copy_file_range: fix fallback when source create on same txg
[zfs.git] / module / os / linux / spl / spl-taskq.c
blobd18f935b167caa51b55cfe2abc62e9c99c42496f
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
8 * This file is part of the SPL, Solaris Porting Layer.
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
23 * Solaris Porting Layer (SPL) Task Queue Implementation.
26 #include <sys/timer.h>
27 #include <sys/taskq.h>
28 #include <sys/kmem.h>
29 #include <sys/tsd.h>
30 #include <sys/trace_spl.h>
31 #ifdef HAVE_CPU_HOTPLUG
32 #include <linux/cpuhotplug.h>
33 #endif
35 static int spl_taskq_thread_bind = 0;
36 module_param(spl_taskq_thread_bind, int, 0644);
37 MODULE_PARM_DESC(spl_taskq_thread_bind, "Bind taskq thread to CPU by default");
39 static uint_t spl_taskq_thread_timeout_ms = 10000;
40 /* BEGIN CSTYLED */
41 module_param(spl_taskq_thread_timeout_ms, uint, 0644);
42 /* END CSTYLED */
43 MODULE_PARM_DESC(spl_taskq_thread_timeout_ms,
44 "Time to require a dynamic thread be idle before it gets cleaned up");
46 static int spl_taskq_thread_dynamic = 1;
47 module_param(spl_taskq_thread_dynamic, int, 0444);
48 MODULE_PARM_DESC(spl_taskq_thread_dynamic, "Allow dynamic taskq threads");
50 static int spl_taskq_thread_priority = 1;
51 module_param(spl_taskq_thread_priority, int, 0644);
52 MODULE_PARM_DESC(spl_taskq_thread_priority,
53 "Allow non-default priority for taskq threads");
55 static uint_t spl_taskq_thread_sequential = 4;
56 /* BEGIN CSTYLED */
57 module_param(spl_taskq_thread_sequential, uint, 0644);
58 /* END CSTYLED */
59 MODULE_PARM_DESC(spl_taskq_thread_sequential,
60 "Create new taskq threads after N sequential tasks");
63 * Global system-wide dynamic task queue available for all consumers. This
64 * taskq is not intended for long-running tasks; instead, a dedicated taskq
65 * should be created.
67 taskq_t *system_taskq;
68 EXPORT_SYMBOL(system_taskq);
69 /* Global dynamic task queue for long delay */
70 taskq_t *system_delay_taskq;
71 EXPORT_SYMBOL(system_delay_taskq);
73 /* Private dedicated taskq for creating new taskq threads on demand. */
74 static taskq_t *dynamic_taskq;
75 static taskq_thread_t *taskq_thread_create(taskq_t *);
77 #ifdef HAVE_CPU_HOTPLUG
78 /* Multi-callback id for cpu hotplugging. */
79 static int spl_taskq_cpuhp_state;
80 #endif
82 /* List of all taskqs */
83 LIST_HEAD(tq_list);
84 struct rw_semaphore tq_list_sem;
85 static uint_t taskq_tsd;
87 static int
88 task_km_flags(uint_t flags)
90 if (flags & TQ_NOSLEEP)
91 return (KM_NOSLEEP);
93 if (flags & TQ_PUSHPAGE)
94 return (KM_PUSHPAGE);
96 return (KM_SLEEP);
100 * taskq_find_by_name - Find the largest instance number of a named taskq.
102 static int
103 taskq_find_by_name(const char *name)
105 struct list_head *tql = NULL;
106 taskq_t *tq;
108 list_for_each_prev(tql, &tq_list) {
109 tq = list_entry(tql, taskq_t, tq_taskqs);
110 if (strcmp(name, tq->tq_name) == 0)
111 return (tq->tq_instance);
113 return (-1);
117 * NOTE: Must be called with tq->tq_lock held, returns a list_t which
118 * is not attached to the free, work, or pending taskq lists.
120 static taskq_ent_t *
121 task_alloc(taskq_t *tq, uint_t flags, unsigned long *irqflags)
123 taskq_ent_t *t;
124 int count = 0;
126 ASSERT(tq);
127 retry:
128 /* Acquire taskq_ent_t's from free list if available */
129 if (!list_empty(&tq->tq_free_list) && !(flags & TQ_NEW)) {
130 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
132 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
133 ASSERT(!(t->tqent_flags & TQENT_FLAG_CANCEL));
134 ASSERT(!timer_pending(&t->tqent_timer));
136 list_del_init(&t->tqent_list);
137 return (t);
140 /* Free list is empty and memory allocations are prohibited */
141 if (flags & TQ_NOALLOC)
142 return (NULL);
144 /* Hit maximum taskq_ent_t pool size */
145 if (tq->tq_nalloc >= tq->tq_maxalloc) {
146 if (flags & TQ_NOSLEEP)
147 return (NULL);
150 * Sleep periodically polling the free list for an available
151 * taskq_ent_t. Dispatching with TQ_SLEEP should always succeed
152 * but we cannot block forever waiting for an taskq_ent_t to
153 * show up in the free list, otherwise a deadlock can happen.
155 * Therefore, we need to allocate a new task even if the number
156 * of allocated tasks is above tq->tq_maxalloc, but we still
157 * end up delaying the task allocation by one second, thereby
158 * throttling the task dispatch rate.
160 spin_unlock_irqrestore(&tq->tq_lock, *irqflags);
161 schedule_timeout(HZ / 100);
162 spin_lock_irqsave_nested(&tq->tq_lock, *irqflags,
163 tq->tq_lock_class);
164 if (count < 100) {
165 count++;
166 goto retry;
170 spin_unlock_irqrestore(&tq->tq_lock, *irqflags);
171 t = kmem_alloc(sizeof (taskq_ent_t), task_km_flags(flags));
172 spin_lock_irqsave_nested(&tq->tq_lock, *irqflags, tq->tq_lock_class);
174 if (t) {
175 taskq_init_ent(t);
176 tq->tq_nalloc++;
179 return (t);
183 * NOTE: Must be called with tq->tq_lock held, expects the taskq_ent_t
184 * to already be removed from the free, work, or pending taskq lists.
186 static void
187 task_free(taskq_t *tq, taskq_ent_t *t)
189 ASSERT(tq);
190 ASSERT(t);
191 ASSERT(list_empty(&t->tqent_list));
192 ASSERT(!timer_pending(&t->tqent_timer));
194 kmem_free(t, sizeof (taskq_ent_t));
195 tq->tq_nalloc--;
199 * NOTE: Must be called with tq->tq_lock held, either destroys the
200 * taskq_ent_t if too many exist or moves it to the free list for later use.
202 static void
203 task_done(taskq_t *tq, taskq_ent_t *t)
205 ASSERT(tq);
206 ASSERT(t);
208 /* Wake tasks blocked in taskq_wait_id() */
209 wake_up_all(&t->tqent_waitq);
211 list_del_init(&t->tqent_list);
213 if (tq->tq_nalloc <= tq->tq_minalloc) {
214 t->tqent_id = TASKQID_INVALID;
215 t->tqent_func = NULL;
216 t->tqent_arg = NULL;
217 t->tqent_flags = 0;
219 list_add_tail(&t->tqent_list, &tq->tq_free_list);
220 } else {
221 task_free(tq, t);
226 * When a delayed task timer expires remove it from the delay list and
227 * add it to the priority list in order for immediate processing.
229 static void
230 task_expire_impl(taskq_ent_t *t)
232 taskq_ent_t *w;
233 taskq_t *tq = t->tqent_taskq;
234 struct list_head *l = NULL;
235 unsigned long flags;
237 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
239 if (t->tqent_flags & TQENT_FLAG_CANCEL) {
240 ASSERT(list_empty(&t->tqent_list));
241 spin_unlock_irqrestore(&tq->tq_lock, flags);
242 return;
245 t->tqent_birth = jiffies;
246 DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
249 * The priority list must be maintained in strict task id order
250 * from lowest to highest for lowest_id to be easily calculable.
252 list_del(&t->tqent_list);
253 list_for_each_prev(l, &tq->tq_prio_list) {
254 w = list_entry(l, taskq_ent_t, tqent_list);
255 if (w->tqent_id < t->tqent_id) {
256 list_add(&t->tqent_list, l);
257 break;
260 if (l == &tq->tq_prio_list)
261 list_add(&t->tqent_list, &tq->tq_prio_list);
263 spin_unlock_irqrestore(&tq->tq_lock, flags);
265 wake_up(&tq->tq_work_waitq);
268 static void
269 task_expire(spl_timer_list_t tl)
271 struct timer_list *tmr = (struct timer_list *)tl;
272 taskq_ent_t *t = from_timer(t, tmr, tqent_timer);
273 task_expire_impl(t);
277 * Returns the lowest incomplete taskqid_t. The taskqid_t may
278 * be queued on the pending list, on the priority list, on the
279 * delay list, or on the work list currently being handled, but
280 * it is not 100% complete yet.
282 static taskqid_t
283 taskq_lowest_id(taskq_t *tq)
285 taskqid_t lowest_id = tq->tq_next_id;
286 taskq_ent_t *t;
287 taskq_thread_t *tqt;
289 if (!list_empty(&tq->tq_pend_list)) {
290 t = list_entry(tq->tq_pend_list.next, taskq_ent_t, tqent_list);
291 lowest_id = MIN(lowest_id, t->tqent_id);
294 if (!list_empty(&tq->tq_prio_list)) {
295 t = list_entry(tq->tq_prio_list.next, taskq_ent_t, tqent_list);
296 lowest_id = MIN(lowest_id, t->tqent_id);
299 if (!list_empty(&tq->tq_delay_list)) {
300 t = list_entry(tq->tq_delay_list.next, taskq_ent_t, tqent_list);
301 lowest_id = MIN(lowest_id, t->tqent_id);
304 if (!list_empty(&tq->tq_active_list)) {
305 tqt = list_entry(tq->tq_active_list.next, taskq_thread_t,
306 tqt_active_list);
307 ASSERT(tqt->tqt_id != TASKQID_INVALID);
308 lowest_id = MIN(lowest_id, tqt->tqt_id);
311 return (lowest_id);
315 * Insert a task into a list keeping the list sorted by increasing taskqid.
317 static void
318 taskq_insert_in_order(taskq_t *tq, taskq_thread_t *tqt)
320 taskq_thread_t *w;
321 struct list_head *l = NULL;
323 ASSERT(tq);
324 ASSERT(tqt);
326 list_for_each_prev(l, &tq->tq_active_list) {
327 w = list_entry(l, taskq_thread_t, tqt_active_list);
328 if (w->tqt_id < tqt->tqt_id) {
329 list_add(&tqt->tqt_active_list, l);
330 break;
333 if (l == &tq->tq_active_list)
334 list_add(&tqt->tqt_active_list, &tq->tq_active_list);
338 * Find and return a task from the given list if it exists. The list
339 * must be in lowest to highest task id order.
341 static taskq_ent_t *
342 taskq_find_list(taskq_t *tq, struct list_head *lh, taskqid_t id)
344 struct list_head *l = NULL;
345 taskq_ent_t *t;
347 list_for_each(l, lh) {
348 t = list_entry(l, taskq_ent_t, tqent_list);
350 if (t->tqent_id == id)
351 return (t);
353 if (t->tqent_id > id)
354 break;
357 return (NULL);
361 * Find an already dispatched task given the task id regardless of what
362 * state it is in. If a task is still pending it will be returned.
363 * If a task is executing, then -EBUSY will be returned instead.
364 * If the task has already been run then NULL is returned.
366 static taskq_ent_t *
367 taskq_find(taskq_t *tq, taskqid_t id)
369 taskq_thread_t *tqt;
370 struct list_head *l = NULL;
371 taskq_ent_t *t;
373 t = taskq_find_list(tq, &tq->tq_delay_list, id);
374 if (t)
375 return (t);
377 t = taskq_find_list(tq, &tq->tq_prio_list, id);
378 if (t)
379 return (t);
381 t = taskq_find_list(tq, &tq->tq_pend_list, id);
382 if (t)
383 return (t);
385 list_for_each(l, &tq->tq_active_list) {
386 tqt = list_entry(l, taskq_thread_t, tqt_active_list);
387 if (tqt->tqt_id == id) {
389 * Instead of returning tqt_task, we just return a non
390 * NULL value to prevent misuse, since tqt_task only
391 * has two valid fields.
393 return (ERR_PTR(-EBUSY));
397 return (NULL);
401 * Theory for the taskq_wait_id(), taskq_wait_outstanding(), and
402 * taskq_wait() functions below.
404 * Taskq waiting is accomplished by tracking the lowest outstanding task
405 * id and the next available task id. As tasks are dispatched they are
406 * added to the tail of the pending, priority, or delay lists. As worker
407 * threads become available the tasks are removed from the heads of these
408 * lists and linked to the worker threads. This ensures the lists are
409 * kept sorted by lowest to highest task id.
411 * Therefore the lowest outstanding task id can be quickly determined by
412 * checking the head item from all of these lists. This value is stored
413 * with the taskq as the lowest id. It only needs to be recalculated when
414 * either the task with the current lowest id completes or is canceled.
416 * By blocking until the lowest task id exceeds the passed task id the
417 * taskq_wait_outstanding() function can be easily implemented. Similarly,
418 * by blocking until the lowest task id matches the next task id taskq_wait()
419 * can be implemented.
421 * Callers should be aware that when there are multiple worked threads it
422 * is possible for larger task ids to complete before smaller ones. Also
423 * when the taskq contains delay tasks with small task ids callers may
424 * block for a considerable length of time waiting for them to expire and
425 * execute.
427 static int
428 taskq_wait_id_check(taskq_t *tq, taskqid_t id)
430 int rc;
431 unsigned long flags;
433 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
434 rc = (taskq_find(tq, id) == NULL);
435 spin_unlock_irqrestore(&tq->tq_lock, flags);
437 return (rc);
441 * The taskq_wait_id() function blocks until the passed task id completes.
442 * This does not guarantee that all lower task ids have completed.
444 void
445 taskq_wait_id(taskq_t *tq, taskqid_t id)
447 wait_event(tq->tq_wait_waitq, taskq_wait_id_check(tq, id));
449 EXPORT_SYMBOL(taskq_wait_id);
451 static int
452 taskq_wait_outstanding_check(taskq_t *tq, taskqid_t id)
454 int rc;
455 unsigned long flags;
457 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
458 rc = (id < tq->tq_lowest_id);
459 spin_unlock_irqrestore(&tq->tq_lock, flags);
461 return (rc);
465 * The taskq_wait_outstanding() function will block until all tasks with a
466 * lower taskqid than the passed 'id' have been completed. Note that all
467 * task id's are assigned monotonically at dispatch time. Zero may be
468 * passed for the id to indicate all tasks dispatch up to this point,
469 * but not after, should be waited for.
471 void
472 taskq_wait_outstanding(taskq_t *tq, taskqid_t id)
474 id = id ? id : tq->tq_next_id - 1;
475 wait_event(tq->tq_wait_waitq, taskq_wait_outstanding_check(tq, id));
477 EXPORT_SYMBOL(taskq_wait_outstanding);
479 static int
480 taskq_wait_check(taskq_t *tq)
482 int rc;
483 unsigned long flags;
485 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
486 rc = (tq->tq_lowest_id == tq->tq_next_id);
487 spin_unlock_irqrestore(&tq->tq_lock, flags);
489 return (rc);
493 * The taskq_wait() function will block until the taskq is empty.
494 * This means that if a taskq re-dispatches work to itself taskq_wait()
495 * callers will block indefinitely.
497 void
498 taskq_wait(taskq_t *tq)
500 wait_event(tq->tq_wait_waitq, taskq_wait_check(tq));
502 EXPORT_SYMBOL(taskq_wait);
505 taskq_member(taskq_t *tq, kthread_t *t)
507 return (tq == (taskq_t *)tsd_get_by_thread(taskq_tsd, t));
509 EXPORT_SYMBOL(taskq_member);
511 taskq_t *
512 taskq_of_curthread(void)
514 return (tsd_get(taskq_tsd));
516 EXPORT_SYMBOL(taskq_of_curthread);
519 * Cancel an already dispatched task given the task id. Still pending tasks
520 * will be immediately canceled, and if the task is active the function will
521 * block until it completes. Preallocated tasks which are canceled must be
522 * freed by the caller.
525 taskq_cancel_id(taskq_t *tq, taskqid_t id)
527 taskq_ent_t *t;
528 int rc = ENOENT;
529 unsigned long flags;
531 ASSERT(tq);
533 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
534 t = taskq_find(tq, id);
535 if (t && t != ERR_PTR(-EBUSY)) {
536 list_del_init(&t->tqent_list);
537 t->tqent_flags |= TQENT_FLAG_CANCEL;
540 * When canceling the lowest outstanding task id we
541 * must recalculate the new lowest outstanding id.
543 if (tq->tq_lowest_id == t->tqent_id) {
544 tq->tq_lowest_id = taskq_lowest_id(tq);
545 ASSERT3S(tq->tq_lowest_id, >, t->tqent_id);
549 * The task_expire() function takes the tq->tq_lock so drop
550 * drop the lock before synchronously cancelling the timer.
552 if (timer_pending(&t->tqent_timer)) {
553 spin_unlock_irqrestore(&tq->tq_lock, flags);
554 del_timer_sync(&t->tqent_timer);
555 spin_lock_irqsave_nested(&tq->tq_lock, flags,
556 tq->tq_lock_class);
559 if (!(t->tqent_flags & TQENT_FLAG_PREALLOC))
560 task_done(tq, t);
562 rc = 0;
564 spin_unlock_irqrestore(&tq->tq_lock, flags);
566 if (t == ERR_PTR(-EBUSY)) {
567 taskq_wait_id(tq, id);
568 rc = EBUSY;
571 return (rc);
573 EXPORT_SYMBOL(taskq_cancel_id);
575 static int taskq_thread_spawn(taskq_t *tq);
577 taskqid_t
578 taskq_dispatch(taskq_t *tq, task_func_t func, void *arg, uint_t flags)
580 taskq_ent_t *t;
581 taskqid_t rc = TASKQID_INVALID;
582 unsigned long irqflags;
584 ASSERT(tq);
585 ASSERT(func);
587 spin_lock_irqsave_nested(&tq->tq_lock, irqflags, tq->tq_lock_class);
589 /* Taskq being destroyed and all tasks drained */
590 if (!(tq->tq_flags & TASKQ_ACTIVE))
591 goto out;
593 /* Do not queue the task unless there is idle thread for it */
594 ASSERT(tq->tq_nactive <= tq->tq_nthreads);
595 if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads)) {
596 /* Dynamic taskq may be able to spawn another thread */
597 if (!(tq->tq_flags & TASKQ_DYNAMIC) ||
598 taskq_thread_spawn(tq) == 0)
599 goto out;
602 if ((t = task_alloc(tq, flags, &irqflags)) == NULL)
603 goto out;
605 spin_lock(&t->tqent_lock);
607 /* Queue to the front of the list to enforce TQ_NOQUEUE semantics */
608 if (flags & TQ_NOQUEUE)
609 list_add(&t->tqent_list, &tq->tq_prio_list);
610 /* Queue to the priority list instead of the pending list */
611 else if (flags & TQ_FRONT)
612 list_add_tail(&t->tqent_list, &tq->tq_prio_list);
613 else
614 list_add_tail(&t->tqent_list, &tq->tq_pend_list);
616 t->tqent_id = rc = tq->tq_next_id;
617 tq->tq_next_id++;
618 t->tqent_func = func;
619 t->tqent_arg = arg;
620 t->tqent_taskq = tq;
621 t->tqent_timer.function = NULL;
622 t->tqent_timer.expires = 0;
624 t->tqent_birth = jiffies;
625 DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
627 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
629 spin_unlock(&t->tqent_lock);
631 wake_up(&tq->tq_work_waitq);
632 out:
633 /* Spawn additional taskq threads if required. */
634 if (!(flags & TQ_NOQUEUE) && tq->tq_nactive == tq->tq_nthreads)
635 (void) taskq_thread_spawn(tq);
637 spin_unlock_irqrestore(&tq->tq_lock, irqflags);
638 return (rc);
640 EXPORT_SYMBOL(taskq_dispatch);
642 taskqid_t
643 taskq_dispatch_delay(taskq_t *tq, task_func_t func, void *arg,
644 uint_t flags, clock_t expire_time)
646 taskqid_t rc = TASKQID_INVALID;
647 taskq_ent_t *t;
648 unsigned long irqflags;
650 ASSERT(tq);
651 ASSERT(func);
653 spin_lock_irqsave_nested(&tq->tq_lock, irqflags, tq->tq_lock_class);
655 /* Taskq being destroyed and all tasks drained */
656 if (!(tq->tq_flags & TASKQ_ACTIVE))
657 goto out;
659 if ((t = task_alloc(tq, flags, &irqflags)) == NULL)
660 goto out;
662 spin_lock(&t->tqent_lock);
664 /* Queue to the delay list for subsequent execution */
665 list_add_tail(&t->tqent_list, &tq->tq_delay_list);
667 t->tqent_id = rc = tq->tq_next_id;
668 tq->tq_next_id++;
669 t->tqent_func = func;
670 t->tqent_arg = arg;
671 t->tqent_taskq = tq;
672 t->tqent_timer.function = task_expire;
673 t->tqent_timer.expires = (unsigned long)expire_time;
674 add_timer(&t->tqent_timer);
676 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
678 spin_unlock(&t->tqent_lock);
679 out:
680 /* Spawn additional taskq threads if required. */
681 if (tq->tq_nactive == tq->tq_nthreads)
682 (void) taskq_thread_spawn(tq);
683 spin_unlock_irqrestore(&tq->tq_lock, irqflags);
684 return (rc);
686 EXPORT_SYMBOL(taskq_dispatch_delay);
688 void
689 taskq_dispatch_ent(taskq_t *tq, task_func_t func, void *arg, uint_t flags,
690 taskq_ent_t *t)
692 unsigned long irqflags;
693 ASSERT(tq);
694 ASSERT(func);
696 spin_lock_irqsave_nested(&tq->tq_lock, irqflags,
697 tq->tq_lock_class);
699 /* Taskq being destroyed and all tasks drained */
700 if (!(tq->tq_flags & TASKQ_ACTIVE)) {
701 t->tqent_id = TASKQID_INVALID;
702 goto out;
705 if ((flags & TQ_NOQUEUE) && (tq->tq_nactive == tq->tq_nthreads)) {
706 /* Dynamic taskq may be able to spawn another thread */
707 if (!(tq->tq_flags & TASKQ_DYNAMIC) ||
708 taskq_thread_spawn(tq) == 0)
709 goto out2;
710 flags |= TQ_FRONT;
713 spin_lock(&t->tqent_lock);
716 * Make sure the entry is not on some other taskq; it is important to
717 * ASSERT() under lock
719 ASSERT(taskq_empty_ent(t));
722 * Mark it as a prealloc'd task. This is important
723 * to ensure that we don't free it later.
725 t->tqent_flags |= TQENT_FLAG_PREALLOC;
727 /* Queue to the priority list instead of the pending list */
728 if (flags & TQ_FRONT)
729 list_add_tail(&t->tqent_list, &tq->tq_prio_list);
730 else
731 list_add_tail(&t->tqent_list, &tq->tq_pend_list);
733 t->tqent_id = tq->tq_next_id;
734 tq->tq_next_id++;
735 t->tqent_func = func;
736 t->tqent_arg = arg;
737 t->tqent_taskq = tq;
739 t->tqent_birth = jiffies;
740 DTRACE_PROBE1(taskq_ent__birth, taskq_ent_t *, t);
742 spin_unlock(&t->tqent_lock);
744 wake_up(&tq->tq_work_waitq);
745 out:
746 /* Spawn additional taskq threads if required. */
747 if (tq->tq_nactive == tq->tq_nthreads)
748 (void) taskq_thread_spawn(tq);
749 out2:
750 spin_unlock_irqrestore(&tq->tq_lock, irqflags);
752 EXPORT_SYMBOL(taskq_dispatch_ent);
755 taskq_empty_ent(taskq_ent_t *t)
757 return (list_empty(&t->tqent_list));
759 EXPORT_SYMBOL(taskq_empty_ent);
761 void
762 taskq_init_ent(taskq_ent_t *t)
764 spin_lock_init(&t->tqent_lock);
765 init_waitqueue_head(&t->tqent_waitq);
766 timer_setup(&t->tqent_timer, NULL, 0);
767 INIT_LIST_HEAD(&t->tqent_list);
768 t->tqent_id = 0;
769 t->tqent_func = NULL;
770 t->tqent_arg = NULL;
771 t->tqent_flags = 0;
772 t->tqent_taskq = NULL;
774 EXPORT_SYMBOL(taskq_init_ent);
777 * Return the next pending task, preference is given to tasks on the
778 * priority list which were dispatched with TQ_FRONT.
780 static taskq_ent_t *
781 taskq_next_ent(taskq_t *tq)
783 struct list_head *list;
785 if (!list_empty(&tq->tq_prio_list))
786 list = &tq->tq_prio_list;
787 else if (!list_empty(&tq->tq_pend_list))
788 list = &tq->tq_pend_list;
789 else
790 return (NULL);
792 return (list_entry(list->next, taskq_ent_t, tqent_list));
796 * Spawns a new thread for the specified taskq.
798 static void
799 taskq_thread_spawn_task(void *arg)
801 taskq_t *tq = (taskq_t *)arg;
802 unsigned long flags;
804 if (taskq_thread_create(tq) == NULL) {
805 /* restore spawning count if failed */
806 spin_lock_irqsave_nested(&tq->tq_lock, flags,
807 tq->tq_lock_class);
808 tq->tq_nspawn--;
809 spin_unlock_irqrestore(&tq->tq_lock, flags);
814 * Spawn addition threads for dynamic taskqs (TASKQ_DYNAMIC) the current
815 * number of threads is insufficient to handle the pending tasks. These
816 * new threads must be created by the dedicated dynamic_taskq to avoid
817 * deadlocks between thread creation and memory reclaim. The system_taskq
818 * which is also a dynamic taskq cannot be safely used for this.
820 static int
821 taskq_thread_spawn(taskq_t *tq)
823 int spawning = 0;
825 if (!(tq->tq_flags & TASKQ_DYNAMIC))
826 return (0);
828 if ((tq->tq_nthreads + tq->tq_nspawn < tq->tq_maxthreads) &&
829 (tq->tq_flags & TASKQ_ACTIVE)) {
830 spawning = (++tq->tq_nspawn);
831 taskq_dispatch(dynamic_taskq, taskq_thread_spawn_task,
832 tq, TQ_NOSLEEP);
835 return (spawning);
839 * Threads in a dynamic taskq should only exit once it has been completely
840 * drained and no other threads are actively servicing tasks. This prevents
841 * threads from being created and destroyed more than is required.
843 * The first thread is the thread list is treated as the primary thread.
844 * There is nothing special about the primary thread but in order to avoid
845 * all the taskq pids from changing we opt to make it long running.
847 static int
848 taskq_thread_should_stop(taskq_t *tq, taskq_thread_t *tqt)
850 if (!(tq->tq_flags & TASKQ_DYNAMIC))
851 return (0);
853 if (list_first_entry(&(tq->tq_thread_list), taskq_thread_t,
854 tqt_thread_list) == tqt)
855 return (0);
857 int no_work =
858 ((tq->tq_nspawn == 0) && /* No threads are being spawned */
859 (tq->tq_nactive == 0) && /* No threads are handling tasks */
860 (tq->tq_nthreads > 1) && /* More than 1 thread is running */
861 (!taskq_next_ent(tq)) && /* There are no pending tasks */
862 (spl_taskq_thread_dynamic)); /* Dynamic taskqs are allowed */
865 * If we would have said stop before, let's instead wait a bit, maybe
866 * we'll see more work come our way soon...
868 if (no_work) {
869 /* if it's 0, we want the old behavior. */
870 /* if the taskq is being torn down, we also want to go away. */
871 if (spl_taskq_thread_timeout_ms == 0 ||
872 !(tq->tq_flags & TASKQ_ACTIVE))
873 return (1);
874 unsigned long lasttime = tq->lastshouldstop;
875 if (lasttime > 0) {
876 if (time_after(jiffies, lasttime +
877 msecs_to_jiffies(spl_taskq_thread_timeout_ms)))
878 return (1);
879 else
880 return (0);
881 } else {
882 tq->lastshouldstop = jiffies;
884 } else {
885 tq->lastshouldstop = 0;
887 return (0);
890 static int
891 taskq_thread(void *args)
893 DECLARE_WAITQUEUE(wait, current);
894 sigset_t blocked;
895 taskq_thread_t *tqt = args;
896 taskq_t *tq;
897 taskq_ent_t *t;
898 int seq_tasks = 0;
899 unsigned long flags;
900 taskq_ent_t dup_task = {};
902 ASSERT(tqt);
903 ASSERT(tqt->tqt_tq);
904 tq = tqt->tqt_tq;
905 current->flags |= PF_NOFREEZE;
907 (void) spl_fstrans_mark();
909 sigfillset(&blocked);
910 sigprocmask(SIG_BLOCK, &blocked, NULL);
911 flush_signals(current);
913 tsd_set(taskq_tsd, tq);
914 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
916 * If we are dynamically spawned, decrease spawning count. Note that
917 * we could be created during taskq_create, in which case we shouldn't
918 * do the decrement. But it's fine because taskq_create will reset
919 * tq_nspawn later.
921 if (tq->tq_flags & TASKQ_DYNAMIC)
922 tq->tq_nspawn--;
924 /* Immediately exit if more threads than allowed were created. */
925 if (tq->tq_nthreads >= tq->tq_maxthreads)
926 goto error;
928 tq->tq_nthreads++;
929 list_add_tail(&tqt->tqt_thread_list, &tq->tq_thread_list);
930 wake_up(&tq->tq_wait_waitq);
931 set_current_state(TASK_INTERRUPTIBLE);
933 while (!kthread_should_stop()) {
935 if (list_empty(&tq->tq_pend_list) &&
936 list_empty(&tq->tq_prio_list)) {
938 if (taskq_thread_should_stop(tq, tqt)) {
939 wake_up_all(&tq->tq_wait_waitq);
940 break;
943 add_wait_queue_exclusive(&tq->tq_work_waitq, &wait);
944 spin_unlock_irqrestore(&tq->tq_lock, flags);
946 schedule();
947 seq_tasks = 0;
949 spin_lock_irqsave_nested(&tq->tq_lock, flags,
950 tq->tq_lock_class);
951 remove_wait_queue(&tq->tq_work_waitq, &wait);
952 } else {
953 __set_current_state(TASK_RUNNING);
956 if ((t = taskq_next_ent(tq)) != NULL) {
957 list_del_init(&t->tqent_list);
960 * A TQENT_FLAG_PREALLOC task may be reused or freed
961 * during the task function call. Store tqent_id and
962 * tqent_flags here.
964 * Also use an on stack taskq_ent_t for tqt_task
965 * assignment in this case; we want to make sure
966 * to duplicate all fields, so the values are
967 * correct when it's accessed via DTRACE_PROBE*.
969 tqt->tqt_id = t->tqent_id;
970 tqt->tqt_flags = t->tqent_flags;
972 if (t->tqent_flags & TQENT_FLAG_PREALLOC) {
973 dup_task = *t;
974 t = &dup_task;
976 tqt->tqt_task = t;
978 taskq_insert_in_order(tq, tqt);
979 tq->tq_nactive++;
980 spin_unlock_irqrestore(&tq->tq_lock, flags);
982 DTRACE_PROBE1(taskq_ent__start, taskq_ent_t *, t);
984 /* Perform the requested task */
985 t->tqent_func(t->tqent_arg);
987 DTRACE_PROBE1(taskq_ent__finish, taskq_ent_t *, t);
989 spin_lock_irqsave_nested(&tq->tq_lock, flags,
990 tq->tq_lock_class);
991 tq->tq_nactive--;
992 list_del_init(&tqt->tqt_active_list);
993 tqt->tqt_task = NULL;
995 /* For prealloc'd tasks, we don't free anything. */
996 if (!(tqt->tqt_flags & TQENT_FLAG_PREALLOC))
997 task_done(tq, t);
1000 * When the current lowest outstanding taskqid is
1001 * done calculate the new lowest outstanding id
1003 if (tq->tq_lowest_id == tqt->tqt_id) {
1004 tq->tq_lowest_id = taskq_lowest_id(tq);
1005 ASSERT3S(tq->tq_lowest_id, >, tqt->tqt_id);
1008 /* Spawn additional taskq threads if required. */
1009 if ((++seq_tasks) > spl_taskq_thread_sequential &&
1010 taskq_thread_spawn(tq))
1011 seq_tasks = 0;
1013 tqt->tqt_id = TASKQID_INVALID;
1014 tqt->tqt_flags = 0;
1015 wake_up_all(&tq->tq_wait_waitq);
1016 } else {
1017 if (taskq_thread_should_stop(tq, tqt))
1018 break;
1021 set_current_state(TASK_INTERRUPTIBLE);
1025 __set_current_state(TASK_RUNNING);
1026 tq->tq_nthreads--;
1027 list_del_init(&tqt->tqt_thread_list);
1028 error:
1029 kmem_free(tqt, sizeof (taskq_thread_t));
1030 spin_unlock_irqrestore(&tq->tq_lock, flags);
1032 tsd_set(taskq_tsd, NULL);
1033 thread_exit();
1035 return (0);
1038 static taskq_thread_t *
1039 taskq_thread_create(taskq_t *tq)
1041 static int last_used_cpu = 0;
1042 taskq_thread_t *tqt;
1044 tqt = kmem_alloc(sizeof (*tqt), KM_PUSHPAGE);
1045 INIT_LIST_HEAD(&tqt->tqt_thread_list);
1046 INIT_LIST_HEAD(&tqt->tqt_active_list);
1047 tqt->tqt_tq = tq;
1048 tqt->tqt_id = TASKQID_INVALID;
1050 tqt->tqt_thread = spl_kthread_create(taskq_thread, tqt,
1051 "%s", tq->tq_name);
1052 if (tqt->tqt_thread == NULL) {
1053 kmem_free(tqt, sizeof (taskq_thread_t));
1054 return (NULL);
1057 if (spl_taskq_thread_bind) {
1058 last_used_cpu = (last_used_cpu + 1) % num_online_cpus();
1059 kthread_bind(tqt->tqt_thread, last_used_cpu);
1062 if (spl_taskq_thread_priority)
1063 set_user_nice(tqt->tqt_thread, PRIO_TO_NICE(tq->tq_pri));
1065 wake_up_process(tqt->tqt_thread);
1067 return (tqt);
1070 taskq_t *
1071 taskq_create(const char *name, int threads_arg, pri_t pri,
1072 int minalloc, int maxalloc, uint_t flags)
1074 taskq_t *tq;
1075 taskq_thread_t *tqt;
1076 int count = 0, rc = 0, i;
1077 unsigned long irqflags;
1078 int nthreads = threads_arg;
1080 ASSERT(name != NULL);
1081 ASSERT(minalloc >= 0);
1082 ASSERT(!(flags & (TASKQ_CPR_SAFE))); /* Unsupported */
1084 /* Scale the number of threads using nthreads as a percentage */
1085 if (flags & TASKQ_THREADS_CPU_PCT) {
1086 ASSERT(nthreads <= 100);
1087 ASSERT(nthreads >= 0);
1088 nthreads = MIN(threads_arg, 100);
1089 nthreads = MAX(nthreads, 0);
1090 nthreads = MAX((num_online_cpus() * nthreads) /100, 1);
1093 tq = kmem_alloc(sizeof (*tq), KM_PUSHPAGE);
1094 if (tq == NULL)
1095 return (NULL);
1097 tq->tq_hp_support = B_FALSE;
1098 #ifdef HAVE_CPU_HOTPLUG
1099 if (flags & TASKQ_THREADS_CPU_PCT) {
1100 tq->tq_hp_support = B_TRUE;
1101 if (cpuhp_state_add_instance_nocalls(spl_taskq_cpuhp_state,
1102 &tq->tq_hp_cb_node) != 0) {
1103 kmem_free(tq, sizeof (*tq));
1104 return (NULL);
1107 #endif
1109 spin_lock_init(&tq->tq_lock);
1110 INIT_LIST_HEAD(&tq->tq_thread_list);
1111 INIT_LIST_HEAD(&tq->tq_active_list);
1112 tq->tq_name = kmem_strdup(name);
1113 tq->tq_nactive = 0;
1114 tq->tq_nthreads = 0;
1115 tq->tq_nspawn = 0;
1116 tq->tq_maxthreads = nthreads;
1117 tq->tq_cpu_pct = threads_arg;
1118 tq->tq_pri = pri;
1119 tq->tq_minalloc = minalloc;
1120 tq->tq_maxalloc = maxalloc;
1121 tq->tq_nalloc = 0;
1122 tq->tq_flags = (flags | TASKQ_ACTIVE);
1123 tq->tq_next_id = TASKQID_INITIAL;
1124 tq->tq_lowest_id = TASKQID_INITIAL;
1125 tq->lastshouldstop = 0;
1126 INIT_LIST_HEAD(&tq->tq_free_list);
1127 INIT_LIST_HEAD(&tq->tq_pend_list);
1128 INIT_LIST_HEAD(&tq->tq_prio_list);
1129 INIT_LIST_HEAD(&tq->tq_delay_list);
1130 init_waitqueue_head(&tq->tq_work_waitq);
1131 init_waitqueue_head(&tq->tq_wait_waitq);
1132 tq->tq_lock_class = TQ_LOCK_GENERAL;
1133 INIT_LIST_HEAD(&tq->tq_taskqs);
1135 if (flags & TASKQ_PREPOPULATE) {
1136 spin_lock_irqsave_nested(&tq->tq_lock, irqflags,
1137 tq->tq_lock_class);
1139 for (i = 0; i < minalloc; i++)
1140 task_done(tq, task_alloc(tq, TQ_PUSHPAGE | TQ_NEW,
1141 &irqflags));
1143 spin_unlock_irqrestore(&tq->tq_lock, irqflags);
1146 if ((flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic)
1147 nthreads = 1;
1149 for (i = 0; i < nthreads; i++) {
1150 tqt = taskq_thread_create(tq);
1151 if (tqt == NULL)
1152 rc = 1;
1153 else
1154 count++;
1157 /* Wait for all threads to be started before potential destroy */
1158 wait_event(tq->tq_wait_waitq, tq->tq_nthreads == count);
1160 * taskq_thread might have touched nspawn, but we don't want them to
1161 * because they're not dynamically spawned. So we reset it to 0
1163 tq->tq_nspawn = 0;
1165 if (rc) {
1166 taskq_destroy(tq);
1167 tq = NULL;
1168 } else {
1169 down_write(&tq_list_sem);
1170 tq->tq_instance = taskq_find_by_name(name) + 1;
1171 list_add_tail(&tq->tq_taskqs, &tq_list);
1172 up_write(&tq_list_sem);
1175 return (tq);
1177 EXPORT_SYMBOL(taskq_create);
1179 void
1180 taskq_destroy(taskq_t *tq)
1182 struct task_struct *thread;
1183 taskq_thread_t *tqt;
1184 taskq_ent_t *t;
1185 unsigned long flags;
1187 ASSERT(tq);
1188 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
1189 tq->tq_flags &= ~TASKQ_ACTIVE;
1190 spin_unlock_irqrestore(&tq->tq_lock, flags);
1192 #ifdef HAVE_CPU_HOTPLUG
1193 if (tq->tq_hp_support) {
1194 VERIFY0(cpuhp_state_remove_instance_nocalls(
1195 spl_taskq_cpuhp_state, &tq->tq_hp_cb_node));
1197 #endif
1199 * When TASKQ_ACTIVE is clear new tasks may not be added nor may
1200 * new worker threads be spawned for dynamic taskq.
1202 if (dynamic_taskq != NULL)
1203 taskq_wait_outstanding(dynamic_taskq, 0);
1205 taskq_wait(tq);
1207 /* remove taskq from global list used by the kstats */
1208 down_write(&tq_list_sem);
1209 list_del(&tq->tq_taskqs);
1210 up_write(&tq_list_sem);
1212 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
1213 /* wait for spawning threads to insert themselves to the list */
1214 while (tq->tq_nspawn) {
1215 spin_unlock_irqrestore(&tq->tq_lock, flags);
1216 schedule_timeout_interruptible(1);
1217 spin_lock_irqsave_nested(&tq->tq_lock, flags,
1218 tq->tq_lock_class);
1222 * Signal each thread to exit and block until it does. Each thread
1223 * is responsible for removing itself from the list and freeing its
1224 * taskq_thread_t. This allows for idle threads to opt to remove
1225 * themselves from the taskq. They can be recreated as needed.
1227 while (!list_empty(&tq->tq_thread_list)) {
1228 tqt = list_entry(tq->tq_thread_list.next,
1229 taskq_thread_t, tqt_thread_list);
1230 thread = tqt->tqt_thread;
1231 spin_unlock_irqrestore(&tq->tq_lock, flags);
1233 kthread_stop(thread);
1235 spin_lock_irqsave_nested(&tq->tq_lock, flags,
1236 tq->tq_lock_class);
1239 while (!list_empty(&tq->tq_free_list)) {
1240 t = list_entry(tq->tq_free_list.next, taskq_ent_t, tqent_list);
1242 ASSERT(!(t->tqent_flags & TQENT_FLAG_PREALLOC));
1244 list_del_init(&t->tqent_list);
1245 task_free(tq, t);
1248 ASSERT0(tq->tq_nthreads);
1249 ASSERT0(tq->tq_nalloc);
1250 ASSERT0(tq->tq_nspawn);
1251 ASSERT(list_empty(&tq->tq_thread_list));
1252 ASSERT(list_empty(&tq->tq_active_list));
1253 ASSERT(list_empty(&tq->tq_free_list));
1254 ASSERT(list_empty(&tq->tq_pend_list));
1255 ASSERT(list_empty(&tq->tq_prio_list));
1256 ASSERT(list_empty(&tq->tq_delay_list));
1258 spin_unlock_irqrestore(&tq->tq_lock, flags);
1260 kmem_strfree(tq->tq_name);
1261 kmem_free(tq, sizeof (taskq_t));
1263 EXPORT_SYMBOL(taskq_destroy);
1265 static unsigned int spl_taskq_kick = 0;
1268 * 2.6.36 API Change
1269 * module_param_cb is introduced to take kernel_param_ops and
1270 * module_param_call is marked as obsolete. Also set and get operations
1271 * were changed to take a 'const struct kernel_param *'.
1273 static int
1274 #ifdef module_param_cb
1275 param_set_taskq_kick(const char *val, const struct kernel_param *kp)
1276 #else
1277 param_set_taskq_kick(const char *val, struct kernel_param *kp)
1278 #endif
1280 int ret;
1281 taskq_t *tq = NULL;
1282 taskq_ent_t *t;
1283 unsigned long flags;
1285 ret = param_set_uint(val, kp);
1286 if (ret < 0 || !spl_taskq_kick)
1287 return (ret);
1288 /* reset value */
1289 spl_taskq_kick = 0;
1291 down_read(&tq_list_sem);
1292 list_for_each_entry(tq, &tq_list, tq_taskqs) {
1293 spin_lock_irqsave_nested(&tq->tq_lock, flags,
1294 tq->tq_lock_class);
1295 /* Check if the first pending is older than 5 seconds */
1296 t = taskq_next_ent(tq);
1297 if (t && time_after(jiffies, t->tqent_birth + 5*HZ)) {
1298 (void) taskq_thread_spawn(tq);
1299 printk(KERN_INFO "spl: Kicked taskq %s/%d\n",
1300 tq->tq_name, tq->tq_instance);
1302 spin_unlock_irqrestore(&tq->tq_lock, flags);
1304 up_read(&tq_list_sem);
1305 return (ret);
1308 #ifdef module_param_cb
1309 static const struct kernel_param_ops param_ops_taskq_kick = {
1310 .set = param_set_taskq_kick,
1311 .get = param_get_uint,
1313 module_param_cb(spl_taskq_kick, &param_ops_taskq_kick, &spl_taskq_kick, 0644);
1314 #else
1315 module_param_call(spl_taskq_kick, param_set_taskq_kick, param_get_uint,
1316 &spl_taskq_kick, 0644);
1317 #endif
1318 MODULE_PARM_DESC(spl_taskq_kick,
1319 "Write nonzero to kick stuck taskqs to spawn more threads");
1321 #ifdef HAVE_CPU_HOTPLUG
1323 * This callback will be called exactly once for each core that comes online,
1324 * for each dynamic taskq. We attempt to expand taskqs that have
1325 * TASKQ_THREADS_CPU_PCT set. We need to redo the percentage calculation every
1326 * time, to correctly determine whether or not to add a thread.
1328 static int
1329 spl_taskq_expand(unsigned int cpu, struct hlist_node *node)
1331 taskq_t *tq = list_entry(node, taskq_t, tq_hp_cb_node);
1332 unsigned long flags;
1333 int err = 0;
1335 ASSERT(tq);
1336 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
1338 if (!(tq->tq_flags & TASKQ_ACTIVE)) {
1339 spin_unlock_irqrestore(&tq->tq_lock, flags);
1340 return (err);
1343 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
1344 int nthreads = MIN(tq->tq_cpu_pct, 100);
1345 nthreads = MAX(((num_online_cpus() + 1) * nthreads) / 100, 1);
1346 tq->tq_maxthreads = nthreads;
1348 if (!((tq->tq_flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) &&
1349 tq->tq_maxthreads > tq->tq_nthreads) {
1350 spin_unlock_irqrestore(&tq->tq_lock, flags);
1351 taskq_thread_t *tqt = taskq_thread_create(tq);
1352 if (tqt == NULL)
1353 err = -1;
1354 return (err);
1356 spin_unlock_irqrestore(&tq->tq_lock, flags);
1357 return (err);
1361 * While we don't support offlining CPUs, it is possible that CPUs will fail
1362 * to online successfully. We do need to be able to handle this case
1363 * gracefully.
1365 static int
1366 spl_taskq_prepare_down(unsigned int cpu, struct hlist_node *node)
1368 taskq_t *tq = list_entry(node, taskq_t, tq_hp_cb_node);
1369 unsigned long flags;
1371 ASSERT(tq);
1372 spin_lock_irqsave_nested(&tq->tq_lock, flags, tq->tq_lock_class);
1374 if (!(tq->tq_flags & TASKQ_ACTIVE))
1375 goto out;
1377 ASSERT(tq->tq_flags & TASKQ_THREADS_CPU_PCT);
1378 int nthreads = MIN(tq->tq_cpu_pct, 100);
1379 nthreads = MAX(((num_online_cpus()) * nthreads) / 100, 1);
1380 tq->tq_maxthreads = nthreads;
1382 if (!((tq->tq_flags & TASKQ_DYNAMIC) && spl_taskq_thread_dynamic) &&
1383 tq->tq_maxthreads < tq->tq_nthreads) {
1384 ASSERT3U(tq->tq_maxthreads, ==, tq->tq_nthreads - 1);
1385 taskq_thread_t *tqt = list_entry(tq->tq_thread_list.next,
1386 taskq_thread_t, tqt_thread_list);
1387 struct task_struct *thread = tqt->tqt_thread;
1388 spin_unlock_irqrestore(&tq->tq_lock, flags);
1390 kthread_stop(thread);
1392 return (0);
1395 out:
1396 spin_unlock_irqrestore(&tq->tq_lock, flags);
1397 return (0);
1399 #endif
1402 spl_taskq_init(void)
1404 init_rwsem(&tq_list_sem);
1405 tsd_create(&taskq_tsd, NULL);
1407 #ifdef HAVE_CPU_HOTPLUG
1408 spl_taskq_cpuhp_state = cpuhp_setup_state_multi(CPUHP_AP_ONLINE_DYN,
1409 "fs/spl_taskq:online", spl_taskq_expand, spl_taskq_prepare_down);
1410 #endif
1412 system_taskq = taskq_create("spl_system_taskq", MAX(boot_ncpus, 64),
1413 maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC);
1414 if (system_taskq == NULL)
1415 return (-ENOMEM);
1417 system_delay_taskq = taskq_create("spl_delay_taskq", MAX(boot_ncpus, 4),
1418 maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE|TASKQ_DYNAMIC);
1419 if (system_delay_taskq == NULL) {
1420 #ifdef HAVE_CPU_HOTPLUG
1421 cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
1422 #endif
1423 taskq_destroy(system_taskq);
1424 return (-ENOMEM);
1427 dynamic_taskq = taskq_create("spl_dynamic_taskq", 1,
1428 maxclsyspri, boot_ncpus, INT_MAX, TASKQ_PREPOPULATE);
1429 if (dynamic_taskq == NULL) {
1430 #ifdef HAVE_CPU_HOTPLUG
1431 cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
1432 #endif
1433 taskq_destroy(system_taskq);
1434 taskq_destroy(system_delay_taskq);
1435 return (-ENOMEM);
1439 * This is used to annotate tq_lock, so
1440 * taskq_dispatch -> taskq_thread_spawn -> taskq_dispatch
1441 * does not trigger a lockdep warning re: possible recursive locking
1443 dynamic_taskq->tq_lock_class = TQ_LOCK_DYNAMIC;
1445 return (0);
1448 void
1449 spl_taskq_fini(void)
1451 taskq_destroy(dynamic_taskq);
1452 dynamic_taskq = NULL;
1454 taskq_destroy(system_delay_taskq);
1455 system_delay_taskq = NULL;
1457 taskq_destroy(system_taskq);
1458 system_taskq = NULL;
1460 tsd_destroy(&taskq_tsd);
1462 #ifdef HAVE_CPU_HOTPLUG
1463 cpuhp_remove_multi_state(spl_taskq_cpuhp_state);
1464 spl_taskq_cpuhp_state = 0;
1465 #endif