSERT(blkid != DMU_BONUS_BLKID);
3688 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3690 if (blkid > dn->dn_maxblkid)
3691 goto no_issue;
3693 if (level == 0 && dnode_block_freed(dn, blkid))
3694 goto no_issue;
3697 * This dnode hasn't been written to disk yet, so there's nothing to
3698 * prefetch.
3700 nlevels = dn->dn_phys->dn_nlevels;
3701 if (level >= nlevels || dn->dn_phys->dn_nblkptr == 0)
3702 goto no_issue;
3704 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
3705 if (dn->dn_phys->dn_maxblkid < blkid << (epbs * level))
3706 goto no_issue;
3708 dmu_buf_impl_t *db = dbuf_find(dn->dn_objset, dn->dn_object,
3709 level, blkid, NULL);
3710 if (db != NULL) {
3711 mutex_exit(&db->db_mtx);
3713 * This dbuf already exists. It is either CACHED, or
3714 * (we assume) about to be read or filled.
3716 goto no_issue;
3720 * Find the closest ancestor (indirect block) of the target block
3721 * that is present in the cache. In this indirect block, we will
3722 * find the bp that is at curlevel, curblkid.
3724 curlevel = level;
3725 curblkid = blkid;
3726 while (curlevel < nlevels - 1) {
3727 int parent_level = curlevel + 1;
3728 uint64_t parent_blkid = curblkid >> epbs;
3729 dmu_buf_impl_t *db;
3731 if (dbuf_hold_impl(dn, parent_level, parent_blkid,
3732 FALSE, TRUE, FTAG, &db) == 0) {
3733 blkptr_t *bpp = db->db_buf->b_data;
3734 bp = bpp[P2PHASE(curblkid, 1 << epbs)];
3735 dbuf_rele(db, FTAG);
3736 break;
3739 curlevel = parent_level;
3740 curblkid = parent_blkid;
3743 if (curlevel == nlevels - 1) {
3744 /* No cached indirect blocks found. */
3745 ASSERT3U(curblkid, <, dn->dn_phys->dn_nblkptr);
3746 bp = dn->dn_phys->dn_blkptr[curblkid];
3748 ASSERT(!BP_IS_REDACTED(&bp) ||
3749 dsl_dataset_feature_is_active(dn->dn_objset->os_dsl_dataset,
3750 SPA_FEATURE_REDACTED_DATASETS));
3751 if (BP_IS_HOLE(&bp) || BP_IS_REDACTED(&bp))
3752 goto no_issue;
3754 ASSERT3U(curlevel, ==, BP_GET_LEVEL(&bp));
3756 zio_t *pio = zio_root(dmu_objset_spa(dn->dn_objset), NULL, NULL,
3757 ZIO_FLAG_CANFAIL);
3759 dbuf_prefetch_arg_t *dpa = kmem_zalloc(sizeof (*dpa), KM_SLEEP);
3760 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset;
3761 SET_BOOKMARK(&dpa->dpa_zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3762 dn->dn_object, level, blkid);
3763 dpa->dpa_curlevel = curlevel;
3764 dpa->dpa_prio = prio;
3765 dpa->dpa_aflags = aflags;
3766 dpa->dpa_spa = dn->dn_objset->os_spa;
3767 dpa->dpa_dnode = dn;
3768 dpa->dpa_epbs = epbs;
3769 dpa->dpa_zio = pio;
3770 dpa->dpa_cb = cb;
3771 dpa->dpa_arg = arg;
3773 if (!DNODE_LEVEL_IS_CACHEABLE(dn, level))
3774 dpa->dpa_aflags |= ARC_FLAG_UNCACHED;
3775 else if (dnode_level_is_l2cacheable(&bp, dn, level))
3776 dpa->dpa_aflags |= ARC_FLAG_L2CACHE;
3779 * If we have the indirect just above us, no need to do the asynchronous
3780 * prefetch chain; we'll just run the last step ourselves. If we're at
3781 * a higher level, though, we want to issue the prefetches for all the
3782 * indirect blocks asynchronously, so we can go on with whatever we were
3783 * doing.
3785 if (curlevel == level) {
3786 ASSERT3U(curblkid, ==, blkid);
3787 dbuf_issue_final_prefetch(dpa, &bp);
3788 } else {
3789 arc_flags_t iter_aflags = ARC_FLAG_NOWAIT;
3790 zbookmark_phys_t zb;
3792 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3793 if (dnode_level_is_l2cacheable(&bp, dn, level))
3794 iter_aflags |= ARC_FLAG_L2CACHE;
3796 SET_BOOKMARK(&zb, ds != NULL ? ds->ds_object : DMU_META_OBJSET,
3797 dn->dn_object, curlevel, curblkid);
3798 (void) arc_read(dpa->dpa_zio, dpa->dpa_spa,
3799 &bp, dbuf_prefetch_indirect_done, dpa,
3800 ZIO_PRIORITY_SYNC_READ,
3801 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE,
3802 &iter_aflags, &zb);
3805 * We use pio here instead of dpa_zio since it's possible that
3806 * dpa may have already been freed.
3808 zio_nowait(pio);
3809 return (1);
3810 no_issue:
3811 if (cb != NULL)
3812 cb(arg, level, blkid, B_FALSE);
3813 return (0);
3817 dbuf_prefetch(dnode_t *dn, int64_t level, uint64_t blkid, zio_priority_t prio,
3818 arc_flags_t aflags)
3821 return (dbuf_prefetch_impl(dn, level, blkid, prio, aflags, NULL, NULL));
3825 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3826 * the case of encrypted, compressed and uncompressed buffers by
3827 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3828 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3830 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3832 noinline static void
3833 dbuf_hold_copy(dnode_t *dn, dmu_buf_impl_t *db)
3835 dbuf_dirty_record_t *dr = db->db_data_pending;
3836 arc_buf_t *data = dr->dt.dl.dr_data;
3837 enum zio_compress compress_type = arc_get_compression(data);
3838 uint8_t complevel = arc_get_complevel(data);
3840 if (arc_is_encrypted(data)) {
3841 boolean_t byteorder;
3842 uint8_t salt[ZIO_DATA_SALT_LEN];
3843 uint8_t iv[ZIO_DATA_IV_LEN];
3844 uint8_t mac[ZIO_DATA_MAC_LEN];
3846 arc_get_raw_params(data, &byteorder, salt, iv, mac);
3847 dbuf_set_data(db, arc_alloc_raw_buf(dn->dn_objset->os_spa, db,
3848 dmu_objset_id(dn->dn_objset), byteorder, salt, iv, mac,
3849 dn->dn_type, arc_buf_size(data), arc_buf_lsize(data),
3850 compress_type, complevel));
3851 } else if (compress_type != ZIO_COMPRESS_OFF) {
3852 dbuf_set_data(db, arc_alloc_compressed_buf(
3853 dn->dn_objset->os_spa, db, arc_buf_size(data),
3854 arc_buf_lsize(data), compress_type, complevel));
3855 } else {
3856 dbuf_set_data(db, arc_alloc_buf(dn->dn_objset->os_spa, db,
3857 DBUF_GET_BUFC_TYPE(db), db->db.db_size));
3860 rw_enter(&db->db_rwlock, RW_WRITER);
3861 memcpy(db->db.db_data, data->b_data, arc_buf_size(data));
3862 rw_exit(&db->db_rwlock);
3866 * Returns with db_holds incremented, and db_mtx not held.
3867 * Note: dn_struct_rwlock must be held.
3870 dbuf_hold_impl(dnode_t *dn, uint8_t level, uint64_t blkid,
3871 boolean_t fail_sparse, boolean_t fail_uncached,
3872 const void *tag, dmu_buf_impl_t **dbp)
3874 dmu_buf_impl_t *db, *parent = NULL;
3875 uint64_t hv;
3877 /* If the pool has been created, verify the tx_sync_lock is not held */
3878 spa_t *spa = dn->dn_objset->os_spa;
3879 dsl_pool_t *dp = spa->spa_dsl_pool;
3880 if (dp != NULL) {
3881 ASSERT(!MUTEX_HELD(&dp->dp_tx.tx_sync_lock));
3884 ASSERT(blkid != DMU_BONUS_BLKID);
3885 ASSERT(RW_LOCK_HELD(&dn->dn_struct_rwlock));
3886 ASSERT3U(dn->dn_nlevels, >, level);
3888 *dbp = NULL;
3890 /* dbuf_find() returns with db_mtx held */
3891 db = dbuf_find(dn->dn_objset, dn->dn_object, level, blkid, &hv);
3893 if (db == NULL) {
3894 blkptr_t *bp = NULL;
3895 int err;
3897 if (fail_uncached)
3898 return (SET_ERROR(ENOENT));
3900 ASSERT3P(parent, ==, NULL);
3901 err = dbuf_findbp(dn, level, blkid, fail_sparse, &parent, &bp);
3902 if (fail_sparse) {
3903 if (err == 0 && bp && BP_IS_HOLE(bp))
3904 err = SET_ERROR(ENOENT);
3905 if (err) {
3906 if (parent)
3907 dbuf_rele(parent, NULL);
3908 return (err);
3911 if (err && err != ENOENT)
3912 return (err);
3913 db = dbuf_create(dn, level, blkid, parent, bp, hv);
3916 if (fail_uncached && db->db_state != DB_CACHED) {
3917 mutex_exit(&db->db_mtx);
3918 return (SET_ERROR(ENOENT));
3921 if (db->db_buf != NULL) {
3922 arc_buf_access(db->db_buf);
3923 ASSERT3P(db->db.db_data, ==, db->db_buf->b_data);
3926 ASSERT(db->db_buf == NULL || arc_referenced(db->db_buf));
3929 * If this buffer is currently syncing out, and we are
3930 * still referencing it from db_data, we need to make a copy
3931 * of it in case we decide we want to dirty it again in this txg.
3933 if (db->db_level == 0 && db->db_blkid != DMU_BONUS_BLKID &&
3934 dn->dn_object != DMU_META_DNODE_OBJECT &&
3935 db->db_state == DB_CACHED && db->db_data_pending) {
3936 dbuf_dirty_record_t *dr = db->db_data_pending;
3937 if (dr->dt.dl.dr_data == db->db_buf) {
3938 ASSERT3P(db->db_buf, !=, NULL);
3939 dbuf_hold_copy(dn, db);
3943 if (multilist_link_active(&db->db_cache_link)) {
3944 ASSERT(zfs_refcount_is_zero(&db->db_holds));
3945 ASSERT(db->db_caching_status == DB_DBUF_CACHE ||
3946 db->db_caching_status == DB_DBUF_METADATA_CACHE);
3948 multilist_remove(&dbuf_caches[db->db_caching_status].cache, db);
3950 uint64_t size = db->db.db_size;
3951 uint64_t usize = dmu_buf_user_size(&db->db);
3952 (void) zfs_refcount_remove_many(
3953 &dbuf_caches[db->db_caching_status].size, size, db);
3954 (void) zfs_refcount_remove_many(
3955 &dbuf_caches[db->db_caching_status].size, usize,
3956 db->db_user);
3958 if (db->db_caching_status == DB_DBUF_METADATA_CACHE) {
3959 DBUF_STAT_BUMPDOWN(metadata_cache_count);
3960 } else {
3961 DBUF_STAT_BUMPDOWN(cache_levels[db->db_level]);
3962 DBUF_STAT_BUMPDOWN(cache_count);
3963 DBUF_STAT_DECR(cache_levels_bytes[db->db_level],
3964 size + usize);
3966 db->db_caching_status = DB_NO_CACHE;
3968 (void) zfs_refcount_add(&db->db_holds, tag);
3969 DBUF_VERIFY(db);
3970 mutex_exit(&db->db_mtx);
3972 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3973 if (parent)
3974 dbuf_rele(parent, NULL);
3976 ASSERT3P(DB_DNODE(db), ==, dn);
3977 ASSERT3U(db->db_blkid, ==, blkid);
3978 ASSERT3U(db->db_level, ==, level);
3979 *dbp = db;
3981 return (0);
3984 dmu_buf_impl_t *
3985 dbuf_hold(dnode_t *dn, uint64_t blkid, const void *tag)
3987 return (dbuf_hold_level(dn, 0, blkid, tag));
3990 dmu_buf_impl_t *
3991 dbuf_hold_level(dnode_t *dn, int level, uint64_t blkid, const void *tag)
3993 dmu_buf_impl_t *db;
3994 int err = dbuf_hold_impl(dn, level, blkid, FALSE, FALSE, tag, &db);
3995 return (err ? NULL : db);
3998 void
3999 dbuf_create_bonus(dnode_t *dn)
4001 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock));
4003 ASSERT(dn->dn_bonus == NULL);
4004 dn->dn_bonus = dbuf_create(dn, 0, DMU_BONUS_BLKID, dn->dn_dbuf, NULL,
4005 dbuf_hash(dn->dn_objset, dn->dn_object, 0, DMU_BONUS_BLKID));
4009 dbuf_spill_set_blksz(dmu_buf_t *db_fake, uint64_t blksz, dmu_tx_t *tx)
4011 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4013 if (db->db_blkid != DMU_SPILL_BLKID)
4014 return (SET_ERROR(ENOTSUP));
4015 if (blksz == 0)
4016 blksz = SPA_MINBLOCKSIZE;
4017 ASSERT3U(blksz, <=, spa_maxblocksize(dmu_objset_spa(db->db_objset)));
4018 blksz = P2ROUNDUP(blksz, SPA_MINBLOCKSIZE);
4020 dbuf_new_size(db, blksz, tx);
4022 return (0);
4025 void
4026 dbuf_rm_spill(dnode_t *dn, dmu_tx_t *tx)
4028 dbuf_free_range(dn, DMU_SPILL_BLKID, DMU_SPILL_BLKID, tx);
4031 #pragma weak dmu_buf_add_ref = dbuf_add_ref
4032 void
4033 dbuf_add_ref(dmu_buf_impl_t *db, const void *tag)
4035 int64_t holds = zfs_refcount_add(&db->db_holds, tag);
4036 VERIFY3S(holds, >, 1);
4039 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
4040 boolean_t
4041 dbuf_try_add_ref(dmu_buf_t *db_fake, objset_t *os, uint64_t obj, uint64_t blkid,
4042 const void *tag)
4044 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4045 dmu_buf_impl_t *found_db;
4046 boolean_t result = B_FALSE;
4048 if (blkid == DMU_BONUS_BLKID)
4049 found_db = dbuf_find_bonus(os, obj);
4050 else
4051 found_db = dbuf_find(os, obj, 0, blkid, NULL);
4053 if (found_db != NULL) {
4054 if (db == found_db && dbuf_refcount(db) > db->db_dirtycnt) {
4055 (void) zfs_refcount_add(&db->db_holds, tag);
4056 result = B_TRUE;
4058 mutex_exit(&found_db->db_mtx);
4060 return (result);
4064 * If you call dbuf_rele() you had better not be referencing the dnode handle
4065 * unless you have some other direct or indirect hold on the dnode. (An indirect
4066 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
4067 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
4068 * dnode's parent dbuf evicting its dnode handles.
4070 void
4071 dbuf_rele(dmu_buf_impl_t *db, const void *tag)
4073 mutex_enter(&db->db_mtx);
4074 dbuf_rele_and_unlock(db, tag, B_FALSE);
4077 void
4078 dmu_buf_rele(dmu_buf_t *db, const void *tag)
4080 dbuf_rele((dmu_buf_impl_t *)db, tag);
4084 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
4085 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
4086 * argument should be set if we are already in the dbuf-evicting code
4087 * path, in which case we don't want to recursively evict. This allows us to
4088 * avoid deeply nested stacks that would have a call flow similar to this:
4090 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
4091 * ^ |
4092 * | |
4093 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
4096 void
4097 dbuf_rele_and_unlock(dmu_buf_impl_t *db, const void *tag, boolean_t evicting)
4099 int64_t holds;
4100 uint64_t size;
4102 ASSERT(MUTEX_HELD(&db->db_mtx));
4103 DBUF_VERIFY(db);
4106 * Remove the reference to the dbuf before removing its hold on the
4107 * dnode so we can guarantee in dnode_move() that a referenced bonus
4108 * buffer has a corresponding dnode hold.
4110 holds = zfs_refcount_remove(&db->db_holds, tag);
4111 ASSERT(holds >= 0);
4114 * We can't freeze indirects if there is a possibility that they
4115 * may be modified in the current syncing context.
4117 if (db->db_buf != NULL &&
4118 holds == (db->db_level == 0 ? db->db_dirtycnt : 0)) {
4119 arc_buf_freeze(db->db_buf);
4122 if (holds == db->db_dirtycnt &&
4123 db->db_level == 0 && db->db_user_immediate_evict)
4124 dbuf_evict_user(db);
4126 if (holds == 0) {
4127 if (db->db_blkid == DMU_BONUS_BLKID) {
4128 dnode_t *dn;
4129 boolean_t evict_dbuf = db->db_pending_evict;
4132 * If the dnode moves here, we cannot cross this
4133 * barrier until the move completes.
4135 DB_DNODE_ENTER(db);
4137 dn = DB_DNODE(db);
4138 atomic_dec_32(&dn->dn_dbufs_count);
4141 * Decrementing the dbuf count means that the bonus
4142 * buffer's dnode hold is no longer discounted in
4143 * dnode_move(). The dnode cannot move until after
4144 * the dnode_rele() below.
4146 DB_DNODE_EXIT(db);
4149 * Do not reference db after its lock is dropped.
4150 * Another thread may evict it.
4152 mutex_exit(&db->db_mtx);
4154 if (evict_dbuf)
4155 dnode_evict_bonus(dn);
4157 dnode_rele(dn, db);
4158 } else if (db->db_buf == NULL) {
4160 * This is a special case: we never associated this
4161 * dbuf with any data allocated from the ARC.
4163 ASSERT(db->db_state == DB_UNCACHED ||
4164 db->db_state == DB_NOFILL);
4165 dbuf_destroy(db);
4166 } else if (arc_released(db->db_buf)) {
4168 * This dbuf has anonymous data associated with it.
4170 dbuf_destroy(db);
4171 } else if (!(DBUF_IS_CACHEABLE(db) || db->db_partial_read) ||
4172 db->db_pending_evict) {
4173 dbuf_destroy(db);
4174 } else if (!multilist_link_active(&db->db_cache_link)) {
4175 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4177 dbuf_cached_state_t dcs =
4178 dbuf_include_in_metadata_cache(db) ?
4179 DB_DBUF_METADATA_CACHE : DB_DBUF_CACHE;
4180 db->db_caching_status = dcs;
4182 multilist_insert(&dbuf_caches[dcs].cache, db);
4183 uint64_t db_size = db->db.db_size;
4184 uint64_t dbu_size = dmu_buf_user_size(&db->db);
4185 (void) zfs_refcount_add_many(
4186 &dbuf_caches[dcs].size, db_size, db);
4187 size = zfs_refcount_add_many(
4188 &dbuf_caches[dcs].size, dbu_size, db->db_user);
4189 uint8_t db_level = db->db_level;
4190 mutex_exit(&db->db_mtx);
4192 if (dcs == DB_DBUF_METADATA_CACHE) {
4193 DBUF_STAT_BUMP(metadata_cache_count);
4194 DBUF_STAT_MAX(metadata_cache_size_bytes_max,
4195 size);
4196 } else {
4197 DBUF_STAT_BUMP(cache_count);
4198 DBUF_STAT_MAX(cache_size_bytes_max, size);
4199 DBUF_STAT_BUMP(cache_levels[db_level]);
4200 DBUF_STAT_INCR(cache_levels_bytes[db_level],
4201 db_size + dbu_size);
4204 if (dcs == DB_DBUF_CACHE && !evicting)
4205 dbuf_evict_notify(size);
4207 } else {
4208 mutex_exit(&db->db_mtx);
4212 #pragma weak dmu_buf_refcount = dbuf_refcount
4213 uint64_t
4214 dbuf_refcount(dmu_buf_impl_t *db)
4216 return (zfs_refcount_count(&db->db_holds));
4219 uint64_t
4220 dmu_buf_user_refcount(dmu_buf_t *db_fake)
4222 uint64_t holds;
4223 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4225 mutex_enter(&db->db_mtx);
4226 ASSERT3U(zfs_refcount_count(&db->db_holds), >=, db->db_dirtycnt);
4227 holds = zfs_refcount_count(&db->db_holds) - db->db_dirtycnt;
4228 mutex_exit(&db->db_mtx);
4230 return (holds);
4233 void *
4234 dmu_buf_replace_user(dmu_buf_t *db_fake, dmu_buf_user_t *old_user,
4235 dmu_buf_user_t *new_user)
4237 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4239 mutex_enter(&db->db_mtx);
4240 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4241 if (db->db_user == old_user)
4242 db->db_user = new_user;
4243 else
4244 old_user = db->db_user;
4245 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4246 mutex_exit(&db->db_mtx);
4248 return (old_user);
4251 void *
4252 dmu_buf_set_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4254 return (dmu_buf_replace_user(db_fake, NULL, user));
4257 void *
4258 dmu_buf_set_user_ie(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4260 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4262 db->db_user_immediate_evict = TRUE;
4263 return (dmu_buf_set_user(db_fake, user));
4266 void *
4267 dmu_buf_remove_user(dmu_buf_t *db_fake, dmu_buf_user_t *user)
4269 return (dmu_buf_replace_user(db_fake, user, NULL));
4272 void *
4273 dmu_buf_get_user(dmu_buf_t *db_fake)
4275 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4277 dbuf_verify_user(db, DBVU_NOT_EVICTING);
4278 return (db->db_user);
4281 uint64_t
4282 dmu_buf_user_size(dmu_buf_t *db_fake)
4284 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4285 if (db->db_user == NULL)
4286 return (0);
4287 return (atomic_load_64(&db->db_user->dbu_size));
4290 void
4291 dmu_buf_add_user_size(dmu_buf_t *db_fake, uint64_t nadd)
4293 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4294 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4295 ASSERT3P(db->db_user, !=, NULL);
4296 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), <, UINT64_MAX - nadd);
4297 atomic_add_64(&db->db_user->dbu_size, nadd);
4300 void
4301 dmu_buf_sub_user_size(dmu_buf_t *db_fake, uint64_t nsub)
4303 dmu_buf_impl_t *db = (dmu_buf_impl_t *)db_fake;
4304 ASSERT3U(db->db_caching_status, ==, DB_NO_CACHE);
4305 ASSERT3P(db->db_user, !=, NULL);
4306 ASSERT3U(atomic_load_64(&db->db_user->dbu_size), >=, nsub);
4307 atomic_sub_64(&db->db_user->dbu_size, nsub);
4310 void
4311 dmu_buf_user_evict_wait(void)
4313 taskq_wait(dbu_evict_taskq);
4316 blkptr_t *
4317 dmu_buf_get_blkptr(dmu_buf_t *db)
4319 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4320 return (dbi->db_blkptr);
4323 objset_t *
4324 dmu_buf_get_objset(dmu_buf_t *db)
4326 dmu_buf_impl_t *dbi = (dmu_buf_impl_t *)db;
4327 return (dbi->db_objset);
4330 static void
4331 dbuf_check_blkptr(dnode_t *dn, dmu_buf_impl_t *db)
4333 /* ASSERT(dmu_tx_is_syncing(tx) */
4334 ASSERT(MUTEX_HELD(&db->db_mtx));
4336 if (db->db_blkptr != NULL)
4337 return;
4339 if (db->db_blkid == DMU_SPILL_BLKID) {
4340 db->db_blkptr = DN_SPILL_BLKPTR(dn->dn_phys);
4341 BP_ZERO(db->db_blkptr);
4342 return;
4344 if (db->db_level == dn->dn_phys->dn_nlevels-1) {
4346 * This buffer was allocated at a time when there was
4347 * no available blkptrs from the dnode, or it was
4348 * inappropriate to hook it in (i.e., nlevels mismatch).
4350 ASSERT(db->db_blkid < dn->dn_phys->dn_nblkptr);
4351 ASSERT(db->db_parent == NULL);
4352 db->db_parent = dn->dn_dbuf;
4353 db->db_blkptr = &dn->dn_phys->dn_blkptr[db->db_blkid];
4354 DBUF_VERIFY(db);
4355 } else {
4356 dmu_buf_impl_t *parent = db->db_parent;
4357 int epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4359 ASSERT(dn->dn_phys->dn_nlevels > 1);
4360 if (parent == NULL) {
4361 mutex_exit(&db->db_mtx);
4362 rw_enter(&dn->dn_struct_rwlock, RW_READER);
4363 parent = dbuf_hold_level(dn, db->db_level + 1,
4364 db->db_blkid >> epbs, db);
4365 rw_exit(&dn->dn_struct_rwlock);
4366 mutex_enter(&db->db_mtx);
4367 db->db_parent = parent;
4369 db->db_blkptr = (blkptr_t *)parent->db.db_data +
4370 (db->db_blkid & ((1ULL << epbs) - 1));
4371 DBUF_VERIFY(db);
4375 static void
4376 dbuf_sync_bonus(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4378 dmu_buf_impl_t *db = dr->dr_dbuf;
4379 void *data = dr->dt.dl.dr_data;
4381 ASSERT0(db->db_level);
4382 ASSERT(MUTEX_HELD(&db->db_mtx));
4383 ASSERT(db->db_blkid == DMU_BONUS_BLKID);
4384 ASSERT(data != NULL);
4386 dnode_t *dn = dr->dr_dnode;
4387 ASSERT3U(DN_MAX_BONUS_LEN(dn->dn_phys), <=,
4388 DN_SLOTS_TO_BONUSLEN(dn->dn_phys->dn_extra_slots + 1));
4389 memcpy(DN_BONUS(dn->dn_phys), data, DN_MAX_BONUS_LEN(dn->dn_phys));
4391 dbuf_sync_leaf_verify_bonus_dnode(dr);
4393 dbuf_undirty_bonus(dr);
4394 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
4398 * When syncing out a blocks of dnodes, adjust the block to deal with
4399 * encryption. Normally, we make sure the block is decrypted before writing
4400 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4401 * from a raw receive. In this case, set the ARC buf's crypt params so
4402 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4404 static void
4405 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t *dr)
4407 int err;
4408 dmu_buf_impl_t *db = dr->dr_dbuf;
4410 ASSERT(MUTEX_HELD(&db->db_mtx));
4411 ASSERT3U(db->db.db_object, ==, DMU_META_DNODE_OBJECT);
4412 ASSERT3U(db->db_level, ==, 0);
4414 if (!db->db_objset->os_raw_receive && arc_is_encrypted(db->db_buf)) {
4415 zbookmark_phys_t zb;
4418 * Unfortunately, there is currently no mechanism for
4419 * syncing context to handle decryption errors. An error
4420 * here is only possible if an attacker maliciously
4421 * changed a dnode block and updated the associated
4422 * checksums going up the block tree.
4424 SET_BOOKMARK(&zb, dmu_objset_id(db->db_objset),
4425 db->db.db_object, db->db_level, db->db_blkid);
4426 err = arc_untransform(db->db_buf, db->db_objset->os_spa,
4427 &zb, B_TRUE);
4428 if (err)
4429 panic("Invalid dnode block MAC");
4430 } else if (dr->dt.dl.dr_has_raw_params) {
4431 (void) arc_release(dr->dt.dl.dr_data, db);
4432 arc_convert_to_raw(dr->dt.dl.dr_data,
4433 dmu_objset_id(db->db_objset),
4434 dr->dt.dl.dr_byteorder, DMU_OT_DNODE,
4435 dr->dt.dl.dr_salt, dr->dt.dl.dr_iv, dr->dt.dl.dr_mac);
4440 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4441 * is critical the we not allow the compiler to inline this function in to
4442 * dbuf_sync_list() thereby drastically bloating the stack usage.
4444 noinline static void
4445 dbuf_sync_indirect(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4447 dmu_buf_impl_t *db = dr->dr_dbuf;
4448 dnode_t *dn = dr->dr_dnode;
4450 ASSERT(dmu_tx_is_syncing(tx));
4452 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4454 mutex_enter(&db->db_mtx);
4456 ASSERT(db->db_level > 0);
4457 DBUF_VERIFY(db);
4459 /* Read the block if it hasn't been read yet. */
4460 if (db->db_buf == NULL) {
4461 mutex_exit(&db->db_mtx);
4462 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED);
4463 mutex_enter(&db->db_mtx);
4465 ASSERT3U(db->db_state, ==, DB_CACHED);
4466 ASSERT(db->db_buf != NULL);
4468 /* Indirect block size must match what the dnode thinks it is. */
4469 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4470 dbuf_check_blkptr(dn, db);
4472 /* Provide the pending dirty record to child dbufs */
4473 db->db_data_pending = dr;
4475 mutex_exit(&db->db_mtx);
4477 dbuf_write(dr, db->db_buf, tx);
4479 zio_t *zio = dr->dr_zio;
4480 mutex_enter(&dr->dt.di.dr_mtx);
4481 dbuf_sync_list(&dr->dt.di.dr_children, db->db_level - 1, tx);
4482 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
4483 mutex_exit(&dr->dt.di.dr_mtx);
4484 zio_nowait(zio);
4488 * Verify that the size of the data in our bonus buffer does not exceed
4489 * its recorded size.
4491 * The purpose of this verification is to catch any cases in development
4492 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4493 * due to incorrect feature management, older pools expect to read more
4494 * data even though they didn't actually write it to begin with.
4496 * For a example, this would catch an error in the feature logic where we
4497 * open an older pool and we expect to write the space map histogram of
4498 * a space map with size SPACE_MAP_SIZE_V0.
4500 static void
4501 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t *dr)
4503 #ifdef ZFS_DEBUG
4504 dnode_t *dn = dr->dr_dnode;
4507 * Encrypted bonus buffers can have data past their bonuslen.
4508 * Skip the verification of these blocks.
4510 if (DMU_OT_IS_ENCRYPTED(dn->dn_bonustype))
4511 return;
4513 uint16_t bonuslen = dn->dn_phys->dn_bonuslen;
4514 uint16_t maxbonuslen = DN_SLOTS_TO_BONUSLEN(dn->dn_num_slots);
4515 ASSERT3U(bonuslen, <=, maxbonuslen);
4517 arc_buf_t *datap = dr->dt.dl.dr_data;
4518 char *datap_end = ((char *)datap) + bonuslen;
4519 char *datap_max = ((char *)datap) + maxbonuslen;
4521 /* ensure that everything is zero after our data */
4522 for (; datap_end < datap_max; datap_end++)
4523 ASSERT(*datap_end == 0);
4524 #endif
4527 static blkptr_t *
4528 dbuf_lightweight_bp(dbuf_dirty_record_t *dr)
4530 /* This must be a lightweight dirty record. */
4531 ASSERT3P(dr->dr_dbuf, ==, NULL);
4532 dnode_t *dn = dr->dr_dnode;
4534 if (dn->dn_phys->dn_nlevels == 1) {
4535 VERIFY3U(dr->dt.dll.dr_blkid, <, dn->dn_phys->dn_nblkptr);
4536 return (&dn->dn_phys->dn_blkptr[dr->dt.dll.dr_blkid]);
4537 } else {
4538 dmu_buf_impl_t *parent_db = dr->dr_parent->dr_dbuf;
4539 int epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT;
4540 VERIFY3U(parent_db->db_level, ==, 1);
4541 VERIFY3P(DB_DNODE(parent_db), ==, dn);
4542 VERIFY3U(dr->dt.dll.dr_blkid >> epbs, ==, parent_db->db_blkid);
4543 blkptr_t *bp = parent_db->db.db_data;
4544 return (&bp[dr->dt.dll.dr_blkid & ((1 << epbs) - 1)]);
4548 static void
4549 dbuf_lightweight_ready(zio_t *zio)
4551 dbuf_dirty_record_t *dr = zio->io_private;
4552 blkptr_t *bp = zio->io_bp;
4554 if (zio->io_error != 0)
4555 return;
4557 dnode_t *dn = dr->dr_dnode;
4559 blkptr_t *bp_orig = dbuf_lightweight_bp(dr);
4560 spa_t *spa = dmu_objset_spa(dn->dn_objset);
4561 int64_t delta = bp_get_dsize_sync(spa, bp) -
4562 bp_get_dsize_sync(spa, bp_orig);
4563 dnode_diduse_space(dn, delta);
4565 uint64_t blkid = dr->dt.dll.dr_blkid;
4566 mutex_enter(&dn->dn_mtx);
4567 if (blkid > dn->dn_phys->dn_maxblkid) {
4568 ASSERT0(dn->dn_objset->os_raw_receive);
4569 dn->dn_phys->dn_maxblkid = blkid;
4571 mutex_exit(&dn->dn_mtx);
4573 if (!BP_IS_EMBEDDED(bp)) {
4574 uint64_t fill = BP_IS_HOLE(bp) ? 0 : 1;
4575 BP_SET_FILL(bp, fill);
4578 dmu_buf_impl_t *parent_db;
4579 EQUIV(dr->dr_parent == NULL, dn->dn_phys->dn_nlevels == 1);
4580 if (dr->dr_parent == NULL) {
4581 parent_db = dn->dn_dbuf;
4582 } else {
4583 parent_db = dr->dr_parent->dr_dbuf;
4585 rw_enter(&parent_db->db_rwlock, RW_WRITER);
4586 *bp_orig = *bp;
4587 rw_exit(&parent_db->db_rwlock);
4590 static void
4591 dbuf_lightweight_done(zio_t *zio)
4593 dbuf_dirty_record_t *dr = zio->io_private;
4595 VERIFY0(zio->io_error);
4597 objset_t *os = dr->dr_dnode->dn_objset;
4598 dmu_tx_t *tx = os->os_synctx;
4600 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
4601 ASSERT(BP_EQUAL(zio->io_bp, &zio->io_bp_orig));
4602 } else {
4603 dsl_dataset_t *ds = os->os_dsl_dataset;
4604 (void) dsl_dataset_block_kill(ds, &zio->io_bp_orig, tx, B_TRUE);
4605 dsl_dataset_block_born(ds, zio->io_bp, tx);
4608 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
4609 zio->io_txg);
4611 abd_free(dr->dt.dll.dr_abd);
4612 kmem_free(dr, sizeof (*dr));
4615 noinline static void
4616 dbuf_sync_lightweight(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4618 dnode_t *dn = dr->dr_dnode;
4619 zio_t *pio;
4620 if (dn->dn_phys->dn_nlevels == 1) {
4621 pio = dn->dn_zio;
4622 } else {
4623 pio = dr->dr_parent->dr_zio;
4626 zbookmark_phys_t zb = {
4627 .zb_objset = dmu_objset_id(dn->dn_objset),
4628 .zb_object = dn->dn_object,
4629 .zb_level = 0,
4630 .zb_blkid = dr->dt.dll.dr_blkid,
4634 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4635 * will have the old BP in dbuf_lightweight_done().
4637 dr->dr_bp_copy = *dbuf_lightweight_bp(dr);
4639 dr->dr_zio = zio_write(pio, dmu_objset_spa(dn->dn_objset),
4640 dmu_tx_get_txg(tx), &dr->dr_bp_copy, dr->dt.dll.dr_abd,
4641 dn->dn_datablksz, abd_get_size(dr->dt.dll.dr_abd),
4642 &dr->dt.dll.dr_props, dbuf_lightweight_ready, NULL,
4643 dbuf_lightweight_done, dr, ZIO_PRIORITY_ASYNC_WRITE,
4644 ZIO_FLAG_MUSTSUCCEED | dr->dt.dll.dr_flags, &zb);
4646 zio_nowait(dr->dr_zio);
4650 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4651 * critical the we not allow the compiler to inline this function in to
4652 * dbuf_sync_list() thereby drastically bloating the stack usage.
4654 noinline static void
4655 dbuf_sync_leaf(dbuf_dirty_record_t *dr, dmu_tx_t *tx)
4657 arc_buf_t **datap = &dr->dt.dl.dr_data;
4658 dmu_buf_impl_t *db = dr->dr_dbuf;
4659 dnode_t *dn = dr->dr_dnode;
4660 objset_t *os;
4661 uint64_t txg = tx->tx_txg;
4663 ASSERT(dmu_tx_is_syncing(tx));
4665 dprintf_dbuf_bp(db, db->db_blkptr, "blkptr=%p", db->db_blkptr);
4667 mutex_enter(&db->db_mtx);
4669 * To be synced, we must be dirtied. But we might have been freed
4670 * after the dirty.
4672 if (db->db_state == DB_UNCACHED) {
4673 /* This buffer has been freed since it was dirtied */
4674 ASSERT3P(db->db.db_data, ==, NULL);
4675 } else if (db->db_state == DB_FILL) {
4676 /* This buffer was freed and is now being re-filled */
4677 ASSERT(db->db.db_data != dr->dt.dl.dr_data);
4678 } else if (db->db_state == DB_READ) {
4680 * This buffer was either cloned or had a Direct I/O write
4681 * occur and has an in-flgiht read on the BP. It is safe to
4682 * issue the write here, because the read has already been
4683 * issued and the contents won't change.
4685 * We can verify the case of both the clone and Direct I/O
4686 * write by making sure the first dirty record for the dbuf
4687 * has no ARC buffer associated with it.
4689 dbuf_dirty_record_t *dr_head =
4690 list_head(&db->db_dirty_records);
4691 ASSERT3P(db->db_buf, ==, NULL);
4692 ASSERT3P(db->db.db_data, ==, NULL);
4693 ASSERT3P(dr_head->dt.dl.dr_data, ==, NULL);
4694 ASSERT3U(dr_head->dt.dl.dr_override_state, ==, DR_OVERRIDDEN);
4695 } else {
4696 ASSERT(db->db_state == DB_CACHED || db->db_state == DB_NOFILL);
4698 DBUF_VERIFY(db);
4700 if (db->db_blkid == DMU_SPILL_BLKID) {
4701 mutex_enter(&dn->dn_mtx);
4702 if (!(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) {
4704 * In the previous transaction group, the bonus buffer
4705 * was entirely used to store the attributes for the
4706 * dnode which overrode the dn_spill field. However,
4707 * when adding more attributes to the file a spill
4708 * block was required to hold the extra attributes.
4710 * Make sure to clear the garbage left in the dn_spill
4711 * field from the previous attributes in the bonus
4712 * buffer. Otherwise, after writing out the spill
4713 * block to the new allocated dva, it will free
4714 * the old block pointed to by the invalid dn_spill.
4716 db->db_blkptr = NULL;
4718 dn->dn_phys->dn_flags |= DNODE_FLAG_SPILL_BLKPTR;
4719 mutex_exit(&dn->dn_mtx);
4723 * If this is a bonus buffer, simply copy the bonus data into the
4724 * dnode. It will be written out when the dnode is synced (and it
4725 * will be synced, since it must have been dirty for dbuf_sync to
4726 * be called).
4728 if (db->db_blkid == DMU_BONUS_BLKID) {
4729 ASSERT(dr->dr_dbuf == db);
4730 dbuf_sync_bonus(dr, tx);
4731 return;
4734 os = dn->dn_objset;
4737 * This function may have dropped the db_mtx lock allowing a dmu_sync
4738 * operation to sneak in. As a result, we need to ensure that we
4739 * don't check the dr_override_state until we have returned from
4740 * dbuf_check_blkptr.
4742 dbuf_check_blkptr(dn, db);
4745 * If this buffer is in the middle of an immediate write, wait for the
4746 * synchronous IO to complete.
4748 * This is also valid even with Direct I/O writes setting a dirty
4749 * records override state into DR_IN_DMU_SYNC, because all
4750 * Direct I/O writes happen in open-context.
4752 while (dr->dt.dl.dr_override_state == DR_IN_DMU_SYNC) {
4753 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT);
4754 cv_wait(&db->db_changed, &db->db_mtx);
4758 * If this is a dnode block, ensure it is appropriately encrypted
4759 * or decrypted, depending on what we are writing to it this txg.
4761 if (os->os_encrypted && dn->dn_object == DMU_META_DNODE_OBJECT)
4762 dbuf_prepare_encrypted_dnode_leaf(dr);
4764 if (*datap != NULL && *datap == db->db_buf &&
4765 dn->dn_object != DMU_META_DNODE_OBJECT &&
4766 zfs_refcount_count(&db->db_holds) > 1 &&
4767 dr->dt.dl.dr_override_state != DR_OVERRIDDEN) {
4769 * If this buffer is currently "in use" (i.e., there
4770 * are active holds and db_data still references it),
4771 * then make a copy before we start the write so that
4772 * any modifications from the open txg will not leak
4773 * into this write.
4775 * NOTE: this copy does not need to be made for
4776 * objects only modified in the syncing context (e.g.
4777 * DNONE_DNODE blocks).
4779 int psize = arc_buf_size(*datap);
4780 int lsize = arc_buf_lsize(*datap);
4781 arc_buf_contents_t type = DBUF_GET_BUFC_TYPE(db);
4782 enum zio_compress compress_type = arc_get_compression(*datap);
4783 uint8_t complevel = arc_get_complevel(*datap);
4785 if (arc_is_encrypted(*datap)) {
4786 boolean_t byteorder;
4787 uint8_t salt[ZIO_DATA_SALT_LEN];
4788 uint8_t iv[ZIO_DATA_IV_LEN];
4789 uint8_t mac[ZIO_DATA_MAC_LEN];
4791 arc_get_raw_params(*datap, &byteorder, salt, iv, mac);
4792 *datap = arc_alloc_raw_buf(os->os_spa, db,
4793 dmu_objset_id(os), byteorder, salt, iv, mac,
4794 dn->dn_type, psize, lsize, compress_type,
4795 complevel);
4796 } else if (compress_type != ZIO_COMPRESS_OFF) {
4797 ASSERT3U(type, ==, ARC_BUFC_DATA);
4798 *datap = arc_alloc_compressed_buf(os->os_spa, db,
4799 psize, lsize, compress_type, complevel);
4800 } else {
4801 *datap = arc_alloc_buf(os->os_spa, db, type, psize);
4803 memcpy((*datap)->b_data, db->db.db_data, psize);
4805 db->db_data_pending = dr;
4807 mutex_exit(&db->db_mtx);
4809 dbuf_write(dr, *datap, tx);
4811 ASSERT(!list_link_active(&dr->dr_dirty_node));
4812 if (dn->dn_object == DMU_META_DNODE_OBJECT) {
4813 list_insert_tail(&dn->dn_dirty_records[txg & TXG_MASK], dr);
4814 } else {
4815 zio_nowait(dr->dr_zio);
4820 * Syncs out a range of dirty records for indirect or leaf dbufs. May be
4821 * called recursively from dbuf_sync_indirect().
4823 void
4824 dbuf_sync_list(list_t *list, int level, dmu_tx_t *tx)
4826 dbuf_dirty_record_t *dr;
4828 while ((dr = list_head(list))) {
4829 if (dr->dr_zio != NULL) {
4831 * If we find an already initialized zio then we
4832 * are processing the meta-dnode, and we have finished.
4833 * The dbufs for all dnodes are put back on the list
4834 * during processing, so that we can zio_wait()
4835 * these IOs after initiating all child IOs.
4837 ASSERT3U(dr->dr_dbuf->db.db_object, ==,
4838 DMU_META_DNODE_OBJECT);
4839 break;
4841 list_remove(list, dr);
4842 if (dr->dr_dbuf == NULL) {
4843 dbuf_sync_lightweight(dr, tx);
4844 } else {
4845 if (dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID &&
4846 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) {
4847 VERIFY3U(dr->dr_dbuf->db_level, ==, level);
4849 if (dr->dr_dbuf->db_level > 0)
4850 dbuf_sync_indirect(dr, tx);
4851 else
4852 dbuf_sync_leaf(dr, tx);
4857 static void
4858 dbuf_write_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4860 (void) buf;
4861 dmu_buf_impl_t *db = vdb;
4862 dnode_t *dn;
4863 blkptr_t *bp = zio->io_bp;
4864 blkptr_t *bp_orig = &zio->io_bp_orig;
4865 spa_t *spa = zio->io_spa;
4866 int64_t delta;
4867 uint64_t fill = 0;
4868 int i;
4870 ASSERT3P(db->db_blkptr, !=, NULL);
4871 ASSERT3P(&db->db_data_pending->dr_bp_copy, ==, bp);
4873 DB_DNODE_ENTER(db);
4874 dn = DB_DNODE(db);
4875 delta = bp_get_dsize_sync(spa, bp) - bp_get_dsize_sync(spa, bp_orig);
4876 dnode_diduse_space(dn, delta - zio->io_prev_space_delta);
4877 zio->io_prev_space_delta = delta;
4879 if (BP_GET_LOGICAL_BIRTH(bp) != 0) {
4880 ASSERT((db->db_blkid != DMU_SPILL_BLKID &&
4881 BP_GET_TYPE(bp) == dn->dn_type) ||
4882 (db->db_blkid == DMU_SPILL_BLKID &&
4883 BP_GET_TYPE(bp) == dn->dn_bonustype) ||
4884 BP_IS_EMBEDDED(bp));
4885 ASSERT(BP_GET_LEVEL(bp) == db->db_level);
4888 mutex_enter(&db->db_mtx);
4890 #ifdef ZFS_DEBUG
4891 if (db->db_blkid == DMU_SPILL_BLKID) {
4892 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
4893 ASSERT(!(BP_IS_HOLE(bp)) &&
4894 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
4896 #endif
4898 if (db->db_level == 0) {
4899 mutex_enter(&dn->dn_mtx);
4900 if (db->db_blkid > dn->dn_phys->dn_maxblkid &&
4901 db->db_blkid != DMU_SPILL_BLKID) {
4902 ASSERT0(db->db_objset->os_raw_receive);
4903 dn->dn_phys->dn_maxblkid = db->db_blkid;
4905 mutex_exit(&dn->dn_mtx);
4907 if (dn->dn_type == DMU_OT_DNODE) {
4908 i = 0;
4909 while (i < db->db.db_size) {
4910 dnode_phys_t *dnp =
4911 (void *)(((char *)db->db.db_data) + i);
4913 i += DNODE_MIN_SIZE;
4914 if (dnp->dn_type != DMU_OT_NONE) {
4915 fill++;
4916 for (int j = 0; j < dnp->dn_nblkptr;
4917 j++) {
4918 (void) zfs_blkptr_verify(spa,
4919 &dnp->dn_blkptr[j],
4920 BLK_CONFIG_SKIP,
4921 BLK_VERIFY_HALT);
4923 if (dnp->dn_flags &
4924 DNODE_FLAG_SPILL_BLKPTR) {
4925 (void) zfs_blkptr_verify(spa,
4926 DN_SPILL_BLKPTR(dnp),
4927 BLK_CONFIG_SKIP,
4928 BLK_VERIFY_HALT);
4930 i += dnp->dn_extra_slots *
4931 DNODE_MIN_SIZE;
4934 } else {
4935 if (BP_IS_HOLE(bp)) {
4936 fill = 0;
4937 } else {
4938 fill = 1;
4941 } else {
4942 blkptr_t *ibp = db->db.db_data;
4943 ASSERT3U(db->db.db_size, ==, 1<<dn->dn_phys->dn_indblkshift);
4944 for (i = db->db.db_size >> SPA_BLKPTRSHIFT; i > 0; i--, ibp++) {
4945 if (BP_IS_HOLE(ibp))
4946 continue;
4947 (void) zfs_blkptr_verify(spa, ibp,
4948 BLK_CONFIG_SKIP, BLK_VERIFY_HALT);
4949 fill += BP_GET_FILL(ibp);
4952 DB_DNODE_EXIT(db);
4954 if (!BP_IS_EMBEDDED(bp))
4955 BP_SET_FILL(bp, fill);
4957 mutex_exit(&db->db_mtx);
4959 db_lock_type_t dblt = dmu_buf_lock_parent(db, RW_WRITER, FTAG);
4960 *db->db_blkptr = *bp;
4961 dmu_buf_unlock_parent(db, dblt, FTAG);
4965 * This function gets called just prior to running through the compression
4966 * stage of the zio pipeline. If we're an indirect block comprised of only
4967 * holes, then we want this indirect to be compressed away to a hole. In
4968 * order to do that we must zero out any information about the holes that
4969 * this indirect points to prior to before we try to compress it.
4971 static void
4972 dbuf_write_children_ready(zio_t *zio, arc_buf_t *buf, void *vdb)
4974 (void) zio, (void) buf;
4975 dmu_buf_impl_t *db = vdb;
4976 blkptr_t *bp;
4977 unsigned int epbs, i;
4979 ASSERT3U(db->db_level, >, 0);
4980 DB_DNODE_ENTER(db);
4981 epbs = DB_DNODE(db)->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT;
4982 DB_DNODE_EXIT(db);
4983 ASSERT3U(epbs, <, 31);
4985 /* Determine if all our children are holes */
4986 for (i = 0, bp = db->db.db_data; i < 1ULL << epbs; i++, bp++) {
4987 if (!BP_IS_HOLE(bp))
4988 break;
4992 * If all the children are holes, then zero them all out so that
4993 * we may get compressed away.
4995 if (i == 1ULL << epbs) {
4997 * We only found holes. Grab the rwlock to prevent
4998 * anybody from reading the blocks we're about to
4999 * zero out.
5001 rw_enter(&db->db_rwlock, RW_WRITER);
5002 memset(db->db.db_data, 0, db->db.db_size);
5003 rw_exit(&db->db_rwlock);
5007 static void
5008 dbuf_write_done(zio_t *zio, arc_buf_t *buf, void *vdb)
5010 (void) buf;
5011 dmu_buf_impl_t *db = vdb;
5012 blkptr_t *bp_orig = &zio->io_bp_orig;
5013 blkptr_t *bp = db->db_blkptr;
5014 objset_t *os = db->db_objset;
5015 dmu_tx_t *tx = os->os_synctx;
5017 ASSERT0(zio->io_error);
5018 ASSERT(db->db_blkptr == bp);
5021 * For nopwrites and rewrites we ensure that the bp matches our
5022 * original and bypass all the accounting.
5024 if (zio->io_flags & (ZIO_FLAG_IO_REWRITE | ZIO_FLAG_NOPWRITE)) {
5025 ASSERT(BP_EQUAL(bp, bp_orig));
5026 } else {
5027 dsl_dataset_t *ds = os->os_dsl_dataset;
5028 (void) dsl_dataset_block_kill(ds, bp_orig, tx, B_TRUE);
5029 dsl_dataset_block_born(ds, bp, tx);
5032 mutex_enter(&db->db_mtx);
5034 DBUF_VERIFY(db);
5036 dbuf_dirty_record_t *dr = db->db_data_pending;
5037 dnode_t *dn = dr->dr_dnode;
5038 ASSERT(!list_link_active(&dr->dr_dirty_node));
5039 ASSERT(dr->dr_dbuf == db);
5040 ASSERT(list_next(&db->db_dirty_records, dr) == NULL);
5041 list_remove(&db->db_dirty_records, dr);
5043 #ifdef ZFS_DEBUG
5044 if (db->db_blkid == DMU_SPILL_BLKID) {
5045 ASSERT(dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR);
5046 ASSERT(!(BP_IS_HOLE(db->db_blkptr)) &&
5047 db->db_blkptr == DN_SPILL_BLKPTR(dn->dn_phys));
5049 #endif
5051 if (db->db_level == 0) {
5052 ASSERT(db->db_blkid != DMU_BONUS_BLKID);
5053 ASSERT(dr->dt.dl.dr_override_state == DR_NOT_OVERRIDDEN);
5055 /* no dr_data if this is a NO_FILL or Direct I/O */
5056 if (dr->dt.dl.dr_data != NULL &&
5057 dr->dt.dl.dr_data != db->db_buf) {
5058 ASSERT3B(dr->dt.dl.dr_brtwrite, ==, B_FALSE);
5059 ASSERT3B(dr->dt.dl.dr_diowrite, ==, B_FALSE);
5060 arc_buf_destroy(dr->dt.dl.dr_data, db);
5062 } else {
5063 ASSERT(list_head(&dr->dt.di.dr_children) == NULL);
5064 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift);
5065 if (!BP_IS_HOLE(db->db_blkptr)) {
5066 int epbs __maybe_unused = dn->dn_phys->dn_indblkshift -
5067 SPA_BLKPTRSHIFT;
5068 ASSERT3U(db->db_blkid, <=,
5069 dn->dn_phys->dn_maxblkid >> (db->db_level * epbs));
5070 ASSERT3U(BP_GET_LSIZE(db->db_blkptr), ==,
5071 db->db.db_size);
5073 mutex_destroy(&dr->dt.di.dr_mtx);
5074 list_destroy(&dr->dt.di.dr_children);
5077 cv_broadcast(&db->db_changed);
5078 ASSERT(db->db_dirtycnt > 0);
5079 db->db_dirtycnt -= 1;
5080 db->db_data_pending = NULL;
5081 dbuf_rele_and_unlock(db, (void *)(uintptr_t)tx->tx_txg, B_FALSE);
5083 dsl_pool_undirty_space(dmu_objset_pool(os), dr->dr_accounted,
5084 zio->io_txg);
5086 kmem_free(dr, sizeof (dbuf_dirty_record_t));
5089 static void
5090 dbuf_write_nofill_ready(zio_t *zio)
5092 dbuf_write_ready(zio, NULL, zio->io_private);
5095 static void
5096 dbuf_write_nofill_done(zio_t *zio)
5098 dbuf_write_done(zio, NULL, zio->io_private);
5101 static void
5102 dbuf_write_override_ready(zio_t *zio)
5104 dbuf_dirty_record_t *dr = zio->io_private;
5105 dmu_buf_impl_t *db = dr->dr_dbuf;
5107 dbuf_write_ready(zio, NULL, db);
5110 static void
5111 dbuf_write_override_done(zio_t *zio)
5113 dbuf_dirty_record_t *dr = zio->io_private;
5114 dmu_buf_impl_t *db = dr->dr_dbuf;
5115 blkptr_t *obp = &dr->dt.dl.dr_overridden_by;
5117 mutex_enter(&db->db_mtx);
5118 if (!BP_EQUAL(zio->io_bp, obp)) {
5119 if (!BP_IS_HOLE(obp))
5120 dsl_free(spa_get_dsl(zio->io_spa), zio->io_txg, obp);
5121 arc_release(dr->dt.dl.dr_data, db);
5123 mutex_exit(&db->db_mtx);
5125 dbuf_write_done(zio, NULL, db);
5127 if (zio->io_abd != NULL)
5128 abd_free(zio->io_abd);
5131 typedef struct dbuf_remap_impl_callback_arg {
5132 objset_t *drica_os;
5133 uint64_t drica_blk_birth;
5134 dmu_tx_t *drica_tx;
5135 } dbuf_remap_impl_callback_arg_t;
5137 static void
5138 dbuf_remap_impl_callback(uint64_t vdev, uint64_t offset, uint64_t size,
5139 void *arg)
5141 dbuf_remap_impl_callback_arg_t *drica = arg;
5142 objset_t *os = drica->drica_os;
5143 spa_t *spa = dmu_objset_spa(os);
5144 dmu_tx_t *tx = drica->drica_tx;
5146 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5148 if (os == spa_meta_objset(spa)) {
5149 spa_vdev_indirect_mark_obsolete(spa, vdev, offset, size, tx);
5150 } else {
5151 dsl_dataset_block_remapped(dmu_objset_ds(os), vdev, offset,
5152 size, drica->drica_blk_birth, tx);
5156 static void
5157 dbuf_remap_impl(dnode_t *dn, blkptr_t *bp, krwlock_t *rw, dmu_tx_t *tx)
5159 blkptr_t bp_copy = *bp;
5160 spa_t *spa = dmu_objset_spa(dn->dn_objset);
5161 dbuf_remap_impl_callback_arg_t drica;
5163 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5165 drica.drica_os = dn->dn_objset;
5166 drica.drica_blk_birth = BP_GET_LOGICAL_BIRTH(bp);
5167 drica.drica_tx = tx;
5168 if (spa_remap_blkptr(spa, &bp_copy, dbuf_remap_impl_callback,
5169 &drica)) {
5171 * If the blkptr being remapped is tracked by a livelist,
5172 * then we need to make sure the livelist reflects the update.
5173 * First, cancel out the old blkptr by appending a 'FREE'
5174 * entry. Next, add an 'ALLOC' to track the new version. This
5175 * way we avoid trying to free an inaccurate blkptr at delete.
5176 * Note that embedded blkptrs are not tracked in livelists.
5178 if (dn->dn_objset != spa_meta_objset(spa)) {
5179 dsl_dataset_t *ds = dmu_objset_ds(dn->dn_objset);
5180 if (dsl_deadlist_is_open(&ds->ds_dir->dd_livelist) &&
5181 BP_GET_LOGICAL_BIRTH(bp) >
5182 ds->ds_dir->dd_origin_txg) {
5183 ASSERT(!BP_IS_EMBEDDED(bp));
5184 ASSERT(dsl_dir_is_clone(ds->ds_dir));
5185 ASSERT(spa_feature_is_enabled(spa,
5186 SPA_FEATURE_LIVELIST));
5187 bplist_append(&ds->ds_dir->dd_pending_frees,
5188 bp);
5189 bplist_append(&ds->ds_dir->dd_pending_allocs,
5190 &bp_copy);
5195 * The db_rwlock prevents dbuf_read_impl() from
5196 * dereferencing the BP while we are changing it. To
5197 * avoid lock contention, only grab it when we are actually
5198 * changing the BP.
5200 if (rw != NULL)
5201 rw_enter(rw, RW_WRITER);
5202 *bp = bp_copy;
5203 if (rw != NULL)
5204 rw_exit(rw);
5209 * Remap any existing BP's to concrete vdevs, if possible.
5211 static void
5212 dbuf_remap(dnode_t *dn, dmu_buf_impl_t *db, dmu_tx_t *tx)
5214 spa_t *spa = dmu_objset_spa(db->db_objset);
5215 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa)));
5217 if (!spa_feature_is_active(spa, SPA_FEATURE_DEVICE_REMOVAL))
5218 return;
5220 if (db->db_level > 0) {
5221 blkptr_t *bp = db->db.db_data;
5222 for (int i = 0; i < db->db.db_size >> SPA_BLKPTRSHIFT; i++) {
5223 dbuf_remap_impl(dn, &bp[i], &db->db_rwlock, tx);
5225 } else if (db->db.db_object == DMU_META_DNODE_OBJECT) {
5226 dnode_phys_t *dnp = db->db.db_data;
5227 ASSERT3U(dn->dn_type, ==, DMU_OT_DNODE);
5228 for (int i = 0; i < db->db.db_size >> DNODE_SHIFT;
5229 i += dnp[i].dn_extra_slots + 1) {
5230 for (int j = 0; j < dnp[i].dn_nblkptr; j++) {
5231 krwlock_t *lock = (dn->dn_dbuf == NULL ? NULL :
5232 &dn->dn_dbuf->db_rwlock);
5233 dbuf_remap_impl(dn, &dnp[i].dn_blkptr[j], lock,
5234 tx);
5242 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5243 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5245 static void
5246 dbuf_write(dbuf_dirty_record_t *dr, arc_buf_t *data, dmu_tx_t *tx)
5248 dmu_buf_impl_t *db = dr->dr_dbuf;
5249 dnode_t *dn = dr->dr_dnode;
5250 objset_t *os;
5251 dmu_buf_impl_t *parent = db->db_parent;
5252 uint64_t txg = tx->tx_txg;
5253 zbookmark_phys_t zb;
5254 zio_prop_t zp;
5255 zio_t *pio; /* parent I/O */
5256 int wp_flag = 0;
5258 ASSERT(dmu_tx_is_syncing(tx));
5260 os = dn->dn_objset;
5262 if (db->db_level > 0 || dn->dn_type == DMU_OT_DNODE) {
5264 * Private object buffers are released here rather than in
5265 * dbuf_dirty() since they are only modified in the syncing
5266 * context and we don't want the overhead of making multiple
5267 * copies of the data.
5269 if (BP_IS_HOLE(db->db_blkptr))
5270 arc_buf_thaw(data);
5271 else
5272 dbuf_release_bp(db);
5273 dbuf_remap(dn, db, tx);
5276 if (parent != dn->dn_dbuf) {
5277 /* Our parent is an indirect block. */
5278 /* We have a dirty parent that has been scheduled for write. */
5279 ASSERT(parent && parent->db_data_pending);
5280 /* Our parent's buffer is one level closer to the dnode. */
5281 ASSERT(db->db_level == parent->db_level-1);
5283 * We're about to modify our parent's db_data by modifying
5284 * our block pointer, so the parent must be released.
5286 ASSERT(arc_released(parent->db_buf));
5287 pio = parent->db_data_pending->dr_zio;
5288 } else {
5289 /* Our parent is the dnode itself. */
5290 ASSERT((db->db_level == dn->dn_phys->dn_nlevels-1 &&
5291 db->db_blkid != DMU_SPILL_BLKID) ||
5292 (db->db_blkid == DMU_SPILL_BLKID && db->db_level == 0));
5293 if (db->db_blkid != DMU_SPILL_BLKID)
5294 ASSERT3P(db->db_blkptr, ==,
5295 &dn->dn_phys->dn_blkptr[db->db_blkid]);
5296 pio = dn->dn_zio;
5299 ASSERT(db->db_level == 0 || data == db->db_buf);
5300 ASSERT3U(BP_GET_LOGICAL_BIRTH(db->db_blkptr), <=, txg);
5301 ASSERT(pio);
5303 SET_BOOKMARK(&zb, os->os_dsl_dataset ?
5304 os->os_dsl_dataset->ds_object : DMU_META_OBJSET,
5305 db->db.db_object, db->db_level, db->db_blkid);
5307 if (db->db_blkid == DMU_SPILL_BLKID)
5308 wp_flag = WP_SPILL;
5309 wp_flag |= (data == NULL) ? WP_NOFILL : 0;
5311 dmu_write_policy(os, dn, db->db_level, wp_flag, &zp);
5314 * We copy the blkptr now (rather than when we instantiate the dirty
5315 * record), because its value can change between open context and
5316 * syncing context. We do not need to hold dn_struct_rwlock to read
5317 * db_blkptr because we are in syncing context.
5319 dr->dr_bp_copy = *db->db_blkptr;
5321 if (db->db_level == 0 &&
5322 dr->dt.dl.dr_override_state == DR_OVERRIDDEN) {
5324 * The BP for this block has been provided by open context
5325 * (by dmu_sync(), dmu_write_direct(),
5326 * or dmu_buf_write_embedded()).
5328 abd_t *contents = (data != NULL) ?
5329 abd_get_from_buf(data->b_data, arc_buf_size(data)) : NULL;
5331 dr->dr_zio = zio_write(pio, os->os_spa, txg, &dr->dr_bp_copy,
5332 contents, db->db.db_size, db->db.db_size, &zp,
5333 dbuf_write_override_ready, NULL,
5334 dbuf_write_override_done,
5335 dr, ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5336 mutex_enter(&db->db_mtx);
5337 dr->dt.dl.dr_override_state = DR_NOT_OVERRIDDEN;
5338 zio_write_override(dr->dr_zio, &dr->dt.dl.dr_overridden_by,
5339 dr->dt.dl.dr_copies, dr->dt.dl.dr_nopwrite,
5340 dr->dt.dl.dr_brtwrite);
5341 mutex_exit(&db->db_mtx);
5342 } else if (data == NULL) {
5343 ASSERT(zp.zp_checksum == ZIO_CHECKSUM_OFF ||
5344 zp.zp_checksum == ZIO_CHECKSUM_NOPARITY);
5345 dr->dr_zio = zio_write(pio, os->os_spa, txg,
5346 &dr->dr_bp_copy, NULL, db->db.db_size, db->db.db_size, &zp,
5347 dbuf_write_nofill_ready, NULL,
5348 dbuf_write_nofill_done, db,
5349 ZIO_PRIORITY_ASYNC_WRITE,
5350 ZIO_FLAG_MUSTSUCCEED | ZIO_FLAG_NODATA, &zb);
5351 } else {
5352 ASSERT(arc_released(data));
5355 * For indirect blocks, we want to setup the children
5356 * ready callback so that we can properly handle an indirect
5357 * block that only contains holes.
5359 arc_write_done_func_t *children_ready_cb = NULL;
5360 if (db->db_level != 0)
5361 children_ready_cb = dbuf_write_children_ready;
5363 dr->dr_zio = arc_write(pio, os->os_spa, txg,
5364 &dr->dr_bp_copy, data, !DBUF_IS_CACHEABLE(db),
5365 dbuf_is_l2cacheable(db, NULL), &zp, dbuf_write_ready,
5366 children_ready_cb, dbuf_write_done, db,
5367 ZIO_PRIORITY_ASYNC_WRITE, ZIO_FLAG_MUSTSUCCEED, &zb);
5371 EXPORT_SYMBOL(dbuf_find);
5372 EXPORT_SYMBOL(dbuf_is_metadata);
5373 EXPORT_SYMBOL(dbuf_destroy);
5374 EXPORT_SYMBOL(dbuf_loan_arcbuf);
5375 EXPORT_SYMBOL(dbuf_whichblock);
5376 EXPORT_SYMBOL(dbuf_read);
5377 EXPORT_SYMBOL(dbuf_unoverride);
5378 EXPORT_SYMBOL(dbuf_free_range);
5379 EXPORT_SYMBOL(dbuf_new_size);
5380 EXPORT_SYMBOL(dbuf_release_bp);
5381 EXPORT_SYMBOL(dbuf_dirty);
5382 EXPORT_SYMBOL(dmu_buf_set_crypt_params);
5383 EXPORT_SYMBOL(dmu_buf_will_dirty);
5384 EXPORT_SYMBOL(dmu_buf_is_dirty);
5385 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio);
5386 EXPORT_SYMBOL(dmu_buf_will_not_fill);
5387 EXPORT_SYMBOL(dmu_buf_will_fill);
5388 EXPORT_SYMBOL(dmu_buf_fill_done);
5389 EXPORT_SYMBOL(dmu_buf_rele);
5390 EXPORT_SYMBOL(dbuf_assign_arcbuf);
5391 EXPORT_SYMBOL(dbuf_prefetch);
5392 EXPORT_SYMBOL(dbuf_hold_impl);
5393 EXPORT_SYMBOL(dbuf_hold);
5394 EXPORT_SYMBOL(dbuf_hold_level);
5395 EXPORT_SYMBOL(dbuf_create_bonus);
5396 EXPORT_SYMBOL(dbuf_spill_set_blksz);
5397 EXPORT_SYMBOL(dbuf_rm_spill);
5398 EXPORT_SYMBOL(dbuf_add_ref);
5399 EXPORT_SYMBOL(dbuf_rele);
5400 EXPORT_SYMBOL(dbuf_rele_and_unlock);
5401 EXPORT_SYMBOL(dbuf_refcount);
5402 EXPORT_SYMBOL(dbuf_sync_list);
5403 EXPORT_SYMBOL(dmu_buf_set_user);
5404 EXPORT_SYMBOL(dmu_buf_set_user_ie);
5405 EXPORT_SYMBOL(dmu_buf_get_user);
5406 EXPORT_SYMBOL(dmu_buf_get_blkptr);
5408 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, max_bytes, U64, ZMOD_RW,
5409 "Maximum size in bytes of the dbuf cache.");
5411 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, hiwater_pct, UINT, ZMOD_RW,
5412 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5414 ZFS_MODULE_PARAM(zfs_dbuf_cache, dbuf_cache_, lowater_pct, UINT, ZMOD_RW,
5415 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5417 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_max_bytes, U64, ZMOD_RW,
5418 "Maximum size in bytes of dbuf metadata cache.");
5420 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, cache_shift, UINT, ZMOD_RW,
5421 "Set size of dbuf cache to log2 fraction of arc size.");
5423 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, metadata_cache_shift, UINT, ZMOD_RW,
5424 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5426 ZFS_MODULE_PARAM(zfs_dbuf, dbuf_, mutex_cache_shift, UINT, ZMOD_RD,
5427 "Set size of dbuf cache mutex array as log2 shift.");