4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or http://www.opensolaris.org/os/licensing.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
35 * The overall design of the ztest program is as follows:
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
75 * To turn this into an overnight stress test, use -T to specify run time.
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
80 * Use the -k option to set the desired frequency of kills.
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
91 #include <sys/zfs_context.h>
97 #include <sys/dmu_objset.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
124 #include <sys/blake3.h>
133 #include <sys/fs/zfs.h>
134 #include <zfs_fletcher.h>
135 #include <libnvpair.h>
136 #include <libzutil.h>
137 #include <sys/crypto/icp.h>
138 #if (__GLIBC__ && !__UCLIBC__)
139 #include <execinfo.h> /* for backtrace() */
142 static int ztest_fd_data
= -1;
143 static int ztest_fd_rand
= -1;
145 typedef struct ztest_shared_hdr
{
146 uint64_t zh_hdr_size
;
147 uint64_t zh_opts_size
;
149 uint64_t zh_stats_size
;
150 uint64_t zh_stats_count
;
152 uint64_t zh_ds_count
;
153 } ztest_shared_hdr_t
;
155 static ztest_shared_hdr_t
*ztest_shared_hdr
;
157 enum ztest_class_state
{
158 ZTEST_VDEV_CLASS_OFF
,
163 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
164 #define ZO_GVARS_MAX_COUNT ((size_t)10)
166 typedef struct ztest_shared_opts
{
167 char zo_pool
[ZFS_MAX_DATASET_NAME_LEN
];
168 char zo_dir
[ZFS_MAX_DATASET_NAME_LEN
];
169 char zo_alt_ztest
[MAXNAMELEN
];
170 char zo_alt_libpath
[MAXNAMELEN
];
172 uint64_t zo_vdevtime
;
176 int zo_raid_children
;
178 char zo_raid_type
[8];
183 uint64_t zo_passtime
;
184 uint64_t zo_killrate
;
188 uint64_t zo_maxloops
;
189 uint64_t zo_metaslab_force_ganging
;
191 int zo_special_vdevs
;
194 char zo_gvars
[ZO_GVARS_MAX_COUNT
][ZO_GVARS_MAX_ARGLEN
];
195 } ztest_shared_opts_t
;
197 /* Default values for command line options. */
198 #define DEFAULT_POOL "ztest"
199 #define DEFAULT_VDEV_DIR "/tmp"
200 #define DEFAULT_VDEV_COUNT 5
201 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
202 #define DEFAULT_VDEV_SIZE_STR "256M"
203 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
204 #define DEFAULT_MIRRORS 2
205 #define DEFAULT_RAID_CHILDREN 4
206 #define DEFAULT_RAID_PARITY 1
207 #define DEFAULT_DRAID_DATA 4
208 #define DEFAULT_DRAID_SPARES 1
209 #define DEFAULT_DATASETS_COUNT 7
210 #define DEFAULT_THREADS 23
211 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
212 #define DEFAULT_RUN_TIME_STR "300 sec"
213 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
214 #define DEFAULT_PASS_TIME_STR "60 sec"
215 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
216 #define DEFAULT_KILLRATE_STR "70%"
217 #define DEFAULT_INITS 1
218 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
219 #define DEFAULT_FORCE_GANGING (64 << 10)
220 #define DEFAULT_FORCE_GANGING_STR "64K"
222 /* Simplifying assumption: -1 is not a valid default. */
223 #define NO_DEFAULT -1
225 static const ztest_shared_opts_t ztest_opts_defaults
= {
226 .zo_pool
= DEFAULT_POOL
,
227 .zo_dir
= DEFAULT_VDEV_DIR
,
228 .zo_alt_ztest
= { '\0' },
229 .zo_alt_libpath
= { '\0' },
230 .zo_vdevs
= DEFAULT_VDEV_COUNT
,
231 .zo_ashift
= DEFAULT_ASHIFT
,
232 .zo_mirrors
= DEFAULT_MIRRORS
,
233 .zo_raid_children
= DEFAULT_RAID_CHILDREN
,
234 .zo_raid_parity
= DEFAULT_RAID_PARITY
,
235 .zo_raid_type
= VDEV_TYPE_RAIDZ
,
236 .zo_vdev_size
= DEFAULT_VDEV_SIZE
,
237 .zo_draid_data
= DEFAULT_DRAID_DATA
, /* data drives */
238 .zo_draid_spares
= DEFAULT_DRAID_SPARES
, /* distributed spares */
239 .zo_datasets
= DEFAULT_DATASETS_COUNT
,
240 .zo_threads
= DEFAULT_THREADS
,
241 .zo_passtime
= DEFAULT_PASS_TIME
,
242 .zo_killrate
= DEFAULT_KILL_RATE
,
245 .zo_init
= DEFAULT_INITS
,
246 .zo_time
= DEFAULT_RUN_TIME
,
247 .zo_maxloops
= DEFAULT_MAX_LOOPS
, /* max loops during spa_freeze() */
248 .zo_metaslab_force_ganging
= DEFAULT_FORCE_GANGING
,
249 .zo_special_vdevs
= ZTEST_VDEV_CLASS_RND
,
253 extern uint64_t metaslab_force_ganging
;
254 extern uint64_t metaslab_df_alloc_threshold
;
255 extern unsigned long zfs_deadman_synctime_ms
;
256 extern int metaslab_preload_limit
;
257 extern int zfs_compressed_arc_enabled
;
258 extern int zfs_abd_scatter_enabled
;
259 extern int dmu_object_alloc_chunk_shift
;
260 extern boolean_t zfs_force_some_double_word_sm_entries
;
261 extern unsigned long zio_decompress_fail_fraction
;
262 extern unsigned long zfs_reconstruct_indirect_damage_fraction
;
265 static ztest_shared_opts_t
*ztest_shared_opts
;
266 static ztest_shared_opts_t ztest_opts
;
267 static char *ztest_wkeydata
= "abcdefghijklmnopqrstuvwxyz012345";
269 typedef struct ztest_shared_ds
{
273 static ztest_shared_ds_t
*ztest_shared_ds
;
274 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
276 #define BT_MAGIC 0x123456789abcdefULL
277 #define MAXFAULTS(zs) \
278 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
282 ZTEST_IO_WRITE_PATTERN
,
283 ZTEST_IO_WRITE_ZEROES
,
290 typedef struct ztest_block_tag
{
294 uint64_t bt_dnodesize
;
301 typedef struct bufwad
{
308 * It would be better to use a rangelock_t per object. Unfortunately
309 * the rangelock_t is not a drop-in replacement for rl_t, because we
310 * still need to map from object ID to rangelock_t.
332 #define ZTEST_RANGE_LOCKS 64
333 #define ZTEST_OBJECT_LOCKS 64
336 * Object descriptor. Used as a template for object lookup/create/remove.
338 typedef struct ztest_od
{
341 dmu_object_type_t od_type
;
342 dmu_object_type_t od_crtype
;
343 uint64_t od_blocksize
;
344 uint64_t od_crblocksize
;
345 uint64_t od_crdnodesize
;
348 char od_name
[ZFS_MAX_DATASET_NAME_LEN
];
354 typedef struct ztest_ds
{
355 ztest_shared_ds_t
*zd_shared
;
357 pthread_rwlock_t zd_zilog_lock
;
359 ztest_od_t
*zd_od
; /* debugging aid */
360 char zd_name
[ZFS_MAX_DATASET_NAME_LEN
];
361 kmutex_t zd_dirobj_lock
;
362 rll_t zd_object_lock
[ZTEST_OBJECT_LOCKS
];
363 rll_t zd_range_lock
[ZTEST_RANGE_LOCKS
];
367 * Per-iteration state.
369 typedef void ztest_func_t(ztest_ds_t
*zd
, uint64_t id
);
371 typedef struct ztest_info
{
372 ztest_func_t
*zi_func
; /* test function */
373 uint64_t zi_iters
; /* iterations per execution */
374 uint64_t *zi_interval
; /* execute every <interval> seconds */
375 const char *zi_funcname
; /* name of test function */
378 typedef struct ztest_shared_callstate
{
379 uint64_t zc_count
; /* per-pass count */
380 uint64_t zc_time
; /* per-pass time */
381 uint64_t zc_next
; /* next time to call this function */
382 } ztest_shared_callstate_t
;
384 static ztest_shared_callstate_t
*ztest_shared_callstate
;
385 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
387 ztest_func_t ztest_dmu_read_write
;
388 ztest_func_t ztest_dmu_write_parallel
;
389 ztest_func_t ztest_dmu_object_alloc_free
;
390 ztest_func_t ztest_dmu_object_next_chunk
;
391 ztest_func_t ztest_dmu_commit_callbacks
;
392 ztest_func_t ztest_zap
;
393 ztest_func_t ztest_zap_parallel
;
394 ztest_func_t ztest_zil_commit
;
395 ztest_func_t ztest_zil_remount
;
396 ztest_func_t ztest_dmu_read_write_zcopy
;
397 ztest_func_t ztest_dmu_objset_create_destroy
;
398 ztest_func_t ztest_dmu_prealloc
;
399 ztest_func_t ztest_fzap
;
400 ztest_func_t ztest_dmu_snapshot_create_destroy
;
401 ztest_func_t ztest_dsl_prop_get_set
;
402 ztest_func_t ztest_spa_prop_get_set
;
403 ztest_func_t ztest_spa_create_destroy
;
404 ztest_func_t ztest_fault_inject
;
405 ztest_func_t ztest_dmu_snapshot_hold
;
406 ztest_func_t ztest_mmp_enable_disable
;
407 ztest_func_t ztest_scrub
;
408 ztest_func_t ztest_dsl_dataset_promote_busy
;
409 ztest_func_t ztest_vdev_attach_detach
;
410 ztest_func_t ztest_vdev_LUN_growth
;
411 ztest_func_t ztest_vdev_add_remove
;
412 ztest_func_t ztest_vdev_class_add
;
413 ztest_func_t ztest_vdev_aux_add_remove
;
414 ztest_func_t ztest_split_pool
;
415 ztest_func_t ztest_reguid
;
416 ztest_func_t ztest_spa_upgrade
;
417 ztest_func_t ztest_device_removal
;
418 ztest_func_t ztest_spa_checkpoint_create_discard
;
419 ztest_func_t ztest_initialize
;
420 ztest_func_t ztest_trim
;
421 ztest_func_t ztest_blake3
;
422 ztest_func_t ztest_fletcher
;
423 ztest_func_t ztest_fletcher_incr
;
424 ztest_func_t ztest_verify_dnode_bt
;
426 uint64_t zopt_always
= 0ULL * NANOSEC
; /* all the time */
427 uint64_t zopt_incessant
= 1ULL * NANOSEC
/ 10; /* every 1/10 second */
428 uint64_t zopt_often
= 1ULL * NANOSEC
; /* every second */
429 uint64_t zopt_sometimes
= 10ULL * NANOSEC
; /* every 10 seconds */
430 uint64_t zopt_rarely
= 60ULL * NANOSEC
; /* every 60 seconds */
432 #define ZTI_INIT(func, iters, interval) \
433 { .zi_func = (func), \
434 .zi_iters = (iters), \
435 .zi_interval = (interval), \
436 .zi_funcname = # func }
438 ztest_info_t ztest_info
[] = {
439 ZTI_INIT(ztest_dmu_read_write
, 1, &zopt_always
),
440 ZTI_INIT(ztest_dmu_write_parallel
, 10, &zopt_always
),
441 ZTI_INIT(ztest_dmu_object_alloc_free
, 1, &zopt_always
),
442 ZTI_INIT(ztest_dmu_object_next_chunk
, 1, &zopt_sometimes
),
443 ZTI_INIT(ztest_dmu_commit_callbacks
, 1, &zopt_always
),
444 ZTI_INIT(ztest_zap
, 30, &zopt_always
),
445 ZTI_INIT(ztest_zap_parallel
, 100, &zopt_always
),
446 ZTI_INIT(ztest_split_pool
, 1, &zopt_always
),
447 ZTI_INIT(ztest_zil_commit
, 1, &zopt_incessant
),
448 ZTI_INIT(ztest_zil_remount
, 1, &zopt_sometimes
),
449 ZTI_INIT(ztest_dmu_read_write_zcopy
, 1, &zopt_often
),
450 ZTI_INIT(ztest_dmu_objset_create_destroy
, 1, &zopt_often
),
451 ZTI_INIT(ztest_dsl_prop_get_set
, 1, &zopt_often
),
452 ZTI_INIT(ztest_spa_prop_get_set
, 1, &zopt_sometimes
),
454 ZTI_INIT(ztest_dmu_prealloc
, 1, &zopt_sometimes
),
456 ZTI_INIT(ztest_fzap
, 1, &zopt_sometimes
),
457 ZTI_INIT(ztest_dmu_snapshot_create_destroy
, 1, &zopt_sometimes
),
458 ZTI_INIT(ztest_spa_create_destroy
, 1, &zopt_sometimes
),
459 ZTI_INIT(ztest_fault_inject
, 1, &zopt_sometimes
),
460 ZTI_INIT(ztest_dmu_snapshot_hold
, 1, &zopt_sometimes
),
461 ZTI_INIT(ztest_mmp_enable_disable
, 1, &zopt_sometimes
),
462 ZTI_INIT(ztest_reguid
, 1, &zopt_rarely
),
463 ZTI_INIT(ztest_scrub
, 1, &zopt_rarely
),
464 ZTI_INIT(ztest_spa_upgrade
, 1, &zopt_rarely
),
465 ZTI_INIT(ztest_dsl_dataset_promote_busy
, 1, &zopt_rarely
),
466 ZTI_INIT(ztest_vdev_attach_detach
, 1, &zopt_sometimes
),
467 ZTI_INIT(ztest_vdev_LUN_growth
, 1, &zopt_rarely
),
468 ZTI_INIT(ztest_vdev_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
469 ZTI_INIT(ztest_vdev_class_add
, 1, &ztest_opts
.zo_vdevtime
),
470 ZTI_INIT(ztest_vdev_aux_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
471 ZTI_INIT(ztest_device_removal
, 1, &zopt_sometimes
),
472 ZTI_INIT(ztest_spa_checkpoint_create_discard
, 1, &zopt_rarely
),
473 ZTI_INIT(ztest_initialize
, 1, &zopt_sometimes
),
474 ZTI_INIT(ztest_trim
, 1, &zopt_sometimes
),
475 ZTI_INIT(ztest_blake3
, 1, &zopt_rarely
),
476 ZTI_INIT(ztest_fletcher
, 1, &zopt_rarely
),
477 ZTI_INIT(ztest_fletcher_incr
, 1, &zopt_rarely
),
478 ZTI_INIT(ztest_verify_dnode_bt
, 1, &zopt_sometimes
),
481 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
484 * The following struct is used to hold a list of uncalled commit callbacks.
485 * The callbacks are ordered by txg number.
487 typedef struct ztest_cb_list
{
488 kmutex_t zcl_callbacks_lock
;
489 list_t zcl_callbacks
;
493 * Stuff we need to share writably between parent and child.
495 typedef struct ztest_shared
{
496 boolean_t zs_do_init
;
497 hrtime_t zs_proc_start
;
498 hrtime_t zs_proc_stop
;
499 hrtime_t zs_thread_start
;
500 hrtime_t zs_thread_stop
;
501 hrtime_t zs_thread_kill
;
502 uint64_t zs_enospc_count
;
503 uint64_t zs_vdev_next_leaf
;
504 uint64_t zs_vdev_aux
;
509 uint64_t zs_metaslab_sz
;
510 uint64_t zs_metaslab_df_alloc_threshold
;
514 #define ID_PARALLEL -1ULL
516 static char ztest_dev_template
[] = "%s/%s.%llua";
517 static char ztest_aux_template
[] = "%s/%s.%s.%llu";
518 ztest_shared_t
*ztest_shared
;
520 static spa_t
*ztest_spa
= NULL
;
521 static ztest_ds_t
*ztest_ds
;
523 static kmutex_t ztest_vdev_lock
;
524 static boolean_t ztest_device_removal_active
= B_FALSE
;
525 static boolean_t ztest_pool_scrubbed
= B_FALSE
;
526 static kmutex_t ztest_checkpoint_lock
;
529 * The ztest_name_lock protects the pool and dataset namespace used by
530 * the individual tests. To modify the namespace, consumers must grab
531 * this lock as writer. Grabbing the lock as reader will ensure that the
532 * namespace does not change while the lock is held.
534 static pthread_rwlock_t ztest_name_lock
;
536 static boolean_t ztest_dump_core
= B_TRUE
;
537 static boolean_t ztest_exiting
;
539 /* Global commit callback list */
540 static ztest_cb_list_t zcl
;
541 /* Commit cb delay */
542 static uint64_t zc_min_txg_delay
= UINT64_MAX
;
543 static int zc_cb_counter
= 0;
546 * Minimum number of commit callbacks that need to be registered for us to check
547 * whether the minimum txg delay is acceptable.
549 #define ZTEST_COMMIT_CB_MIN_REG 100
552 * If a number of txgs equal to this threshold have been created after a commit
553 * callback has been registered but not called, then we assume there is an
554 * implementation bug.
556 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
559 ZTEST_META_DNODE
= 0,
564 static __attribute__((noreturn
)) void usage(boolean_t requested
);
565 static int ztest_scrub_impl(spa_t
*spa
);
568 * These libumem hooks provide a reasonable set of defaults for the allocator's
569 * debugging facilities.
572 _umem_debug_init(void)
574 return ("default,verbose"); /* $UMEM_DEBUG setting */
578 _umem_logging_init(void)
580 return ("fail,contents"); /* $UMEM_LOGGING setting */
584 dump_debug_buffer(void)
586 ssize_t ret
__attribute__((unused
));
588 if (!ztest_opts
.zo_dump_dbgmsg
)
592 * We use write() instead of printf() so that this function
593 * is safe to call from a signal handler.
595 ret
= write(STDOUT_FILENO
, "\n", 1);
596 zfs_dbgmsg_print("ztest");
599 #define BACKTRACE_SZ 100
601 static void sig_handler(int signo
)
603 struct sigaction action
;
604 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
606 void *buffer
[BACKTRACE_SZ
];
608 nptrs
= backtrace(buffer
, BACKTRACE_SZ
);
609 backtrace_symbols_fd(buffer
, nptrs
, STDERR_FILENO
);
614 * Restore default action and re-raise signal so SIGSEGV and
615 * SIGABRT can trigger a core dump.
617 action
.sa_handler
= SIG_DFL
;
618 sigemptyset(&action
.sa_mask
);
620 (void) sigaction(signo
, &action
, NULL
);
624 #define FATAL_MSG_SZ 1024
628 static __attribute__((format(printf
, 2, 3))) __attribute__((noreturn
)) void
629 fatal(int do_perror
, char *message
, ...)
632 int save_errno
= errno
;
635 (void) fflush(stdout
);
636 buf
= umem_alloc(FATAL_MSG_SZ
, UMEM_NOFAIL
);
640 va_start(args
, message
);
641 (void) sprintf(buf
, "ztest: ");
643 (void) vsprintf(buf
+ strlen(buf
), message
, args
);
646 (void) snprintf(buf
+ strlen(buf
), FATAL_MSG_SZ
- strlen(buf
),
647 ": %s", strerror(save_errno
));
649 (void) fprintf(stderr
, "%s\n", buf
);
650 fatal_msg
= buf
; /* to ease debugging */
662 str2shift(const char *buf
)
664 const char *ends
= "BKMGTPEZ";
669 for (i
= 0; i
< strlen(ends
); i
++) {
670 if (toupper(buf
[0]) == ends
[i
])
673 if (i
== strlen(ends
)) {
674 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n",
678 if (buf
[1] == '\0' || (toupper(buf
[1]) == 'B' && buf
[2] == '\0')) {
681 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n", buf
);
686 nicenumtoull(const char *buf
)
691 val
= strtoull(buf
, &end
, 0);
693 (void) fprintf(stderr
, "ztest: bad numeric value: %s\n", buf
);
695 } else if (end
[0] == '.') {
696 double fval
= strtod(buf
, &end
);
697 fval
*= pow(2, str2shift(end
));
699 * UINT64_MAX is not exactly representable as a double.
700 * The closest representation is UINT64_MAX + 1, so we
701 * use a >= comparison instead of > for the bounds check.
703 if (fval
>= (double)UINT64_MAX
) {
704 (void) fprintf(stderr
, "ztest: value too large: %s\n",
708 val
= (uint64_t)fval
;
710 int shift
= str2shift(end
);
711 if (shift
>= 64 || (val
<< shift
) >> shift
!= val
) {
712 (void) fprintf(stderr
, "ztest: value too large: %s\n",
721 typedef struct ztest_option
{
722 const char short_opt
;
723 const char *long_opt
;
724 const char *long_opt_param
;
726 unsigned int default_int
;
731 * The following option_table is used for generating the usage info as well as
732 * the long and short option information for calling getopt_long().
734 static ztest_option_t option_table
[] = {
735 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT
,
737 { 's', "vdev-size", "INTEGER", "Size of each vdev",
738 NO_DEFAULT
, DEFAULT_VDEV_SIZE_STR
},
739 { 'a', "alignment-shift", "INTEGER",
740 "Alignment shift; use 0 for random", DEFAULT_ASHIFT
, NULL
},
741 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
742 DEFAULT_MIRRORS
, NULL
},
743 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
744 DEFAULT_RAID_CHILDREN
, NULL
},
745 { 'R', "raid-parity", "INTEGER", "Raid parity",
746 DEFAULT_RAID_PARITY
, NULL
},
747 { 'K', "raid-kind", "raidz|draid|random", "Raid kind",
748 NO_DEFAULT
, "random"},
749 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
750 DEFAULT_DRAID_DATA
, NULL
},
751 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
752 DEFAULT_DRAID_SPARES
, NULL
},
753 { 'd', "datasets", "INTEGER", "Number of datasets",
754 DEFAULT_DATASETS_COUNT
, NULL
},
755 { 't', "threads", "INTEGER", "Number of ztest threads",
756 DEFAULT_THREADS
, NULL
},
757 { 'g', "gang-block-threshold", "INTEGER",
758 "Metaslab gang block threshold",
759 NO_DEFAULT
, DEFAULT_FORCE_GANGING_STR
},
760 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
761 DEFAULT_INITS
, NULL
},
762 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
763 NO_DEFAULT
, DEFAULT_KILLRATE_STR
},
764 { 'p', "pool-name", "STRING", "Pool name",
765 NO_DEFAULT
, DEFAULT_POOL
},
766 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
767 NO_DEFAULT
, DEFAULT_VDEV_DIR
},
768 { 'M', "multi-host", NULL
,
769 "Multi-host; simulate pool imported on remote host",
771 { 'E', "use-existing-pool", NULL
,
772 "Use existing pool instead of creating new one", NO_DEFAULT
, NULL
},
773 { 'T', "run-time", "INTEGER", "Total run time",
774 NO_DEFAULT
, DEFAULT_RUN_TIME_STR
},
775 { 'P', "pass-time", "INTEGER", "Time per pass",
776 NO_DEFAULT
, DEFAULT_PASS_TIME_STR
},
777 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
778 DEFAULT_MAX_LOOPS
, NULL
},
779 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
781 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
782 NO_DEFAULT
, "random"},
783 { 'o', "option", "\"OPTION=INTEGER\"",
784 "Set global variable to an unsigned 32-bit integer value",
786 { 'G', "dump-debug-msg", NULL
,
787 "Dump zfs_dbgmsg buffer before exiting due to an error",
789 { 'V', "verbose", NULL
,
790 "Verbose (use multiple times for ever more verbosity)",
792 { 'h', "help", NULL
, "Show this help",
797 static struct option
*long_opts
= NULL
;
798 static char *short_opts
= NULL
;
803 ASSERT3P(long_opts
, ==, NULL
);
804 ASSERT3P(short_opts
, ==, NULL
);
806 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
807 long_opts
= umem_alloc(sizeof (struct option
) * count
, UMEM_NOFAIL
);
809 short_opts
= umem_alloc(sizeof (char) * 2 * count
, UMEM_NOFAIL
);
810 int short_opt_index
= 0;
812 for (int i
= 0; i
< count
; i
++) {
813 long_opts
[i
].val
= option_table
[i
].short_opt
;
814 long_opts
[i
].name
= option_table
[i
].long_opt
;
815 long_opts
[i
].has_arg
= option_table
[i
].long_opt_param
!= NULL
816 ? required_argument
: no_argument
;
817 long_opts
[i
].flag
= NULL
;
818 short_opts
[short_opt_index
++] = option_table
[i
].short_opt
;
819 if (option_table
[i
].long_opt_param
!= NULL
) {
820 short_opts
[short_opt_index
++] = ':';
828 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
830 umem_free(long_opts
, sizeof (struct option
) * count
);
831 umem_free(short_opts
, sizeof (char) * 2 * count
);
837 static __attribute__((noreturn
)) void
838 usage(boolean_t requested
)
841 FILE *fp
= requested
? stdout
: stderr
;
843 (void) fprintf(fp
, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL
);
844 for (int i
= 0; option_table
[i
].short_opt
!= 0; i
++) {
845 if (option_table
[i
].long_opt_param
!= NULL
) {
846 (void) sprintf(option
, " -%c --%s=%s",
847 option_table
[i
].short_opt
,
848 option_table
[i
].long_opt
,
849 option_table
[i
].long_opt_param
);
851 (void) sprintf(option
, " -%c --%s",
852 option_table
[i
].short_opt
,
853 option_table
[i
].long_opt
);
855 (void) fprintf(fp
, " %-40s%s", option
,
856 option_table
[i
].comment
);
858 if (option_table
[i
].long_opt_param
!= NULL
) {
859 if (option_table
[i
].default_str
!= NULL
) {
860 (void) fprintf(fp
, " (default: %s)",
861 option_table
[i
].default_str
);
862 } else if (option_table
[i
].default_int
!= NO_DEFAULT
) {
863 (void) fprintf(fp
, " (default: %u)",
864 option_table
[i
].default_int
);
867 (void) fprintf(fp
, "\n");
869 exit(requested
? 0 : 1);
873 ztest_random(uint64_t range
)
877 ASSERT3S(ztest_fd_rand
, >=, 0);
882 if (read(ztest_fd_rand
, &r
, sizeof (r
)) != sizeof (r
))
883 fatal(B_TRUE
, "short read from /dev/urandom");
889 ztest_parse_name_value(const char *input
, ztest_shared_opts_t
*zo
)
893 int state
= ZTEST_VDEV_CLASS_RND
;
895 (void) strlcpy(name
, input
, sizeof (name
));
897 value
= strchr(name
, '=');
899 (void) fprintf(stderr
, "missing value in property=value "
900 "'-C' argument (%s)\n", input
);
906 if (strcmp(value
, "on") == 0) {
907 state
= ZTEST_VDEV_CLASS_ON
;
908 } else if (strcmp(value
, "off") == 0) {
909 state
= ZTEST_VDEV_CLASS_OFF
;
910 } else if (strcmp(value
, "random") == 0) {
911 state
= ZTEST_VDEV_CLASS_RND
;
913 (void) fprintf(stderr
, "invalid property value '%s'\n", value
);
917 if (strcmp(name
, "special") == 0) {
918 zo
->zo_special_vdevs
= state
;
920 (void) fprintf(stderr
, "invalid property name '%s'\n", name
);
923 if (zo
->zo_verbose
>= 3)
924 (void) printf("%s vdev state is '%s'\n", name
, value
);
928 process_options(int argc
, char **argv
)
931 ztest_shared_opts_t
*zo
= &ztest_opts
;
935 const char *raid_kind
= "random";
937 memcpy(zo
, &ztest_opts_defaults
, sizeof (*zo
));
941 while ((opt
= getopt_long(argc
, argv
, short_opts
, long_opts
,
961 value
= nicenumtoull(optarg
);
965 zo
->zo_vdevs
= value
;
968 zo
->zo_vdev_size
= MAX(SPA_MINDEVSIZE
, value
);
971 zo
->zo_ashift
= value
;
974 zo
->zo_mirrors
= value
;
977 zo
->zo_raid_children
= MAX(1, value
);
980 zo
->zo_raid_parity
= MIN(MAX(value
, 1), 3);
986 zo
->zo_draid_data
= MAX(1, value
);
989 zo
->zo_draid_spares
= MAX(1, value
);
992 zo
->zo_datasets
= MAX(1, value
);
995 zo
->zo_threads
= MAX(1, value
);
998 zo
->zo_metaslab_force_ganging
=
999 MAX(SPA_MINBLOCKSIZE
<< 1, value
);
1002 zo
->zo_init
= value
;
1005 zo
->zo_killrate
= value
;
1008 (void) strlcpy(zo
->zo_pool
, optarg
,
1009 sizeof (zo
->zo_pool
));
1012 path
= realpath(optarg
, NULL
);
1014 (void) fprintf(stderr
, "error: %s: %s\n",
1015 optarg
, strerror(errno
));
1018 (void) strlcpy(zo
->zo_dir
, path
,
1019 sizeof (zo
->zo_dir
));
1024 zo
->zo_mmp_test
= 1;
1033 zo
->zo_time
= value
;
1036 zo
->zo_passtime
= MAX(1, value
);
1039 zo
->zo_maxloops
= MAX(1, value
);
1042 (void) strlcpy(zo
->zo_alt_ztest
, optarg
,
1043 sizeof (zo
->zo_alt_ztest
));
1046 ztest_parse_name_value(optarg
, zo
);
1049 if (zo
->zo_gvars_count
>= ZO_GVARS_MAX_COUNT
) {
1050 (void) fprintf(stderr
,
1051 "max global var count (%zu) exceeded\n",
1052 ZO_GVARS_MAX_COUNT
);
1055 char *v
= zo
->zo_gvars
[zo
->zo_gvars_count
];
1056 if (strlcpy(v
, optarg
, ZO_GVARS_MAX_ARGLEN
) >=
1057 ZO_GVARS_MAX_ARGLEN
) {
1058 (void) fprintf(stderr
,
1059 "global var option '%s' is too long\n",
1063 zo
->zo_gvars_count
++;
1066 zo
->zo_dump_dbgmsg
= 1;
1080 /* When raid choice is 'random' add a draid pool 50% of the time */
1081 if (strcmp(raid_kind
, "random") == 0) {
1082 raid_kind
= (ztest_random(2) == 0) ? "draid" : "raidz";
1084 if (ztest_opts
.zo_verbose
>= 3)
1085 (void) printf("choosing RAID type '%s'\n", raid_kind
);
1088 if (strcmp(raid_kind
, "draid") == 0) {
1089 uint64_t min_devsize
;
1091 /* With fewer disk use 256M, otherwise 128M is OK */
1092 min_devsize
= (ztest_opts
.zo_raid_children
< 16) ?
1093 (256ULL << 20) : (128ULL << 20);
1095 /* No top-level mirrors with dRAID for now */
1098 /* Use more appropriate defaults for dRAID */
1099 if (zo
->zo_vdevs
== ztest_opts_defaults
.zo_vdevs
)
1101 if (zo
->zo_raid_children
==
1102 ztest_opts_defaults
.zo_raid_children
)
1103 zo
->zo_raid_children
= 16;
1104 if (zo
->zo_ashift
< 12)
1106 if (zo
->zo_vdev_size
< min_devsize
)
1107 zo
->zo_vdev_size
= min_devsize
;
1109 if (zo
->zo_draid_data
+ zo
->zo_raid_parity
>
1110 zo
->zo_raid_children
- zo
->zo_draid_spares
) {
1111 (void) fprintf(stderr
, "error: too few draid "
1112 "children (%d) for stripe width (%d)\n",
1113 zo
->zo_raid_children
,
1114 zo
->zo_draid_data
+ zo
->zo_raid_parity
);
1118 (void) strlcpy(zo
->zo_raid_type
, VDEV_TYPE_DRAID
,
1119 sizeof (zo
->zo_raid_type
));
1121 } else /* using raidz */ {
1122 ASSERT0(strcmp(raid_kind
, "raidz"));
1124 zo
->zo_raid_parity
= MIN(zo
->zo_raid_parity
,
1125 zo
->zo_raid_children
- 1);
1129 (zo
->zo_vdevs
> 0 ? zo
->zo_time
* NANOSEC
/ zo
->zo_vdevs
:
1132 if (*zo
->zo_alt_ztest
) {
1133 const char *invalid_what
= "ztest";
1134 char *val
= zo
->zo_alt_ztest
;
1135 if (0 != access(val
, X_OK
) ||
1136 (strrchr(val
, '/') == NULL
&& (errno
= EINVAL
)))
1139 int dirlen
= strrchr(val
, '/') - val
;
1140 strncpy(zo
->zo_alt_libpath
, val
, dirlen
);
1141 invalid_what
= "library path", val
= zo
->zo_alt_libpath
;
1142 if (strrchr(val
, '/') == NULL
&& (errno
= EINVAL
))
1144 *strrchr(val
, '/') = '\0';
1145 strlcat(val
, "/lib", sizeof (zo
->zo_alt_libpath
));
1147 if (0 != access(zo
->zo_alt_libpath
, X_OK
))
1152 ztest_dump_core
= B_FALSE
;
1153 fatal(B_TRUE
, "invalid alternate %s %s", invalid_what
, val
);
1158 ztest_kill(ztest_shared_t
*zs
)
1160 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(ztest_spa
));
1161 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(ztest_spa
));
1164 * Before we kill ourselves, make sure that the config is updated.
1165 * See comment above spa_write_cachefile().
1167 mutex_enter(&spa_namespace_lock
);
1168 spa_write_cachefile(ztest_spa
, B_FALSE
, B_FALSE
);
1169 mutex_exit(&spa_namespace_lock
);
1171 (void) raise(SIGKILL
);
1175 ztest_record_enospc(const char *s
)
1178 ztest_shared
->zs_enospc_count
++;
1182 ztest_get_ashift(void)
1184 if (ztest_opts
.zo_ashift
== 0)
1185 return (SPA_MINBLOCKSHIFT
+ ztest_random(5));
1186 return (ztest_opts
.zo_ashift
);
1190 ztest_is_draid_spare(const char *name
)
1192 uint64_t spare_id
= 0, parity
= 0, vdev_id
= 0;
1194 if (sscanf(name
, VDEV_TYPE_DRAID
"%"PRIu64
"-%"PRIu64
"-%"PRIu64
"",
1195 &parity
, &vdev_id
, &spare_id
) == 3) {
1203 make_vdev_file(char *path
, char *aux
, char *pool
, size_t size
, uint64_t ashift
)
1208 boolean_t draid_spare
= B_FALSE
;
1210 pathbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1213 ashift
= ztest_get_ashift();
1219 vdev
= ztest_shared
->zs_vdev_aux
;
1220 (void) snprintf(path
, MAXPATHLEN
,
1221 ztest_aux_template
, ztest_opts
.zo_dir
,
1222 pool
== NULL
? ztest_opts
.zo_pool
: pool
,
1225 vdev
= ztest_shared
->zs_vdev_next_leaf
++;
1226 (void) snprintf(path
, MAXPATHLEN
,
1227 ztest_dev_template
, ztest_opts
.zo_dir
,
1228 pool
== NULL
? ztest_opts
.zo_pool
: pool
, vdev
);
1231 draid_spare
= ztest_is_draid_spare(path
);
1234 if (size
!= 0 && !draid_spare
) {
1235 int fd
= open(path
, O_RDWR
| O_CREAT
| O_TRUNC
, 0666);
1237 fatal(B_TRUE
, "can't open %s", path
);
1238 if (ftruncate(fd
, size
) != 0)
1239 fatal(B_TRUE
, "can't ftruncate %s", path
);
1243 file
= fnvlist_alloc();
1244 fnvlist_add_string(file
, ZPOOL_CONFIG_TYPE
,
1245 draid_spare
? VDEV_TYPE_DRAID_SPARE
: VDEV_TYPE_FILE
);
1246 fnvlist_add_string(file
, ZPOOL_CONFIG_PATH
, path
);
1247 fnvlist_add_uint64(file
, ZPOOL_CONFIG_ASHIFT
, ashift
);
1248 umem_free(pathbuf
, MAXPATHLEN
);
1254 make_vdev_raid(char *path
, char *aux
, char *pool
, size_t size
,
1255 uint64_t ashift
, int r
)
1257 nvlist_t
*raid
, **child
;
1261 return (make_vdev_file(path
, aux
, pool
, size
, ashift
));
1262 child
= umem_alloc(r
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1264 for (c
= 0; c
< r
; c
++)
1265 child
[c
] = make_vdev_file(path
, aux
, pool
, size
, ashift
);
1267 raid
= fnvlist_alloc();
1268 fnvlist_add_string(raid
, ZPOOL_CONFIG_TYPE
,
1269 ztest_opts
.zo_raid_type
);
1270 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_NPARITY
,
1271 ztest_opts
.zo_raid_parity
);
1272 fnvlist_add_nvlist_array(raid
, ZPOOL_CONFIG_CHILDREN
,
1273 (const nvlist_t
**)child
, r
);
1275 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0) {
1276 uint64_t ndata
= ztest_opts
.zo_draid_data
;
1277 uint64_t nparity
= ztest_opts
.zo_raid_parity
;
1278 uint64_t nspares
= ztest_opts
.zo_draid_spares
;
1279 uint64_t children
= ztest_opts
.zo_raid_children
;
1280 uint64_t ngroups
= 1;
1283 * Calculate the minimum number of groups required to fill a
1284 * slice. This is the LCM of the stripe width (data + parity)
1285 * and the number of data drives (children - spares).
1287 while (ngroups
* (ndata
+ nparity
) % (children
- nspares
) != 0)
1290 /* Store the basic dRAID configuration. */
1291 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NDATA
, ndata
);
1292 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NSPARES
, nspares
);
1293 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NGROUPS
, ngroups
);
1296 for (c
= 0; c
< r
; c
++)
1297 fnvlist_free(child
[c
]);
1299 umem_free(child
, r
* sizeof (nvlist_t
*));
1305 make_vdev_mirror(char *path
, char *aux
, char *pool
, size_t size
,
1306 uint64_t ashift
, int r
, int m
)
1308 nvlist_t
*mirror
, **child
;
1312 return (make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
));
1314 child
= umem_alloc(m
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1316 for (c
= 0; c
< m
; c
++)
1317 child
[c
] = make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
);
1319 mirror
= fnvlist_alloc();
1320 fnvlist_add_string(mirror
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_MIRROR
);
1321 fnvlist_add_nvlist_array(mirror
, ZPOOL_CONFIG_CHILDREN
,
1322 (const nvlist_t
**)child
, m
);
1324 for (c
= 0; c
< m
; c
++)
1325 fnvlist_free(child
[c
]);
1327 umem_free(child
, m
* sizeof (nvlist_t
*));
1333 make_vdev_root(char *path
, char *aux
, char *pool
, size_t size
, uint64_t ashift
,
1334 const char *class, int r
, int m
, int t
)
1336 nvlist_t
*root
, **child
;
1342 log
= (class != NULL
&& strcmp(class, "log") == 0);
1344 child
= umem_alloc(t
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1346 for (c
= 0; c
< t
; c
++) {
1347 child
[c
] = make_vdev_mirror(path
, aux
, pool
, size
, ashift
,
1349 fnvlist_add_uint64(child
[c
], ZPOOL_CONFIG_IS_LOG
, log
);
1351 if (class != NULL
&& class[0] != '\0') {
1352 ASSERT(m
> 1 || log
); /* expecting a mirror */
1353 fnvlist_add_string(child
[c
],
1354 ZPOOL_CONFIG_ALLOCATION_BIAS
, class);
1358 root
= fnvlist_alloc();
1359 fnvlist_add_string(root
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
1360 fnvlist_add_nvlist_array(root
, aux
? aux
: ZPOOL_CONFIG_CHILDREN
,
1361 (const nvlist_t
**)child
, t
);
1363 for (c
= 0; c
< t
; c
++)
1364 fnvlist_free(child
[c
]);
1366 umem_free(child
, t
* sizeof (nvlist_t
*));
1372 * Find a random spa version. Returns back a random spa version in the
1373 * range [initial_version, SPA_VERSION_FEATURES].
1376 ztest_random_spa_version(uint64_t initial_version
)
1378 uint64_t version
= initial_version
;
1380 if (version
<= SPA_VERSION_BEFORE_FEATURES
) {
1382 ztest_random(SPA_VERSION_BEFORE_FEATURES
- version
+ 1);
1385 if (version
> SPA_VERSION_BEFORE_FEATURES
)
1386 version
= SPA_VERSION_FEATURES
;
1388 ASSERT(SPA_VERSION_IS_SUPPORTED(version
));
1393 ztest_random_blocksize(void)
1395 ASSERT3U(ztest_spa
->spa_max_ashift
, !=, 0);
1398 * Choose a block size >= the ashift.
1399 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1401 int maxbs
= SPA_OLD_MAXBLOCKSHIFT
;
1402 if (spa_maxblocksize(ztest_spa
) == SPA_MAXBLOCKSIZE
)
1404 uint64_t block_shift
=
1405 ztest_random(maxbs
- ztest_spa
->spa_max_ashift
+ 1);
1406 return (1 << (SPA_MINBLOCKSHIFT
+ block_shift
));
1410 ztest_random_dnodesize(void)
1413 int max_slots
= spa_maxdnodesize(ztest_spa
) >> DNODE_SHIFT
;
1415 if (max_slots
== DNODE_MIN_SLOTS
)
1416 return (DNODE_MIN_SIZE
);
1419 * Weight the random distribution more heavily toward smaller
1420 * dnode sizes since that is more likely to reflect real-world
1423 ASSERT3U(max_slots
, >, 4);
1424 switch (ztest_random(10)) {
1426 slots
= 5 + ztest_random(max_slots
- 4);
1429 slots
= 2 + ztest_random(3);
1436 return (slots
<< DNODE_SHIFT
);
1440 ztest_random_ibshift(void)
1442 return (DN_MIN_INDBLKSHIFT
+
1443 ztest_random(DN_MAX_INDBLKSHIFT
- DN_MIN_INDBLKSHIFT
+ 1));
1447 ztest_random_vdev_top(spa_t
*spa
, boolean_t log_ok
)
1450 vdev_t
*rvd
= spa
->spa_root_vdev
;
1453 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
1456 top
= ztest_random(rvd
->vdev_children
);
1457 tvd
= rvd
->vdev_child
[top
];
1458 } while (!vdev_is_concrete(tvd
) || (tvd
->vdev_islog
&& !log_ok
) ||
1459 tvd
->vdev_mg
== NULL
|| tvd
->vdev_mg
->mg_class
== NULL
);
1465 ztest_random_dsl_prop(zfs_prop_t prop
)
1470 value
= zfs_prop_random_value(prop
, ztest_random(-1ULL));
1471 } while (prop
== ZFS_PROP_CHECKSUM
&& value
== ZIO_CHECKSUM_OFF
);
1477 ztest_dsl_prop_set_uint64(char *osname
, zfs_prop_t prop
, uint64_t value
,
1480 const char *propname
= zfs_prop_to_name(prop
);
1481 const char *valname
;
1486 error
= dsl_prop_set_int(osname
, propname
,
1487 (inherit
? ZPROP_SRC_NONE
: ZPROP_SRC_LOCAL
), value
);
1489 if (error
== ENOSPC
) {
1490 ztest_record_enospc(FTAG
);
1495 setpoint
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1496 VERIFY0(dsl_prop_get_integer(osname
, propname
, &curval
, setpoint
));
1498 if (ztest_opts
.zo_verbose
>= 6) {
1501 err
= zfs_prop_index_to_string(prop
, curval
, &valname
);
1503 (void) printf("%s %s = %llu at '%s'\n", osname
,
1504 propname
, (unsigned long long)curval
, setpoint
);
1506 (void) printf("%s %s = %s at '%s'\n",
1507 osname
, propname
, valname
, setpoint
);
1509 umem_free(setpoint
, MAXPATHLEN
);
1515 ztest_spa_prop_set_uint64(zpool_prop_t prop
, uint64_t value
)
1517 spa_t
*spa
= ztest_spa
;
1518 nvlist_t
*props
= NULL
;
1521 props
= fnvlist_alloc();
1522 fnvlist_add_uint64(props
, zpool_prop_to_name(prop
), value
);
1524 error
= spa_prop_set(spa
, props
);
1526 fnvlist_free(props
);
1528 if (error
== ENOSPC
) {
1529 ztest_record_enospc(FTAG
);
1538 ztest_dmu_objset_own(const char *name
, dmu_objset_type_t type
,
1539 boolean_t readonly
, boolean_t decrypt
, void *tag
, objset_t
**osp
)
1543 char ddname
[ZFS_MAX_DATASET_NAME_LEN
];
1545 strcpy(ddname
, name
);
1546 cp
= strchr(ddname
, '@');
1550 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1551 while (decrypt
&& err
== EACCES
) {
1552 dsl_crypto_params_t
*dcp
;
1553 nvlist_t
*crypto_args
= fnvlist_alloc();
1555 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
1556 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
1557 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, NULL
,
1558 crypto_args
, &dcp
));
1559 err
= spa_keystore_load_wkey(ddname
, dcp
, B_FALSE
);
1561 * Note: if there was an error loading, the wkey was not
1562 * consumed, and needs to be freed.
1564 dsl_crypto_params_free(dcp
, (err
!= 0));
1565 fnvlist_free(crypto_args
);
1567 if (err
== EINVAL
) {
1569 * We couldn't load a key for this dataset so try
1570 * the parent. This loop will eventually hit the
1571 * encryption root since ztest only makes clones
1572 * as children of their origin datasets.
1574 cp
= strrchr(ddname
, '/');
1581 } else if (err
!= 0) {
1585 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1593 ztest_rll_init(rll_t
*rll
)
1595 rll
->rll_writer
= NULL
;
1596 rll
->rll_readers
= 0;
1597 mutex_init(&rll
->rll_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1598 cv_init(&rll
->rll_cv
, NULL
, CV_DEFAULT
, NULL
);
1602 ztest_rll_destroy(rll_t
*rll
)
1604 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1605 ASSERT0(rll
->rll_readers
);
1606 mutex_destroy(&rll
->rll_lock
);
1607 cv_destroy(&rll
->rll_cv
);
1611 ztest_rll_lock(rll_t
*rll
, rl_type_t type
)
1613 mutex_enter(&rll
->rll_lock
);
1615 if (type
== RL_READER
) {
1616 while (rll
->rll_writer
!= NULL
)
1617 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1620 while (rll
->rll_writer
!= NULL
|| rll
->rll_readers
)
1621 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1622 rll
->rll_writer
= curthread
;
1625 mutex_exit(&rll
->rll_lock
);
1629 ztest_rll_unlock(rll_t
*rll
)
1631 mutex_enter(&rll
->rll_lock
);
1633 if (rll
->rll_writer
) {
1634 ASSERT0(rll
->rll_readers
);
1635 rll
->rll_writer
= NULL
;
1637 ASSERT3S(rll
->rll_readers
, >, 0);
1638 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1642 if (rll
->rll_writer
== NULL
&& rll
->rll_readers
== 0)
1643 cv_broadcast(&rll
->rll_cv
);
1645 mutex_exit(&rll
->rll_lock
);
1649 ztest_object_lock(ztest_ds_t
*zd
, uint64_t object
, rl_type_t type
)
1651 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1653 ztest_rll_lock(rll
, type
);
1657 ztest_object_unlock(ztest_ds_t
*zd
, uint64_t object
)
1659 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1661 ztest_rll_unlock(rll
);
1665 ztest_range_lock(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
,
1666 uint64_t size
, rl_type_t type
)
1668 uint64_t hash
= object
^ (offset
% (ZTEST_RANGE_LOCKS
+ 1));
1669 rll_t
*rll
= &zd
->zd_range_lock
[hash
& (ZTEST_RANGE_LOCKS
- 1)];
1672 rl
= umem_alloc(sizeof (*rl
), UMEM_NOFAIL
);
1673 rl
->rl_object
= object
;
1674 rl
->rl_offset
= offset
;
1678 ztest_rll_lock(rll
, type
);
1684 ztest_range_unlock(rl_t
*rl
)
1686 rll_t
*rll
= rl
->rl_lock
;
1688 ztest_rll_unlock(rll
);
1690 umem_free(rl
, sizeof (*rl
));
1694 ztest_zd_init(ztest_ds_t
*zd
, ztest_shared_ds_t
*szd
, objset_t
*os
)
1697 zd
->zd_zilog
= dmu_objset_zil(os
);
1698 zd
->zd_shared
= szd
;
1699 dmu_objset_name(os
, zd
->zd_name
);
1702 if (zd
->zd_shared
!= NULL
)
1703 zd
->zd_shared
->zd_seq
= 0;
1705 VERIFY0(pthread_rwlock_init(&zd
->zd_zilog_lock
, NULL
));
1706 mutex_init(&zd
->zd_dirobj_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1708 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1709 ztest_rll_init(&zd
->zd_object_lock
[l
]);
1711 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1712 ztest_rll_init(&zd
->zd_range_lock
[l
]);
1716 ztest_zd_fini(ztest_ds_t
*zd
)
1720 mutex_destroy(&zd
->zd_dirobj_lock
);
1721 (void) pthread_rwlock_destroy(&zd
->zd_zilog_lock
);
1723 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1724 ztest_rll_destroy(&zd
->zd_object_lock
[l
]);
1726 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1727 ztest_rll_destroy(&zd
->zd_range_lock
[l
]);
1730 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1733 ztest_tx_assign(dmu_tx_t
*tx
, uint64_t txg_how
, const char *tag
)
1739 * Attempt to assign tx to some transaction group.
1741 error
= dmu_tx_assign(tx
, txg_how
);
1743 if (error
== ERESTART
) {
1744 ASSERT3U(txg_how
, ==, TXG_NOWAIT
);
1747 ASSERT3U(error
, ==, ENOSPC
);
1748 ztest_record_enospc(tag
);
1753 txg
= dmu_tx_get_txg(tx
);
1754 ASSERT3U(txg
, !=, 0);
1759 ztest_bt_generate(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1760 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1763 bt
->bt_magic
= BT_MAGIC
;
1764 bt
->bt_objset
= dmu_objset_id(os
);
1765 bt
->bt_object
= object
;
1766 bt
->bt_dnodesize
= dnodesize
;
1767 bt
->bt_offset
= offset
;
1770 bt
->bt_crtxg
= crtxg
;
1774 ztest_bt_verify(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1775 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1778 ASSERT3U(bt
->bt_magic
, ==, BT_MAGIC
);
1779 ASSERT3U(bt
->bt_objset
, ==, dmu_objset_id(os
));
1780 ASSERT3U(bt
->bt_object
, ==, object
);
1781 ASSERT3U(bt
->bt_dnodesize
, ==, dnodesize
);
1782 ASSERT3U(bt
->bt_offset
, ==, offset
);
1783 ASSERT3U(bt
->bt_gen
, <=, gen
);
1784 ASSERT3U(bt
->bt_txg
, <=, txg
);
1785 ASSERT3U(bt
->bt_crtxg
, ==, crtxg
);
1788 static ztest_block_tag_t
*
1789 ztest_bt_bonus(dmu_buf_t
*db
)
1791 dmu_object_info_t doi
;
1792 ztest_block_tag_t
*bt
;
1794 dmu_object_info_from_db(db
, &doi
);
1795 ASSERT3U(doi
.doi_bonus_size
, <=, db
->db_size
);
1796 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (*bt
));
1797 bt
= (void *)((char *)db
->db_data
+ doi
.doi_bonus_size
- sizeof (*bt
));
1803 * Generate a token to fill up unused bonus buffer space. Try to make
1804 * it unique to the object, generation, and offset to verify that data
1805 * is not getting overwritten by data from other dnodes.
1807 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1808 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1811 * Fill up the unused bonus buffer region before the block tag with a
1812 * verifiable pattern. Filling the whole bonus area with non-zero data
1813 * helps ensure that all dnode traversal code properly skips the
1814 * interior regions of large dnodes.
1817 ztest_fill_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1818 objset_t
*os
, uint64_t gen
)
1822 ASSERT(IS_P2ALIGNED((char *)end
- (char *)db
->db_data
, 8));
1824 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1825 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1826 gen
, bonusp
- (uint64_t *)db
->db_data
);
1832 * Verify that the unused area of a bonus buffer is filled with the
1836 ztest_verify_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1837 objset_t
*os
, uint64_t gen
)
1841 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1842 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1843 gen
, bonusp
- (uint64_t *)db
->db_data
);
1844 VERIFY3U(*bonusp
, ==, token
);
1852 #define lrz_type lr_mode
1853 #define lrz_blocksize lr_uid
1854 #define lrz_ibshift lr_gid
1855 #define lrz_bonustype lr_rdev
1856 #define lrz_dnodesize lr_crtime[1]
1859 ztest_log_create(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_create_t
*lr
)
1861 char *name
= (void *)(lr
+ 1); /* name follows lr */
1862 size_t namesize
= strlen(name
) + 1;
1865 if (zil_replaying(zd
->zd_zilog
, tx
))
1868 itx
= zil_itx_create(TX_CREATE
, sizeof (*lr
) + namesize
);
1869 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1870 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1872 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1876 ztest_log_remove(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_remove_t
*lr
, uint64_t object
)
1878 char *name
= (void *)(lr
+ 1); /* name follows lr */
1879 size_t namesize
= strlen(name
) + 1;
1882 if (zil_replaying(zd
->zd_zilog
, tx
))
1885 itx
= zil_itx_create(TX_REMOVE
, sizeof (*lr
) + namesize
);
1886 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1887 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1889 itx
->itx_oid
= object
;
1890 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1894 ztest_log_write(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_write_t
*lr
)
1897 itx_wr_state_t write_state
= ztest_random(WR_NUM_STATES
);
1899 if (zil_replaying(zd
->zd_zilog
, tx
))
1902 if (lr
->lr_length
> zil_max_log_data(zd
->zd_zilog
))
1903 write_state
= WR_INDIRECT
;
1905 itx
= zil_itx_create(TX_WRITE
,
1906 sizeof (*lr
) + (write_state
== WR_COPIED
? lr
->lr_length
: 0));
1908 if (write_state
== WR_COPIED
&&
1909 dmu_read(zd
->zd_os
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
1910 ((lr_write_t
*)&itx
->itx_lr
) + 1, DMU_READ_NO_PREFETCH
) != 0) {
1911 zil_itx_destroy(itx
);
1912 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
));
1913 write_state
= WR_NEED_COPY
;
1915 itx
->itx_private
= zd
;
1916 itx
->itx_wr_state
= write_state
;
1917 itx
->itx_sync
= (ztest_random(8) == 0);
1919 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1920 sizeof (*lr
) - sizeof (lr_t
));
1922 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1926 ztest_log_truncate(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_truncate_t
*lr
)
1930 if (zil_replaying(zd
->zd_zilog
, tx
))
1933 itx
= zil_itx_create(TX_TRUNCATE
, sizeof (*lr
));
1934 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1935 sizeof (*lr
) - sizeof (lr_t
));
1937 itx
->itx_sync
= B_FALSE
;
1938 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1942 ztest_log_setattr(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_setattr_t
*lr
)
1946 if (zil_replaying(zd
->zd_zilog
, tx
))
1949 itx
= zil_itx_create(TX_SETATTR
, sizeof (*lr
));
1950 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1951 sizeof (*lr
) - sizeof (lr_t
));
1953 itx
->itx_sync
= B_FALSE
;
1954 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1961 ztest_replay_create(void *arg1
, void *arg2
, boolean_t byteswap
)
1963 ztest_ds_t
*zd
= arg1
;
1964 lr_create_t
*lr
= arg2
;
1965 char *name
= (void *)(lr
+ 1); /* name follows lr */
1966 objset_t
*os
= zd
->zd_os
;
1967 ztest_block_tag_t
*bbt
;
1975 byteswap_uint64_array(lr
, sizeof (*lr
));
1977 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
1978 ASSERT3S(name
[0], !=, '\0');
1980 tx
= dmu_tx_create(os
);
1982 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_TRUE
, name
);
1984 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
1985 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
1987 dmu_tx_hold_bonus(tx
, DMU_NEW_OBJECT
);
1990 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1994 ASSERT3U(dmu_objset_zil(os
)->zl_replay
, ==, !!lr
->lr_foid
);
1995 bonuslen
= DN_BONUS_SIZE(lr
->lrz_dnodesize
);
1997 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
1998 if (lr
->lr_foid
== 0) {
1999 lr
->lr_foid
= zap_create_dnsize(os
,
2000 lr
->lrz_type
, lr
->lrz_bonustype
,
2001 bonuslen
, lr
->lrz_dnodesize
, tx
);
2003 error
= zap_create_claim_dnsize(os
, lr
->lr_foid
,
2004 lr
->lrz_type
, lr
->lrz_bonustype
,
2005 bonuslen
, lr
->lrz_dnodesize
, tx
);
2008 if (lr
->lr_foid
== 0) {
2009 lr
->lr_foid
= dmu_object_alloc_dnsize(os
,
2010 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2011 bonuslen
, lr
->lrz_dnodesize
, tx
);
2013 error
= dmu_object_claim_dnsize(os
, lr
->lr_foid
,
2014 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2015 bonuslen
, lr
->lrz_dnodesize
, tx
);
2020 ASSERT3U(error
, ==, EEXIST
);
2021 ASSERT(zd
->zd_zilog
->zl_replay
);
2026 ASSERT3U(lr
->lr_foid
, !=, 0);
2028 if (lr
->lrz_type
!= DMU_OT_ZAP_OTHER
)
2029 VERIFY0(dmu_object_set_blocksize(os
, lr
->lr_foid
,
2030 lr
->lrz_blocksize
, lr
->lrz_ibshift
, tx
));
2032 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2033 bbt
= ztest_bt_bonus(db
);
2034 dmu_buf_will_dirty(db
, tx
);
2035 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, lr
->lrz_dnodesize
, -1ULL,
2036 lr
->lr_gen
, txg
, txg
);
2037 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, lr
->lr_gen
);
2038 dmu_buf_rele(db
, FTAG
);
2040 VERIFY0(zap_add(os
, lr
->lr_doid
, name
, sizeof (uint64_t), 1,
2043 (void) ztest_log_create(zd
, tx
, lr
);
2051 ztest_replay_remove(void *arg1
, void *arg2
, boolean_t byteswap
)
2053 ztest_ds_t
*zd
= arg1
;
2054 lr_remove_t
*lr
= arg2
;
2055 char *name
= (void *)(lr
+ 1); /* name follows lr */
2056 objset_t
*os
= zd
->zd_os
;
2057 dmu_object_info_t doi
;
2059 uint64_t object
, txg
;
2062 byteswap_uint64_array(lr
, sizeof (*lr
));
2064 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
2065 ASSERT3S(name
[0], !=, '\0');
2068 zap_lookup(os
, lr
->lr_doid
, name
, sizeof (object
), 1, &object
));
2069 ASSERT3U(object
, !=, 0);
2071 ztest_object_lock(zd
, object
, RL_WRITER
);
2073 VERIFY0(dmu_object_info(os
, object
, &doi
));
2075 tx
= dmu_tx_create(os
);
2077 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_FALSE
, name
);
2078 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
2080 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2082 ztest_object_unlock(zd
, object
);
2086 if (doi
.doi_type
== DMU_OT_ZAP_OTHER
) {
2087 VERIFY0(zap_destroy(os
, object
, tx
));
2089 VERIFY0(dmu_object_free(os
, object
, tx
));
2092 VERIFY0(zap_remove(os
, lr
->lr_doid
, name
, tx
));
2094 (void) ztest_log_remove(zd
, tx
, lr
, object
);
2098 ztest_object_unlock(zd
, object
);
2104 ztest_replay_write(void *arg1
, void *arg2
, boolean_t byteswap
)
2106 ztest_ds_t
*zd
= arg1
;
2107 lr_write_t
*lr
= arg2
;
2108 objset_t
*os
= zd
->zd_os
;
2109 void *data
= lr
+ 1; /* data follows lr */
2110 uint64_t offset
, length
;
2111 ztest_block_tag_t
*bt
= data
;
2112 ztest_block_tag_t
*bbt
;
2113 uint64_t gen
, txg
, lrtxg
, crtxg
;
2114 dmu_object_info_t doi
;
2117 arc_buf_t
*abuf
= NULL
;
2121 byteswap_uint64_array(lr
, sizeof (*lr
));
2123 offset
= lr
->lr_offset
;
2124 length
= lr
->lr_length
;
2126 /* If it's a dmu_sync() block, write the whole block */
2127 if (lr
->lr_common
.lrc_reclen
== sizeof (lr_write_t
)) {
2128 uint64_t blocksize
= BP_GET_LSIZE(&lr
->lr_blkptr
);
2129 if (length
< blocksize
) {
2130 offset
-= offset
% blocksize
;
2135 if (bt
->bt_magic
== BSWAP_64(BT_MAGIC
))
2136 byteswap_uint64_array(bt
, sizeof (*bt
));
2138 if (bt
->bt_magic
!= BT_MAGIC
)
2141 ztest_object_lock(zd
, lr
->lr_foid
, RL_READER
);
2142 rl
= ztest_range_lock(zd
, lr
->lr_foid
, offset
, length
, RL_WRITER
);
2144 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2146 dmu_object_info_from_db(db
, &doi
);
2148 bbt
= ztest_bt_bonus(db
);
2149 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2151 crtxg
= bbt
->bt_crtxg
;
2152 lrtxg
= lr
->lr_common
.lrc_txg
;
2154 tx
= dmu_tx_create(os
);
2156 dmu_tx_hold_write(tx
, lr
->lr_foid
, offset
, length
);
2158 if (ztest_random(8) == 0 && length
== doi
.doi_data_block_size
&&
2159 P2PHASE(offset
, length
) == 0)
2160 abuf
= dmu_request_arcbuf(db
, length
);
2162 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2165 dmu_return_arcbuf(abuf
);
2166 dmu_buf_rele(db
, FTAG
);
2167 ztest_range_unlock(rl
);
2168 ztest_object_unlock(zd
, lr
->lr_foid
);
2174 * Usually, verify the old data before writing new data --
2175 * but not always, because we also want to verify correct
2176 * behavior when the data was not recently read into cache.
2178 ASSERT0(offset
% doi
.doi_data_block_size
);
2179 if (ztest_random(4) != 0) {
2180 int prefetch
= ztest_random(2) ?
2181 DMU_READ_PREFETCH
: DMU_READ_NO_PREFETCH
;
2182 ztest_block_tag_t rbt
;
2184 VERIFY(dmu_read(os
, lr
->lr_foid
, offset
,
2185 sizeof (rbt
), &rbt
, prefetch
) == 0);
2186 if (rbt
.bt_magic
== BT_MAGIC
) {
2187 ztest_bt_verify(&rbt
, os
, lr
->lr_foid
, 0,
2188 offset
, gen
, txg
, crtxg
);
2193 * Writes can appear to be newer than the bonus buffer because
2194 * the ztest_get_data() callback does a dmu_read() of the
2195 * open-context data, which may be different than the data
2196 * as it was when the write was generated.
2198 if (zd
->zd_zilog
->zl_replay
) {
2199 ztest_bt_verify(bt
, os
, lr
->lr_foid
, 0, offset
,
2200 MAX(gen
, bt
->bt_gen
), MAX(txg
, lrtxg
),
2205 * Set the bt's gen/txg to the bonus buffer's gen/txg
2206 * so that all of the usual ASSERTs will work.
2208 ztest_bt_generate(bt
, os
, lr
->lr_foid
, 0, offset
, gen
, txg
,
2213 dmu_write(os
, lr
->lr_foid
, offset
, length
, data
, tx
);
2215 memcpy(abuf
->b_data
, data
, length
);
2216 dmu_assign_arcbuf_by_dbuf(db
, offset
, abuf
, tx
);
2219 (void) ztest_log_write(zd
, tx
, lr
);
2221 dmu_buf_rele(db
, FTAG
);
2225 ztest_range_unlock(rl
);
2226 ztest_object_unlock(zd
, lr
->lr_foid
);
2232 ztest_replay_truncate(void *arg1
, void *arg2
, boolean_t byteswap
)
2234 ztest_ds_t
*zd
= arg1
;
2235 lr_truncate_t
*lr
= arg2
;
2236 objset_t
*os
= zd
->zd_os
;
2242 byteswap_uint64_array(lr
, sizeof (*lr
));
2244 ztest_object_lock(zd
, lr
->lr_foid
, RL_READER
);
2245 rl
= ztest_range_lock(zd
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
2248 tx
= dmu_tx_create(os
);
2250 dmu_tx_hold_free(tx
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
);
2252 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2254 ztest_range_unlock(rl
);
2255 ztest_object_unlock(zd
, lr
->lr_foid
);
2259 VERIFY0(dmu_free_range(os
, lr
->lr_foid
, lr
->lr_offset
,
2260 lr
->lr_length
, tx
));
2262 (void) ztest_log_truncate(zd
, tx
, lr
);
2266 ztest_range_unlock(rl
);
2267 ztest_object_unlock(zd
, lr
->lr_foid
);
2273 ztest_replay_setattr(void *arg1
, void *arg2
, boolean_t byteswap
)
2275 ztest_ds_t
*zd
= arg1
;
2276 lr_setattr_t
*lr
= arg2
;
2277 objset_t
*os
= zd
->zd_os
;
2280 ztest_block_tag_t
*bbt
;
2281 uint64_t txg
, lrtxg
, crtxg
, dnodesize
;
2284 byteswap_uint64_array(lr
, sizeof (*lr
));
2286 ztest_object_lock(zd
, lr
->lr_foid
, RL_WRITER
);
2288 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2290 tx
= dmu_tx_create(os
);
2291 dmu_tx_hold_bonus(tx
, lr
->lr_foid
);
2293 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2295 dmu_buf_rele(db
, FTAG
);
2296 ztest_object_unlock(zd
, lr
->lr_foid
);
2300 bbt
= ztest_bt_bonus(db
);
2301 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2302 crtxg
= bbt
->bt_crtxg
;
2303 lrtxg
= lr
->lr_common
.lrc_txg
;
2304 dnodesize
= bbt
->bt_dnodesize
;
2306 if (zd
->zd_zilog
->zl_replay
) {
2307 ASSERT3U(lr
->lr_size
, !=, 0);
2308 ASSERT3U(lr
->lr_mode
, !=, 0);
2309 ASSERT3U(lrtxg
, !=, 0);
2312 * Randomly change the size and increment the generation.
2314 lr
->lr_size
= (ztest_random(db
->db_size
/ sizeof (*bbt
)) + 1) *
2316 lr
->lr_mode
= bbt
->bt_gen
+ 1;
2321 * Verify that the current bonus buffer is not newer than our txg.
2323 ztest_bt_verify(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2324 MAX(txg
, lrtxg
), crtxg
);
2326 dmu_buf_will_dirty(db
, tx
);
2328 ASSERT3U(lr
->lr_size
, >=, sizeof (*bbt
));
2329 ASSERT3U(lr
->lr_size
, <=, db
->db_size
);
2330 VERIFY0(dmu_set_bonus(db
, lr
->lr_size
, tx
));
2331 bbt
= ztest_bt_bonus(db
);
2333 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2335 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, bbt
->bt_gen
);
2336 dmu_buf_rele(db
, FTAG
);
2338 (void) ztest_log_setattr(zd
, tx
, lr
);
2342 ztest_object_unlock(zd
, lr
->lr_foid
);
2347 zil_replay_func_t
*ztest_replay_vector
[TX_MAX_TYPE
] = {
2348 NULL
, /* 0 no such transaction type */
2349 ztest_replay_create
, /* TX_CREATE */
2350 NULL
, /* TX_MKDIR */
2351 NULL
, /* TX_MKXATTR */
2352 NULL
, /* TX_SYMLINK */
2353 ztest_replay_remove
, /* TX_REMOVE */
2354 NULL
, /* TX_RMDIR */
2356 NULL
, /* TX_RENAME */
2357 ztest_replay_write
, /* TX_WRITE */
2358 ztest_replay_truncate
, /* TX_TRUNCATE */
2359 ztest_replay_setattr
, /* TX_SETATTR */
2361 NULL
, /* TX_CREATE_ACL */
2362 NULL
, /* TX_CREATE_ATTR */
2363 NULL
, /* TX_CREATE_ACL_ATTR */
2364 NULL
, /* TX_MKDIR_ACL */
2365 NULL
, /* TX_MKDIR_ATTR */
2366 NULL
, /* TX_MKDIR_ACL_ATTR */
2367 NULL
, /* TX_WRITE2 */
2368 NULL
, /* TX_SETSAXATTR */
2372 * ZIL get_data callbacks
2376 ztest_get_done(zgd_t
*zgd
, int error
)
2379 ztest_ds_t
*zd
= zgd
->zgd_private
;
2380 uint64_t object
= ((rl_t
*)zgd
->zgd_lr
)->rl_object
;
2383 dmu_buf_rele(zgd
->zgd_db
, zgd
);
2385 ztest_range_unlock((rl_t
*)zgd
->zgd_lr
);
2386 ztest_object_unlock(zd
, object
);
2388 umem_free(zgd
, sizeof (*zgd
));
2392 ztest_get_data(void *arg
, uint64_t arg2
, lr_write_t
*lr
, char *buf
,
2393 struct lwb
*lwb
, zio_t
*zio
)
2396 ztest_ds_t
*zd
= arg
;
2397 objset_t
*os
= zd
->zd_os
;
2398 uint64_t object
= lr
->lr_foid
;
2399 uint64_t offset
= lr
->lr_offset
;
2400 uint64_t size
= lr
->lr_length
;
2401 uint64_t txg
= lr
->lr_common
.lrc_txg
;
2403 dmu_object_info_t doi
;
2408 ASSERT3P(lwb
, !=, NULL
);
2409 ASSERT3P(zio
, !=, NULL
);
2410 ASSERT3U(size
, !=, 0);
2412 ztest_object_lock(zd
, object
, RL_READER
);
2413 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
2415 ztest_object_unlock(zd
, object
);
2419 crtxg
= ztest_bt_bonus(db
)->bt_crtxg
;
2421 if (crtxg
== 0 || crtxg
> txg
) {
2422 dmu_buf_rele(db
, FTAG
);
2423 ztest_object_unlock(zd
, object
);
2427 dmu_object_info_from_db(db
, &doi
);
2428 dmu_buf_rele(db
, FTAG
);
2431 zgd
= umem_zalloc(sizeof (*zgd
), UMEM_NOFAIL
);
2433 zgd
->zgd_private
= zd
;
2435 if (buf
!= NULL
) { /* immediate write */
2436 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2437 object
, offset
, size
, RL_READER
);
2439 error
= dmu_read(os
, object
, offset
, size
, buf
,
2440 DMU_READ_NO_PREFETCH
);
2443 size
= doi
.doi_data_block_size
;
2445 offset
= P2ALIGN(offset
, size
);
2447 ASSERT3U(offset
, <, size
);
2451 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2452 object
, offset
, size
, RL_READER
);
2454 error
= dmu_buf_hold(os
, object
, offset
, zgd
, &db
,
2455 DMU_READ_NO_PREFETCH
);
2458 blkptr_t
*bp
= &lr
->lr_blkptr
;
2463 ASSERT3U(db
->db_offset
, ==, offset
);
2464 ASSERT3U(db
->db_size
, ==, size
);
2466 error
= dmu_sync(zio
, lr
->lr_common
.lrc_txg
,
2467 ztest_get_done
, zgd
);
2474 ztest_get_done(zgd
, error
);
2480 ztest_lr_alloc(size_t lrsize
, char *name
)
2483 size_t namesize
= name
? strlen(name
) + 1 : 0;
2485 lr
= umem_zalloc(lrsize
+ namesize
, UMEM_NOFAIL
);
2488 memcpy(lr
+ lrsize
, name
, namesize
);
2494 ztest_lr_free(void *lr
, size_t lrsize
, char *name
)
2496 size_t namesize
= name
? strlen(name
) + 1 : 0;
2498 umem_free(lr
, lrsize
+ namesize
);
2502 * Lookup a bunch of objects. Returns the number of objects not found.
2505 ztest_lookup(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2511 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2513 for (i
= 0; i
< count
; i
++, od
++) {
2515 error
= zap_lookup(zd
->zd_os
, od
->od_dir
, od
->od_name
,
2516 sizeof (uint64_t), 1, &od
->od_object
);
2518 ASSERT3S(error
, ==, ENOENT
);
2519 ASSERT0(od
->od_object
);
2523 ztest_block_tag_t
*bbt
;
2524 dmu_object_info_t doi
;
2526 ASSERT3U(od
->od_object
, !=, 0);
2527 ASSERT0(missing
); /* there should be no gaps */
2529 ztest_object_lock(zd
, od
->od_object
, RL_READER
);
2530 VERIFY0(dmu_bonus_hold(zd
->zd_os
, od
->od_object
,
2532 dmu_object_info_from_db(db
, &doi
);
2533 bbt
= ztest_bt_bonus(db
);
2534 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2535 od
->od_type
= doi
.doi_type
;
2536 od
->od_blocksize
= doi
.doi_data_block_size
;
2537 od
->od_gen
= bbt
->bt_gen
;
2538 dmu_buf_rele(db
, FTAG
);
2539 ztest_object_unlock(zd
, od
->od_object
);
2547 ztest_create(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2552 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2554 for (i
= 0; i
< count
; i
++, od
++) {
2561 lr_create_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2563 lr
->lr_doid
= od
->od_dir
;
2564 lr
->lr_foid
= 0; /* 0 to allocate, > 0 to claim */
2565 lr
->lrz_type
= od
->od_crtype
;
2566 lr
->lrz_blocksize
= od
->od_crblocksize
;
2567 lr
->lrz_ibshift
= ztest_random_ibshift();
2568 lr
->lrz_bonustype
= DMU_OT_UINT64_OTHER
;
2569 lr
->lrz_dnodesize
= od
->od_crdnodesize
;
2570 lr
->lr_gen
= od
->od_crgen
;
2571 lr
->lr_crtime
[0] = time(NULL
);
2573 if (ztest_replay_create(zd
, lr
, B_FALSE
) != 0) {
2578 od
->od_object
= lr
->lr_foid
;
2579 od
->od_type
= od
->od_crtype
;
2580 od
->od_blocksize
= od
->od_crblocksize
;
2581 od
->od_gen
= od
->od_crgen
;
2582 ASSERT3U(od
->od_object
, !=, 0);
2585 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2592 ztest_remove(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2598 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2602 for (i
= count
- 1; i
>= 0; i
--, od
--) {
2609 * No object was found.
2611 if (od
->od_object
== 0)
2614 lr_remove_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2616 lr
->lr_doid
= od
->od_dir
;
2618 if ((error
= ztest_replay_remove(zd
, lr
, B_FALSE
)) != 0) {
2619 ASSERT3U(error
, ==, ENOSPC
);
2624 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2631 ztest_write(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
,
2637 lr
= ztest_lr_alloc(sizeof (*lr
) + size
, NULL
);
2639 lr
->lr_foid
= object
;
2640 lr
->lr_offset
= offset
;
2641 lr
->lr_length
= size
;
2643 BP_ZERO(&lr
->lr_blkptr
);
2645 memcpy(lr
+ 1, data
, size
);
2647 error
= ztest_replay_write(zd
, lr
, B_FALSE
);
2649 ztest_lr_free(lr
, sizeof (*lr
) + size
, NULL
);
2655 ztest_truncate(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2660 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2662 lr
->lr_foid
= object
;
2663 lr
->lr_offset
= offset
;
2664 lr
->lr_length
= size
;
2666 error
= ztest_replay_truncate(zd
, lr
, B_FALSE
);
2668 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2674 ztest_setattr(ztest_ds_t
*zd
, uint64_t object
)
2679 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2681 lr
->lr_foid
= object
;
2685 error
= ztest_replay_setattr(zd
, lr
, B_FALSE
);
2687 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2693 ztest_prealloc(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2695 objset_t
*os
= zd
->zd_os
;
2700 txg_wait_synced(dmu_objset_pool(os
), 0);
2702 ztest_object_lock(zd
, object
, RL_READER
);
2703 rl
= ztest_range_lock(zd
, object
, offset
, size
, RL_WRITER
);
2705 tx
= dmu_tx_create(os
);
2707 dmu_tx_hold_write(tx
, object
, offset
, size
);
2709 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2712 dmu_prealloc(os
, object
, offset
, size
, tx
);
2714 txg_wait_synced(dmu_objset_pool(os
), txg
);
2716 (void) dmu_free_long_range(os
, object
, offset
, size
);
2719 ztest_range_unlock(rl
);
2720 ztest_object_unlock(zd
, object
);
2724 ztest_io(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
)
2727 ztest_block_tag_t wbt
;
2728 dmu_object_info_t doi
;
2729 enum ztest_io_type io_type
;
2733 VERIFY0(dmu_object_info(zd
->zd_os
, object
, &doi
));
2734 blocksize
= doi
.doi_data_block_size
;
2735 data
= umem_alloc(blocksize
, UMEM_NOFAIL
);
2738 * Pick an i/o type at random, biased toward writing block tags.
2740 io_type
= ztest_random(ZTEST_IO_TYPES
);
2741 if (ztest_random(2) == 0)
2742 io_type
= ZTEST_IO_WRITE_TAG
;
2744 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2748 case ZTEST_IO_WRITE_TAG
:
2749 ztest_bt_generate(&wbt
, zd
->zd_os
, object
, doi
.doi_dnodesize
,
2751 (void) ztest_write(zd
, object
, offset
, sizeof (wbt
), &wbt
);
2754 case ZTEST_IO_WRITE_PATTERN
:
2755 (void) memset(data
, 'a' + (object
+ offset
) % 5, blocksize
);
2756 if (ztest_random(2) == 0) {
2758 * Induce fletcher2 collisions to ensure that
2759 * zio_ddt_collision() detects and resolves them
2760 * when using fletcher2-verify for deduplication.
2762 ((uint64_t *)data
)[0] ^= 1ULL << 63;
2763 ((uint64_t *)data
)[4] ^= 1ULL << 63;
2765 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2768 case ZTEST_IO_WRITE_ZEROES
:
2769 memset(data
, 0, blocksize
);
2770 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2773 case ZTEST_IO_TRUNCATE
:
2774 (void) ztest_truncate(zd
, object
, offset
, blocksize
);
2777 case ZTEST_IO_SETATTR
:
2778 (void) ztest_setattr(zd
, object
);
2783 case ZTEST_IO_REWRITE
:
2784 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
2785 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2786 ZFS_PROP_CHECKSUM
, spa_dedup_checksum(ztest_spa
),
2788 VERIFY(err
== 0 || err
== ENOSPC
);
2789 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2790 ZFS_PROP_COMPRESSION
,
2791 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
),
2793 VERIFY(err
== 0 || err
== ENOSPC
);
2794 (void) pthread_rwlock_unlock(&ztest_name_lock
);
2796 VERIFY0(dmu_read(zd
->zd_os
, object
, offset
, blocksize
, data
,
2797 DMU_READ_NO_PREFETCH
));
2799 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2803 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2805 umem_free(data
, blocksize
);
2809 * Initialize an object description template.
2812 ztest_od_init(ztest_od_t
*od
, uint64_t id
, char *tag
, uint64_t index
,
2813 dmu_object_type_t type
, uint64_t blocksize
, uint64_t dnodesize
,
2816 od
->od_dir
= ZTEST_DIROBJ
;
2819 od
->od_crtype
= type
;
2820 od
->od_crblocksize
= blocksize
? blocksize
: ztest_random_blocksize();
2821 od
->od_crdnodesize
= dnodesize
? dnodesize
: ztest_random_dnodesize();
2824 od
->od_type
= DMU_OT_NONE
;
2825 od
->od_blocksize
= 0;
2828 (void) snprintf(od
->od_name
, sizeof (od
->od_name
),
2829 "%s(%"PRId64
")[%"PRIu64
"]",
2834 * Lookup or create the objects for a test using the od template.
2835 * If the objects do not all exist, or if 'remove' is specified,
2836 * remove any existing objects and create new ones. Otherwise,
2837 * use the existing objects.
2840 ztest_object_init(ztest_ds_t
*zd
, ztest_od_t
*od
, size_t size
, boolean_t remove
)
2842 int count
= size
/ sizeof (*od
);
2845 mutex_enter(&zd
->zd_dirobj_lock
);
2846 if ((ztest_lookup(zd
, od
, count
) != 0 || remove
) &&
2847 (ztest_remove(zd
, od
, count
) != 0 ||
2848 ztest_create(zd
, od
, count
) != 0))
2851 mutex_exit(&zd
->zd_dirobj_lock
);
2857 ztest_zil_commit(ztest_ds_t
*zd
, uint64_t id
)
2860 zilog_t
*zilog
= zd
->zd_zilog
;
2862 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2864 zil_commit(zilog
, ztest_random(ZTEST_OBJECTS
));
2867 * Remember the committed values in zd, which is in parent/child
2868 * shared memory. If we die, the next iteration of ztest_run()
2869 * will verify that the log really does contain this record.
2871 mutex_enter(&zilog
->zl_lock
);
2872 ASSERT3P(zd
->zd_shared
, !=, NULL
);
2873 ASSERT3U(zd
->zd_shared
->zd_seq
, <=, zilog
->zl_commit_lr_seq
);
2874 zd
->zd_shared
->zd_seq
= zilog
->zl_commit_lr_seq
;
2875 mutex_exit(&zilog
->zl_lock
);
2877 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2881 * This function is designed to simulate the operations that occur during a
2882 * mount/unmount operation. We hold the dataset across these operations in an
2883 * attempt to expose any implicit assumptions about ZIL management.
2886 ztest_zil_remount(ztest_ds_t
*zd
, uint64_t id
)
2889 objset_t
*os
= zd
->zd_os
;
2892 * We hold the ztest_vdev_lock so we don't cause problems with
2893 * other threads that wish to remove a log device, such as
2894 * ztest_device_removal().
2896 mutex_enter(&ztest_vdev_lock
);
2899 * We grab the zd_dirobj_lock to ensure that no other thread is
2900 * updating the zil (i.e. adding in-memory log records) and the
2901 * zd_zilog_lock to block any I/O.
2903 mutex_enter(&zd
->zd_dirobj_lock
);
2904 (void) pthread_rwlock_wrlock(&zd
->zd_zilog_lock
);
2906 /* zfsvfs_teardown() */
2907 zil_close(zd
->zd_zilog
);
2909 /* zfsvfs_setup() */
2910 VERIFY3P(zil_open(os
, ztest_get_data
), ==, zd
->zd_zilog
);
2911 zil_replay(os
, zd
, ztest_replay_vector
);
2913 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2914 mutex_exit(&zd
->zd_dirobj_lock
);
2915 mutex_exit(&ztest_vdev_lock
);
2919 * Verify that we can't destroy an active pool, create an existing pool,
2920 * or create a pool with a bad vdev spec.
2923 ztest_spa_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
2925 (void) zd
, (void) id
;
2926 ztest_shared_opts_t
*zo
= &ztest_opts
;
2930 if (zo
->zo_mmp_test
)
2934 * Attempt to create using a bad file.
2936 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
2937 VERIFY3U(ENOENT
, ==,
2938 spa_create("ztest_bad_file", nvroot
, NULL
, NULL
, NULL
));
2939 fnvlist_free(nvroot
);
2942 * Attempt to create using a bad mirror.
2944 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 2, 1);
2945 VERIFY3U(ENOENT
, ==,
2946 spa_create("ztest_bad_mirror", nvroot
, NULL
, NULL
, NULL
));
2947 fnvlist_free(nvroot
);
2950 * Attempt to create an existing pool. It shouldn't matter
2951 * what's in the nvroot; we should fail with EEXIST.
2953 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
2954 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
2955 VERIFY3U(EEXIST
, ==,
2956 spa_create(zo
->zo_pool
, nvroot
, NULL
, NULL
, NULL
));
2957 fnvlist_free(nvroot
);
2960 * We open a reference to the spa and then we try to export it
2961 * expecting one of the following errors:
2964 * Because of the reference we just opened.
2966 * ZFS_ERR_EXPORT_IN_PROGRESS
2967 * For the case that there is another ztest thread doing
2968 * an export concurrently.
2970 VERIFY0(spa_open(zo
->zo_pool
, &spa
, FTAG
));
2971 int error
= spa_destroy(zo
->zo_pool
);
2972 if (error
!= EBUSY
&& error
!= ZFS_ERR_EXPORT_IN_PROGRESS
) {
2973 fatal(B_FALSE
, "spa_destroy(%s) returned unexpected value %d",
2974 spa
->spa_name
, error
);
2976 spa_close(spa
, FTAG
);
2978 (void) pthread_rwlock_unlock(&ztest_name_lock
);
2982 * Start and then stop the MMP threads to ensure the startup and shutdown code
2983 * works properly. Actual protection and property-related code tested via ZTS.
2986 ztest_mmp_enable_disable(ztest_ds_t
*zd
, uint64_t id
)
2988 (void) zd
, (void) id
;
2989 ztest_shared_opts_t
*zo
= &ztest_opts
;
2990 spa_t
*spa
= ztest_spa
;
2992 if (zo
->zo_mmp_test
)
2996 * Since enabling MMP involves setting a property, it could not be done
2997 * while the pool is suspended.
2999 if (spa_suspended(spa
))
3002 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3003 mutex_enter(&spa
->spa_props_lock
);
3005 zfs_multihost_fail_intervals
= 0;
3007 if (!spa_multihost(spa
)) {
3008 spa
->spa_multihost
= B_TRUE
;
3009 mmp_thread_start(spa
);
3012 mutex_exit(&spa
->spa_props_lock
);
3013 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3015 txg_wait_synced(spa_get_dsl(spa
), 0);
3016 mmp_signal_all_threads();
3017 txg_wait_synced(spa_get_dsl(spa
), 0);
3019 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3020 mutex_enter(&spa
->spa_props_lock
);
3022 if (spa_multihost(spa
)) {
3023 mmp_thread_stop(spa
);
3024 spa
->spa_multihost
= B_FALSE
;
3027 mutex_exit(&spa
->spa_props_lock
);
3028 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3032 ztest_spa_upgrade(ztest_ds_t
*zd
, uint64_t id
)
3034 (void) zd
, (void) id
;
3036 uint64_t initial_version
= SPA_VERSION_INITIAL
;
3037 uint64_t version
, newversion
;
3038 nvlist_t
*nvroot
, *props
;
3041 if (ztest_opts
.zo_mmp_test
)
3044 /* dRAID added after feature flags, skip upgrade test. */
3045 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0)
3048 mutex_enter(&ztest_vdev_lock
);
3049 name
= kmem_asprintf("%s_upgrade", ztest_opts
.zo_pool
);
3052 * Clean up from previous runs.
3054 (void) spa_destroy(name
);
3056 nvroot
= make_vdev_root(NULL
, NULL
, name
, ztest_opts
.zo_vdev_size
, 0,
3057 NULL
, ztest_opts
.zo_raid_children
, ztest_opts
.zo_mirrors
, 1);
3060 * If we're configuring a RAIDZ device then make sure that the
3061 * initial version is capable of supporting that feature.
3063 switch (ztest_opts
.zo_raid_parity
) {
3066 initial_version
= SPA_VERSION_INITIAL
;
3069 initial_version
= SPA_VERSION_RAIDZ2
;
3072 initial_version
= SPA_VERSION_RAIDZ3
;
3077 * Create a pool with a spa version that can be upgraded. Pick
3078 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3081 version
= ztest_random_spa_version(initial_version
);
3082 } while (version
> SPA_VERSION_BEFORE_FEATURES
);
3084 props
= fnvlist_alloc();
3085 fnvlist_add_uint64(props
,
3086 zpool_prop_to_name(ZPOOL_PROP_VERSION
), version
);
3087 VERIFY0(spa_create(name
, nvroot
, props
, NULL
, NULL
));
3088 fnvlist_free(nvroot
);
3089 fnvlist_free(props
);
3091 VERIFY0(spa_open(name
, &spa
, FTAG
));
3092 VERIFY3U(spa_version(spa
), ==, version
);
3093 newversion
= ztest_random_spa_version(version
+ 1);
3095 if (ztest_opts
.zo_verbose
>= 4) {
3096 (void) printf("upgrading spa version from "
3097 "%"PRIu64
" to %"PRIu64
"\n",
3098 version
, newversion
);
3101 spa_upgrade(spa
, newversion
);
3102 VERIFY3U(spa_version(spa
), >, version
);
3103 VERIFY3U(spa_version(spa
), ==, fnvlist_lookup_uint64(spa
->spa_config
,
3104 zpool_prop_to_name(ZPOOL_PROP_VERSION
)));
3105 spa_close(spa
, FTAG
);
3108 mutex_exit(&ztest_vdev_lock
);
3112 ztest_spa_checkpoint(spa_t
*spa
)
3114 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3116 int error
= spa_checkpoint(spa
->spa_name
);
3120 case ZFS_ERR_DEVRM_IN_PROGRESS
:
3121 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3122 case ZFS_ERR_CHECKPOINT_EXISTS
:
3125 ztest_record_enospc(FTAG
);
3128 fatal(B_FALSE
, "spa_checkpoint(%s) = %d", spa
->spa_name
, error
);
3133 ztest_spa_discard_checkpoint(spa_t
*spa
)
3135 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3137 int error
= spa_checkpoint_discard(spa
->spa_name
);
3141 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3142 case ZFS_ERR_NO_CHECKPOINT
:
3145 fatal(B_FALSE
, "spa_discard_checkpoint(%s) = %d",
3146 spa
->spa_name
, error
);
3152 ztest_spa_checkpoint_create_discard(ztest_ds_t
*zd
, uint64_t id
)
3154 (void) zd
, (void) id
;
3155 spa_t
*spa
= ztest_spa
;
3157 mutex_enter(&ztest_checkpoint_lock
);
3158 if (ztest_random(2) == 0) {
3159 ztest_spa_checkpoint(spa
);
3161 ztest_spa_discard_checkpoint(spa
);
3163 mutex_exit(&ztest_checkpoint_lock
);
3168 vdev_lookup_by_path(vdev_t
*vd
, const char *path
)
3173 if (vd
->vdev_path
!= NULL
&& strcmp(path
, vd
->vdev_path
) == 0)
3176 for (c
= 0; c
< vd
->vdev_children
; c
++)
3177 if ((mvd
= vdev_lookup_by_path(vd
->vdev_child
[c
], path
)) !=
3185 spa_num_top_vdevs(spa_t
*spa
)
3187 vdev_t
*rvd
= spa
->spa_root_vdev
;
3188 ASSERT3U(spa_config_held(spa
, SCL_VDEV
, RW_READER
), ==, SCL_VDEV
);
3189 return (rvd
->vdev_children
);
3193 * Verify that vdev_add() works as expected.
3196 ztest_vdev_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3198 (void) zd
, (void) id
;
3199 ztest_shared_t
*zs
= ztest_shared
;
3200 spa_t
*spa
= ztest_spa
;
3206 if (ztest_opts
.zo_mmp_test
)
3209 mutex_enter(&ztest_vdev_lock
);
3210 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) *
3211 ztest_opts
.zo_raid_children
;
3213 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3215 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3218 * If we have slogs then remove them 1/4 of the time.
3220 if (spa_has_slogs(spa
) && ztest_random(4) == 0) {
3221 metaslab_group_t
*mg
;
3224 * find the first real slog in log allocation class
3226 mg
= spa_log_class(spa
)->mc_allocator
[0].mca_rotor
;
3227 while (!mg
->mg_vd
->vdev_islog
)
3230 guid
= mg
->mg_vd
->vdev_guid
;
3232 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3235 * We have to grab the zs_name_lock as writer to
3236 * prevent a race between removing a slog (dmu_objset_find)
3237 * and destroying a dataset. Removing the slog will
3238 * grab a reference on the dataset which may cause
3239 * dsl_destroy_head() to fail with EBUSY thus
3240 * leaving the dataset in an inconsistent state.
3242 pthread_rwlock_wrlock(&ztest_name_lock
);
3243 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3244 pthread_rwlock_unlock(&ztest_name_lock
);
3248 case EEXIST
: /* Generic zil_reset() error */
3249 case EBUSY
: /* Replay required */
3250 case EACCES
: /* Crypto key not loaded */
3251 case ZFS_ERR_CHECKPOINT_EXISTS
:
3252 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3255 fatal(B_FALSE
, "spa_vdev_remove() = %d", error
);
3258 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3261 * Make 1/4 of the devices be log devices
3263 nvroot
= make_vdev_root(NULL
, NULL
, NULL
,
3264 ztest_opts
.zo_vdev_size
, 0, (ztest_random(4) == 0) ?
3265 "log" : NULL
, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
,
3268 error
= spa_vdev_add(spa
, nvroot
);
3269 fnvlist_free(nvroot
);
3275 ztest_record_enospc("spa_vdev_add");
3278 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3282 mutex_exit(&ztest_vdev_lock
);
3286 ztest_vdev_class_add(ztest_ds_t
*zd
, uint64_t id
)
3288 (void) zd
, (void) id
;
3289 ztest_shared_t
*zs
= ztest_shared
;
3290 spa_t
*spa
= ztest_spa
;
3293 const char *class = (ztest_random(2) == 0) ?
3294 VDEV_ALLOC_BIAS_SPECIAL
: VDEV_ALLOC_BIAS_DEDUP
;
3298 * By default add a special vdev 50% of the time
3300 if ((ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_OFF
) ||
3301 (ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_RND
&&
3302 ztest_random(2) == 0)) {
3306 mutex_enter(&ztest_vdev_lock
);
3308 /* Only test with mirrors */
3309 if (zs
->zs_mirrors
< 2) {
3310 mutex_exit(&ztest_vdev_lock
);
3314 /* requires feature@allocation_classes */
3315 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_ALLOCATION_CLASSES
)) {
3316 mutex_exit(&ztest_vdev_lock
);
3320 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) *
3321 ztest_opts
.zo_raid_children
;
3323 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3324 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3325 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3327 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
3328 class, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
, 1);
3330 error
= spa_vdev_add(spa
, nvroot
);
3331 fnvlist_free(nvroot
);
3333 if (error
== ENOSPC
)
3334 ztest_record_enospc("spa_vdev_add");
3335 else if (error
!= 0)
3336 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3339 * 50% of the time allow small blocks in the special class
3342 spa_special_class(spa
)->mc_groups
== 1 && ztest_random(2) == 0) {
3343 if (ztest_opts
.zo_verbose
>= 3)
3344 (void) printf("Enabling special VDEV small blocks\n");
3345 (void) ztest_dsl_prop_set_uint64(zd
->zd_name
,
3346 ZFS_PROP_SPECIAL_SMALL_BLOCKS
, 32768, B_FALSE
);
3349 mutex_exit(&ztest_vdev_lock
);
3351 if (ztest_opts
.zo_verbose
>= 3) {
3352 metaslab_class_t
*mc
;
3354 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL
) == 0)
3355 mc
= spa_special_class(spa
);
3357 mc
= spa_dedup_class(spa
);
3358 (void) printf("Added a %s mirrored vdev (of %d)\n",
3359 class, (int)mc
->mc_groups
);
3364 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3367 ztest_vdev_aux_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3369 (void) zd
, (void) id
;
3370 ztest_shared_t
*zs
= ztest_shared
;
3371 spa_t
*spa
= ztest_spa
;
3372 vdev_t
*rvd
= spa
->spa_root_vdev
;
3373 spa_aux_vdev_t
*sav
;
3377 int error
, ignore_err
= 0;
3379 if (ztest_opts
.zo_mmp_test
)
3382 path
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3384 if (ztest_random(2) == 0) {
3385 sav
= &spa
->spa_spares
;
3386 aux
= ZPOOL_CONFIG_SPARES
;
3388 sav
= &spa
->spa_l2cache
;
3389 aux
= ZPOOL_CONFIG_L2CACHE
;
3392 mutex_enter(&ztest_vdev_lock
);
3394 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3396 if (sav
->sav_count
!= 0 && ztest_random(4) == 0) {
3398 * Pick a random device to remove.
3400 vdev_t
*svd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3402 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3403 if (strstr(svd
->vdev_path
, VDEV_TYPE_DRAID
) != NULL
)
3404 ignore_err
= ENOTSUP
;
3406 guid
= svd
->vdev_guid
;
3409 * Find an unused device we can add.
3411 zs
->zs_vdev_aux
= 0;
3414 (void) snprintf(path
, MAXPATHLEN
, ztest_aux_template
,
3415 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, aux
,
3417 for (c
= 0; c
< sav
->sav_count
; c
++)
3418 if (strcmp(sav
->sav_vdevs
[c
]->vdev_path
,
3421 if (c
== sav
->sav_count
&&
3422 vdev_lookup_by_path(rvd
, path
) == NULL
)
3428 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3434 nvlist_t
*nvroot
= make_vdev_root(NULL
, aux
, NULL
,
3435 (ztest_opts
.zo_vdev_size
* 5) / 4, 0, NULL
, 0, 0, 1);
3436 error
= spa_vdev_add(spa
, nvroot
);
3442 fatal(B_FALSE
, "spa_vdev_add(%p) = %d", nvroot
, error
);
3444 fnvlist_free(nvroot
);
3447 * Remove an existing device. Sometimes, dirty its
3448 * vdev state first to make sure we handle removal
3449 * of devices that have pending state changes.
3451 if (ztest_random(2) == 0)
3452 (void) vdev_online(spa
, guid
, 0, NULL
);
3454 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3459 case ZFS_ERR_CHECKPOINT_EXISTS
:
3460 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3463 if (error
!= ignore_err
)
3465 "spa_vdev_remove(%"PRIu64
") = %d",
3470 mutex_exit(&ztest_vdev_lock
);
3472 umem_free(path
, MAXPATHLEN
);
3476 * split a pool if it has mirror tlvdevs
3479 ztest_split_pool(ztest_ds_t
*zd
, uint64_t id
)
3481 (void) zd
, (void) id
;
3482 ztest_shared_t
*zs
= ztest_shared
;
3483 spa_t
*spa
= ztest_spa
;
3484 vdev_t
*rvd
= spa
->spa_root_vdev
;
3485 nvlist_t
*tree
, **child
, *config
, *split
, **schild
;
3486 uint_t c
, children
, schildren
= 0, lastlogid
= 0;
3489 if (ztest_opts
.zo_mmp_test
)
3492 mutex_enter(&ztest_vdev_lock
);
3494 /* ensure we have a usable config; mirrors of raidz aren't supported */
3495 if (zs
->zs_mirrors
< 3 || ztest_opts
.zo_raid_children
> 1) {
3496 mutex_exit(&ztest_vdev_lock
);
3500 /* clean up the old pool, if any */
3501 (void) spa_destroy("splitp");
3503 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3505 /* generate a config from the existing config */
3506 mutex_enter(&spa
->spa_props_lock
);
3507 tree
= fnvlist_lookup_nvlist(spa
->spa_config
, ZPOOL_CONFIG_VDEV_TREE
);
3508 mutex_exit(&spa
->spa_props_lock
);
3510 VERIFY0(nvlist_lookup_nvlist_array(tree
, ZPOOL_CONFIG_CHILDREN
,
3511 &child
, &children
));
3513 schild
= malloc(rvd
->vdev_children
* sizeof (nvlist_t
*));
3514 for (c
= 0; c
< children
; c
++) {
3515 vdev_t
*tvd
= rvd
->vdev_child
[c
];
3519 if (tvd
->vdev_islog
|| tvd
->vdev_ops
== &vdev_hole_ops
) {
3520 schild
[schildren
] = fnvlist_alloc();
3521 fnvlist_add_string(schild
[schildren
],
3522 ZPOOL_CONFIG_TYPE
, VDEV_TYPE_HOLE
);
3523 fnvlist_add_uint64(schild
[schildren
],
3524 ZPOOL_CONFIG_IS_HOLE
, 1);
3526 lastlogid
= schildren
;
3531 VERIFY0(nvlist_lookup_nvlist_array(child
[c
],
3532 ZPOOL_CONFIG_CHILDREN
, &mchild
, &mchildren
));
3533 schild
[schildren
++] = fnvlist_dup(mchild
[0]);
3536 /* OK, create a config that can be used to split */
3537 split
= fnvlist_alloc();
3538 fnvlist_add_string(split
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
3539 fnvlist_add_nvlist_array(split
, ZPOOL_CONFIG_CHILDREN
,
3540 (const nvlist_t
**)schild
, lastlogid
!= 0 ? lastlogid
: schildren
);
3542 config
= fnvlist_alloc();
3543 fnvlist_add_nvlist(config
, ZPOOL_CONFIG_VDEV_TREE
, split
);
3545 for (c
= 0; c
< schildren
; c
++)
3546 fnvlist_free(schild
[c
]);
3548 fnvlist_free(split
);
3550 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3552 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
3553 error
= spa_vdev_split_mirror(spa
, "splitp", config
, NULL
, B_FALSE
);
3554 (void) pthread_rwlock_unlock(&ztest_name_lock
);
3556 fnvlist_free(config
);
3559 (void) printf("successful split - results:\n");
3560 mutex_enter(&spa_namespace_lock
);
3561 show_pool_stats(spa
);
3562 show_pool_stats(spa_lookup("splitp"));
3563 mutex_exit(&spa_namespace_lock
);
3567 mutex_exit(&ztest_vdev_lock
);
3571 * Verify that we can attach and detach devices.
3574 ztest_vdev_attach_detach(ztest_ds_t
*zd
, uint64_t id
)
3576 (void) zd
, (void) id
;
3577 ztest_shared_t
*zs
= ztest_shared
;
3578 spa_t
*spa
= ztest_spa
;
3579 spa_aux_vdev_t
*sav
= &spa
->spa_spares
;
3580 vdev_t
*rvd
= spa
->spa_root_vdev
;
3581 vdev_t
*oldvd
, *newvd
, *pvd
;
3585 uint64_t ashift
= ztest_get_ashift();
3586 uint64_t oldguid
, pguid
;
3587 uint64_t oldsize
, newsize
;
3588 char *oldpath
, *newpath
;
3590 int oldvd_has_siblings
= B_FALSE
;
3591 int newvd_is_spare
= B_FALSE
;
3592 int newvd_is_dspare
= B_FALSE
;
3594 int error
, expected_error
;
3596 if (ztest_opts
.zo_mmp_test
)
3599 oldpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3600 newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3602 mutex_enter(&ztest_vdev_lock
);
3603 leaves
= MAX(zs
->zs_mirrors
, 1) * ztest_opts
.zo_raid_children
;
3605 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
3608 * If a vdev is in the process of being removed, its removal may
3609 * finish while we are in progress, leading to an unexpected error
3610 * value. Don't bother trying to attach while we are in the middle
3613 if (ztest_device_removal_active
) {
3614 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3619 * Decide whether to do an attach or a replace.
3621 replacing
= ztest_random(2);
3624 * Pick a random top-level vdev.
3626 top
= ztest_random_vdev_top(spa
, B_TRUE
);
3629 * Pick a random leaf within it.
3631 leaf
= ztest_random(leaves
);
3636 oldvd
= rvd
->vdev_child
[top
];
3638 /* pick a child from the mirror */
3639 if (zs
->zs_mirrors
>= 1) {
3640 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_mirror_ops
);
3641 ASSERT3U(oldvd
->vdev_children
, >=, zs
->zs_mirrors
);
3642 oldvd
= oldvd
->vdev_child
[leaf
/ ztest_opts
.zo_raid_children
];
3645 /* pick a child out of the raidz group */
3646 if (ztest_opts
.zo_raid_children
> 1) {
3647 if (strcmp(oldvd
->vdev_ops
->vdev_op_type
, "raidz") == 0)
3648 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_raidz_ops
);
3650 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_draid_ops
);
3651 ASSERT3U(oldvd
->vdev_children
, ==, ztest_opts
.zo_raid_children
);
3652 oldvd
= oldvd
->vdev_child
[leaf
% ztest_opts
.zo_raid_children
];
3656 * If we're already doing an attach or replace, oldvd may be a
3657 * mirror vdev -- in which case, pick a random child.
3659 while (oldvd
->vdev_children
!= 0) {
3660 oldvd_has_siblings
= B_TRUE
;
3661 ASSERT3U(oldvd
->vdev_children
, >=, 2);
3662 oldvd
= oldvd
->vdev_child
[ztest_random(oldvd
->vdev_children
)];
3665 oldguid
= oldvd
->vdev_guid
;
3666 oldsize
= vdev_get_min_asize(oldvd
);
3667 oldvd_is_log
= oldvd
->vdev_top
->vdev_islog
;
3668 (void) strcpy(oldpath
, oldvd
->vdev_path
);
3669 pvd
= oldvd
->vdev_parent
;
3670 pguid
= pvd
->vdev_guid
;
3673 * If oldvd has siblings, then half of the time, detach it. Prior
3674 * to the detach the pool is scrubbed in order to prevent creating
3675 * unrepairable blocks as a result of the data corruption injection.
3677 if (oldvd_has_siblings
&& ztest_random(2) == 0) {
3678 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3680 error
= ztest_scrub_impl(spa
);
3684 error
= spa_vdev_detach(spa
, oldguid
, pguid
, B_FALSE
);
3685 if (error
!= 0 && error
!= ENODEV
&& error
!= EBUSY
&&
3686 error
!= ENOTSUP
&& error
!= ZFS_ERR_CHECKPOINT_EXISTS
&&
3687 error
!= ZFS_ERR_DISCARDING_CHECKPOINT
)
3688 fatal(B_FALSE
, "detach (%s) returned %d",
3694 * For the new vdev, choose with equal probability between the two
3695 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3697 if (sav
->sav_count
!= 0 && ztest_random(3) == 0) {
3698 newvd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3699 newvd_is_spare
= B_TRUE
;
3701 if (newvd
->vdev_ops
== &vdev_draid_spare_ops
)
3702 newvd_is_dspare
= B_TRUE
;
3704 (void) strcpy(newpath
, newvd
->vdev_path
);
3706 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
3707 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
3708 top
* leaves
+ leaf
);
3709 if (ztest_random(2) == 0)
3710 newpath
[strlen(newpath
) - 1] = 'b';
3711 newvd
= vdev_lookup_by_path(rvd
, newpath
);
3716 * Reopen to ensure the vdev's asize field isn't stale.
3719 newsize
= vdev_get_min_asize(newvd
);
3722 * Make newsize a little bigger or smaller than oldsize.
3723 * If it's smaller, the attach should fail.
3724 * If it's larger, and we're doing a replace,
3725 * we should get dynamic LUN growth when we're done.
3727 newsize
= 10 * oldsize
/ (9 + ztest_random(3));
3731 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3732 * unless it's a replace; in that case any non-replacing parent is OK.
3734 * If newvd is already part of the pool, it should fail with EBUSY.
3736 * If newvd is too small, it should fail with EOVERFLOW.
3738 * If newvd is a distributed spare and it's being attached to a
3739 * dRAID which is not its parent it should fail with EINVAL.
3741 if (pvd
->vdev_ops
!= &vdev_mirror_ops
&&
3742 pvd
->vdev_ops
!= &vdev_root_ops
&& (!replacing
||
3743 pvd
->vdev_ops
== &vdev_replacing_ops
||
3744 pvd
->vdev_ops
== &vdev_spare_ops
))
3745 expected_error
= ENOTSUP
;
3746 else if (newvd_is_spare
&& (!replacing
|| oldvd_is_log
))
3747 expected_error
= ENOTSUP
;
3748 else if (newvd
== oldvd
)
3749 expected_error
= replacing
? 0 : EBUSY
;
3750 else if (vdev_lookup_by_path(rvd
, newpath
) != NULL
)
3751 expected_error
= EBUSY
;
3752 else if (!newvd_is_dspare
&& newsize
< oldsize
)
3753 expected_error
= EOVERFLOW
;
3754 else if (ashift
> oldvd
->vdev_top
->vdev_ashift
)
3755 expected_error
= EDOM
;
3756 else if (newvd_is_dspare
&& pvd
!= vdev_draid_spare_get_parent(newvd
))
3757 expected_error
= ENOTSUP
;
3761 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3764 * Build the nvlist describing newpath.
3766 root
= make_vdev_root(newpath
, NULL
, NULL
, newvd
== NULL
? newsize
: 0,
3767 ashift
, NULL
, 0, 0, 1);
3770 * When supported select either a healing or sequential resilver.
3772 boolean_t rebuilding
= B_FALSE
;
3773 if (pvd
->vdev_ops
== &vdev_mirror_ops
||
3774 pvd
->vdev_ops
== &vdev_root_ops
) {
3775 rebuilding
= !!ztest_random(2);
3778 error
= spa_vdev_attach(spa
, oldguid
, root
, replacing
, rebuilding
);
3783 * If our parent was the replacing vdev, but the replace completed,
3784 * then instead of failing with ENOTSUP we may either succeed,
3785 * fail with ENODEV, or fail with EOVERFLOW.
3787 if (expected_error
== ENOTSUP
&&
3788 (error
== 0 || error
== ENODEV
|| error
== EOVERFLOW
))
3789 expected_error
= error
;
3792 * If someone grew the LUN, the replacement may be too small.
3794 if (error
== EOVERFLOW
|| error
== EBUSY
)
3795 expected_error
= error
;
3797 if (error
== ZFS_ERR_CHECKPOINT_EXISTS
||
3798 error
== ZFS_ERR_DISCARDING_CHECKPOINT
||
3799 error
== ZFS_ERR_RESILVER_IN_PROGRESS
||
3800 error
== ZFS_ERR_REBUILD_IN_PROGRESS
)
3801 expected_error
= error
;
3803 if (error
!= expected_error
&& expected_error
!= EBUSY
) {
3804 fatal(B_FALSE
, "attach (%s %"PRIu64
", %s %"PRIu64
", %d) "
3805 "returned %d, expected %d",
3806 oldpath
, oldsize
, newpath
,
3807 newsize
, replacing
, error
, expected_error
);
3810 mutex_exit(&ztest_vdev_lock
);
3812 umem_free(oldpath
, MAXPATHLEN
);
3813 umem_free(newpath
, MAXPATHLEN
);
3817 ztest_device_removal(ztest_ds_t
*zd
, uint64_t id
)
3819 (void) zd
, (void) id
;
3820 spa_t
*spa
= ztest_spa
;
3825 mutex_enter(&ztest_vdev_lock
);
3827 if (ztest_device_removal_active
) {
3828 mutex_exit(&ztest_vdev_lock
);
3833 * Remove a random top-level vdev and wait for removal to finish.
3835 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3836 vd
= vdev_lookup_top(spa
, ztest_random_vdev_top(spa
, B_FALSE
));
3837 guid
= vd
->vdev_guid
;
3838 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3840 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3842 ztest_device_removal_active
= B_TRUE
;
3843 mutex_exit(&ztest_vdev_lock
);
3846 * spa->spa_vdev_removal is created in a sync task that
3847 * is initiated via dsl_sync_task_nowait(). Since the
3848 * task may not run before spa_vdev_remove() returns, we
3849 * must wait at least 1 txg to ensure that the removal
3850 * struct has been created.
3852 txg_wait_synced(spa_get_dsl(spa
), 0);
3854 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
3855 txg_wait_synced(spa_get_dsl(spa
), 0);
3857 mutex_exit(&ztest_vdev_lock
);
3862 * The pool needs to be scrubbed after completing device removal.
3863 * Failure to do so may result in checksum errors due to the
3864 * strategy employed by ztest_fault_inject() when selecting which
3865 * offset are redundant and can be damaged.
3867 error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
3869 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
3870 txg_wait_synced(spa_get_dsl(spa
), 0);
3873 mutex_enter(&ztest_vdev_lock
);
3874 ztest_device_removal_active
= B_FALSE
;
3875 mutex_exit(&ztest_vdev_lock
);
3879 * Callback function which expands the physical size of the vdev.
3882 grow_vdev(vdev_t
*vd
, void *arg
)
3884 spa_t
*spa __maybe_unused
= vd
->vdev_spa
;
3885 size_t *newsize
= arg
;
3889 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
3890 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
3892 if ((fd
= open(vd
->vdev_path
, O_RDWR
)) == -1)
3895 fsize
= lseek(fd
, 0, SEEK_END
);
3896 VERIFY0(ftruncate(fd
, *newsize
));
3898 if (ztest_opts
.zo_verbose
>= 6) {
3899 (void) printf("%s grew from %lu to %lu bytes\n",
3900 vd
->vdev_path
, (ulong_t
)fsize
, (ulong_t
)*newsize
);
3907 * Callback function which expands a given vdev by calling vdev_online().
3910 online_vdev(vdev_t
*vd
, void *arg
)
3913 spa_t
*spa
= vd
->vdev_spa
;
3914 vdev_t
*tvd
= vd
->vdev_top
;
3915 uint64_t guid
= vd
->vdev_guid
;
3916 uint64_t generation
= spa
->spa_config_generation
+ 1;
3917 vdev_state_t newstate
= VDEV_STATE_UNKNOWN
;
3920 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
3921 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
3923 /* Calling vdev_online will initialize the new metaslabs */
3924 spa_config_exit(spa
, SCL_STATE
, spa
);
3925 error
= vdev_online(spa
, guid
, ZFS_ONLINE_EXPAND
, &newstate
);
3926 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
3929 * If vdev_online returned an error or the underlying vdev_open
3930 * failed then we abort the expand. The only way to know that
3931 * vdev_open fails is by checking the returned newstate.
3933 if (error
|| newstate
!= VDEV_STATE_HEALTHY
) {
3934 if (ztest_opts
.zo_verbose
>= 5) {
3935 (void) printf("Unable to expand vdev, state %u, "
3936 "error %d\n", newstate
, error
);
3940 ASSERT3U(newstate
, ==, VDEV_STATE_HEALTHY
);
3943 * Since we dropped the lock we need to ensure that we're
3944 * still talking to the original vdev. It's possible this
3945 * vdev may have been detached/replaced while we were
3946 * trying to online it.
3948 if (generation
!= spa
->spa_config_generation
) {
3949 if (ztest_opts
.zo_verbose
>= 5) {
3950 (void) printf("vdev configuration has changed, "
3951 "guid %"PRIu64
", state %"PRIu64
", "
3952 "expected gen %"PRIu64
", got gen %"PRIu64
"\n",
3956 spa
->spa_config_generation
);
3964 * Traverse the vdev tree calling the supplied function.
3965 * We continue to walk the tree until we either have walked all
3966 * children or we receive a non-NULL return from the callback.
3967 * If a NULL callback is passed, then we just return back the first
3968 * leaf vdev we encounter.
3971 vdev_walk_tree(vdev_t
*vd
, vdev_t
*(*func
)(vdev_t
*, void *), void *arg
)
3975 if (vd
->vdev_ops
->vdev_op_leaf
) {
3979 return (func(vd
, arg
));
3982 for (c
= 0; c
< vd
->vdev_children
; c
++) {
3983 vdev_t
*cvd
= vd
->vdev_child
[c
];
3984 if ((cvd
= vdev_walk_tree(cvd
, func
, arg
)) != NULL
)
3991 * Verify that dynamic LUN growth works as expected.
3994 ztest_vdev_LUN_growth(ztest_ds_t
*zd
, uint64_t id
)
3996 (void) zd
, (void) id
;
3997 spa_t
*spa
= ztest_spa
;
3999 metaslab_class_t
*mc
;
4000 metaslab_group_t
*mg
;
4001 size_t psize
, newsize
;
4003 uint64_t old_class_space
, new_class_space
, old_ms_count
, new_ms_count
;
4005 mutex_enter(&ztest_checkpoint_lock
);
4006 mutex_enter(&ztest_vdev_lock
);
4007 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4010 * If there is a vdev removal in progress, it could complete while
4011 * we are running, in which case we would not be able to verify
4012 * that the metaslab_class space increased (because it decreases
4013 * when the device removal completes).
4015 if (ztest_device_removal_active
) {
4016 spa_config_exit(spa
, SCL_STATE
, spa
);
4017 mutex_exit(&ztest_vdev_lock
);
4018 mutex_exit(&ztest_checkpoint_lock
);
4022 top
= ztest_random_vdev_top(spa
, B_TRUE
);
4024 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4027 old_ms_count
= tvd
->vdev_ms_count
;
4028 old_class_space
= metaslab_class_get_space(mc
);
4031 * Determine the size of the first leaf vdev associated with
4032 * our top-level device.
4034 vd
= vdev_walk_tree(tvd
, NULL
, NULL
);
4035 ASSERT3P(vd
, !=, NULL
);
4036 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4038 psize
= vd
->vdev_psize
;
4041 * We only try to expand the vdev if it's healthy, less than 4x its
4042 * original size, and it has a valid psize.
4044 if (tvd
->vdev_state
!= VDEV_STATE_HEALTHY
||
4045 psize
== 0 || psize
>= 4 * ztest_opts
.zo_vdev_size
) {
4046 spa_config_exit(spa
, SCL_STATE
, spa
);
4047 mutex_exit(&ztest_vdev_lock
);
4048 mutex_exit(&ztest_checkpoint_lock
);
4051 ASSERT3U(psize
, >, 0);
4052 newsize
= psize
+ MAX(psize
/ 8, SPA_MAXBLOCKSIZE
);
4053 ASSERT3U(newsize
, >, psize
);
4055 if (ztest_opts
.zo_verbose
>= 6) {
4056 (void) printf("Expanding LUN %s from %lu to %lu\n",
4057 vd
->vdev_path
, (ulong_t
)psize
, (ulong_t
)newsize
);
4061 * Growing the vdev is a two step process:
4062 * 1). expand the physical size (i.e. relabel)
4063 * 2). online the vdev to create the new metaslabs
4065 if (vdev_walk_tree(tvd
, grow_vdev
, &newsize
) != NULL
||
4066 vdev_walk_tree(tvd
, online_vdev
, NULL
) != NULL
||
4067 tvd
->vdev_state
!= VDEV_STATE_HEALTHY
) {
4068 if (ztest_opts
.zo_verbose
>= 5) {
4069 (void) printf("Could not expand LUN because "
4070 "the vdev configuration changed.\n");
4072 spa_config_exit(spa
, SCL_STATE
, spa
);
4073 mutex_exit(&ztest_vdev_lock
);
4074 mutex_exit(&ztest_checkpoint_lock
);
4078 spa_config_exit(spa
, SCL_STATE
, spa
);
4081 * Expanding the LUN will update the config asynchronously,
4082 * thus we must wait for the async thread to complete any
4083 * pending tasks before proceeding.
4087 mutex_enter(&spa
->spa_async_lock
);
4088 done
= (spa
->spa_async_thread
== NULL
&& !spa
->spa_async_tasks
);
4089 mutex_exit(&spa
->spa_async_lock
);
4092 txg_wait_synced(spa_get_dsl(spa
), 0);
4093 (void) poll(NULL
, 0, 100);
4096 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4098 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4099 new_ms_count
= tvd
->vdev_ms_count
;
4100 new_class_space
= metaslab_class_get_space(mc
);
4102 if (tvd
->vdev_mg
!= mg
|| mg
->mg_class
!= mc
) {
4103 if (ztest_opts
.zo_verbose
>= 5) {
4104 (void) printf("Could not verify LUN expansion due to "
4105 "intervening vdev offline or remove.\n");
4107 spa_config_exit(spa
, SCL_STATE
, spa
);
4108 mutex_exit(&ztest_vdev_lock
);
4109 mutex_exit(&ztest_checkpoint_lock
);
4114 * Make sure we were able to grow the vdev.
4116 if (new_ms_count
<= old_ms_count
) {
4118 "LUN expansion failed: ms_count %"PRIu64
" < %"PRIu64
"\n",
4119 old_ms_count
, new_ms_count
);
4123 * Make sure we were able to grow the pool.
4125 if (new_class_space
<= old_class_space
) {
4127 "LUN expansion failed: class_space %"PRIu64
" < %"PRIu64
"\n",
4128 old_class_space
, new_class_space
);
4131 if (ztest_opts
.zo_verbose
>= 5) {
4132 char oldnumbuf
[NN_NUMBUF_SZ
], newnumbuf
[NN_NUMBUF_SZ
];
4134 nicenum(old_class_space
, oldnumbuf
, sizeof (oldnumbuf
));
4135 nicenum(new_class_space
, newnumbuf
, sizeof (newnumbuf
));
4136 (void) printf("%s grew from %s to %s\n",
4137 spa
->spa_name
, oldnumbuf
, newnumbuf
);
4140 spa_config_exit(spa
, SCL_STATE
, spa
);
4141 mutex_exit(&ztest_vdev_lock
);
4142 mutex_exit(&ztest_checkpoint_lock
);
4146 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4149 ztest_objset_create_cb(objset_t
*os
, void *arg
, cred_t
*cr
, dmu_tx_t
*tx
)
4151 (void) arg
, (void) cr
;
4154 * Create the objects common to all ztest datasets.
4156 VERIFY0(zap_create_claim(os
, ZTEST_DIROBJ
,
4157 DMU_OT_ZAP_OTHER
, DMU_OT_NONE
, 0, tx
));
4161 ztest_dataset_create(char *dsname
)
4165 dsl_crypto_params_t
*dcp
= NULL
;
4168 * 50% of the time, we create encrypted datasets
4169 * using a random cipher suite and a hard-coded
4172 rand
= ztest_random(2);
4174 nvlist_t
*crypto_args
= fnvlist_alloc();
4175 nvlist_t
*props
= fnvlist_alloc();
4177 /* slight bias towards the default cipher suite */
4178 rand
= ztest_random(ZIO_CRYPT_FUNCTIONS
);
4179 if (rand
< ZIO_CRYPT_AES_128_CCM
)
4180 rand
= ZIO_CRYPT_ON
;
4182 fnvlist_add_uint64(props
,
4183 zfs_prop_to_name(ZFS_PROP_ENCRYPTION
), rand
);
4184 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
4185 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
4188 * These parameters aren't really used by the kernel. They
4189 * are simply stored so that userspace knows how to load
4192 fnvlist_add_uint64(props
,
4193 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), ZFS_KEYFORMAT_RAW
);
4194 fnvlist_add_string(props
,
4195 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), "prompt");
4196 fnvlist_add_uint64(props
,
4197 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 0ULL);
4198 fnvlist_add_uint64(props
,
4199 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 0ULL);
4201 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, props
,
4202 crypto_args
, &dcp
));
4205 * Cycle through all available encryption implementations
4206 * to verify interoperability.
4208 VERIFY0(gcm_impl_set("cycle"));
4209 VERIFY0(aes_impl_set("cycle"));
4211 fnvlist_free(crypto_args
);
4212 fnvlist_free(props
);
4215 err
= dmu_objset_create(dsname
, DMU_OST_OTHER
, 0, dcp
,
4216 ztest_objset_create_cb
, NULL
);
4217 dsl_crypto_params_free(dcp
, !!err
);
4219 rand
= ztest_random(100);
4220 if (err
|| rand
< 80)
4223 if (ztest_opts
.zo_verbose
>= 5)
4224 (void) printf("Setting dataset %s to sync always\n", dsname
);
4225 return (ztest_dsl_prop_set_uint64(dsname
, ZFS_PROP_SYNC
,
4226 ZFS_SYNC_ALWAYS
, B_FALSE
));
4230 ztest_objset_destroy_cb(const char *name
, void *arg
)
4234 dmu_object_info_t doi
;
4238 * Verify that the dataset contains a directory object.
4240 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
,
4241 B_TRUE
, FTAG
, &os
));
4242 error
= dmu_object_info(os
, ZTEST_DIROBJ
, &doi
);
4243 if (error
!= ENOENT
) {
4244 /* We could have crashed in the middle of destroying it */
4246 ASSERT3U(doi
.doi_type
, ==, DMU_OT_ZAP_OTHER
);
4247 ASSERT3S(doi
.doi_physical_blocks_512
, >=, 0);
4249 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4252 * Destroy the dataset.
4254 if (strchr(name
, '@') != NULL
) {
4255 error
= dsl_destroy_snapshot(name
, B_TRUE
);
4256 if (error
!= ECHRNG
) {
4258 * The program was executed, but encountered a runtime
4259 * error, such as insufficient slop, or a hold on the
4265 error
= dsl_destroy_head(name
);
4266 if (error
== ENOSPC
) {
4267 /* There could be checkpoint or insufficient slop */
4268 ztest_record_enospc(FTAG
);
4269 } else if (error
!= EBUSY
) {
4270 /* There could be a hold on this dataset */
4278 ztest_snapshot_create(char *osname
, uint64_t id
)
4280 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4283 (void) snprintf(snapname
, sizeof (snapname
), "%"PRIu64
"", id
);
4285 error
= dmu_objset_snapshot_one(osname
, snapname
);
4286 if (error
== ENOSPC
) {
4287 ztest_record_enospc(FTAG
);
4290 if (error
!= 0 && error
!= EEXIST
) {
4291 fatal(B_FALSE
, "ztest_snapshot_create(%s@%s) = %d", osname
,
4298 ztest_snapshot_destroy(char *osname
, uint64_t id
)
4300 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4303 (void) snprintf(snapname
, sizeof (snapname
), "%s@%"PRIu64
"",
4306 error
= dsl_destroy_snapshot(snapname
, B_FALSE
);
4307 if (error
!= 0 && error
!= ENOENT
)
4308 fatal(B_FALSE
, "ztest_snapshot_destroy(%s) = %d",
4314 ztest_dmu_objset_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4321 char name
[ZFS_MAX_DATASET_NAME_LEN
];
4325 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
4327 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4329 (void) snprintf(name
, sizeof (name
), "%s/temp_%"PRIu64
"",
4330 ztest_opts
.zo_pool
, id
);
4333 * If this dataset exists from a previous run, process its replay log
4334 * half of the time. If we don't replay it, then dsl_destroy_head()
4335 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4337 if (ztest_random(2) == 0 &&
4338 ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
4339 B_TRUE
, FTAG
, &os
) == 0) {
4340 ztest_zd_init(zdtmp
, NULL
, os
);
4341 zil_replay(os
, zdtmp
, ztest_replay_vector
);
4342 ztest_zd_fini(zdtmp
);
4343 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4347 * There may be an old instance of the dataset we're about to
4348 * create lying around from a previous run. If so, destroy it
4349 * and all of its snapshots.
4351 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
4352 DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
4355 * Verify that the destroyed dataset is no longer in the namespace.
4357 VERIFY3U(ENOENT
, ==, ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
,
4358 B_TRUE
, FTAG
, &os
));
4361 * Verify that we can create a new dataset.
4363 error
= ztest_dataset_create(name
);
4365 if (error
== ENOSPC
) {
4366 ztest_record_enospc(FTAG
);
4369 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", name
, error
);
4372 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, B_TRUE
,
4375 ztest_zd_init(zdtmp
, NULL
, os
);
4378 * Open the intent log for it.
4380 zilog
= zil_open(os
, ztest_get_data
);
4383 * Put some objects in there, do a little I/O to them,
4384 * and randomly take a couple of snapshots along the way.
4386 iters
= ztest_random(5);
4387 for (i
= 0; i
< iters
; i
++) {
4388 ztest_dmu_object_alloc_free(zdtmp
, id
);
4389 if (ztest_random(iters
) == 0)
4390 (void) ztest_snapshot_create(name
, i
);
4394 * Verify that we cannot create an existing dataset.
4396 VERIFY3U(EEXIST
, ==,
4397 dmu_objset_create(name
, DMU_OST_OTHER
, 0, NULL
, NULL
, NULL
));
4400 * Verify that we can hold an objset that is also owned.
4402 VERIFY0(dmu_objset_hold(name
, FTAG
, &os2
));
4403 dmu_objset_rele(os2
, FTAG
);
4406 * Verify that we cannot own an objset that is already owned.
4408 VERIFY3U(EBUSY
, ==, ztest_dmu_objset_own(name
, DMU_OST_OTHER
,
4409 B_FALSE
, B_TRUE
, FTAG
, &os2
));
4412 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4413 ztest_zd_fini(zdtmp
);
4415 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4417 umem_free(zdtmp
, sizeof (ztest_ds_t
));
4421 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4424 ztest_dmu_snapshot_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4426 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4427 (void) ztest_snapshot_destroy(zd
->zd_name
, id
);
4428 (void) ztest_snapshot_create(zd
->zd_name
, id
);
4429 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4433 * Cleanup non-standard snapshots and clones.
4436 ztest_dsl_dataset_cleanup(char *osname
, uint64_t id
)
4445 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4446 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4447 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4448 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4449 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4451 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4453 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4455 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4457 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4459 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4462 error
= dsl_destroy_head(clone2name
);
4463 if (error
&& error
!= ENOENT
)
4464 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone2name
, error
);
4465 error
= dsl_destroy_snapshot(snap3name
, B_FALSE
);
4466 if (error
&& error
!= ENOENT
)
4467 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4469 error
= dsl_destroy_snapshot(snap2name
, B_FALSE
);
4470 if (error
&& error
!= ENOENT
)
4471 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4473 error
= dsl_destroy_head(clone1name
);
4474 if (error
&& error
!= ENOENT
)
4475 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone1name
, error
);
4476 error
= dsl_destroy_snapshot(snap1name
, B_FALSE
);
4477 if (error
&& error
!= ENOENT
)
4478 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4481 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4482 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4483 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4484 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4485 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4489 * Verify dsl_dataset_promote handles EBUSY
4492 ztest_dsl_dataset_promote_busy(ztest_ds_t
*zd
, uint64_t id
)
4500 char *osname
= zd
->zd_name
;
4503 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4504 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4505 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4506 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4507 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4509 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4511 ztest_dsl_dataset_cleanup(osname
, id
);
4513 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4515 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4517 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4519 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4521 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4524 error
= dmu_objset_snapshot_one(osname
, strchr(snap1name
, '@') + 1);
4525 if (error
&& error
!= EEXIST
) {
4526 if (error
== ENOSPC
) {
4527 ztest_record_enospc(FTAG
);
4530 fatal(B_FALSE
, "dmu_take_snapshot(%s) = %d", snap1name
, error
);
4533 error
= dmu_objset_clone(clone1name
, snap1name
);
4535 if (error
== ENOSPC
) {
4536 ztest_record_enospc(FTAG
);
4539 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone1name
, error
);
4542 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap2name
, '@') + 1);
4543 if (error
&& error
!= EEXIST
) {
4544 if (error
== ENOSPC
) {
4545 ztest_record_enospc(FTAG
);
4548 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap2name
, error
);
4551 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap3name
, '@') + 1);
4552 if (error
&& error
!= EEXIST
) {
4553 if (error
== ENOSPC
) {
4554 ztest_record_enospc(FTAG
);
4557 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap3name
, error
);
4560 error
= dmu_objset_clone(clone2name
, snap3name
);
4562 if (error
== ENOSPC
) {
4563 ztest_record_enospc(FTAG
);
4566 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone2name
, error
);
4569 error
= ztest_dmu_objset_own(snap2name
, DMU_OST_ANY
, B_TRUE
, B_TRUE
,
4572 fatal(B_FALSE
, "dmu_objset_own(%s) = %d", snap2name
, error
);
4573 error
= dsl_dataset_promote(clone2name
, NULL
);
4574 if (error
== ENOSPC
) {
4575 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4576 ztest_record_enospc(FTAG
);
4580 fatal(B_FALSE
, "dsl_dataset_promote(%s), %d, not EBUSY",
4582 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4585 ztest_dsl_dataset_cleanup(osname
, id
);
4587 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4589 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4590 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4591 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4592 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4593 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4596 #undef OD_ARRAY_SIZE
4597 #define OD_ARRAY_SIZE 4
4600 * Verify that dmu_object_{alloc,free} work as expected.
4603 ztest_dmu_object_alloc_free(ztest_ds_t
*zd
, uint64_t id
)
4610 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4611 od
= umem_alloc(size
, UMEM_NOFAIL
);
4612 batchsize
= OD_ARRAY_SIZE
;
4614 for (b
= 0; b
< batchsize
; b
++)
4615 ztest_od_init(od
+ b
, id
, FTAG
, b
, DMU_OT_UINT64_OTHER
,
4619 * Destroy the previous batch of objects, create a new batch,
4620 * and do some I/O on the new objects.
4622 if (ztest_object_init(zd
, od
, size
, B_TRUE
) != 0)
4625 while (ztest_random(4 * batchsize
) != 0)
4626 ztest_io(zd
, od
[ztest_random(batchsize
)].od_object
,
4627 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
4629 umem_free(od
, size
);
4633 * Rewind the global allocator to verify object allocation backfilling.
4636 ztest_dmu_object_next_chunk(ztest_ds_t
*zd
, uint64_t id
)
4639 objset_t
*os
= zd
->zd_os
;
4640 int dnodes_per_chunk
= 1 << dmu_object_alloc_chunk_shift
;
4644 * Rewind the global allocator randomly back to a lower object number
4645 * to force backfilling and reclamation of recently freed dnodes.
4647 mutex_enter(&os
->os_obj_lock
);
4648 object
= ztest_random(os
->os_obj_next_chunk
);
4649 os
->os_obj_next_chunk
= P2ALIGN(object
, dnodes_per_chunk
);
4650 mutex_exit(&os
->os_obj_lock
);
4653 #undef OD_ARRAY_SIZE
4654 #define OD_ARRAY_SIZE 2
4657 * Verify that dmu_{read,write} work as expected.
4660 ztest_dmu_read_write(ztest_ds_t
*zd
, uint64_t id
)
4665 objset_t
*os
= zd
->zd_os
;
4666 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4667 od
= umem_alloc(size
, UMEM_NOFAIL
);
4670 uint64_t i
, n
, s
, txg
;
4671 bufwad_t
*packbuf
, *bigbuf
, *pack
, *bigH
, *bigT
;
4672 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
4673 uint64_t chunksize
= (1000 + ztest_random(1000)) * sizeof (uint64_t);
4674 uint64_t regions
= 997;
4675 uint64_t stride
= 123456789ULL;
4676 uint64_t width
= 40;
4677 int free_percent
= 5;
4680 * This test uses two objects, packobj and bigobj, that are always
4681 * updated together (i.e. in the same tx) so that their contents are
4682 * in sync and can be compared. Their contents relate to each other
4683 * in a simple way: packobj is a dense array of 'bufwad' structures,
4684 * while bigobj is a sparse array of the same bufwads. Specifically,
4685 * for any index n, there are three bufwads that should be identical:
4687 * packobj, at offset n * sizeof (bufwad_t)
4688 * bigobj, at the head of the nth chunk
4689 * bigobj, at the tail of the nth chunk
4691 * The chunk size is arbitrary. It doesn't have to be a power of two,
4692 * and it doesn't have any relation to the object blocksize.
4693 * The only requirement is that it can hold at least two bufwads.
4695 * Normally, we write the bufwad to each of these locations.
4696 * However, free_percent of the time we instead write zeroes to
4697 * packobj and perform a dmu_free_range() on bigobj. By comparing
4698 * bigobj to packobj, we can verify that the DMU is correctly
4699 * tracking which parts of an object are allocated and free,
4700 * and that the contents of the allocated blocks are correct.
4704 * Read the directory info. If it's the first time, set things up.
4706 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, chunksize
);
4707 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
4710 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
4711 umem_free(od
, size
);
4715 bigobj
= od
[0].od_object
;
4716 packobj
= od
[1].od_object
;
4717 chunksize
= od
[0].od_gen
;
4718 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
4721 * Prefetch a random chunk of the big object.
4722 * Our aim here is to get some async reads in flight
4723 * for blocks that we may free below; the DMU should
4724 * handle this race correctly.
4726 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
4727 s
= 1 + ztest_random(2 * width
- 1);
4728 dmu_prefetch(os
, bigobj
, 0, n
* chunksize
, s
* chunksize
,
4729 ZIO_PRIORITY_SYNC_READ
);
4732 * Pick a random index and compute the offsets into packobj and bigobj.
4734 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
4735 s
= 1 + ztest_random(width
- 1);
4737 packoff
= n
* sizeof (bufwad_t
);
4738 packsize
= s
* sizeof (bufwad_t
);
4740 bigoff
= n
* chunksize
;
4741 bigsize
= s
* chunksize
;
4743 packbuf
= umem_alloc(packsize
, UMEM_NOFAIL
);
4744 bigbuf
= umem_alloc(bigsize
, UMEM_NOFAIL
);
4747 * free_percent of the time, free a range of bigobj rather than
4750 freeit
= (ztest_random(100) < free_percent
);
4753 * Read the current contents of our objects.
4755 error
= dmu_read(os
, packobj
, packoff
, packsize
, packbuf
,
4758 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
, bigbuf
,
4763 * Get a tx for the mods to both packobj and bigobj.
4765 tx
= dmu_tx_create(os
);
4767 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
4770 dmu_tx_hold_free(tx
, bigobj
, bigoff
, bigsize
);
4772 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
4774 /* This accounts for setting the checksum/compression. */
4775 dmu_tx_hold_bonus(tx
, bigobj
);
4777 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4779 umem_free(packbuf
, packsize
);
4780 umem_free(bigbuf
, bigsize
);
4781 umem_free(od
, size
);
4785 enum zio_checksum cksum
;
4787 cksum
= (enum zio_checksum
)
4788 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM
);
4789 } while (cksum
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
4790 dmu_object_set_checksum(os
, bigobj
, cksum
, tx
);
4792 enum zio_compress comp
;
4794 comp
= (enum zio_compress
)
4795 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
);
4796 } while (comp
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
);
4797 dmu_object_set_compress(os
, bigobj
, comp
, tx
);
4800 * For each index from n to n + s, verify that the existing bufwad
4801 * in packobj matches the bufwads at the head and tail of the
4802 * corresponding chunk in bigobj. Then update all three bufwads
4803 * with the new values we want to write out.
4805 for (i
= 0; i
< s
; i
++) {
4807 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
4809 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
4811 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
4813 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
4814 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
4816 if (pack
->bw_txg
> txg
)
4818 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
4821 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
4822 fatal(B_FALSE
, "wrong index: "
4823 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
4824 pack
->bw_index
, n
, i
);
4826 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
4827 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
4830 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
4831 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
4835 memset(pack
, 0, sizeof (bufwad_t
));
4837 pack
->bw_index
= n
+ i
;
4839 pack
->bw_data
= 1 + ztest_random(-2ULL);
4846 * We've verified all the old bufwads, and made new ones.
4847 * Now write them out.
4849 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
4852 if (ztest_opts
.zo_verbose
>= 7) {
4853 (void) printf("freeing offset %"PRIx64
" size %"PRIx64
""
4855 bigoff
, bigsize
, txg
);
4857 VERIFY0(dmu_free_range(os
, bigobj
, bigoff
, bigsize
, tx
));
4859 if (ztest_opts
.zo_verbose
>= 7) {
4860 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
4862 bigoff
, bigsize
, txg
);
4864 dmu_write(os
, bigobj
, bigoff
, bigsize
, bigbuf
, tx
);
4870 * Sanity check the stuff we just wrote.
4873 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
4874 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
4876 VERIFY0(dmu_read(os
, packobj
, packoff
,
4877 packsize
, packcheck
, DMU_READ_PREFETCH
));
4878 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
4879 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
4881 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
4882 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
4884 umem_free(packcheck
, packsize
);
4885 umem_free(bigcheck
, bigsize
);
4888 umem_free(packbuf
, packsize
);
4889 umem_free(bigbuf
, bigsize
);
4890 umem_free(od
, size
);
4894 compare_and_update_pbbufs(uint64_t s
, bufwad_t
*packbuf
, bufwad_t
*bigbuf
,
4895 uint64_t bigsize
, uint64_t n
, uint64_t chunksize
, uint64_t txg
)
4903 * For each index from n to n + s, verify that the existing bufwad
4904 * in packobj matches the bufwads at the head and tail of the
4905 * corresponding chunk in bigobj. Then update all three bufwads
4906 * with the new values we want to write out.
4908 for (i
= 0; i
< s
; i
++) {
4910 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
4912 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
4914 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
4916 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
4917 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
4919 if (pack
->bw_txg
> txg
)
4921 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
4924 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
4925 fatal(B_FALSE
, "wrong index: "
4926 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
4927 pack
->bw_index
, n
, i
);
4929 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
4930 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
4933 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
4934 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
4937 pack
->bw_index
= n
+ i
;
4939 pack
->bw_data
= 1 + ztest_random(-2ULL);
4946 #undef OD_ARRAY_SIZE
4947 #define OD_ARRAY_SIZE 2
4950 ztest_dmu_read_write_zcopy(ztest_ds_t
*zd
, uint64_t id
)
4952 objset_t
*os
= zd
->zd_os
;
4959 bufwad_t
*packbuf
, *bigbuf
;
4960 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
4961 uint64_t blocksize
= ztest_random_blocksize();
4962 uint64_t chunksize
= blocksize
;
4963 uint64_t regions
= 997;
4964 uint64_t stride
= 123456789ULL;
4966 dmu_buf_t
*bonus_db
;
4967 arc_buf_t
**bigbuf_arcbufs
;
4968 dmu_object_info_t doi
;
4970 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4971 od
= umem_alloc(size
, UMEM_NOFAIL
);
4974 * This test uses two objects, packobj and bigobj, that are always
4975 * updated together (i.e. in the same tx) so that their contents are
4976 * in sync and can be compared. Their contents relate to each other
4977 * in a simple way: packobj is a dense array of 'bufwad' structures,
4978 * while bigobj is a sparse array of the same bufwads. Specifically,
4979 * for any index n, there are three bufwads that should be identical:
4981 * packobj, at offset n * sizeof (bufwad_t)
4982 * bigobj, at the head of the nth chunk
4983 * bigobj, at the tail of the nth chunk
4985 * The chunk size is set equal to bigobj block size so that
4986 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
4990 * Read the directory info. If it's the first time, set things up.
4992 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
4993 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
4997 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
4998 umem_free(od
, size
);
5002 bigobj
= od
[0].od_object
;
5003 packobj
= od
[1].od_object
;
5004 blocksize
= od
[0].od_blocksize
;
5005 chunksize
= blocksize
;
5006 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
5008 VERIFY0(dmu_object_info(os
, bigobj
, &doi
));
5009 VERIFY(ISP2(doi
.doi_data_block_size
));
5010 VERIFY3U(chunksize
, ==, doi
.doi_data_block_size
);
5011 VERIFY3U(chunksize
, >=, 2 * sizeof (bufwad_t
));
5014 * Pick a random index and compute the offsets into packobj and bigobj.
5016 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5017 s
= 1 + ztest_random(width
- 1);
5019 packoff
= n
* sizeof (bufwad_t
);
5020 packsize
= s
* sizeof (bufwad_t
);
5022 bigoff
= n
* chunksize
;
5023 bigsize
= s
* chunksize
;
5025 packbuf
= umem_zalloc(packsize
, UMEM_NOFAIL
);
5026 bigbuf
= umem_zalloc(bigsize
, UMEM_NOFAIL
);
5028 VERIFY0(dmu_bonus_hold(os
, bigobj
, FTAG
, &bonus_db
));
5030 bigbuf_arcbufs
= umem_zalloc(2 * s
* sizeof (arc_buf_t
*), UMEM_NOFAIL
);
5033 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5034 * Iteration 1 test zcopy to already referenced dbufs.
5035 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5036 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5037 * Iteration 4 test zcopy when dbuf is no longer dirty.
5038 * Iteration 5 test zcopy when it can't be done.
5039 * Iteration 6 one more zcopy write.
5041 for (i
= 0; i
< 7; i
++) {
5046 * In iteration 5 (i == 5) use arcbufs
5047 * that don't match bigobj blksz to test
5048 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5049 * assign an arcbuf to a dbuf.
5051 for (j
= 0; j
< s
; j
++) {
5052 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5054 dmu_request_arcbuf(bonus_db
, chunksize
);
5056 bigbuf_arcbufs
[2 * j
] =
5057 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5058 bigbuf_arcbufs
[2 * j
+ 1] =
5059 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5064 * Get a tx for the mods to both packobj and bigobj.
5066 tx
= dmu_tx_create(os
);
5068 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
5069 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
5071 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5073 umem_free(packbuf
, packsize
);
5074 umem_free(bigbuf
, bigsize
);
5075 for (j
= 0; j
< s
; j
++) {
5077 chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5078 dmu_return_arcbuf(bigbuf_arcbufs
[j
]);
5081 bigbuf_arcbufs
[2 * j
]);
5083 bigbuf_arcbufs
[2 * j
+ 1]);
5086 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5087 umem_free(od
, size
);
5088 dmu_buf_rele(bonus_db
, FTAG
);
5093 * 50% of the time don't read objects in the 1st iteration to
5094 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5095 * no existing dbufs for the specified offsets.
5097 if (i
!= 0 || ztest_random(2) != 0) {
5098 error
= dmu_read(os
, packobj
, packoff
,
5099 packsize
, packbuf
, DMU_READ_PREFETCH
);
5101 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
,
5102 bigbuf
, DMU_READ_PREFETCH
);
5105 compare_and_update_pbbufs(s
, packbuf
, bigbuf
, bigsize
,
5109 * We've verified all the old bufwads, and made new ones.
5110 * Now write them out.
5112 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
5113 if (ztest_opts
.zo_verbose
>= 7) {
5114 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
5116 bigoff
, bigsize
, txg
);
5118 for (off
= bigoff
, j
= 0; j
< s
; j
++, off
+= chunksize
) {
5120 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5121 memcpy(bigbuf_arcbufs
[j
]->b_data
,
5122 (caddr_t
)bigbuf
+ (off
- bigoff
),
5125 memcpy(bigbuf_arcbufs
[2 * j
]->b_data
,
5126 (caddr_t
)bigbuf
+ (off
- bigoff
),
5128 memcpy(bigbuf_arcbufs
[2 * j
+ 1]->b_data
,
5129 (caddr_t
)bigbuf
+ (off
- bigoff
) +
5135 VERIFY(dmu_buf_hold(os
, bigobj
, off
,
5136 FTAG
, &dbt
, DMU_READ_NO_PREFETCH
) == 0);
5138 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5139 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5140 off
, bigbuf_arcbufs
[j
], tx
));
5142 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5143 off
, bigbuf_arcbufs
[2 * j
], tx
));
5144 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5145 off
+ chunksize
/ 2,
5146 bigbuf_arcbufs
[2 * j
+ 1], tx
));
5149 dmu_buf_rele(dbt
, FTAG
);
5155 * Sanity check the stuff we just wrote.
5158 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
5159 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5161 VERIFY0(dmu_read(os
, packobj
, packoff
,
5162 packsize
, packcheck
, DMU_READ_PREFETCH
));
5163 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
5164 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
5166 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
5167 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
5169 umem_free(packcheck
, packsize
);
5170 umem_free(bigcheck
, bigsize
);
5173 txg_wait_open(dmu_objset_pool(os
), 0, B_TRUE
);
5174 } else if (i
== 3) {
5175 txg_wait_synced(dmu_objset_pool(os
), 0);
5179 dmu_buf_rele(bonus_db
, FTAG
);
5180 umem_free(packbuf
, packsize
);
5181 umem_free(bigbuf
, bigsize
);
5182 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5183 umem_free(od
, size
);
5187 ztest_dmu_write_parallel(ztest_ds_t
*zd
, uint64_t id
)
5192 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5193 uint64_t offset
= (1ULL << (ztest_random(20) + 43)) +
5194 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5197 * Have multiple threads write to large offsets in an object
5198 * to verify that parallel writes to an object -- even to the
5199 * same blocks within the object -- doesn't cause any trouble.
5201 ztest_od_init(od
, ID_PARALLEL
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
5203 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0)
5206 while (ztest_random(10) != 0)
5207 ztest_io(zd
, od
->od_object
, offset
);
5209 umem_free(od
, sizeof (ztest_od_t
));
5213 ztest_dmu_prealloc(ztest_ds_t
*zd
, uint64_t id
)
5216 uint64_t offset
= (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT
)) +
5217 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5218 uint64_t count
= ztest_random(20) + 1;
5219 uint64_t blocksize
= ztest_random_blocksize();
5222 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5224 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5226 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5227 !ztest_random(2)) != 0) {
5228 umem_free(od
, sizeof (ztest_od_t
));
5232 if (ztest_truncate(zd
, od
->od_object
, offset
, count
* blocksize
) != 0) {
5233 umem_free(od
, sizeof (ztest_od_t
));
5237 ztest_prealloc(zd
, od
->od_object
, offset
, count
* blocksize
);
5239 data
= umem_zalloc(blocksize
, UMEM_NOFAIL
);
5241 while (ztest_random(count
) != 0) {
5242 uint64_t randoff
= offset
+ (ztest_random(count
) * blocksize
);
5243 if (ztest_write(zd
, od
->od_object
, randoff
, blocksize
,
5246 while (ztest_random(4) != 0)
5247 ztest_io(zd
, od
->od_object
, randoff
);
5250 umem_free(data
, blocksize
);
5251 umem_free(od
, sizeof (ztest_od_t
));
5255 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5257 #define ZTEST_ZAP_MIN_INTS 1
5258 #define ZTEST_ZAP_MAX_INTS 4
5259 #define ZTEST_ZAP_MAX_PROPS 1000
5262 ztest_zap(ztest_ds_t
*zd
, uint64_t id
)
5264 objset_t
*os
= zd
->zd_os
;
5267 uint64_t txg
, last_txg
;
5268 uint64_t value
[ZTEST_ZAP_MAX_INTS
];
5269 uint64_t zl_ints
, zl_intsize
, prop
;
5272 char propname
[100], txgname
[100];
5274 char *hc
[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5276 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5277 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5279 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5280 !ztest_random(2)) != 0)
5283 object
= od
->od_object
;
5286 * Generate a known hash collision, and verify that
5287 * we can lookup and remove both entries.
5289 tx
= dmu_tx_create(os
);
5290 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5291 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5294 for (i
= 0; i
< 2; i
++) {
5296 VERIFY0(zap_add(os
, object
, hc
[i
], sizeof (uint64_t),
5299 for (i
= 0; i
< 2; i
++) {
5300 VERIFY3U(EEXIST
, ==, zap_add(os
, object
, hc
[i
],
5301 sizeof (uint64_t), 1, &value
[i
], tx
));
5303 zap_length(os
, object
, hc
[i
], &zl_intsize
, &zl_ints
));
5304 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5305 ASSERT3U(zl_ints
, ==, 1);
5307 for (i
= 0; i
< 2; i
++) {
5308 VERIFY0(zap_remove(os
, object
, hc
[i
], tx
));
5313 * Generate a bunch of random entries.
5315 ints
= MAX(ZTEST_ZAP_MIN_INTS
, object
% ZTEST_ZAP_MAX_INTS
);
5317 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5318 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5319 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5320 memset(value
, 0, sizeof (value
));
5324 * If these zap entries already exist, validate their contents.
5326 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5328 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5329 ASSERT3U(zl_ints
, ==, 1);
5331 VERIFY0(zap_lookup(os
, object
, txgname
, zl_intsize
,
5332 zl_ints
, &last_txg
));
5334 VERIFY0(zap_length(os
, object
, propname
, &zl_intsize
,
5337 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5338 ASSERT3U(zl_ints
, ==, ints
);
5340 VERIFY0(zap_lookup(os
, object
, propname
, zl_intsize
,
5343 for (i
= 0; i
< ints
; i
++) {
5344 ASSERT3U(value
[i
], ==, last_txg
+ object
+ i
);
5347 ASSERT3U(error
, ==, ENOENT
);
5351 * Atomically update two entries in our zap object.
5352 * The first is named txg_%llu, and contains the txg
5353 * in which the property was last updated. The second
5354 * is named prop_%llu, and the nth element of its value
5355 * should be txg + object + n.
5357 tx
= dmu_tx_create(os
);
5358 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5359 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5364 fatal(B_FALSE
, "zap future leak: old %"PRIu64
" new %"PRIu64
"",
5367 for (i
= 0; i
< ints
; i
++)
5368 value
[i
] = txg
+ object
+ i
;
5370 VERIFY0(zap_update(os
, object
, txgname
, sizeof (uint64_t),
5372 VERIFY0(zap_update(os
, object
, propname
, sizeof (uint64_t),
5378 * Remove a random pair of entries.
5380 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5381 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5382 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5384 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5386 if (error
== ENOENT
)
5391 tx
= dmu_tx_create(os
);
5392 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5393 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5396 VERIFY0(zap_remove(os
, object
, txgname
, tx
));
5397 VERIFY0(zap_remove(os
, object
, propname
, tx
));
5400 umem_free(od
, sizeof (ztest_od_t
));
5404 * Test case to test the upgrading of a microzap to fatzap.
5407 ztest_fzap(ztest_ds_t
*zd
, uint64_t id
)
5409 objset_t
*os
= zd
->zd_os
;
5411 uint64_t object
, txg
, value
;
5413 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5414 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5416 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5417 !ztest_random(2)) != 0)
5419 object
= od
->od_object
;
5422 * Add entries to this ZAP and make sure it spills over
5423 * and gets upgraded to a fatzap. Also, since we are adding
5424 * 2050 entries we should see ptrtbl growth and leaf-block split.
5426 for (value
= 0; value
< 2050; value
++) {
5427 char name
[ZFS_MAX_DATASET_NAME_LEN
];
5431 (void) snprintf(name
, sizeof (name
), "fzap-%"PRIu64
"-%"PRIu64
"",
5434 tx
= dmu_tx_create(os
);
5435 dmu_tx_hold_zap(tx
, object
, B_TRUE
, name
);
5436 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5439 error
= zap_add(os
, object
, name
, sizeof (uint64_t), 1,
5441 ASSERT(error
== 0 || error
== EEXIST
);
5445 umem_free(od
, sizeof (ztest_od_t
));
5449 ztest_zap_parallel(ztest_ds_t
*zd
, uint64_t id
)
5452 objset_t
*os
= zd
->zd_os
;
5454 uint64_t txg
, object
, count
, wsize
, wc
, zl_wsize
, zl_wc
;
5456 int i
, namelen
, error
;
5457 int micro
= ztest_random(2);
5458 char name
[20], string_value
[20];
5461 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5462 ztest_od_init(od
, ID_PARALLEL
, FTAG
, micro
, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5464 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
5465 umem_free(od
, sizeof (ztest_od_t
));
5469 object
= od
->od_object
;
5472 * Generate a random name of the form 'xxx.....' where each
5473 * x is a random printable character and the dots are dots.
5474 * There are 94 such characters, and the name length goes from
5475 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5477 namelen
= ztest_random(sizeof (name
) - 5) + 5 + 1;
5479 for (i
= 0; i
< 3; i
++)
5480 name
[i
] = '!' + ztest_random('~' - '!' + 1);
5481 for (; i
< namelen
- 1; i
++)
5485 if ((namelen
& 1) || micro
) {
5486 wsize
= sizeof (txg
);
5492 data
= string_value
;
5496 VERIFY0(zap_count(os
, object
, &count
));
5497 ASSERT3S(count
, !=, -1ULL);
5500 * Select an operation: length, lookup, add, update, remove.
5502 i
= ztest_random(5);
5505 tx
= dmu_tx_create(os
);
5506 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5507 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5509 umem_free(od
, sizeof (ztest_od_t
));
5512 memcpy(string_value
, name
, namelen
);
5516 memset(string_value
, 0, namelen
);
5522 error
= zap_length(os
, object
, name
, &zl_wsize
, &zl_wc
);
5524 ASSERT3U(wsize
, ==, zl_wsize
);
5525 ASSERT3U(wc
, ==, zl_wc
);
5527 ASSERT3U(error
, ==, ENOENT
);
5532 error
= zap_lookup(os
, object
, name
, wsize
, wc
, data
);
5534 if (data
== string_value
&&
5535 memcmp(name
, data
, namelen
) != 0)
5536 fatal(B_FALSE
, "name '%s' != val '%s' len %d",
5537 name
, (char *)data
, namelen
);
5539 ASSERT3U(error
, ==, ENOENT
);
5544 error
= zap_add(os
, object
, name
, wsize
, wc
, data
, tx
);
5545 ASSERT(error
== 0 || error
== EEXIST
);
5549 VERIFY0(zap_update(os
, object
, name
, wsize
, wc
, data
, tx
));
5553 error
= zap_remove(os
, object
, name
, tx
);
5554 ASSERT(error
== 0 || error
== ENOENT
);
5561 umem_free(od
, sizeof (ztest_od_t
));
5565 * Commit callback data.
5567 typedef struct ztest_cb_data
{
5568 list_node_t zcd_node
;
5570 int zcd_expected_err
;
5571 boolean_t zcd_added
;
5572 boolean_t zcd_called
;
5576 /* This is the actual commit callback function */
5578 ztest_commit_callback(void *arg
, int error
)
5580 ztest_cb_data_t
*data
= arg
;
5581 uint64_t synced_txg
;
5583 VERIFY3P(data
, !=, NULL
);
5584 VERIFY3S(data
->zcd_expected_err
, ==, error
);
5585 VERIFY(!data
->zcd_called
);
5587 synced_txg
= spa_last_synced_txg(data
->zcd_spa
);
5588 if (data
->zcd_txg
> synced_txg
)
5590 "commit callback of txg %"PRIu64
" called prematurely, "
5591 "last synced txg = %"PRIu64
"\n",
5592 data
->zcd_txg
, synced_txg
);
5594 data
->zcd_called
= B_TRUE
;
5596 if (error
== ECANCELED
) {
5597 ASSERT0(data
->zcd_txg
);
5598 ASSERT(!data
->zcd_added
);
5601 * The private callback data should be destroyed here, but
5602 * since we are going to check the zcd_called field after
5603 * dmu_tx_abort(), we will destroy it there.
5608 ASSERT(data
->zcd_added
);
5609 ASSERT3U(data
->zcd_txg
, !=, 0);
5611 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
5613 /* See if this cb was called more quickly */
5614 if ((synced_txg
- data
->zcd_txg
) < zc_min_txg_delay
)
5615 zc_min_txg_delay
= synced_txg
- data
->zcd_txg
;
5617 /* Remove our callback from the list */
5618 list_remove(&zcl
.zcl_callbacks
, data
);
5620 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
5622 umem_free(data
, sizeof (ztest_cb_data_t
));
5625 /* Allocate and initialize callback data structure */
5626 static ztest_cb_data_t
*
5627 ztest_create_cb_data(objset_t
*os
, uint64_t txg
)
5629 ztest_cb_data_t
*cb_data
;
5631 cb_data
= umem_zalloc(sizeof (ztest_cb_data_t
), UMEM_NOFAIL
);
5633 cb_data
->zcd_txg
= txg
;
5634 cb_data
->zcd_spa
= dmu_objset_spa(os
);
5635 list_link_init(&cb_data
->zcd_node
);
5641 * Commit callback test.
5644 ztest_dmu_commit_callbacks(ztest_ds_t
*zd
, uint64_t id
)
5646 objset_t
*os
= zd
->zd_os
;
5649 ztest_cb_data_t
*cb_data
[3], *tmp_cb
;
5650 uint64_t old_txg
, txg
;
5653 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5654 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
5656 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
5657 umem_free(od
, sizeof (ztest_od_t
));
5661 tx
= dmu_tx_create(os
);
5663 cb_data
[0] = ztest_create_cb_data(os
, 0);
5664 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[0]);
5666 dmu_tx_hold_write(tx
, od
->od_object
, 0, sizeof (uint64_t));
5668 /* Every once in a while, abort the transaction on purpose */
5669 if (ztest_random(100) == 0)
5673 error
= dmu_tx_assign(tx
, TXG_NOWAIT
);
5675 txg
= error
? 0 : dmu_tx_get_txg(tx
);
5677 cb_data
[0]->zcd_txg
= txg
;
5678 cb_data
[1] = ztest_create_cb_data(os
, txg
);
5679 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[1]);
5683 * It's not a strict requirement to call the registered
5684 * callbacks from inside dmu_tx_abort(), but that's what
5685 * it's supposed to happen in the current implementation
5686 * so we will check for that.
5688 for (i
= 0; i
< 2; i
++) {
5689 cb_data
[i
]->zcd_expected_err
= ECANCELED
;
5690 VERIFY(!cb_data
[i
]->zcd_called
);
5695 for (i
= 0; i
< 2; i
++) {
5696 VERIFY(cb_data
[i
]->zcd_called
);
5697 umem_free(cb_data
[i
], sizeof (ztest_cb_data_t
));
5700 umem_free(od
, sizeof (ztest_od_t
));
5704 cb_data
[2] = ztest_create_cb_data(os
, txg
);
5705 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[2]);
5708 * Read existing data to make sure there isn't a future leak.
5710 VERIFY0(dmu_read(os
, od
->od_object
, 0, sizeof (uint64_t),
5711 &old_txg
, DMU_READ_PREFETCH
));
5715 "future leak: got %"PRIu64
", open txg is %"PRIu64
"",
5718 dmu_write(os
, od
->od_object
, 0, sizeof (uint64_t), &txg
, tx
);
5720 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
5723 * Since commit callbacks don't have any ordering requirement and since
5724 * it is theoretically possible for a commit callback to be called
5725 * after an arbitrary amount of time has elapsed since its txg has been
5726 * synced, it is difficult to reliably determine whether a commit
5727 * callback hasn't been called due to high load or due to a flawed
5730 * In practice, we will assume that if after a certain number of txgs a
5731 * commit callback hasn't been called, then most likely there's an
5732 * implementation bug..
5734 tmp_cb
= list_head(&zcl
.zcl_callbacks
);
5735 if (tmp_cb
!= NULL
&&
5736 tmp_cb
->zcd_txg
+ ZTEST_COMMIT_CB_THRESH
< txg
) {
5738 "Commit callback threshold exceeded, "
5739 "oldest txg: %"PRIu64
", open txg: %"PRIu64
"\n",
5740 tmp_cb
->zcd_txg
, txg
);
5744 * Let's find the place to insert our callbacks.
5746 * Even though the list is ordered by txg, it is possible for the
5747 * insertion point to not be the end because our txg may already be
5748 * quiescing at this point and other callbacks in the open txg
5749 * (from other objsets) may have sneaked in.
5751 tmp_cb
= list_tail(&zcl
.zcl_callbacks
);
5752 while (tmp_cb
!= NULL
&& tmp_cb
->zcd_txg
> txg
)
5753 tmp_cb
= list_prev(&zcl
.zcl_callbacks
, tmp_cb
);
5755 /* Add the 3 callbacks to the list */
5756 for (i
= 0; i
< 3; i
++) {
5758 list_insert_head(&zcl
.zcl_callbacks
, cb_data
[i
]);
5760 list_insert_after(&zcl
.zcl_callbacks
, tmp_cb
,
5763 cb_data
[i
]->zcd_added
= B_TRUE
;
5764 VERIFY(!cb_data
[i
]->zcd_called
);
5766 tmp_cb
= cb_data
[i
];
5771 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
5775 umem_free(od
, sizeof (ztest_od_t
));
5779 * Visit each object in the dataset. Verify that its properties
5780 * are consistent what was stored in the block tag when it was created,
5781 * and that its unused bonus buffer space has not been overwritten.
5784 ztest_verify_dnode_bt(ztest_ds_t
*zd
, uint64_t id
)
5787 objset_t
*os
= zd
->zd_os
;
5791 for (obj
= 0; err
== 0; err
= dmu_object_next(os
, &obj
, FALSE
, 0)) {
5792 ztest_block_tag_t
*bt
= NULL
;
5793 dmu_object_info_t doi
;
5796 ztest_object_lock(zd
, obj
, RL_READER
);
5797 if (dmu_bonus_hold(os
, obj
, FTAG
, &db
) != 0) {
5798 ztest_object_unlock(zd
, obj
);
5802 dmu_object_info_from_db(db
, &doi
);
5803 if (doi
.doi_bonus_size
>= sizeof (*bt
))
5804 bt
= ztest_bt_bonus(db
);
5806 if (bt
&& bt
->bt_magic
== BT_MAGIC
) {
5807 ztest_bt_verify(bt
, os
, obj
, doi
.doi_dnodesize
,
5808 bt
->bt_offset
, bt
->bt_gen
, bt
->bt_txg
,
5810 ztest_verify_unused_bonus(db
, bt
, obj
, os
, bt
->bt_gen
);
5813 dmu_buf_rele(db
, FTAG
);
5814 ztest_object_unlock(zd
, obj
);
5819 ztest_dsl_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
5822 zfs_prop_t proplist
[] = {
5824 ZFS_PROP_COMPRESSION
,
5829 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
5831 for (int p
= 0; p
< sizeof (proplist
) / sizeof (proplist
[0]); p
++)
5832 (void) ztest_dsl_prop_set_uint64(zd
->zd_name
, proplist
[p
],
5833 ztest_random_dsl_prop(proplist
[p
]), (int)ztest_random(2));
5835 VERIFY0(ztest_dsl_prop_set_uint64(zd
->zd_name
, ZFS_PROP_RECORDSIZE
,
5836 ztest_random_blocksize(), (int)ztest_random(2)));
5838 (void) pthread_rwlock_unlock(&ztest_name_lock
);
5842 ztest_spa_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
5844 (void) zd
, (void) id
;
5845 nvlist_t
*props
= NULL
;
5847 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
5849 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM
, ztest_random(2));
5851 VERIFY0(spa_prop_get(ztest_spa
, &props
));
5853 if (ztest_opts
.zo_verbose
>= 6)
5854 dump_nvlist(props
, 4);
5856 fnvlist_free(props
);
5858 (void) pthread_rwlock_unlock(&ztest_name_lock
);
5862 user_release_one(const char *snapname
, const char *holdname
)
5864 nvlist_t
*snaps
, *holds
;
5867 snaps
= fnvlist_alloc();
5868 holds
= fnvlist_alloc();
5869 fnvlist_add_boolean(holds
, holdname
);
5870 fnvlist_add_nvlist(snaps
, snapname
, holds
);
5871 fnvlist_free(holds
);
5872 error
= dsl_dataset_user_release(snaps
, NULL
);
5873 fnvlist_free(snaps
);
5878 * Test snapshot hold/release and deferred destroy.
5881 ztest_dmu_snapshot_hold(ztest_ds_t
*zd
, uint64_t id
)
5884 objset_t
*os
= zd
->zd_os
;
5888 char clonename
[100];
5890 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
5893 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
5895 dmu_objset_name(os
, osname
);
5897 (void) snprintf(snapname
, sizeof (snapname
), "sh1_%"PRIu64
"", id
);
5898 (void) snprintf(fullname
, sizeof (fullname
), "%s@%s", osname
, snapname
);
5899 (void) snprintf(clonename
, sizeof (clonename
), "%s/ch1_%"PRIu64
"",
5901 (void) snprintf(tag
, sizeof (tag
), "tag_%"PRIu64
"", id
);
5904 * Clean up from any previous run.
5906 error
= dsl_destroy_head(clonename
);
5907 if (error
!= ENOENT
)
5909 error
= user_release_one(fullname
, tag
);
5910 if (error
!= ESRCH
&& error
!= ENOENT
)
5912 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
5913 if (error
!= ENOENT
)
5917 * Create snapshot, clone it, mark snap for deferred destroy,
5918 * destroy clone, verify snap was also destroyed.
5920 error
= dmu_objset_snapshot_one(osname
, snapname
);
5922 if (error
== ENOSPC
) {
5923 ztest_record_enospc("dmu_objset_snapshot");
5926 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
5929 error
= dmu_objset_clone(clonename
, fullname
);
5931 if (error
== ENOSPC
) {
5932 ztest_record_enospc("dmu_objset_clone");
5935 fatal(B_FALSE
, "dmu_objset_clone(%s) = %d", clonename
, error
);
5938 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
5940 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5944 error
= dsl_destroy_head(clonename
);
5946 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clonename
, error
);
5948 error
= dmu_objset_hold(fullname
, FTAG
, &origin
);
5949 if (error
!= ENOENT
)
5950 fatal(B_FALSE
, "dmu_objset_hold(%s) = %d", fullname
, error
);
5953 * Create snapshot, add temporary hold, verify that we can't
5954 * destroy a held snapshot, mark for deferred destroy,
5955 * release hold, verify snapshot was destroyed.
5957 error
= dmu_objset_snapshot_one(osname
, snapname
);
5959 if (error
== ENOSPC
) {
5960 ztest_record_enospc("dmu_objset_snapshot");
5963 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
5966 holds
= fnvlist_alloc();
5967 fnvlist_add_string(holds
, fullname
, tag
);
5968 error
= dsl_dataset_user_hold(holds
, 0, NULL
);
5969 fnvlist_free(holds
);
5971 if (error
== ENOSPC
) {
5972 ztest_record_enospc("dsl_dataset_user_hold");
5975 fatal(B_FALSE
, "dsl_dataset_user_hold(%s, %s) = %u",
5976 fullname
, tag
, error
);
5979 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
5980 if (error
!= EBUSY
) {
5981 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
5985 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
5987 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5991 error
= user_release_one(fullname
, tag
);
5993 fatal(B_FALSE
, "user_release_one(%s, %s) = %d",
5994 fullname
, tag
, error
);
5996 VERIFY3U(dmu_objset_hold(fullname
, FTAG
, &origin
), ==, ENOENT
);
5999 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6003 * Inject random faults into the on-disk data.
6006 ztest_fault_inject(ztest_ds_t
*zd
, uint64_t id
)
6008 (void) zd
, (void) id
;
6009 ztest_shared_t
*zs
= ztest_shared
;
6010 spa_t
*spa
= ztest_spa
;
6014 uint64_t bad
= 0x1990c0ffeedecadeull
;
6019 int bshift
= SPA_MAXBLOCKSHIFT
+ 2;
6025 boolean_t islog
= B_FALSE
;
6027 path0
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6028 pathrand
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6030 mutex_enter(&ztest_vdev_lock
);
6033 * Device removal is in progress, fault injection must be disabled
6034 * until it completes and the pool is scrubbed. The fault injection
6035 * strategy for damaging blocks does not take in to account evacuated
6036 * blocks which may have already been damaged.
6038 if (ztest_device_removal_active
) {
6039 mutex_exit(&ztest_vdev_lock
);
6043 maxfaults
= MAXFAULTS(zs
);
6044 leaves
= MAX(zs
->zs_mirrors
, 1) * ztest_opts
.zo_raid_children
;
6045 mirror_save
= zs
->zs_mirrors
;
6046 mutex_exit(&ztest_vdev_lock
);
6048 ASSERT3U(leaves
, >=, 1);
6051 * While ztest is running the number of leaves will not change. This
6052 * is critical for the fault injection logic as it determines where
6053 * errors can be safely injected such that they are always repairable.
6055 * When restarting ztest a different number of leaves may be requested
6056 * which will shift the regions to be damaged. This is fine as long
6057 * as the pool has been scrubbed prior to using the new mapping.
6058 * Failure to do can result in non-repairable damage being injected.
6060 if (ztest_pool_scrubbed
== B_FALSE
)
6064 * Grab the name lock as reader. There are some operations
6065 * which don't like to have their vdevs changed while
6066 * they are in progress (i.e. spa_change_guid). Those
6067 * operations will have grabbed the name lock as writer.
6069 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6072 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6074 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
6076 if (ztest_random(2) == 0) {
6078 * Inject errors on a normal data device or slog device.
6080 top
= ztest_random_vdev_top(spa
, B_TRUE
);
6081 leaf
= ztest_random(leaves
) + zs
->zs_splits
;
6084 * Generate paths to the first leaf in this top-level vdev,
6085 * and to the random leaf we selected. We'll induce transient
6086 * write failures and random online/offline activity on leaf 0,
6087 * and we'll write random garbage to the randomly chosen leaf.
6089 (void) snprintf(path0
, MAXPATHLEN
, ztest_dev_template
,
6090 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6091 top
* leaves
+ zs
->zs_splits
);
6092 (void) snprintf(pathrand
, MAXPATHLEN
, ztest_dev_template
,
6093 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6094 top
* leaves
+ leaf
);
6096 vd0
= vdev_lookup_by_path(spa
->spa_root_vdev
, path0
);
6097 if (vd0
!= NULL
&& vd0
->vdev_top
->vdev_islog
)
6101 * If the top-level vdev needs to be resilvered
6102 * then we only allow faults on the device that is
6105 if (vd0
!= NULL
&& maxfaults
!= 1 &&
6106 (!vdev_resilver_needed(vd0
->vdev_top
, NULL
, NULL
) ||
6107 vd0
->vdev_resilver_txg
!= 0)) {
6109 * Make vd0 explicitly claim to be unreadable,
6110 * or unwritable, or reach behind its back
6111 * and close the underlying fd. We can do this if
6112 * maxfaults == 0 because we'll fail and reexecute,
6113 * and we can do it if maxfaults >= 2 because we'll
6114 * have enough redundancy. If maxfaults == 1, the
6115 * combination of this with injection of random data
6116 * corruption below exceeds the pool's fault tolerance.
6118 vdev_file_t
*vf
= vd0
->vdev_tsd
;
6120 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6121 (long long)vd0
->vdev_id
, (int)maxfaults
);
6123 if (vf
!= NULL
&& ztest_random(3) == 0) {
6124 (void) close(vf
->vf_file
->f_fd
);
6125 vf
->vf_file
->f_fd
= -1;
6126 } else if (ztest_random(2) == 0) {
6127 vd0
->vdev_cant_read
= B_TRUE
;
6129 vd0
->vdev_cant_write
= B_TRUE
;
6131 guid0
= vd0
->vdev_guid
;
6135 * Inject errors on an l2cache device.
6137 spa_aux_vdev_t
*sav
= &spa
->spa_l2cache
;
6139 if (sav
->sav_count
== 0) {
6140 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6141 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6144 vd0
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
6145 guid0
= vd0
->vdev_guid
;
6146 (void) strcpy(path0
, vd0
->vdev_path
);
6147 (void) strcpy(pathrand
, vd0
->vdev_path
);
6151 maxfaults
= INT_MAX
; /* no limit on cache devices */
6154 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6155 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6158 * If we can tolerate two or more faults, or we're dealing
6159 * with a slog, randomly online/offline vd0.
6161 if ((maxfaults
>= 2 || islog
) && guid0
!= 0) {
6162 if (ztest_random(10) < 6) {
6163 int flags
= (ztest_random(2) == 0 ?
6164 ZFS_OFFLINE_TEMPORARY
: 0);
6167 * We have to grab the zs_name_lock as writer to
6168 * prevent a race between offlining a slog and
6169 * destroying a dataset. Offlining the slog will
6170 * grab a reference on the dataset which may cause
6171 * dsl_destroy_head() to fail with EBUSY thus
6172 * leaving the dataset in an inconsistent state.
6175 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6177 VERIFY3U(vdev_offline(spa
, guid0
, flags
), !=, EBUSY
);
6180 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6183 * Ideally we would like to be able to randomly
6184 * call vdev_[on|off]line without holding locks
6185 * to force unpredictable failures but the side
6186 * effects of vdev_[on|off]line prevent us from
6187 * doing so. We grab the ztest_vdev_lock here to
6188 * prevent a race between injection testing and
6191 mutex_enter(&ztest_vdev_lock
);
6192 (void) vdev_online(spa
, guid0
, 0, NULL
);
6193 mutex_exit(&ztest_vdev_lock
);
6201 * We have at least single-fault tolerance, so inject data corruption.
6203 fd
= open(pathrand
, O_RDWR
);
6205 if (fd
== -1) /* we hit a gap in the device namespace */
6208 fsize
= lseek(fd
, 0, SEEK_END
);
6210 while (--iters
!= 0) {
6212 * The offset must be chosen carefully to ensure that
6213 * we do not inject a given logical block with errors
6214 * on two different leaf devices, because ZFS can not
6215 * tolerate that (if maxfaults==1).
6217 * To achieve this we divide each leaf device into
6218 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6219 * Each chunk is further divided into error-injection
6220 * ranges (can accept errors) and clear ranges (we do
6221 * not inject errors in those). Each error-injection
6222 * range can accept errors only for a single leaf vdev.
6223 * Error-injection ranges are separated by clear ranges.
6225 * For example, with 3 leaves, each chunk looks like:
6226 * 0 to 32M: injection range for leaf 0
6227 * 32M to 64M: clear range - no injection allowed
6228 * 64M to 96M: injection range for leaf 1
6229 * 96M to 128M: clear range - no injection allowed
6230 * 128M to 160M: injection range for leaf 2
6231 * 160M to 192M: clear range - no injection allowed
6233 * Each clear range must be large enough such that a
6234 * single block cannot straddle it. This way a block
6235 * can't be a target in two different injection ranges
6236 * (on different leaf vdevs).
6238 offset
= ztest_random(fsize
/ (leaves
<< bshift
)) *
6239 (leaves
<< bshift
) + (leaf
<< bshift
) +
6240 (ztest_random(1ULL << (bshift
- 1)) & -8ULL);
6243 * Only allow damage to the labels at one end of the vdev.
6245 * If all labels are damaged, the device will be totally
6246 * inaccessible, which will result in loss of data,
6247 * because we also damage (parts of) the other side of
6250 * Additionally, we will always have both an even and an
6251 * odd label, so that we can handle crashes in the
6252 * middle of vdev_config_sync().
6254 if ((leaf
& 1) == 0 && offset
< VDEV_LABEL_START_SIZE
)
6258 * The two end labels are stored at the "end" of the disk, but
6259 * the end of the disk (vdev_psize) is aligned to
6260 * sizeof (vdev_label_t).
6262 uint64_t psize
= P2ALIGN(fsize
, sizeof (vdev_label_t
));
6263 if ((leaf
& 1) == 1 &&
6264 offset
+ sizeof (bad
) > psize
- VDEV_LABEL_END_SIZE
)
6267 mutex_enter(&ztest_vdev_lock
);
6268 if (mirror_save
!= zs
->zs_mirrors
) {
6269 mutex_exit(&ztest_vdev_lock
);
6274 if (pwrite(fd
, &bad
, sizeof (bad
), offset
) != sizeof (bad
))
6276 "can't inject bad word at 0x%"PRIx64
" in %s",
6279 mutex_exit(&ztest_vdev_lock
);
6281 if (ztest_opts
.zo_verbose
>= 7)
6282 (void) printf("injected bad word into %s,"
6283 " offset 0x%"PRIx64
"\n", pathrand
, offset
);
6288 umem_free(path0
, MAXPATHLEN
);
6289 umem_free(pathrand
, MAXPATHLEN
);
6293 * By design ztest will never inject uncorrectable damage in to the pool.
6294 * Issue a scrub, wait for it to complete, and verify there is never any
6295 * persistent damage.
6297 * Only after a full scrub has been completed is it safe to start injecting
6298 * data corruption. See the comment in zfs_fault_inject().
6301 ztest_scrub_impl(spa_t
*spa
)
6303 int error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
6307 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
6308 txg_wait_synced(spa_get_dsl(spa
), 0);
6310 if (spa_get_errlog_size(spa
) > 0)
6313 ztest_pool_scrubbed
= B_TRUE
;
6322 ztest_scrub(ztest_ds_t
*zd
, uint64_t id
)
6324 (void) zd
, (void) id
;
6325 spa_t
*spa
= ztest_spa
;
6329 * Scrub in progress by device removal.
6331 if (ztest_device_removal_active
)
6335 * Start a scrub, wait a moment, then force a restart.
6337 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
6338 (void) poll(NULL
, 0, 100);
6340 error
= ztest_scrub_impl(spa
);
6347 * Change the guid for the pool.
6350 ztest_reguid(ztest_ds_t
*zd
, uint64_t id
)
6352 (void) zd
, (void) id
;
6353 spa_t
*spa
= ztest_spa
;
6354 uint64_t orig
, load
;
6357 if (ztest_opts
.zo_mmp_test
)
6360 orig
= spa_guid(spa
);
6361 load
= spa_load_guid(spa
);
6363 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6364 error
= spa_change_guid(spa
);
6365 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6370 if (ztest_opts
.zo_verbose
>= 4) {
6371 (void) printf("Changed guid old %"PRIu64
" -> %"PRIu64
"\n",
6372 orig
, spa_guid(spa
));
6375 VERIFY3U(orig
, !=, spa_guid(spa
));
6376 VERIFY3U(load
, ==, spa_load_guid(spa
));
6380 ztest_blake3(ztest_ds_t
*zd
, uint64_t id
)
6382 (void) zd
, (void) id
;
6383 hrtime_t end
= gethrtime() + NANOSEC
;
6384 zio_cksum_salt_t salt
;
6385 void *salt_ptr
= &salt
.zcs_bytes
;
6386 struct abd
*abd_data
, *abd_meta
;
6392 size
= ztest_random_blocksize();
6393 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6394 abd_data
= abd_alloc(size
, B_FALSE
);
6395 abd_meta
= abd_alloc(size
, B_TRUE
);
6397 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6398 *ptr
= ztest_random(UINT_MAX
);
6399 memset(salt_ptr
, 'A', 32);
6401 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6402 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6404 while (gethrtime() <= end
) {
6405 int run_count
= 100;
6406 zio_cksum_t zc_ref1
, zc_ref2
;
6407 zio_cksum_t zc_res1
, zc_res2
;
6409 void *ref1
= &zc_ref1
;
6410 void *ref2
= &zc_ref2
;
6411 void *res1
= &zc_res1
;
6412 void *res2
= &zc_res2
;
6414 /* BLAKE3_KEY_LEN = 32 */
6415 VERIFY0(blake3_set_impl_name("generic"));
6416 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6417 Blake3_InitKeyed(&ctx
, salt_ptr
);
6418 Blake3_Update(&ctx
, buf
, size
);
6419 Blake3_Final(&ctx
, ref1
);
6421 ZIO_CHECKSUM_BSWAP(&zc_ref2
);
6422 abd_checksum_blake3_tmpl_free(templ
);
6424 VERIFY0(blake3_set_impl_name("cycle"));
6425 while (run_count
-- > 0) {
6427 /* Test current implementation */
6428 Blake3_InitKeyed(&ctx
, salt_ptr
);
6429 Blake3_Update(&ctx
, buf
, size
);
6430 Blake3_Final(&ctx
, res1
);
6432 ZIO_CHECKSUM_BSWAP(&zc_res2
);
6434 VERIFY0(memcmp(ref1
, res1
, 32));
6435 VERIFY0(memcmp(ref2
, res2
, 32));
6437 /* Test ABD - data */
6438 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6439 abd_checksum_blake3_native(abd_data
, size
,
6441 abd_checksum_blake3_byteswap(abd_data
, size
,
6444 VERIFY0(memcmp(ref1
, res1
, 32));
6445 VERIFY0(memcmp(ref2
, res2
, 32));
6447 /* Test ABD - metadata */
6448 abd_checksum_blake3_native(abd_meta
, size
,
6450 abd_checksum_blake3_byteswap(abd_meta
, size
,
6452 abd_checksum_blake3_tmpl_free(templ
);
6454 VERIFY0(memcmp(ref1
, res1
, 32));
6455 VERIFY0(memcmp(ref2
, res2
, 32));
6462 umem_free(buf
, size
);
6466 ztest_fletcher(ztest_ds_t
*zd
, uint64_t id
)
6468 (void) zd
, (void) id
;
6469 hrtime_t end
= gethrtime() + NANOSEC
;
6471 while (gethrtime() <= end
) {
6472 int run_count
= 100;
6474 struct abd
*abd_data
, *abd_meta
;
6479 zio_cksum_t zc_ref_byteswap
;
6481 size
= ztest_random_blocksize();
6483 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6484 abd_data
= abd_alloc(size
, B_FALSE
);
6485 abd_meta
= abd_alloc(size
, B_TRUE
);
6487 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6488 *ptr
= ztest_random(UINT_MAX
);
6490 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6491 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6493 VERIFY0(fletcher_4_impl_set("scalar"));
6494 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6495 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_byteswap
);
6497 VERIFY0(fletcher_4_impl_set("cycle"));
6498 while (run_count
-- > 0) {
6500 zio_cksum_t zc_byteswap
;
6502 fletcher_4_byteswap(buf
, size
, NULL
, &zc_byteswap
);
6503 fletcher_4_native(buf
, size
, NULL
, &zc
);
6505 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6506 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6507 sizeof (zc_byteswap
)));
6509 /* Test ABD - data */
6510 abd_fletcher_4_byteswap(abd_data
, size
, NULL
,
6512 abd_fletcher_4_native(abd_data
, size
, NULL
, &zc
);
6514 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6515 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6516 sizeof (zc_byteswap
)));
6518 /* Test ABD - metadata */
6519 abd_fletcher_4_byteswap(abd_meta
, size
, NULL
,
6521 abd_fletcher_4_native(abd_meta
, size
, NULL
, &zc
);
6523 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6524 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6525 sizeof (zc_byteswap
)));
6529 umem_free(buf
, size
);
6536 ztest_fletcher_incr(ztest_ds_t
*zd
, uint64_t id
)
6538 (void) zd
, (void) id
;
6544 zio_cksum_t zc_ref_bswap
;
6546 hrtime_t end
= gethrtime() + NANOSEC
;
6548 while (gethrtime() <= end
) {
6549 int run_count
= 100;
6551 size
= ztest_random_blocksize();
6552 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6554 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6555 *ptr
= ztest_random(UINT_MAX
);
6557 VERIFY0(fletcher_4_impl_set("scalar"));
6558 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6559 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_bswap
);
6561 VERIFY0(fletcher_4_impl_set("cycle"));
6563 while (run_count
-- > 0) {
6565 zio_cksum_t zc_bswap
;
6568 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
6569 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
6571 while (pos
< size
) {
6572 size_t inc
= 64 * ztest_random(size
/ 67);
6573 /* sometimes add few bytes to test non-simd */
6574 if (ztest_random(100) < 10)
6575 inc
+= P2ALIGN(ztest_random(64),
6578 if (inc
> (size
- pos
))
6581 fletcher_4_incremental_native(buf
+ pos
, inc
,
6583 fletcher_4_incremental_byteswap(buf
+ pos
, inc
,
6589 VERIFY3U(pos
, ==, size
);
6591 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
6592 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
6595 * verify if incremental on the whole buffer is
6596 * equivalent to non-incremental version
6598 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
6599 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
6601 fletcher_4_incremental_native(buf
, size
, &zc
);
6602 fletcher_4_incremental_byteswap(buf
, size
, &zc_bswap
);
6604 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
6605 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
6608 umem_free(buf
, size
);
6613 ztest_set_global_vars(void)
6615 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
6616 char *kv
= ztest_opts
.zo_gvars
[i
];
6617 VERIFY3U(strlen(kv
), <=, ZO_GVARS_MAX_ARGLEN
);
6618 VERIFY3U(strlen(kv
), >, 0);
6619 int err
= set_global_var(kv
);
6620 if (ztest_opts
.zo_verbose
> 0) {
6621 (void) printf("setting global var %s ... %s\n", kv
,
6622 err
? "failed" : "ok");
6625 (void) fprintf(stderr
,
6626 "failed to set global var '%s'\n", kv
);
6634 ztest_global_vars_to_zdb_args(void)
6636 char **args
= calloc(2*ztest_opts
.zo_gvars_count
+ 1, sizeof (char *));
6638 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
6639 char *kv
= ztest_opts
.zo_gvars
[i
];
6645 ASSERT3P(cur
, ==, &args
[2*ztest_opts
.zo_gvars_count
]);
6650 /* The end of strings is indicated by a NULL element */
6652 join_strings(char **strings
, const char *sep
)
6654 size_t totallen
= 0;
6655 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
6656 totallen
+= strlen(*sp
);
6657 totallen
+= strlen(sep
);
6660 ASSERT(totallen
>= strlen(sep
));
6661 totallen
-= strlen(sep
);
6664 size_t buflen
= totallen
+ 1;
6665 char *o
= malloc(buflen
); /* trailing 0 byte */
6667 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
6669 would
= strlcat(o
, *sp
, buflen
);
6670 VERIFY3U(would
, <, buflen
);
6671 if (*(sp
+1) == NULL
) {
6674 would
= strlcat(o
, sep
, buflen
);
6675 VERIFY3U(would
, <, buflen
);
6677 ASSERT3S(strlen(o
), ==, totallen
);
6682 ztest_check_path(char *path
)
6685 /* return true on success */
6686 return (!stat(path
, &s
));
6690 ztest_get_zdb_bin(char *bin
, int len
)
6694 * Try to use $ZDB and in-tree zdb path. If not successful, just
6695 * let popen to search through PATH.
6697 if ((zdb_path
= getenv("ZDB"))) {
6698 strlcpy(bin
, zdb_path
, len
); /* In env */
6699 if (!ztest_check_path(bin
)) {
6700 ztest_dump_core
= 0;
6701 fatal(B_TRUE
, "invalid ZDB '%s'", bin
);
6706 VERIFY3P(realpath(getexecname(), bin
), !=, NULL
);
6707 if (strstr(bin
, ".libs/ztest")) {
6708 strstr(bin
, ".libs/ztest")[0] = '\0'; /* In-tree */
6710 if (ztest_check_path(bin
))
6717 ztest_random_concrete_vdev_leaf(vdev_t
*vd
)
6722 if (vd
->vdev_children
== 0)
6725 vdev_t
*eligible
[vd
->vdev_children
];
6726 int eligible_idx
= 0, i
;
6727 for (i
= 0; i
< vd
->vdev_children
; i
++) {
6728 vdev_t
*cvd
= vd
->vdev_child
[i
];
6729 if (cvd
->vdev_top
->vdev_removing
)
6731 if (cvd
->vdev_children
> 0 ||
6732 (vdev_is_concrete(cvd
) && !cvd
->vdev_detached
)) {
6733 eligible
[eligible_idx
++] = cvd
;
6736 VERIFY3S(eligible_idx
, >, 0);
6738 uint64_t child_no
= ztest_random(eligible_idx
);
6739 return (ztest_random_concrete_vdev_leaf(eligible
[child_no
]));
6743 ztest_initialize(ztest_ds_t
*zd
, uint64_t id
)
6745 (void) zd
, (void) id
;
6746 spa_t
*spa
= ztest_spa
;
6749 mutex_enter(&ztest_vdev_lock
);
6751 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
6753 /* Random leaf vdev */
6754 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
6755 if (rand_vd
== NULL
) {
6756 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6757 mutex_exit(&ztest_vdev_lock
);
6762 * The random vdev we've selected may change as soon as we
6763 * drop the spa_config_lock. We create local copies of things
6764 * we're interested in.
6766 uint64_t guid
= rand_vd
->vdev_guid
;
6767 char *path
= strdup(rand_vd
->vdev_path
);
6768 boolean_t active
= rand_vd
->vdev_initialize_thread
!= NULL
;
6770 zfs_dbgmsg("vd %px, guid %llu", rand_vd
, (u_longlong_t
)guid
);
6771 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6773 uint64_t cmd
= ztest_random(POOL_INITIALIZE_FUNCS
);
6775 nvlist_t
*vdev_guids
= fnvlist_alloc();
6776 nvlist_t
*vdev_errlist
= fnvlist_alloc();
6777 fnvlist_add_uint64(vdev_guids
, path
, guid
);
6778 error
= spa_vdev_initialize(spa
, vdev_guids
, cmd
, vdev_errlist
);
6779 fnvlist_free(vdev_guids
);
6780 fnvlist_free(vdev_errlist
);
6783 case POOL_INITIALIZE_CANCEL
:
6784 if (ztest_opts
.zo_verbose
>= 4) {
6785 (void) printf("Cancel initialize %s", path
);
6787 (void) printf(" failed (no initialize active)");
6788 (void) printf("\n");
6791 case POOL_INITIALIZE_START
:
6792 if (ztest_opts
.zo_verbose
>= 4) {
6793 (void) printf("Start initialize %s", path
);
6794 if (active
&& error
== 0)
6795 (void) printf(" failed (already active)");
6796 else if (error
!= 0)
6797 (void) printf(" failed (error %d)", error
);
6798 (void) printf("\n");
6801 case POOL_INITIALIZE_SUSPEND
:
6802 if (ztest_opts
.zo_verbose
>= 4) {
6803 (void) printf("Suspend initialize %s", path
);
6805 (void) printf(" failed (no initialize active)");
6806 (void) printf("\n");
6811 mutex_exit(&ztest_vdev_lock
);
6815 ztest_trim(ztest_ds_t
*zd
, uint64_t id
)
6817 (void) zd
, (void) id
;
6818 spa_t
*spa
= ztest_spa
;
6821 mutex_enter(&ztest_vdev_lock
);
6823 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
6825 /* Random leaf vdev */
6826 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
6827 if (rand_vd
== NULL
) {
6828 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6829 mutex_exit(&ztest_vdev_lock
);
6834 * The random vdev we've selected may change as soon as we
6835 * drop the spa_config_lock. We create local copies of things
6836 * we're interested in.
6838 uint64_t guid
= rand_vd
->vdev_guid
;
6839 char *path
= strdup(rand_vd
->vdev_path
);
6840 boolean_t active
= rand_vd
->vdev_trim_thread
!= NULL
;
6842 zfs_dbgmsg("vd %p, guid %llu", rand_vd
, (u_longlong_t
)guid
);
6843 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6845 uint64_t cmd
= ztest_random(POOL_TRIM_FUNCS
);
6846 uint64_t rate
= 1 << ztest_random(30);
6847 boolean_t partial
= (ztest_random(5) > 0);
6848 boolean_t secure
= (ztest_random(5) > 0);
6850 nvlist_t
*vdev_guids
= fnvlist_alloc();
6851 nvlist_t
*vdev_errlist
= fnvlist_alloc();
6852 fnvlist_add_uint64(vdev_guids
, path
, guid
);
6853 error
= spa_vdev_trim(spa
, vdev_guids
, cmd
, rate
, partial
,
6854 secure
, vdev_errlist
);
6855 fnvlist_free(vdev_guids
);
6856 fnvlist_free(vdev_errlist
);
6859 case POOL_TRIM_CANCEL
:
6860 if (ztest_opts
.zo_verbose
>= 4) {
6861 (void) printf("Cancel TRIM %s", path
);
6863 (void) printf(" failed (no TRIM active)");
6864 (void) printf("\n");
6867 case POOL_TRIM_START
:
6868 if (ztest_opts
.zo_verbose
>= 4) {
6869 (void) printf("Start TRIM %s", path
);
6870 if (active
&& error
== 0)
6871 (void) printf(" failed (already active)");
6872 else if (error
!= 0)
6873 (void) printf(" failed (error %d)", error
);
6874 (void) printf("\n");
6877 case POOL_TRIM_SUSPEND
:
6878 if (ztest_opts
.zo_verbose
>= 4) {
6879 (void) printf("Suspend TRIM %s", path
);
6881 (void) printf(" failed (no TRIM active)");
6882 (void) printf("\n");
6887 mutex_exit(&ztest_vdev_lock
);
6891 * Verify pool integrity by running zdb.
6894 ztest_run_zdb(char *pool
)
6900 const int len
= MAXPATHLEN
+ MAXNAMELEN
+ 20;
6903 bin
= umem_alloc(len
, UMEM_NOFAIL
);
6904 zdb
= umem_alloc(len
, UMEM_NOFAIL
);
6905 zbuf
= umem_alloc(1024, UMEM_NOFAIL
);
6907 ztest_get_zdb_bin(bin
, len
);
6909 char **set_gvars_args
= ztest_global_vars_to_zdb_args();
6910 char *set_gvars_args_joined
= join_strings(set_gvars_args
, " ");
6911 free(set_gvars_args
);
6913 size_t would
= snprintf(zdb
, len
,
6914 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %s",
6916 ztest_opts
.zo_verbose
>= 3 ? "s" : "",
6917 ztest_opts
.zo_verbose
>= 4 ? "v" : "",
6918 set_gvars_args_joined
,
6921 ASSERT3U(would
, <, len
);
6923 free(set_gvars_args_joined
);
6925 if (ztest_opts
.zo_verbose
>= 5)
6926 (void) printf("Executing %s\n", zdb
);
6928 fp
= popen(zdb
, "r");
6930 while (fgets(zbuf
, 1024, fp
) != NULL
)
6931 if (ztest_opts
.zo_verbose
>= 3)
6932 (void) printf("%s", zbuf
);
6934 status
= pclose(fp
);
6939 ztest_dump_core
= 0;
6940 if (WIFEXITED(status
))
6941 fatal(B_FALSE
, "'%s' exit code %d", zdb
, WEXITSTATUS(status
));
6943 fatal(B_FALSE
, "'%s' died with signal %d",
6944 zdb
, WTERMSIG(status
));
6946 umem_free(bin
, len
);
6947 umem_free(zdb
, len
);
6948 umem_free(zbuf
, 1024);
6952 ztest_walk_pool_directory(char *header
)
6956 if (ztest_opts
.zo_verbose
>= 6)
6957 (void) printf("%s\n", header
);
6959 mutex_enter(&spa_namespace_lock
);
6960 while ((spa
= spa_next(spa
)) != NULL
)
6961 if (ztest_opts
.zo_verbose
>= 6)
6962 (void) printf("\t%s\n", spa_name(spa
));
6963 mutex_exit(&spa_namespace_lock
);
6967 ztest_spa_import_export(char *oldname
, char *newname
)
6969 nvlist_t
*config
, *newconfig
;
6974 if (ztest_opts
.zo_verbose
>= 4) {
6975 (void) printf("import/export: old = %s, new = %s\n",
6980 * Clean up from previous runs.
6982 (void) spa_destroy(newname
);
6985 * Get the pool's configuration and guid.
6987 VERIFY0(spa_open(oldname
, &spa
, FTAG
));
6990 * Kick off a scrub to tickle scrub/export races.
6992 if (ztest_random(2) == 0)
6993 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
6995 pool_guid
= spa_guid(spa
);
6996 spa_close(spa
, FTAG
);
6998 ztest_walk_pool_directory("pools before export");
7003 VERIFY0(spa_export(oldname
, &config
, B_FALSE
, B_FALSE
));
7005 ztest_walk_pool_directory("pools after export");
7010 newconfig
= spa_tryimport(config
);
7011 ASSERT3P(newconfig
, !=, NULL
);
7012 fnvlist_free(newconfig
);
7015 * Import it under the new name.
7017 error
= spa_import(newname
, config
, NULL
, 0);
7019 dump_nvlist(config
, 0);
7020 fatal(B_FALSE
, "couldn't import pool %s as %s: error %u",
7021 oldname
, newname
, error
);
7024 ztest_walk_pool_directory("pools after import");
7027 * Try to import it again -- should fail with EEXIST.
7029 VERIFY3U(EEXIST
, ==, spa_import(newname
, config
, NULL
, 0));
7032 * Try to import it under a different name -- should fail with EEXIST.
7034 VERIFY3U(EEXIST
, ==, spa_import(oldname
, config
, NULL
, 0));
7037 * Verify that the pool is no longer visible under the old name.
7039 VERIFY3U(ENOENT
, ==, spa_open(oldname
, &spa
, FTAG
));
7042 * Verify that we can open and close the pool using the new name.
7044 VERIFY0(spa_open(newname
, &spa
, FTAG
));
7045 ASSERT3U(pool_guid
, ==, spa_guid(spa
));
7046 spa_close(spa
, FTAG
);
7048 fnvlist_free(config
);
7052 ztest_resume(spa_t
*spa
)
7054 if (spa_suspended(spa
) && ztest_opts
.zo_verbose
>= 6)
7055 (void) printf("resuming from suspended state\n");
7056 spa_vdev_state_enter(spa
, SCL_NONE
);
7057 vdev_clear(spa
, NULL
);
7058 (void) spa_vdev_state_exit(spa
, NULL
, 0);
7059 (void) zio_resume(spa
);
7062 static __attribute__((noreturn
)) void
7063 ztest_resume_thread(void *arg
)
7067 while (!ztest_exiting
) {
7068 if (spa_suspended(spa
))
7070 (void) poll(NULL
, 0, 100);
7073 * Periodically change the zfs_compressed_arc_enabled setting.
7075 if (ztest_random(10) == 0)
7076 zfs_compressed_arc_enabled
= ztest_random(2);
7079 * Periodically change the zfs_abd_scatter_enabled setting.
7081 if (ztest_random(10) == 0)
7082 zfs_abd_scatter_enabled
= ztest_random(2);
7088 static __attribute__((noreturn
)) void
7089 ztest_deadman_thread(void *arg
)
7091 ztest_shared_t
*zs
= arg
;
7092 spa_t
*spa
= ztest_spa
;
7093 hrtime_t delay
, overdue
, last_run
= gethrtime();
7095 delay
= (zs
->zs_thread_stop
- zs
->zs_thread_start
) +
7096 MSEC2NSEC(zfs_deadman_synctime_ms
);
7098 while (!ztest_exiting
) {
7100 * Wait for the delay timer while checking occasionally
7101 * if we should stop.
7103 if (gethrtime() < last_run
+ delay
) {
7104 (void) poll(NULL
, 0, 1000);
7109 * If the pool is suspended then fail immediately. Otherwise,
7110 * check to see if the pool is making any progress. If
7111 * vdev_deadman() discovers that there hasn't been any recent
7112 * I/Os then it will end up aborting the tests.
7114 if (spa_suspended(spa
) || spa
->spa_root_vdev
== NULL
) {
7116 "aborting test after %lu seconds because "
7117 "pool has transitioned to a suspended state.",
7118 zfs_deadman_synctime_ms
/ 1000);
7120 vdev_deadman(spa
->spa_root_vdev
, FTAG
);
7123 * If the process doesn't complete within a grace period of
7124 * zfs_deadman_synctime_ms over the expected finish time,
7125 * then it may be hung and is terminated.
7127 overdue
= zs
->zs_proc_stop
+ MSEC2NSEC(zfs_deadman_synctime_ms
);
7128 if (gethrtime() > overdue
) {
7130 "aborting test after %llu seconds because "
7131 "the process is overdue for termination.",
7132 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7135 (void) printf("ztest has been running for %lld seconds\n",
7136 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7138 last_run
= gethrtime();
7139 delay
= MSEC2NSEC(zfs_deadman_checktime_ms
);
7146 ztest_execute(int test
, ztest_info_t
*zi
, uint64_t id
)
7148 ztest_ds_t
*zd
= &ztest_ds
[id
% ztest_opts
.zo_datasets
];
7149 ztest_shared_callstate_t
*zc
= ZTEST_GET_SHARED_CALLSTATE(test
);
7150 hrtime_t functime
= gethrtime();
7153 for (i
= 0; i
< zi
->zi_iters
; i
++)
7154 zi
->zi_func(zd
, id
);
7156 functime
= gethrtime() - functime
;
7158 atomic_add_64(&zc
->zc_count
, 1);
7159 atomic_add_64(&zc
->zc_time
, functime
);
7161 if (ztest_opts
.zo_verbose
>= 4)
7162 (void) printf("%6.2f sec in %s\n",
7163 (double)functime
/ NANOSEC
, zi
->zi_funcname
);
7166 static __attribute__((noreturn
)) void
7167 ztest_thread(void *arg
)
7170 uint64_t id
= (uintptr_t)arg
;
7171 ztest_shared_t
*zs
= ztest_shared
;
7175 ztest_shared_callstate_t
*zc
;
7177 while ((now
= gethrtime()) < zs
->zs_thread_stop
) {
7179 * See if it's time to force a crash.
7181 if (now
> zs
->zs_thread_kill
)
7185 * If we're getting ENOSPC with some regularity, stop.
7187 if (zs
->zs_enospc_count
> 10)
7191 * Pick a random function to execute.
7193 rand
= ztest_random(ZTEST_FUNCS
);
7194 zi
= &ztest_info
[rand
];
7195 zc
= ZTEST_GET_SHARED_CALLSTATE(rand
);
7196 call_next
= zc
->zc_next
;
7198 if (now
>= call_next
&&
7199 atomic_cas_64(&zc
->zc_next
, call_next
, call_next
+
7200 ztest_random(2 * zi
->zi_interval
[0] + 1)) == call_next
) {
7201 ztest_execute(rand
, zi
, id
);
7209 ztest_dataset_name(char *dsname
, char *pool
, int d
)
7211 (void) snprintf(dsname
, ZFS_MAX_DATASET_NAME_LEN
, "%s/ds_%d", pool
, d
);
7215 ztest_dataset_destroy(int d
)
7217 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7220 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7222 if (ztest_opts
.zo_verbose
>= 3)
7223 (void) printf("Destroying %s to free up space\n", name
);
7226 * Cleanup any non-standard clones and snapshots. In general,
7227 * ztest thread t operates on dataset (t % zopt_datasets),
7228 * so there may be more than one thing to clean up.
7230 for (t
= d
; t
< ztest_opts
.zo_threads
;
7231 t
+= ztest_opts
.zo_datasets
)
7232 ztest_dsl_dataset_cleanup(name
, t
);
7234 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
7235 DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
7239 ztest_dataset_dirobj_verify(ztest_ds_t
*zd
)
7241 uint64_t usedobjs
, dirobjs
, scratch
;
7244 * ZTEST_DIROBJ is the object directory for the entire dataset.
7245 * Therefore, the number of objects in use should equal the
7246 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7247 * If not, we have an object leak.
7249 * Note that we can only check this in ztest_dataset_open(),
7250 * when the open-context and syncing-context values agree.
7251 * That's because zap_count() returns the open-context value,
7252 * while dmu_objset_space() returns the rootbp fill count.
7254 VERIFY0(zap_count(zd
->zd_os
, ZTEST_DIROBJ
, &dirobjs
));
7255 dmu_objset_space(zd
->zd_os
, &scratch
, &scratch
, &usedobjs
, &scratch
);
7256 ASSERT3U(dirobjs
+ 1, ==, usedobjs
);
7260 ztest_dataset_open(int d
)
7262 ztest_ds_t
*zd
= &ztest_ds
[d
];
7263 uint64_t committed_seq
= ZTEST_GET_SHARED_DS(d
)->zd_seq
;
7266 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7269 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7271 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
7273 error
= ztest_dataset_create(name
);
7274 if (error
== ENOSPC
) {
7275 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7276 ztest_record_enospc(FTAG
);
7279 ASSERT(error
== 0 || error
== EEXIST
);
7281 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
7283 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7285 ztest_zd_init(zd
, ZTEST_GET_SHARED_DS(d
), os
);
7287 zilog
= zd
->zd_zilog
;
7289 if (zilog
->zl_header
->zh_claim_lr_seq
!= 0 &&
7290 zilog
->zl_header
->zh_claim_lr_seq
< committed_seq
)
7291 fatal(B_FALSE
, "missing log records: "
7292 "claimed %"PRIu64
" < committed %"PRIu64
"",
7293 zilog
->zl_header
->zh_claim_lr_seq
, committed_seq
);
7295 ztest_dataset_dirobj_verify(zd
);
7297 zil_replay(os
, zd
, ztest_replay_vector
);
7299 ztest_dataset_dirobj_verify(zd
);
7301 if (ztest_opts
.zo_verbose
>= 6)
7302 (void) printf("%s replay %"PRIu64
" blocks, "
7303 "%"PRIu64
" records, seq %"PRIu64
"\n",
7305 zilog
->zl_parse_blk_count
,
7306 zilog
->zl_parse_lr_count
,
7307 zilog
->zl_replaying_seq
);
7309 zilog
= zil_open(os
, ztest_get_data
);
7311 if (zilog
->zl_replaying_seq
!= 0 &&
7312 zilog
->zl_replaying_seq
< committed_seq
)
7313 fatal(B_FALSE
, "missing log records: "
7314 "replayed %"PRIu64
" < committed %"PRIu64
"",
7315 zilog
->zl_replaying_seq
, committed_seq
);
7321 ztest_dataset_close(int d
)
7323 ztest_ds_t
*zd
= &ztest_ds
[d
];
7325 zil_close(zd
->zd_zilog
);
7326 dmu_objset_disown(zd
->zd_os
, B_TRUE
, zd
);
7332 ztest_replay_zil_cb(const char *name
, void *arg
)
7338 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_ANY
, B_TRUE
,
7339 B_TRUE
, FTAG
, &os
));
7341 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
7343 ztest_zd_init(zdtmp
, NULL
, os
);
7344 zil_replay(os
, zdtmp
, ztest_replay_vector
);
7345 ztest_zd_fini(zdtmp
);
7347 if (dmu_objset_zil(os
)->zl_parse_lr_count
!= 0 &&
7348 ztest_opts
.zo_verbose
>= 6) {
7349 zilog_t
*zilog
= dmu_objset_zil(os
);
7351 (void) printf("%s replay %"PRIu64
" blocks, "
7352 "%"PRIu64
" records, seq %"PRIu64
"\n",
7354 zilog
->zl_parse_blk_count
,
7355 zilog
->zl_parse_lr_count
,
7356 zilog
->zl_replaying_seq
);
7359 umem_free(zdtmp
, sizeof (ztest_ds_t
));
7361 dmu_objset_disown(os
, B_TRUE
, FTAG
);
7368 ztest_ds_t
*zd
= &ztest_ds
[0];
7372 if (ztest_opts
.zo_verbose
>= 3)
7373 (void) printf("testing spa_freeze()...\n");
7375 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7376 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7377 VERIFY0(ztest_dataset_open(0));
7381 * Force the first log block to be transactionally allocated.
7382 * We have to do this before we freeze the pool -- otherwise
7383 * the log chain won't be anchored.
7385 while (BP_IS_HOLE(&zd
->zd_zilog
->zl_header
->zh_log
)) {
7386 ztest_dmu_object_alloc_free(zd
, 0);
7387 zil_commit(zd
->zd_zilog
, 0);
7390 txg_wait_synced(spa_get_dsl(spa
), 0);
7393 * Freeze the pool. This stops spa_sync() from doing anything,
7394 * so that the only way to record changes from now on is the ZIL.
7399 * Because it is hard to predict how much space a write will actually
7400 * require beforehand, we leave ourselves some fudge space to write over
7403 uint64_t capacity
= metaslab_class_get_space(spa_normal_class(spa
)) / 2;
7406 * Run tests that generate log records but don't alter the pool config
7407 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7408 * We do a txg_wait_synced() after each iteration to force the txg
7409 * to increase well beyond the last synced value in the uberblock.
7410 * The ZIL should be OK with that.
7412 * Run a random number of times less than zo_maxloops and ensure we do
7413 * not run out of space on the pool.
7415 while (ztest_random(10) != 0 &&
7416 numloops
++ < ztest_opts
.zo_maxloops
&&
7417 metaslab_class_get_alloc(spa_normal_class(spa
)) < capacity
) {
7419 ztest_od_init(&od
, 0, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
7420 VERIFY0(ztest_object_init(zd
, &od
, sizeof (od
), B_FALSE
));
7421 ztest_io(zd
, od
.od_object
,
7422 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
7423 txg_wait_synced(spa_get_dsl(spa
), 0);
7427 * Commit all of the changes we just generated.
7429 zil_commit(zd
->zd_zilog
, 0);
7430 txg_wait_synced(spa_get_dsl(spa
), 0);
7433 * Close our dataset and close the pool.
7435 ztest_dataset_close(0);
7436 spa_close(spa
, FTAG
);
7440 * Open and close the pool and dataset to induce log replay.
7442 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7443 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7444 ASSERT3U(spa_freeze_txg(spa
), ==, UINT64_MAX
);
7445 VERIFY0(ztest_dataset_open(0));
7447 txg_wait_synced(spa_get_dsl(spa
), 0);
7448 ztest_dataset_close(0);
7449 ztest_reguid(NULL
, 0);
7451 spa_close(spa
, FTAG
);
7456 ztest_import_impl(void)
7458 importargs_t args
= { 0 };
7459 nvlist_t
*cfg
= NULL
;
7461 char *searchdirs
[nsearch
];
7462 int flags
= ZFS_IMPORT_MISSING_LOG
;
7464 searchdirs
[0] = ztest_opts
.zo_dir
;
7465 args
.paths
= nsearch
;
7466 args
.path
= searchdirs
;
7467 args
.can_be_active
= B_FALSE
;
7469 VERIFY0(zpool_find_config(NULL
, ztest_opts
.zo_pool
, &cfg
, &args
,
7470 &libzpool_config_ops
));
7471 VERIFY0(spa_import(ztest_opts
.zo_pool
, cfg
, NULL
, flags
));
7476 * Import a storage pool with the given name.
7479 ztest_import(ztest_shared_t
*zs
)
7483 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7484 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7485 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
7487 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7489 ztest_import_impl();
7491 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7492 zs
->zs_metaslab_sz
=
7493 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
7494 spa_close(spa
, FTAG
);
7498 if (!ztest_opts
.zo_mmp_test
) {
7499 ztest_run_zdb(ztest_opts
.zo_pool
);
7501 ztest_run_zdb(ztest_opts
.zo_pool
);
7504 (void) pthread_rwlock_destroy(&ztest_name_lock
);
7505 mutex_destroy(&ztest_vdev_lock
);
7506 mutex_destroy(&ztest_checkpoint_lock
);
7510 * Kick off threads to run tests on all datasets in parallel.
7513 ztest_run(ztest_shared_t
*zs
)
7517 kthread_t
*resume_thread
, *deadman_thread
;
7518 kthread_t
**run_threads
;
7523 ztest_exiting
= B_FALSE
;
7526 * Initialize parent/child shared state.
7528 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7529 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7530 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
7532 zs
->zs_thread_start
= gethrtime();
7533 zs
->zs_thread_stop
=
7534 zs
->zs_thread_start
+ ztest_opts
.zo_passtime
* NANOSEC
;
7535 zs
->zs_thread_stop
= MIN(zs
->zs_thread_stop
, zs
->zs_proc_stop
);
7536 zs
->zs_thread_kill
= zs
->zs_thread_stop
;
7537 if (ztest_random(100) < ztest_opts
.zo_killrate
) {
7538 zs
->zs_thread_kill
-=
7539 ztest_random(ztest_opts
.zo_passtime
* NANOSEC
);
7542 mutex_init(&zcl
.zcl_callbacks_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7544 list_create(&zcl
.zcl_callbacks
, sizeof (ztest_cb_data_t
),
7545 offsetof(ztest_cb_data_t
, zcd_node
));
7548 * Open our pool. It may need to be imported first depending on
7549 * what tests were running when the previous pass was terminated.
7551 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7552 error
= spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
);
7554 VERIFY3S(error
, ==, ENOENT
);
7555 ztest_import_impl();
7556 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7557 zs
->zs_metaslab_sz
=
7558 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
7561 metaslab_preload_limit
= ztest_random(20) + 1;
7564 VERIFY0(vdev_raidz_impl_set("cycle"));
7566 dmu_objset_stats_t dds
;
7567 VERIFY0(ztest_dmu_objset_own(ztest_opts
.zo_pool
,
7568 DMU_OST_ANY
, B_TRUE
, B_TRUE
, FTAG
, &os
));
7569 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
7570 dmu_objset_fast_stat(os
, &dds
);
7571 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
7572 zs
->zs_guid
= dds
.dds_guid
;
7573 dmu_objset_disown(os
, B_TRUE
, FTAG
);
7576 * Create a thread to periodically resume suspended I/O.
7578 resume_thread
= thread_create(NULL
, 0, ztest_resume_thread
,
7579 spa
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
7582 * Create a deadman thread and set to panic if we hang.
7584 deadman_thread
= thread_create(NULL
, 0, ztest_deadman_thread
,
7585 zs
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
7587 spa
->spa_deadman_failmode
= ZIO_FAILURE_MODE_PANIC
;
7590 * Verify that we can safely inquire about any object,
7591 * whether it's allocated or not. To make it interesting,
7592 * we probe a 5-wide window around each power of two.
7593 * This hits all edge cases, including zero and the max.
7595 for (t
= 0; t
< 64; t
++) {
7596 for (d
= -5; d
<= 5; d
++) {
7597 error
= dmu_object_info(spa
->spa_meta_objset
,
7598 (1ULL << t
) + d
, NULL
);
7599 ASSERT(error
== 0 || error
== ENOENT
||
7605 * If we got any ENOSPC errors on the previous run, destroy something.
7607 if (zs
->zs_enospc_count
!= 0) {
7608 int d
= ztest_random(ztest_opts
.zo_datasets
);
7609 ztest_dataset_destroy(d
);
7611 zs
->zs_enospc_count
= 0;
7614 * If we were in the middle of ztest_device_removal() and were killed
7615 * we need to ensure the removal and scrub complete before running
7616 * any tests that check ztest_device_removal_active. The removal will
7617 * be restarted automatically when the spa is opened, but we need to
7618 * initiate the scrub manually if it is not already in progress. Note
7619 * that we always run the scrub whenever an indirect vdev exists
7620 * because we have no way of knowing for sure if ztest_device_removal()
7621 * fully completed its scrub before the pool was reimported.
7623 if (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
||
7624 spa
->spa_removing_phys
.sr_prev_indirect_vdev
!= -1) {
7625 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
7626 txg_wait_synced(spa_get_dsl(spa
), 0);
7628 error
= ztest_scrub_impl(spa
);
7634 run_threads
= umem_zalloc(ztest_opts
.zo_threads
* sizeof (kthread_t
*),
7637 if (ztest_opts
.zo_verbose
>= 4)
7638 (void) printf("starting main threads...\n");
7641 * Replay all logs of all datasets in the pool. This is primarily for
7642 * temporary datasets which wouldn't otherwise get replayed, which
7643 * can trigger failures when attempting to offline a SLOG in
7644 * ztest_fault_inject().
7646 (void) dmu_objset_find(ztest_opts
.zo_pool
, ztest_replay_zil_cb
,
7647 NULL
, DS_FIND_CHILDREN
);
7650 * Kick off all the tests that run in parallel.
7652 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
7653 if (t
< ztest_opts
.zo_datasets
&& ztest_dataset_open(t
) != 0) {
7654 umem_free(run_threads
, ztest_opts
.zo_threads
*
7655 sizeof (kthread_t
*));
7659 run_threads
[t
] = thread_create(NULL
, 0, ztest_thread
,
7660 (void *)(uintptr_t)t
, 0, NULL
, TS_RUN
| TS_JOINABLE
,
7665 * Wait for all of the tests to complete.
7667 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++)
7668 VERIFY0(thread_join(run_threads
[t
]));
7671 * Close all datasets. This must be done after all the threads
7672 * are joined so we can be sure none of the datasets are in-use
7673 * by any of the threads.
7675 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
7676 if (t
< ztest_opts
.zo_datasets
)
7677 ztest_dataset_close(t
);
7680 txg_wait_synced(spa_get_dsl(spa
), 0);
7682 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
7683 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
7685 umem_free(run_threads
, ztest_opts
.zo_threads
* sizeof (kthread_t
*));
7687 /* Kill the resume and deadman threads */
7688 ztest_exiting
= B_TRUE
;
7689 VERIFY0(thread_join(resume_thread
));
7690 VERIFY0(thread_join(deadman_thread
));
7694 * Right before closing the pool, kick off a bunch of async I/O;
7695 * spa_close() should wait for it to complete.
7697 for (object
= 1; object
< 50; object
++) {
7698 dmu_prefetch(spa
->spa_meta_objset
, object
, 0, 0, 1ULL << 20,
7699 ZIO_PRIORITY_SYNC_READ
);
7702 /* Verify that at least one commit cb was called in a timely fashion */
7703 if (zc_cb_counter
>= ZTEST_COMMIT_CB_MIN_REG
)
7704 VERIFY0(zc_min_txg_delay
);
7706 spa_close(spa
, FTAG
);
7709 * Verify that we can loop over all pools.
7711 mutex_enter(&spa_namespace_lock
);
7712 for (spa
= spa_next(NULL
); spa
!= NULL
; spa
= spa_next(spa
))
7713 if (ztest_opts
.zo_verbose
> 3)
7714 (void) printf("spa_next: found %s\n", spa_name(spa
));
7715 mutex_exit(&spa_namespace_lock
);
7718 * Verify that we can export the pool and reimport it under a
7721 if ((ztest_random(2) == 0) && !ztest_opts
.zo_mmp_test
) {
7722 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7723 (void) snprintf(name
, sizeof (name
), "%s_import",
7724 ztest_opts
.zo_pool
);
7725 ztest_spa_import_export(ztest_opts
.zo_pool
, name
);
7726 ztest_spa_import_export(name
, ztest_opts
.zo_pool
);
7731 list_destroy(&zcl
.zcl_callbacks
);
7732 mutex_destroy(&zcl
.zcl_callbacks_lock
);
7733 (void) pthread_rwlock_destroy(&ztest_name_lock
);
7734 mutex_destroy(&ztest_vdev_lock
);
7735 mutex_destroy(&ztest_checkpoint_lock
);
7739 print_time(hrtime_t t
, char *timebuf
)
7741 hrtime_t s
= t
/ NANOSEC
;
7742 hrtime_t m
= s
/ 60;
7743 hrtime_t h
= m
/ 60;
7744 hrtime_t d
= h
/ 24;
7753 (void) sprintf(timebuf
,
7754 "%llud%02lluh%02llum%02llus", d
, h
, m
, s
);
7756 (void) sprintf(timebuf
, "%lluh%02llum%02llus", h
, m
, s
);
7758 (void) sprintf(timebuf
, "%llum%02llus", m
, s
);
7760 (void) sprintf(timebuf
, "%llus", s
);
7764 make_random_props(void)
7768 props
= fnvlist_alloc();
7770 if (ztest_random(2) == 0)
7773 fnvlist_add_uint64(props
,
7774 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE
), 1);
7780 * Create a storage pool with the given name and initial vdev size.
7781 * Then test spa_freeze() functionality.
7784 ztest_init(ztest_shared_t
*zs
)
7787 nvlist_t
*nvroot
, *props
;
7790 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7791 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7792 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
7794 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7797 * Create the storage pool.
7799 (void) spa_destroy(ztest_opts
.zo_pool
);
7800 ztest_shared
->zs_vdev_next_leaf
= 0;
7802 zs
->zs_mirrors
= ztest_opts
.zo_mirrors
;
7803 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
7804 NULL
, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
, 1);
7805 props
= make_random_props();
7808 * We don't expect the pool to suspend unless maxfaults == 0,
7809 * in which case ztest_fault_inject() temporarily takes away
7810 * the only valid replica.
7812 fnvlist_add_uint64(props
,
7813 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE
),
7814 MAXFAULTS(zs
) ? ZIO_FAILURE_MODE_PANIC
: ZIO_FAILURE_MODE_WAIT
);
7816 for (i
= 0; i
< SPA_FEATURES
; i
++) {
7819 if (!spa_feature_table
[i
].fi_zfs_mod_supported
)
7823 * 75% chance of using the log space map feature. We want ztest
7824 * to exercise both the code paths that use the log space map
7825 * feature and the ones that don't.
7827 if (i
== SPA_FEATURE_LOG_SPACEMAP
&& ztest_random(4) == 0)
7830 VERIFY3S(-1, !=, asprintf(&buf
, "feature@%s",
7831 spa_feature_table
[i
].fi_uname
));
7832 fnvlist_add_uint64(props
, buf
, 0);
7836 VERIFY0(spa_create(ztest_opts
.zo_pool
, nvroot
, props
, NULL
, NULL
));
7837 fnvlist_free(nvroot
);
7838 fnvlist_free(props
);
7840 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7841 zs
->zs_metaslab_sz
=
7842 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
7843 spa_close(spa
, FTAG
);
7847 if (!ztest_opts
.zo_mmp_test
) {
7848 ztest_run_zdb(ztest_opts
.zo_pool
);
7850 ztest_run_zdb(ztest_opts
.zo_pool
);
7853 (void) pthread_rwlock_destroy(&ztest_name_lock
);
7854 mutex_destroy(&ztest_vdev_lock
);
7855 mutex_destroy(&ztest_checkpoint_lock
);
7861 static char ztest_name_data
[] = "/tmp/ztest.data.XXXXXX";
7863 ztest_fd_data
= mkstemp(ztest_name_data
);
7864 ASSERT3S(ztest_fd_data
, >=, 0);
7865 (void) unlink(ztest_name_data
);
7869 shared_data_size(ztest_shared_hdr_t
*hdr
)
7873 size
= hdr
->zh_hdr_size
;
7874 size
+= hdr
->zh_opts_size
;
7875 size
+= hdr
->zh_size
;
7876 size
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
7877 size
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
7886 ztest_shared_hdr_t
*hdr
;
7888 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
7889 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
7890 ASSERT3P(hdr
, !=, MAP_FAILED
);
7892 VERIFY0(ftruncate(ztest_fd_data
, sizeof (ztest_shared_hdr_t
)));
7894 hdr
->zh_hdr_size
= sizeof (ztest_shared_hdr_t
);
7895 hdr
->zh_opts_size
= sizeof (ztest_shared_opts_t
);
7896 hdr
->zh_size
= sizeof (ztest_shared_t
);
7897 hdr
->zh_stats_size
= sizeof (ztest_shared_callstate_t
);
7898 hdr
->zh_stats_count
= ZTEST_FUNCS
;
7899 hdr
->zh_ds_size
= sizeof (ztest_shared_ds_t
);
7900 hdr
->zh_ds_count
= ztest_opts
.zo_datasets
;
7902 size
= shared_data_size(hdr
);
7903 VERIFY0(ftruncate(ztest_fd_data
, size
));
7905 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
7912 ztest_shared_hdr_t
*hdr
;
7915 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
7916 PROT_READ
, MAP_SHARED
, ztest_fd_data
, 0);
7917 ASSERT3P(hdr
, !=, MAP_FAILED
);
7919 size
= shared_data_size(hdr
);
7921 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
7922 hdr
= ztest_shared_hdr
= (void *)mmap(0, P2ROUNDUP(size
, getpagesize()),
7923 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
7924 ASSERT3P(hdr
, !=, MAP_FAILED
);
7925 buf
= (uint8_t *)hdr
;
7927 offset
= hdr
->zh_hdr_size
;
7928 ztest_shared_opts
= (void *)&buf
[offset
];
7929 offset
+= hdr
->zh_opts_size
;
7930 ztest_shared
= (void *)&buf
[offset
];
7931 offset
+= hdr
->zh_size
;
7932 ztest_shared_callstate
= (void *)&buf
[offset
];
7933 offset
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
7934 ztest_shared_ds
= (void *)&buf
[offset
];
7938 exec_child(char *cmd
, char *libpath
, boolean_t ignorekill
, int *statusp
)
7942 char *cmdbuf
= NULL
;
7947 cmdbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
7948 (void) strlcpy(cmdbuf
, getexecname(), MAXPATHLEN
);
7953 fatal(B_TRUE
, "fork failed");
7955 if (pid
== 0) { /* child */
7956 char fd_data_str
[12];
7959 snprintf(fd_data_str
, 12, "%d", ztest_fd_data
));
7960 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str
, 1));
7962 if (libpath
!= NULL
) {
7963 const char *curlp
= getenv("LD_LIBRARY_PATH");
7965 VERIFY0(setenv("LD_LIBRARY_PATH", libpath
, 1));
7969 asprintf(&newlp
, "%s:%s", libpath
, curlp
));
7970 VERIFY0(setenv("LD_LIBRARY_PATH", newlp
, 1));
7973 (void) execl(cmd
, cmd
, (char *)NULL
);
7974 ztest_dump_core
= B_FALSE
;
7975 fatal(B_TRUE
, "exec failed: %s", cmd
);
7978 if (cmdbuf
!= NULL
) {
7979 umem_free(cmdbuf
, MAXPATHLEN
);
7983 while (waitpid(pid
, &status
, 0) != pid
)
7985 if (statusp
!= NULL
)
7988 if (WIFEXITED(status
)) {
7989 if (WEXITSTATUS(status
) != 0) {
7990 (void) fprintf(stderr
, "child exited with code %d\n",
7991 WEXITSTATUS(status
));
7995 } else if (WIFSIGNALED(status
)) {
7996 if (!ignorekill
|| WTERMSIG(status
) != SIGKILL
) {
7997 (void) fprintf(stderr
, "child died with signal %d\n",
8003 (void) fprintf(stderr
, "something strange happened to child\n");
8009 ztest_run_init(void)
8013 ztest_shared_t
*zs
= ztest_shared
;
8016 * Blow away any existing copy of zpool.cache
8018 (void) remove(spa_config_path
);
8020 if (ztest_opts
.zo_init
== 0) {
8021 if (ztest_opts
.zo_verbose
>= 1)
8022 (void) printf("Importing pool %s\n",
8023 ztest_opts
.zo_pool
);
8029 * Create and initialize our storage pool.
8031 for (i
= 1; i
<= ztest_opts
.zo_init
; i
++) {
8032 memset(zs
, 0, sizeof (*zs
));
8033 if (ztest_opts
.zo_verbose
>= 3 &&
8034 ztest_opts
.zo_init
!= 1) {
8035 (void) printf("ztest_init(), pass %d\n", i
);
8042 main(int argc
, char **argv
)
8050 ztest_shared_callstate_t
*zc
;
8052 char numbuf
[NN_NUMBUF_SZ
];
8056 char *fd_data_str
= getenv("ZTEST_FD_DATA");
8057 struct sigaction action
;
8059 (void) setvbuf(stdout
, NULL
, _IOLBF
, 0);
8061 dprintf_setup(&argc
, argv
);
8062 zfs_deadman_synctime_ms
= 300000;
8063 zfs_deadman_checktime_ms
= 30000;
8065 * As two-word space map entries may not come up often (especially
8066 * if pool and vdev sizes are small) we want to force at least some
8067 * of them so the feature get tested.
8069 zfs_force_some_double_word_sm_entries
= B_TRUE
;
8072 * Verify that even extensively damaged split blocks with many
8073 * segments can be reconstructed in a reasonable amount of time
8074 * when reconstruction is known to be possible.
8076 * Note: the lower this value is, the more damage we inflict, and
8077 * the more time ztest spends in recovering that damage. We chose
8078 * to induce damage 1/100th of the time so recovery is tested but
8079 * not so frequently that ztest doesn't get to test other code paths.
8081 zfs_reconstruct_indirect_damage_fraction
= 100;
8083 action
.sa_handler
= sig_handler
;
8084 sigemptyset(&action
.sa_mask
);
8085 action
.sa_flags
= 0;
8087 if (sigaction(SIGSEGV
, &action
, NULL
) < 0) {
8088 (void) fprintf(stderr
, "ztest: cannot catch SIGSEGV: %s.\n",
8093 if (sigaction(SIGABRT
, &action
, NULL
) < 0) {
8094 (void) fprintf(stderr
, "ztest: cannot catch SIGABRT: %s.\n",
8100 * Force random_get_bytes() to use /dev/urandom in order to prevent
8101 * ztest from needlessly depleting the system entropy pool.
8103 random_path
= "/dev/urandom";
8104 ztest_fd_rand
= open(random_path
, O_RDONLY
| O_CLOEXEC
);
8105 ASSERT3S(ztest_fd_rand
, >=, 0);
8108 process_options(argc
, argv
);
8113 memcpy(ztest_shared_opts
, &ztest_opts
,
8114 sizeof (*ztest_shared_opts
));
8116 ztest_fd_data
= atoi(fd_data_str
);
8118 memcpy(&ztest_opts
, ztest_shared_opts
, sizeof (ztest_opts
));
8120 ASSERT3U(ztest_opts
.zo_datasets
, ==, ztest_shared_hdr
->zh_ds_count
);
8122 err
= ztest_set_global_vars();
8123 if (err
!= 0 && !fd_data_str
) {
8124 /* error message done by ztest_set_global_vars */
8127 /* children should not be spawned if setting gvars fails */
8128 VERIFY3S(err
, ==, 0);
8131 /* Override location of zpool.cache */
8132 VERIFY3S(asprintf((char **)&spa_config_path
, "%s/zpool.cache",
8133 ztest_opts
.zo_dir
), !=, -1);
8135 ztest_ds
= umem_alloc(ztest_opts
.zo_datasets
* sizeof (ztest_ds_t
),
8140 metaslab_force_ganging
= ztest_opts
.zo_metaslab_force_ganging
;
8141 metaslab_df_alloc_threshold
=
8142 zs
->zs_metaslab_df_alloc_threshold
;
8151 hasalt
= (strlen(ztest_opts
.zo_alt_ztest
) != 0);
8153 if (ztest_opts
.zo_verbose
>= 1) {
8154 (void) printf("%"PRIu64
" vdevs, %d datasets, %d threads,"
8155 "%d %s disks, %"PRIu64
" seconds...\n\n",
8156 ztest_opts
.zo_vdevs
,
8157 ztest_opts
.zo_datasets
,
8158 ztest_opts
.zo_threads
,
8159 ztest_opts
.zo_raid_children
,
8160 ztest_opts
.zo_raid_type
,
8161 ztest_opts
.zo_time
);
8164 cmd
= umem_alloc(MAXNAMELEN
, UMEM_NOFAIL
);
8165 (void) strlcpy(cmd
, getexecname(), MAXNAMELEN
);
8167 zs
->zs_do_init
= B_TRUE
;
8168 if (strlen(ztest_opts
.zo_alt_ztest
) != 0) {
8169 if (ztest_opts
.zo_verbose
>= 1) {
8170 (void) printf("Executing older ztest for "
8171 "initialization: %s\n", ztest_opts
.zo_alt_ztest
);
8173 VERIFY(!exec_child(ztest_opts
.zo_alt_ztest
,
8174 ztest_opts
.zo_alt_libpath
, B_FALSE
, NULL
));
8176 VERIFY(!exec_child(NULL
, NULL
, B_FALSE
, NULL
));
8178 zs
->zs_do_init
= B_FALSE
;
8180 zs
->zs_proc_start
= gethrtime();
8181 zs
->zs_proc_stop
= zs
->zs_proc_start
+ ztest_opts
.zo_time
* NANOSEC
;
8183 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8184 zi
= &ztest_info
[f
];
8185 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8186 if (zs
->zs_proc_start
+ zi
->zi_interval
[0] > zs
->zs_proc_stop
)
8187 zc
->zc_next
= UINT64_MAX
;
8189 zc
->zc_next
= zs
->zs_proc_start
+
8190 ztest_random(2 * zi
->zi_interval
[0] + 1);
8194 * Run the tests in a loop. These tests include fault injection
8195 * to verify that self-healing data works, and forced crashes
8196 * to verify that we never lose on-disk consistency.
8198 while (gethrtime() < zs
->zs_proc_stop
) {
8203 * Initialize the workload counters for each function.
8205 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8206 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8211 /* Set the allocation switch size */
8212 zs
->zs_metaslab_df_alloc_threshold
=
8213 ztest_random(zs
->zs_metaslab_sz
/ 4) + 1;
8215 if (!hasalt
|| ztest_random(2) == 0) {
8216 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
8217 (void) printf("Executing newer ztest: %s\n",
8221 killed
= exec_child(cmd
, NULL
, B_TRUE
, &status
);
8223 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
8224 (void) printf("Executing older ztest: %s\n",
8225 ztest_opts
.zo_alt_ztest
);
8228 killed
= exec_child(ztest_opts
.zo_alt_ztest
,
8229 ztest_opts
.zo_alt_libpath
, B_TRUE
, &status
);
8236 if (ztest_opts
.zo_verbose
>= 1) {
8237 hrtime_t now
= gethrtime();
8239 now
= MIN(now
, zs
->zs_proc_stop
);
8240 print_time(zs
->zs_proc_stop
- now
, timebuf
);
8241 nicenum(zs
->zs_space
, numbuf
, sizeof (numbuf
));
8243 (void) printf("Pass %3d, %8s, %3"PRIu64
" ENOSPC, "
8244 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8246 WIFEXITED(status
) ? "Complete" : "SIGKILL",
8247 zs
->zs_enospc_count
,
8248 100.0 * zs
->zs_alloc
/ zs
->zs_space
,
8250 100.0 * (now
- zs
->zs_proc_start
) /
8251 (ztest_opts
.zo_time
* NANOSEC
), timebuf
);
8254 if (ztest_opts
.zo_verbose
>= 2) {
8255 (void) printf("\nWorkload summary:\n\n");
8256 (void) printf("%7s %9s %s\n",
8257 "Calls", "Time", "Function");
8258 (void) printf("%7s %9s %s\n",
8259 "-----", "----", "--------");
8260 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8261 zi
= &ztest_info
[f
];
8262 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8263 print_time(zc
->zc_time
, timebuf
);
8264 (void) printf("%7"PRIu64
" %9s %s\n",
8265 zc
->zc_count
, timebuf
,
8268 (void) printf("\n");
8271 if (!ztest_opts
.zo_mmp_test
)
8272 ztest_run_zdb(ztest_opts
.zo_pool
);
8275 if (ztest_opts
.zo_verbose
>= 1) {
8277 (void) printf("%d runs of older ztest: %s\n", older
,
8278 ztest_opts
.zo_alt_ztest
);
8279 (void) printf("%d runs of newer ztest: %s\n", newer
,
8282 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8283 kills
, iters
- kills
, (100.0 * kills
) / MAX(1, iters
));
8286 umem_free(cmd
, MAXNAMELEN
);