4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2013 by Saso Kiselkov. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2019, Klara Inc.
28 * Copyright (c) 2019, Allan Jude
29 * Copyright (c) 2021, 2022 by Pawel Jakub Dawidek
32 #include <sys/zfs_context.h>
35 #include <sys/dmu_send.h>
36 #include <sys/dmu_impl.h>
38 #include <sys/dmu_objset.h>
39 #include <sys/dsl_dataset.h>
40 #include <sys/dsl_dir.h>
41 #include <sys/dmu_tx.h>
44 #include <sys/dmu_zfetch.h>
46 #include <sys/sa_impl.h>
47 #include <sys/zfeature.h>
48 #include <sys/blkptr.h>
49 #include <sys/range_tree.h>
50 #include <sys/trace_zfs.h>
51 #include <sys/callb.h>
56 #include <sys/spa_impl.h>
57 #include <sys/wmsum.h>
58 #include <sys/vdev_impl.h>
60 static kstat_t
*dbuf_ksp
;
62 typedef struct dbuf_stats
{
64 * Various statistics about the size of the dbuf cache.
66 kstat_named_t cache_count
;
67 kstat_named_t cache_size_bytes
;
68 kstat_named_t cache_size_bytes_max
;
70 * Statistics regarding the bounds on the dbuf cache size.
72 kstat_named_t cache_target_bytes
;
73 kstat_named_t cache_lowater_bytes
;
74 kstat_named_t cache_hiwater_bytes
;
76 * Total number of dbuf cache evictions that have occurred.
78 kstat_named_t cache_total_evicts
;
80 * The distribution of dbuf levels in the dbuf cache and
81 * the total size of all dbufs at each level.
83 kstat_named_t cache_levels
[DN_MAX_LEVELS
];
84 kstat_named_t cache_levels_bytes
[DN_MAX_LEVELS
];
86 * Statistics about the dbuf hash table.
88 kstat_named_t hash_hits
;
89 kstat_named_t hash_misses
;
90 kstat_named_t hash_collisions
;
91 kstat_named_t hash_elements
;
92 kstat_named_t hash_elements_max
;
94 * Number of sublists containing more than one dbuf in the dbuf
95 * hash table. Keep track of the longest hash chain.
97 kstat_named_t hash_chains
;
98 kstat_named_t hash_chain_max
;
100 * Number of times a dbuf_create() discovers that a dbuf was
101 * already created and in the dbuf hash table.
103 kstat_named_t hash_insert_race
;
105 * Number of entries in the hash table dbuf and mutex arrays.
107 kstat_named_t hash_table_count
;
108 kstat_named_t hash_mutex_count
;
110 * Statistics about the size of the metadata dbuf cache.
112 kstat_named_t metadata_cache_count
;
113 kstat_named_t metadata_cache_size_bytes
;
114 kstat_named_t metadata_cache_size_bytes_max
;
116 * For diagnostic purposes, this is incremented whenever we can't add
117 * something to the metadata cache because it's full, and instead put
118 * the data in the regular dbuf cache.
120 kstat_named_t metadata_cache_overflow
;
123 dbuf_stats_t dbuf_stats
= {
124 { "cache_count", KSTAT_DATA_UINT64
},
125 { "cache_size_bytes", KSTAT_DATA_UINT64
},
126 { "cache_size_bytes_max", KSTAT_DATA_UINT64
},
127 { "cache_target_bytes", KSTAT_DATA_UINT64
},
128 { "cache_lowater_bytes", KSTAT_DATA_UINT64
},
129 { "cache_hiwater_bytes", KSTAT_DATA_UINT64
},
130 { "cache_total_evicts", KSTAT_DATA_UINT64
},
131 { { "cache_levels_N", KSTAT_DATA_UINT64
} },
132 { { "cache_levels_bytes_N", KSTAT_DATA_UINT64
} },
133 { "hash_hits", KSTAT_DATA_UINT64
},
134 { "hash_misses", KSTAT_DATA_UINT64
},
135 { "hash_collisions", KSTAT_DATA_UINT64
},
136 { "hash_elements", KSTAT_DATA_UINT64
},
137 { "hash_elements_max", KSTAT_DATA_UINT64
},
138 { "hash_chains", KSTAT_DATA_UINT64
},
139 { "hash_chain_max", KSTAT_DATA_UINT64
},
140 { "hash_insert_race", KSTAT_DATA_UINT64
},
141 { "hash_table_count", KSTAT_DATA_UINT64
},
142 { "hash_mutex_count", KSTAT_DATA_UINT64
},
143 { "metadata_cache_count", KSTAT_DATA_UINT64
},
144 { "metadata_cache_size_bytes", KSTAT_DATA_UINT64
},
145 { "metadata_cache_size_bytes_max", KSTAT_DATA_UINT64
},
146 { "metadata_cache_overflow", KSTAT_DATA_UINT64
}
151 wmsum_t cache_total_evicts
;
152 wmsum_t cache_levels
[DN_MAX_LEVELS
];
153 wmsum_t cache_levels_bytes
[DN_MAX_LEVELS
];
156 wmsum_t hash_collisions
;
158 wmsum_t hash_insert_race
;
159 wmsum_t metadata_cache_count
;
160 wmsum_t metadata_cache_overflow
;
163 #define DBUF_STAT_INCR(stat, val) \
164 wmsum_add(&dbuf_sums.stat, val)
165 #define DBUF_STAT_DECR(stat, val) \
166 DBUF_STAT_INCR(stat, -(val))
167 #define DBUF_STAT_BUMP(stat) \
168 DBUF_STAT_INCR(stat, 1)
169 #define DBUF_STAT_BUMPDOWN(stat) \
170 DBUF_STAT_INCR(stat, -1)
171 #define DBUF_STAT_MAX(stat, v) { \
173 while ((v) > (_m = dbuf_stats.stat.value.ui64) && \
174 (_m != atomic_cas_64(&dbuf_stats.stat.value.ui64, _m, (v))))\
178 static void dbuf_write(dbuf_dirty_record_t
*dr
, arc_buf_t
*data
, dmu_tx_t
*tx
);
179 static void dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t
*dr
);
182 * Global data structures and functions for the dbuf cache.
184 static kmem_cache_t
*dbuf_kmem_cache
;
185 static taskq_t
*dbu_evict_taskq
;
187 static kthread_t
*dbuf_cache_evict_thread
;
188 static kmutex_t dbuf_evict_lock
;
189 static kcondvar_t dbuf_evict_cv
;
190 static boolean_t dbuf_evict_thread_exit
;
193 * There are two dbuf caches; each dbuf can only be in one of them at a time.
195 * 1. Cache of metadata dbufs, to help make read-heavy administrative commands
196 * from /sbin/zfs run faster. The "metadata cache" specifically stores dbufs
197 * that represent the metadata that describes filesystems/snapshots/
198 * bookmarks/properties/etc. We only evict from this cache when we export a
199 * pool, to short-circuit as much I/O as possible for all administrative
200 * commands that need the metadata. There is no eviction policy for this
201 * cache, because we try to only include types in it which would occupy a
202 * very small amount of space per object but create a large impact on the
203 * performance of these commands. Instead, after it reaches a maximum size
204 * (which should only happen on very small memory systems with a very large
205 * number of filesystem objects), we stop taking new dbufs into the
206 * metadata cache, instead putting them in the normal dbuf cache.
208 * 2. LRU cache of dbufs. The dbuf cache maintains a list of dbufs that
209 * are not currently held but have been recently released. These dbufs
210 * are not eligible for arc eviction until they are aged out of the cache.
211 * Dbufs that are aged out of the cache will be immediately destroyed and
212 * become eligible for arc eviction.
214 * Dbufs are added to these caches once the last hold is released. If a dbuf is
215 * later accessed and still exists in the dbuf cache, then it will be removed
216 * from the cache and later re-added to the head of the cache.
218 * If a given dbuf meets the requirements for the metadata cache, it will go
219 * there, otherwise it will be considered for the generic LRU dbuf cache. The
220 * caches and the refcounts tracking their sizes are stored in an array indexed
221 * by those caches' matching enum values (from dbuf_cached_state_t).
223 typedef struct dbuf_cache
{
225 zfs_refcount_t size ____cacheline_aligned
;
227 dbuf_cache_t dbuf_caches
[DB_CACHE_MAX
];
229 /* Size limits for the caches */
230 static uint64_t dbuf_cache_max_bytes
= UINT64_MAX
;
231 static uint64_t dbuf_metadata_cache_max_bytes
= UINT64_MAX
;
233 /* Set the default sizes of the caches to log2 fraction of arc size */
234 static uint_t dbuf_cache_shift
= 5;
235 static uint_t dbuf_metadata_cache_shift
= 6;
237 /* Set the dbuf hash mutex count as log2 shift (dynamic by default) */
238 static uint_t dbuf_mutex_cache_shift
= 0;
240 static unsigned long dbuf_cache_target_bytes(void);
241 static unsigned long dbuf_metadata_cache_target_bytes(void);
244 * The LRU dbuf cache uses a three-stage eviction policy:
245 * - A low water marker designates when the dbuf eviction thread
246 * should stop evicting from the dbuf cache.
247 * - When we reach the maximum size (aka mid water mark), we
248 * signal the eviction thread to run.
249 * - The high water mark indicates when the eviction thread
250 * is unable to keep up with the incoming load and eviction must
251 * happen in the context of the calling thread.
255 * low water mid water hi water
256 * +----------------------------------------+----------+----------+
261 * +----------------------------------------+----------+----------+
263 * evicting eviction directly
266 * The high and low water marks indicate the operating range for the eviction
267 * thread. The low water mark is, by default, 90% of the total size of the
268 * cache and the high water mark is at 110% (both of these percentages can be
269 * changed by setting dbuf_cache_lowater_pct and dbuf_cache_hiwater_pct,
270 * respectively). The eviction thread will try to ensure that the cache remains
271 * within this range by waking up every second and checking if the cache is
272 * above the low water mark. The thread can also be woken up by callers adding
273 * elements into the cache if the cache is larger than the mid water (i.e max
274 * cache size). Once the eviction thread is woken up and eviction is required,
275 * it will continue evicting buffers until it's able to reduce the cache size
276 * to the low water mark. If the cache size continues to grow and hits the high
277 * water mark, then callers adding elements to the cache will begin to evict
278 * directly from the cache until the cache is no longer above the high water
283 * The percentage above and below the maximum cache size.
285 static uint_t dbuf_cache_hiwater_pct
= 10;
286 static uint_t dbuf_cache_lowater_pct
= 10;
289 dbuf_cons(void *vdb
, void *unused
, int kmflag
)
291 (void) unused
, (void) kmflag
;
292 dmu_buf_impl_t
*db
= vdb
;
293 memset(db
, 0, sizeof (dmu_buf_impl_t
));
295 mutex_init(&db
->db_mtx
, NULL
, MUTEX_NOLOCKDEP
, NULL
);
296 rw_init(&db
->db_rwlock
, NULL
, RW_NOLOCKDEP
, NULL
);
297 cv_init(&db
->db_changed
, NULL
, CV_DEFAULT
, NULL
);
298 multilist_link_init(&db
->db_cache_link
);
299 zfs_refcount_create(&db
->db_holds
);
305 dbuf_dest(void *vdb
, void *unused
)
308 dmu_buf_impl_t
*db
= vdb
;
309 mutex_destroy(&db
->db_mtx
);
310 rw_destroy(&db
->db_rwlock
);
311 cv_destroy(&db
->db_changed
);
312 ASSERT(!multilist_link_active(&db
->db_cache_link
));
313 zfs_refcount_destroy(&db
->db_holds
);
317 * dbuf hash table routines
319 static dbuf_hash_table_t dbuf_hash_table
;
322 * We use Cityhash for this. It's fast, and has good hash properties without
323 * requiring any large static buffers.
326 dbuf_hash(void *os
, uint64_t obj
, uint8_t lvl
, uint64_t blkid
)
328 return (cityhash4((uintptr_t)os
, obj
, (uint64_t)lvl
, blkid
));
331 #define DTRACE_SET_STATE(db, why) \
332 DTRACE_PROBE2(dbuf__state_change, dmu_buf_impl_t *, db, \
335 #define DBUF_EQUAL(dbuf, os, obj, level, blkid) \
336 ((dbuf)->db.db_object == (obj) && \
337 (dbuf)->db_objset == (os) && \
338 (dbuf)->db_level == (level) && \
339 (dbuf)->db_blkid == (blkid))
342 dbuf_find(objset_t
*os
, uint64_t obj
, uint8_t level
, uint64_t blkid
,
345 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
350 hv
= dbuf_hash(os
, obj
, level
, blkid
);
351 idx
= hv
& h
->hash_table_mask
;
353 mutex_enter(DBUF_HASH_MUTEX(h
, idx
));
354 for (db
= h
->hash_table
[idx
]; db
!= NULL
; db
= db
->db_hash_next
) {
355 if (DBUF_EQUAL(db
, os
, obj
, level
, blkid
)) {
356 mutex_enter(&db
->db_mtx
);
357 if (db
->db_state
!= DB_EVICTING
) {
358 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
361 mutex_exit(&db
->db_mtx
);
364 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
365 if (hash_out
!= NULL
)
370 static dmu_buf_impl_t
*
371 dbuf_find_bonus(objset_t
*os
, uint64_t object
)
374 dmu_buf_impl_t
*db
= NULL
;
376 if (dnode_hold(os
, object
, FTAG
, &dn
) == 0) {
377 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
378 if (dn
->dn_bonus
!= NULL
) {
380 mutex_enter(&db
->db_mtx
);
382 rw_exit(&dn
->dn_struct_rwlock
);
383 dnode_rele(dn
, FTAG
);
389 * Insert an entry into the hash table. If there is already an element
390 * equal to elem in the hash table, then the already existing element
391 * will be returned and the new element will not be inserted.
392 * Otherwise returns NULL.
394 static dmu_buf_impl_t
*
395 dbuf_hash_insert(dmu_buf_impl_t
*db
)
397 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
398 objset_t
*os
= db
->db_objset
;
399 uint64_t obj
= db
->db
.db_object
;
400 int level
= db
->db_level
;
405 blkid
= db
->db_blkid
;
406 ASSERT3U(dbuf_hash(os
, obj
, level
, blkid
), ==, db
->db_hash
);
407 idx
= db
->db_hash
& h
->hash_table_mask
;
409 mutex_enter(DBUF_HASH_MUTEX(h
, idx
));
410 for (dbf
= h
->hash_table
[idx
], i
= 0; dbf
!= NULL
;
411 dbf
= dbf
->db_hash_next
, i
++) {
412 if (DBUF_EQUAL(dbf
, os
, obj
, level
, blkid
)) {
413 mutex_enter(&dbf
->db_mtx
);
414 if (dbf
->db_state
!= DB_EVICTING
) {
415 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
418 mutex_exit(&dbf
->db_mtx
);
423 DBUF_STAT_BUMP(hash_collisions
);
425 DBUF_STAT_BUMP(hash_chains
);
427 DBUF_STAT_MAX(hash_chain_max
, i
);
430 mutex_enter(&db
->db_mtx
);
431 db
->db_hash_next
= h
->hash_table
[idx
];
432 h
->hash_table
[idx
] = db
;
433 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
434 uint64_t he
= atomic_inc_64_nv(&dbuf_stats
.hash_elements
.value
.ui64
);
435 DBUF_STAT_MAX(hash_elements_max
, he
);
441 * This returns whether this dbuf should be stored in the metadata cache, which
442 * is based on whether it's from one of the dnode types that store data related
443 * to traversing dataset hierarchies.
446 dbuf_include_in_metadata_cache(dmu_buf_impl_t
*db
)
449 dmu_object_type_t type
= DB_DNODE(db
)->dn_type
;
452 /* Check if this dbuf is one of the types we care about */
453 if (DMU_OT_IS_METADATA_CACHED(type
)) {
454 /* If we hit this, then we set something up wrong in dmu_ot */
455 ASSERT(DMU_OT_IS_METADATA(type
));
458 * Sanity check for small-memory systems: don't allocate too
459 * much memory for this purpose.
461 if (zfs_refcount_count(
462 &dbuf_caches
[DB_DBUF_METADATA_CACHE
].size
) >
463 dbuf_metadata_cache_target_bytes()) {
464 DBUF_STAT_BUMP(metadata_cache_overflow
);
475 * Remove an entry from the hash table. It must be in the EVICTING state.
478 dbuf_hash_remove(dmu_buf_impl_t
*db
)
480 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
482 dmu_buf_impl_t
*dbf
, **dbp
;
484 ASSERT3U(dbuf_hash(db
->db_objset
, db
->db
.db_object
, db
->db_level
,
485 db
->db_blkid
), ==, db
->db_hash
);
486 idx
= db
->db_hash
& h
->hash_table_mask
;
489 * We mustn't hold db_mtx to maintain lock ordering:
490 * DBUF_HASH_MUTEX > db_mtx.
492 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
493 ASSERT(db
->db_state
== DB_EVICTING
);
494 ASSERT(!MUTEX_HELD(&db
->db_mtx
));
496 mutex_enter(DBUF_HASH_MUTEX(h
, idx
));
497 dbp
= &h
->hash_table
[idx
];
498 while ((dbf
= *dbp
) != db
) {
499 dbp
= &dbf
->db_hash_next
;
502 *dbp
= db
->db_hash_next
;
503 db
->db_hash_next
= NULL
;
504 if (h
->hash_table
[idx
] &&
505 h
->hash_table
[idx
]->db_hash_next
== NULL
)
506 DBUF_STAT_BUMPDOWN(hash_chains
);
507 mutex_exit(DBUF_HASH_MUTEX(h
, idx
));
508 atomic_dec_64(&dbuf_stats
.hash_elements
.value
.ui64
);
514 } dbvu_verify_type_t
;
517 dbuf_verify_user(dmu_buf_impl_t
*db
, dbvu_verify_type_t verify_type
)
522 if (db
->db_user
== NULL
)
525 /* Only data blocks support the attachment of user data. */
526 ASSERT(db
->db_level
== 0);
528 /* Clients must resolve a dbuf before attaching user data. */
529 ASSERT(db
->db
.db_data
!= NULL
);
530 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
532 holds
= zfs_refcount_count(&db
->db_holds
);
533 if (verify_type
== DBVU_EVICTING
) {
535 * Immediate eviction occurs when holds == dirtycnt.
536 * For normal eviction buffers, holds is zero on
537 * eviction, except when dbuf_fix_old_data() calls
538 * dbuf_clear_data(). However, the hold count can grow
539 * during eviction even though db_mtx is held (see
540 * dmu_bonus_hold() for an example), so we can only
541 * test the generic invariant that holds >= dirtycnt.
543 ASSERT3U(holds
, >=, db
->db_dirtycnt
);
545 if (db
->db_user_immediate_evict
== TRUE
)
546 ASSERT3U(holds
, >=, db
->db_dirtycnt
);
548 ASSERT3U(holds
, >, 0);
554 dbuf_evict_user(dmu_buf_impl_t
*db
)
556 dmu_buf_user_t
*dbu
= db
->db_user
;
558 ASSERT(MUTEX_HELD(&db
->db_mtx
));
563 dbuf_verify_user(db
, DBVU_EVICTING
);
567 if (dbu
->dbu_clear_on_evict_dbufp
!= NULL
)
568 *dbu
->dbu_clear_on_evict_dbufp
= NULL
;
571 if (db
->db_caching_status
!= DB_NO_CACHE
) {
573 * This is a cached dbuf, so the size of the user data is
574 * included in its cached amount. We adjust it here because the
575 * user data has already been detached from the dbuf, and the
576 * sync functions are not supposed to touch it (the dbuf might
577 * not exist anymore by the time the sync functions run.
579 uint64_t size
= dbu
->dbu_size
;
580 (void) zfs_refcount_remove_many(
581 &dbuf_caches
[db
->db_caching_status
].size
, size
, dbu
);
582 if (db
->db_caching_status
== DB_DBUF_CACHE
)
583 DBUF_STAT_DECR(cache_levels_bytes
[db
->db_level
], size
);
587 * There are two eviction callbacks - one that we call synchronously
588 * and one that we invoke via a taskq. The async one is useful for
589 * avoiding lock order reversals and limiting stack depth.
591 * Note that if we have a sync callback but no async callback,
592 * it's likely that the sync callback will free the structure
593 * containing the dbu. In that case we need to take care to not
594 * dereference dbu after calling the sync evict func.
596 boolean_t has_async
= (dbu
->dbu_evict_func_async
!= NULL
);
598 if (dbu
->dbu_evict_func_sync
!= NULL
)
599 dbu
->dbu_evict_func_sync(dbu
);
602 taskq_dispatch_ent(dbu_evict_taskq
, dbu
->dbu_evict_func_async
,
603 dbu
, 0, &dbu
->dbu_tqent
);
608 dbuf_is_metadata(dmu_buf_impl_t
*db
)
611 * Consider indirect blocks and spill blocks to be meta data.
613 if (db
->db_level
> 0 || db
->db_blkid
== DMU_SPILL_BLKID
) {
616 boolean_t is_metadata
;
619 is_metadata
= DMU_OT_IS_METADATA(DB_DNODE(db
)->dn_type
);
622 return (is_metadata
);
627 * We want to exclude buffers that are on a special allocation class from
631 dbuf_is_l2cacheable(dmu_buf_impl_t
*db
, blkptr_t
*bp
)
633 if (db
->db_objset
->os_secondary_cache
== ZFS_CACHE_ALL
||
634 (db
->db_objset
->os_secondary_cache
==
635 ZFS_CACHE_METADATA
&& dbuf_is_metadata(db
))) {
636 if (l2arc_exclude_special
== 0)
640 * bp must be checked in the event it was passed from
641 * dbuf_read_impl() as the result of a the BP being set from
642 * a Direct I/O write in dbuf_read(). See comments in
645 blkptr_t
*db_bp
= bp
== NULL
? db
->db_blkptr
: bp
;
647 if (db_bp
== NULL
|| BP_IS_HOLE(db_bp
))
649 uint64_t vdev
= DVA_GET_VDEV(db_bp
->blk_dva
);
650 vdev_t
*rvd
= db
->db_objset
->os_spa
->spa_root_vdev
;
653 if (vdev
< rvd
->vdev_children
)
654 vd
= rvd
->vdev_child
[vdev
];
659 if (vd
->vdev_alloc_bias
!= VDEV_BIAS_SPECIAL
&&
660 vd
->vdev_alloc_bias
!= VDEV_BIAS_DEDUP
)
666 static inline boolean_t
667 dnode_level_is_l2cacheable(blkptr_t
*bp
, dnode_t
*dn
, int64_t level
)
669 if (dn
->dn_objset
->os_secondary_cache
== ZFS_CACHE_ALL
||
670 (dn
->dn_objset
->os_secondary_cache
== ZFS_CACHE_METADATA
&&
672 DMU_OT_IS_METADATA(dn
->dn_handle
->dnh_dnode
->dn_type
)))) {
673 if (l2arc_exclude_special
== 0)
676 if (bp
== NULL
|| BP_IS_HOLE(bp
))
678 uint64_t vdev
= DVA_GET_VDEV(bp
->blk_dva
);
679 vdev_t
*rvd
= dn
->dn_objset
->os_spa
->spa_root_vdev
;
682 if (vdev
< rvd
->vdev_children
)
683 vd
= rvd
->vdev_child
[vdev
];
688 if (vd
->vdev_alloc_bias
!= VDEV_BIAS_SPECIAL
&&
689 vd
->vdev_alloc_bias
!= VDEV_BIAS_DEDUP
)
697 * This function *must* return indices evenly distributed between all
698 * sublists of the multilist. This is needed due to how the dbuf eviction
699 * code is laid out; dbuf_evict_thread() assumes dbufs are evenly
700 * distributed between all sublists and uses this assumption when
701 * deciding which sublist to evict from and how much to evict from it.
704 dbuf_cache_multilist_index_func(multilist_t
*ml
, void *obj
)
706 dmu_buf_impl_t
*db
= obj
;
709 * The assumption here, is the hash value for a given
710 * dmu_buf_impl_t will remain constant throughout it's lifetime
711 * (i.e. it's objset, object, level and blkid fields don't change).
712 * Thus, we don't need to store the dbuf's sublist index
713 * on insertion, as this index can be recalculated on removal.
715 * Also, the low order bits of the hash value are thought to be
716 * distributed evenly. Otherwise, in the case that the multilist
717 * has a power of two number of sublists, each sublists' usage
718 * would not be evenly distributed. In this context full 64bit
719 * division would be a waste of time, so limit it to 32 bits.
721 return ((unsigned int)dbuf_hash(db
->db_objset
, db
->db
.db_object
,
722 db
->db_level
, db
->db_blkid
) %
723 multilist_get_num_sublists(ml
));
727 * The target size of the dbuf cache can grow with the ARC target,
728 * unless limited by the tunable dbuf_cache_max_bytes.
730 static inline unsigned long
731 dbuf_cache_target_bytes(void)
733 return (MIN(dbuf_cache_max_bytes
,
734 arc_target_bytes() >> dbuf_cache_shift
));
738 * The target size of the dbuf metadata cache can grow with the ARC target,
739 * unless limited by the tunable dbuf_metadata_cache_max_bytes.
741 static inline unsigned long
742 dbuf_metadata_cache_target_bytes(void)
744 return (MIN(dbuf_metadata_cache_max_bytes
,
745 arc_target_bytes() >> dbuf_metadata_cache_shift
));
748 static inline uint64_t
749 dbuf_cache_hiwater_bytes(void)
751 uint64_t dbuf_cache_target
= dbuf_cache_target_bytes();
752 return (dbuf_cache_target
+
753 (dbuf_cache_target
* dbuf_cache_hiwater_pct
) / 100);
756 static inline uint64_t
757 dbuf_cache_lowater_bytes(void)
759 uint64_t dbuf_cache_target
= dbuf_cache_target_bytes();
760 return (dbuf_cache_target
-
761 (dbuf_cache_target
* dbuf_cache_lowater_pct
) / 100);
764 static inline boolean_t
765 dbuf_cache_above_lowater(void)
767 return (zfs_refcount_count(&dbuf_caches
[DB_DBUF_CACHE
].size
) >
768 dbuf_cache_lowater_bytes());
772 * Evict the oldest eligible dbuf from the dbuf cache.
777 int idx
= multilist_get_random_index(&dbuf_caches
[DB_DBUF_CACHE
].cache
);
778 multilist_sublist_t
*mls
= multilist_sublist_lock_idx(
779 &dbuf_caches
[DB_DBUF_CACHE
].cache
, idx
);
781 ASSERT(!MUTEX_HELD(&dbuf_evict_lock
));
783 dmu_buf_impl_t
*db
= multilist_sublist_tail(mls
);
784 while (db
!= NULL
&& mutex_tryenter(&db
->db_mtx
) == 0) {
785 db
= multilist_sublist_prev(mls
, db
);
788 DTRACE_PROBE2(dbuf__evict__one
, dmu_buf_impl_t
*, db
,
789 multilist_sublist_t
*, mls
);
792 multilist_sublist_remove(mls
, db
);
793 multilist_sublist_unlock(mls
);
794 uint64_t size
= db
->db
.db_size
;
795 uint64_t usize
= dmu_buf_user_size(&db
->db
);
796 (void) zfs_refcount_remove_many(
797 &dbuf_caches
[DB_DBUF_CACHE
].size
, size
, db
);
798 (void) zfs_refcount_remove_many(
799 &dbuf_caches
[DB_DBUF_CACHE
].size
, usize
, db
->db_user
);
800 DBUF_STAT_BUMPDOWN(cache_levels
[db
->db_level
]);
801 DBUF_STAT_BUMPDOWN(cache_count
);
802 DBUF_STAT_DECR(cache_levels_bytes
[db
->db_level
], size
+ usize
);
803 ASSERT3U(db
->db_caching_status
, ==, DB_DBUF_CACHE
);
804 db
->db_caching_status
= DB_NO_CACHE
;
806 DBUF_STAT_BUMP(cache_total_evicts
);
808 multilist_sublist_unlock(mls
);
813 * The dbuf evict thread is responsible for aging out dbufs from the
814 * cache. Once the cache has reached it's maximum size, dbufs are removed
815 * and destroyed. The eviction thread will continue running until the size
816 * of the dbuf cache is at or below the maximum size. Once the dbuf is aged
817 * out of the cache it is destroyed and becomes eligible for arc eviction.
819 static __attribute__((noreturn
)) void
820 dbuf_evict_thread(void *unused
)
825 CALLB_CPR_INIT(&cpr
, &dbuf_evict_lock
, callb_generic_cpr
, FTAG
);
827 mutex_enter(&dbuf_evict_lock
);
828 while (!dbuf_evict_thread_exit
) {
829 while (!dbuf_cache_above_lowater() && !dbuf_evict_thread_exit
) {
830 CALLB_CPR_SAFE_BEGIN(&cpr
);
831 (void) cv_timedwait_idle_hires(&dbuf_evict_cv
,
832 &dbuf_evict_lock
, SEC2NSEC(1), MSEC2NSEC(1), 0);
833 CALLB_CPR_SAFE_END(&cpr
, &dbuf_evict_lock
);
835 mutex_exit(&dbuf_evict_lock
);
838 * Keep evicting as long as we're above the low water mark
839 * for the cache. We do this without holding the locks to
840 * minimize lock contention.
842 while (dbuf_cache_above_lowater() && !dbuf_evict_thread_exit
) {
846 mutex_enter(&dbuf_evict_lock
);
849 dbuf_evict_thread_exit
= B_FALSE
;
850 cv_broadcast(&dbuf_evict_cv
);
851 CALLB_CPR_EXIT(&cpr
); /* drops dbuf_evict_lock */
856 * Wake up the dbuf eviction thread if the dbuf cache is at its max size.
857 * If the dbuf cache is at its high water mark, then evict a dbuf from the
858 * dbuf cache using the caller's context.
861 dbuf_evict_notify(uint64_t size
)
864 * We check if we should evict without holding the dbuf_evict_lock,
865 * because it's OK to occasionally make the wrong decision here,
866 * and grabbing the lock results in massive lock contention.
868 if (size
> dbuf_cache_target_bytes()) {
869 if (size
> dbuf_cache_hiwater_bytes())
871 cv_signal(&dbuf_evict_cv
);
876 dbuf_kstat_update(kstat_t
*ksp
, int rw
)
878 dbuf_stats_t
*ds
= ksp
->ks_data
;
879 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
881 if (rw
== KSTAT_WRITE
)
882 return (SET_ERROR(EACCES
));
884 ds
->cache_count
.value
.ui64
=
885 wmsum_value(&dbuf_sums
.cache_count
);
886 ds
->cache_size_bytes
.value
.ui64
=
887 zfs_refcount_count(&dbuf_caches
[DB_DBUF_CACHE
].size
);
888 ds
->cache_target_bytes
.value
.ui64
= dbuf_cache_target_bytes();
889 ds
->cache_hiwater_bytes
.value
.ui64
= dbuf_cache_hiwater_bytes();
890 ds
->cache_lowater_bytes
.value
.ui64
= dbuf_cache_lowater_bytes();
891 ds
->cache_total_evicts
.value
.ui64
=
892 wmsum_value(&dbuf_sums
.cache_total_evicts
);
893 for (int i
= 0; i
< DN_MAX_LEVELS
; i
++) {
894 ds
->cache_levels
[i
].value
.ui64
=
895 wmsum_value(&dbuf_sums
.cache_levels
[i
]);
896 ds
->cache_levels_bytes
[i
].value
.ui64
=
897 wmsum_value(&dbuf_sums
.cache_levels_bytes
[i
]);
899 ds
->hash_hits
.value
.ui64
=
900 wmsum_value(&dbuf_sums
.hash_hits
);
901 ds
->hash_misses
.value
.ui64
=
902 wmsum_value(&dbuf_sums
.hash_misses
);
903 ds
->hash_collisions
.value
.ui64
=
904 wmsum_value(&dbuf_sums
.hash_collisions
);
905 ds
->hash_chains
.value
.ui64
=
906 wmsum_value(&dbuf_sums
.hash_chains
);
907 ds
->hash_insert_race
.value
.ui64
=
908 wmsum_value(&dbuf_sums
.hash_insert_race
);
909 ds
->hash_table_count
.value
.ui64
= h
->hash_table_mask
+ 1;
910 ds
->hash_mutex_count
.value
.ui64
= h
->hash_mutex_mask
+ 1;
911 ds
->metadata_cache_count
.value
.ui64
=
912 wmsum_value(&dbuf_sums
.metadata_cache_count
);
913 ds
->metadata_cache_size_bytes
.value
.ui64
= zfs_refcount_count(
914 &dbuf_caches
[DB_DBUF_METADATA_CACHE
].size
);
915 ds
->metadata_cache_overflow
.value
.ui64
=
916 wmsum_value(&dbuf_sums
.metadata_cache_overflow
);
923 uint64_t hmsize
, hsize
= 1ULL << 16;
924 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
927 * The hash table is big enough to fill one eighth of physical memory
928 * with an average block size of zfs_arc_average_blocksize (default 8K).
929 * By default, the table will take up
930 * totalmem * sizeof(void*) / 8K (1MB per GB with 8-byte pointers).
932 while (hsize
* zfs_arc_average_blocksize
< arc_all_memory() / 8)
935 h
->hash_table
= NULL
;
936 while (h
->hash_table
== NULL
) {
937 h
->hash_table_mask
= hsize
- 1;
939 h
->hash_table
= vmem_zalloc(hsize
* sizeof (void *), KM_SLEEP
);
940 if (h
->hash_table
== NULL
)
943 ASSERT3U(hsize
, >=, 1ULL << 10);
947 * The hash table buckets are protected by an array of mutexes where
948 * each mutex is reponsible for protecting 128 buckets. A minimum
949 * array size of 8192 is targeted to avoid contention.
951 if (dbuf_mutex_cache_shift
== 0)
952 hmsize
= MAX(hsize
>> 7, 1ULL << 13);
954 hmsize
= 1ULL << MIN(dbuf_mutex_cache_shift
, 24);
956 h
->hash_mutexes
= NULL
;
957 while (h
->hash_mutexes
== NULL
) {
958 h
->hash_mutex_mask
= hmsize
- 1;
960 h
->hash_mutexes
= vmem_zalloc(hmsize
* sizeof (kmutex_t
),
962 if (h
->hash_mutexes
== NULL
)
966 dbuf_kmem_cache
= kmem_cache_create("dmu_buf_impl_t",
967 sizeof (dmu_buf_impl_t
),
968 0, dbuf_cons
, dbuf_dest
, NULL
, NULL
, NULL
, 0);
970 for (int i
= 0; i
< hmsize
; i
++)
971 mutex_init(&h
->hash_mutexes
[i
], NULL
, MUTEX_NOLOCKDEP
, NULL
);
976 * All entries are queued via taskq_dispatch_ent(), so min/maxalloc
977 * configuration is not required.
979 dbu_evict_taskq
= taskq_create("dbu_evict", 1, defclsyspri
, 0, 0, 0);
981 for (dbuf_cached_state_t dcs
= 0; dcs
< DB_CACHE_MAX
; dcs
++) {
982 multilist_create(&dbuf_caches
[dcs
].cache
,
983 sizeof (dmu_buf_impl_t
),
984 offsetof(dmu_buf_impl_t
, db_cache_link
),
985 dbuf_cache_multilist_index_func
);
986 zfs_refcount_create(&dbuf_caches
[dcs
].size
);
989 dbuf_evict_thread_exit
= B_FALSE
;
990 mutex_init(&dbuf_evict_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
991 cv_init(&dbuf_evict_cv
, NULL
, CV_DEFAULT
, NULL
);
992 dbuf_cache_evict_thread
= thread_create(NULL
, 0, dbuf_evict_thread
,
993 NULL
, 0, &p0
, TS_RUN
, minclsyspri
);
995 wmsum_init(&dbuf_sums
.cache_count
, 0);
996 wmsum_init(&dbuf_sums
.cache_total_evicts
, 0);
997 for (int i
= 0; i
< DN_MAX_LEVELS
; i
++) {
998 wmsum_init(&dbuf_sums
.cache_levels
[i
], 0);
999 wmsum_init(&dbuf_sums
.cache_levels_bytes
[i
], 0);
1001 wmsum_init(&dbuf_sums
.hash_hits
, 0);
1002 wmsum_init(&dbuf_sums
.hash_misses
, 0);
1003 wmsum_init(&dbuf_sums
.hash_collisions
, 0);
1004 wmsum_init(&dbuf_sums
.hash_chains
, 0);
1005 wmsum_init(&dbuf_sums
.hash_insert_race
, 0);
1006 wmsum_init(&dbuf_sums
.metadata_cache_count
, 0);
1007 wmsum_init(&dbuf_sums
.metadata_cache_overflow
, 0);
1009 dbuf_ksp
= kstat_create("zfs", 0, "dbufstats", "misc",
1010 KSTAT_TYPE_NAMED
, sizeof (dbuf_stats
) / sizeof (kstat_named_t
),
1011 KSTAT_FLAG_VIRTUAL
);
1012 if (dbuf_ksp
!= NULL
) {
1013 for (int i
= 0; i
< DN_MAX_LEVELS
; i
++) {
1014 snprintf(dbuf_stats
.cache_levels
[i
].name
,
1015 KSTAT_STRLEN
, "cache_level_%d", i
);
1016 dbuf_stats
.cache_levels
[i
].data_type
=
1018 snprintf(dbuf_stats
.cache_levels_bytes
[i
].name
,
1019 KSTAT_STRLEN
, "cache_level_%d_bytes", i
);
1020 dbuf_stats
.cache_levels_bytes
[i
].data_type
=
1023 dbuf_ksp
->ks_data
= &dbuf_stats
;
1024 dbuf_ksp
->ks_update
= dbuf_kstat_update
;
1025 kstat_install(dbuf_ksp
);
1032 dbuf_hash_table_t
*h
= &dbuf_hash_table
;
1034 dbuf_stats_destroy();
1036 for (int i
= 0; i
< (h
->hash_mutex_mask
+ 1); i
++)
1037 mutex_destroy(&h
->hash_mutexes
[i
]);
1039 vmem_free(h
->hash_table
, (h
->hash_table_mask
+ 1) * sizeof (void *));
1040 vmem_free(h
->hash_mutexes
, (h
->hash_mutex_mask
+ 1) *
1043 kmem_cache_destroy(dbuf_kmem_cache
);
1044 taskq_destroy(dbu_evict_taskq
);
1046 mutex_enter(&dbuf_evict_lock
);
1047 dbuf_evict_thread_exit
= B_TRUE
;
1048 while (dbuf_evict_thread_exit
) {
1049 cv_signal(&dbuf_evict_cv
);
1050 cv_wait(&dbuf_evict_cv
, &dbuf_evict_lock
);
1052 mutex_exit(&dbuf_evict_lock
);
1054 mutex_destroy(&dbuf_evict_lock
);
1055 cv_destroy(&dbuf_evict_cv
);
1057 for (dbuf_cached_state_t dcs
= 0; dcs
< DB_CACHE_MAX
; dcs
++) {
1058 zfs_refcount_destroy(&dbuf_caches
[dcs
].size
);
1059 multilist_destroy(&dbuf_caches
[dcs
].cache
);
1062 if (dbuf_ksp
!= NULL
) {
1063 kstat_delete(dbuf_ksp
);
1067 wmsum_fini(&dbuf_sums
.cache_count
);
1068 wmsum_fini(&dbuf_sums
.cache_total_evicts
);
1069 for (int i
= 0; i
< DN_MAX_LEVELS
; i
++) {
1070 wmsum_fini(&dbuf_sums
.cache_levels
[i
]);
1071 wmsum_fini(&dbuf_sums
.cache_levels_bytes
[i
]);
1073 wmsum_fini(&dbuf_sums
.hash_hits
);
1074 wmsum_fini(&dbuf_sums
.hash_misses
);
1075 wmsum_fini(&dbuf_sums
.hash_collisions
);
1076 wmsum_fini(&dbuf_sums
.hash_chains
);
1077 wmsum_fini(&dbuf_sums
.hash_insert_race
);
1078 wmsum_fini(&dbuf_sums
.metadata_cache_count
);
1079 wmsum_fini(&dbuf_sums
.metadata_cache_overflow
);
1088 dbuf_verify(dmu_buf_impl_t
*db
)
1091 dbuf_dirty_record_t
*dr
;
1094 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1096 if (!(zfs_flags
& ZFS_DEBUG_DBUF_VERIFY
))
1099 ASSERT(db
->db_objset
!= NULL
);
1103 ASSERT(db
->db_parent
== NULL
);
1104 ASSERT(db
->db_blkptr
== NULL
);
1106 ASSERT3U(db
->db
.db_object
, ==, dn
->dn_object
);
1107 ASSERT3P(db
->db_objset
, ==, dn
->dn_objset
);
1108 ASSERT3U(db
->db_level
, <, dn
->dn_nlevels
);
1109 ASSERT(db
->db_blkid
== DMU_BONUS_BLKID
||
1110 db
->db_blkid
== DMU_SPILL_BLKID
||
1111 !avl_is_empty(&dn
->dn_dbufs
));
1113 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1115 ASSERT3U(db
->db
.db_size
, >=, dn
->dn_bonuslen
);
1116 ASSERT3U(db
->db
.db_offset
, ==, DMU_BONUS_BLKID
);
1117 } else if (db
->db_blkid
== DMU_SPILL_BLKID
) {
1119 ASSERT0(db
->db
.db_offset
);
1121 ASSERT3U(db
->db
.db_offset
, ==, db
->db_blkid
* db
->db
.db_size
);
1124 if ((dr
= list_head(&db
->db_dirty_records
)) != NULL
) {
1125 ASSERT(dr
->dr_dbuf
== db
);
1126 txg_prev
= dr
->dr_txg
;
1127 for (dr
= list_next(&db
->db_dirty_records
, dr
); dr
!= NULL
;
1128 dr
= list_next(&db
->db_dirty_records
, dr
)) {
1129 ASSERT(dr
->dr_dbuf
== db
);
1130 ASSERT(txg_prev
> dr
->dr_txg
);
1131 txg_prev
= dr
->dr_txg
;
1136 * We can't assert that db_size matches dn_datablksz because it
1137 * can be momentarily different when another thread is doing
1138 * dnode_set_blksz().
1140 if (db
->db_level
== 0 && db
->db
.db_object
== DMU_META_DNODE_OBJECT
) {
1141 dr
= db
->db_data_pending
;
1143 * It should only be modified in syncing context, so
1144 * make sure we only have one copy of the data.
1146 ASSERT(dr
== NULL
|| dr
->dt
.dl
.dr_data
== db
->db_buf
);
1149 /* verify db->db_blkptr */
1150 if (db
->db_blkptr
) {
1151 if (db
->db_parent
== dn
->dn_dbuf
) {
1152 /* db is pointed to by the dnode */
1153 /* ASSERT3U(db->db_blkid, <, dn->dn_nblkptr); */
1154 if (DMU_OBJECT_IS_SPECIAL(db
->db
.db_object
))
1155 ASSERT(db
->db_parent
== NULL
);
1157 ASSERT(db
->db_parent
!= NULL
);
1158 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
1159 ASSERT3P(db
->db_blkptr
, ==,
1160 &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
]);
1162 /* db is pointed to by an indirect block */
1163 int epb __maybe_unused
= db
->db_parent
->db
.db_size
>>
1165 ASSERT3U(db
->db_parent
->db_level
, ==, db
->db_level
+1);
1166 ASSERT3U(db
->db_parent
->db
.db_object
, ==,
1169 * dnode_grow_indblksz() can make this fail if we don't
1170 * have the parent's rwlock. XXX indblksz no longer
1171 * grows. safe to do this now?
1173 if (RW_LOCK_HELD(&db
->db_parent
->db_rwlock
)) {
1174 ASSERT3P(db
->db_blkptr
, ==,
1175 ((blkptr_t
*)db
->db_parent
->db
.db_data
+
1176 db
->db_blkid
% epb
));
1180 if ((db
->db_blkptr
== NULL
|| BP_IS_HOLE(db
->db_blkptr
)) &&
1181 (db
->db_buf
== NULL
|| db
->db_buf
->b_data
) &&
1182 db
->db
.db_data
&& db
->db_blkid
!= DMU_BONUS_BLKID
&&
1183 db
->db_state
!= DB_FILL
&& (dn
== NULL
|| !dn
->dn_free_txg
)) {
1185 * If the blkptr isn't set but they have nonzero data,
1186 * it had better be dirty, otherwise we'll lose that
1187 * data when we evict this buffer.
1189 * There is an exception to this rule for indirect blocks; in
1190 * this case, if the indirect block is a hole, we fill in a few
1191 * fields on each of the child blocks (importantly, birth time)
1192 * to prevent hole birth times from being lost when you
1193 * partially fill in a hole.
1195 if (db
->db_dirtycnt
== 0) {
1196 if (db
->db_level
== 0) {
1197 uint64_t *buf
= db
->db
.db_data
;
1200 for (i
= 0; i
< db
->db
.db_size
>> 3; i
++) {
1201 ASSERT(buf
[i
] == 0);
1204 blkptr_t
*bps
= db
->db
.db_data
;
1205 ASSERT3U(1 << DB_DNODE(db
)->dn_indblkshift
, ==,
1208 * We want to verify that all the blkptrs in the
1209 * indirect block are holes, but we may have
1210 * automatically set up a few fields for them.
1211 * We iterate through each blkptr and verify
1212 * they only have those fields set.
1215 i
< db
->db
.db_size
/ sizeof (blkptr_t
);
1217 blkptr_t
*bp
= &bps
[i
];
1218 ASSERT(ZIO_CHECKSUM_IS_ZERO(
1221 DVA_IS_EMPTY(&bp
->blk_dva
[0]) &&
1222 DVA_IS_EMPTY(&bp
->blk_dva
[1]) &&
1223 DVA_IS_EMPTY(&bp
->blk_dva
[2]));
1224 ASSERT0(bp
->blk_fill
);
1225 ASSERT0(bp
->blk_pad
[0]);
1226 ASSERT0(bp
->blk_pad
[1]);
1227 ASSERT(!BP_IS_EMBEDDED(bp
));
1228 ASSERT(BP_IS_HOLE(bp
));
1229 ASSERT0(BP_GET_PHYSICAL_BIRTH(bp
));
1239 dbuf_clear_data(dmu_buf_impl_t
*db
)
1241 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1242 dbuf_evict_user(db
);
1243 ASSERT3P(db
->db_buf
, ==, NULL
);
1244 db
->db
.db_data
= NULL
;
1245 if (db
->db_state
!= DB_NOFILL
) {
1246 db
->db_state
= DB_UNCACHED
;
1247 DTRACE_SET_STATE(db
, "clear data");
1252 dbuf_set_data(dmu_buf_impl_t
*db
, arc_buf_t
*buf
)
1254 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1255 ASSERT(buf
!= NULL
);
1258 ASSERT(buf
->b_data
!= NULL
);
1259 db
->db
.db_data
= buf
->b_data
;
1263 dbuf_alloc_arcbuf(dmu_buf_impl_t
*db
)
1265 spa_t
*spa
= db
->db_objset
->os_spa
;
1267 return (arc_alloc_buf(spa
, db
, DBUF_GET_BUFC_TYPE(db
), db
->db
.db_size
));
1271 * Loan out an arc_buf for read. Return the loaned arc_buf.
1274 dbuf_loan_arcbuf(dmu_buf_impl_t
*db
)
1278 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1279 mutex_enter(&db
->db_mtx
);
1280 if (arc_released(db
->db_buf
) || zfs_refcount_count(&db
->db_holds
) > 1) {
1281 int blksz
= db
->db
.db_size
;
1282 spa_t
*spa
= db
->db_objset
->os_spa
;
1284 mutex_exit(&db
->db_mtx
);
1285 abuf
= arc_loan_buf(spa
, B_FALSE
, blksz
);
1286 memcpy(abuf
->b_data
, db
->db
.db_data
, blksz
);
1289 arc_loan_inuse_buf(abuf
, db
);
1291 dbuf_clear_data(db
);
1292 mutex_exit(&db
->db_mtx
);
1298 * Calculate which level n block references the data at the level 0 offset
1302 dbuf_whichblock(const dnode_t
*dn
, const int64_t level
, const uint64_t offset
)
1304 if (dn
->dn_datablkshift
!= 0 && dn
->dn_indblkshift
!= 0) {
1306 * The level n blkid is equal to the level 0 blkid divided by
1307 * the number of level 0s in a level n block.
1309 * The level 0 blkid is offset >> datablkshift =
1310 * offset / 2^datablkshift.
1312 * The number of level 0s in a level n is the number of block
1313 * pointers in an indirect block, raised to the power of level.
1314 * This is 2^(indblkshift - SPA_BLKPTRSHIFT)^level =
1315 * 2^(level*(indblkshift - SPA_BLKPTRSHIFT)).
1317 * Thus, the level n blkid is: offset /
1318 * ((2^datablkshift)*(2^(level*(indblkshift-SPA_BLKPTRSHIFT))))
1319 * = offset / 2^(datablkshift + level *
1320 * (indblkshift - SPA_BLKPTRSHIFT))
1321 * = offset >> (datablkshift + level *
1322 * (indblkshift - SPA_BLKPTRSHIFT))
1325 const unsigned exp
= dn
->dn_datablkshift
+
1326 level
* (dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
);
1328 if (exp
>= 8 * sizeof (offset
)) {
1329 /* This only happens on the highest indirection level */
1330 ASSERT3U(level
, ==, dn
->dn_nlevels
- 1);
1334 ASSERT3U(exp
, <, 8 * sizeof (offset
));
1336 return (offset
>> exp
);
1338 ASSERT3U(offset
, <, dn
->dn_datablksz
);
1344 * This function is used to lock the parent of the provided dbuf. This should be
1345 * used when modifying or reading db_blkptr.
1348 dmu_buf_lock_parent(dmu_buf_impl_t
*db
, krw_t rw
, const void *tag
)
1350 enum db_lock_type ret
= DLT_NONE
;
1351 if (db
->db_parent
!= NULL
) {
1352 rw_enter(&db
->db_parent
->db_rwlock
, rw
);
1354 } else if (dmu_objset_ds(db
->db_objset
) != NULL
) {
1355 rrw_enter(&dmu_objset_ds(db
->db_objset
)->ds_bp_rwlock
, rw
,
1360 * We only return a DLT_NONE lock when it's the top-most indirect block
1361 * of the meta-dnode of the MOS.
1367 * We need to pass the lock type in because it's possible that the block will
1368 * move from being the topmost indirect block in a dnode (and thus, have no
1369 * parent) to not the top-most via an indirection increase. This would cause a
1370 * panic if we didn't pass the lock type in.
1373 dmu_buf_unlock_parent(dmu_buf_impl_t
*db
, db_lock_type_t type
, const void *tag
)
1375 if (type
== DLT_PARENT
)
1376 rw_exit(&db
->db_parent
->db_rwlock
);
1377 else if (type
== DLT_OBJSET
)
1378 rrw_exit(&dmu_objset_ds(db
->db_objset
)->ds_bp_rwlock
, tag
);
1382 dbuf_read_done(zio_t
*zio
, const zbookmark_phys_t
*zb
, const blkptr_t
*bp
,
1383 arc_buf_t
*buf
, void *vdb
)
1385 (void) zb
, (void) bp
;
1386 dmu_buf_impl_t
*db
= vdb
;
1388 mutex_enter(&db
->db_mtx
);
1389 ASSERT3U(db
->db_state
, ==, DB_READ
);
1392 * All reads are synchronous, so we must have a hold on the dbuf
1394 ASSERT(zfs_refcount_count(&db
->db_holds
) > 0);
1395 ASSERT(db
->db_buf
== NULL
);
1396 ASSERT(db
->db
.db_data
== NULL
);
1399 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
1400 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1401 ASSERT3P(db
->db_buf
, ==, NULL
);
1402 db
->db_state
= DB_UNCACHED
;
1403 DTRACE_SET_STATE(db
, "i/o error");
1404 } else if (db
->db_level
== 0 && db
->db_freed_in_flight
) {
1405 /* freed in flight */
1406 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
1407 arc_release(buf
, db
);
1408 memset(buf
->b_data
, 0, db
->db
.db_size
);
1409 arc_buf_freeze(buf
);
1410 db
->db_freed_in_flight
= FALSE
;
1411 dbuf_set_data(db
, buf
);
1412 db
->db_state
= DB_CACHED
;
1413 DTRACE_SET_STATE(db
, "freed in flight");
1416 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
1417 dbuf_set_data(db
, buf
);
1418 db
->db_state
= DB_CACHED
;
1419 DTRACE_SET_STATE(db
, "successful read");
1421 cv_broadcast(&db
->db_changed
);
1422 dbuf_rele_and_unlock(db
, NULL
, B_FALSE
);
1426 * Shortcut for performing reads on bonus dbufs. Returns
1427 * an error if we fail to verify the dnode associated with
1428 * a decrypted block. Otherwise success.
1431 dbuf_read_bonus(dmu_buf_impl_t
*db
, dnode_t
*dn
)
1433 int bonuslen
, max_bonuslen
;
1435 bonuslen
= MIN(dn
->dn_bonuslen
, dn
->dn_phys
->dn_bonuslen
);
1436 max_bonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
1437 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1438 ASSERT(DB_DNODE_HELD(db
));
1439 ASSERT3U(bonuslen
, <=, db
->db
.db_size
);
1440 db
->db
.db_data
= kmem_alloc(max_bonuslen
, KM_SLEEP
);
1441 arc_space_consume(max_bonuslen
, ARC_SPACE_BONUS
);
1442 if (bonuslen
< max_bonuslen
)
1443 memset(db
->db
.db_data
, 0, max_bonuslen
);
1445 memcpy(db
->db
.db_data
, DN_BONUS(dn
->dn_phys
), bonuslen
);
1446 db
->db_state
= DB_CACHED
;
1447 DTRACE_SET_STATE(db
, "bonus buffer filled");
1452 dbuf_handle_indirect_hole(dmu_buf_impl_t
*db
, dnode_t
*dn
, blkptr_t
*dbbp
)
1454 blkptr_t
*bps
= db
->db
.db_data
;
1455 uint32_t indbs
= 1ULL << dn
->dn_indblkshift
;
1456 int n_bps
= indbs
>> SPA_BLKPTRSHIFT
;
1458 for (int i
= 0; i
< n_bps
; i
++) {
1459 blkptr_t
*bp
= &bps
[i
];
1461 ASSERT3U(BP_GET_LSIZE(dbbp
), ==, indbs
);
1462 BP_SET_LSIZE(bp
, BP_GET_LEVEL(dbbp
) == 1 ?
1463 dn
->dn_datablksz
: BP_GET_LSIZE(dbbp
));
1464 BP_SET_TYPE(bp
, BP_GET_TYPE(dbbp
));
1465 BP_SET_LEVEL(bp
, BP_GET_LEVEL(dbbp
) - 1);
1466 BP_SET_BIRTH(bp
, BP_GET_LOGICAL_BIRTH(dbbp
), 0);
1471 * Handle reads on dbufs that are holes, if necessary. This function
1472 * requires that the dbuf's mutex is held. Returns success (0) if action
1473 * was taken, ENOENT if no action was taken.
1476 dbuf_read_hole(dmu_buf_impl_t
*db
, dnode_t
*dn
, blkptr_t
*bp
)
1478 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1480 int is_hole
= bp
== NULL
|| BP_IS_HOLE(bp
);
1482 * For level 0 blocks only, if the above check fails:
1483 * Recheck BP_IS_HOLE() after dnode_block_freed() in case dnode_sync()
1484 * processes the delete record and clears the bp while we are waiting
1485 * for the dn_mtx (resulting in a "no" from block_freed).
1487 if (!is_hole
&& db
->db_level
== 0)
1488 is_hole
= dnode_block_freed(dn
, db
->db_blkid
) || BP_IS_HOLE(bp
);
1491 dbuf_set_data(db
, dbuf_alloc_arcbuf(db
));
1492 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
1494 if (bp
!= NULL
&& db
->db_level
> 0 && BP_IS_HOLE(bp
) &&
1495 BP_GET_LOGICAL_BIRTH(bp
) != 0) {
1496 dbuf_handle_indirect_hole(db
, dn
, bp
);
1498 db
->db_state
= DB_CACHED
;
1499 DTRACE_SET_STATE(db
, "hole read satisfied");
1506 * This function ensures that, when doing a decrypting read of a block,
1507 * we make sure we have decrypted the dnode associated with it. We must do
1508 * this so that we ensure we are fully authenticating the checksum-of-MACs
1509 * tree from the root of the objset down to this block. Indirect blocks are
1510 * always verified against their secure checksum-of-MACs assuming that the
1511 * dnode containing them is correct. Now that we are doing a decrypting read,
1512 * we can be sure that the key is loaded and verify that assumption. This is
1513 * especially important considering that we always read encrypted dnode
1514 * blocks as raw data (without verifying their MACs) to start, and
1515 * decrypt / authenticate them when we need to read an encrypted bonus buffer.
1518 dbuf_read_verify_dnode_crypt(dmu_buf_impl_t
*db
, dnode_t
*dn
, uint32_t flags
)
1520 objset_t
*os
= db
->db_objset
;
1521 dmu_buf_impl_t
*dndb
;
1523 zbookmark_phys_t zb
;
1526 if ((flags
& DB_RF_NO_DECRYPT
) != 0 ||
1527 !os
->os_encrypted
|| os
->os_raw_receive
||
1528 (dndb
= dn
->dn_dbuf
) == NULL
)
1531 dnbuf
= dndb
->db_buf
;
1532 if (!arc_is_encrypted(dnbuf
))
1535 mutex_enter(&dndb
->db_mtx
);
1538 * Since dnode buffer is modified by sync process, there can be only
1539 * one copy of it. It means we can not modify (decrypt) it while it
1540 * is being written. I don't see how this may happen now, since
1541 * encrypted dnode writes by receive should be completed before any
1542 * plain-text reads due to txg wait, but better be safe than sorry.
1545 if (!arc_is_encrypted(dnbuf
)) {
1546 mutex_exit(&dndb
->db_mtx
);
1549 dbuf_dirty_record_t
*dr
= dndb
->db_data_pending
;
1550 if (dr
== NULL
|| dr
->dt
.dl
.dr_data
!= dnbuf
)
1552 cv_wait(&dndb
->db_changed
, &dndb
->db_mtx
);
1555 SET_BOOKMARK(&zb
, dmu_objset_id(os
),
1556 DMU_META_DNODE_OBJECT
, 0, dndb
->db_blkid
);
1557 err
= arc_untransform(dnbuf
, os
->os_spa
, &zb
, B_TRUE
);
1560 * An error code of EACCES tells us that the key is still not
1561 * available. This is ok if we are only reading authenticated
1562 * (and therefore non-encrypted) blocks.
1564 if (err
== EACCES
&& ((db
->db_blkid
!= DMU_BONUS_BLKID
&&
1565 !DMU_OT_IS_ENCRYPTED(dn
->dn_type
)) ||
1566 (db
->db_blkid
== DMU_BONUS_BLKID
&&
1567 !DMU_OT_IS_ENCRYPTED(dn
->dn_bonustype
))))
1570 mutex_exit(&dndb
->db_mtx
);
1576 * Drops db_mtx and the parent lock specified by dblt and tag before
1580 dbuf_read_impl(dmu_buf_impl_t
*db
, dnode_t
*dn
, zio_t
*zio
, uint32_t flags
,
1581 db_lock_type_t dblt
, blkptr_t
*bp
, const void *tag
)
1583 zbookmark_phys_t zb
;
1584 uint32_t aflags
= ARC_FLAG_NOWAIT
;
1587 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
1588 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1589 ASSERT(db
->db_state
== DB_UNCACHED
|| db
->db_state
== DB_NOFILL
);
1590 ASSERT(db
->db_buf
== NULL
);
1591 ASSERT(db
->db_parent
== NULL
||
1592 RW_LOCK_HELD(&db
->db_parent
->db_rwlock
));
1594 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1595 err
= dbuf_read_bonus(db
, dn
);
1599 err
= dbuf_read_hole(db
, dn
, bp
);
1606 * Any attempt to read a redacted block should result in an error. This
1607 * will never happen under normal conditions, but can be useful for
1608 * debugging purposes.
1610 if (BP_IS_REDACTED(bp
)) {
1611 ASSERT(dsl_dataset_feature_is_active(
1612 db
->db_objset
->os_dsl_dataset
,
1613 SPA_FEATURE_REDACTED_DATASETS
));
1614 err
= SET_ERROR(EIO
);
1618 SET_BOOKMARK(&zb
, dmu_objset_id(db
->db_objset
),
1619 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1622 * All bps of an encrypted os should have the encryption bit set.
1623 * If this is not true it indicates tampering and we report an error.
1625 if (db
->db_objset
->os_encrypted
&& !BP_USES_CRYPT(bp
)) {
1626 spa_log_error(db
->db_objset
->os_spa
, &zb
,
1627 BP_GET_LOGICAL_BIRTH(bp
));
1628 err
= SET_ERROR(EIO
);
1632 db
->db_state
= DB_READ
;
1633 DTRACE_SET_STATE(db
, "read issued");
1634 mutex_exit(&db
->db_mtx
);
1636 if (!DBUF_IS_CACHEABLE(db
))
1637 aflags
|= ARC_FLAG_UNCACHED
;
1638 else if (dbuf_is_l2cacheable(db
, bp
))
1639 aflags
|= ARC_FLAG_L2CACHE
;
1641 dbuf_add_ref(db
, NULL
);
1643 zio_flags
= (flags
& DB_RF_CANFAIL
) ?
1644 ZIO_FLAG_CANFAIL
: ZIO_FLAG_MUSTSUCCEED
;
1646 if ((flags
& DB_RF_NO_DECRYPT
) && BP_IS_PROTECTED(bp
))
1647 zio_flags
|= ZIO_FLAG_RAW
;
1650 * The zio layer will copy the provided blkptr later, but we need to
1651 * do this now so that we can release the parent's rwlock. We have to
1652 * do that now so that if dbuf_read_done is called synchronously (on
1653 * an l1 cache hit) we don't acquire the db_mtx while holding the
1654 * parent's rwlock, which would be a lock ordering violation.
1656 blkptr_t copy
= *bp
;
1657 dmu_buf_unlock_parent(db
, dblt
, tag
);
1658 return (arc_read(zio
, db
->db_objset
->os_spa
, ©
,
1659 dbuf_read_done
, db
, ZIO_PRIORITY_SYNC_READ
, zio_flags
,
1663 mutex_exit(&db
->db_mtx
);
1664 dmu_buf_unlock_parent(db
, dblt
, tag
);
1669 * This is our just-in-time copy function. It makes a copy of buffers that
1670 * have been modified in a previous transaction group before we access them in
1671 * the current active group.
1673 * This function is used in three places: when we are dirtying a buffer for the
1674 * first time in a txg, when we are freeing a range in a dnode that includes
1675 * this buffer, and when we are accessing a buffer which was received compressed
1676 * and later referenced in a WRITE_BYREF record.
1678 * Note that when we are called from dbuf_free_range() we do not put a hold on
1679 * the buffer, we just traverse the active dbuf list for the dnode.
1682 dbuf_fix_old_data(dmu_buf_impl_t
*db
, uint64_t txg
)
1684 dbuf_dirty_record_t
*dr
= list_head(&db
->db_dirty_records
);
1686 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1687 ASSERT(db
->db
.db_data
!= NULL
);
1688 ASSERT(db
->db_level
== 0);
1689 ASSERT(db
->db
.db_object
!= DMU_META_DNODE_OBJECT
);
1692 (dr
->dt
.dl
.dr_data
!=
1693 ((db
->db_blkid
== DMU_BONUS_BLKID
) ? db
->db
.db_data
: db
->db_buf
)))
1697 * If the last dirty record for this dbuf has not yet synced
1698 * and its referencing the dbuf data, either:
1699 * reset the reference to point to a new copy,
1700 * or (if there a no active holders)
1701 * just null out the current db_data pointer.
1703 ASSERT3U(dr
->dr_txg
, >=, txg
- 2);
1704 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
1705 dnode_t
*dn
= DB_DNODE(db
);
1706 int bonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
1707 dr
->dt
.dl
.dr_data
= kmem_alloc(bonuslen
, KM_SLEEP
);
1708 arc_space_consume(bonuslen
, ARC_SPACE_BONUS
);
1709 memcpy(dr
->dt
.dl
.dr_data
, db
->db
.db_data
, bonuslen
);
1710 } else if (zfs_refcount_count(&db
->db_holds
) > db
->db_dirtycnt
) {
1711 dnode_t
*dn
= DB_DNODE(db
);
1712 int size
= arc_buf_size(db
->db_buf
);
1713 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
1714 spa_t
*spa
= db
->db_objset
->os_spa
;
1715 enum zio_compress compress_type
=
1716 arc_get_compression(db
->db_buf
);
1717 uint8_t complevel
= arc_get_complevel(db
->db_buf
);
1719 if (arc_is_encrypted(db
->db_buf
)) {
1720 boolean_t byteorder
;
1721 uint8_t salt
[ZIO_DATA_SALT_LEN
];
1722 uint8_t iv
[ZIO_DATA_IV_LEN
];
1723 uint8_t mac
[ZIO_DATA_MAC_LEN
];
1725 arc_get_raw_params(db
->db_buf
, &byteorder
, salt
,
1727 dr
->dt
.dl
.dr_data
= arc_alloc_raw_buf(spa
, db
,
1728 dmu_objset_id(dn
->dn_objset
), byteorder
, salt
, iv
,
1729 mac
, dn
->dn_type
, size
, arc_buf_lsize(db
->db_buf
),
1730 compress_type
, complevel
);
1731 } else if (compress_type
!= ZIO_COMPRESS_OFF
) {
1732 ASSERT3U(type
, ==, ARC_BUFC_DATA
);
1733 dr
->dt
.dl
.dr_data
= arc_alloc_compressed_buf(spa
, db
,
1734 size
, arc_buf_lsize(db
->db_buf
), compress_type
,
1737 dr
->dt
.dl
.dr_data
= arc_alloc_buf(spa
, db
, type
, size
);
1739 memcpy(dr
->dt
.dl
.dr_data
->b_data
, db
->db
.db_data
, size
);
1742 dbuf_clear_data(db
);
1747 dbuf_read(dmu_buf_impl_t
*db
, zio_t
*pio
, uint32_t flags
)
1750 boolean_t miss
= B_TRUE
, need_wait
= B_FALSE
, prefetch
;
1753 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
1759 * Ensure that this block's dnode has been decrypted if the caller
1760 * has requested decrypted data.
1762 err
= dbuf_read_verify_dnode_crypt(db
, dn
, flags
);
1766 prefetch
= db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
1767 (flags
& DB_RF_NOPREFETCH
) == 0;
1769 mutex_enter(&db
->db_mtx
);
1770 if (flags
& DB_RF_PARTIAL_FIRST
)
1771 db
->db_partial_read
= B_TRUE
;
1772 else if (!(flags
& DB_RF_PARTIAL_MORE
))
1773 db
->db_partial_read
= B_FALSE
;
1774 miss
= (db
->db_state
!= DB_CACHED
);
1776 if (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
) {
1778 * Another reader came in while the dbuf was in flight between
1779 * UNCACHED and CACHED. Either a writer will finish filling
1780 * the buffer, sending the dbuf to CACHED, or the first reader's
1781 * request will reach the read_done callback and send the dbuf
1782 * to CACHED. Otherwise, a failure occurred and the dbuf will
1783 * be sent to UNCACHED.
1785 if (flags
& DB_RF_NEVERWAIT
) {
1786 mutex_exit(&db
->db_mtx
);
1791 ASSERT(db
->db_state
== DB_READ
||
1792 (flags
& DB_RF_HAVESTRUCT
) == 0);
1793 DTRACE_PROBE2(blocked__read
, dmu_buf_impl_t
*, db
,
1795 cv_wait(&db
->db_changed
, &db
->db_mtx
);
1796 } while (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
);
1797 if (db
->db_state
== DB_UNCACHED
) {
1798 err
= SET_ERROR(EIO
);
1799 mutex_exit(&db
->db_mtx
);
1805 if (db
->db_state
== DB_CACHED
) {
1807 * If the arc buf is compressed or encrypted and the caller
1808 * requested uncompressed data, we need to untransform it
1809 * before returning. We also call arc_untransform() on any
1810 * unauthenticated blocks, which will verify their MAC if
1811 * the key is now available.
1813 if ((flags
& DB_RF_NO_DECRYPT
) == 0 && db
->db_buf
!= NULL
&&
1814 (arc_is_encrypted(db
->db_buf
) ||
1815 arc_is_unauthenticated(db
->db_buf
) ||
1816 arc_get_compression(db
->db_buf
) != ZIO_COMPRESS_OFF
)) {
1817 spa_t
*spa
= dn
->dn_objset
->os_spa
;
1818 zbookmark_phys_t zb
;
1820 SET_BOOKMARK(&zb
, dmu_objset_id(db
->db_objset
),
1821 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
1822 dbuf_fix_old_data(db
, spa_syncing_txg(spa
));
1823 err
= arc_untransform(db
->db_buf
, spa
, &zb
, B_FALSE
);
1824 dbuf_set_data(db
, db
->db_buf
);
1826 mutex_exit(&db
->db_mtx
);
1828 ASSERT(db
->db_state
== DB_UNCACHED
||
1829 db
->db_state
== DB_NOFILL
);
1830 db_lock_type_t dblt
= dmu_buf_lock_parent(db
, RW_READER
, FTAG
);
1834 * If a block clone or Direct I/O write has occurred we will
1835 * get the dirty records overridden BP so we get the most
1838 err
= dmu_buf_get_bp_from_dbuf(db
, &bp
);
1841 if (pio
== NULL
&& (db
->db_state
== DB_NOFILL
||
1842 (bp
!= NULL
&& !BP_IS_HOLE(bp
)))) {
1843 spa_t
*spa
= dn
->dn_objset
->os_spa
;
1845 zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
1850 dbuf_read_impl(db
, dn
, pio
, flags
, dblt
, bp
, FTAG
);
1852 mutex_exit(&db
->db_mtx
);
1853 dmu_buf_unlock_parent(db
, dblt
, FTAG
);
1855 /* dbuf_read_impl drops db_mtx and parent's rwlock. */
1856 miss
= (db
->db_state
!= DB_CACHED
);
1859 if (err
== 0 && prefetch
) {
1860 dmu_zfetch(&dn
->dn_zfetch
, db
->db_blkid
, 1, B_TRUE
, miss
,
1861 flags
& DB_RF_HAVESTRUCT
);
1866 * If we created a zio we must execute it to avoid leaking it, even if
1867 * it isn't attached to any work due to an error in dbuf_read_impl().
1871 err
= zio_wait(pio
);
1873 (void) zio_wait(pio
);
1879 DBUF_STAT_BUMP(hash_misses
);
1881 DBUF_STAT_BUMP(hash_hits
);
1882 if (pio
&& err
!= 0) {
1883 zio_t
*zio
= zio_null(pio
, pio
->io_spa
, NULL
, NULL
, NULL
,
1885 zio
->io_error
= err
;
1893 dbuf_noread(dmu_buf_impl_t
*db
)
1895 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
1896 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
1897 mutex_enter(&db
->db_mtx
);
1898 while (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
)
1899 cv_wait(&db
->db_changed
, &db
->db_mtx
);
1900 if (db
->db_state
== DB_UNCACHED
) {
1901 ASSERT(db
->db_buf
== NULL
);
1902 ASSERT(db
->db
.db_data
== NULL
);
1903 dbuf_set_data(db
, dbuf_alloc_arcbuf(db
));
1904 db
->db_state
= DB_FILL
;
1905 DTRACE_SET_STATE(db
, "assigning filled buffer");
1906 } else if (db
->db_state
== DB_NOFILL
) {
1907 dbuf_clear_data(db
);
1909 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
1911 mutex_exit(&db
->db_mtx
);
1915 dbuf_unoverride(dbuf_dirty_record_t
*dr
)
1917 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
1918 blkptr_t
*bp
= &dr
->dt
.dl
.dr_overridden_by
;
1919 uint64_t txg
= dr
->dr_txg
;
1921 ASSERT(MUTEX_HELD(&db
->db_mtx
));
1924 * This assert is valid because dmu_sync() expects to be called by
1925 * a zilog's get_data while holding a range lock. This call only
1926 * comes from dbuf_dirty() callers who must also hold a range lock.
1928 ASSERT(dr
->dt
.dl
.dr_override_state
!= DR_IN_DMU_SYNC
);
1929 ASSERT(db
->db_level
== 0);
1931 if (db
->db_blkid
== DMU_BONUS_BLKID
||
1932 dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
)
1935 ASSERT(db
->db_data_pending
!= dr
);
1937 /* free this block */
1938 if (!BP_IS_HOLE(bp
) && !dr
->dt
.dl
.dr_nopwrite
)
1939 zio_free(db
->db_objset
->os_spa
, txg
, bp
);
1941 if (dr
->dt
.dl
.dr_brtwrite
|| dr
->dt
.dl
.dr_diowrite
) {
1942 ASSERT0P(dr
->dt
.dl
.dr_data
);
1943 dr
->dt
.dl
.dr_data
= db
->db_buf
;
1945 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
1946 dr
->dt
.dl
.dr_nopwrite
= B_FALSE
;
1947 dr
->dt
.dl
.dr_brtwrite
= B_FALSE
;
1948 dr
->dt
.dl
.dr_diowrite
= B_FALSE
;
1949 dr
->dt
.dl
.dr_has_raw_params
= B_FALSE
;
1952 * In the event that Direct I/O was used, we do not
1953 * need to release the buffer from the ARC.
1955 * Release the already-written buffer, so we leave it in
1956 * a consistent dirty state. Note that all callers are
1957 * modifying the buffer, so they will immediately do
1958 * another (redundant) arc_release(). Therefore, leave
1959 * the buf thawed to save the effort of freezing &
1960 * immediately re-thawing it.
1962 if (dr
->dt
.dl
.dr_data
)
1963 arc_release(dr
->dt
.dl
.dr_data
, db
);
1967 * Evict (if its unreferenced) or clear (if its referenced) any level-0
1968 * data blocks in the free range, so that any future readers will find
1972 dbuf_free_range(dnode_t
*dn
, uint64_t start_blkid
, uint64_t end_blkid
,
1975 dmu_buf_impl_t
*db_search
;
1976 dmu_buf_impl_t
*db
, *db_next
;
1977 uint64_t txg
= tx
->tx_txg
;
1979 dbuf_dirty_record_t
*dr
;
1981 if (end_blkid
> dn
->dn_maxblkid
&&
1982 !(start_blkid
== DMU_SPILL_BLKID
|| end_blkid
== DMU_SPILL_BLKID
))
1983 end_blkid
= dn
->dn_maxblkid
;
1984 dprintf_dnode(dn
, "start=%llu end=%llu\n", (u_longlong_t
)start_blkid
,
1985 (u_longlong_t
)end_blkid
);
1987 db_search
= kmem_alloc(sizeof (dmu_buf_impl_t
), KM_SLEEP
);
1988 db_search
->db_level
= 0;
1989 db_search
->db_blkid
= start_blkid
;
1990 db_search
->db_state
= DB_SEARCH
;
1992 mutex_enter(&dn
->dn_dbufs_mtx
);
1993 db
= avl_find(&dn
->dn_dbufs
, db_search
, &where
);
1994 ASSERT3P(db
, ==, NULL
);
1996 db
= avl_nearest(&dn
->dn_dbufs
, where
, AVL_AFTER
);
1998 for (; db
!= NULL
; db
= db_next
) {
1999 db_next
= AVL_NEXT(&dn
->dn_dbufs
, db
);
2000 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2002 if (db
->db_level
!= 0 || db
->db_blkid
> end_blkid
) {
2005 ASSERT3U(db
->db_blkid
, >=, start_blkid
);
2007 /* found a level 0 buffer in the range */
2008 mutex_enter(&db
->db_mtx
);
2009 if (dbuf_undirty(db
, tx
)) {
2010 /* mutex has been dropped and dbuf destroyed */
2014 if (db
->db_state
== DB_UNCACHED
||
2015 db
->db_state
== DB_NOFILL
||
2016 db
->db_state
== DB_EVICTING
) {
2017 ASSERT(db
->db
.db_data
== NULL
);
2018 mutex_exit(&db
->db_mtx
);
2021 if (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
) {
2022 /* will be handled in dbuf_read_done or dbuf_rele */
2023 db
->db_freed_in_flight
= TRUE
;
2024 mutex_exit(&db
->db_mtx
);
2027 if (zfs_refcount_count(&db
->db_holds
) == 0) {
2032 /* The dbuf is referenced */
2034 dr
= list_head(&db
->db_dirty_records
);
2036 if (dr
->dr_txg
== txg
) {
2038 * This buffer is "in-use", re-adjust the file
2039 * size to reflect that this buffer may
2040 * contain new data when we sync.
2042 if (db
->db_blkid
!= DMU_SPILL_BLKID
&&
2043 db
->db_blkid
> dn
->dn_maxblkid
)
2044 dn
->dn_maxblkid
= db
->db_blkid
;
2045 dbuf_unoverride(dr
);
2048 * This dbuf is not dirty in the open context.
2049 * Either uncache it (if its not referenced in
2050 * the open context) or reset its contents to
2053 dbuf_fix_old_data(db
, txg
);
2056 /* clear the contents if its cached */
2057 if (db
->db_state
== DB_CACHED
) {
2058 ASSERT(db
->db
.db_data
!= NULL
);
2059 arc_release(db
->db_buf
, db
);
2060 rw_enter(&db
->db_rwlock
, RW_WRITER
);
2061 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
2062 rw_exit(&db
->db_rwlock
);
2063 arc_buf_freeze(db
->db_buf
);
2066 mutex_exit(&db
->db_mtx
);
2069 mutex_exit(&dn
->dn_dbufs_mtx
);
2070 kmem_free(db_search
, sizeof (dmu_buf_impl_t
));
2074 dbuf_new_size(dmu_buf_impl_t
*db
, int size
, dmu_tx_t
*tx
)
2076 arc_buf_t
*buf
, *old_buf
;
2077 dbuf_dirty_record_t
*dr
;
2078 int osize
= db
->db
.db_size
;
2079 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
2082 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2088 * XXX we should be doing a dbuf_read, checking the return
2089 * value and returning that up to our callers
2091 dmu_buf_will_dirty(&db
->db
, tx
);
2093 VERIFY3P(db
->db_buf
, !=, NULL
);
2095 /* create the data buffer for the new block */
2096 buf
= arc_alloc_buf(dn
->dn_objset
->os_spa
, db
, type
, size
);
2098 /* copy old block data to the new block */
2099 old_buf
= db
->db_buf
;
2100 memcpy(buf
->b_data
, old_buf
->b_data
, MIN(osize
, size
));
2101 /* zero the remainder */
2103 memset((uint8_t *)buf
->b_data
+ osize
, 0, size
- osize
);
2105 mutex_enter(&db
->db_mtx
);
2106 dbuf_set_data(db
, buf
);
2107 arc_buf_destroy(old_buf
, db
);
2108 db
->db
.db_size
= size
;
2110 dr
= list_head(&db
->db_dirty_records
);
2111 /* dirty record added by dmu_buf_will_dirty() */
2113 if (db
->db_level
== 0)
2114 dr
->dt
.dl
.dr_data
= buf
;
2115 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2116 ASSERT3U(dr
->dr_accounted
, ==, osize
);
2117 dr
->dr_accounted
= size
;
2118 mutex_exit(&db
->db_mtx
);
2120 dmu_objset_willuse_space(dn
->dn_objset
, size
- osize
, tx
);
2125 dbuf_release_bp(dmu_buf_impl_t
*db
)
2127 objset_t
*os __maybe_unused
= db
->db_objset
;
2129 ASSERT(dsl_pool_sync_context(dmu_objset_pool(os
)));
2130 ASSERT(arc_released(os
->os_phys_buf
) ||
2131 list_link_active(&os
->os_dsl_dataset
->ds_synced_link
));
2132 ASSERT(db
->db_parent
== NULL
|| arc_released(db
->db_parent
->db_buf
));
2134 (void) arc_release(db
->db_buf
, db
);
2138 * We already have a dirty record for this TXG, and we are being
2142 dbuf_redirty(dbuf_dirty_record_t
*dr
)
2144 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
2146 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2148 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
) {
2150 * If this buffer has already been written out,
2151 * we now need to reset its state.
2153 dbuf_unoverride(dr
);
2154 if (db
->db
.db_object
!= DMU_META_DNODE_OBJECT
&&
2155 db
->db_state
!= DB_NOFILL
) {
2156 /* Already released on initial dirty, so just thaw. */
2157 ASSERT(arc_released(db
->db_buf
));
2158 arc_buf_thaw(db
->db_buf
);
2163 dbuf_dirty_record_t
*
2164 dbuf_dirty_lightweight(dnode_t
*dn
, uint64_t blkid
, dmu_tx_t
*tx
)
2166 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2167 IMPLY(dn
->dn_objset
->os_raw_receive
, dn
->dn_maxblkid
>= blkid
);
2168 dnode_new_blkid(dn
, blkid
, tx
, B_TRUE
, B_FALSE
);
2169 ASSERT(dn
->dn_maxblkid
>= blkid
);
2171 dbuf_dirty_record_t
*dr
= kmem_zalloc(sizeof (*dr
), KM_SLEEP
);
2172 list_link_init(&dr
->dr_dirty_node
);
2173 list_link_init(&dr
->dr_dbuf_node
);
2175 dr
->dr_txg
= tx
->tx_txg
;
2176 dr
->dt
.dll
.dr_blkid
= blkid
;
2177 dr
->dr_accounted
= dn
->dn_datablksz
;
2180 * There should not be any dbuf for the block that we're dirtying.
2181 * Otherwise the buffer contents could be inconsistent between the
2182 * dbuf and the lightweight dirty record.
2184 ASSERT3P(NULL
, ==, dbuf_find(dn
->dn_objset
, dn
->dn_object
, 0, blkid
,
2187 mutex_enter(&dn
->dn_mtx
);
2188 int txgoff
= tx
->tx_txg
& TXG_MASK
;
2189 if (dn
->dn_free_ranges
[txgoff
] != NULL
) {
2190 range_tree_clear(dn
->dn_free_ranges
[txgoff
], blkid
, 1);
2193 if (dn
->dn_nlevels
== 1) {
2194 ASSERT3U(blkid
, <, dn
->dn_nblkptr
);
2195 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
2196 mutex_exit(&dn
->dn_mtx
);
2197 rw_exit(&dn
->dn_struct_rwlock
);
2198 dnode_setdirty(dn
, tx
);
2200 mutex_exit(&dn
->dn_mtx
);
2202 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2203 dmu_buf_impl_t
*parent_db
= dbuf_hold_level(dn
,
2204 1, blkid
>> epbs
, FTAG
);
2205 rw_exit(&dn
->dn_struct_rwlock
);
2206 if (parent_db
== NULL
) {
2207 kmem_free(dr
, sizeof (*dr
));
2210 int err
= dbuf_read(parent_db
, NULL
,
2211 (DB_RF_NOPREFETCH
| DB_RF_CANFAIL
));
2213 dbuf_rele(parent_db
, FTAG
);
2214 kmem_free(dr
, sizeof (*dr
));
2218 dbuf_dirty_record_t
*parent_dr
= dbuf_dirty(parent_db
, tx
);
2219 dbuf_rele(parent_db
, FTAG
);
2220 mutex_enter(&parent_dr
->dt
.di
.dr_mtx
);
2221 ASSERT3U(parent_dr
->dr_txg
, ==, tx
->tx_txg
);
2222 list_insert_tail(&parent_dr
->dt
.di
.dr_children
, dr
);
2223 mutex_exit(&parent_dr
->dt
.di
.dr_mtx
);
2224 dr
->dr_parent
= parent_dr
;
2227 dmu_objset_willuse_space(dn
->dn_objset
, dr
->dr_accounted
, tx
);
2232 dbuf_dirty_record_t
*
2233 dbuf_dirty(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
2237 dbuf_dirty_record_t
*dr
, *dr_next
, *dr_head
;
2238 int txgoff
= tx
->tx_txg
& TXG_MASK
;
2239 boolean_t drop_struct_rwlock
= B_FALSE
;
2241 ASSERT(tx
->tx_txg
!= 0);
2242 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2243 DMU_TX_DIRTY_BUF(tx
, db
);
2248 * Shouldn't dirty a regular buffer in syncing context. Private
2249 * objects may be dirtied in syncing context, but only if they
2250 * were already pre-dirtied in open context.
2253 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
) {
2254 rrw_enter(&dn
->dn_objset
->os_dsl_dataset
->ds_bp_rwlock
,
2257 ASSERT(!dmu_tx_is_syncing(tx
) ||
2258 BP_IS_HOLE(dn
->dn_objset
->os_rootbp
) ||
2259 DMU_OBJECT_IS_SPECIAL(dn
->dn_object
) ||
2260 dn
->dn_objset
->os_dsl_dataset
== NULL
);
2261 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
2262 rrw_exit(&dn
->dn_objset
->os_dsl_dataset
->ds_bp_rwlock
, FTAG
);
2265 * We make this assert for private objects as well, but after we
2266 * check if we're already dirty. They are allowed to re-dirty
2267 * in syncing context.
2269 ASSERT(dn
->dn_object
== DMU_META_DNODE_OBJECT
||
2270 dn
->dn_dirtyctx
== DN_UNDIRTIED
|| dn
->dn_dirtyctx
==
2271 (dmu_tx_is_syncing(tx
) ? DN_DIRTY_SYNC
: DN_DIRTY_OPEN
));
2273 mutex_enter(&db
->db_mtx
);
2275 * XXX make this true for indirects too? The problem is that
2276 * transactions created with dmu_tx_create_assigned() from
2277 * syncing context don't bother holding ahead.
2279 ASSERT(db
->db_level
!= 0 ||
2280 db
->db_state
== DB_CACHED
|| db
->db_state
== DB_FILL
||
2281 db
->db_state
== DB_NOFILL
);
2283 mutex_enter(&dn
->dn_mtx
);
2284 dnode_set_dirtyctx(dn
, tx
, db
);
2285 if (tx
->tx_txg
> dn
->dn_dirty_txg
)
2286 dn
->dn_dirty_txg
= tx
->tx_txg
;
2287 mutex_exit(&dn
->dn_mtx
);
2289 if (db
->db_blkid
== DMU_SPILL_BLKID
)
2290 dn
->dn_have_spill
= B_TRUE
;
2293 * If this buffer is already dirty, we're done.
2295 dr_head
= list_head(&db
->db_dirty_records
);
2296 ASSERT(dr_head
== NULL
|| dr_head
->dr_txg
<= tx
->tx_txg
||
2297 db
->db
.db_object
== DMU_META_DNODE_OBJECT
);
2298 dr_next
= dbuf_find_dirty_lte(db
, tx
->tx_txg
);
2299 if (dr_next
&& dr_next
->dr_txg
== tx
->tx_txg
) {
2302 dbuf_redirty(dr_next
);
2303 mutex_exit(&db
->db_mtx
);
2308 * Only valid if not already dirty.
2310 ASSERT(dn
->dn_object
== 0 ||
2311 dn
->dn_dirtyctx
== DN_UNDIRTIED
|| dn
->dn_dirtyctx
==
2312 (dmu_tx_is_syncing(tx
) ? DN_DIRTY_SYNC
: DN_DIRTY_OPEN
));
2314 ASSERT3U(dn
->dn_nlevels
, >, db
->db_level
);
2317 * We should only be dirtying in syncing context if it's the
2318 * mos or we're initializing the os or it's a special object.
2319 * However, we are allowed to dirty in syncing context provided
2320 * we already dirtied it in open context. Hence we must make
2321 * this assertion only if we're not already dirty.
2324 VERIFY3U(tx
->tx_txg
, <=, spa_final_dirty_txg(os
->os_spa
));
2326 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
2327 rrw_enter(&os
->os_dsl_dataset
->ds_bp_rwlock
, RW_READER
, FTAG
);
2328 ASSERT(!dmu_tx_is_syncing(tx
) || DMU_OBJECT_IS_SPECIAL(dn
->dn_object
) ||
2329 os
->os_dsl_dataset
== NULL
|| BP_IS_HOLE(os
->os_rootbp
));
2330 if (dn
->dn_objset
->os_dsl_dataset
!= NULL
)
2331 rrw_exit(&os
->os_dsl_dataset
->ds_bp_rwlock
, FTAG
);
2333 ASSERT(db
->db
.db_size
!= 0);
2335 dprintf_dbuf(db
, "size=%llx\n", (u_longlong_t
)db
->db
.db_size
);
2337 if (db
->db_blkid
!= DMU_BONUS_BLKID
&& db
->db_state
!= DB_NOFILL
) {
2338 dmu_objset_willuse_space(os
, db
->db
.db_size
, tx
);
2342 * If this buffer is dirty in an old transaction group we need
2343 * to make a copy of it so that the changes we make in this
2344 * transaction group won't leak out when we sync the older txg.
2346 dr
= kmem_zalloc(sizeof (dbuf_dirty_record_t
), KM_SLEEP
);
2347 list_link_init(&dr
->dr_dirty_node
);
2348 list_link_init(&dr
->dr_dbuf_node
);
2350 if (db
->db_level
== 0) {
2351 void *data_old
= db
->db_buf
;
2353 if (db
->db_state
!= DB_NOFILL
) {
2354 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
2355 dbuf_fix_old_data(db
, tx
->tx_txg
);
2356 data_old
= db
->db
.db_data
;
2357 } else if (db
->db
.db_object
!= DMU_META_DNODE_OBJECT
) {
2359 * Release the data buffer from the cache so
2360 * that we can modify it without impacting
2361 * possible other users of this cached data
2362 * block. Note that indirect blocks and
2363 * private objects are not released until the
2364 * syncing state (since they are only modified
2367 arc_release(db
->db_buf
, db
);
2368 dbuf_fix_old_data(db
, tx
->tx_txg
);
2369 data_old
= db
->db_buf
;
2371 ASSERT(data_old
!= NULL
);
2373 dr
->dt
.dl
.dr_data
= data_old
;
2375 mutex_init(&dr
->dt
.di
.dr_mtx
, NULL
, MUTEX_NOLOCKDEP
, NULL
);
2376 list_create(&dr
->dt
.di
.dr_children
,
2377 sizeof (dbuf_dirty_record_t
),
2378 offsetof(dbuf_dirty_record_t
, dr_dirty_node
));
2380 if (db
->db_blkid
!= DMU_BONUS_BLKID
&& db
->db_state
!= DB_NOFILL
) {
2381 dr
->dr_accounted
= db
->db
.db_size
;
2384 dr
->dr_txg
= tx
->tx_txg
;
2385 list_insert_before(&db
->db_dirty_records
, dr_next
, dr
);
2388 * We could have been freed_in_flight between the dbuf_noread
2389 * and dbuf_dirty. We win, as though the dbuf_noread() had
2390 * happened after the free.
2392 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
2393 db
->db_blkid
!= DMU_SPILL_BLKID
) {
2394 mutex_enter(&dn
->dn_mtx
);
2395 if (dn
->dn_free_ranges
[txgoff
] != NULL
) {
2396 range_tree_clear(dn
->dn_free_ranges
[txgoff
],
2399 mutex_exit(&dn
->dn_mtx
);
2400 db
->db_freed_in_flight
= FALSE
;
2404 * This buffer is now part of this txg
2406 dbuf_add_ref(db
, (void *)(uintptr_t)tx
->tx_txg
);
2407 db
->db_dirtycnt
+= 1;
2408 ASSERT3U(db
->db_dirtycnt
, <=, 3);
2410 mutex_exit(&db
->db_mtx
);
2412 if (db
->db_blkid
== DMU_BONUS_BLKID
||
2413 db
->db_blkid
== DMU_SPILL_BLKID
) {
2414 mutex_enter(&dn
->dn_mtx
);
2415 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
2416 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
2417 mutex_exit(&dn
->dn_mtx
);
2418 dnode_setdirty(dn
, tx
);
2423 if (!RW_WRITE_HELD(&dn
->dn_struct_rwlock
)) {
2424 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
2425 drop_struct_rwlock
= B_TRUE
;
2429 * If we are overwriting a dedup BP, then unless it is snapshotted,
2430 * when we get to syncing context we will need to decrement its
2431 * refcount in the DDT. Prefetch the relevant DDT block so that
2432 * syncing context won't have to wait for the i/o.
2434 if (db
->db_blkptr
!= NULL
) {
2435 db_lock_type_t dblt
= dmu_buf_lock_parent(db
, RW_READER
, FTAG
);
2436 ddt_prefetch(os
->os_spa
, db
->db_blkptr
);
2437 dmu_buf_unlock_parent(db
, dblt
, FTAG
);
2441 * We need to hold the dn_struct_rwlock to make this assertion,
2442 * because it protects dn_phys / dn_next_nlevels from changing.
2444 ASSERT((dn
->dn_phys
->dn_nlevels
== 0 && db
->db_level
== 0) ||
2445 dn
->dn_phys
->dn_nlevels
> db
->db_level
||
2446 dn
->dn_next_nlevels
[txgoff
] > db
->db_level
||
2447 dn
->dn_next_nlevels
[(tx
->tx_txg
-1) & TXG_MASK
] > db
->db_level
||
2448 dn
->dn_next_nlevels
[(tx
->tx_txg
-2) & TXG_MASK
] > db
->db_level
);
2451 if (db
->db_level
== 0) {
2452 ASSERT(!db
->db_objset
->os_raw_receive
||
2453 dn
->dn_maxblkid
>= db
->db_blkid
);
2454 dnode_new_blkid(dn
, db
->db_blkid
, tx
,
2455 drop_struct_rwlock
, B_FALSE
);
2456 ASSERT(dn
->dn_maxblkid
>= db
->db_blkid
);
2459 if (db
->db_level
+1 < dn
->dn_nlevels
) {
2460 dmu_buf_impl_t
*parent
= db
->db_parent
;
2461 dbuf_dirty_record_t
*di
;
2462 int parent_held
= FALSE
;
2464 if (db
->db_parent
== NULL
|| db
->db_parent
== dn
->dn_dbuf
) {
2465 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
2466 parent
= dbuf_hold_level(dn
, db
->db_level
+ 1,
2467 db
->db_blkid
>> epbs
, FTAG
);
2468 ASSERT(parent
!= NULL
);
2471 if (drop_struct_rwlock
)
2472 rw_exit(&dn
->dn_struct_rwlock
);
2473 ASSERT3U(db
->db_level
+ 1, ==, parent
->db_level
);
2474 di
= dbuf_dirty(parent
, tx
);
2476 dbuf_rele(parent
, FTAG
);
2478 mutex_enter(&db
->db_mtx
);
2480 * Since we've dropped the mutex, it's possible that
2481 * dbuf_undirty() might have changed this out from under us.
2483 if (list_head(&db
->db_dirty_records
) == dr
||
2484 dn
->dn_object
== DMU_META_DNODE_OBJECT
) {
2485 mutex_enter(&di
->dt
.di
.dr_mtx
);
2486 ASSERT3U(di
->dr_txg
, ==, tx
->tx_txg
);
2487 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
2488 list_insert_tail(&di
->dt
.di
.dr_children
, dr
);
2489 mutex_exit(&di
->dt
.di
.dr_mtx
);
2492 mutex_exit(&db
->db_mtx
);
2494 ASSERT(db
->db_level
+ 1 == dn
->dn_nlevels
);
2495 ASSERT(db
->db_blkid
< dn
->dn_nblkptr
);
2496 ASSERT(db
->db_parent
== NULL
|| db
->db_parent
== dn
->dn_dbuf
);
2497 mutex_enter(&dn
->dn_mtx
);
2498 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
2499 list_insert_tail(&dn
->dn_dirty_records
[txgoff
], dr
);
2500 mutex_exit(&dn
->dn_mtx
);
2501 if (drop_struct_rwlock
)
2502 rw_exit(&dn
->dn_struct_rwlock
);
2505 dnode_setdirty(dn
, tx
);
2511 dbuf_undirty_bonus(dbuf_dirty_record_t
*dr
)
2513 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
2515 if (dr
->dt
.dl
.dr_data
!= db
->db
.db_data
) {
2516 struct dnode
*dn
= dr
->dr_dnode
;
2517 int max_bonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
2519 kmem_free(dr
->dt
.dl
.dr_data
, max_bonuslen
);
2520 arc_space_return(max_bonuslen
, ARC_SPACE_BONUS
);
2522 db
->db_data_pending
= NULL
;
2523 ASSERT(list_next(&db
->db_dirty_records
, dr
) == NULL
);
2524 list_remove(&db
->db_dirty_records
, dr
);
2525 if (dr
->dr_dbuf
->db_level
!= 0) {
2526 mutex_destroy(&dr
->dt
.di
.dr_mtx
);
2527 list_destroy(&dr
->dt
.di
.dr_children
);
2529 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
2530 ASSERT3U(db
->db_dirtycnt
, >, 0);
2531 db
->db_dirtycnt
-= 1;
2535 * Undirty a buffer in the transaction group referenced by the given
2536 * transaction. Return whether this evicted the dbuf.
2539 dbuf_undirty(dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
2541 uint64_t txg
= tx
->tx_txg
;
2548 * Due to our use of dn_nlevels below, this can only be called
2549 * in open context, unless we are operating on the MOS.
2550 * From syncing context, dn_nlevels may be different from the
2551 * dn_nlevels used when dbuf was dirtied.
2553 ASSERT(db
->db_objset
==
2554 dmu_objset_pool(db
->db_objset
)->dp_meta_objset
||
2555 txg
!= spa_syncing_txg(dmu_objset_spa(db
->db_objset
)));
2556 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2557 ASSERT0(db
->db_level
);
2558 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2561 * If this buffer is not dirty, we're done.
2563 dbuf_dirty_record_t
*dr
= dbuf_find_dirty_eq(db
, txg
);
2566 ASSERT(dr
->dr_dbuf
== db
);
2568 brtwrite
= dr
->dt
.dl
.dr_brtwrite
;
2569 diowrite
= dr
->dt
.dl
.dr_diowrite
;
2571 ASSERT3B(diowrite
, ==, B_FALSE
);
2573 * We are freeing a block that we cloned in the same
2574 * transaction group.
2576 brt_pending_remove(dmu_objset_spa(db
->db_objset
),
2577 &dr
->dt
.dl
.dr_overridden_by
, tx
);
2580 dnode_t
*dn
= dr
->dr_dnode
;
2582 dprintf_dbuf(db
, "size=%llx\n", (u_longlong_t
)db
->db
.db_size
);
2584 ASSERT(db
->db
.db_size
!= 0);
2586 dsl_pool_undirty_space(dmu_objset_pool(dn
->dn_objset
),
2587 dr
->dr_accounted
, txg
);
2589 list_remove(&db
->db_dirty_records
, dr
);
2592 * Note that there are three places in dbuf_dirty()
2593 * where this dirty record may be put on a list.
2594 * Make sure to do a list_remove corresponding to
2595 * every one of those list_insert calls.
2597 if (dr
->dr_parent
) {
2598 mutex_enter(&dr
->dr_parent
->dt
.di
.dr_mtx
);
2599 list_remove(&dr
->dr_parent
->dt
.di
.dr_children
, dr
);
2600 mutex_exit(&dr
->dr_parent
->dt
.di
.dr_mtx
);
2601 } else if (db
->db_blkid
== DMU_SPILL_BLKID
||
2602 db
->db_level
+ 1 == dn
->dn_nlevels
) {
2603 ASSERT(db
->db_blkptr
== NULL
|| db
->db_parent
== dn
->dn_dbuf
);
2604 mutex_enter(&dn
->dn_mtx
);
2605 list_remove(&dn
->dn_dirty_records
[txg
& TXG_MASK
], dr
);
2606 mutex_exit(&dn
->dn_mtx
);
2609 if (db
->db_state
!= DB_NOFILL
&& !brtwrite
) {
2610 dbuf_unoverride(dr
);
2612 if (dr
->dt
.dl
.dr_data
!= db
->db_buf
) {
2613 ASSERT(db
->db_buf
!= NULL
);
2614 ASSERT(dr
->dt
.dl
.dr_data
!= NULL
);
2615 arc_buf_destroy(dr
->dt
.dl
.dr_data
, db
);
2619 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
2621 ASSERT(db
->db_dirtycnt
> 0);
2622 db
->db_dirtycnt
-= 1;
2624 if (zfs_refcount_remove(&db
->db_holds
, (void *)(uintptr_t)txg
) == 0) {
2625 ASSERT(db
->db_state
== DB_NOFILL
|| brtwrite
|| diowrite
||
2626 arc_released(db
->db_buf
));
2635 dmu_buf_will_dirty_impl(dmu_buf_t
*db_fake
, int flags
, dmu_tx_t
*tx
)
2637 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2638 boolean_t undirty
= B_FALSE
;
2640 ASSERT(tx
->tx_txg
!= 0);
2641 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2644 * Quick check for dirtiness to improve performance for some workloads
2645 * (e.g. file deletion with indirect blocks cached).
2647 mutex_enter(&db
->db_mtx
);
2648 if (db
->db_state
== DB_CACHED
|| db
->db_state
== DB_NOFILL
) {
2650 * It's possible that the dbuf is already dirty but not cached,
2651 * because there are some calls to dbuf_dirty() that don't
2652 * go through dmu_buf_will_dirty().
2654 dbuf_dirty_record_t
*dr
= dbuf_find_dirty_eq(db
, tx
->tx_txg
);
2656 if (db
->db_level
== 0 &&
2657 dr
->dt
.dl
.dr_brtwrite
) {
2659 * Block cloning: If we are dirtying a cloned
2660 * level 0 block, we cannot simply redirty it,
2661 * because this dr has no associated data.
2662 * We will go through a full undirtying below,
2663 * before dirtying it again.
2667 /* This dbuf is already dirty and cached. */
2669 mutex_exit(&db
->db_mtx
);
2674 mutex_exit(&db
->db_mtx
);
2677 if (RW_WRITE_HELD(&DB_DNODE(db
)->dn_struct_rwlock
))
2678 flags
|= DB_RF_HAVESTRUCT
;
2682 * Block cloning: Do the dbuf_read() before undirtying the dbuf, as we
2683 * want to make sure dbuf_read() will read the pending cloned block and
2684 * not the uderlying block that is being replaced. dbuf_undirty() will
2685 * do brt_pending_remove() before removing the dirty record.
2687 (void) dbuf_read(db
, NULL
, flags
);
2689 mutex_enter(&db
->db_mtx
);
2690 VERIFY(!dbuf_undirty(db
, tx
));
2691 mutex_exit(&db
->db_mtx
);
2693 (void) dbuf_dirty(db
, tx
);
2697 dmu_buf_will_dirty(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2699 dmu_buf_will_dirty_impl(db_fake
,
2700 DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
, tx
);
2704 dmu_buf_is_dirty(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2706 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2707 dbuf_dirty_record_t
*dr
;
2709 mutex_enter(&db
->db_mtx
);
2710 dr
= dbuf_find_dirty_eq(db
, tx
->tx_txg
);
2711 mutex_exit(&db
->db_mtx
);
2712 return (dr
!= NULL
);
2716 * Normally the db_blkptr points to the most recent on-disk content for the
2717 * dbuf (and anything newer will be cached in the dbuf). However, a pending
2718 * block clone or not yet synced Direct I/O write will have a dirty record BP
2719 * pointing to the most recent data.
2722 dmu_buf_get_bp_from_dbuf(dmu_buf_impl_t
*db
, blkptr_t
**bp
)
2724 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2727 if (db
->db_level
!= 0) {
2728 *bp
= db
->db_blkptr
;
2732 *bp
= db
->db_blkptr
;
2733 dbuf_dirty_record_t
*dr
= list_head(&db
->db_dirty_records
);
2734 if (dr
&& db
->db_state
== DB_NOFILL
) {
2736 if (!dr
->dt
.dl
.dr_brtwrite
)
2739 *bp
= &dr
->dt
.dl
.dr_overridden_by
;
2740 } else if (dr
&& db
->db_state
== DB_UNCACHED
) {
2741 /* Direct I/O write */
2742 if (dr
->dt
.dl
.dr_diowrite
)
2743 *bp
= &dr
->dt
.dl
.dr_overridden_by
;
2750 * Direct I/O reads can read directly from the ARC, but the data has
2751 * to be untransformed in order to copy it over into user pages.
2754 dmu_buf_untransform_direct(dmu_buf_impl_t
*db
, spa_t
*spa
)
2758 dnode_t
*dn
= DB_DNODE(db
);
2760 ASSERT3S(db
->db_state
, ==, DB_CACHED
);
2761 ASSERT(MUTEX_HELD(&db
->db_mtx
));
2764 * Ensure that this block's dnode has been decrypted if
2765 * the caller has requested decrypted data.
2767 err
= dbuf_read_verify_dnode_crypt(db
, dn
, 0);
2770 * If the arc buf is compressed or encrypted and the caller
2771 * requested uncompressed data, we need to untransform it
2772 * before returning. We also call arc_untransform() on any
2773 * unauthenticated blocks, which will verify their MAC if
2774 * the key is now available.
2776 if (err
== 0 && db
->db_buf
!= NULL
&&
2777 (arc_is_encrypted(db
->db_buf
) ||
2778 arc_is_unauthenticated(db
->db_buf
) ||
2779 arc_get_compression(db
->db_buf
) != ZIO_COMPRESS_OFF
)) {
2780 zbookmark_phys_t zb
;
2782 SET_BOOKMARK(&zb
, dmu_objset_id(db
->db_objset
),
2783 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
2784 dbuf_fix_old_data(db
, spa_syncing_txg(spa
));
2785 err
= arc_untransform(db
->db_buf
, spa
, &zb
, B_FALSE
);
2786 dbuf_set_data(db
, db
->db_buf
);
2789 DBUF_STAT_BUMP(hash_hits
);
2795 dmu_buf_will_clone_or_dio(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2798 * Block clones and Direct I/O writes always happen in open-context.
2800 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2801 ASSERT0(db
->db_level
);
2802 ASSERT(!dmu_tx_is_syncing(tx
));
2803 ASSERT0(db
->db_level
);
2804 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2805 ASSERT(db
->db
.db_object
!= DMU_META_DNODE_OBJECT
);
2807 mutex_enter(&db
->db_mtx
);
2811 * We are going to clone or issue a Direct I/O write on this block, so
2812 * undirty modifications done to this block so far in this txg. This
2813 * includes writes and clones into this block.
2815 * If there dirty record associated with this txg from a previous Direct
2816 * I/O write then space accounting cleanup takes place. It is important
2817 * to go ahead free up the space accounting through dbuf_undirty() ->
2818 * dbuf_unoverride() -> zio_free(). Space accountiung for determining
2819 * if a write can occur in zfs_write() happens through dmu_tx_assign().
2820 * This can cause an issue with Direct I/O writes in the case of
2821 * overwriting the same block, because all DVA allocations are being
2822 * done in open-context. Constantly allowing Direct I/O overwrites to
2823 * the same block can exhaust the pools available space leading to
2824 * ENOSPC errors at the DVA allocation part of the ZIO pipeline, which
2825 * will eventually suspend the pool. By cleaning up sapce acccounting
2826 * now, the ENOSPC error can be avoided.
2828 * Since we are undirtying the record in open-context, we must have a
2829 * hold on the db, so it should never be evicted after calling
2832 VERIFY3B(dbuf_undirty(db
, tx
), ==, B_FALSE
);
2833 ASSERT0P(dbuf_find_dirty_eq(db
, tx
->tx_txg
));
2835 if (db
->db_buf
!= NULL
) {
2837 * If there is an associated ARC buffer with this dbuf we can
2838 * only destroy it if the previous dirty record does not
2841 dbuf_dirty_record_t
*dr
= list_head(&db
->db_dirty_records
);
2842 if (dr
== NULL
|| dr
->dt
.dl
.dr_data
!= db
->db_buf
)
2843 arc_buf_destroy(db
->db_buf
, db
);
2846 * Setting the dbuf's data pointers to NULL will force all
2847 * future reads down to the devices to get the most up to date
2848 * version of the data after a Direct I/O write has completed.
2851 dbuf_clear_data(db
);
2854 ASSERT3P(db
->db_buf
, ==, NULL
);
2855 ASSERT3P(db
->db
.db_data
, ==, NULL
);
2857 db
->db_state
= DB_NOFILL
;
2858 DTRACE_SET_STATE(db
,
2859 "allocating NOFILL buffer for clone or direct I/O write");
2862 mutex_exit(&db
->db_mtx
);
2865 (void) dbuf_dirty(db
, tx
);
2869 dmu_buf_will_not_fill(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
)
2871 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2873 mutex_enter(&db
->db_mtx
);
2874 db
->db_state
= DB_NOFILL
;
2875 DTRACE_SET_STATE(db
, "allocating NOFILL buffer");
2876 mutex_exit(&db
->db_mtx
);
2879 (void) dbuf_dirty(db
, tx
);
2883 dmu_buf_will_fill(dmu_buf_t
*db_fake
, dmu_tx_t
*tx
, boolean_t canfail
)
2885 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2887 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2888 ASSERT(tx
->tx_txg
!= 0);
2889 ASSERT(db
->db_level
== 0);
2890 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
2892 ASSERT(db
->db
.db_object
!= DMU_META_DNODE_OBJECT
||
2893 dmu_tx_private_ok(tx
));
2895 mutex_enter(&db
->db_mtx
);
2896 dbuf_dirty_record_t
*dr
= dbuf_find_dirty_eq(db
, tx
->tx_txg
);
2897 if (db
->db_state
== DB_NOFILL
||
2898 (db
->db_state
== DB_UNCACHED
&& dr
&& dr
->dt
.dl
.dr_diowrite
)) {
2900 * If the fill can fail we should have a way to return back to
2901 * the cloned or Direct I/O write data.
2903 if (canfail
&& dr
) {
2904 mutex_exit(&db
->db_mtx
);
2905 dmu_buf_will_dirty(db_fake
, tx
);
2909 * Block cloning: We will be completely overwriting a block
2910 * cloned in this transaction group, so let's undirty the
2911 * pending clone and mark the block as uncached. This will be
2912 * as if the clone was never done.
2914 if (dr
&& dr
->dt
.dl
.dr_brtwrite
) {
2915 VERIFY(!dbuf_undirty(db
, tx
));
2916 db
->db_state
= DB_UNCACHED
;
2919 mutex_exit(&db
->db_mtx
);
2922 (void) dbuf_dirty(db
, tx
);
2926 * This function is effectively the same as dmu_buf_will_dirty(), but
2927 * indicates the caller expects raw encrypted data in the db, and provides
2928 * the crypt params (byteorder, salt, iv, mac) which should be stored in the
2929 * blkptr_t when this dbuf is written. This is only used for blocks of
2930 * dnodes, during raw receive.
2933 dmu_buf_set_crypt_params(dmu_buf_t
*db_fake
, boolean_t byteorder
,
2934 const uint8_t *salt
, const uint8_t *iv
, const uint8_t *mac
, dmu_tx_t
*tx
)
2936 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
2937 dbuf_dirty_record_t
*dr
;
2940 * dr_has_raw_params is only processed for blocks of dnodes
2941 * (see dbuf_sync_dnode_leaf_crypt()).
2943 ASSERT3U(db
->db
.db_object
, ==, DMU_META_DNODE_OBJECT
);
2944 ASSERT3U(db
->db_level
, ==, 0);
2945 ASSERT(db
->db_objset
->os_raw_receive
);
2947 dmu_buf_will_dirty_impl(db_fake
,
2948 DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
| DB_RF_NO_DECRYPT
, tx
);
2950 dr
= dbuf_find_dirty_eq(db
, tx
->tx_txg
);
2952 ASSERT3P(dr
, !=, NULL
);
2954 dr
->dt
.dl
.dr_has_raw_params
= B_TRUE
;
2955 dr
->dt
.dl
.dr_byteorder
= byteorder
;
2956 memcpy(dr
->dt
.dl
.dr_salt
, salt
, ZIO_DATA_SALT_LEN
);
2957 memcpy(dr
->dt
.dl
.dr_iv
, iv
, ZIO_DATA_IV_LEN
);
2958 memcpy(dr
->dt
.dl
.dr_mac
, mac
, ZIO_DATA_MAC_LEN
);
2962 dbuf_override_impl(dmu_buf_impl_t
*db
, const blkptr_t
*bp
, dmu_tx_t
*tx
)
2964 struct dirty_leaf
*dl
;
2965 dbuf_dirty_record_t
*dr
;
2967 dr
= list_head(&db
->db_dirty_records
);
2968 ASSERT3P(dr
, !=, NULL
);
2969 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
2971 dl
->dr_overridden_by
= *bp
;
2972 dl
->dr_override_state
= DR_OVERRIDDEN
;
2973 BP_SET_LOGICAL_BIRTH(&dl
->dr_overridden_by
, dr
->dr_txg
);
2977 dmu_buf_fill_done(dmu_buf_t
*dbuf
, dmu_tx_t
*tx
, boolean_t failed
)
2980 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbuf
;
2981 mutex_enter(&db
->db_mtx
);
2984 if (db
->db_state
== DB_FILL
) {
2985 if (db
->db_level
== 0 && db
->db_freed_in_flight
) {
2986 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
2987 /* we were freed while filling */
2988 /* XXX dbuf_undirty? */
2989 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
2990 db
->db_freed_in_flight
= FALSE
;
2991 db
->db_state
= DB_CACHED
;
2992 DTRACE_SET_STATE(db
,
2993 "fill done handling freed in flight");
2995 } else if (failed
) {
2996 VERIFY(!dbuf_undirty(db
, tx
));
2997 arc_buf_destroy(db
->db_buf
, db
);
2999 dbuf_clear_data(db
);
3000 DTRACE_SET_STATE(db
, "fill failed");
3002 db
->db_state
= DB_CACHED
;
3003 DTRACE_SET_STATE(db
, "fill done");
3005 cv_broadcast(&db
->db_changed
);
3007 db
->db_state
= DB_CACHED
;
3010 mutex_exit(&db
->db_mtx
);
3015 dmu_buf_write_embedded(dmu_buf_t
*dbuf
, void *data
,
3016 bp_embedded_type_t etype
, enum zio_compress comp
,
3017 int uncompressed_size
, int compressed_size
, int byteorder
,
3020 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbuf
;
3021 struct dirty_leaf
*dl
;
3022 dmu_object_type_t type
;
3023 dbuf_dirty_record_t
*dr
;
3025 if (etype
== BP_EMBEDDED_TYPE_DATA
) {
3026 ASSERT(spa_feature_is_active(dmu_objset_spa(db
->db_objset
),
3027 SPA_FEATURE_EMBEDDED_DATA
));
3031 type
= DB_DNODE(db
)->dn_type
;
3034 ASSERT0(db
->db_level
);
3035 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
3037 dmu_buf_will_not_fill(dbuf
, tx
);
3039 dr
= list_head(&db
->db_dirty_records
);
3040 ASSERT3P(dr
, !=, NULL
);
3041 ASSERT3U(dr
->dr_txg
, ==, tx
->tx_txg
);
3043 encode_embedded_bp_compressed(&dl
->dr_overridden_by
,
3044 data
, comp
, uncompressed_size
, compressed_size
);
3045 BPE_SET_ETYPE(&dl
->dr_overridden_by
, etype
);
3046 BP_SET_TYPE(&dl
->dr_overridden_by
, type
);
3047 BP_SET_LEVEL(&dl
->dr_overridden_by
, 0);
3048 BP_SET_BYTEORDER(&dl
->dr_overridden_by
, byteorder
);
3050 dl
->dr_override_state
= DR_OVERRIDDEN
;
3051 BP_SET_LOGICAL_BIRTH(&dl
->dr_overridden_by
, dr
->dr_txg
);
3055 dmu_buf_redact(dmu_buf_t
*dbuf
, dmu_tx_t
*tx
)
3057 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)dbuf
;
3058 dmu_object_type_t type
;
3059 ASSERT(dsl_dataset_feature_is_active(db
->db_objset
->os_dsl_dataset
,
3060 SPA_FEATURE_REDACTED_DATASETS
));
3063 type
= DB_DNODE(db
)->dn_type
;
3066 ASSERT0(db
->db_level
);
3067 dmu_buf_will_not_fill(dbuf
, tx
);
3069 blkptr_t bp
= { { { {0} } } };
3070 BP_SET_TYPE(&bp
, type
);
3071 BP_SET_LEVEL(&bp
, 0);
3072 BP_SET_BIRTH(&bp
, tx
->tx_txg
, 0);
3073 BP_SET_REDACTED(&bp
);
3074 BPE_SET_LSIZE(&bp
, dbuf
->db_size
);
3076 dbuf_override_impl(db
, &bp
, tx
);
3080 * Directly assign a provided arc buf to a given dbuf if it's not referenced
3081 * by anybody except our caller. Otherwise copy arcbuf's contents to dbuf.
3084 dbuf_assign_arcbuf(dmu_buf_impl_t
*db
, arc_buf_t
*buf
, dmu_tx_t
*tx
)
3086 ASSERT(!zfs_refcount_is_zero(&db
->db_holds
));
3087 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
3088 ASSERT(db
->db_level
== 0);
3089 ASSERT3U(dbuf_is_metadata(db
), ==, arc_is_metadata(buf
));
3090 ASSERT(buf
!= NULL
);
3091 ASSERT3U(arc_buf_lsize(buf
), ==, db
->db
.db_size
);
3092 ASSERT(tx
->tx_txg
!= 0);
3094 arc_return_buf(buf
, db
);
3095 ASSERT(arc_released(buf
));
3097 mutex_enter(&db
->db_mtx
);
3099 while (db
->db_state
== DB_READ
|| db
->db_state
== DB_FILL
)
3100 cv_wait(&db
->db_changed
, &db
->db_mtx
);
3102 ASSERT(db
->db_state
== DB_CACHED
|| db
->db_state
== DB_UNCACHED
||
3103 db
->db_state
== DB_NOFILL
);
3105 if (db
->db_state
== DB_CACHED
&&
3106 zfs_refcount_count(&db
->db_holds
) - 1 > db
->db_dirtycnt
) {
3108 * In practice, we will never have a case where we have an
3109 * encrypted arc buffer while additional holds exist on the
3110 * dbuf. We don't handle this here so we simply assert that
3113 ASSERT(!arc_is_encrypted(buf
));
3114 mutex_exit(&db
->db_mtx
);
3115 (void) dbuf_dirty(db
, tx
);
3116 memcpy(db
->db
.db_data
, buf
->b_data
, db
->db
.db_size
);
3117 arc_buf_destroy(buf
, db
);
3121 if (db
->db_state
== DB_CACHED
) {
3122 dbuf_dirty_record_t
*dr
= list_head(&db
->db_dirty_records
);
3124 ASSERT(db
->db_buf
!= NULL
);
3125 if (dr
!= NULL
&& dr
->dr_txg
== tx
->tx_txg
) {
3126 ASSERT(dr
->dt
.dl
.dr_data
== db
->db_buf
);
3128 if (!arc_released(db
->db_buf
)) {
3129 ASSERT(dr
->dt
.dl
.dr_override_state
==
3131 arc_release(db
->db_buf
, db
);
3133 dr
->dt
.dl
.dr_data
= buf
;
3134 arc_buf_destroy(db
->db_buf
, db
);
3135 } else if (dr
== NULL
|| dr
->dt
.dl
.dr_data
!= db
->db_buf
) {
3136 arc_release(db
->db_buf
, db
);
3137 arc_buf_destroy(db
->db_buf
, db
);
3140 } else if (db
->db_state
== DB_NOFILL
) {
3142 * We will be completely replacing the cloned block. In case
3143 * it was cloned in this transaction group, let's undirty the
3144 * pending clone and mark the block as uncached. This will be
3145 * as if the clone was never done.
3147 VERIFY(!dbuf_undirty(db
, tx
));
3148 db
->db_state
= DB_UNCACHED
;
3150 ASSERT(db
->db_buf
== NULL
);
3151 dbuf_set_data(db
, buf
);
3152 db
->db_state
= DB_FILL
;
3153 DTRACE_SET_STATE(db
, "filling assigned arcbuf");
3154 mutex_exit(&db
->db_mtx
);
3155 (void) dbuf_dirty(db
, tx
);
3156 dmu_buf_fill_done(&db
->db
, tx
, B_FALSE
);
3160 dbuf_destroy(dmu_buf_impl_t
*db
)
3163 dmu_buf_impl_t
*parent
= db
->db_parent
;
3164 dmu_buf_impl_t
*dndb
;
3166 ASSERT(MUTEX_HELD(&db
->db_mtx
));
3167 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
3169 if (db
->db_buf
!= NULL
) {
3170 arc_buf_destroy(db
->db_buf
, db
);
3174 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
3175 int slots
= DB_DNODE(db
)->dn_num_slots
;
3176 int bonuslen
= DN_SLOTS_TO_BONUSLEN(slots
);
3177 if (db
->db
.db_data
!= NULL
) {
3178 kmem_free(db
->db
.db_data
, bonuslen
);
3179 arc_space_return(bonuslen
, ARC_SPACE_BONUS
);
3180 db
->db_state
= DB_UNCACHED
;
3181 DTRACE_SET_STATE(db
, "buffer cleared");
3185 dbuf_clear_data(db
);
3187 if (multilist_link_active(&db
->db_cache_link
)) {
3188 ASSERT(db
->db_caching_status
== DB_DBUF_CACHE
||
3189 db
->db_caching_status
== DB_DBUF_METADATA_CACHE
);
3191 multilist_remove(&dbuf_caches
[db
->db_caching_status
].cache
, db
);
3193 ASSERT0(dmu_buf_user_size(&db
->db
));
3194 (void) zfs_refcount_remove_many(
3195 &dbuf_caches
[db
->db_caching_status
].size
,
3196 db
->db
.db_size
, db
);
3198 if (db
->db_caching_status
== DB_DBUF_METADATA_CACHE
) {
3199 DBUF_STAT_BUMPDOWN(metadata_cache_count
);
3201 DBUF_STAT_BUMPDOWN(cache_levels
[db
->db_level
]);
3202 DBUF_STAT_BUMPDOWN(cache_count
);
3203 DBUF_STAT_DECR(cache_levels_bytes
[db
->db_level
],
3206 db
->db_caching_status
= DB_NO_CACHE
;
3209 ASSERT(db
->db_state
== DB_UNCACHED
|| db
->db_state
== DB_NOFILL
);
3210 ASSERT(db
->db_data_pending
== NULL
);
3211 ASSERT(list_is_empty(&db
->db_dirty_records
));
3213 db
->db_state
= DB_EVICTING
;
3214 DTRACE_SET_STATE(db
, "buffer eviction started");
3215 db
->db_blkptr
= NULL
;
3218 * Now that db_state is DB_EVICTING, nobody else can find this via
3219 * the hash table. We can now drop db_mtx, which allows us to
3220 * acquire the dn_dbufs_mtx.
3222 mutex_exit(&db
->db_mtx
);
3227 if (db
->db_blkid
!= DMU_BONUS_BLKID
) {
3228 boolean_t needlock
= !MUTEX_HELD(&dn
->dn_dbufs_mtx
);
3230 mutex_enter_nested(&dn
->dn_dbufs_mtx
,
3232 avl_remove(&dn
->dn_dbufs
, db
);
3236 mutex_exit(&dn
->dn_dbufs_mtx
);
3238 * Decrementing the dbuf count means that the hold corresponding
3239 * to the removed dbuf is no longer discounted in dnode_move(),
3240 * so the dnode cannot be moved until after we release the hold.
3241 * The membar_producer() ensures visibility of the decremented
3242 * value in dnode_move(), since DB_DNODE_EXIT doesn't actually
3245 mutex_enter(&dn
->dn_mtx
);
3246 dnode_rele_and_unlock(dn
, db
, B_TRUE
);
3247 #ifdef USE_DNODE_HANDLE
3248 db
->db_dnode_handle
= NULL
;
3250 db
->db_dnode
= NULL
;
3253 dbuf_hash_remove(db
);
3258 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
3260 db
->db_parent
= NULL
;
3262 ASSERT(db
->db_buf
== NULL
);
3263 ASSERT(db
->db
.db_data
== NULL
);
3264 ASSERT(db
->db_hash_next
== NULL
);
3265 ASSERT(db
->db_blkptr
== NULL
);
3266 ASSERT(db
->db_data_pending
== NULL
);
3267 ASSERT3U(db
->db_caching_status
, ==, DB_NO_CACHE
);
3268 ASSERT(!multilist_link_active(&db
->db_cache_link
));
3271 * If this dbuf is referenced from an indirect dbuf,
3272 * decrement the ref count on the indirect dbuf.
3274 if (parent
&& parent
!= dndb
) {
3275 mutex_enter(&parent
->db_mtx
);
3276 dbuf_rele_and_unlock(parent
, db
, B_TRUE
);
3279 kmem_cache_free(dbuf_kmem_cache
, db
);
3280 arc_space_return(sizeof (dmu_buf_impl_t
), ARC_SPACE_DBUF
);
3284 * Note: While bpp will always be updated if the function returns success,
3285 * parentp will not be updated if the dnode does not have dn_dbuf filled in;
3286 * this happens when the dnode is the meta-dnode, or {user|group|project}used
3289 __attribute__((always_inline
))
3291 dbuf_findbp(dnode_t
*dn
, int level
, uint64_t blkid
, int fail_sparse
,
3292 dmu_buf_impl_t
**parentp
, blkptr_t
**bpp
)
3297 ASSERT(blkid
!= DMU_BONUS_BLKID
);
3299 if (blkid
== DMU_SPILL_BLKID
) {
3300 mutex_enter(&dn
->dn_mtx
);
3301 if (dn
->dn_have_spill
&&
3302 (dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
))
3303 *bpp
= DN_SPILL_BLKPTR(dn
->dn_phys
);
3306 dbuf_add_ref(dn
->dn_dbuf
, NULL
);
3307 *parentp
= dn
->dn_dbuf
;
3308 mutex_exit(&dn
->dn_mtx
);
3313 (dn
->dn_phys
->dn_nlevels
== 0) ? 1 : dn
->dn_phys
->dn_nlevels
;
3314 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
3316 ASSERT3U(level
* epbs
, <, 64);
3317 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3319 * This assertion shouldn't trip as long as the max indirect block size
3320 * is less than 1M. The reason for this is that up to that point,
3321 * the number of levels required to address an entire object with blocks
3322 * of size SPA_MINBLOCKSIZE satisfies nlevels * epbs + 1 <= 64. In
3323 * other words, if N * epbs + 1 > 64, then if (N-1) * epbs + 1 > 55
3324 * (i.e. we can address the entire object), objects will all use at most
3325 * N-1 levels and the assertion won't overflow. However, once epbs is
3326 * 13, 4 * 13 + 1 = 53, but 5 * 13 + 1 = 66. Then, 4 levels will not be
3327 * enough to address an entire object, so objects will have 5 levels,
3328 * but then this assertion will overflow.
3330 * All this is to say that if we ever increase DN_MAX_INDBLKSHIFT, we
3331 * need to redo this logic to handle overflows.
3333 ASSERT(level
>= nlevels
||
3334 ((nlevels
- level
- 1) * epbs
) +
3335 highbit64(dn
->dn_phys
->dn_nblkptr
) <= 64);
3336 if (level
>= nlevels
||
3337 blkid
>= ((uint64_t)dn
->dn_phys
->dn_nblkptr
<<
3338 ((nlevels
- level
- 1) * epbs
)) ||
3340 blkid
> (dn
->dn_phys
->dn_maxblkid
>> (level
* epbs
)))) {
3341 /* the buffer has no parent yet */
3342 return (SET_ERROR(ENOENT
));
3343 } else if (level
< nlevels
-1) {
3344 /* this block is referenced from an indirect block */
3347 err
= dbuf_hold_impl(dn
, level
+ 1,
3348 blkid
>> epbs
, fail_sparse
, FALSE
, NULL
, parentp
);
3352 err
= dbuf_read(*parentp
, NULL
,
3353 (DB_RF_HAVESTRUCT
| DB_RF_NOPREFETCH
| DB_RF_CANFAIL
));
3355 dbuf_rele(*parentp
, NULL
);
3359 rw_enter(&(*parentp
)->db_rwlock
, RW_READER
);
3360 *bpp
= ((blkptr_t
*)(*parentp
)->db
.db_data
) +
3361 (blkid
& ((1ULL << epbs
) - 1));
3362 if (blkid
> (dn
->dn_phys
->dn_maxblkid
>> (level
* epbs
)))
3363 ASSERT(BP_IS_HOLE(*bpp
));
3364 rw_exit(&(*parentp
)->db_rwlock
);
3367 /* the block is referenced from the dnode */
3368 ASSERT3U(level
, ==, nlevels
-1);
3369 ASSERT(dn
->dn_phys
->dn_nblkptr
== 0 ||
3370 blkid
< dn
->dn_phys
->dn_nblkptr
);
3372 dbuf_add_ref(dn
->dn_dbuf
, NULL
);
3373 *parentp
= dn
->dn_dbuf
;
3375 *bpp
= &dn
->dn_phys
->dn_blkptr
[blkid
];
3380 static dmu_buf_impl_t
*
3381 dbuf_create(dnode_t
*dn
, uint8_t level
, uint64_t blkid
,
3382 dmu_buf_impl_t
*parent
, blkptr_t
*blkptr
, uint64_t hash
)
3384 objset_t
*os
= dn
->dn_objset
;
3385 dmu_buf_impl_t
*db
, *odb
;
3387 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3388 ASSERT(dn
->dn_type
!= DMU_OT_NONE
);
3390 db
= kmem_cache_alloc(dbuf_kmem_cache
, KM_SLEEP
);
3392 list_create(&db
->db_dirty_records
, sizeof (dbuf_dirty_record_t
),
3393 offsetof(dbuf_dirty_record_t
, dr_dbuf_node
));
3396 db
->db
.db_object
= dn
->dn_object
;
3397 db
->db_level
= level
;
3398 db
->db_blkid
= blkid
;
3399 db
->db_dirtycnt
= 0;
3400 #ifdef USE_DNODE_HANDLE
3401 db
->db_dnode_handle
= dn
->dn_handle
;
3405 db
->db_parent
= parent
;
3406 db
->db_blkptr
= blkptr
;
3410 db
->db_user_immediate_evict
= FALSE
;
3411 db
->db_freed_in_flight
= FALSE
;
3412 db
->db_pending_evict
= FALSE
;
3414 if (blkid
== DMU_BONUS_BLKID
) {
3415 ASSERT3P(parent
, ==, dn
->dn_dbuf
);
3416 db
->db
.db_size
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
) -
3417 (dn
->dn_nblkptr
-1) * sizeof (blkptr_t
);
3418 ASSERT3U(db
->db
.db_size
, >=, dn
->dn_bonuslen
);
3419 db
->db
.db_offset
= DMU_BONUS_BLKID
;
3420 db
->db_state
= DB_UNCACHED
;
3421 DTRACE_SET_STATE(db
, "bonus buffer created");
3422 db
->db_caching_status
= DB_NO_CACHE
;
3423 /* the bonus dbuf is not placed in the hash table */
3424 arc_space_consume(sizeof (dmu_buf_impl_t
), ARC_SPACE_DBUF
);
3426 } else if (blkid
== DMU_SPILL_BLKID
) {
3427 db
->db
.db_size
= (blkptr
!= NULL
) ?
3428 BP_GET_LSIZE(blkptr
) : SPA_MINBLOCKSIZE
;
3429 db
->db
.db_offset
= 0;
3432 db
->db_level
? 1 << dn
->dn_indblkshift
: dn
->dn_datablksz
;
3433 db
->db
.db_size
= blocksize
;
3434 db
->db
.db_offset
= db
->db_blkid
* blocksize
;
3438 * Hold the dn_dbufs_mtx while we get the new dbuf
3439 * in the hash table *and* added to the dbufs list.
3440 * This prevents a possible deadlock with someone
3441 * trying to look up this dbuf before it's added to the
3444 mutex_enter(&dn
->dn_dbufs_mtx
);
3445 db
->db_state
= DB_EVICTING
; /* not worth logging this state change */
3446 if ((odb
= dbuf_hash_insert(db
)) != NULL
) {
3447 /* someone else inserted it first */
3448 mutex_exit(&dn
->dn_dbufs_mtx
);
3449 kmem_cache_free(dbuf_kmem_cache
, db
);
3450 DBUF_STAT_BUMP(hash_insert_race
);
3453 avl_add(&dn
->dn_dbufs
, db
);
3455 db
->db_state
= DB_UNCACHED
;
3456 DTRACE_SET_STATE(db
, "regular buffer created");
3457 db
->db_caching_status
= DB_NO_CACHE
;
3458 mutex_exit(&dn
->dn_dbufs_mtx
);
3459 arc_space_consume(sizeof (dmu_buf_impl_t
), ARC_SPACE_DBUF
);
3461 if (parent
&& parent
!= dn
->dn_dbuf
)
3462 dbuf_add_ref(parent
, db
);
3464 ASSERT(dn
->dn_object
== DMU_META_DNODE_OBJECT
||
3465 zfs_refcount_count(&dn
->dn_holds
) > 0);
3466 (void) zfs_refcount_add(&dn
->dn_holds
, db
);
3468 dprintf_dbuf(db
, "db=%p\n", db
);
3474 * This function returns a block pointer and information about the object,
3475 * given a dnode and a block. This is a publicly accessible version of
3476 * dbuf_findbp that only returns some information, rather than the
3477 * dbuf. Note that the dnode passed in must be held, and the dn_struct_rwlock
3478 * should be locked as (at least) a reader.
3481 dbuf_dnode_findbp(dnode_t
*dn
, uint64_t level
, uint64_t blkid
,
3482 blkptr_t
*bp
, uint16_t *datablkszsec
, uint8_t *indblkshift
)
3484 dmu_buf_impl_t
*dbp
= NULL
;
3487 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3489 err
= dbuf_findbp(dn
, level
, blkid
, B_FALSE
, &dbp
, &bp2
);
3491 ASSERT3P(bp2
, !=, NULL
);
3494 dbuf_rele(dbp
, NULL
);
3495 if (datablkszsec
!= NULL
)
3496 *datablkszsec
= dn
->dn_phys
->dn_datablkszsec
;
3497 if (indblkshift
!= NULL
)
3498 *indblkshift
= dn
->dn_phys
->dn_indblkshift
;
3504 typedef struct dbuf_prefetch_arg
{
3505 spa_t
*dpa_spa
; /* The spa to issue the prefetch in. */
3506 zbookmark_phys_t dpa_zb
; /* The target block to prefetch. */
3507 int dpa_epbs
; /* Entries (blkptr_t's) Per Block Shift. */
3508 int dpa_curlevel
; /* The current level that we're reading */
3509 dnode_t
*dpa_dnode
; /* The dnode associated with the prefetch */
3510 zio_priority_t dpa_prio
; /* The priority I/Os should be issued at. */
3511 zio_t
*dpa_zio
; /* The parent zio_t for all prefetches. */
3512 arc_flags_t dpa_aflags
; /* Flags to pass to the final prefetch. */
3513 dbuf_prefetch_fn dpa_cb
; /* prefetch completion callback */
3514 void *dpa_arg
; /* prefetch completion arg */
3515 } dbuf_prefetch_arg_t
;
3518 dbuf_prefetch_fini(dbuf_prefetch_arg_t
*dpa
, boolean_t io_done
)
3520 if (dpa
->dpa_cb
!= NULL
) {
3521 dpa
->dpa_cb(dpa
->dpa_arg
, dpa
->dpa_zb
.zb_level
,
3522 dpa
->dpa_zb
.zb_blkid
, io_done
);
3524 kmem_free(dpa
, sizeof (*dpa
));
3528 dbuf_issue_final_prefetch_done(zio_t
*zio
, const zbookmark_phys_t
*zb
,
3529 const blkptr_t
*iobp
, arc_buf_t
*abuf
, void *private)
3531 (void) zio
, (void) zb
, (void) iobp
;
3532 dbuf_prefetch_arg_t
*dpa
= private;
3535 arc_buf_destroy(abuf
, private);
3537 dbuf_prefetch_fini(dpa
, B_TRUE
);
3541 * Actually issue the prefetch read for the block given.
3544 dbuf_issue_final_prefetch(dbuf_prefetch_arg_t
*dpa
, blkptr_t
*bp
)
3546 ASSERT(!BP_IS_REDACTED(bp
) ||
3547 dsl_dataset_feature_is_active(
3548 dpa
->dpa_dnode
->dn_objset
->os_dsl_dataset
,
3549 SPA_FEATURE_REDACTED_DATASETS
));
3551 if (BP_IS_HOLE(bp
) || BP_IS_EMBEDDED(bp
) || BP_IS_REDACTED(bp
))
3552 return (dbuf_prefetch_fini(dpa
, B_FALSE
));
3554 int zio_flags
= ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
;
3555 arc_flags_t aflags
=
3556 dpa
->dpa_aflags
| ARC_FLAG_NOWAIT
| ARC_FLAG_PREFETCH
|
3559 /* dnodes are always read as raw and then converted later */
3560 if (BP_GET_TYPE(bp
) == DMU_OT_DNODE
&& BP_IS_PROTECTED(bp
) &&
3561 dpa
->dpa_curlevel
== 0)
3562 zio_flags
|= ZIO_FLAG_RAW
;
3564 ASSERT3U(dpa
->dpa_curlevel
, ==, BP_GET_LEVEL(bp
));
3565 ASSERT3U(dpa
->dpa_curlevel
, ==, dpa
->dpa_zb
.zb_level
);
3566 ASSERT(dpa
->dpa_zio
!= NULL
);
3567 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
, bp
,
3568 dbuf_issue_final_prefetch_done
, dpa
,
3569 dpa
->dpa_prio
, zio_flags
, &aflags
, &dpa
->dpa_zb
);
3573 * Called when an indirect block above our prefetch target is read in. This
3574 * will either read in the next indirect block down the tree or issue the actual
3575 * prefetch if the next block down is our target.
3578 dbuf_prefetch_indirect_done(zio_t
*zio
, const zbookmark_phys_t
*zb
,
3579 const blkptr_t
*iobp
, arc_buf_t
*abuf
, void *private)
3581 (void) zb
, (void) iobp
;
3582 dbuf_prefetch_arg_t
*dpa
= private;
3584 ASSERT3S(dpa
->dpa_zb
.zb_level
, <, dpa
->dpa_curlevel
);
3585 ASSERT3S(dpa
->dpa_curlevel
, >, 0);
3588 ASSERT(zio
== NULL
|| zio
->io_error
!= 0);
3589 dbuf_prefetch_fini(dpa
, B_TRUE
);
3592 ASSERT(zio
== NULL
|| zio
->io_error
== 0);
3595 * The dpa_dnode is only valid if we are called with a NULL
3596 * zio. This indicates that the arc_read() returned without
3597 * first calling zio_read() to issue a physical read. Once
3598 * a physical read is made the dpa_dnode must be invalidated
3599 * as the locks guarding it may have been dropped. If the
3600 * dpa_dnode is still valid, then we want to add it to the dbuf
3601 * cache. To do so, we must hold the dbuf associated with the block
3602 * we just prefetched, read its contents so that we associate it
3603 * with an arc_buf_t, and then release it.
3606 ASSERT3S(BP_GET_LEVEL(zio
->io_bp
), ==, dpa
->dpa_curlevel
);
3607 if (zio
->io_flags
& ZIO_FLAG_RAW_COMPRESS
) {
3608 ASSERT3U(BP_GET_PSIZE(zio
->io_bp
), ==, zio
->io_size
);
3610 ASSERT3U(BP_GET_LSIZE(zio
->io_bp
), ==, zio
->io_size
);
3612 ASSERT3P(zio
->io_spa
, ==, dpa
->dpa_spa
);
3614 dpa
->dpa_dnode
= NULL
;
3615 } else if (dpa
->dpa_dnode
!= NULL
) {
3616 uint64_t curblkid
= dpa
->dpa_zb
.zb_blkid
>>
3617 (dpa
->dpa_epbs
* (dpa
->dpa_curlevel
-
3618 dpa
->dpa_zb
.zb_level
));
3619 dmu_buf_impl_t
*db
= dbuf_hold_level(dpa
->dpa_dnode
,
3620 dpa
->dpa_curlevel
, curblkid
, FTAG
);
3622 arc_buf_destroy(abuf
, private);
3623 dbuf_prefetch_fini(dpa
, B_TRUE
);
3626 (void) dbuf_read(db
, NULL
,
3627 DB_RF_MUST_SUCCEED
| DB_RF_NOPREFETCH
| DB_RF_HAVESTRUCT
);
3628 dbuf_rele(db
, FTAG
);
3631 dpa
->dpa_curlevel
--;
3632 uint64_t nextblkid
= dpa
->dpa_zb
.zb_blkid
>>
3633 (dpa
->dpa_epbs
* (dpa
->dpa_curlevel
- dpa
->dpa_zb
.zb_level
));
3634 blkptr_t
*bp
= ((blkptr_t
*)abuf
->b_data
) +
3635 P2PHASE(nextblkid
, 1ULL << dpa
->dpa_epbs
);
3637 ASSERT(!BP_IS_REDACTED(bp
) || (dpa
->dpa_dnode
&&
3638 dsl_dataset_feature_is_active(
3639 dpa
->dpa_dnode
->dn_objset
->os_dsl_dataset
,
3640 SPA_FEATURE_REDACTED_DATASETS
)));
3641 if (BP_IS_HOLE(bp
) || BP_IS_REDACTED(bp
)) {
3642 arc_buf_destroy(abuf
, private);
3643 dbuf_prefetch_fini(dpa
, B_TRUE
);
3645 } else if (dpa
->dpa_curlevel
== dpa
->dpa_zb
.zb_level
) {
3646 ASSERT3U(nextblkid
, ==, dpa
->dpa_zb
.zb_blkid
);
3647 dbuf_issue_final_prefetch(dpa
, bp
);
3649 arc_flags_t iter_aflags
= ARC_FLAG_NOWAIT
;
3650 zbookmark_phys_t zb
;
3652 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3653 if (dpa
->dpa_aflags
& ARC_FLAG_L2CACHE
)
3654 iter_aflags
|= ARC_FLAG_L2CACHE
;
3656 ASSERT3U(dpa
->dpa_curlevel
, ==, BP_GET_LEVEL(bp
));
3658 SET_BOOKMARK(&zb
, dpa
->dpa_zb
.zb_objset
,
3659 dpa
->dpa_zb
.zb_object
, dpa
->dpa_curlevel
, nextblkid
);
3661 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
,
3662 bp
, dbuf_prefetch_indirect_done
, dpa
,
3663 ZIO_PRIORITY_SYNC_READ
,
3664 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
3668 arc_buf_destroy(abuf
, private);
3672 * Issue prefetch reads for the given block on the given level. If the indirect
3673 * blocks above that block are not in memory, we will read them in
3674 * asynchronously. As a result, this call never blocks waiting for a read to
3675 * complete. Note that the prefetch might fail if the dataset is encrypted and
3676 * the encryption key is unmapped before the IO completes.
3679 dbuf_prefetch_impl(dnode_t
*dn
, int64_t level
, uint64_t blkid
,
3680 zio_priority_t prio
, arc_flags_t aflags
, dbuf_prefetch_fn cb
,
3684 int epbs
, nlevels
, curlevel
;
3687 ASSERT(blkid
!= DMU_BONUS_BLKID
);
3688 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3690 if (blkid
> dn
->dn_maxblkid
)
3693 if (level
== 0 && dnode_block_freed(dn
, blkid
))
3697 * This dnode hasn't been written to disk yet, so there's nothing to
3700 nlevels
= dn
->dn_phys
->dn_nlevels
;
3701 if (level
>= nlevels
|| dn
->dn_phys
->dn_nblkptr
== 0)
3704 epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
3705 if (dn
->dn_phys
->dn_maxblkid
< blkid
<< (epbs
* level
))
3708 dmu_buf_impl_t
*db
= dbuf_find(dn
->dn_objset
, dn
->dn_object
,
3709 level
, blkid
, NULL
);
3711 mutex_exit(&db
->db_mtx
);
3713 * This dbuf already exists. It is either CACHED, or
3714 * (we assume) about to be read or filled.
3720 * Find the closest ancestor (indirect block) of the target block
3721 * that is present in the cache. In this indirect block, we will
3722 * find the bp that is at curlevel, curblkid.
3726 while (curlevel
< nlevels
- 1) {
3727 int parent_level
= curlevel
+ 1;
3728 uint64_t parent_blkid
= curblkid
>> epbs
;
3731 if (dbuf_hold_impl(dn
, parent_level
, parent_blkid
,
3732 FALSE
, TRUE
, FTAG
, &db
) == 0) {
3733 blkptr_t
*bpp
= db
->db_buf
->b_data
;
3734 bp
= bpp
[P2PHASE(curblkid
, 1 << epbs
)];
3735 dbuf_rele(db
, FTAG
);
3739 curlevel
= parent_level
;
3740 curblkid
= parent_blkid
;
3743 if (curlevel
== nlevels
- 1) {
3744 /* No cached indirect blocks found. */
3745 ASSERT3U(curblkid
, <, dn
->dn_phys
->dn_nblkptr
);
3746 bp
= dn
->dn_phys
->dn_blkptr
[curblkid
];
3748 ASSERT(!BP_IS_REDACTED(&bp
) ||
3749 dsl_dataset_feature_is_active(dn
->dn_objset
->os_dsl_dataset
,
3750 SPA_FEATURE_REDACTED_DATASETS
));
3751 if (BP_IS_HOLE(&bp
) || BP_IS_REDACTED(&bp
))
3754 ASSERT3U(curlevel
, ==, BP_GET_LEVEL(&bp
));
3756 zio_t
*pio
= zio_root(dmu_objset_spa(dn
->dn_objset
), NULL
, NULL
,
3759 dbuf_prefetch_arg_t
*dpa
= kmem_zalloc(sizeof (*dpa
), KM_SLEEP
);
3760 dsl_dataset_t
*ds
= dn
->dn_objset
->os_dsl_dataset
;
3761 SET_BOOKMARK(&dpa
->dpa_zb
, ds
!= NULL
? ds
->ds_object
: DMU_META_OBJSET
,
3762 dn
->dn_object
, level
, blkid
);
3763 dpa
->dpa_curlevel
= curlevel
;
3764 dpa
->dpa_prio
= prio
;
3765 dpa
->dpa_aflags
= aflags
;
3766 dpa
->dpa_spa
= dn
->dn_objset
->os_spa
;
3767 dpa
->dpa_dnode
= dn
;
3768 dpa
->dpa_epbs
= epbs
;
3773 if (!DNODE_LEVEL_IS_CACHEABLE(dn
, level
))
3774 dpa
->dpa_aflags
|= ARC_FLAG_UNCACHED
;
3775 else if (dnode_level_is_l2cacheable(&bp
, dn
, level
))
3776 dpa
->dpa_aflags
|= ARC_FLAG_L2CACHE
;
3779 * If we have the indirect just above us, no need to do the asynchronous
3780 * prefetch chain; we'll just run the last step ourselves. If we're at
3781 * a higher level, though, we want to issue the prefetches for all the
3782 * indirect blocks asynchronously, so we can go on with whatever we were
3785 if (curlevel
== level
) {
3786 ASSERT3U(curblkid
, ==, blkid
);
3787 dbuf_issue_final_prefetch(dpa
, &bp
);
3789 arc_flags_t iter_aflags
= ARC_FLAG_NOWAIT
;
3790 zbookmark_phys_t zb
;
3792 /* flag if L2ARC eligible, l2arc_noprefetch then decides */
3793 if (dnode_level_is_l2cacheable(&bp
, dn
, level
))
3794 iter_aflags
|= ARC_FLAG_L2CACHE
;
3796 SET_BOOKMARK(&zb
, ds
!= NULL
? ds
->ds_object
: DMU_META_OBJSET
,
3797 dn
->dn_object
, curlevel
, curblkid
);
3798 (void) arc_read(dpa
->dpa_zio
, dpa
->dpa_spa
,
3799 &bp
, dbuf_prefetch_indirect_done
, dpa
,
3800 ZIO_PRIORITY_SYNC_READ
,
3801 ZIO_FLAG_CANFAIL
| ZIO_FLAG_SPECULATIVE
,
3805 * We use pio here instead of dpa_zio since it's possible that
3806 * dpa may have already been freed.
3812 cb(arg
, level
, blkid
, B_FALSE
);
3817 dbuf_prefetch(dnode_t
*dn
, int64_t level
, uint64_t blkid
, zio_priority_t prio
,
3821 return (dbuf_prefetch_impl(dn
, level
, blkid
, prio
, aflags
, NULL
, NULL
));
3825 * Helper function for dbuf_hold_impl() to copy a buffer. Handles
3826 * the case of encrypted, compressed and uncompressed buffers by
3827 * allocating the new buffer, respectively, with arc_alloc_raw_buf(),
3828 * arc_alloc_compressed_buf() or arc_alloc_buf().*
3830 * NOTE: Declared noinline to avoid stack bloat in dbuf_hold_impl().
3832 noinline
static void
3833 dbuf_hold_copy(dnode_t
*dn
, dmu_buf_impl_t
*db
)
3835 dbuf_dirty_record_t
*dr
= db
->db_data_pending
;
3836 arc_buf_t
*data
= dr
->dt
.dl
.dr_data
;
3837 enum zio_compress compress_type
= arc_get_compression(data
);
3838 uint8_t complevel
= arc_get_complevel(data
);
3840 if (arc_is_encrypted(data
)) {
3841 boolean_t byteorder
;
3842 uint8_t salt
[ZIO_DATA_SALT_LEN
];
3843 uint8_t iv
[ZIO_DATA_IV_LEN
];
3844 uint8_t mac
[ZIO_DATA_MAC_LEN
];
3846 arc_get_raw_params(data
, &byteorder
, salt
, iv
, mac
);
3847 dbuf_set_data(db
, arc_alloc_raw_buf(dn
->dn_objset
->os_spa
, db
,
3848 dmu_objset_id(dn
->dn_objset
), byteorder
, salt
, iv
, mac
,
3849 dn
->dn_type
, arc_buf_size(data
), arc_buf_lsize(data
),
3850 compress_type
, complevel
));
3851 } else if (compress_type
!= ZIO_COMPRESS_OFF
) {
3852 dbuf_set_data(db
, arc_alloc_compressed_buf(
3853 dn
->dn_objset
->os_spa
, db
, arc_buf_size(data
),
3854 arc_buf_lsize(data
), compress_type
, complevel
));
3856 dbuf_set_data(db
, arc_alloc_buf(dn
->dn_objset
->os_spa
, db
,
3857 DBUF_GET_BUFC_TYPE(db
), db
->db
.db_size
));
3860 rw_enter(&db
->db_rwlock
, RW_WRITER
);
3861 memcpy(db
->db
.db_data
, data
->b_data
, arc_buf_size(data
));
3862 rw_exit(&db
->db_rwlock
);
3866 * Returns with db_holds incremented, and db_mtx not held.
3867 * Note: dn_struct_rwlock must be held.
3870 dbuf_hold_impl(dnode_t
*dn
, uint8_t level
, uint64_t blkid
,
3871 boolean_t fail_sparse
, boolean_t fail_uncached
,
3872 const void *tag
, dmu_buf_impl_t
**dbp
)
3874 dmu_buf_impl_t
*db
, *parent
= NULL
;
3877 /* If the pool has been created, verify the tx_sync_lock is not held */
3878 spa_t
*spa
= dn
->dn_objset
->os_spa
;
3879 dsl_pool_t
*dp
= spa
->spa_dsl_pool
;
3881 ASSERT(!MUTEX_HELD(&dp
->dp_tx
.tx_sync_lock
));
3884 ASSERT(blkid
!= DMU_BONUS_BLKID
);
3885 ASSERT(RW_LOCK_HELD(&dn
->dn_struct_rwlock
));
3886 ASSERT3U(dn
->dn_nlevels
, >, level
);
3890 /* dbuf_find() returns with db_mtx held */
3891 db
= dbuf_find(dn
->dn_objset
, dn
->dn_object
, level
, blkid
, &hv
);
3894 blkptr_t
*bp
= NULL
;
3898 return (SET_ERROR(ENOENT
));
3900 ASSERT3P(parent
, ==, NULL
);
3901 err
= dbuf_findbp(dn
, level
, blkid
, fail_sparse
, &parent
, &bp
);
3903 if (err
== 0 && bp
&& BP_IS_HOLE(bp
))
3904 err
= SET_ERROR(ENOENT
);
3907 dbuf_rele(parent
, NULL
);
3911 if (err
&& err
!= ENOENT
)
3913 db
= dbuf_create(dn
, level
, blkid
, parent
, bp
, hv
);
3916 if (fail_uncached
&& db
->db_state
!= DB_CACHED
) {
3917 mutex_exit(&db
->db_mtx
);
3918 return (SET_ERROR(ENOENT
));
3921 if (db
->db_buf
!= NULL
) {
3922 arc_buf_access(db
->db_buf
);
3923 ASSERT3P(db
->db
.db_data
, ==, db
->db_buf
->b_data
);
3926 ASSERT(db
->db_buf
== NULL
|| arc_referenced(db
->db_buf
));
3929 * If this buffer is currently syncing out, and we are
3930 * still referencing it from db_data, we need to make a copy
3931 * of it in case we decide we want to dirty it again in this txg.
3933 if (db
->db_level
== 0 && db
->db_blkid
!= DMU_BONUS_BLKID
&&
3934 dn
->dn_object
!= DMU_META_DNODE_OBJECT
&&
3935 db
->db_state
== DB_CACHED
&& db
->db_data_pending
) {
3936 dbuf_dirty_record_t
*dr
= db
->db_data_pending
;
3937 if (dr
->dt
.dl
.dr_data
== db
->db_buf
) {
3938 ASSERT3P(db
->db_buf
, !=, NULL
);
3939 dbuf_hold_copy(dn
, db
);
3943 if (multilist_link_active(&db
->db_cache_link
)) {
3944 ASSERT(zfs_refcount_is_zero(&db
->db_holds
));
3945 ASSERT(db
->db_caching_status
== DB_DBUF_CACHE
||
3946 db
->db_caching_status
== DB_DBUF_METADATA_CACHE
);
3948 multilist_remove(&dbuf_caches
[db
->db_caching_status
].cache
, db
);
3950 uint64_t size
= db
->db
.db_size
;
3951 uint64_t usize
= dmu_buf_user_size(&db
->db
);
3952 (void) zfs_refcount_remove_many(
3953 &dbuf_caches
[db
->db_caching_status
].size
, size
, db
);
3954 (void) zfs_refcount_remove_many(
3955 &dbuf_caches
[db
->db_caching_status
].size
, usize
,
3958 if (db
->db_caching_status
== DB_DBUF_METADATA_CACHE
) {
3959 DBUF_STAT_BUMPDOWN(metadata_cache_count
);
3961 DBUF_STAT_BUMPDOWN(cache_levels
[db
->db_level
]);
3962 DBUF_STAT_BUMPDOWN(cache_count
);
3963 DBUF_STAT_DECR(cache_levels_bytes
[db
->db_level
],
3966 db
->db_caching_status
= DB_NO_CACHE
;
3968 (void) zfs_refcount_add(&db
->db_holds
, tag
);
3970 mutex_exit(&db
->db_mtx
);
3972 /* NOTE: we can't rele the parent until after we drop the db_mtx */
3974 dbuf_rele(parent
, NULL
);
3976 ASSERT3P(DB_DNODE(db
), ==, dn
);
3977 ASSERT3U(db
->db_blkid
, ==, blkid
);
3978 ASSERT3U(db
->db_level
, ==, level
);
3985 dbuf_hold(dnode_t
*dn
, uint64_t blkid
, const void *tag
)
3987 return (dbuf_hold_level(dn
, 0, blkid
, tag
));
3991 dbuf_hold_level(dnode_t
*dn
, int level
, uint64_t blkid
, const void *tag
)
3994 int err
= dbuf_hold_impl(dn
, level
, blkid
, FALSE
, FALSE
, tag
, &db
);
3995 return (err
? NULL
: db
);
3999 dbuf_create_bonus(dnode_t
*dn
)
4001 ASSERT(RW_WRITE_HELD(&dn
->dn_struct_rwlock
));
4003 ASSERT(dn
->dn_bonus
== NULL
);
4004 dn
->dn_bonus
= dbuf_create(dn
, 0, DMU_BONUS_BLKID
, dn
->dn_dbuf
, NULL
,
4005 dbuf_hash(dn
->dn_objset
, dn
->dn_object
, 0, DMU_BONUS_BLKID
));
4009 dbuf_spill_set_blksz(dmu_buf_t
*db_fake
, uint64_t blksz
, dmu_tx_t
*tx
)
4011 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
4013 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
4014 return (SET_ERROR(ENOTSUP
));
4016 blksz
= SPA_MINBLOCKSIZE
;
4017 ASSERT3U(blksz
, <=, spa_maxblocksize(dmu_objset_spa(db
->db_objset
)));
4018 blksz
= P2ROUNDUP(blksz
, SPA_MINBLOCKSIZE
);
4020 dbuf_new_size(db
, blksz
, tx
);
4026 dbuf_rm_spill(dnode_t
*dn
, dmu_tx_t
*tx
)
4028 dbuf_free_range(dn
, DMU_SPILL_BLKID
, DMU_SPILL_BLKID
, tx
);
4031 #pragma weak dmu_buf_add_ref = dbuf_add_ref
4033 dbuf_add_ref(dmu_buf_impl_t
*db
, const void *tag
)
4035 int64_t holds
= zfs_refcount_add(&db
->db_holds
, tag
);
4036 VERIFY3S(holds
, >, 1);
4039 #pragma weak dmu_buf_try_add_ref = dbuf_try_add_ref
4041 dbuf_try_add_ref(dmu_buf_t
*db_fake
, objset_t
*os
, uint64_t obj
, uint64_t blkid
,
4044 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
4045 dmu_buf_impl_t
*found_db
;
4046 boolean_t result
= B_FALSE
;
4048 if (blkid
== DMU_BONUS_BLKID
)
4049 found_db
= dbuf_find_bonus(os
, obj
);
4051 found_db
= dbuf_find(os
, obj
, 0, blkid
, NULL
);
4053 if (found_db
!= NULL
) {
4054 if (db
== found_db
&& dbuf_refcount(db
) > db
->db_dirtycnt
) {
4055 (void) zfs_refcount_add(&db
->db_holds
, tag
);
4058 mutex_exit(&found_db
->db_mtx
);
4064 * If you call dbuf_rele() you had better not be referencing the dnode handle
4065 * unless you have some other direct or indirect hold on the dnode. (An indirect
4066 * hold is a hold on one of the dnode's dbufs, including the bonus buffer.)
4067 * Without that, the dbuf_rele() could lead to a dnode_rele() followed by the
4068 * dnode's parent dbuf evicting its dnode handles.
4071 dbuf_rele(dmu_buf_impl_t
*db
, const void *tag
)
4073 mutex_enter(&db
->db_mtx
);
4074 dbuf_rele_and_unlock(db
, tag
, B_FALSE
);
4078 dmu_buf_rele(dmu_buf_t
*db
, const void *tag
)
4080 dbuf_rele((dmu_buf_impl_t
*)db
, tag
);
4084 * dbuf_rele() for an already-locked dbuf. This is necessary to allow
4085 * db_dirtycnt and db_holds to be updated atomically. The 'evicting'
4086 * argument should be set if we are already in the dbuf-evicting code
4087 * path, in which case we don't want to recursively evict. This allows us to
4088 * avoid deeply nested stacks that would have a call flow similar to this:
4090 * dbuf_rele()-->dbuf_rele_and_unlock()-->dbuf_evict_notify()
4093 * +-----dbuf_destroy()<--dbuf_evict_one()<--------+
4097 dbuf_rele_and_unlock(dmu_buf_impl_t
*db
, const void *tag
, boolean_t evicting
)
4102 ASSERT(MUTEX_HELD(&db
->db_mtx
));
4106 * Remove the reference to the dbuf before removing its hold on the
4107 * dnode so we can guarantee in dnode_move() that a referenced bonus
4108 * buffer has a corresponding dnode hold.
4110 holds
= zfs_refcount_remove(&db
->db_holds
, tag
);
4114 * We can't freeze indirects if there is a possibility that they
4115 * may be modified in the current syncing context.
4117 if (db
->db_buf
!= NULL
&&
4118 holds
== (db
->db_level
== 0 ? db
->db_dirtycnt
: 0)) {
4119 arc_buf_freeze(db
->db_buf
);
4122 if (holds
== db
->db_dirtycnt
&&
4123 db
->db_level
== 0 && db
->db_user_immediate_evict
)
4124 dbuf_evict_user(db
);
4127 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
4129 boolean_t evict_dbuf
= db
->db_pending_evict
;
4132 * If the dnode moves here, we cannot cross this
4133 * barrier until the move completes.
4138 atomic_dec_32(&dn
->dn_dbufs_count
);
4141 * Decrementing the dbuf count means that the bonus
4142 * buffer's dnode hold is no longer discounted in
4143 * dnode_move(). The dnode cannot move until after
4144 * the dnode_rele() below.
4149 * Do not reference db after its lock is dropped.
4150 * Another thread may evict it.
4152 mutex_exit(&db
->db_mtx
);
4155 dnode_evict_bonus(dn
);
4158 } else if (db
->db_buf
== NULL
) {
4160 * This is a special case: we never associated this
4161 * dbuf with any data allocated from the ARC.
4163 ASSERT(db
->db_state
== DB_UNCACHED
||
4164 db
->db_state
== DB_NOFILL
);
4166 } else if (arc_released(db
->db_buf
)) {
4168 * This dbuf has anonymous data associated with it.
4171 } else if (!(DBUF_IS_CACHEABLE(db
) || db
->db_partial_read
) ||
4172 db
->db_pending_evict
) {
4174 } else if (!multilist_link_active(&db
->db_cache_link
)) {
4175 ASSERT3U(db
->db_caching_status
, ==, DB_NO_CACHE
);
4177 dbuf_cached_state_t dcs
=
4178 dbuf_include_in_metadata_cache(db
) ?
4179 DB_DBUF_METADATA_CACHE
: DB_DBUF_CACHE
;
4180 db
->db_caching_status
= dcs
;
4182 multilist_insert(&dbuf_caches
[dcs
].cache
, db
);
4183 uint64_t db_size
= db
->db
.db_size
;
4184 uint64_t dbu_size
= dmu_buf_user_size(&db
->db
);
4185 (void) zfs_refcount_add_many(
4186 &dbuf_caches
[dcs
].size
, db_size
, db
);
4187 size
= zfs_refcount_add_many(
4188 &dbuf_caches
[dcs
].size
, dbu_size
, db
->db_user
);
4189 uint8_t db_level
= db
->db_level
;
4190 mutex_exit(&db
->db_mtx
);
4192 if (dcs
== DB_DBUF_METADATA_CACHE
) {
4193 DBUF_STAT_BUMP(metadata_cache_count
);
4194 DBUF_STAT_MAX(metadata_cache_size_bytes_max
,
4197 DBUF_STAT_BUMP(cache_count
);
4198 DBUF_STAT_MAX(cache_size_bytes_max
, size
);
4199 DBUF_STAT_BUMP(cache_levels
[db_level
]);
4200 DBUF_STAT_INCR(cache_levels_bytes
[db_level
],
4201 db_size
+ dbu_size
);
4204 if (dcs
== DB_DBUF_CACHE
&& !evicting
)
4205 dbuf_evict_notify(size
);
4208 mutex_exit(&db
->db_mtx
);
4212 #pragma weak dmu_buf_refcount = dbuf_refcount
4214 dbuf_refcount(dmu_buf_impl_t
*db
)
4216 return (zfs_refcount_count(&db
->db_holds
));
4220 dmu_buf_user_refcount(dmu_buf_t
*db_fake
)
4223 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
4225 mutex_enter(&db
->db_mtx
);
4226 ASSERT3U(zfs_refcount_count(&db
->db_holds
), >=, db
->db_dirtycnt
);
4227 holds
= zfs_refcount_count(&db
->db_holds
) - db
->db_dirtycnt
;
4228 mutex_exit(&db
->db_mtx
);
4234 dmu_buf_replace_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*old_user
,
4235 dmu_buf_user_t
*new_user
)
4237 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
4239 mutex_enter(&db
->db_mtx
);
4240 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
4241 if (db
->db_user
== old_user
)
4242 db
->db_user
= new_user
;
4244 old_user
= db
->db_user
;
4245 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
4246 mutex_exit(&db
->db_mtx
);
4252 dmu_buf_set_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
4254 return (dmu_buf_replace_user(db_fake
, NULL
, user
));
4258 dmu_buf_set_user_ie(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
4260 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
4262 db
->db_user_immediate_evict
= TRUE
;
4263 return (dmu_buf_set_user(db_fake
, user
));
4267 dmu_buf_remove_user(dmu_buf_t
*db_fake
, dmu_buf_user_t
*user
)
4269 return (dmu_buf_replace_user(db_fake
, user
, NULL
));
4273 dmu_buf_get_user(dmu_buf_t
*db_fake
)
4275 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
4277 dbuf_verify_user(db
, DBVU_NOT_EVICTING
);
4278 return (db
->db_user
);
4282 dmu_buf_user_size(dmu_buf_t
*db_fake
)
4284 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
4285 if (db
->db_user
== NULL
)
4287 return (atomic_load_64(&db
->db_user
->dbu_size
));
4291 dmu_buf_add_user_size(dmu_buf_t
*db_fake
, uint64_t nadd
)
4293 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
4294 ASSERT3U(db
->db_caching_status
, ==, DB_NO_CACHE
);
4295 ASSERT3P(db
->db_user
, !=, NULL
);
4296 ASSERT3U(atomic_load_64(&db
->db_user
->dbu_size
), <, UINT64_MAX
- nadd
);
4297 atomic_add_64(&db
->db_user
->dbu_size
, nadd
);
4301 dmu_buf_sub_user_size(dmu_buf_t
*db_fake
, uint64_t nsub
)
4303 dmu_buf_impl_t
*db
= (dmu_buf_impl_t
*)db_fake
;
4304 ASSERT3U(db
->db_caching_status
, ==, DB_NO_CACHE
);
4305 ASSERT3P(db
->db_user
, !=, NULL
);
4306 ASSERT3U(atomic_load_64(&db
->db_user
->dbu_size
), >=, nsub
);
4307 atomic_sub_64(&db
->db_user
->dbu_size
, nsub
);
4311 dmu_buf_user_evict_wait(void)
4313 taskq_wait(dbu_evict_taskq
);
4317 dmu_buf_get_blkptr(dmu_buf_t
*db
)
4319 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
4320 return (dbi
->db_blkptr
);
4324 dmu_buf_get_objset(dmu_buf_t
*db
)
4326 dmu_buf_impl_t
*dbi
= (dmu_buf_impl_t
*)db
;
4327 return (dbi
->db_objset
);
4331 dbuf_check_blkptr(dnode_t
*dn
, dmu_buf_impl_t
*db
)
4333 /* ASSERT(dmu_tx_is_syncing(tx) */
4334 ASSERT(MUTEX_HELD(&db
->db_mtx
));
4336 if (db
->db_blkptr
!= NULL
)
4339 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
4340 db
->db_blkptr
= DN_SPILL_BLKPTR(dn
->dn_phys
);
4341 BP_ZERO(db
->db_blkptr
);
4344 if (db
->db_level
== dn
->dn_phys
->dn_nlevels
-1) {
4346 * This buffer was allocated at a time when there was
4347 * no available blkptrs from the dnode, or it was
4348 * inappropriate to hook it in (i.e., nlevels mismatch).
4350 ASSERT(db
->db_blkid
< dn
->dn_phys
->dn_nblkptr
);
4351 ASSERT(db
->db_parent
== NULL
);
4352 db
->db_parent
= dn
->dn_dbuf
;
4353 db
->db_blkptr
= &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
];
4356 dmu_buf_impl_t
*parent
= db
->db_parent
;
4357 int epbs
= dn
->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
4359 ASSERT(dn
->dn_phys
->dn_nlevels
> 1);
4360 if (parent
== NULL
) {
4361 mutex_exit(&db
->db_mtx
);
4362 rw_enter(&dn
->dn_struct_rwlock
, RW_READER
);
4363 parent
= dbuf_hold_level(dn
, db
->db_level
+ 1,
4364 db
->db_blkid
>> epbs
, db
);
4365 rw_exit(&dn
->dn_struct_rwlock
);
4366 mutex_enter(&db
->db_mtx
);
4367 db
->db_parent
= parent
;
4369 db
->db_blkptr
= (blkptr_t
*)parent
->db
.db_data
+
4370 (db
->db_blkid
& ((1ULL << epbs
) - 1));
4376 dbuf_sync_bonus(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4378 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4379 void *data
= dr
->dt
.dl
.dr_data
;
4381 ASSERT0(db
->db_level
);
4382 ASSERT(MUTEX_HELD(&db
->db_mtx
));
4383 ASSERT(db
->db_blkid
== DMU_BONUS_BLKID
);
4384 ASSERT(data
!= NULL
);
4386 dnode_t
*dn
= dr
->dr_dnode
;
4387 ASSERT3U(DN_MAX_BONUS_LEN(dn
->dn_phys
), <=,
4388 DN_SLOTS_TO_BONUSLEN(dn
->dn_phys
->dn_extra_slots
+ 1));
4389 memcpy(DN_BONUS(dn
->dn_phys
), data
, DN_MAX_BONUS_LEN(dn
->dn_phys
));
4391 dbuf_sync_leaf_verify_bonus_dnode(dr
);
4393 dbuf_undirty_bonus(dr
);
4394 dbuf_rele_and_unlock(db
, (void *)(uintptr_t)tx
->tx_txg
, B_FALSE
);
4398 * When syncing out a blocks of dnodes, adjust the block to deal with
4399 * encryption. Normally, we make sure the block is decrypted before writing
4400 * it. If we have crypt params, then we are writing a raw (encrypted) block,
4401 * from a raw receive. In this case, set the ARC buf's crypt params so
4402 * that the BP will be filled with the correct byteorder, salt, iv, and mac.
4405 dbuf_prepare_encrypted_dnode_leaf(dbuf_dirty_record_t
*dr
)
4408 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4410 ASSERT(MUTEX_HELD(&db
->db_mtx
));
4411 ASSERT3U(db
->db
.db_object
, ==, DMU_META_DNODE_OBJECT
);
4412 ASSERT3U(db
->db_level
, ==, 0);
4414 if (!db
->db_objset
->os_raw_receive
&& arc_is_encrypted(db
->db_buf
)) {
4415 zbookmark_phys_t zb
;
4418 * Unfortunately, there is currently no mechanism for
4419 * syncing context to handle decryption errors. An error
4420 * here is only possible if an attacker maliciously
4421 * changed a dnode block and updated the associated
4422 * checksums going up the block tree.
4424 SET_BOOKMARK(&zb
, dmu_objset_id(db
->db_objset
),
4425 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
4426 err
= arc_untransform(db
->db_buf
, db
->db_objset
->os_spa
,
4429 panic("Invalid dnode block MAC");
4430 } else if (dr
->dt
.dl
.dr_has_raw_params
) {
4431 (void) arc_release(dr
->dt
.dl
.dr_data
, db
);
4432 arc_convert_to_raw(dr
->dt
.dl
.dr_data
,
4433 dmu_objset_id(db
->db_objset
),
4434 dr
->dt
.dl
.dr_byteorder
, DMU_OT_DNODE
,
4435 dr
->dt
.dl
.dr_salt
, dr
->dt
.dl
.dr_iv
, dr
->dt
.dl
.dr_mac
);
4440 * dbuf_sync_indirect() is called recursively from dbuf_sync_list() so it
4441 * is critical the we not allow the compiler to inline this function in to
4442 * dbuf_sync_list() thereby drastically bloating the stack usage.
4444 noinline
static void
4445 dbuf_sync_indirect(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4447 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4448 dnode_t
*dn
= dr
->dr_dnode
;
4450 ASSERT(dmu_tx_is_syncing(tx
));
4452 dprintf_dbuf_bp(db
, db
->db_blkptr
, "blkptr=%p", db
->db_blkptr
);
4454 mutex_enter(&db
->db_mtx
);
4456 ASSERT(db
->db_level
> 0);
4459 /* Read the block if it hasn't been read yet. */
4460 if (db
->db_buf
== NULL
) {
4461 mutex_exit(&db
->db_mtx
);
4462 (void) dbuf_read(db
, NULL
, DB_RF_MUST_SUCCEED
);
4463 mutex_enter(&db
->db_mtx
);
4465 ASSERT3U(db
->db_state
, ==, DB_CACHED
);
4466 ASSERT(db
->db_buf
!= NULL
);
4468 /* Indirect block size must match what the dnode thinks it is. */
4469 ASSERT3U(db
->db
.db_size
, ==, 1<<dn
->dn_phys
->dn_indblkshift
);
4470 dbuf_check_blkptr(dn
, db
);
4472 /* Provide the pending dirty record to child dbufs */
4473 db
->db_data_pending
= dr
;
4475 mutex_exit(&db
->db_mtx
);
4477 dbuf_write(dr
, db
->db_buf
, tx
);
4479 zio_t
*zio
= dr
->dr_zio
;
4480 mutex_enter(&dr
->dt
.di
.dr_mtx
);
4481 dbuf_sync_list(&dr
->dt
.di
.dr_children
, db
->db_level
- 1, tx
);
4482 ASSERT(list_head(&dr
->dt
.di
.dr_children
) == NULL
);
4483 mutex_exit(&dr
->dt
.di
.dr_mtx
);
4488 * Verify that the size of the data in our bonus buffer does not exceed
4489 * its recorded size.
4491 * The purpose of this verification is to catch any cases in development
4492 * where the size of a phys structure (i.e space_map_phys_t) grows and,
4493 * due to incorrect feature management, older pools expect to read more
4494 * data even though they didn't actually write it to begin with.
4496 * For a example, this would catch an error in the feature logic where we
4497 * open an older pool and we expect to write the space map histogram of
4498 * a space map with size SPACE_MAP_SIZE_V0.
4501 dbuf_sync_leaf_verify_bonus_dnode(dbuf_dirty_record_t
*dr
)
4504 dnode_t
*dn
= dr
->dr_dnode
;
4507 * Encrypted bonus buffers can have data past their bonuslen.
4508 * Skip the verification of these blocks.
4510 if (DMU_OT_IS_ENCRYPTED(dn
->dn_bonustype
))
4513 uint16_t bonuslen
= dn
->dn_phys
->dn_bonuslen
;
4514 uint16_t maxbonuslen
= DN_SLOTS_TO_BONUSLEN(dn
->dn_num_slots
);
4515 ASSERT3U(bonuslen
, <=, maxbonuslen
);
4517 arc_buf_t
*datap
= dr
->dt
.dl
.dr_data
;
4518 char *datap_end
= ((char *)datap
) + bonuslen
;
4519 char *datap_max
= ((char *)datap
) + maxbonuslen
;
4521 /* ensure that everything is zero after our data */
4522 for (; datap_end
< datap_max
; datap_end
++)
4523 ASSERT(*datap_end
== 0);
4528 dbuf_lightweight_bp(dbuf_dirty_record_t
*dr
)
4530 /* This must be a lightweight dirty record. */
4531 ASSERT3P(dr
->dr_dbuf
, ==, NULL
);
4532 dnode_t
*dn
= dr
->dr_dnode
;
4534 if (dn
->dn_phys
->dn_nlevels
== 1) {
4535 VERIFY3U(dr
->dt
.dll
.dr_blkid
, <, dn
->dn_phys
->dn_nblkptr
);
4536 return (&dn
->dn_phys
->dn_blkptr
[dr
->dt
.dll
.dr_blkid
]);
4538 dmu_buf_impl_t
*parent_db
= dr
->dr_parent
->dr_dbuf
;
4539 int epbs
= dn
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
4540 VERIFY3U(parent_db
->db_level
, ==, 1);
4541 VERIFY3P(DB_DNODE(parent_db
), ==, dn
);
4542 VERIFY3U(dr
->dt
.dll
.dr_blkid
>> epbs
, ==, parent_db
->db_blkid
);
4543 blkptr_t
*bp
= parent_db
->db
.db_data
;
4544 return (&bp
[dr
->dt
.dll
.dr_blkid
& ((1 << epbs
) - 1)]);
4549 dbuf_lightweight_ready(zio_t
*zio
)
4551 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4552 blkptr_t
*bp
= zio
->io_bp
;
4554 if (zio
->io_error
!= 0)
4557 dnode_t
*dn
= dr
->dr_dnode
;
4559 blkptr_t
*bp_orig
= dbuf_lightweight_bp(dr
);
4560 spa_t
*spa
= dmu_objset_spa(dn
->dn_objset
);
4561 int64_t delta
= bp_get_dsize_sync(spa
, bp
) -
4562 bp_get_dsize_sync(spa
, bp_orig
);
4563 dnode_diduse_space(dn
, delta
);
4565 uint64_t blkid
= dr
->dt
.dll
.dr_blkid
;
4566 mutex_enter(&dn
->dn_mtx
);
4567 if (blkid
> dn
->dn_phys
->dn_maxblkid
) {
4568 ASSERT0(dn
->dn_objset
->os_raw_receive
);
4569 dn
->dn_phys
->dn_maxblkid
= blkid
;
4571 mutex_exit(&dn
->dn_mtx
);
4573 if (!BP_IS_EMBEDDED(bp
)) {
4574 uint64_t fill
= BP_IS_HOLE(bp
) ? 0 : 1;
4575 BP_SET_FILL(bp
, fill
);
4578 dmu_buf_impl_t
*parent_db
;
4579 EQUIV(dr
->dr_parent
== NULL
, dn
->dn_phys
->dn_nlevels
== 1);
4580 if (dr
->dr_parent
== NULL
) {
4581 parent_db
= dn
->dn_dbuf
;
4583 parent_db
= dr
->dr_parent
->dr_dbuf
;
4585 rw_enter(&parent_db
->db_rwlock
, RW_WRITER
);
4587 rw_exit(&parent_db
->db_rwlock
);
4591 dbuf_lightweight_done(zio_t
*zio
)
4593 dbuf_dirty_record_t
*dr
= zio
->io_private
;
4595 VERIFY0(zio
->io_error
);
4597 objset_t
*os
= dr
->dr_dnode
->dn_objset
;
4598 dmu_tx_t
*tx
= os
->os_synctx
;
4600 if (zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)) {
4601 ASSERT(BP_EQUAL(zio
->io_bp
, &zio
->io_bp_orig
));
4603 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
4604 (void) dsl_dataset_block_kill(ds
, &zio
->io_bp_orig
, tx
, B_TRUE
);
4605 dsl_dataset_block_born(ds
, zio
->io_bp
, tx
);
4608 dsl_pool_undirty_space(dmu_objset_pool(os
), dr
->dr_accounted
,
4611 abd_free(dr
->dt
.dll
.dr_abd
);
4612 kmem_free(dr
, sizeof (*dr
));
4615 noinline
static void
4616 dbuf_sync_lightweight(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4618 dnode_t
*dn
= dr
->dr_dnode
;
4620 if (dn
->dn_phys
->dn_nlevels
== 1) {
4623 pio
= dr
->dr_parent
->dr_zio
;
4626 zbookmark_phys_t zb
= {
4627 .zb_objset
= dmu_objset_id(dn
->dn_objset
),
4628 .zb_object
= dn
->dn_object
,
4630 .zb_blkid
= dr
->dt
.dll
.dr_blkid
,
4634 * See comment in dbuf_write(). This is so that zio->io_bp_orig
4635 * will have the old BP in dbuf_lightweight_done().
4637 dr
->dr_bp_copy
= *dbuf_lightweight_bp(dr
);
4639 dr
->dr_zio
= zio_write(pio
, dmu_objset_spa(dn
->dn_objset
),
4640 dmu_tx_get_txg(tx
), &dr
->dr_bp_copy
, dr
->dt
.dll
.dr_abd
,
4641 dn
->dn_datablksz
, abd_get_size(dr
->dt
.dll
.dr_abd
),
4642 &dr
->dt
.dll
.dr_props
, dbuf_lightweight_ready
, NULL
,
4643 dbuf_lightweight_done
, dr
, ZIO_PRIORITY_ASYNC_WRITE
,
4644 ZIO_FLAG_MUSTSUCCEED
| dr
->dt
.dll
.dr_flags
, &zb
);
4646 zio_nowait(dr
->dr_zio
);
4650 * dbuf_sync_leaf() is called recursively from dbuf_sync_list() so it is
4651 * critical the we not allow the compiler to inline this function in to
4652 * dbuf_sync_list() thereby drastically bloating the stack usage.
4654 noinline
static void
4655 dbuf_sync_leaf(dbuf_dirty_record_t
*dr
, dmu_tx_t
*tx
)
4657 arc_buf_t
**datap
= &dr
->dt
.dl
.dr_data
;
4658 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
4659 dnode_t
*dn
= dr
->dr_dnode
;
4661 uint64_t txg
= tx
->tx_txg
;
4663 ASSERT(dmu_tx_is_syncing(tx
));
4665 dprintf_dbuf_bp(db
, db
->db_blkptr
, "blkptr=%p", db
->db_blkptr
);
4667 mutex_enter(&db
->db_mtx
);
4669 * To be synced, we must be dirtied. But we might have been freed
4672 if (db
->db_state
== DB_UNCACHED
) {
4673 /* This buffer has been freed since it was dirtied */
4674 ASSERT3P(db
->db
.db_data
, ==, NULL
);
4675 } else if (db
->db_state
== DB_FILL
) {
4676 /* This buffer was freed and is now being re-filled */
4677 ASSERT(db
->db
.db_data
!= dr
->dt
.dl
.dr_data
);
4678 } else if (db
->db_state
== DB_READ
) {
4680 * This buffer was either cloned or had a Direct I/O write
4681 * occur and has an in-flgiht read on the BP. It is safe to
4682 * issue the write here, because the read has already been
4683 * issued and the contents won't change.
4685 * We can verify the case of both the clone and Direct I/O
4686 * write by making sure the first dirty record for the dbuf
4687 * has no ARC buffer associated with it.
4689 dbuf_dirty_record_t
*dr_head
=
4690 list_head(&db
->db_dirty_records
);
4691 ASSERT3P(db
->db_buf
, ==, NULL
);
4692 ASSERT3P(db
->db
.db_data
, ==, NULL
);
4693 ASSERT3P(dr_head
->dt
.dl
.dr_data
, ==, NULL
);
4694 ASSERT3U(dr_head
->dt
.dl
.dr_override_state
, ==, DR_OVERRIDDEN
);
4696 ASSERT(db
->db_state
== DB_CACHED
|| db
->db_state
== DB_NOFILL
);
4700 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
4701 mutex_enter(&dn
->dn_mtx
);
4702 if (!(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
)) {
4704 * In the previous transaction group, the bonus buffer
4705 * was entirely used to store the attributes for the
4706 * dnode which overrode the dn_spill field. However,
4707 * when adding more attributes to the file a spill
4708 * block was required to hold the extra attributes.
4710 * Make sure to clear the garbage left in the dn_spill
4711 * field from the previous attributes in the bonus
4712 * buffer. Otherwise, after writing out the spill
4713 * block to the new allocated dva, it will free
4714 * the old block pointed to by the invalid dn_spill.
4716 db
->db_blkptr
= NULL
;
4718 dn
->dn_phys
->dn_flags
|= DNODE_FLAG_SPILL_BLKPTR
;
4719 mutex_exit(&dn
->dn_mtx
);
4723 * If this is a bonus buffer, simply copy the bonus data into the
4724 * dnode. It will be written out when the dnode is synced (and it
4725 * will be synced, since it must have been dirty for dbuf_sync to
4728 if (db
->db_blkid
== DMU_BONUS_BLKID
) {
4729 ASSERT(dr
->dr_dbuf
== db
);
4730 dbuf_sync_bonus(dr
, tx
);
4737 * This function may have dropped the db_mtx lock allowing a dmu_sync
4738 * operation to sneak in. As a result, we need to ensure that we
4739 * don't check the dr_override_state until we have returned from
4740 * dbuf_check_blkptr.
4742 dbuf_check_blkptr(dn
, db
);
4745 * If this buffer is in the middle of an immediate write, wait for the
4746 * synchronous IO to complete.
4748 * This is also valid even with Direct I/O writes setting a dirty
4749 * records override state into DR_IN_DMU_SYNC, because all
4750 * Direct I/O writes happen in open-context.
4752 while (dr
->dt
.dl
.dr_override_state
== DR_IN_DMU_SYNC
) {
4753 ASSERT(dn
->dn_object
!= DMU_META_DNODE_OBJECT
);
4754 cv_wait(&db
->db_changed
, &db
->db_mtx
);
4758 * If this is a dnode block, ensure it is appropriately encrypted
4759 * or decrypted, depending on what we are writing to it this txg.
4761 if (os
->os_encrypted
&& dn
->dn_object
== DMU_META_DNODE_OBJECT
)
4762 dbuf_prepare_encrypted_dnode_leaf(dr
);
4764 if (*datap
!= NULL
&& *datap
== db
->db_buf
&&
4765 dn
->dn_object
!= DMU_META_DNODE_OBJECT
&&
4766 zfs_refcount_count(&db
->db_holds
) > 1 &&
4767 dr
->dt
.dl
.dr_override_state
!= DR_OVERRIDDEN
) {
4769 * If this buffer is currently "in use" (i.e., there
4770 * are active holds and db_data still references it),
4771 * then make a copy before we start the write so that
4772 * any modifications from the open txg will not leak
4775 * NOTE: this copy does not need to be made for
4776 * objects only modified in the syncing context (e.g.
4777 * DNONE_DNODE blocks).
4779 int psize
= arc_buf_size(*datap
);
4780 int lsize
= arc_buf_lsize(*datap
);
4781 arc_buf_contents_t type
= DBUF_GET_BUFC_TYPE(db
);
4782 enum zio_compress compress_type
= arc_get_compression(*datap
);
4783 uint8_t complevel
= arc_get_complevel(*datap
);
4785 if (arc_is_encrypted(*datap
)) {
4786 boolean_t byteorder
;
4787 uint8_t salt
[ZIO_DATA_SALT_LEN
];
4788 uint8_t iv
[ZIO_DATA_IV_LEN
];
4789 uint8_t mac
[ZIO_DATA_MAC_LEN
];
4791 arc_get_raw_params(*datap
, &byteorder
, salt
, iv
, mac
);
4792 *datap
= arc_alloc_raw_buf(os
->os_spa
, db
,
4793 dmu_objset_id(os
), byteorder
, salt
, iv
, mac
,
4794 dn
->dn_type
, psize
, lsize
, compress_type
,
4796 } else if (compress_type
!= ZIO_COMPRESS_OFF
) {
4797 ASSERT3U(type
, ==, ARC_BUFC_DATA
);
4798 *datap
= arc_alloc_compressed_buf(os
->os_spa
, db
,
4799 psize
, lsize
, compress_type
, complevel
);
4801 *datap
= arc_alloc_buf(os
->os_spa
, db
, type
, psize
);
4803 memcpy((*datap
)->b_data
, db
->db
.db_data
, psize
);
4805 db
->db_data_pending
= dr
;
4807 mutex_exit(&db
->db_mtx
);
4809 dbuf_write(dr
, *datap
, tx
);
4811 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
4812 if (dn
->dn_object
== DMU_META_DNODE_OBJECT
) {
4813 list_insert_tail(&dn
->dn_dirty_records
[txg
& TXG_MASK
], dr
);
4815 zio_nowait(dr
->dr_zio
);
4820 * Syncs out a range of dirty records for indirect or leaf dbufs. May be
4821 * called recursively from dbuf_sync_indirect().
4824 dbuf_sync_list(list_t
*list
, int level
, dmu_tx_t
*tx
)
4826 dbuf_dirty_record_t
*dr
;
4828 while ((dr
= list_head(list
))) {
4829 if (dr
->dr_zio
!= NULL
) {
4831 * If we find an already initialized zio then we
4832 * are processing the meta-dnode, and we have finished.
4833 * The dbufs for all dnodes are put back on the list
4834 * during processing, so that we can zio_wait()
4835 * these IOs after initiating all child IOs.
4837 ASSERT3U(dr
->dr_dbuf
->db
.db_object
, ==,
4838 DMU_META_DNODE_OBJECT
);
4841 list_remove(list
, dr
);
4842 if (dr
->dr_dbuf
== NULL
) {
4843 dbuf_sync_lightweight(dr
, tx
);
4845 if (dr
->dr_dbuf
->db_blkid
!= DMU_BONUS_BLKID
&&
4846 dr
->dr_dbuf
->db_blkid
!= DMU_SPILL_BLKID
) {
4847 VERIFY3U(dr
->dr_dbuf
->db_level
, ==, level
);
4849 if (dr
->dr_dbuf
->db_level
> 0)
4850 dbuf_sync_indirect(dr
, tx
);
4852 dbuf_sync_leaf(dr
, tx
);
4858 dbuf_write_ready(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
4861 dmu_buf_impl_t
*db
= vdb
;
4863 blkptr_t
*bp
= zio
->io_bp
;
4864 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
4865 spa_t
*spa
= zio
->io_spa
;
4870 ASSERT3P(db
->db_blkptr
, !=, NULL
);
4871 ASSERT3P(&db
->db_data_pending
->dr_bp_copy
, ==, bp
);
4875 delta
= bp_get_dsize_sync(spa
, bp
) - bp_get_dsize_sync(spa
, bp_orig
);
4876 dnode_diduse_space(dn
, delta
- zio
->io_prev_space_delta
);
4877 zio
->io_prev_space_delta
= delta
;
4879 if (BP_GET_LOGICAL_BIRTH(bp
) != 0) {
4880 ASSERT((db
->db_blkid
!= DMU_SPILL_BLKID
&&
4881 BP_GET_TYPE(bp
) == dn
->dn_type
) ||
4882 (db
->db_blkid
== DMU_SPILL_BLKID
&&
4883 BP_GET_TYPE(bp
) == dn
->dn_bonustype
) ||
4884 BP_IS_EMBEDDED(bp
));
4885 ASSERT(BP_GET_LEVEL(bp
) == db
->db_level
);
4888 mutex_enter(&db
->db_mtx
);
4891 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
4892 ASSERT(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
);
4893 ASSERT(!(BP_IS_HOLE(bp
)) &&
4894 db
->db_blkptr
== DN_SPILL_BLKPTR(dn
->dn_phys
));
4898 if (db
->db_level
== 0) {
4899 mutex_enter(&dn
->dn_mtx
);
4900 if (db
->db_blkid
> dn
->dn_phys
->dn_maxblkid
&&
4901 db
->db_blkid
!= DMU_SPILL_BLKID
) {
4902 ASSERT0(db
->db_objset
->os_raw_receive
);
4903 dn
->dn_phys
->dn_maxblkid
= db
->db_blkid
;
4905 mutex_exit(&dn
->dn_mtx
);
4907 if (dn
->dn_type
== DMU_OT_DNODE
) {
4909 while (i
< db
->db
.db_size
) {
4911 (void *)(((char *)db
->db
.db_data
) + i
);
4913 i
+= DNODE_MIN_SIZE
;
4914 if (dnp
->dn_type
!= DMU_OT_NONE
) {
4916 for (int j
= 0; j
< dnp
->dn_nblkptr
;
4918 (void) zfs_blkptr_verify(spa
,
4924 DNODE_FLAG_SPILL_BLKPTR
) {
4925 (void) zfs_blkptr_verify(spa
,
4926 DN_SPILL_BLKPTR(dnp
),
4930 i
+= dnp
->dn_extra_slots
*
4935 if (BP_IS_HOLE(bp
)) {
4942 blkptr_t
*ibp
= db
->db
.db_data
;
4943 ASSERT3U(db
->db
.db_size
, ==, 1<<dn
->dn_phys
->dn_indblkshift
);
4944 for (i
= db
->db
.db_size
>> SPA_BLKPTRSHIFT
; i
> 0; i
--, ibp
++) {
4945 if (BP_IS_HOLE(ibp
))
4947 (void) zfs_blkptr_verify(spa
, ibp
,
4948 BLK_CONFIG_SKIP
, BLK_VERIFY_HALT
);
4949 fill
+= BP_GET_FILL(ibp
);
4954 if (!BP_IS_EMBEDDED(bp
))
4955 BP_SET_FILL(bp
, fill
);
4957 mutex_exit(&db
->db_mtx
);
4959 db_lock_type_t dblt
= dmu_buf_lock_parent(db
, RW_WRITER
, FTAG
);
4960 *db
->db_blkptr
= *bp
;
4961 dmu_buf_unlock_parent(db
, dblt
, FTAG
);
4965 * This function gets called just prior to running through the compression
4966 * stage of the zio pipeline. If we're an indirect block comprised of only
4967 * holes, then we want this indirect to be compressed away to a hole. In
4968 * order to do that we must zero out any information about the holes that
4969 * this indirect points to prior to before we try to compress it.
4972 dbuf_write_children_ready(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
4974 (void) zio
, (void) buf
;
4975 dmu_buf_impl_t
*db
= vdb
;
4977 unsigned int epbs
, i
;
4979 ASSERT3U(db
->db_level
, >, 0);
4981 epbs
= DB_DNODE(db
)->dn_phys
->dn_indblkshift
- SPA_BLKPTRSHIFT
;
4983 ASSERT3U(epbs
, <, 31);
4985 /* Determine if all our children are holes */
4986 for (i
= 0, bp
= db
->db
.db_data
; i
< 1ULL << epbs
; i
++, bp
++) {
4987 if (!BP_IS_HOLE(bp
))
4992 * If all the children are holes, then zero them all out so that
4993 * we may get compressed away.
4995 if (i
== 1ULL << epbs
) {
4997 * We only found holes. Grab the rwlock to prevent
4998 * anybody from reading the blocks we're about to
5001 rw_enter(&db
->db_rwlock
, RW_WRITER
);
5002 memset(db
->db
.db_data
, 0, db
->db
.db_size
);
5003 rw_exit(&db
->db_rwlock
);
5008 dbuf_write_done(zio_t
*zio
, arc_buf_t
*buf
, void *vdb
)
5011 dmu_buf_impl_t
*db
= vdb
;
5012 blkptr_t
*bp_orig
= &zio
->io_bp_orig
;
5013 blkptr_t
*bp
= db
->db_blkptr
;
5014 objset_t
*os
= db
->db_objset
;
5015 dmu_tx_t
*tx
= os
->os_synctx
;
5017 ASSERT0(zio
->io_error
);
5018 ASSERT(db
->db_blkptr
== bp
);
5021 * For nopwrites and rewrites we ensure that the bp matches our
5022 * original and bypass all the accounting.
5024 if (zio
->io_flags
& (ZIO_FLAG_IO_REWRITE
| ZIO_FLAG_NOPWRITE
)) {
5025 ASSERT(BP_EQUAL(bp
, bp_orig
));
5027 dsl_dataset_t
*ds
= os
->os_dsl_dataset
;
5028 (void) dsl_dataset_block_kill(ds
, bp_orig
, tx
, B_TRUE
);
5029 dsl_dataset_block_born(ds
, bp
, tx
);
5032 mutex_enter(&db
->db_mtx
);
5036 dbuf_dirty_record_t
*dr
= db
->db_data_pending
;
5037 dnode_t
*dn
= dr
->dr_dnode
;
5038 ASSERT(!list_link_active(&dr
->dr_dirty_node
));
5039 ASSERT(dr
->dr_dbuf
== db
);
5040 ASSERT(list_next(&db
->db_dirty_records
, dr
) == NULL
);
5041 list_remove(&db
->db_dirty_records
, dr
);
5044 if (db
->db_blkid
== DMU_SPILL_BLKID
) {
5045 ASSERT(dn
->dn_phys
->dn_flags
& DNODE_FLAG_SPILL_BLKPTR
);
5046 ASSERT(!(BP_IS_HOLE(db
->db_blkptr
)) &&
5047 db
->db_blkptr
== DN_SPILL_BLKPTR(dn
->dn_phys
));
5051 if (db
->db_level
== 0) {
5052 ASSERT(db
->db_blkid
!= DMU_BONUS_BLKID
);
5053 ASSERT(dr
->dt
.dl
.dr_override_state
== DR_NOT_OVERRIDDEN
);
5055 /* no dr_data if this is a NO_FILL or Direct I/O */
5056 if (dr
->dt
.dl
.dr_data
!= NULL
&&
5057 dr
->dt
.dl
.dr_data
!= db
->db_buf
) {
5058 ASSERT3B(dr
->dt
.dl
.dr_brtwrite
, ==, B_FALSE
);
5059 ASSERT3B(dr
->dt
.dl
.dr_diowrite
, ==, B_FALSE
);
5060 arc_buf_destroy(dr
->dt
.dl
.dr_data
, db
);
5063 ASSERT(list_head(&dr
->dt
.di
.dr_children
) == NULL
);
5064 ASSERT3U(db
->db
.db_size
, ==, 1 << dn
->dn_phys
->dn_indblkshift
);
5065 if (!BP_IS_HOLE(db
->db_blkptr
)) {
5066 int epbs __maybe_unused
= dn
->dn_phys
->dn_indblkshift
-
5068 ASSERT3U(db
->db_blkid
, <=,
5069 dn
->dn_phys
->dn_maxblkid
>> (db
->db_level
* epbs
));
5070 ASSERT3U(BP_GET_LSIZE(db
->db_blkptr
), ==,
5073 mutex_destroy(&dr
->dt
.di
.dr_mtx
);
5074 list_destroy(&dr
->dt
.di
.dr_children
);
5077 cv_broadcast(&db
->db_changed
);
5078 ASSERT(db
->db_dirtycnt
> 0);
5079 db
->db_dirtycnt
-= 1;
5080 db
->db_data_pending
= NULL
;
5081 dbuf_rele_and_unlock(db
, (void *)(uintptr_t)tx
->tx_txg
, B_FALSE
);
5083 dsl_pool_undirty_space(dmu_objset_pool(os
), dr
->dr_accounted
,
5086 kmem_free(dr
, sizeof (dbuf_dirty_record_t
));
5090 dbuf_write_nofill_ready(zio_t
*zio
)
5092 dbuf_write_ready(zio
, NULL
, zio
->io_private
);
5096 dbuf_write_nofill_done(zio_t
*zio
)
5098 dbuf_write_done(zio
, NULL
, zio
->io_private
);
5102 dbuf_write_override_ready(zio_t
*zio
)
5104 dbuf_dirty_record_t
*dr
= zio
->io_private
;
5105 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
5107 dbuf_write_ready(zio
, NULL
, db
);
5111 dbuf_write_override_done(zio_t
*zio
)
5113 dbuf_dirty_record_t
*dr
= zio
->io_private
;
5114 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
5115 blkptr_t
*obp
= &dr
->dt
.dl
.dr_overridden_by
;
5117 mutex_enter(&db
->db_mtx
);
5118 if (!BP_EQUAL(zio
->io_bp
, obp
)) {
5119 if (!BP_IS_HOLE(obp
))
5120 dsl_free(spa_get_dsl(zio
->io_spa
), zio
->io_txg
, obp
);
5121 arc_release(dr
->dt
.dl
.dr_data
, db
);
5123 mutex_exit(&db
->db_mtx
);
5125 dbuf_write_done(zio
, NULL
, db
);
5127 if (zio
->io_abd
!= NULL
)
5128 abd_free(zio
->io_abd
);
5131 typedef struct dbuf_remap_impl_callback_arg
{
5133 uint64_t drica_blk_birth
;
5135 } dbuf_remap_impl_callback_arg_t
;
5138 dbuf_remap_impl_callback(uint64_t vdev
, uint64_t offset
, uint64_t size
,
5141 dbuf_remap_impl_callback_arg_t
*drica
= arg
;
5142 objset_t
*os
= drica
->drica_os
;
5143 spa_t
*spa
= dmu_objset_spa(os
);
5144 dmu_tx_t
*tx
= drica
->drica_tx
;
5146 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa
)));
5148 if (os
== spa_meta_objset(spa
)) {
5149 spa_vdev_indirect_mark_obsolete(spa
, vdev
, offset
, size
, tx
);
5151 dsl_dataset_block_remapped(dmu_objset_ds(os
), vdev
, offset
,
5152 size
, drica
->drica_blk_birth
, tx
);
5157 dbuf_remap_impl(dnode_t
*dn
, blkptr_t
*bp
, krwlock_t
*rw
, dmu_tx_t
*tx
)
5159 blkptr_t bp_copy
= *bp
;
5160 spa_t
*spa
= dmu_objset_spa(dn
->dn_objset
);
5161 dbuf_remap_impl_callback_arg_t drica
;
5163 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa
)));
5165 drica
.drica_os
= dn
->dn_objset
;
5166 drica
.drica_blk_birth
= BP_GET_LOGICAL_BIRTH(bp
);
5167 drica
.drica_tx
= tx
;
5168 if (spa_remap_blkptr(spa
, &bp_copy
, dbuf_remap_impl_callback
,
5171 * If the blkptr being remapped is tracked by a livelist,
5172 * then we need to make sure the livelist reflects the update.
5173 * First, cancel out the old blkptr by appending a 'FREE'
5174 * entry. Next, add an 'ALLOC' to track the new version. This
5175 * way we avoid trying to free an inaccurate blkptr at delete.
5176 * Note that embedded blkptrs are not tracked in livelists.
5178 if (dn
->dn_objset
!= spa_meta_objset(spa
)) {
5179 dsl_dataset_t
*ds
= dmu_objset_ds(dn
->dn_objset
);
5180 if (dsl_deadlist_is_open(&ds
->ds_dir
->dd_livelist
) &&
5181 BP_GET_LOGICAL_BIRTH(bp
) >
5182 ds
->ds_dir
->dd_origin_txg
) {
5183 ASSERT(!BP_IS_EMBEDDED(bp
));
5184 ASSERT(dsl_dir_is_clone(ds
->ds_dir
));
5185 ASSERT(spa_feature_is_enabled(spa
,
5186 SPA_FEATURE_LIVELIST
));
5187 bplist_append(&ds
->ds_dir
->dd_pending_frees
,
5189 bplist_append(&ds
->ds_dir
->dd_pending_allocs
,
5195 * The db_rwlock prevents dbuf_read_impl() from
5196 * dereferencing the BP while we are changing it. To
5197 * avoid lock contention, only grab it when we are actually
5201 rw_enter(rw
, RW_WRITER
);
5209 * Remap any existing BP's to concrete vdevs, if possible.
5212 dbuf_remap(dnode_t
*dn
, dmu_buf_impl_t
*db
, dmu_tx_t
*tx
)
5214 spa_t
*spa
= dmu_objset_spa(db
->db_objset
);
5215 ASSERT(dsl_pool_sync_context(spa_get_dsl(spa
)));
5217 if (!spa_feature_is_active(spa
, SPA_FEATURE_DEVICE_REMOVAL
))
5220 if (db
->db_level
> 0) {
5221 blkptr_t
*bp
= db
->db
.db_data
;
5222 for (int i
= 0; i
< db
->db
.db_size
>> SPA_BLKPTRSHIFT
; i
++) {
5223 dbuf_remap_impl(dn
, &bp
[i
], &db
->db_rwlock
, tx
);
5225 } else if (db
->db
.db_object
== DMU_META_DNODE_OBJECT
) {
5226 dnode_phys_t
*dnp
= db
->db
.db_data
;
5227 ASSERT3U(dn
->dn_type
, ==, DMU_OT_DNODE
);
5228 for (int i
= 0; i
< db
->db
.db_size
>> DNODE_SHIFT
;
5229 i
+= dnp
[i
].dn_extra_slots
+ 1) {
5230 for (int j
= 0; j
< dnp
[i
].dn_nblkptr
; j
++) {
5231 krwlock_t
*lock
= (dn
->dn_dbuf
== NULL
? NULL
:
5232 &dn
->dn_dbuf
->db_rwlock
);
5233 dbuf_remap_impl(dn
, &dnp
[i
].dn_blkptr
[j
], lock
,
5242 * Populate dr->dr_zio with a zio to commit a dirty buffer to disk.
5243 * Caller is responsible for issuing the zio_[no]wait(dr->dr_zio).
5246 dbuf_write(dbuf_dirty_record_t
*dr
, arc_buf_t
*data
, dmu_tx_t
*tx
)
5248 dmu_buf_impl_t
*db
= dr
->dr_dbuf
;
5249 dnode_t
*dn
= dr
->dr_dnode
;
5251 dmu_buf_impl_t
*parent
= db
->db_parent
;
5252 uint64_t txg
= tx
->tx_txg
;
5253 zbookmark_phys_t zb
;
5255 zio_t
*pio
; /* parent I/O */
5258 ASSERT(dmu_tx_is_syncing(tx
));
5262 if (db
->db_level
> 0 || dn
->dn_type
== DMU_OT_DNODE
) {
5264 * Private object buffers are released here rather than in
5265 * dbuf_dirty() since they are only modified in the syncing
5266 * context and we don't want the overhead of making multiple
5267 * copies of the data.
5269 if (BP_IS_HOLE(db
->db_blkptr
))
5272 dbuf_release_bp(db
);
5273 dbuf_remap(dn
, db
, tx
);
5276 if (parent
!= dn
->dn_dbuf
) {
5277 /* Our parent is an indirect block. */
5278 /* We have a dirty parent that has been scheduled for write. */
5279 ASSERT(parent
&& parent
->db_data_pending
);
5280 /* Our parent's buffer is one level closer to the dnode. */
5281 ASSERT(db
->db_level
== parent
->db_level
-1);
5283 * We're about to modify our parent's db_data by modifying
5284 * our block pointer, so the parent must be released.
5286 ASSERT(arc_released(parent
->db_buf
));
5287 pio
= parent
->db_data_pending
->dr_zio
;
5289 /* Our parent is the dnode itself. */
5290 ASSERT((db
->db_level
== dn
->dn_phys
->dn_nlevels
-1 &&
5291 db
->db_blkid
!= DMU_SPILL_BLKID
) ||
5292 (db
->db_blkid
== DMU_SPILL_BLKID
&& db
->db_level
== 0));
5293 if (db
->db_blkid
!= DMU_SPILL_BLKID
)
5294 ASSERT3P(db
->db_blkptr
, ==,
5295 &dn
->dn_phys
->dn_blkptr
[db
->db_blkid
]);
5299 ASSERT(db
->db_level
== 0 || data
== db
->db_buf
);
5300 ASSERT3U(BP_GET_LOGICAL_BIRTH(db
->db_blkptr
), <=, txg
);
5303 SET_BOOKMARK(&zb
, os
->os_dsl_dataset
?
5304 os
->os_dsl_dataset
->ds_object
: DMU_META_OBJSET
,
5305 db
->db
.db_object
, db
->db_level
, db
->db_blkid
);
5307 if (db
->db_blkid
== DMU_SPILL_BLKID
)
5309 wp_flag
|= (data
== NULL
) ? WP_NOFILL
: 0;
5311 dmu_write_policy(os
, dn
, db
->db_level
, wp_flag
, &zp
);
5314 * We copy the blkptr now (rather than when we instantiate the dirty
5315 * record), because its value can change between open context and
5316 * syncing context. We do not need to hold dn_struct_rwlock to read
5317 * db_blkptr because we are in syncing context.
5319 dr
->dr_bp_copy
= *db
->db_blkptr
;
5321 if (db
->db_level
== 0 &&
5322 dr
->dt
.dl
.dr_override_state
== DR_OVERRIDDEN
) {
5324 * The BP for this block has been provided by open context
5325 * (by dmu_sync(), dmu_write_direct(),
5326 * or dmu_buf_write_embedded()).
5328 abd_t
*contents
= (data
!= NULL
) ?
5329 abd_get_from_buf(data
->b_data
, arc_buf_size(data
)) : NULL
;
5331 dr
->dr_zio
= zio_write(pio
, os
->os_spa
, txg
, &dr
->dr_bp_copy
,
5332 contents
, db
->db
.db_size
, db
->db
.db_size
, &zp
,
5333 dbuf_write_override_ready
, NULL
,
5334 dbuf_write_override_done
,
5335 dr
, ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_MUSTSUCCEED
, &zb
);
5336 mutex_enter(&db
->db_mtx
);
5337 dr
->dt
.dl
.dr_override_state
= DR_NOT_OVERRIDDEN
;
5338 zio_write_override(dr
->dr_zio
, &dr
->dt
.dl
.dr_overridden_by
,
5339 dr
->dt
.dl
.dr_copies
, dr
->dt
.dl
.dr_nopwrite
,
5340 dr
->dt
.dl
.dr_brtwrite
);
5341 mutex_exit(&db
->db_mtx
);
5342 } else if (data
== NULL
) {
5343 ASSERT(zp
.zp_checksum
== ZIO_CHECKSUM_OFF
||
5344 zp
.zp_checksum
== ZIO_CHECKSUM_NOPARITY
);
5345 dr
->dr_zio
= zio_write(pio
, os
->os_spa
, txg
,
5346 &dr
->dr_bp_copy
, NULL
, db
->db
.db_size
, db
->db
.db_size
, &zp
,
5347 dbuf_write_nofill_ready
, NULL
,
5348 dbuf_write_nofill_done
, db
,
5349 ZIO_PRIORITY_ASYNC_WRITE
,
5350 ZIO_FLAG_MUSTSUCCEED
| ZIO_FLAG_NODATA
, &zb
);
5352 ASSERT(arc_released(data
));
5355 * For indirect blocks, we want to setup the children
5356 * ready callback so that we can properly handle an indirect
5357 * block that only contains holes.
5359 arc_write_done_func_t
*children_ready_cb
= NULL
;
5360 if (db
->db_level
!= 0)
5361 children_ready_cb
= dbuf_write_children_ready
;
5363 dr
->dr_zio
= arc_write(pio
, os
->os_spa
, txg
,
5364 &dr
->dr_bp_copy
, data
, !DBUF_IS_CACHEABLE(db
),
5365 dbuf_is_l2cacheable(db
, NULL
), &zp
, dbuf_write_ready
,
5366 children_ready_cb
, dbuf_write_done
, db
,
5367 ZIO_PRIORITY_ASYNC_WRITE
, ZIO_FLAG_MUSTSUCCEED
, &zb
);
5371 EXPORT_SYMBOL(dbuf_find
);
5372 EXPORT_SYMBOL(dbuf_is_metadata
);
5373 EXPORT_SYMBOL(dbuf_destroy
);
5374 EXPORT_SYMBOL(dbuf_loan_arcbuf
);
5375 EXPORT_SYMBOL(dbuf_whichblock
);
5376 EXPORT_SYMBOL(dbuf_read
);
5377 EXPORT_SYMBOL(dbuf_unoverride
);
5378 EXPORT_SYMBOL(dbuf_free_range
);
5379 EXPORT_SYMBOL(dbuf_new_size
);
5380 EXPORT_SYMBOL(dbuf_release_bp
);
5381 EXPORT_SYMBOL(dbuf_dirty
);
5382 EXPORT_SYMBOL(dmu_buf_set_crypt_params
);
5383 EXPORT_SYMBOL(dmu_buf_will_dirty
);
5384 EXPORT_SYMBOL(dmu_buf_is_dirty
);
5385 EXPORT_SYMBOL(dmu_buf_will_clone_or_dio
);
5386 EXPORT_SYMBOL(dmu_buf_will_not_fill
);
5387 EXPORT_SYMBOL(dmu_buf_will_fill
);
5388 EXPORT_SYMBOL(dmu_buf_fill_done
);
5389 EXPORT_SYMBOL(dmu_buf_rele
);
5390 EXPORT_SYMBOL(dbuf_assign_arcbuf
);
5391 EXPORT_SYMBOL(dbuf_prefetch
);
5392 EXPORT_SYMBOL(dbuf_hold_impl
);
5393 EXPORT_SYMBOL(dbuf_hold
);
5394 EXPORT_SYMBOL(dbuf_hold_level
);
5395 EXPORT_SYMBOL(dbuf_create_bonus
);
5396 EXPORT_SYMBOL(dbuf_spill_set_blksz
);
5397 EXPORT_SYMBOL(dbuf_rm_spill
);
5398 EXPORT_SYMBOL(dbuf_add_ref
);
5399 EXPORT_SYMBOL(dbuf_rele
);
5400 EXPORT_SYMBOL(dbuf_rele_and_unlock
);
5401 EXPORT_SYMBOL(dbuf_refcount
);
5402 EXPORT_SYMBOL(dbuf_sync_list
);
5403 EXPORT_SYMBOL(dmu_buf_set_user
);
5404 EXPORT_SYMBOL(dmu_buf_set_user_ie
);
5405 EXPORT_SYMBOL(dmu_buf_get_user
);
5406 EXPORT_SYMBOL(dmu_buf_get_blkptr
);
5408 ZFS_MODULE_PARAM(zfs_dbuf_cache
, dbuf_cache_
, max_bytes
, U64
, ZMOD_RW
,
5409 "Maximum size in bytes of the dbuf cache.");
5411 ZFS_MODULE_PARAM(zfs_dbuf_cache
, dbuf_cache_
, hiwater_pct
, UINT
, ZMOD_RW
,
5412 "Percentage over dbuf_cache_max_bytes for direct dbuf eviction.");
5414 ZFS_MODULE_PARAM(zfs_dbuf_cache
, dbuf_cache_
, lowater_pct
, UINT
, ZMOD_RW
,
5415 "Percentage below dbuf_cache_max_bytes when dbuf eviction stops.");
5417 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, metadata_cache_max_bytes
, U64
, ZMOD_RW
,
5418 "Maximum size in bytes of dbuf metadata cache.");
5420 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, cache_shift
, UINT
, ZMOD_RW
,
5421 "Set size of dbuf cache to log2 fraction of arc size.");
5423 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, metadata_cache_shift
, UINT
, ZMOD_RW
,
5424 "Set size of dbuf metadata cache to log2 fraction of arc size.");
5426 ZFS_MODULE_PARAM(zfs_dbuf
, dbuf_
, mutex_cache_shift
, UINT
, ZMOD_RD
,
5427 "Set size of dbuf cache mutex array as log2 shift.");