4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2011, 2018 by Delphix. All rights reserved.
24 * Copyright 2011 Nexenta Systems, Inc. All rights reserved.
25 * Copyright (c) 2013 Steven Hartland. All rights reserved.
26 * Copyright (c) 2014 Integros [integros.com]
27 * Copyright 2017 Joyent, Inc.
28 * Copyright (c) 2017, Intel Corporation.
32 * The objective of this program is to provide a DMU/ZAP/SPA stress test
33 * that runs entirely in userland, is easy to use, and easy to extend.
35 * The overall design of the ztest program is as follows:
37 * (1) For each major functional area (e.g. adding vdevs to a pool,
38 * creating and destroying datasets, reading and writing objects, etc)
39 * we have a simple routine to test that functionality. These
40 * individual routines do not have to do anything "stressful".
42 * (2) We turn these simple functionality tests into a stress test by
43 * running them all in parallel, with as many threads as desired,
44 * and spread across as many datasets, objects, and vdevs as desired.
46 * (3) While all this is happening, we inject faults into the pool to
47 * verify that self-healing data really works.
49 * (4) Every time we open a dataset, we change its checksum and compression
50 * functions. Thus even individual objects vary from block to block
51 * in which checksum they use and whether they're compressed.
53 * (5) To verify that we never lose on-disk consistency after a crash,
54 * we run the entire test in a child of the main process.
55 * At random times, the child self-immolates with a SIGKILL.
56 * This is the software equivalent of pulling the power cord.
57 * The parent then runs the test again, using the existing
58 * storage pool, as many times as desired. If backwards compatibility
59 * testing is enabled ztest will sometimes run the "older" version
60 * of ztest after a SIGKILL.
62 * (6) To verify that we don't have future leaks or temporal incursions,
63 * many of the functional tests record the transaction group number
64 * as part of their data. When reading old data, they verify that
65 * the transaction group number is less than the current, open txg.
66 * If you add a new test, please do this if applicable.
68 * (7) Threads are created with a reduced stack size, for sanity checking.
69 * Therefore, it's important not to allocate huge buffers on the stack.
71 * When run with no arguments, ztest runs for about five minutes and
72 * produces no output if successful. To get a little bit of information,
73 * specify -V. To get more information, specify -VV, and so on.
75 * To turn this into an overnight stress test, use -T to specify run time.
77 * You can ask more vdevs [-v], datasets [-d], or threads [-t]
78 * to increase the pool capacity, fanout, and overall stress level.
80 * Use the -k option to set the desired frequency of kills.
82 * When ztest invokes itself it passes all relevant information through a
83 * temporary file which is mmap-ed in the child process. This allows shared
84 * memory to survive the exec syscall. The ztest_shared_hdr_t struct is always
85 * stored at offset 0 of this file and contains information on the size and
86 * number of shared structures in the file. The information stored in this file
87 * must remain backwards compatible with older versions of ztest so that
88 * ztest can invoke them during backwards compatibility testing (-B).
91 #include <sys/zfs_context.h>
97 #include <sys/dmu_objset.h>
100 #include <sys/time.h>
101 #include <sys/wait.h>
102 #include <sys/mman.h>
103 #include <sys/resource.h>
106 #include <sys/zil_impl.h>
107 #include <sys/vdev_draid.h>
108 #include <sys/vdev_impl.h>
109 #include <sys/vdev_file.h>
110 #include <sys/vdev_initialize.h>
111 #include <sys/vdev_raidz.h>
112 #include <sys/vdev_trim.h>
113 #include <sys/spa_impl.h>
114 #include <sys/metaslab_impl.h>
115 #include <sys/dsl_prop.h>
116 #include <sys/dsl_dataset.h>
117 #include <sys/dsl_destroy.h>
118 #include <sys/dsl_scan.h>
119 #include <sys/zio_checksum.h>
120 #include <sys/zfs_refcount.h>
121 #include <sys/zfeature.h>
122 #include <sys/dsl_userhold.h>
124 #include <sys/blake3.h>
133 #include <sys/fs/zfs.h>
134 #include <zfs_fletcher.h>
135 #include <libnvpair.h>
136 #include <libzutil.h>
137 #include <sys/crypto/icp.h>
138 #include <sys/zfs_impl.h>
139 #if (__GLIBC__ && !__UCLIBC__)
140 #include <execinfo.h> /* for backtrace() */
143 static int ztest_fd_data
= -1;
144 static int ztest_fd_rand
= -1;
146 typedef struct ztest_shared_hdr
{
147 uint64_t zh_hdr_size
;
148 uint64_t zh_opts_size
;
150 uint64_t zh_stats_size
;
151 uint64_t zh_stats_count
;
153 uint64_t zh_ds_count
;
154 } ztest_shared_hdr_t
;
156 static ztest_shared_hdr_t
*ztest_shared_hdr
;
158 enum ztest_class_state
{
159 ZTEST_VDEV_CLASS_OFF
,
164 #define ZO_GVARS_MAX_ARGLEN ((size_t)64)
165 #define ZO_GVARS_MAX_COUNT ((size_t)10)
167 typedef struct ztest_shared_opts
{
168 char zo_pool
[ZFS_MAX_DATASET_NAME_LEN
];
169 char zo_dir
[ZFS_MAX_DATASET_NAME_LEN
];
170 char zo_alt_ztest
[MAXNAMELEN
];
171 char zo_alt_libpath
[MAXNAMELEN
];
173 uint64_t zo_vdevtime
;
177 int zo_raid_children
;
179 char zo_raid_type
[8];
184 uint64_t zo_passtime
;
185 uint64_t zo_killrate
;
189 uint64_t zo_maxloops
;
190 uint64_t zo_metaslab_force_ganging
;
192 int zo_special_vdevs
;
195 char zo_gvars
[ZO_GVARS_MAX_COUNT
][ZO_GVARS_MAX_ARGLEN
];
196 } ztest_shared_opts_t
;
198 /* Default values for command line options. */
199 #define DEFAULT_POOL "ztest"
200 #define DEFAULT_VDEV_DIR "/tmp"
201 #define DEFAULT_VDEV_COUNT 5
202 #define DEFAULT_VDEV_SIZE (SPA_MINDEVSIZE * 4) /* 256m default size */
203 #define DEFAULT_VDEV_SIZE_STR "256M"
204 #define DEFAULT_ASHIFT SPA_MINBLOCKSHIFT
205 #define DEFAULT_MIRRORS 2
206 #define DEFAULT_RAID_CHILDREN 4
207 #define DEFAULT_RAID_PARITY 1
208 #define DEFAULT_DRAID_DATA 4
209 #define DEFAULT_DRAID_SPARES 1
210 #define DEFAULT_DATASETS_COUNT 7
211 #define DEFAULT_THREADS 23
212 #define DEFAULT_RUN_TIME 300 /* 300 seconds */
213 #define DEFAULT_RUN_TIME_STR "300 sec"
214 #define DEFAULT_PASS_TIME 60 /* 60 seconds */
215 #define DEFAULT_PASS_TIME_STR "60 sec"
216 #define DEFAULT_KILL_RATE 70 /* 70% kill rate */
217 #define DEFAULT_KILLRATE_STR "70%"
218 #define DEFAULT_INITS 1
219 #define DEFAULT_MAX_LOOPS 50 /* 5 minutes */
220 #define DEFAULT_FORCE_GANGING (64 << 10)
221 #define DEFAULT_FORCE_GANGING_STR "64K"
223 /* Simplifying assumption: -1 is not a valid default. */
224 #define NO_DEFAULT -1
226 static const ztest_shared_opts_t ztest_opts_defaults
= {
227 .zo_pool
= DEFAULT_POOL
,
228 .zo_dir
= DEFAULT_VDEV_DIR
,
229 .zo_alt_ztest
= { '\0' },
230 .zo_alt_libpath
= { '\0' },
231 .zo_vdevs
= DEFAULT_VDEV_COUNT
,
232 .zo_ashift
= DEFAULT_ASHIFT
,
233 .zo_mirrors
= DEFAULT_MIRRORS
,
234 .zo_raid_children
= DEFAULT_RAID_CHILDREN
,
235 .zo_raid_parity
= DEFAULT_RAID_PARITY
,
236 .zo_raid_type
= VDEV_TYPE_RAIDZ
,
237 .zo_vdev_size
= DEFAULT_VDEV_SIZE
,
238 .zo_draid_data
= DEFAULT_DRAID_DATA
, /* data drives */
239 .zo_draid_spares
= DEFAULT_DRAID_SPARES
, /* distributed spares */
240 .zo_datasets
= DEFAULT_DATASETS_COUNT
,
241 .zo_threads
= DEFAULT_THREADS
,
242 .zo_passtime
= DEFAULT_PASS_TIME
,
243 .zo_killrate
= DEFAULT_KILL_RATE
,
246 .zo_init
= DEFAULT_INITS
,
247 .zo_time
= DEFAULT_RUN_TIME
,
248 .zo_maxloops
= DEFAULT_MAX_LOOPS
, /* max loops during spa_freeze() */
249 .zo_metaslab_force_ganging
= DEFAULT_FORCE_GANGING
,
250 .zo_special_vdevs
= ZTEST_VDEV_CLASS_RND
,
254 extern uint64_t metaslab_force_ganging
;
255 extern uint64_t metaslab_df_alloc_threshold
;
256 extern uint64_t zfs_deadman_synctime_ms
;
257 extern uint_t metaslab_preload_limit
;
258 extern int zfs_compressed_arc_enabled
;
259 extern int zfs_abd_scatter_enabled
;
260 extern uint_t dmu_object_alloc_chunk_shift
;
261 extern boolean_t zfs_force_some_double_word_sm_entries
;
262 extern unsigned long zio_decompress_fail_fraction
;
263 extern unsigned long zfs_reconstruct_indirect_damage_fraction
;
266 static ztest_shared_opts_t
*ztest_shared_opts
;
267 static ztest_shared_opts_t ztest_opts
;
268 static const char *const ztest_wkeydata
= "abcdefghijklmnopqrstuvwxyz012345";
270 typedef struct ztest_shared_ds
{
274 static ztest_shared_ds_t
*ztest_shared_ds
;
275 #define ZTEST_GET_SHARED_DS(d) (&ztest_shared_ds[d])
277 #define BT_MAGIC 0x123456789abcdefULL
278 #define MAXFAULTS(zs) \
279 (MAX((zs)->zs_mirrors, 1) * (ztest_opts.zo_raid_parity + 1) - 1)
283 ZTEST_IO_WRITE_PATTERN
,
284 ZTEST_IO_WRITE_ZEROES
,
291 typedef struct ztest_block_tag
{
295 uint64_t bt_dnodesize
;
302 typedef struct bufwad
{
309 * It would be better to use a rangelock_t per object. Unfortunately
310 * the rangelock_t is not a drop-in replacement for rl_t, because we
311 * still need to map from object ID to rangelock_t.
333 #define ZTEST_RANGE_LOCKS 64
334 #define ZTEST_OBJECT_LOCKS 64
337 * Object descriptor. Used as a template for object lookup/create/remove.
339 typedef struct ztest_od
{
342 dmu_object_type_t od_type
;
343 dmu_object_type_t od_crtype
;
344 uint64_t od_blocksize
;
345 uint64_t od_crblocksize
;
346 uint64_t od_crdnodesize
;
349 char od_name
[ZFS_MAX_DATASET_NAME_LEN
];
355 typedef struct ztest_ds
{
356 ztest_shared_ds_t
*zd_shared
;
358 pthread_rwlock_t zd_zilog_lock
;
360 ztest_od_t
*zd_od
; /* debugging aid */
361 char zd_name
[ZFS_MAX_DATASET_NAME_LEN
];
362 kmutex_t zd_dirobj_lock
;
363 rll_t zd_object_lock
[ZTEST_OBJECT_LOCKS
];
364 rll_t zd_range_lock
[ZTEST_RANGE_LOCKS
];
368 * Per-iteration state.
370 typedef void ztest_func_t(ztest_ds_t
*zd
, uint64_t id
);
372 typedef struct ztest_info
{
373 ztest_func_t
*zi_func
; /* test function */
374 uint64_t zi_iters
; /* iterations per execution */
375 uint64_t *zi_interval
; /* execute every <interval> seconds */
376 const char *zi_funcname
; /* name of test function */
379 typedef struct ztest_shared_callstate
{
380 uint64_t zc_count
; /* per-pass count */
381 uint64_t zc_time
; /* per-pass time */
382 uint64_t zc_next
; /* next time to call this function */
383 } ztest_shared_callstate_t
;
385 static ztest_shared_callstate_t
*ztest_shared_callstate
;
386 #define ZTEST_GET_SHARED_CALLSTATE(c) (&ztest_shared_callstate[c])
388 ztest_func_t ztest_dmu_read_write
;
389 ztest_func_t ztest_dmu_write_parallel
;
390 ztest_func_t ztest_dmu_object_alloc_free
;
391 ztest_func_t ztest_dmu_object_next_chunk
;
392 ztest_func_t ztest_dmu_commit_callbacks
;
393 ztest_func_t ztest_zap
;
394 ztest_func_t ztest_zap_parallel
;
395 ztest_func_t ztest_zil_commit
;
396 ztest_func_t ztest_zil_remount
;
397 ztest_func_t ztest_dmu_read_write_zcopy
;
398 ztest_func_t ztest_dmu_objset_create_destroy
;
399 ztest_func_t ztest_dmu_prealloc
;
400 ztest_func_t ztest_fzap
;
401 ztest_func_t ztest_dmu_snapshot_create_destroy
;
402 ztest_func_t ztest_dsl_prop_get_set
;
403 ztest_func_t ztest_spa_prop_get_set
;
404 ztest_func_t ztest_spa_create_destroy
;
405 ztest_func_t ztest_fault_inject
;
406 ztest_func_t ztest_dmu_snapshot_hold
;
407 ztest_func_t ztest_mmp_enable_disable
;
408 ztest_func_t ztest_scrub
;
409 ztest_func_t ztest_dsl_dataset_promote_busy
;
410 ztest_func_t ztest_vdev_attach_detach
;
411 ztest_func_t ztest_vdev_LUN_growth
;
412 ztest_func_t ztest_vdev_add_remove
;
413 ztest_func_t ztest_vdev_class_add
;
414 ztest_func_t ztest_vdev_aux_add_remove
;
415 ztest_func_t ztest_split_pool
;
416 ztest_func_t ztest_reguid
;
417 ztest_func_t ztest_spa_upgrade
;
418 ztest_func_t ztest_device_removal
;
419 ztest_func_t ztest_spa_checkpoint_create_discard
;
420 ztest_func_t ztest_initialize
;
421 ztest_func_t ztest_trim
;
422 ztest_func_t ztest_blake3
;
423 ztest_func_t ztest_fletcher
;
424 ztest_func_t ztest_fletcher_incr
;
425 ztest_func_t ztest_verify_dnode_bt
;
427 static uint64_t zopt_always
= 0ULL * NANOSEC
; /* all the time */
428 static uint64_t zopt_incessant
= 1ULL * NANOSEC
/ 10; /* every 1/10 second */
429 static uint64_t zopt_often
= 1ULL * NANOSEC
; /* every second */
430 static uint64_t zopt_sometimes
= 10ULL * NANOSEC
; /* every 10 seconds */
431 static uint64_t zopt_rarely
= 60ULL * NANOSEC
; /* every 60 seconds */
433 #define ZTI_INIT(func, iters, interval) \
434 { .zi_func = (func), \
435 .zi_iters = (iters), \
436 .zi_interval = (interval), \
437 .zi_funcname = # func }
439 static ztest_info_t ztest_info
[] = {
440 ZTI_INIT(ztest_dmu_read_write
, 1, &zopt_always
),
441 ZTI_INIT(ztest_dmu_write_parallel
, 10, &zopt_always
),
442 ZTI_INIT(ztest_dmu_object_alloc_free
, 1, &zopt_always
),
443 ZTI_INIT(ztest_dmu_object_next_chunk
, 1, &zopt_sometimes
),
444 ZTI_INIT(ztest_dmu_commit_callbacks
, 1, &zopt_always
),
445 ZTI_INIT(ztest_zap
, 30, &zopt_always
),
446 ZTI_INIT(ztest_zap_parallel
, 100, &zopt_always
),
447 ZTI_INIT(ztest_split_pool
, 1, &zopt_sometimes
),
448 ZTI_INIT(ztest_zil_commit
, 1, &zopt_incessant
),
449 ZTI_INIT(ztest_zil_remount
, 1, &zopt_sometimes
),
450 ZTI_INIT(ztest_dmu_read_write_zcopy
, 1, &zopt_often
),
451 ZTI_INIT(ztest_dmu_objset_create_destroy
, 1, &zopt_often
),
452 ZTI_INIT(ztest_dsl_prop_get_set
, 1, &zopt_often
),
453 ZTI_INIT(ztest_spa_prop_get_set
, 1, &zopt_sometimes
),
455 ZTI_INIT(ztest_dmu_prealloc
, 1, &zopt_sometimes
),
457 ZTI_INIT(ztest_fzap
, 1, &zopt_sometimes
),
458 ZTI_INIT(ztest_dmu_snapshot_create_destroy
, 1, &zopt_sometimes
),
459 ZTI_INIT(ztest_spa_create_destroy
, 1, &zopt_sometimes
),
460 ZTI_INIT(ztest_fault_inject
, 1, &zopt_sometimes
),
461 ZTI_INIT(ztest_dmu_snapshot_hold
, 1, &zopt_sometimes
),
462 ZTI_INIT(ztest_mmp_enable_disable
, 1, &zopt_sometimes
),
463 ZTI_INIT(ztest_reguid
, 1, &zopt_rarely
),
464 ZTI_INIT(ztest_scrub
, 1, &zopt_rarely
),
465 ZTI_INIT(ztest_spa_upgrade
, 1, &zopt_rarely
),
466 ZTI_INIT(ztest_dsl_dataset_promote_busy
, 1, &zopt_rarely
),
467 ZTI_INIT(ztest_vdev_attach_detach
, 1, &zopt_sometimes
),
468 ZTI_INIT(ztest_vdev_LUN_growth
, 1, &zopt_rarely
),
469 ZTI_INIT(ztest_vdev_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
470 ZTI_INIT(ztest_vdev_class_add
, 1, &ztest_opts
.zo_vdevtime
),
471 ZTI_INIT(ztest_vdev_aux_add_remove
, 1, &ztest_opts
.zo_vdevtime
),
472 ZTI_INIT(ztest_device_removal
, 1, &zopt_sometimes
),
473 ZTI_INIT(ztest_spa_checkpoint_create_discard
, 1, &zopt_rarely
),
474 ZTI_INIT(ztest_initialize
, 1, &zopt_sometimes
),
475 ZTI_INIT(ztest_trim
, 1, &zopt_sometimes
),
476 ZTI_INIT(ztest_blake3
, 1, &zopt_rarely
),
477 ZTI_INIT(ztest_fletcher
, 1, &zopt_rarely
),
478 ZTI_INIT(ztest_fletcher_incr
, 1, &zopt_rarely
),
479 ZTI_INIT(ztest_verify_dnode_bt
, 1, &zopt_sometimes
),
482 #define ZTEST_FUNCS (sizeof (ztest_info) / sizeof (ztest_info_t))
485 * The following struct is used to hold a list of uncalled commit callbacks.
486 * The callbacks are ordered by txg number.
488 typedef struct ztest_cb_list
{
489 kmutex_t zcl_callbacks_lock
;
490 list_t zcl_callbacks
;
494 * Stuff we need to share writably between parent and child.
496 typedef struct ztest_shared
{
497 boolean_t zs_do_init
;
498 hrtime_t zs_proc_start
;
499 hrtime_t zs_proc_stop
;
500 hrtime_t zs_thread_start
;
501 hrtime_t zs_thread_stop
;
502 hrtime_t zs_thread_kill
;
503 uint64_t zs_enospc_count
;
504 uint64_t zs_vdev_next_leaf
;
505 uint64_t zs_vdev_aux
;
510 uint64_t zs_metaslab_sz
;
511 uint64_t zs_metaslab_df_alloc_threshold
;
515 #define ID_PARALLEL -1ULL
517 static char ztest_dev_template
[] = "%s/%s.%llua";
518 static char ztest_aux_template
[] = "%s/%s.%s.%llu";
519 static ztest_shared_t
*ztest_shared
;
521 static spa_t
*ztest_spa
= NULL
;
522 static ztest_ds_t
*ztest_ds
;
524 static kmutex_t ztest_vdev_lock
;
525 static boolean_t ztest_device_removal_active
= B_FALSE
;
526 static boolean_t ztest_pool_scrubbed
= B_FALSE
;
527 static kmutex_t ztest_checkpoint_lock
;
530 * The ztest_name_lock protects the pool and dataset namespace used by
531 * the individual tests. To modify the namespace, consumers must grab
532 * this lock as writer. Grabbing the lock as reader will ensure that the
533 * namespace does not change while the lock is held.
535 static pthread_rwlock_t ztest_name_lock
;
537 static boolean_t ztest_dump_core
= B_TRUE
;
538 static boolean_t ztest_exiting
;
540 /* Global commit callback list */
541 static ztest_cb_list_t zcl
;
542 /* Commit cb delay */
543 static uint64_t zc_min_txg_delay
= UINT64_MAX
;
544 static int zc_cb_counter
= 0;
547 * Minimum number of commit callbacks that need to be registered for us to check
548 * whether the minimum txg delay is acceptable.
550 #define ZTEST_COMMIT_CB_MIN_REG 100
553 * If a number of txgs equal to this threshold have been created after a commit
554 * callback has been registered but not called, then we assume there is an
555 * implementation bug.
557 #define ZTEST_COMMIT_CB_THRESH (TXG_CONCURRENT_STATES + 1000)
560 ZTEST_META_DNODE
= 0,
565 static __attribute__((noreturn
)) void usage(boolean_t requested
);
566 static int ztest_scrub_impl(spa_t
*spa
);
569 * These libumem hooks provide a reasonable set of defaults for the allocator's
570 * debugging facilities.
573 _umem_debug_init(void)
575 return ("default,verbose"); /* $UMEM_DEBUG setting */
579 _umem_logging_init(void)
581 return ("fail,contents"); /* $UMEM_LOGGING setting */
585 dump_debug_buffer(void)
587 ssize_t ret
__attribute__((unused
));
589 if (!ztest_opts
.zo_dump_dbgmsg
)
593 * We use write() instead of printf() so that this function
594 * is safe to call from a signal handler.
596 ret
= write(STDOUT_FILENO
, "\n", 1);
597 zfs_dbgmsg_print("ztest");
600 #define BACKTRACE_SZ 100
602 static void sig_handler(int signo
)
604 struct sigaction action
;
605 #if (__GLIBC__ && !__UCLIBC__) /* backtrace() is a GNU extension */
607 void *buffer
[BACKTRACE_SZ
];
609 nptrs
= backtrace(buffer
, BACKTRACE_SZ
);
610 backtrace_symbols_fd(buffer
, nptrs
, STDERR_FILENO
);
615 * Restore default action and re-raise signal so SIGSEGV and
616 * SIGABRT can trigger a core dump.
618 action
.sa_handler
= SIG_DFL
;
619 sigemptyset(&action
.sa_mask
);
621 (void) sigaction(signo
, &action
, NULL
);
625 #define FATAL_MSG_SZ 1024
627 static const char *fatal_msg
;
629 static __attribute__((format(printf
, 2, 3))) __attribute__((noreturn
)) void
630 fatal(int do_perror
, const char *message
, ...)
633 int save_errno
= errno
;
636 (void) fflush(stdout
);
637 buf
= umem_alloc(FATAL_MSG_SZ
, UMEM_NOFAIL
);
641 va_start(args
, message
);
642 (void) sprintf(buf
, "ztest: ");
644 (void) vsprintf(buf
+ strlen(buf
), message
, args
);
647 (void) snprintf(buf
+ strlen(buf
), FATAL_MSG_SZ
- strlen(buf
),
648 ": %s", strerror(save_errno
));
650 (void) fprintf(stderr
, "%s\n", buf
);
651 fatal_msg
= buf
; /* to ease debugging */
663 str2shift(const char *buf
)
665 const char *ends
= "BKMGTPEZ";
670 for (i
= 0; i
< strlen(ends
); i
++) {
671 if (toupper(buf
[0]) == ends
[i
])
674 if (i
== strlen(ends
)) {
675 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n",
679 if (buf
[1] == '\0' || (toupper(buf
[1]) == 'B' && buf
[2] == '\0')) {
682 (void) fprintf(stderr
, "ztest: invalid bytes suffix: %s\n", buf
);
687 nicenumtoull(const char *buf
)
692 val
= strtoull(buf
, &end
, 0);
694 (void) fprintf(stderr
, "ztest: bad numeric value: %s\n", buf
);
696 } else if (end
[0] == '.') {
697 double fval
= strtod(buf
, &end
);
698 fval
*= pow(2, str2shift(end
));
700 * UINT64_MAX is not exactly representable as a double.
701 * The closest representation is UINT64_MAX + 1, so we
702 * use a >= comparison instead of > for the bounds check.
704 if (fval
>= (double)UINT64_MAX
) {
705 (void) fprintf(stderr
, "ztest: value too large: %s\n",
709 val
= (uint64_t)fval
;
711 int shift
= str2shift(end
);
712 if (shift
>= 64 || (val
<< shift
) >> shift
!= val
) {
713 (void) fprintf(stderr
, "ztest: value too large: %s\n",
722 typedef struct ztest_option
{
723 const char short_opt
;
724 const char *long_opt
;
725 const char *long_opt_param
;
727 unsigned int default_int
;
728 const char *default_str
;
732 * The following option_table is used for generating the usage info as well as
733 * the long and short option information for calling getopt_long().
735 static ztest_option_t option_table
[] = {
736 { 'v', "vdevs", "INTEGER", "Number of vdevs", DEFAULT_VDEV_COUNT
,
738 { 's', "vdev-size", "INTEGER", "Size of each vdev",
739 NO_DEFAULT
, DEFAULT_VDEV_SIZE_STR
},
740 { 'a', "alignment-shift", "INTEGER",
741 "Alignment shift; use 0 for random", DEFAULT_ASHIFT
, NULL
},
742 { 'm', "mirror-copies", "INTEGER", "Number of mirror copies",
743 DEFAULT_MIRRORS
, NULL
},
744 { 'r', "raid-disks", "INTEGER", "Number of raidz/draid disks",
745 DEFAULT_RAID_CHILDREN
, NULL
},
746 { 'R', "raid-parity", "INTEGER", "Raid parity",
747 DEFAULT_RAID_PARITY
, NULL
},
748 { 'K', "raid-kind", "raidz|draid|random", "Raid kind",
749 NO_DEFAULT
, "random"},
750 { 'D', "draid-data", "INTEGER", "Number of draid data drives",
751 DEFAULT_DRAID_DATA
, NULL
},
752 { 'S', "draid-spares", "INTEGER", "Number of draid spares",
753 DEFAULT_DRAID_SPARES
, NULL
},
754 { 'd', "datasets", "INTEGER", "Number of datasets",
755 DEFAULT_DATASETS_COUNT
, NULL
},
756 { 't', "threads", "INTEGER", "Number of ztest threads",
757 DEFAULT_THREADS
, NULL
},
758 { 'g', "gang-block-threshold", "INTEGER",
759 "Metaslab gang block threshold",
760 NO_DEFAULT
, DEFAULT_FORCE_GANGING_STR
},
761 { 'i', "init-count", "INTEGER", "Number of times to initialize pool",
762 DEFAULT_INITS
, NULL
},
763 { 'k', "kill-percentage", "INTEGER", "Kill percentage",
764 NO_DEFAULT
, DEFAULT_KILLRATE_STR
},
765 { 'p', "pool-name", "STRING", "Pool name",
766 NO_DEFAULT
, DEFAULT_POOL
},
767 { 'f', "vdev-file-directory", "PATH", "File directory for vdev files",
768 NO_DEFAULT
, DEFAULT_VDEV_DIR
},
769 { 'M', "multi-host", NULL
,
770 "Multi-host; simulate pool imported on remote host",
772 { 'E', "use-existing-pool", NULL
,
773 "Use existing pool instead of creating new one", NO_DEFAULT
, NULL
},
774 { 'T', "run-time", "INTEGER", "Total run time",
775 NO_DEFAULT
, DEFAULT_RUN_TIME_STR
},
776 { 'P', "pass-time", "INTEGER", "Time per pass",
777 NO_DEFAULT
, DEFAULT_PASS_TIME_STR
},
778 { 'F', "freeze-loops", "INTEGER", "Max loops in spa_freeze()",
779 DEFAULT_MAX_LOOPS
, NULL
},
780 { 'B', "alt-ztest", "PATH", "Alternate ztest path",
782 { 'C', "vdev-class-state", "on|off|random", "vdev class state",
783 NO_DEFAULT
, "random"},
784 { 'o', "option", "\"OPTION=INTEGER\"",
785 "Set global variable to an unsigned 32-bit integer value",
787 { 'G', "dump-debug-msg", NULL
,
788 "Dump zfs_dbgmsg buffer before exiting due to an error",
790 { 'V', "verbose", NULL
,
791 "Verbose (use multiple times for ever more verbosity)",
793 { 'h', "help", NULL
, "Show this help",
798 static struct option
*long_opts
= NULL
;
799 static char *short_opts
= NULL
;
804 ASSERT3P(long_opts
, ==, NULL
);
805 ASSERT3P(short_opts
, ==, NULL
);
807 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
808 long_opts
= umem_alloc(sizeof (struct option
) * count
, UMEM_NOFAIL
);
810 short_opts
= umem_alloc(sizeof (char) * 2 * count
, UMEM_NOFAIL
);
811 int short_opt_index
= 0;
813 for (int i
= 0; i
< count
; i
++) {
814 long_opts
[i
].val
= option_table
[i
].short_opt
;
815 long_opts
[i
].name
= option_table
[i
].long_opt
;
816 long_opts
[i
].has_arg
= option_table
[i
].long_opt_param
!= NULL
817 ? required_argument
: no_argument
;
818 long_opts
[i
].flag
= NULL
;
819 short_opts
[short_opt_index
++] = option_table
[i
].short_opt
;
820 if (option_table
[i
].long_opt_param
!= NULL
) {
821 short_opts
[short_opt_index
++] = ':';
829 int count
= sizeof (option_table
) / sizeof (option_table
[0]);
831 umem_free(long_opts
, sizeof (struct option
) * count
);
832 umem_free(short_opts
, sizeof (char) * 2 * count
);
838 static __attribute__((noreturn
)) void
839 usage(boolean_t requested
)
842 FILE *fp
= requested
? stdout
: stderr
;
844 (void) fprintf(fp
, "Usage: %s [OPTIONS...]\n", DEFAULT_POOL
);
845 for (int i
= 0; option_table
[i
].short_opt
!= 0; i
++) {
846 if (option_table
[i
].long_opt_param
!= NULL
) {
847 (void) sprintf(option
, " -%c --%s=%s",
848 option_table
[i
].short_opt
,
849 option_table
[i
].long_opt
,
850 option_table
[i
].long_opt_param
);
852 (void) sprintf(option
, " -%c --%s",
853 option_table
[i
].short_opt
,
854 option_table
[i
].long_opt
);
856 (void) fprintf(fp
, " %-40s%s", option
,
857 option_table
[i
].comment
);
859 if (option_table
[i
].long_opt_param
!= NULL
) {
860 if (option_table
[i
].default_str
!= NULL
) {
861 (void) fprintf(fp
, " (default: %s)",
862 option_table
[i
].default_str
);
863 } else if (option_table
[i
].default_int
!= NO_DEFAULT
) {
864 (void) fprintf(fp
, " (default: %u)",
865 option_table
[i
].default_int
);
868 (void) fprintf(fp
, "\n");
870 exit(requested
? 0 : 1);
874 ztest_random(uint64_t range
)
878 ASSERT3S(ztest_fd_rand
, >=, 0);
883 if (read(ztest_fd_rand
, &r
, sizeof (r
)) != sizeof (r
))
884 fatal(B_TRUE
, "short read from /dev/urandom");
890 ztest_parse_name_value(const char *input
, ztest_shared_opts_t
*zo
)
894 int state
= ZTEST_VDEV_CLASS_RND
;
896 (void) strlcpy(name
, input
, sizeof (name
));
898 value
= strchr(name
, '=');
900 (void) fprintf(stderr
, "missing value in property=value "
901 "'-C' argument (%s)\n", input
);
907 if (strcmp(value
, "on") == 0) {
908 state
= ZTEST_VDEV_CLASS_ON
;
909 } else if (strcmp(value
, "off") == 0) {
910 state
= ZTEST_VDEV_CLASS_OFF
;
911 } else if (strcmp(value
, "random") == 0) {
912 state
= ZTEST_VDEV_CLASS_RND
;
914 (void) fprintf(stderr
, "invalid property value '%s'\n", value
);
918 if (strcmp(name
, "special") == 0) {
919 zo
->zo_special_vdevs
= state
;
921 (void) fprintf(stderr
, "invalid property name '%s'\n", name
);
924 if (zo
->zo_verbose
>= 3)
925 (void) printf("%s vdev state is '%s'\n", name
, value
);
929 process_options(int argc
, char **argv
)
932 ztest_shared_opts_t
*zo
= &ztest_opts
;
936 const char *raid_kind
= "random";
938 memcpy(zo
, &ztest_opts_defaults
, sizeof (*zo
));
942 while ((opt
= getopt_long(argc
, argv
, short_opts
, long_opts
,
962 value
= nicenumtoull(optarg
);
966 zo
->zo_vdevs
= value
;
969 zo
->zo_vdev_size
= MAX(SPA_MINDEVSIZE
, value
);
972 zo
->zo_ashift
= value
;
975 zo
->zo_mirrors
= value
;
978 zo
->zo_raid_children
= MAX(1, value
);
981 zo
->zo_raid_parity
= MIN(MAX(value
, 1), 3);
987 zo
->zo_draid_data
= MAX(1, value
);
990 zo
->zo_draid_spares
= MAX(1, value
);
993 zo
->zo_datasets
= MAX(1, value
);
996 zo
->zo_threads
= MAX(1, value
);
999 zo
->zo_metaslab_force_ganging
=
1000 MAX(SPA_MINBLOCKSIZE
<< 1, value
);
1003 zo
->zo_init
= value
;
1006 zo
->zo_killrate
= value
;
1009 (void) strlcpy(zo
->zo_pool
, optarg
,
1010 sizeof (zo
->zo_pool
));
1013 path
= realpath(optarg
, NULL
);
1015 (void) fprintf(stderr
, "error: %s: %s\n",
1016 optarg
, strerror(errno
));
1019 (void) strlcpy(zo
->zo_dir
, path
,
1020 sizeof (zo
->zo_dir
));
1025 zo
->zo_mmp_test
= 1;
1034 zo
->zo_time
= value
;
1037 zo
->zo_passtime
= MAX(1, value
);
1040 zo
->zo_maxloops
= MAX(1, value
);
1043 (void) strlcpy(zo
->zo_alt_ztest
, optarg
,
1044 sizeof (zo
->zo_alt_ztest
));
1047 ztest_parse_name_value(optarg
, zo
);
1050 if (zo
->zo_gvars_count
>= ZO_GVARS_MAX_COUNT
) {
1051 (void) fprintf(stderr
,
1052 "max global var count (%zu) exceeded\n",
1053 ZO_GVARS_MAX_COUNT
);
1056 char *v
= zo
->zo_gvars
[zo
->zo_gvars_count
];
1057 if (strlcpy(v
, optarg
, ZO_GVARS_MAX_ARGLEN
) >=
1058 ZO_GVARS_MAX_ARGLEN
) {
1059 (void) fprintf(stderr
,
1060 "global var option '%s' is too long\n",
1064 zo
->zo_gvars_count
++;
1067 zo
->zo_dump_dbgmsg
= 1;
1081 /* When raid choice is 'random' add a draid pool 50% of the time */
1082 if (strcmp(raid_kind
, "random") == 0) {
1083 raid_kind
= (ztest_random(2) == 0) ? "draid" : "raidz";
1085 if (ztest_opts
.zo_verbose
>= 3)
1086 (void) printf("choosing RAID type '%s'\n", raid_kind
);
1089 if (strcmp(raid_kind
, "draid") == 0) {
1090 uint64_t min_devsize
;
1092 /* With fewer disk use 256M, otherwise 128M is OK */
1093 min_devsize
= (ztest_opts
.zo_raid_children
< 16) ?
1094 (256ULL << 20) : (128ULL << 20);
1096 /* No top-level mirrors with dRAID for now */
1099 /* Use more appropriate defaults for dRAID */
1100 if (zo
->zo_vdevs
== ztest_opts_defaults
.zo_vdevs
)
1102 if (zo
->zo_raid_children
==
1103 ztest_opts_defaults
.zo_raid_children
)
1104 zo
->zo_raid_children
= 16;
1105 if (zo
->zo_ashift
< 12)
1107 if (zo
->zo_vdev_size
< min_devsize
)
1108 zo
->zo_vdev_size
= min_devsize
;
1110 if (zo
->zo_draid_data
+ zo
->zo_raid_parity
>
1111 zo
->zo_raid_children
- zo
->zo_draid_spares
) {
1112 (void) fprintf(stderr
, "error: too few draid "
1113 "children (%d) for stripe width (%d)\n",
1114 zo
->zo_raid_children
,
1115 zo
->zo_draid_data
+ zo
->zo_raid_parity
);
1119 (void) strlcpy(zo
->zo_raid_type
, VDEV_TYPE_DRAID
,
1120 sizeof (zo
->zo_raid_type
));
1122 } else /* using raidz */ {
1123 ASSERT0(strcmp(raid_kind
, "raidz"));
1125 zo
->zo_raid_parity
= MIN(zo
->zo_raid_parity
,
1126 zo
->zo_raid_children
- 1);
1130 (zo
->zo_vdevs
> 0 ? zo
->zo_time
* NANOSEC
/ zo
->zo_vdevs
:
1133 if (*zo
->zo_alt_ztest
) {
1134 const char *invalid_what
= "ztest";
1135 char *val
= zo
->zo_alt_ztest
;
1136 if (0 != access(val
, X_OK
) ||
1137 (strrchr(val
, '/') == NULL
&& (errno
== EINVAL
)))
1140 int dirlen
= strrchr(val
, '/') - val
;
1141 strlcpy(zo
->zo_alt_libpath
, val
,
1142 MIN(sizeof (zo
->zo_alt_libpath
), dirlen
+ 1));
1143 invalid_what
= "library path", val
= zo
->zo_alt_libpath
;
1144 if (strrchr(val
, '/') == NULL
&& (errno
== EINVAL
))
1146 *strrchr(val
, '/') = '\0';
1147 strlcat(val
, "/lib", sizeof (zo
->zo_alt_libpath
));
1149 if (0 != access(zo
->zo_alt_libpath
, X_OK
))
1154 ztest_dump_core
= B_FALSE
;
1155 fatal(B_TRUE
, "invalid alternate %s %s", invalid_what
, val
);
1160 ztest_kill(ztest_shared_t
*zs
)
1162 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(ztest_spa
));
1163 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(ztest_spa
));
1166 * Before we kill ourselves, make sure that the config is updated.
1167 * See comment above spa_write_cachefile().
1169 mutex_enter(&spa_namespace_lock
);
1170 spa_write_cachefile(ztest_spa
, B_FALSE
, B_FALSE
, B_FALSE
);
1171 mutex_exit(&spa_namespace_lock
);
1173 (void) raise(SIGKILL
);
1177 ztest_record_enospc(const char *s
)
1180 ztest_shared
->zs_enospc_count
++;
1184 ztest_get_ashift(void)
1186 if (ztest_opts
.zo_ashift
== 0)
1187 return (SPA_MINBLOCKSHIFT
+ ztest_random(5));
1188 return (ztest_opts
.zo_ashift
);
1192 ztest_is_draid_spare(const char *name
)
1194 uint64_t spare_id
= 0, parity
= 0, vdev_id
= 0;
1196 if (sscanf(name
, VDEV_TYPE_DRAID
"%"PRIu64
"-%"PRIu64
"-%"PRIu64
"",
1197 &parity
, &vdev_id
, &spare_id
) == 3) {
1205 make_vdev_file(const char *path
, const char *aux
, const char *pool
,
1206 size_t size
, uint64_t ashift
)
1208 char *pathbuf
= NULL
;
1211 boolean_t draid_spare
= B_FALSE
;
1215 ashift
= ztest_get_ashift();
1218 pathbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1222 vdev
= ztest_shared
->zs_vdev_aux
;
1223 (void) snprintf(pathbuf
, MAXPATHLEN
,
1224 ztest_aux_template
, ztest_opts
.zo_dir
,
1225 pool
== NULL
? ztest_opts
.zo_pool
: pool
,
1228 vdev
= ztest_shared
->zs_vdev_next_leaf
++;
1229 (void) snprintf(pathbuf
, MAXPATHLEN
,
1230 ztest_dev_template
, ztest_opts
.zo_dir
,
1231 pool
== NULL
? ztest_opts
.zo_pool
: pool
, vdev
);
1234 draid_spare
= ztest_is_draid_spare(path
);
1237 if (size
!= 0 && !draid_spare
) {
1238 int fd
= open(path
, O_RDWR
| O_CREAT
| O_TRUNC
, 0666);
1240 fatal(B_TRUE
, "can't open %s", path
);
1241 if (ftruncate(fd
, size
) != 0)
1242 fatal(B_TRUE
, "can't ftruncate %s", path
);
1246 file
= fnvlist_alloc();
1247 fnvlist_add_string(file
, ZPOOL_CONFIG_TYPE
,
1248 draid_spare
? VDEV_TYPE_DRAID_SPARE
: VDEV_TYPE_FILE
);
1249 fnvlist_add_string(file
, ZPOOL_CONFIG_PATH
, path
);
1250 fnvlist_add_uint64(file
, ZPOOL_CONFIG_ASHIFT
, ashift
);
1251 umem_free(pathbuf
, MAXPATHLEN
);
1257 make_vdev_raid(const char *path
, const char *aux
, const char *pool
, size_t size
,
1258 uint64_t ashift
, int r
)
1260 nvlist_t
*raid
, **child
;
1264 return (make_vdev_file(path
, aux
, pool
, size
, ashift
));
1265 child
= umem_alloc(r
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1267 for (c
= 0; c
< r
; c
++)
1268 child
[c
] = make_vdev_file(path
, aux
, pool
, size
, ashift
);
1270 raid
= fnvlist_alloc();
1271 fnvlist_add_string(raid
, ZPOOL_CONFIG_TYPE
,
1272 ztest_opts
.zo_raid_type
);
1273 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_NPARITY
,
1274 ztest_opts
.zo_raid_parity
);
1275 fnvlist_add_nvlist_array(raid
, ZPOOL_CONFIG_CHILDREN
,
1276 (const nvlist_t
**)child
, r
);
1278 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0) {
1279 uint64_t ndata
= ztest_opts
.zo_draid_data
;
1280 uint64_t nparity
= ztest_opts
.zo_raid_parity
;
1281 uint64_t nspares
= ztest_opts
.zo_draid_spares
;
1282 uint64_t children
= ztest_opts
.zo_raid_children
;
1283 uint64_t ngroups
= 1;
1286 * Calculate the minimum number of groups required to fill a
1287 * slice. This is the LCM of the stripe width (data + parity)
1288 * and the number of data drives (children - spares).
1290 while (ngroups
* (ndata
+ nparity
) % (children
- nspares
) != 0)
1293 /* Store the basic dRAID configuration. */
1294 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NDATA
, ndata
);
1295 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NSPARES
, nspares
);
1296 fnvlist_add_uint64(raid
, ZPOOL_CONFIG_DRAID_NGROUPS
, ngroups
);
1299 for (c
= 0; c
< r
; c
++)
1300 fnvlist_free(child
[c
]);
1302 umem_free(child
, r
* sizeof (nvlist_t
*));
1308 make_vdev_mirror(const char *path
, const char *aux
, const char *pool
,
1309 size_t size
, uint64_t ashift
, int r
, int m
)
1311 nvlist_t
*mirror
, **child
;
1315 return (make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
));
1317 child
= umem_alloc(m
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1319 for (c
= 0; c
< m
; c
++)
1320 child
[c
] = make_vdev_raid(path
, aux
, pool
, size
, ashift
, r
);
1322 mirror
= fnvlist_alloc();
1323 fnvlist_add_string(mirror
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_MIRROR
);
1324 fnvlist_add_nvlist_array(mirror
, ZPOOL_CONFIG_CHILDREN
,
1325 (const nvlist_t
**)child
, m
);
1327 for (c
= 0; c
< m
; c
++)
1328 fnvlist_free(child
[c
]);
1330 umem_free(child
, m
* sizeof (nvlist_t
*));
1336 make_vdev_root(const char *path
, const char *aux
, const char *pool
, size_t size
,
1337 uint64_t ashift
, const char *class, int r
, int m
, int t
)
1339 nvlist_t
*root
, **child
;
1345 log
= (class != NULL
&& strcmp(class, "log") == 0);
1347 child
= umem_alloc(t
* sizeof (nvlist_t
*), UMEM_NOFAIL
);
1349 for (c
= 0; c
< t
; c
++) {
1350 child
[c
] = make_vdev_mirror(path
, aux
, pool
, size
, ashift
,
1352 fnvlist_add_uint64(child
[c
], ZPOOL_CONFIG_IS_LOG
, log
);
1354 if (class != NULL
&& class[0] != '\0') {
1355 ASSERT(m
> 1 || log
); /* expecting a mirror */
1356 fnvlist_add_string(child
[c
],
1357 ZPOOL_CONFIG_ALLOCATION_BIAS
, class);
1361 root
= fnvlist_alloc();
1362 fnvlist_add_string(root
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
1363 fnvlist_add_nvlist_array(root
, aux
? aux
: ZPOOL_CONFIG_CHILDREN
,
1364 (const nvlist_t
**)child
, t
);
1366 for (c
= 0; c
< t
; c
++)
1367 fnvlist_free(child
[c
]);
1369 umem_free(child
, t
* sizeof (nvlist_t
*));
1375 * Find a random spa version. Returns back a random spa version in the
1376 * range [initial_version, SPA_VERSION_FEATURES].
1379 ztest_random_spa_version(uint64_t initial_version
)
1381 uint64_t version
= initial_version
;
1383 if (version
<= SPA_VERSION_BEFORE_FEATURES
) {
1385 ztest_random(SPA_VERSION_BEFORE_FEATURES
- version
+ 1);
1388 if (version
> SPA_VERSION_BEFORE_FEATURES
)
1389 version
= SPA_VERSION_FEATURES
;
1391 ASSERT(SPA_VERSION_IS_SUPPORTED(version
));
1396 ztest_random_blocksize(void)
1398 ASSERT3U(ztest_spa
->spa_max_ashift
, !=, 0);
1401 * Choose a block size >= the ashift.
1402 * If the SPA supports new MAXBLOCKSIZE, test up to 1MB blocks.
1404 int maxbs
= SPA_OLD_MAXBLOCKSHIFT
;
1405 if (spa_maxblocksize(ztest_spa
) == SPA_MAXBLOCKSIZE
)
1407 uint64_t block_shift
=
1408 ztest_random(maxbs
- ztest_spa
->spa_max_ashift
+ 1);
1409 return (1 << (SPA_MINBLOCKSHIFT
+ block_shift
));
1413 ztest_random_dnodesize(void)
1416 int max_slots
= spa_maxdnodesize(ztest_spa
) >> DNODE_SHIFT
;
1418 if (max_slots
== DNODE_MIN_SLOTS
)
1419 return (DNODE_MIN_SIZE
);
1422 * Weight the random distribution more heavily toward smaller
1423 * dnode sizes since that is more likely to reflect real-world
1426 ASSERT3U(max_slots
, >, 4);
1427 switch (ztest_random(10)) {
1429 slots
= 5 + ztest_random(max_slots
- 4);
1432 slots
= 2 + ztest_random(3);
1439 return (slots
<< DNODE_SHIFT
);
1443 ztest_random_ibshift(void)
1445 return (DN_MIN_INDBLKSHIFT
+
1446 ztest_random(DN_MAX_INDBLKSHIFT
- DN_MIN_INDBLKSHIFT
+ 1));
1450 ztest_random_vdev_top(spa_t
*spa
, boolean_t log_ok
)
1453 vdev_t
*rvd
= spa
->spa_root_vdev
;
1456 ASSERT3U(spa_config_held(spa
, SCL_ALL
, RW_READER
), !=, 0);
1459 top
= ztest_random(rvd
->vdev_children
);
1460 tvd
= rvd
->vdev_child
[top
];
1461 } while (!vdev_is_concrete(tvd
) || (tvd
->vdev_islog
&& !log_ok
) ||
1462 tvd
->vdev_mg
== NULL
|| tvd
->vdev_mg
->mg_class
== NULL
);
1468 ztest_random_dsl_prop(zfs_prop_t prop
)
1473 value
= zfs_prop_random_value(prop
, ztest_random(-1ULL));
1474 } while (prop
== ZFS_PROP_CHECKSUM
&& value
== ZIO_CHECKSUM_OFF
);
1480 ztest_dsl_prop_set_uint64(char *osname
, zfs_prop_t prop
, uint64_t value
,
1483 const char *propname
= zfs_prop_to_name(prop
);
1484 const char *valname
;
1489 error
= dsl_prop_set_int(osname
, propname
,
1490 (inherit
? ZPROP_SRC_NONE
: ZPROP_SRC_LOCAL
), value
);
1492 if (error
== ENOSPC
) {
1493 ztest_record_enospc(FTAG
);
1498 setpoint
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
1499 VERIFY0(dsl_prop_get_integer(osname
, propname
, &curval
, setpoint
));
1501 if (ztest_opts
.zo_verbose
>= 6) {
1504 err
= zfs_prop_index_to_string(prop
, curval
, &valname
);
1506 (void) printf("%s %s = %llu at '%s'\n", osname
,
1507 propname
, (unsigned long long)curval
, setpoint
);
1509 (void) printf("%s %s = %s at '%s'\n",
1510 osname
, propname
, valname
, setpoint
);
1512 umem_free(setpoint
, MAXPATHLEN
);
1518 ztest_spa_prop_set_uint64(zpool_prop_t prop
, uint64_t value
)
1520 spa_t
*spa
= ztest_spa
;
1521 nvlist_t
*props
= NULL
;
1524 props
= fnvlist_alloc();
1525 fnvlist_add_uint64(props
, zpool_prop_to_name(prop
), value
);
1527 error
= spa_prop_set(spa
, props
);
1529 fnvlist_free(props
);
1531 if (error
== ENOSPC
) {
1532 ztest_record_enospc(FTAG
);
1541 ztest_dmu_objset_own(const char *name
, dmu_objset_type_t type
,
1542 boolean_t readonly
, boolean_t decrypt
, const void *tag
, objset_t
**osp
)
1546 char ddname
[ZFS_MAX_DATASET_NAME_LEN
];
1548 strlcpy(ddname
, name
, sizeof (ddname
));
1549 cp
= strchr(ddname
, '@');
1553 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1554 while (decrypt
&& err
== EACCES
) {
1555 dsl_crypto_params_t
*dcp
;
1556 nvlist_t
*crypto_args
= fnvlist_alloc();
1558 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
1559 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
1560 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, NULL
,
1561 crypto_args
, &dcp
));
1562 err
= spa_keystore_load_wkey(ddname
, dcp
, B_FALSE
);
1564 * Note: if there was an error loading, the wkey was not
1565 * consumed, and needs to be freed.
1567 dsl_crypto_params_free(dcp
, (err
!= 0));
1568 fnvlist_free(crypto_args
);
1570 if (err
== EINVAL
) {
1572 * We couldn't load a key for this dataset so try
1573 * the parent. This loop will eventually hit the
1574 * encryption root since ztest only makes clones
1575 * as children of their origin datasets.
1577 cp
= strrchr(ddname
, '/');
1584 } else if (err
!= 0) {
1588 err
= dmu_objset_own(name
, type
, readonly
, decrypt
, tag
, osp
);
1596 ztest_rll_init(rll_t
*rll
)
1598 rll
->rll_writer
= NULL
;
1599 rll
->rll_readers
= 0;
1600 mutex_init(&rll
->rll_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1601 cv_init(&rll
->rll_cv
, NULL
, CV_DEFAULT
, NULL
);
1605 ztest_rll_destroy(rll_t
*rll
)
1607 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1608 ASSERT0(rll
->rll_readers
);
1609 mutex_destroy(&rll
->rll_lock
);
1610 cv_destroy(&rll
->rll_cv
);
1614 ztest_rll_lock(rll_t
*rll
, rl_type_t type
)
1616 mutex_enter(&rll
->rll_lock
);
1618 if (type
== RL_READER
) {
1619 while (rll
->rll_writer
!= NULL
)
1620 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1623 while (rll
->rll_writer
!= NULL
|| rll
->rll_readers
)
1624 (void) cv_wait(&rll
->rll_cv
, &rll
->rll_lock
);
1625 rll
->rll_writer
= curthread
;
1628 mutex_exit(&rll
->rll_lock
);
1632 ztest_rll_unlock(rll_t
*rll
)
1634 mutex_enter(&rll
->rll_lock
);
1636 if (rll
->rll_writer
) {
1637 ASSERT0(rll
->rll_readers
);
1638 rll
->rll_writer
= NULL
;
1640 ASSERT3S(rll
->rll_readers
, >, 0);
1641 ASSERT3P(rll
->rll_writer
, ==, NULL
);
1645 if (rll
->rll_writer
== NULL
&& rll
->rll_readers
== 0)
1646 cv_broadcast(&rll
->rll_cv
);
1648 mutex_exit(&rll
->rll_lock
);
1652 ztest_object_lock(ztest_ds_t
*zd
, uint64_t object
, rl_type_t type
)
1654 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1656 ztest_rll_lock(rll
, type
);
1660 ztest_object_unlock(ztest_ds_t
*zd
, uint64_t object
)
1662 rll_t
*rll
= &zd
->zd_object_lock
[object
& (ZTEST_OBJECT_LOCKS
- 1)];
1664 ztest_rll_unlock(rll
);
1668 ztest_range_lock(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
,
1669 uint64_t size
, rl_type_t type
)
1671 uint64_t hash
= object
^ (offset
% (ZTEST_RANGE_LOCKS
+ 1));
1672 rll_t
*rll
= &zd
->zd_range_lock
[hash
& (ZTEST_RANGE_LOCKS
- 1)];
1675 rl
= umem_alloc(sizeof (*rl
), UMEM_NOFAIL
);
1676 rl
->rl_object
= object
;
1677 rl
->rl_offset
= offset
;
1681 ztest_rll_lock(rll
, type
);
1687 ztest_range_unlock(rl_t
*rl
)
1689 rll_t
*rll
= rl
->rl_lock
;
1691 ztest_rll_unlock(rll
);
1693 umem_free(rl
, sizeof (*rl
));
1697 ztest_zd_init(ztest_ds_t
*zd
, ztest_shared_ds_t
*szd
, objset_t
*os
)
1700 zd
->zd_zilog
= dmu_objset_zil(os
);
1701 zd
->zd_shared
= szd
;
1702 dmu_objset_name(os
, zd
->zd_name
);
1705 if (zd
->zd_shared
!= NULL
)
1706 zd
->zd_shared
->zd_seq
= 0;
1708 VERIFY0(pthread_rwlock_init(&zd
->zd_zilog_lock
, NULL
));
1709 mutex_init(&zd
->zd_dirobj_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
1711 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1712 ztest_rll_init(&zd
->zd_object_lock
[l
]);
1714 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1715 ztest_rll_init(&zd
->zd_range_lock
[l
]);
1719 ztest_zd_fini(ztest_ds_t
*zd
)
1723 mutex_destroy(&zd
->zd_dirobj_lock
);
1724 (void) pthread_rwlock_destroy(&zd
->zd_zilog_lock
);
1726 for (l
= 0; l
< ZTEST_OBJECT_LOCKS
; l
++)
1727 ztest_rll_destroy(&zd
->zd_object_lock
[l
]);
1729 for (l
= 0; l
< ZTEST_RANGE_LOCKS
; l
++)
1730 ztest_rll_destroy(&zd
->zd_range_lock
[l
]);
1733 #define TXG_MIGHTWAIT (ztest_random(10) == 0 ? TXG_NOWAIT : TXG_WAIT)
1736 ztest_tx_assign(dmu_tx_t
*tx
, uint64_t txg_how
, const char *tag
)
1742 * Attempt to assign tx to some transaction group.
1744 error
= dmu_tx_assign(tx
, txg_how
);
1746 if (error
== ERESTART
) {
1747 ASSERT3U(txg_how
, ==, TXG_NOWAIT
);
1750 ASSERT3U(error
, ==, ENOSPC
);
1751 ztest_record_enospc(tag
);
1756 txg
= dmu_tx_get_txg(tx
);
1757 ASSERT3U(txg
, !=, 0);
1762 ztest_bt_generate(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1763 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1766 bt
->bt_magic
= BT_MAGIC
;
1767 bt
->bt_objset
= dmu_objset_id(os
);
1768 bt
->bt_object
= object
;
1769 bt
->bt_dnodesize
= dnodesize
;
1770 bt
->bt_offset
= offset
;
1773 bt
->bt_crtxg
= crtxg
;
1777 ztest_bt_verify(ztest_block_tag_t
*bt
, objset_t
*os
, uint64_t object
,
1778 uint64_t dnodesize
, uint64_t offset
, uint64_t gen
, uint64_t txg
,
1781 ASSERT3U(bt
->bt_magic
, ==, BT_MAGIC
);
1782 ASSERT3U(bt
->bt_objset
, ==, dmu_objset_id(os
));
1783 ASSERT3U(bt
->bt_object
, ==, object
);
1784 ASSERT3U(bt
->bt_dnodesize
, ==, dnodesize
);
1785 ASSERT3U(bt
->bt_offset
, ==, offset
);
1786 ASSERT3U(bt
->bt_gen
, <=, gen
);
1787 ASSERT3U(bt
->bt_txg
, <=, txg
);
1788 ASSERT3U(bt
->bt_crtxg
, ==, crtxg
);
1791 static ztest_block_tag_t
*
1792 ztest_bt_bonus(dmu_buf_t
*db
)
1794 dmu_object_info_t doi
;
1795 ztest_block_tag_t
*bt
;
1797 dmu_object_info_from_db(db
, &doi
);
1798 ASSERT3U(doi
.doi_bonus_size
, <=, db
->db_size
);
1799 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (*bt
));
1800 bt
= (void *)((char *)db
->db_data
+ doi
.doi_bonus_size
- sizeof (*bt
));
1806 * Generate a token to fill up unused bonus buffer space. Try to make
1807 * it unique to the object, generation, and offset to verify that data
1808 * is not getting overwritten by data from other dnodes.
1810 #define ZTEST_BONUS_FILL_TOKEN(obj, ds, gen, offset) \
1811 (((ds) << 48) | ((gen) << 32) | ((obj) << 8) | (offset))
1814 * Fill up the unused bonus buffer region before the block tag with a
1815 * verifiable pattern. Filling the whole bonus area with non-zero data
1816 * helps ensure that all dnode traversal code properly skips the
1817 * interior regions of large dnodes.
1820 ztest_fill_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1821 objset_t
*os
, uint64_t gen
)
1825 ASSERT(IS_P2ALIGNED((char *)end
- (char *)db
->db_data
, 8));
1827 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1828 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1829 gen
, bonusp
- (uint64_t *)db
->db_data
);
1835 * Verify that the unused area of a bonus buffer is filled with the
1839 ztest_verify_unused_bonus(dmu_buf_t
*db
, void *end
, uint64_t obj
,
1840 objset_t
*os
, uint64_t gen
)
1844 for (bonusp
= db
->db_data
; bonusp
< (uint64_t *)end
; bonusp
++) {
1845 uint64_t token
= ZTEST_BONUS_FILL_TOKEN(obj
, dmu_objset_id(os
),
1846 gen
, bonusp
- (uint64_t *)db
->db_data
);
1847 VERIFY3U(*bonusp
, ==, token
);
1855 #define lrz_type lr_mode
1856 #define lrz_blocksize lr_uid
1857 #define lrz_ibshift lr_gid
1858 #define lrz_bonustype lr_rdev
1859 #define lrz_dnodesize lr_crtime[1]
1862 ztest_log_create(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_create_t
*lr
)
1864 char *name
= (void *)(lr
+ 1); /* name follows lr */
1865 size_t namesize
= strlen(name
) + 1;
1868 if (zil_replaying(zd
->zd_zilog
, tx
))
1871 itx
= zil_itx_create(TX_CREATE
, sizeof (*lr
) + namesize
);
1872 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1873 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1875 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1879 ztest_log_remove(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_remove_t
*lr
, uint64_t object
)
1881 char *name
= (void *)(lr
+ 1); /* name follows lr */
1882 size_t namesize
= strlen(name
) + 1;
1885 if (zil_replaying(zd
->zd_zilog
, tx
))
1888 itx
= zil_itx_create(TX_REMOVE
, sizeof (*lr
) + namesize
);
1889 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1890 sizeof (*lr
) + namesize
- sizeof (lr_t
));
1892 itx
->itx_oid
= object
;
1893 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1897 ztest_log_write(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_write_t
*lr
)
1900 itx_wr_state_t write_state
= ztest_random(WR_NUM_STATES
);
1902 if (zil_replaying(zd
->zd_zilog
, tx
))
1905 if (lr
->lr_length
> zil_max_log_data(zd
->zd_zilog
, sizeof (lr_write_t
)))
1906 write_state
= WR_INDIRECT
;
1908 itx
= zil_itx_create(TX_WRITE
,
1909 sizeof (*lr
) + (write_state
== WR_COPIED
? lr
->lr_length
: 0));
1911 if (write_state
== WR_COPIED
&&
1912 dmu_read(zd
->zd_os
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
1913 ((lr_write_t
*)&itx
->itx_lr
) + 1, DMU_READ_NO_PREFETCH
) != 0) {
1914 zil_itx_destroy(itx
);
1915 itx
= zil_itx_create(TX_WRITE
, sizeof (*lr
));
1916 write_state
= WR_NEED_COPY
;
1918 itx
->itx_private
= zd
;
1919 itx
->itx_wr_state
= write_state
;
1920 itx
->itx_sync
= (ztest_random(8) == 0);
1922 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1923 sizeof (*lr
) - sizeof (lr_t
));
1925 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1929 ztest_log_truncate(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_truncate_t
*lr
)
1933 if (zil_replaying(zd
->zd_zilog
, tx
))
1936 itx
= zil_itx_create(TX_TRUNCATE
, sizeof (*lr
));
1937 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1938 sizeof (*lr
) - sizeof (lr_t
));
1940 itx
->itx_sync
= B_FALSE
;
1941 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1945 ztest_log_setattr(ztest_ds_t
*zd
, dmu_tx_t
*tx
, lr_setattr_t
*lr
)
1949 if (zil_replaying(zd
->zd_zilog
, tx
))
1952 itx
= zil_itx_create(TX_SETATTR
, sizeof (*lr
));
1953 memcpy(&itx
->itx_lr
+ 1, &lr
->lr_common
+ 1,
1954 sizeof (*lr
) - sizeof (lr_t
));
1956 itx
->itx_sync
= B_FALSE
;
1957 zil_itx_assign(zd
->zd_zilog
, itx
, tx
);
1964 ztest_replay_create(void *arg1
, void *arg2
, boolean_t byteswap
)
1966 ztest_ds_t
*zd
= arg1
;
1967 lr_create_t
*lr
= arg2
;
1968 char *name
= (void *)(lr
+ 1); /* name follows lr */
1969 objset_t
*os
= zd
->zd_os
;
1970 ztest_block_tag_t
*bbt
;
1978 byteswap_uint64_array(lr
, sizeof (*lr
));
1980 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
1981 ASSERT3S(name
[0], !=, '\0');
1983 tx
= dmu_tx_create(os
);
1985 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_TRUE
, name
);
1987 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
1988 dmu_tx_hold_zap(tx
, DMU_NEW_OBJECT
, B_TRUE
, NULL
);
1990 dmu_tx_hold_bonus(tx
, DMU_NEW_OBJECT
);
1993 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
1997 ASSERT3U(dmu_objset_zil(os
)->zl_replay
, ==, !!lr
->lr_foid
);
1998 bonuslen
= DN_BONUS_SIZE(lr
->lrz_dnodesize
);
2000 if (lr
->lrz_type
== DMU_OT_ZAP_OTHER
) {
2001 if (lr
->lr_foid
== 0) {
2002 lr
->lr_foid
= zap_create_dnsize(os
,
2003 lr
->lrz_type
, lr
->lrz_bonustype
,
2004 bonuslen
, lr
->lrz_dnodesize
, tx
);
2006 error
= zap_create_claim_dnsize(os
, lr
->lr_foid
,
2007 lr
->lrz_type
, lr
->lrz_bonustype
,
2008 bonuslen
, lr
->lrz_dnodesize
, tx
);
2011 if (lr
->lr_foid
== 0) {
2012 lr
->lr_foid
= dmu_object_alloc_dnsize(os
,
2013 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2014 bonuslen
, lr
->lrz_dnodesize
, tx
);
2016 error
= dmu_object_claim_dnsize(os
, lr
->lr_foid
,
2017 lr
->lrz_type
, 0, lr
->lrz_bonustype
,
2018 bonuslen
, lr
->lrz_dnodesize
, tx
);
2023 ASSERT3U(error
, ==, EEXIST
);
2024 ASSERT(zd
->zd_zilog
->zl_replay
);
2029 ASSERT3U(lr
->lr_foid
, !=, 0);
2031 if (lr
->lrz_type
!= DMU_OT_ZAP_OTHER
)
2032 VERIFY0(dmu_object_set_blocksize(os
, lr
->lr_foid
,
2033 lr
->lrz_blocksize
, lr
->lrz_ibshift
, tx
));
2035 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2036 bbt
= ztest_bt_bonus(db
);
2037 dmu_buf_will_dirty(db
, tx
);
2038 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, lr
->lrz_dnodesize
, -1ULL,
2039 lr
->lr_gen
, txg
, txg
);
2040 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, lr
->lr_gen
);
2041 dmu_buf_rele(db
, FTAG
);
2043 VERIFY0(zap_add(os
, lr
->lr_doid
, name
, sizeof (uint64_t), 1,
2046 (void) ztest_log_create(zd
, tx
, lr
);
2054 ztest_replay_remove(void *arg1
, void *arg2
, boolean_t byteswap
)
2056 ztest_ds_t
*zd
= arg1
;
2057 lr_remove_t
*lr
= arg2
;
2058 char *name
= (void *)(lr
+ 1); /* name follows lr */
2059 objset_t
*os
= zd
->zd_os
;
2060 dmu_object_info_t doi
;
2062 uint64_t object
, txg
;
2065 byteswap_uint64_array(lr
, sizeof (*lr
));
2067 ASSERT3U(lr
->lr_doid
, ==, ZTEST_DIROBJ
);
2068 ASSERT3S(name
[0], !=, '\0');
2071 zap_lookup(os
, lr
->lr_doid
, name
, sizeof (object
), 1, &object
));
2072 ASSERT3U(object
, !=, 0);
2074 ztest_object_lock(zd
, object
, RL_WRITER
);
2076 VERIFY0(dmu_object_info(os
, object
, &doi
));
2078 tx
= dmu_tx_create(os
);
2080 dmu_tx_hold_zap(tx
, lr
->lr_doid
, B_FALSE
, name
);
2081 dmu_tx_hold_free(tx
, object
, 0, DMU_OBJECT_END
);
2083 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2085 ztest_object_unlock(zd
, object
);
2089 if (doi
.doi_type
== DMU_OT_ZAP_OTHER
) {
2090 VERIFY0(zap_destroy(os
, object
, tx
));
2092 VERIFY0(dmu_object_free(os
, object
, tx
));
2095 VERIFY0(zap_remove(os
, lr
->lr_doid
, name
, tx
));
2097 (void) ztest_log_remove(zd
, tx
, lr
, object
);
2101 ztest_object_unlock(zd
, object
);
2107 ztest_replay_write(void *arg1
, void *arg2
, boolean_t byteswap
)
2109 ztest_ds_t
*zd
= arg1
;
2110 lr_write_t
*lr
= arg2
;
2111 objset_t
*os
= zd
->zd_os
;
2112 void *data
= lr
+ 1; /* data follows lr */
2113 uint64_t offset
, length
;
2114 ztest_block_tag_t
*bt
= data
;
2115 ztest_block_tag_t
*bbt
;
2116 uint64_t gen
, txg
, lrtxg
, crtxg
;
2117 dmu_object_info_t doi
;
2120 arc_buf_t
*abuf
= NULL
;
2124 byteswap_uint64_array(lr
, sizeof (*lr
));
2126 offset
= lr
->lr_offset
;
2127 length
= lr
->lr_length
;
2129 /* If it's a dmu_sync() block, write the whole block */
2130 if (lr
->lr_common
.lrc_reclen
== sizeof (lr_write_t
)) {
2131 uint64_t blocksize
= BP_GET_LSIZE(&lr
->lr_blkptr
);
2132 if (length
< blocksize
) {
2133 offset
-= offset
% blocksize
;
2138 if (bt
->bt_magic
== BSWAP_64(BT_MAGIC
))
2139 byteswap_uint64_array(bt
, sizeof (*bt
));
2141 if (bt
->bt_magic
!= BT_MAGIC
)
2144 ztest_object_lock(zd
, lr
->lr_foid
, RL_READER
);
2145 rl
= ztest_range_lock(zd
, lr
->lr_foid
, offset
, length
, RL_WRITER
);
2147 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2149 dmu_object_info_from_db(db
, &doi
);
2151 bbt
= ztest_bt_bonus(db
);
2152 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2154 crtxg
= bbt
->bt_crtxg
;
2155 lrtxg
= lr
->lr_common
.lrc_txg
;
2157 tx
= dmu_tx_create(os
);
2159 dmu_tx_hold_write(tx
, lr
->lr_foid
, offset
, length
);
2161 if (ztest_random(8) == 0 && length
== doi
.doi_data_block_size
&&
2162 P2PHASE(offset
, length
) == 0)
2163 abuf
= dmu_request_arcbuf(db
, length
);
2165 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2168 dmu_return_arcbuf(abuf
);
2169 dmu_buf_rele(db
, FTAG
);
2170 ztest_range_unlock(rl
);
2171 ztest_object_unlock(zd
, lr
->lr_foid
);
2177 * Usually, verify the old data before writing new data --
2178 * but not always, because we also want to verify correct
2179 * behavior when the data was not recently read into cache.
2181 ASSERT(doi
.doi_data_block_size
);
2182 ASSERT0(offset
% doi
.doi_data_block_size
);
2183 if (ztest_random(4) != 0) {
2184 int prefetch
= ztest_random(2) ?
2185 DMU_READ_PREFETCH
: DMU_READ_NO_PREFETCH
;
2186 ztest_block_tag_t rbt
;
2188 VERIFY(dmu_read(os
, lr
->lr_foid
, offset
,
2189 sizeof (rbt
), &rbt
, prefetch
) == 0);
2190 if (rbt
.bt_magic
== BT_MAGIC
) {
2191 ztest_bt_verify(&rbt
, os
, lr
->lr_foid
, 0,
2192 offset
, gen
, txg
, crtxg
);
2197 * Writes can appear to be newer than the bonus buffer because
2198 * the ztest_get_data() callback does a dmu_read() of the
2199 * open-context data, which may be different than the data
2200 * as it was when the write was generated.
2202 if (zd
->zd_zilog
->zl_replay
) {
2203 ztest_bt_verify(bt
, os
, lr
->lr_foid
, 0, offset
,
2204 MAX(gen
, bt
->bt_gen
), MAX(txg
, lrtxg
),
2209 * Set the bt's gen/txg to the bonus buffer's gen/txg
2210 * so that all of the usual ASSERTs will work.
2212 ztest_bt_generate(bt
, os
, lr
->lr_foid
, 0, offset
, gen
, txg
,
2217 dmu_write(os
, lr
->lr_foid
, offset
, length
, data
, tx
);
2219 memcpy(abuf
->b_data
, data
, length
);
2220 VERIFY0(dmu_assign_arcbuf_by_dbuf(db
, offset
, abuf
, tx
));
2223 (void) ztest_log_write(zd
, tx
, lr
);
2225 dmu_buf_rele(db
, FTAG
);
2229 ztest_range_unlock(rl
);
2230 ztest_object_unlock(zd
, lr
->lr_foid
);
2236 ztest_replay_truncate(void *arg1
, void *arg2
, boolean_t byteswap
)
2238 ztest_ds_t
*zd
= arg1
;
2239 lr_truncate_t
*lr
= arg2
;
2240 objset_t
*os
= zd
->zd_os
;
2246 byteswap_uint64_array(lr
, sizeof (*lr
));
2248 ztest_object_lock(zd
, lr
->lr_foid
, RL_READER
);
2249 rl
= ztest_range_lock(zd
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
,
2252 tx
= dmu_tx_create(os
);
2254 dmu_tx_hold_free(tx
, lr
->lr_foid
, lr
->lr_offset
, lr
->lr_length
);
2256 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2258 ztest_range_unlock(rl
);
2259 ztest_object_unlock(zd
, lr
->lr_foid
);
2263 VERIFY0(dmu_free_range(os
, lr
->lr_foid
, lr
->lr_offset
,
2264 lr
->lr_length
, tx
));
2266 (void) ztest_log_truncate(zd
, tx
, lr
);
2270 ztest_range_unlock(rl
);
2271 ztest_object_unlock(zd
, lr
->lr_foid
);
2277 ztest_replay_setattr(void *arg1
, void *arg2
, boolean_t byteswap
)
2279 ztest_ds_t
*zd
= arg1
;
2280 lr_setattr_t
*lr
= arg2
;
2281 objset_t
*os
= zd
->zd_os
;
2284 ztest_block_tag_t
*bbt
;
2285 uint64_t txg
, lrtxg
, crtxg
, dnodesize
;
2288 byteswap_uint64_array(lr
, sizeof (*lr
));
2290 ztest_object_lock(zd
, lr
->lr_foid
, RL_WRITER
);
2292 VERIFY0(dmu_bonus_hold(os
, lr
->lr_foid
, FTAG
, &db
));
2294 tx
= dmu_tx_create(os
);
2295 dmu_tx_hold_bonus(tx
, lr
->lr_foid
);
2297 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2299 dmu_buf_rele(db
, FTAG
);
2300 ztest_object_unlock(zd
, lr
->lr_foid
);
2304 bbt
= ztest_bt_bonus(db
);
2305 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2306 crtxg
= bbt
->bt_crtxg
;
2307 lrtxg
= lr
->lr_common
.lrc_txg
;
2308 dnodesize
= bbt
->bt_dnodesize
;
2310 if (zd
->zd_zilog
->zl_replay
) {
2311 ASSERT3U(lr
->lr_size
, !=, 0);
2312 ASSERT3U(lr
->lr_mode
, !=, 0);
2313 ASSERT3U(lrtxg
, !=, 0);
2316 * Randomly change the size and increment the generation.
2318 lr
->lr_size
= (ztest_random(db
->db_size
/ sizeof (*bbt
)) + 1) *
2320 lr
->lr_mode
= bbt
->bt_gen
+ 1;
2325 * Verify that the current bonus buffer is not newer than our txg.
2327 ztest_bt_verify(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2328 MAX(txg
, lrtxg
), crtxg
);
2330 dmu_buf_will_dirty(db
, tx
);
2332 ASSERT3U(lr
->lr_size
, >=, sizeof (*bbt
));
2333 ASSERT3U(lr
->lr_size
, <=, db
->db_size
);
2334 VERIFY0(dmu_set_bonus(db
, lr
->lr_size
, tx
));
2335 bbt
= ztest_bt_bonus(db
);
2337 ztest_bt_generate(bbt
, os
, lr
->lr_foid
, dnodesize
, -1ULL, lr
->lr_mode
,
2339 ztest_fill_unused_bonus(db
, bbt
, lr
->lr_foid
, os
, bbt
->bt_gen
);
2340 dmu_buf_rele(db
, FTAG
);
2342 (void) ztest_log_setattr(zd
, tx
, lr
);
2346 ztest_object_unlock(zd
, lr
->lr_foid
);
2351 static zil_replay_func_t
*ztest_replay_vector
[TX_MAX_TYPE
] = {
2352 NULL
, /* 0 no such transaction type */
2353 ztest_replay_create
, /* TX_CREATE */
2354 NULL
, /* TX_MKDIR */
2355 NULL
, /* TX_MKXATTR */
2356 NULL
, /* TX_SYMLINK */
2357 ztest_replay_remove
, /* TX_REMOVE */
2358 NULL
, /* TX_RMDIR */
2360 NULL
, /* TX_RENAME */
2361 ztest_replay_write
, /* TX_WRITE */
2362 ztest_replay_truncate
, /* TX_TRUNCATE */
2363 ztest_replay_setattr
, /* TX_SETATTR */
2365 NULL
, /* TX_CREATE_ACL */
2366 NULL
, /* TX_CREATE_ATTR */
2367 NULL
, /* TX_CREATE_ACL_ATTR */
2368 NULL
, /* TX_MKDIR_ACL */
2369 NULL
, /* TX_MKDIR_ATTR */
2370 NULL
, /* TX_MKDIR_ACL_ATTR */
2371 NULL
, /* TX_WRITE2 */
2372 NULL
, /* TX_SETSAXATTR */
2373 NULL
, /* TX_RENAME_EXCHANGE */
2374 NULL
, /* TX_RENAME_WHITEOUT */
2378 * ZIL get_data callbacks
2382 ztest_get_done(zgd_t
*zgd
, int error
)
2385 ztest_ds_t
*zd
= zgd
->zgd_private
;
2386 uint64_t object
= ((rl_t
*)zgd
->zgd_lr
)->rl_object
;
2389 dmu_buf_rele(zgd
->zgd_db
, zgd
);
2391 ztest_range_unlock((rl_t
*)zgd
->zgd_lr
);
2392 ztest_object_unlock(zd
, object
);
2394 umem_free(zgd
, sizeof (*zgd
));
2398 ztest_get_data(void *arg
, uint64_t arg2
, lr_write_t
*lr
, char *buf
,
2399 struct lwb
*lwb
, zio_t
*zio
)
2402 ztest_ds_t
*zd
= arg
;
2403 objset_t
*os
= zd
->zd_os
;
2404 uint64_t object
= lr
->lr_foid
;
2405 uint64_t offset
= lr
->lr_offset
;
2406 uint64_t size
= lr
->lr_length
;
2407 uint64_t txg
= lr
->lr_common
.lrc_txg
;
2409 dmu_object_info_t doi
;
2414 ASSERT3P(lwb
, !=, NULL
);
2415 ASSERT3U(size
, !=, 0);
2417 ztest_object_lock(zd
, object
, RL_READER
);
2418 error
= dmu_bonus_hold(os
, object
, FTAG
, &db
);
2420 ztest_object_unlock(zd
, object
);
2424 crtxg
= ztest_bt_bonus(db
)->bt_crtxg
;
2426 if (crtxg
== 0 || crtxg
> txg
) {
2427 dmu_buf_rele(db
, FTAG
);
2428 ztest_object_unlock(zd
, object
);
2432 dmu_object_info_from_db(db
, &doi
);
2433 dmu_buf_rele(db
, FTAG
);
2436 zgd
= umem_zalloc(sizeof (*zgd
), UMEM_NOFAIL
);
2438 zgd
->zgd_private
= zd
;
2440 if (buf
!= NULL
) { /* immediate write */
2441 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2442 object
, offset
, size
, RL_READER
);
2444 error
= dmu_read(os
, object
, offset
, size
, buf
,
2445 DMU_READ_NO_PREFETCH
);
2448 ASSERT3P(zio
, !=, NULL
);
2449 size
= doi
.doi_data_block_size
;
2451 offset
= P2ALIGN(offset
, size
);
2453 ASSERT3U(offset
, <, size
);
2457 zgd
->zgd_lr
= (struct zfs_locked_range
*)ztest_range_lock(zd
,
2458 object
, offset
, size
, RL_READER
);
2460 error
= dmu_buf_hold_noread(os
, object
, offset
, zgd
, &db
);
2463 blkptr_t
*bp
= &lr
->lr_blkptr
;
2468 ASSERT3U(db
->db_offset
, ==, offset
);
2469 ASSERT3U(db
->db_size
, ==, size
);
2471 error
= dmu_sync(zio
, lr
->lr_common
.lrc_txg
,
2472 ztest_get_done
, zgd
);
2479 ztest_get_done(zgd
, error
);
2485 ztest_lr_alloc(size_t lrsize
, char *name
)
2488 size_t namesize
= name
? strlen(name
) + 1 : 0;
2490 lr
= umem_zalloc(lrsize
+ namesize
, UMEM_NOFAIL
);
2493 memcpy(lr
+ lrsize
, name
, namesize
);
2499 ztest_lr_free(void *lr
, size_t lrsize
, char *name
)
2501 size_t namesize
= name
? strlen(name
) + 1 : 0;
2503 umem_free(lr
, lrsize
+ namesize
);
2507 * Lookup a bunch of objects. Returns the number of objects not found.
2510 ztest_lookup(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2516 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2518 for (i
= 0; i
< count
; i
++, od
++) {
2520 error
= zap_lookup(zd
->zd_os
, od
->od_dir
, od
->od_name
,
2521 sizeof (uint64_t), 1, &od
->od_object
);
2523 ASSERT3S(error
, ==, ENOENT
);
2524 ASSERT0(od
->od_object
);
2528 ztest_block_tag_t
*bbt
;
2529 dmu_object_info_t doi
;
2531 ASSERT3U(od
->od_object
, !=, 0);
2532 ASSERT0(missing
); /* there should be no gaps */
2534 ztest_object_lock(zd
, od
->od_object
, RL_READER
);
2535 VERIFY0(dmu_bonus_hold(zd
->zd_os
, od
->od_object
,
2537 dmu_object_info_from_db(db
, &doi
);
2538 bbt
= ztest_bt_bonus(db
);
2539 ASSERT3U(bbt
->bt_magic
, ==, BT_MAGIC
);
2540 od
->od_type
= doi
.doi_type
;
2541 od
->od_blocksize
= doi
.doi_data_block_size
;
2542 od
->od_gen
= bbt
->bt_gen
;
2543 dmu_buf_rele(db
, FTAG
);
2544 ztest_object_unlock(zd
, od
->od_object
);
2552 ztest_create(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2557 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2559 for (i
= 0; i
< count
; i
++, od
++) {
2566 lr_create_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2568 lr
->lr_doid
= od
->od_dir
;
2569 lr
->lr_foid
= 0; /* 0 to allocate, > 0 to claim */
2570 lr
->lrz_type
= od
->od_crtype
;
2571 lr
->lrz_blocksize
= od
->od_crblocksize
;
2572 lr
->lrz_ibshift
= ztest_random_ibshift();
2573 lr
->lrz_bonustype
= DMU_OT_UINT64_OTHER
;
2574 lr
->lrz_dnodesize
= od
->od_crdnodesize
;
2575 lr
->lr_gen
= od
->od_crgen
;
2576 lr
->lr_crtime
[0] = time(NULL
);
2578 if (ztest_replay_create(zd
, lr
, B_FALSE
) != 0) {
2583 od
->od_object
= lr
->lr_foid
;
2584 od
->od_type
= od
->od_crtype
;
2585 od
->od_blocksize
= od
->od_crblocksize
;
2586 od
->od_gen
= od
->od_crgen
;
2587 ASSERT3U(od
->od_object
, !=, 0);
2590 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2597 ztest_remove(ztest_ds_t
*zd
, ztest_od_t
*od
, int count
)
2603 ASSERT(MUTEX_HELD(&zd
->zd_dirobj_lock
));
2607 for (i
= count
- 1; i
>= 0; i
--, od
--) {
2614 * No object was found.
2616 if (od
->od_object
== 0)
2619 lr_remove_t
*lr
= ztest_lr_alloc(sizeof (*lr
), od
->od_name
);
2621 lr
->lr_doid
= od
->od_dir
;
2623 if ((error
= ztest_replay_remove(zd
, lr
, B_FALSE
)) != 0) {
2624 ASSERT3U(error
, ==, ENOSPC
);
2629 ztest_lr_free(lr
, sizeof (*lr
), od
->od_name
);
2636 ztest_write(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
,
2642 lr
= ztest_lr_alloc(sizeof (*lr
) + size
, NULL
);
2644 lr
->lr_foid
= object
;
2645 lr
->lr_offset
= offset
;
2646 lr
->lr_length
= size
;
2648 BP_ZERO(&lr
->lr_blkptr
);
2650 memcpy(lr
+ 1, data
, size
);
2652 error
= ztest_replay_write(zd
, lr
, B_FALSE
);
2654 ztest_lr_free(lr
, sizeof (*lr
) + size
, NULL
);
2660 ztest_truncate(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2665 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2667 lr
->lr_foid
= object
;
2668 lr
->lr_offset
= offset
;
2669 lr
->lr_length
= size
;
2671 error
= ztest_replay_truncate(zd
, lr
, B_FALSE
);
2673 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2679 ztest_setattr(ztest_ds_t
*zd
, uint64_t object
)
2684 lr
= ztest_lr_alloc(sizeof (*lr
), NULL
);
2686 lr
->lr_foid
= object
;
2690 error
= ztest_replay_setattr(zd
, lr
, B_FALSE
);
2692 ztest_lr_free(lr
, sizeof (*lr
), NULL
);
2698 ztest_prealloc(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
, uint64_t size
)
2700 objset_t
*os
= zd
->zd_os
;
2705 txg_wait_synced(dmu_objset_pool(os
), 0);
2707 ztest_object_lock(zd
, object
, RL_READER
);
2708 rl
= ztest_range_lock(zd
, object
, offset
, size
, RL_WRITER
);
2710 tx
= dmu_tx_create(os
);
2712 dmu_tx_hold_write(tx
, object
, offset
, size
);
2714 txg
= ztest_tx_assign(tx
, TXG_WAIT
, FTAG
);
2717 dmu_prealloc(os
, object
, offset
, size
, tx
);
2719 txg_wait_synced(dmu_objset_pool(os
), txg
);
2721 (void) dmu_free_long_range(os
, object
, offset
, size
);
2724 ztest_range_unlock(rl
);
2725 ztest_object_unlock(zd
, object
);
2729 ztest_io(ztest_ds_t
*zd
, uint64_t object
, uint64_t offset
)
2732 ztest_block_tag_t wbt
;
2733 dmu_object_info_t doi
;
2734 enum ztest_io_type io_type
;
2738 VERIFY0(dmu_object_info(zd
->zd_os
, object
, &doi
));
2739 blocksize
= doi
.doi_data_block_size
;
2740 data
= umem_alloc(blocksize
, UMEM_NOFAIL
);
2743 * Pick an i/o type at random, biased toward writing block tags.
2745 io_type
= ztest_random(ZTEST_IO_TYPES
);
2746 if (ztest_random(2) == 0)
2747 io_type
= ZTEST_IO_WRITE_TAG
;
2749 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2753 case ZTEST_IO_WRITE_TAG
:
2754 ztest_bt_generate(&wbt
, zd
->zd_os
, object
, doi
.doi_dnodesize
,
2756 (void) ztest_write(zd
, object
, offset
, sizeof (wbt
), &wbt
);
2759 case ZTEST_IO_WRITE_PATTERN
:
2760 (void) memset(data
, 'a' + (object
+ offset
) % 5, blocksize
);
2761 if (ztest_random(2) == 0) {
2763 * Induce fletcher2 collisions to ensure that
2764 * zio_ddt_collision() detects and resolves them
2765 * when using fletcher2-verify for deduplication.
2767 ((uint64_t *)data
)[0] ^= 1ULL << 63;
2768 ((uint64_t *)data
)[4] ^= 1ULL << 63;
2770 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2773 case ZTEST_IO_WRITE_ZEROES
:
2774 memset(data
, 0, blocksize
);
2775 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2778 case ZTEST_IO_TRUNCATE
:
2779 (void) ztest_truncate(zd
, object
, offset
, blocksize
);
2782 case ZTEST_IO_SETATTR
:
2783 (void) ztest_setattr(zd
, object
);
2788 case ZTEST_IO_REWRITE
:
2789 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
2790 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2791 ZFS_PROP_CHECKSUM
, spa_dedup_checksum(ztest_spa
),
2793 ASSERT(err
== 0 || err
== ENOSPC
);
2794 err
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
2795 ZFS_PROP_COMPRESSION
,
2796 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
),
2798 ASSERT(err
== 0 || err
== ENOSPC
);
2799 (void) pthread_rwlock_unlock(&ztest_name_lock
);
2801 VERIFY0(dmu_read(zd
->zd_os
, object
, offset
, blocksize
, data
,
2802 DMU_READ_NO_PREFETCH
));
2804 (void) ztest_write(zd
, object
, offset
, blocksize
, data
);
2808 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2810 umem_free(data
, blocksize
);
2814 * Initialize an object description template.
2817 ztest_od_init(ztest_od_t
*od
, uint64_t id
, const char *tag
, uint64_t index
,
2818 dmu_object_type_t type
, uint64_t blocksize
, uint64_t dnodesize
,
2821 od
->od_dir
= ZTEST_DIROBJ
;
2824 od
->od_crtype
= type
;
2825 od
->od_crblocksize
= blocksize
? blocksize
: ztest_random_blocksize();
2826 od
->od_crdnodesize
= dnodesize
? dnodesize
: ztest_random_dnodesize();
2829 od
->od_type
= DMU_OT_NONE
;
2830 od
->od_blocksize
= 0;
2833 (void) snprintf(od
->od_name
, sizeof (od
->od_name
),
2834 "%s(%"PRId64
")[%"PRIu64
"]",
2839 * Lookup or create the objects for a test using the od template.
2840 * If the objects do not all exist, or if 'remove' is specified,
2841 * remove any existing objects and create new ones. Otherwise,
2842 * use the existing objects.
2845 ztest_object_init(ztest_ds_t
*zd
, ztest_od_t
*od
, size_t size
, boolean_t remove
)
2847 int count
= size
/ sizeof (*od
);
2850 mutex_enter(&zd
->zd_dirobj_lock
);
2851 if ((ztest_lookup(zd
, od
, count
) != 0 || remove
) &&
2852 (ztest_remove(zd
, od
, count
) != 0 ||
2853 ztest_create(zd
, od
, count
) != 0))
2856 mutex_exit(&zd
->zd_dirobj_lock
);
2862 ztest_zil_commit(ztest_ds_t
*zd
, uint64_t id
)
2865 zilog_t
*zilog
= zd
->zd_zilog
;
2867 (void) pthread_rwlock_rdlock(&zd
->zd_zilog_lock
);
2869 zil_commit(zilog
, ztest_random(ZTEST_OBJECTS
));
2872 * Remember the committed values in zd, which is in parent/child
2873 * shared memory. If we die, the next iteration of ztest_run()
2874 * will verify that the log really does contain this record.
2876 mutex_enter(&zilog
->zl_lock
);
2877 ASSERT3P(zd
->zd_shared
, !=, NULL
);
2878 ASSERT3U(zd
->zd_shared
->zd_seq
, <=, zilog
->zl_commit_lr_seq
);
2879 zd
->zd_shared
->zd_seq
= zilog
->zl_commit_lr_seq
;
2880 mutex_exit(&zilog
->zl_lock
);
2882 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2886 * This function is designed to simulate the operations that occur during a
2887 * mount/unmount operation. We hold the dataset across these operations in an
2888 * attempt to expose any implicit assumptions about ZIL management.
2891 ztest_zil_remount(ztest_ds_t
*zd
, uint64_t id
)
2894 objset_t
*os
= zd
->zd_os
;
2897 * We hold the ztest_vdev_lock so we don't cause problems with
2898 * other threads that wish to remove a log device, such as
2899 * ztest_device_removal().
2901 mutex_enter(&ztest_vdev_lock
);
2904 * We grab the zd_dirobj_lock to ensure that no other thread is
2905 * updating the zil (i.e. adding in-memory log records) and the
2906 * zd_zilog_lock to block any I/O.
2908 mutex_enter(&zd
->zd_dirobj_lock
);
2909 (void) pthread_rwlock_wrlock(&zd
->zd_zilog_lock
);
2911 /* zfsvfs_teardown() */
2912 zil_close(zd
->zd_zilog
);
2914 /* zfsvfs_setup() */
2915 VERIFY3P(zil_open(os
, ztest_get_data
, NULL
), ==, zd
->zd_zilog
);
2916 zil_replay(os
, zd
, ztest_replay_vector
);
2918 (void) pthread_rwlock_unlock(&zd
->zd_zilog_lock
);
2919 mutex_exit(&zd
->zd_dirobj_lock
);
2920 mutex_exit(&ztest_vdev_lock
);
2924 * Verify that we can't destroy an active pool, create an existing pool,
2925 * or create a pool with a bad vdev spec.
2928 ztest_spa_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
2930 (void) zd
, (void) id
;
2931 ztest_shared_opts_t
*zo
= &ztest_opts
;
2935 if (zo
->zo_mmp_test
)
2939 * Attempt to create using a bad file.
2941 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
2942 VERIFY3U(ENOENT
, ==,
2943 spa_create("ztest_bad_file", nvroot
, NULL
, NULL
, NULL
));
2944 fnvlist_free(nvroot
);
2947 * Attempt to create using a bad mirror.
2949 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 2, 1);
2950 VERIFY3U(ENOENT
, ==,
2951 spa_create("ztest_bad_mirror", nvroot
, NULL
, NULL
, NULL
));
2952 fnvlist_free(nvroot
);
2955 * Attempt to create an existing pool. It shouldn't matter
2956 * what's in the nvroot; we should fail with EEXIST.
2958 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
2959 nvroot
= make_vdev_root("/dev/bogus", NULL
, NULL
, 0, 0, NULL
, 0, 0, 1);
2960 VERIFY3U(EEXIST
, ==,
2961 spa_create(zo
->zo_pool
, nvroot
, NULL
, NULL
, NULL
));
2962 fnvlist_free(nvroot
);
2965 * We open a reference to the spa and then we try to export it
2966 * expecting one of the following errors:
2969 * Because of the reference we just opened.
2971 * ZFS_ERR_EXPORT_IN_PROGRESS
2972 * For the case that there is another ztest thread doing
2973 * an export concurrently.
2975 VERIFY0(spa_open(zo
->zo_pool
, &spa
, FTAG
));
2976 int error
= spa_destroy(zo
->zo_pool
);
2977 if (error
!= EBUSY
&& error
!= ZFS_ERR_EXPORT_IN_PROGRESS
) {
2978 fatal(B_FALSE
, "spa_destroy(%s) returned unexpected value %d",
2979 spa
->spa_name
, error
);
2981 spa_close(spa
, FTAG
);
2983 (void) pthread_rwlock_unlock(&ztest_name_lock
);
2987 * Start and then stop the MMP threads to ensure the startup and shutdown code
2988 * works properly. Actual protection and property-related code tested via ZTS.
2991 ztest_mmp_enable_disable(ztest_ds_t
*zd
, uint64_t id
)
2993 (void) zd
, (void) id
;
2994 ztest_shared_opts_t
*zo
= &ztest_opts
;
2995 spa_t
*spa
= ztest_spa
;
2997 if (zo
->zo_mmp_test
)
3001 * Since enabling MMP involves setting a property, it could not be done
3002 * while the pool is suspended.
3004 if (spa_suspended(spa
))
3007 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3008 mutex_enter(&spa
->spa_props_lock
);
3010 zfs_multihost_fail_intervals
= 0;
3012 if (!spa_multihost(spa
)) {
3013 spa
->spa_multihost
= B_TRUE
;
3014 mmp_thread_start(spa
);
3017 mutex_exit(&spa
->spa_props_lock
);
3018 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3020 txg_wait_synced(spa_get_dsl(spa
), 0);
3021 mmp_signal_all_threads();
3022 txg_wait_synced(spa_get_dsl(spa
), 0);
3024 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
3025 mutex_enter(&spa
->spa_props_lock
);
3027 if (spa_multihost(spa
)) {
3028 mmp_thread_stop(spa
);
3029 spa
->spa_multihost
= B_FALSE
;
3032 mutex_exit(&spa
->spa_props_lock
);
3033 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
3037 ztest_spa_upgrade(ztest_ds_t
*zd
, uint64_t id
)
3039 (void) zd
, (void) id
;
3041 uint64_t initial_version
= SPA_VERSION_INITIAL
;
3042 uint64_t version
, newversion
;
3043 nvlist_t
*nvroot
, *props
;
3046 if (ztest_opts
.zo_mmp_test
)
3049 /* dRAID added after feature flags, skip upgrade test. */
3050 if (strcmp(ztest_opts
.zo_raid_type
, VDEV_TYPE_DRAID
) == 0)
3053 mutex_enter(&ztest_vdev_lock
);
3054 name
= kmem_asprintf("%s_upgrade", ztest_opts
.zo_pool
);
3057 * Clean up from previous runs.
3059 (void) spa_destroy(name
);
3061 nvroot
= make_vdev_root(NULL
, NULL
, name
, ztest_opts
.zo_vdev_size
, 0,
3062 NULL
, ztest_opts
.zo_raid_children
, ztest_opts
.zo_mirrors
, 1);
3065 * If we're configuring a RAIDZ device then make sure that the
3066 * initial version is capable of supporting that feature.
3068 switch (ztest_opts
.zo_raid_parity
) {
3071 initial_version
= SPA_VERSION_INITIAL
;
3074 initial_version
= SPA_VERSION_RAIDZ2
;
3077 initial_version
= SPA_VERSION_RAIDZ3
;
3082 * Create a pool with a spa version that can be upgraded. Pick
3083 * a value between initial_version and SPA_VERSION_BEFORE_FEATURES.
3086 version
= ztest_random_spa_version(initial_version
);
3087 } while (version
> SPA_VERSION_BEFORE_FEATURES
);
3089 props
= fnvlist_alloc();
3090 fnvlist_add_uint64(props
,
3091 zpool_prop_to_name(ZPOOL_PROP_VERSION
), version
);
3092 VERIFY0(spa_create(name
, nvroot
, props
, NULL
, NULL
));
3093 fnvlist_free(nvroot
);
3094 fnvlist_free(props
);
3096 VERIFY0(spa_open(name
, &spa
, FTAG
));
3097 VERIFY3U(spa_version(spa
), ==, version
);
3098 newversion
= ztest_random_spa_version(version
+ 1);
3100 if (ztest_opts
.zo_verbose
>= 4) {
3101 (void) printf("upgrading spa version from "
3102 "%"PRIu64
" to %"PRIu64
"\n",
3103 version
, newversion
);
3106 spa_upgrade(spa
, newversion
);
3107 VERIFY3U(spa_version(spa
), >, version
);
3108 VERIFY3U(spa_version(spa
), ==, fnvlist_lookup_uint64(spa
->spa_config
,
3109 zpool_prop_to_name(ZPOOL_PROP_VERSION
)));
3110 spa_close(spa
, FTAG
);
3113 mutex_exit(&ztest_vdev_lock
);
3117 ztest_spa_checkpoint(spa_t
*spa
)
3119 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3121 int error
= spa_checkpoint(spa
->spa_name
);
3125 case ZFS_ERR_DEVRM_IN_PROGRESS
:
3126 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3127 case ZFS_ERR_CHECKPOINT_EXISTS
:
3130 ztest_record_enospc(FTAG
);
3133 fatal(B_FALSE
, "spa_checkpoint(%s) = %d", spa
->spa_name
, error
);
3138 ztest_spa_discard_checkpoint(spa_t
*spa
)
3140 ASSERT(MUTEX_HELD(&ztest_checkpoint_lock
));
3142 int error
= spa_checkpoint_discard(spa
->spa_name
);
3146 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3147 case ZFS_ERR_NO_CHECKPOINT
:
3150 fatal(B_FALSE
, "spa_discard_checkpoint(%s) = %d",
3151 spa
->spa_name
, error
);
3157 ztest_spa_checkpoint_create_discard(ztest_ds_t
*zd
, uint64_t id
)
3159 (void) zd
, (void) id
;
3160 spa_t
*spa
= ztest_spa
;
3162 mutex_enter(&ztest_checkpoint_lock
);
3163 if (ztest_random(2) == 0) {
3164 ztest_spa_checkpoint(spa
);
3166 ztest_spa_discard_checkpoint(spa
);
3168 mutex_exit(&ztest_checkpoint_lock
);
3173 vdev_lookup_by_path(vdev_t
*vd
, const char *path
)
3178 if (vd
->vdev_path
!= NULL
&& strcmp(path
, vd
->vdev_path
) == 0)
3181 for (c
= 0; c
< vd
->vdev_children
; c
++)
3182 if ((mvd
= vdev_lookup_by_path(vd
->vdev_child
[c
], path
)) !=
3190 spa_num_top_vdevs(spa_t
*spa
)
3192 vdev_t
*rvd
= spa
->spa_root_vdev
;
3193 ASSERT3U(spa_config_held(spa
, SCL_VDEV
, RW_READER
), ==, SCL_VDEV
);
3194 return (rvd
->vdev_children
);
3198 * Verify that vdev_add() works as expected.
3201 ztest_vdev_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3203 (void) zd
, (void) id
;
3204 ztest_shared_t
*zs
= ztest_shared
;
3205 spa_t
*spa
= ztest_spa
;
3211 if (ztest_opts
.zo_mmp_test
)
3214 mutex_enter(&ztest_vdev_lock
);
3215 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) *
3216 ztest_opts
.zo_raid_children
;
3218 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3220 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3223 * If we have slogs then remove them 1/4 of the time.
3225 if (spa_has_slogs(spa
) && ztest_random(4) == 0) {
3226 metaslab_group_t
*mg
;
3229 * find the first real slog in log allocation class
3231 mg
= spa_log_class(spa
)->mc_allocator
[0].mca_rotor
;
3232 while (!mg
->mg_vd
->vdev_islog
)
3235 guid
= mg
->mg_vd
->vdev_guid
;
3237 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3240 * We have to grab the zs_name_lock as writer to
3241 * prevent a race between removing a slog (dmu_objset_find)
3242 * and destroying a dataset. Removing the slog will
3243 * grab a reference on the dataset which may cause
3244 * dsl_destroy_head() to fail with EBUSY thus
3245 * leaving the dataset in an inconsistent state.
3247 pthread_rwlock_wrlock(&ztest_name_lock
);
3248 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3249 pthread_rwlock_unlock(&ztest_name_lock
);
3253 case EEXIST
: /* Generic zil_reset() error */
3254 case EBUSY
: /* Replay required */
3255 case EACCES
: /* Crypto key not loaded */
3256 case ZFS_ERR_CHECKPOINT_EXISTS
:
3257 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3260 fatal(B_FALSE
, "spa_vdev_remove() = %d", error
);
3263 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3266 * Make 1/4 of the devices be log devices
3268 nvroot
= make_vdev_root(NULL
, NULL
, NULL
,
3269 ztest_opts
.zo_vdev_size
, 0, (ztest_random(4) == 0) ?
3270 "log" : NULL
, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
,
3273 error
= spa_vdev_add(spa
, nvroot
);
3274 fnvlist_free(nvroot
);
3280 ztest_record_enospc("spa_vdev_add");
3283 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3287 mutex_exit(&ztest_vdev_lock
);
3291 ztest_vdev_class_add(ztest_ds_t
*zd
, uint64_t id
)
3293 (void) zd
, (void) id
;
3294 ztest_shared_t
*zs
= ztest_shared
;
3295 spa_t
*spa
= ztest_spa
;
3298 const char *class = (ztest_random(2) == 0) ?
3299 VDEV_ALLOC_BIAS_SPECIAL
: VDEV_ALLOC_BIAS_DEDUP
;
3303 * By default add a special vdev 50% of the time
3305 if ((ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_OFF
) ||
3306 (ztest_opts
.zo_special_vdevs
== ZTEST_VDEV_CLASS_RND
&&
3307 ztest_random(2) == 0)) {
3311 mutex_enter(&ztest_vdev_lock
);
3313 /* Only test with mirrors */
3314 if (zs
->zs_mirrors
< 2) {
3315 mutex_exit(&ztest_vdev_lock
);
3319 /* requires feature@allocation_classes */
3320 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_ALLOCATION_CLASSES
)) {
3321 mutex_exit(&ztest_vdev_lock
);
3325 leaves
= MAX(zs
->zs_mirrors
+ zs
->zs_splits
, 1) *
3326 ztest_opts
.zo_raid_children
;
3328 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3329 ztest_shared
->zs_vdev_next_leaf
= spa_num_top_vdevs(spa
) * leaves
;
3330 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3332 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
3333 class, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
, 1);
3335 error
= spa_vdev_add(spa
, nvroot
);
3336 fnvlist_free(nvroot
);
3338 if (error
== ENOSPC
)
3339 ztest_record_enospc("spa_vdev_add");
3340 else if (error
!= 0)
3341 fatal(B_FALSE
, "spa_vdev_add() = %d", error
);
3344 * 50% of the time allow small blocks in the special class
3347 spa_special_class(spa
)->mc_groups
== 1 && ztest_random(2) == 0) {
3348 if (ztest_opts
.zo_verbose
>= 3)
3349 (void) printf("Enabling special VDEV small blocks\n");
3350 error
= ztest_dsl_prop_set_uint64(zd
->zd_name
,
3351 ZFS_PROP_SPECIAL_SMALL_BLOCKS
, 32768, B_FALSE
);
3352 ASSERT(error
== 0 || error
== ENOSPC
);
3355 mutex_exit(&ztest_vdev_lock
);
3357 if (ztest_opts
.zo_verbose
>= 3) {
3358 metaslab_class_t
*mc
;
3360 if (strcmp(class, VDEV_ALLOC_BIAS_SPECIAL
) == 0)
3361 mc
= spa_special_class(spa
);
3363 mc
= spa_dedup_class(spa
);
3364 (void) printf("Added a %s mirrored vdev (of %d)\n",
3365 class, (int)mc
->mc_groups
);
3370 * Verify that adding/removing aux devices (l2arc, hot spare) works as expected.
3373 ztest_vdev_aux_add_remove(ztest_ds_t
*zd
, uint64_t id
)
3375 (void) zd
, (void) id
;
3376 ztest_shared_t
*zs
= ztest_shared
;
3377 spa_t
*spa
= ztest_spa
;
3378 vdev_t
*rvd
= spa
->spa_root_vdev
;
3379 spa_aux_vdev_t
*sav
;
3383 int error
, ignore_err
= 0;
3385 if (ztest_opts
.zo_mmp_test
)
3388 path
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3390 if (ztest_random(2) == 0) {
3391 sav
= &spa
->spa_spares
;
3392 aux
= ZPOOL_CONFIG_SPARES
;
3394 sav
= &spa
->spa_l2cache
;
3395 aux
= ZPOOL_CONFIG_L2CACHE
;
3398 mutex_enter(&ztest_vdev_lock
);
3400 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3402 if (sav
->sav_count
!= 0 && ztest_random(4) == 0) {
3404 * Pick a random device to remove.
3406 vdev_t
*svd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3408 /* dRAID spares cannot be removed; try anyways to see ENOTSUP */
3409 if (strstr(svd
->vdev_path
, VDEV_TYPE_DRAID
) != NULL
)
3410 ignore_err
= ENOTSUP
;
3412 guid
= svd
->vdev_guid
;
3415 * Find an unused device we can add.
3417 zs
->zs_vdev_aux
= 0;
3420 (void) snprintf(path
, MAXPATHLEN
, ztest_aux_template
,
3421 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
, aux
,
3423 for (c
= 0; c
< sav
->sav_count
; c
++)
3424 if (strcmp(sav
->sav_vdevs
[c
]->vdev_path
,
3427 if (c
== sav
->sav_count
&&
3428 vdev_lookup_by_path(rvd
, path
) == NULL
)
3434 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3440 nvlist_t
*nvroot
= make_vdev_root(NULL
, aux
, NULL
,
3441 (ztest_opts
.zo_vdev_size
* 5) / 4, 0, NULL
, 0, 0, 1);
3442 error
= spa_vdev_add(spa
, nvroot
);
3448 fatal(B_FALSE
, "spa_vdev_add(%p) = %d", nvroot
, error
);
3450 fnvlist_free(nvroot
);
3453 * Remove an existing device. Sometimes, dirty its
3454 * vdev state first to make sure we handle removal
3455 * of devices that have pending state changes.
3457 if (ztest_random(2) == 0)
3458 (void) vdev_online(spa
, guid
, 0, NULL
);
3460 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3465 case ZFS_ERR_CHECKPOINT_EXISTS
:
3466 case ZFS_ERR_DISCARDING_CHECKPOINT
:
3469 if (error
!= ignore_err
)
3471 "spa_vdev_remove(%"PRIu64
") = %d",
3476 mutex_exit(&ztest_vdev_lock
);
3478 umem_free(path
, MAXPATHLEN
);
3482 * split a pool if it has mirror tlvdevs
3485 ztest_split_pool(ztest_ds_t
*zd
, uint64_t id
)
3487 (void) zd
, (void) id
;
3488 ztest_shared_t
*zs
= ztest_shared
;
3489 spa_t
*spa
= ztest_spa
;
3490 vdev_t
*rvd
= spa
->spa_root_vdev
;
3491 nvlist_t
*tree
, **child
, *config
, *split
, **schild
;
3492 uint_t c
, children
, schildren
= 0, lastlogid
= 0;
3495 if (ztest_opts
.zo_mmp_test
)
3498 mutex_enter(&ztest_vdev_lock
);
3500 /* ensure we have a usable config; mirrors of raidz aren't supported */
3501 if (zs
->zs_mirrors
< 3 || ztest_opts
.zo_raid_children
> 1) {
3502 mutex_exit(&ztest_vdev_lock
);
3506 /* clean up the old pool, if any */
3507 (void) spa_destroy("splitp");
3509 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3511 /* generate a config from the existing config */
3512 mutex_enter(&spa
->spa_props_lock
);
3513 tree
= fnvlist_lookup_nvlist(spa
->spa_config
, ZPOOL_CONFIG_VDEV_TREE
);
3514 mutex_exit(&spa
->spa_props_lock
);
3516 VERIFY0(nvlist_lookup_nvlist_array(tree
, ZPOOL_CONFIG_CHILDREN
,
3517 &child
, &children
));
3519 schild
= umem_alloc(rvd
->vdev_children
* sizeof (nvlist_t
*),
3521 for (c
= 0; c
< children
; c
++) {
3522 vdev_t
*tvd
= rvd
->vdev_child
[c
];
3526 if (tvd
->vdev_islog
|| tvd
->vdev_ops
== &vdev_hole_ops
) {
3527 schild
[schildren
] = fnvlist_alloc();
3528 fnvlist_add_string(schild
[schildren
],
3529 ZPOOL_CONFIG_TYPE
, VDEV_TYPE_HOLE
);
3530 fnvlist_add_uint64(schild
[schildren
],
3531 ZPOOL_CONFIG_IS_HOLE
, 1);
3533 lastlogid
= schildren
;
3538 VERIFY0(nvlist_lookup_nvlist_array(child
[c
],
3539 ZPOOL_CONFIG_CHILDREN
, &mchild
, &mchildren
));
3540 schild
[schildren
++] = fnvlist_dup(mchild
[0]);
3543 /* OK, create a config that can be used to split */
3544 split
= fnvlist_alloc();
3545 fnvlist_add_string(split
, ZPOOL_CONFIG_TYPE
, VDEV_TYPE_ROOT
);
3546 fnvlist_add_nvlist_array(split
, ZPOOL_CONFIG_CHILDREN
,
3547 (const nvlist_t
**)schild
, lastlogid
!= 0 ? lastlogid
: schildren
);
3549 config
= fnvlist_alloc();
3550 fnvlist_add_nvlist(config
, ZPOOL_CONFIG_VDEV_TREE
, split
);
3552 for (c
= 0; c
< schildren
; c
++)
3553 fnvlist_free(schild
[c
]);
3554 umem_free(schild
, rvd
->vdev_children
* sizeof (nvlist_t
*));
3555 fnvlist_free(split
);
3557 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3559 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
3560 error
= spa_vdev_split_mirror(spa
, "splitp", config
, NULL
, B_FALSE
);
3561 (void) pthread_rwlock_unlock(&ztest_name_lock
);
3563 fnvlist_free(config
);
3566 (void) printf("successful split - results:\n");
3567 mutex_enter(&spa_namespace_lock
);
3568 show_pool_stats(spa
);
3569 show_pool_stats(spa_lookup("splitp"));
3570 mutex_exit(&spa_namespace_lock
);
3574 mutex_exit(&ztest_vdev_lock
);
3578 * Verify that we can attach and detach devices.
3581 ztest_vdev_attach_detach(ztest_ds_t
*zd
, uint64_t id
)
3583 (void) zd
, (void) id
;
3584 ztest_shared_t
*zs
= ztest_shared
;
3585 spa_t
*spa
= ztest_spa
;
3586 spa_aux_vdev_t
*sav
= &spa
->spa_spares
;
3587 vdev_t
*rvd
= spa
->spa_root_vdev
;
3588 vdev_t
*oldvd
, *newvd
, *pvd
;
3592 uint64_t ashift
= ztest_get_ashift();
3593 uint64_t oldguid
, pguid
;
3594 uint64_t oldsize
, newsize
;
3595 char *oldpath
, *newpath
;
3597 int oldvd_has_siblings
= B_FALSE
;
3598 int newvd_is_spare
= B_FALSE
;
3599 int newvd_is_dspare
= B_FALSE
;
3601 int oldvd_is_special
;
3602 int error
, expected_error
;
3604 if (ztest_opts
.zo_mmp_test
)
3607 oldpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3608 newpath
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
3610 mutex_enter(&ztest_vdev_lock
);
3611 leaves
= MAX(zs
->zs_mirrors
, 1) * ztest_opts
.zo_raid_children
;
3613 spa_config_enter(spa
, SCL_ALL
, FTAG
, RW_WRITER
);
3616 * If a vdev is in the process of being removed, its removal may
3617 * finish while we are in progress, leading to an unexpected error
3618 * value. Don't bother trying to attach while we are in the middle
3621 if (ztest_device_removal_active
) {
3622 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3627 * Decide whether to do an attach or a replace.
3629 replacing
= ztest_random(2);
3632 * Pick a random top-level vdev.
3634 top
= ztest_random_vdev_top(spa
, B_TRUE
);
3637 * Pick a random leaf within it.
3639 leaf
= ztest_random(leaves
);
3644 oldvd
= rvd
->vdev_child
[top
];
3646 /* pick a child from the mirror */
3647 if (zs
->zs_mirrors
>= 1) {
3648 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_mirror_ops
);
3649 ASSERT3U(oldvd
->vdev_children
, >=, zs
->zs_mirrors
);
3650 oldvd
= oldvd
->vdev_child
[leaf
/ ztest_opts
.zo_raid_children
];
3653 /* pick a child out of the raidz group */
3654 if (ztest_opts
.zo_raid_children
> 1) {
3655 if (strcmp(oldvd
->vdev_ops
->vdev_op_type
, "raidz") == 0)
3656 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_raidz_ops
);
3658 ASSERT3P(oldvd
->vdev_ops
, ==, &vdev_draid_ops
);
3659 ASSERT3U(oldvd
->vdev_children
, ==, ztest_opts
.zo_raid_children
);
3660 oldvd
= oldvd
->vdev_child
[leaf
% ztest_opts
.zo_raid_children
];
3664 * If we're already doing an attach or replace, oldvd may be a
3665 * mirror vdev -- in which case, pick a random child.
3667 while (oldvd
->vdev_children
!= 0) {
3668 oldvd_has_siblings
= B_TRUE
;
3669 ASSERT3U(oldvd
->vdev_children
, >=, 2);
3670 oldvd
= oldvd
->vdev_child
[ztest_random(oldvd
->vdev_children
)];
3673 oldguid
= oldvd
->vdev_guid
;
3674 oldsize
= vdev_get_min_asize(oldvd
);
3675 oldvd_is_log
= oldvd
->vdev_top
->vdev_islog
;
3677 oldvd
->vdev_top
->vdev_alloc_bias
== VDEV_BIAS_SPECIAL
||
3678 oldvd
->vdev_top
->vdev_alloc_bias
== VDEV_BIAS_DEDUP
;
3679 (void) strlcpy(oldpath
, oldvd
->vdev_path
, MAXPATHLEN
);
3680 pvd
= oldvd
->vdev_parent
;
3681 pguid
= pvd
->vdev_guid
;
3684 * If oldvd has siblings, then half of the time, detach it. Prior
3685 * to the detach the pool is scrubbed in order to prevent creating
3686 * unrepairable blocks as a result of the data corruption injection.
3688 if (oldvd_has_siblings
&& ztest_random(2) == 0) {
3689 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3691 error
= ztest_scrub_impl(spa
);
3695 error
= spa_vdev_detach(spa
, oldguid
, pguid
, B_FALSE
);
3696 if (error
!= 0 && error
!= ENODEV
&& error
!= EBUSY
&&
3697 error
!= ENOTSUP
&& error
!= ZFS_ERR_CHECKPOINT_EXISTS
&&
3698 error
!= ZFS_ERR_DISCARDING_CHECKPOINT
)
3699 fatal(B_FALSE
, "detach (%s) returned %d",
3705 * For the new vdev, choose with equal probability between the two
3706 * standard paths (ending in either 'a' or 'b') or a random hot spare.
3708 if (sav
->sav_count
!= 0 && ztest_random(3) == 0) {
3709 newvd
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
3710 newvd_is_spare
= B_TRUE
;
3712 if (newvd
->vdev_ops
== &vdev_draid_spare_ops
)
3713 newvd_is_dspare
= B_TRUE
;
3715 (void) strlcpy(newpath
, newvd
->vdev_path
, MAXPATHLEN
);
3717 (void) snprintf(newpath
, MAXPATHLEN
, ztest_dev_template
,
3718 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
3719 top
* leaves
+ leaf
);
3720 if (ztest_random(2) == 0)
3721 newpath
[strlen(newpath
) - 1] = 'b';
3722 newvd
= vdev_lookup_by_path(rvd
, newpath
);
3727 * Reopen to ensure the vdev's asize field isn't stale.
3730 newsize
= vdev_get_min_asize(newvd
);
3733 * Make newsize a little bigger or smaller than oldsize.
3734 * If it's smaller, the attach should fail.
3735 * If it's larger, and we're doing a replace,
3736 * we should get dynamic LUN growth when we're done.
3738 newsize
= 10 * oldsize
/ (9 + ztest_random(3));
3742 * If pvd is not a mirror or root, the attach should fail with ENOTSUP,
3743 * unless it's a replace; in that case any non-replacing parent is OK.
3745 * If newvd is already part of the pool, it should fail with EBUSY.
3747 * If newvd is too small, it should fail with EOVERFLOW.
3749 * If newvd is a distributed spare and it's being attached to a
3750 * dRAID which is not its parent it should fail with EINVAL.
3752 if (pvd
->vdev_ops
!= &vdev_mirror_ops
&&
3753 pvd
->vdev_ops
!= &vdev_root_ops
&& (!replacing
||
3754 pvd
->vdev_ops
== &vdev_replacing_ops
||
3755 pvd
->vdev_ops
== &vdev_spare_ops
))
3756 expected_error
= ENOTSUP
;
3757 else if (newvd_is_spare
&&
3758 (!replacing
|| oldvd_is_log
|| oldvd_is_special
))
3759 expected_error
= ENOTSUP
;
3760 else if (newvd
== oldvd
)
3761 expected_error
= replacing
? 0 : EBUSY
;
3762 else if (vdev_lookup_by_path(rvd
, newpath
) != NULL
)
3763 expected_error
= EBUSY
;
3764 else if (!newvd_is_dspare
&& newsize
< oldsize
)
3765 expected_error
= EOVERFLOW
;
3766 else if (ashift
> oldvd
->vdev_top
->vdev_ashift
)
3767 expected_error
= EDOM
;
3768 else if (newvd_is_dspare
&& pvd
!= vdev_draid_spare_get_parent(newvd
))
3769 expected_error
= EINVAL
;
3773 spa_config_exit(spa
, SCL_ALL
, FTAG
);
3776 * Build the nvlist describing newpath.
3778 root
= make_vdev_root(newpath
, NULL
, NULL
, newvd
== NULL
? newsize
: 0,
3779 ashift
, NULL
, 0, 0, 1);
3782 * When supported select either a healing or sequential resilver.
3784 boolean_t rebuilding
= B_FALSE
;
3785 if (pvd
->vdev_ops
== &vdev_mirror_ops
||
3786 pvd
->vdev_ops
== &vdev_root_ops
) {
3787 rebuilding
= !!ztest_random(2);
3790 error
= spa_vdev_attach(spa
, oldguid
, root
, replacing
, rebuilding
);
3795 * If our parent was the replacing vdev, but the replace completed,
3796 * then instead of failing with ENOTSUP we may either succeed,
3797 * fail with ENODEV, or fail with EOVERFLOW.
3799 if (expected_error
== ENOTSUP
&&
3800 (error
== 0 || error
== ENODEV
|| error
== EOVERFLOW
))
3801 expected_error
= error
;
3804 * If someone grew the LUN, the replacement may be too small.
3806 if (error
== EOVERFLOW
|| error
== EBUSY
)
3807 expected_error
= error
;
3809 if (error
== ZFS_ERR_CHECKPOINT_EXISTS
||
3810 error
== ZFS_ERR_DISCARDING_CHECKPOINT
||
3811 error
== ZFS_ERR_RESILVER_IN_PROGRESS
||
3812 error
== ZFS_ERR_REBUILD_IN_PROGRESS
)
3813 expected_error
= error
;
3815 if (error
!= expected_error
&& expected_error
!= EBUSY
) {
3816 fatal(B_FALSE
, "attach (%s %"PRIu64
", %s %"PRIu64
", %d) "
3817 "returned %d, expected %d",
3818 oldpath
, oldsize
, newpath
,
3819 newsize
, replacing
, error
, expected_error
);
3822 mutex_exit(&ztest_vdev_lock
);
3824 umem_free(oldpath
, MAXPATHLEN
);
3825 umem_free(newpath
, MAXPATHLEN
);
3829 ztest_device_removal(ztest_ds_t
*zd
, uint64_t id
)
3831 (void) zd
, (void) id
;
3832 spa_t
*spa
= ztest_spa
;
3837 mutex_enter(&ztest_vdev_lock
);
3839 if (ztest_device_removal_active
) {
3840 mutex_exit(&ztest_vdev_lock
);
3845 * Remove a random top-level vdev and wait for removal to finish.
3847 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
3848 vd
= vdev_lookup_top(spa
, ztest_random_vdev_top(spa
, B_FALSE
));
3849 guid
= vd
->vdev_guid
;
3850 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
3852 error
= spa_vdev_remove(spa
, guid
, B_FALSE
);
3854 ztest_device_removal_active
= B_TRUE
;
3855 mutex_exit(&ztest_vdev_lock
);
3858 * spa->spa_vdev_removal is created in a sync task that
3859 * is initiated via dsl_sync_task_nowait(). Since the
3860 * task may not run before spa_vdev_remove() returns, we
3861 * must wait at least 1 txg to ensure that the removal
3862 * struct has been created.
3864 txg_wait_synced(spa_get_dsl(spa
), 0);
3866 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
3867 txg_wait_synced(spa_get_dsl(spa
), 0);
3869 mutex_exit(&ztest_vdev_lock
);
3874 * The pool needs to be scrubbed after completing device removal.
3875 * Failure to do so may result in checksum errors due to the
3876 * strategy employed by ztest_fault_inject() when selecting which
3877 * offset are redundant and can be damaged.
3879 error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
3881 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
3882 txg_wait_synced(spa_get_dsl(spa
), 0);
3885 mutex_enter(&ztest_vdev_lock
);
3886 ztest_device_removal_active
= B_FALSE
;
3887 mutex_exit(&ztest_vdev_lock
);
3891 * Callback function which expands the physical size of the vdev.
3894 grow_vdev(vdev_t
*vd
, void *arg
)
3896 spa_t
*spa __maybe_unused
= vd
->vdev_spa
;
3897 size_t *newsize
= arg
;
3901 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
3902 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
3904 if ((fd
= open(vd
->vdev_path
, O_RDWR
)) == -1)
3907 fsize
= lseek(fd
, 0, SEEK_END
);
3908 VERIFY0(ftruncate(fd
, *newsize
));
3910 if (ztest_opts
.zo_verbose
>= 6) {
3911 (void) printf("%s grew from %lu to %lu bytes\n",
3912 vd
->vdev_path
, (ulong_t
)fsize
, (ulong_t
)*newsize
);
3919 * Callback function which expands a given vdev by calling vdev_online().
3922 online_vdev(vdev_t
*vd
, void *arg
)
3925 spa_t
*spa
= vd
->vdev_spa
;
3926 vdev_t
*tvd
= vd
->vdev_top
;
3927 uint64_t guid
= vd
->vdev_guid
;
3928 uint64_t generation
= spa
->spa_config_generation
+ 1;
3929 vdev_state_t newstate
= VDEV_STATE_UNKNOWN
;
3932 ASSERT3S(spa_config_held(spa
, SCL_STATE
, RW_READER
), ==, SCL_STATE
);
3933 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
3935 /* Calling vdev_online will initialize the new metaslabs */
3936 spa_config_exit(spa
, SCL_STATE
, spa
);
3937 error
= vdev_online(spa
, guid
, ZFS_ONLINE_EXPAND
, &newstate
);
3938 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
3941 * If vdev_online returned an error or the underlying vdev_open
3942 * failed then we abort the expand. The only way to know that
3943 * vdev_open fails is by checking the returned newstate.
3945 if (error
|| newstate
!= VDEV_STATE_HEALTHY
) {
3946 if (ztest_opts
.zo_verbose
>= 5) {
3947 (void) printf("Unable to expand vdev, state %u, "
3948 "error %d\n", newstate
, error
);
3952 ASSERT3U(newstate
, ==, VDEV_STATE_HEALTHY
);
3955 * Since we dropped the lock we need to ensure that we're
3956 * still talking to the original vdev. It's possible this
3957 * vdev may have been detached/replaced while we were
3958 * trying to online it.
3960 if (generation
!= spa
->spa_config_generation
) {
3961 if (ztest_opts
.zo_verbose
>= 5) {
3962 (void) printf("vdev configuration has changed, "
3963 "guid %"PRIu64
", state %"PRIu64
", "
3964 "expected gen %"PRIu64
", got gen %"PRIu64
"\n",
3968 spa
->spa_config_generation
);
3976 * Traverse the vdev tree calling the supplied function.
3977 * We continue to walk the tree until we either have walked all
3978 * children or we receive a non-NULL return from the callback.
3979 * If a NULL callback is passed, then we just return back the first
3980 * leaf vdev we encounter.
3983 vdev_walk_tree(vdev_t
*vd
, vdev_t
*(*func
)(vdev_t
*, void *), void *arg
)
3987 if (vd
->vdev_ops
->vdev_op_leaf
) {
3991 return (func(vd
, arg
));
3994 for (c
= 0; c
< vd
->vdev_children
; c
++) {
3995 vdev_t
*cvd
= vd
->vdev_child
[c
];
3996 if ((cvd
= vdev_walk_tree(cvd
, func
, arg
)) != NULL
)
4003 * Verify that dynamic LUN growth works as expected.
4006 ztest_vdev_LUN_growth(ztest_ds_t
*zd
, uint64_t id
)
4008 (void) zd
, (void) id
;
4009 spa_t
*spa
= ztest_spa
;
4011 metaslab_class_t
*mc
;
4012 metaslab_group_t
*mg
;
4013 size_t psize
, newsize
;
4015 uint64_t old_class_space
, new_class_space
, old_ms_count
, new_ms_count
;
4017 mutex_enter(&ztest_checkpoint_lock
);
4018 mutex_enter(&ztest_vdev_lock
);
4019 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4022 * If there is a vdev removal in progress, it could complete while
4023 * we are running, in which case we would not be able to verify
4024 * that the metaslab_class space increased (because it decreases
4025 * when the device removal completes).
4027 if (ztest_device_removal_active
) {
4028 spa_config_exit(spa
, SCL_STATE
, spa
);
4029 mutex_exit(&ztest_vdev_lock
);
4030 mutex_exit(&ztest_checkpoint_lock
);
4034 top
= ztest_random_vdev_top(spa
, B_TRUE
);
4036 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4039 old_ms_count
= tvd
->vdev_ms_count
;
4040 old_class_space
= metaslab_class_get_space(mc
);
4043 * Determine the size of the first leaf vdev associated with
4044 * our top-level device.
4046 vd
= vdev_walk_tree(tvd
, NULL
, NULL
);
4047 ASSERT3P(vd
, !=, NULL
);
4048 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
4050 psize
= vd
->vdev_psize
;
4053 * We only try to expand the vdev if it's healthy, less than 4x its
4054 * original size, and it has a valid psize.
4056 if (tvd
->vdev_state
!= VDEV_STATE_HEALTHY
||
4057 psize
== 0 || psize
>= 4 * ztest_opts
.zo_vdev_size
) {
4058 spa_config_exit(spa
, SCL_STATE
, spa
);
4059 mutex_exit(&ztest_vdev_lock
);
4060 mutex_exit(&ztest_checkpoint_lock
);
4063 ASSERT3U(psize
, >, 0);
4064 newsize
= psize
+ MAX(psize
/ 8, SPA_MAXBLOCKSIZE
);
4065 ASSERT3U(newsize
, >, psize
);
4067 if (ztest_opts
.zo_verbose
>= 6) {
4068 (void) printf("Expanding LUN %s from %lu to %lu\n",
4069 vd
->vdev_path
, (ulong_t
)psize
, (ulong_t
)newsize
);
4073 * Growing the vdev is a two step process:
4074 * 1). expand the physical size (i.e. relabel)
4075 * 2). online the vdev to create the new metaslabs
4077 if (vdev_walk_tree(tvd
, grow_vdev
, &newsize
) != NULL
||
4078 vdev_walk_tree(tvd
, online_vdev
, NULL
) != NULL
||
4079 tvd
->vdev_state
!= VDEV_STATE_HEALTHY
) {
4080 if (ztest_opts
.zo_verbose
>= 5) {
4081 (void) printf("Could not expand LUN because "
4082 "the vdev configuration changed.\n");
4084 spa_config_exit(spa
, SCL_STATE
, spa
);
4085 mutex_exit(&ztest_vdev_lock
);
4086 mutex_exit(&ztest_checkpoint_lock
);
4090 spa_config_exit(spa
, SCL_STATE
, spa
);
4093 * Expanding the LUN will update the config asynchronously,
4094 * thus we must wait for the async thread to complete any
4095 * pending tasks before proceeding.
4099 mutex_enter(&spa
->spa_async_lock
);
4100 done
= (spa
->spa_async_thread
== NULL
&& !spa
->spa_async_tasks
);
4101 mutex_exit(&spa
->spa_async_lock
);
4104 txg_wait_synced(spa_get_dsl(spa
), 0);
4105 (void) poll(NULL
, 0, 100);
4108 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4110 tvd
= spa
->spa_root_vdev
->vdev_child
[top
];
4111 new_ms_count
= tvd
->vdev_ms_count
;
4112 new_class_space
= metaslab_class_get_space(mc
);
4114 if (tvd
->vdev_mg
!= mg
|| mg
->mg_class
!= mc
) {
4115 if (ztest_opts
.zo_verbose
>= 5) {
4116 (void) printf("Could not verify LUN expansion due to "
4117 "intervening vdev offline or remove.\n");
4119 spa_config_exit(spa
, SCL_STATE
, spa
);
4120 mutex_exit(&ztest_vdev_lock
);
4121 mutex_exit(&ztest_checkpoint_lock
);
4126 * Make sure we were able to grow the vdev.
4128 if (new_ms_count
<= old_ms_count
) {
4130 "LUN expansion failed: ms_count %"PRIu64
" < %"PRIu64
"\n",
4131 old_ms_count
, new_ms_count
);
4135 * Make sure we were able to grow the pool.
4137 if (new_class_space
<= old_class_space
) {
4139 "LUN expansion failed: class_space %"PRIu64
" < %"PRIu64
"\n",
4140 old_class_space
, new_class_space
);
4143 if (ztest_opts
.zo_verbose
>= 5) {
4144 char oldnumbuf
[NN_NUMBUF_SZ
], newnumbuf
[NN_NUMBUF_SZ
];
4146 nicenum(old_class_space
, oldnumbuf
, sizeof (oldnumbuf
));
4147 nicenum(new_class_space
, newnumbuf
, sizeof (newnumbuf
));
4148 (void) printf("%s grew from %s to %s\n",
4149 spa
->spa_name
, oldnumbuf
, newnumbuf
);
4152 spa_config_exit(spa
, SCL_STATE
, spa
);
4153 mutex_exit(&ztest_vdev_lock
);
4154 mutex_exit(&ztest_checkpoint_lock
);
4158 * Verify that dmu_objset_{create,destroy,open,close} work as expected.
4161 ztest_objset_create_cb(objset_t
*os
, void *arg
, cred_t
*cr
, dmu_tx_t
*tx
)
4163 (void) arg
, (void) cr
;
4166 * Create the objects common to all ztest datasets.
4168 VERIFY0(zap_create_claim(os
, ZTEST_DIROBJ
,
4169 DMU_OT_ZAP_OTHER
, DMU_OT_NONE
, 0, tx
));
4173 ztest_dataset_create(char *dsname
)
4177 dsl_crypto_params_t
*dcp
= NULL
;
4180 * 50% of the time, we create encrypted datasets
4181 * using a random cipher suite and a hard-coded
4184 rand
= ztest_random(2);
4186 nvlist_t
*crypto_args
= fnvlist_alloc();
4187 nvlist_t
*props
= fnvlist_alloc();
4189 /* slight bias towards the default cipher suite */
4190 rand
= ztest_random(ZIO_CRYPT_FUNCTIONS
);
4191 if (rand
< ZIO_CRYPT_AES_128_CCM
)
4192 rand
= ZIO_CRYPT_ON
;
4194 fnvlist_add_uint64(props
,
4195 zfs_prop_to_name(ZFS_PROP_ENCRYPTION
), rand
);
4196 fnvlist_add_uint8_array(crypto_args
, "wkeydata",
4197 (uint8_t *)ztest_wkeydata
, WRAPPING_KEY_LEN
);
4200 * These parameters aren't really used by the kernel. They
4201 * are simply stored so that userspace knows how to load
4204 fnvlist_add_uint64(props
,
4205 zfs_prop_to_name(ZFS_PROP_KEYFORMAT
), ZFS_KEYFORMAT_RAW
);
4206 fnvlist_add_string(props
,
4207 zfs_prop_to_name(ZFS_PROP_KEYLOCATION
), "prompt");
4208 fnvlist_add_uint64(props
,
4209 zfs_prop_to_name(ZFS_PROP_PBKDF2_SALT
), 0ULL);
4210 fnvlist_add_uint64(props
,
4211 zfs_prop_to_name(ZFS_PROP_PBKDF2_ITERS
), 0ULL);
4213 VERIFY0(dsl_crypto_params_create_nvlist(DCP_CMD_NONE
, props
,
4214 crypto_args
, &dcp
));
4217 * Cycle through all available encryption implementations
4218 * to verify interoperability.
4220 VERIFY0(gcm_impl_set("cycle"));
4221 VERIFY0(aes_impl_set("cycle"));
4223 fnvlist_free(crypto_args
);
4224 fnvlist_free(props
);
4227 err
= dmu_objset_create(dsname
, DMU_OST_OTHER
, 0, dcp
,
4228 ztest_objset_create_cb
, NULL
);
4229 dsl_crypto_params_free(dcp
, !!err
);
4231 rand
= ztest_random(100);
4232 if (err
|| rand
< 80)
4235 if (ztest_opts
.zo_verbose
>= 5)
4236 (void) printf("Setting dataset %s to sync always\n", dsname
);
4237 return (ztest_dsl_prop_set_uint64(dsname
, ZFS_PROP_SYNC
,
4238 ZFS_SYNC_ALWAYS
, B_FALSE
));
4242 ztest_objset_destroy_cb(const char *name
, void *arg
)
4246 dmu_object_info_t doi
;
4250 * Verify that the dataset contains a directory object.
4252 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
,
4253 B_TRUE
, FTAG
, &os
));
4254 error
= dmu_object_info(os
, ZTEST_DIROBJ
, &doi
);
4255 if (error
!= ENOENT
) {
4256 /* We could have crashed in the middle of destroying it */
4258 ASSERT3U(doi
.doi_type
, ==, DMU_OT_ZAP_OTHER
);
4259 ASSERT3S(doi
.doi_physical_blocks_512
, >=, 0);
4261 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4264 * Destroy the dataset.
4266 if (strchr(name
, '@') != NULL
) {
4267 error
= dsl_destroy_snapshot(name
, B_TRUE
);
4268 if (error
!= ECHRNG
) {
4270 * The program was executed, but encountered a runtime
4271 * error, such as insufficient slop, or a hold on the
4277 error
= dsl_destroy_head(name
);
4278 if (error
== ENOSPC
) {
4279 /* There could be checkpoint or insufficient slop */
4280 ztest_record_enospc(FTAG
);
4281 } else if (error
!= EBUSY
) {
4282 /* There could be a hold on this dataset */
4290 ztest_snapshot_create(char *osname
, uint64_t id
)
4292 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4295 (void) snprintf(snapname
, sizeof (snapname
), "%"PRIu64
"", id
);
4297 error
= dmu_objset_snapshot_one(osname
, snapname
);
4298 if (error
== ENOSPC
) {
4299 ztest_record_enospc(FTAG
);
4302 if (error
!= 0 && error
!= EEXIST
&& error
!= ECHRNG
) {
4303 fatal(B_FALSE
, "ztest_snapshot_create(%s@%s) = %d", osname
,
4310 ztest_snapshot_destroy(char *osname
, uint64_t id
)
4312 char snapname
[ZFS_MAX_DATASET_NAME_LEN
];
4315 (void) snprintf(snapname
, sizeof (snapname
), "%s@%"PRIu64
"",
4318 error
= dsl_destroy_snapshot(snapname
, B_FALSE
);
4319 if (error
!= 0 && error
!= ENOENT
&& error
!= ECHRNG
)
4320 fatal(B_FALSE
, "ztest_snapshot_destroy(%s) = %d",
4326 ztest_dmu_objset_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4333 char name
[ZFS_MAX_DATASET_NAME_LEN
];
4337 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
4339 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4341 (void) snprintf(name
, sizeof (name
), "%s/temp_%"PRIu64
"",
4342 ztest_opts
.zo_pool
, id
);
4345 * If this dataset exists from a previous run, process its replay log
4346 * half of the time. If we don't replay it, then dsl_destroy_head()
4347 * (invoked from ztest_objset_destroy_cb()) should just throw it away.
4349 if (ztest_random(2) == 0 &&
4350 ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
4351 B_TRUE
, FTAG
, &os
) == 0) {
4352 ztest_zd_init(zdtmp
, NULL
, os
);
4353 zil_replay(os
, zdtmp
, ztest_replay_vector
);
4354 ztest_zd_fini(zdtmp
);
4355 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4359 * There may be an old instance of the dataset we're about to
4360 * create lying around from a previous run. If so, destroy it
4361 * and all of its snapshots.
4363 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
4364 DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
4367 * Verify that the destroyed dataset is no longer in the namespace.
4368 * It may still be present if the destroy above fails with ENOSPC.
4370 error
= ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_TRUE
, B_TRUE
,
4373 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4374 ztest_record_enospc(FTAG
);
4377 VERIFY3U(ENOENT
, ==, error
);
4380 * Verify that we can create a new dataset.
4382 error
= ztest_dataset_create(name
);
4384 if (error
== ENOSPC
) {
4385 ztest_record_enospc(FTAG
);
4388 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", name
, error
);
4391 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
, B_TRUE
,
4394 ztest_zd_init(zdtmp
, NULL
, os
);
4397 * Open the intent log for it.
4399 zilog
= zil_open(os
, ztest_get_data
, NULL
);
4402 * Put some objects in there, do a little I/O to them,
4403 * and randomly take a couple of snapshots along the way.
4405 iters
= ztest_random(5);
4406 for (i
= 0; i
< iters
; i
++) {
4407 ztest_dmu_object_alloc_free(zdtmp
, id
);
4408 if (ztest_random(iters
) == 0)
4409 (void) ztest_snapshot_create(name
, i
);
4413 * Verify that we cannot create an existing dataset.
4415 VERIFY3U(EEXIST
, ==,
4416 dmu_objset_create(name
, DMU_OST_OTHER
, 0, NULL
, NULL
, NULL
));
4419 * Verify that we can hold an objset that is also owned.
4421 VERIFY0(dmu_objset_hold(name
, FTAG
, &os2
));
4422 dmu_objset_rele(os2
, FTAG
);
4425 * Verify that we cannot own an objset that is already owned.
4427 VERIFY3U(EBUSY
, ==, ztest_dmu_objset_own(name
, DMU_OST_OTHER
,
4428 B_FALSE
, B_TRUE
, FTAG
, &os2
));
4431 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4432 ztest_zd_fini(zdtmp
);
4434 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4436 umem_free(zdtmp
, sizeof (ztest_ds_t
));
4440 * Verify that dmu_snapshot_{create,destroy,open,close} work as expected.
4443 ztest_dmu_snapshot_create_destroy(ztest_ds_t
*zd
, uint64_t id
)
4445 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4446 (void) ztest_snapshot_destroy(zd
->zd_name
, id
);
4447 (void) ztest_snapshot_create(zd
->zd_name
, id
);
4448 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4452 * Cleanup non-standard snapshots and clones.
4455 ztest_dsl_dataset_cleanup(char *osname
, uint64_t id
)
4464 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4465 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4466 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4467 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4468 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4470 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4472 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4474 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4476 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4478 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4481 error
= dsl_destroy_head(clone2name
);
4482 if (error
&& error
!= ENOENT
)
4483 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone2name
, error
);
4484 error
= dsl_destroy_snapshot(snap3name
, B_FALSE
);
4485 if (error
&& error
!= ENOENT
)
4486 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4488 error
= dsl_destroy_snapshot(snap2name
, B_FALSE
);
4489 if (error
&& error
!= ENOENT
)
4490 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4492 error
= dsl_destroy_head(clone1name
);
4493 if (error
&& error
!= ENOENT
)
4494 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clone1name
, error
);
4495 error
= dsl_destroy_snapshot(snap1name
, B_FALSE
);
4496 if (error
&& error
!= ENOENT
)
4497 fatal(B_FALSE
, "dsl_destroy_snapshot(%s) = %d",
4500 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4501 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4502 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4503 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4504 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4508 * Verify dsl_dataset_promote handles EBUSY
4511 ztest_dsl_dataset_promote_busy(ztest_ds_t
*zd
, uint64_t id
)
4519 char *osname
= zd
->zd_name
;
4522 snap1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4523 clone1name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4524 snap2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4525 clone2name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4526 snap3name
= umem_alloc(ZFS_MAX_DATASET_NAME_LEN
, UMEM_NOFAIL
);
4528 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
4530 ztest_dsl_dataset_cleanup(osname
, id
);
4532 (void) snprintf(snap1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s1_%"PRIu64
"",
4534 (void) snprintf(clone1name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c1_%"PRIu64
"",
4536 (void) snprintf(snap2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s2_%"PRIu64
"",
4538 (void) snprintf(clone2name
, ZFS_MAX_DATASET_NAME_LEN
, "%s/c2_%"PRIu64
"",
4540 (void) snprintf(snap3name
, ZFS_MAX_DATASET_NAME_LEN
, "%s@s3_%"PRIu64
"",
4543 error
= dmu_objset_snapshot_one(osname
, strchr(snap1name
, '@') + 1);
4544 if (error
&& error
!= EEXIST
) {
4545 if (error
== ENOSPC
) {
4546 ztest_record_enospc(FTAG
);
4549 fatal(B_FALSE
, "dmu_take_snapshot(%s) = %d", snap1name
, error
);
4552 error
= dmu_objset_clone(clone1name
, snap1name
);
4554 if (error
== ENOSPC
) {
4555 ztest_record_enospc(FTAG
);
4558 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone1name
, error
);
4561 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap2name
, '@') + 1);
4562 if (error
&& error
!= EEXIST
) {
4563 if (error
== ENOSPC
) {
4564 ztest_record_enospc(FTAG
);
4567 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap2name
, error
);
4570 error
= dmu_objset_snapshot_one(clone1name
, strchr(snap3name
, '@') + 1);
4571 if (error
&& error
!= EEXIST
) {
4572 if (error
== ENOSPC
) {
4573 ztest_record_enospc(FTAG
);
4576 fatal(B_FALSE
, "dmu_open_snapshot(%s) = %d", snap3name
, error
);
4579 error
= dmu_objset_clone(clone2name
, snap3name
);
4581 if (error
== ENOSPC
) {
4582 ztest_record_enospc(FTAG
);
4585 fatal(B_FALSE
, "dmu_objset_create(%s) = %d", clone2name
, error
);
4588 error
= ztest_dmu_objset_own(snap2name
, DMU_OST_ANY
, B_TRUE
, B_TRUE
,
4591 fatal(B_FALSE
, "dmu_objset_own(%s) = %d", snap2name
, error
);
4592 error
= dsl_dataset_promote(clone2name
, NULL
);
4593 if (error
== ENOSPC
) {
4594 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4595 ztest_record_enospc(FTAG
);
4599 fatal(B_FALSE
, "dsl_dataset_promote(%s), %d, not EBUSY",
4601 dmu_objset_disown(os
, B_TRUE
, FTAG
);
4604 ztest_dsl_dataset_cleanup(osname
, id
);
4606 (void) pthread_rwlock_unlock(&ztest_name_lock
);
4608 umem_free(snap1name
, ZFS_MAX_DATASET_NAME_LEN
);
4609 umem_free(clone1name
, ZFS_MAX_DATASET_NAME_LEN
);
4610 umem_free(snap2name
, ZFS_MAX_DATASET_NAME_LEN
);
4611 umem_free(clone2name
, ZFS_MAX_DATASET_NAME_LEN
);
4612 umem_free(snap3name
, ZFS_MAX_DATASET_NAME_LEN
);
4615 #undef OD_ARRAY_SIZE
4616 #define OD_ARRAY_SIZE 4
4619 * Verify that dmu_object_{alloc,free} work as expected.
4622 ztest_dmu_object_alloc_free(ztest_ds_t
*zd
, uint64_t id
)
4629 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4630 od
= umem_alloc(size
, UMEM_NOFAIL
);
4631 batchsize
= OD_ARRAY_SIZE
;
4633 for (b
= 0; b
< batchsize
; b
++)
4634 ztest_od_init(od
+ b
, id
, FTAG
, b
, DMU_OT_UINT64_OTHER
,
4638 * Destroy the previous batch of objects, create a new batch,
4639 * and do some I/O on the new objects.
4641 if (ztest_object_init(zd
, od
, size
, B_TRUE
) != 0) {
4643 umem_free(od
, size
);
4647 while (ztest_random(4 * batchsize
) != 0)
4648 ztest_io(zd
, od
[ztest_random(batchsize
)].od_object
,
4649 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
4651 umem_free(od
, size
);
4655 * Rewind the global allocator to verify object allocation backfilling.
4658 ztest_dmu_object_next_chunk(ztest_ds_t
*zd
, uint64_t id
)
4661 objset_t
*os
= zd
->zd_os
;
4662 uint_t dnodes_per_chunk
= 1 << dmu_object_alloc_chunk_shift
;
4666 * Rewind the global allocator randomly back to a lower object number
4667 * to force backfilling and reclamation of recently freed dnodes.
4669 mutex_enter(&os
->os_obj_lock
);
4670 object
= ztest_random(os
->os_obj_next_chunk
);
4671 os
->os_obj_next_chunk
= P2ALIGN(object
, dnodes_per_chunk
);
4672 mutex_exit(&os
->os_obj_lock
);
4675 #undef OD_ARRAY_SIZE
4676 #define OD_ARRAY_SIZE 2
4679 * Verify that dmu_{read,write} work as expected.
4682 ztest_dmu_read_write(ztest_ds_t
*zd
, uint64_t id
)
4687 objset_t
*os
= zd
->zd_os
;
4688 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4689 od
= umem_alloc(size
, UMEM_NOFAIL
);
4692 uint64_t i
, n
, s
, txg
;
4693 bufwad_t
*packbuf
, *bigbuf
, *pack
, *bigH
, *bigT
;
4694 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
4695 uint64_t chunksize
= (1000 + ztest_random(1000)) * sizeof (uint64_t);
4696 uint64_t regions
= 997;
4697 uint64_t stride
= 123456789ULL;
4698 uint64_t width
= 40;
4699 int free_percent
= 5;
4702 * This test uses two objects, packobj and bigobj, that are always
4703 * updated together (i.e. in the same tx) so that their contents are
4704 * in sync and can be compared. Their contents relate to each other
4705 * in a simple way: packobj is a dense array of 'bufwad' structures,
4706 * while bigobj is a sparse array of the same bufwads. Specifically,
4707 * for any index n, there are three bufwads that should be identical:
4709 * packobj, at offset n * sizeof (bufwad_t)
4710 * bigobj, at the head of the nth chunk
4711 * bigobj, at the tail of the nth chunk
4713 * The chunk size is arbitrary. It doesn't have to be a power of two,
4714 * and it doesn't have any relation to the object blocksize.
4715 * The only requirement is that it can hold at least two bufwads.
4717 * Normally, we write the bufwad to each of these locations.
4718 * However, free_percent of the time we instead write zeroes to
4719 * packobj and perform a dmu_free_range() on bigobj. By comparing
4720 * bigobj to packobj, we can verify that the DMU is correctly
4721 * tracking which parts of an object are allocated and free,
4722 * and that the contents of the allocated blocks are correct.
4726 * Read the directory info. If it's the first time, set things up.
4728 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, chunksize
);
4729 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
4732 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
4733 umem_free(od
, size
);
4737 bigobj
= od
[0].od_object
;
4738 packobj
= od
[1].od_object
;
4739 chunksize
= od
[0].od_gen
;
4740 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
4743 * Prefetch a random chunk of the big object.
4744 * Our aim here is to get some async reads in flight
4745 * for blocks that we may free below; the DMU should
4746 * handle this race correctly.
4748 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
4749 s
= 1 + ztest_random(2 * width
- 1);
4750 dmu_prefetch(os
, bigobj
, 0, n
* chunksize
, s
* chunksize
,
4751 ZIO_PRIORITY_SYNC_READ
);
4754 * Pick a random index and compute the offsets into packobj and bigobj.
4756 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
4757 s
= 1 + ztest_random(width
- 1);
4759 packoff
= n
* sizeof (bufwad_t
);
4760 packsize
= s
* sizeof (bufwad_t
);
4762 bigoff
= n
* chunksize
;
4763 bigsize
= s
* chunksize
;
4765 packbuf
= umem_alloc(packsize
, UMEM_NOFAIL
);
4766 bigbuf
= umem_alloc(bigsize
, UMEM_NOFAIL
);
4769 * free_percent of the time, free a range of bigobj rather than
4772 freeit
= (ztest_random(100) < free_percent
);
4775 * Read the current contents of our objects.
4777 error
= dmu_read(os
, packobj
, packoff
, packsize
, packbuf
,
4780 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
, bigbuf
,
4785 * Get a tx for the mods to both packobj and bigobj.
4787 tx
= dmu_tx_create(os
);
4789 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
4792 dmu_tx_hold_free(tx
, bigobj
, bigoff
, bigsize
);
4794 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
4796 /* This accounts for setting the checksum/compression. */
4797 dmu_tx_hold_bonus(tx
, bigobj
);
4799 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
4801 umem_free(packbuf
, packsize
);
4802 umem_free(bigbuf
, bigsize
);
4803 umem_free(od
, size
);
4807 enum zio_checksum cksum
;
4809 cksum
= (enum zio_checksum
)
4810 ztest_random_dsl_prop(ZFS_PROP_CHECKSUM
);
4811 } while (cksum
>= ZIO_CHECKSUM_LEGACY_FUNCTIONS
);
4812 dmu_object_set_checksum(os
, bigobj
, cksum
, tx
);
4814 enum zio_compress comp
;
4816 comp
= (enum zio_compress
)
4817 ztest_random_dsl_prop(ZFS_PROP_COMPRESSION
);
4818 } while (comp
>= ZIO_COMPRESS_LEGACY_FUNCTIONS
);
4819 dmu_object_set_compress(os
, bigobj
, comp
, tx
);
4822 * For each index from n to n + s, verify that the existing bufwad
4823 * in packobj matches the bufwads at the head and tail of the
4824 * corresponding chunk in bigobj. Then update all three bufwads
4825 * with the new values we want to write out.
4827 for (i
= 0; i
< s
; i
++) {
4829 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
4831 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
4833 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
4835 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
4836 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
4838 if (pack
->bw_txg
> txg
)
4840 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
4843 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
4844 fatal(B_FALSE
, "wrong index: "
4845 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
4846 pack
->bw_index
, n
, i
);
4848 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
4849 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
4852 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
4853 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
4857 memset(pack
, 0, sizeof (bufwad_t
));
4859 pack
->bw_index
= n
+ i
;
4861 pack
->bw_data
= 1 + ztest_random(-2ULL);
4868 * We've verified all the old bufwads, and made new ones.
4869 * Now write them out.
4871 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
4874 if (ztest_opts
.zo_verbose
>= 7) {
4875 (void) printf("freeing offset %"PRIx64
" size %"PRIx64
""
4877 bigoff
, bigsize
, txg
);
4879 VERIFY0(dmu_free_range(os
, bigobj
, bigoff
, bigsize
, tx
));
4881 if (ztest_opts
.zo_verbose
>= 7) {
4882 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
4884 bigoff
, bigsize
, txg
);
4886 dmu_write(os
, bigobj
, bigoff
, bigsize
, bigbuf
, tx
);
4892 * Sanity check the stuff we just wrote.
4895 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
4896 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
4898 VERIFY0(dmu_read(os
, packobj
, packoff
,
4899 packsize
, packcheck
, DMU_READ_PREFETCH
));
4900 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
4901 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
4903 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
4904 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
4906 umem_free(packcheck
, packsize
);
4907 umem_free(bigcheck
, bigsize
);
4910 umem_free(packbuf
, packsize
);
4911 umem_free(bigbuf
, bigsize
);
4912 umem_free(od
, size
);
4916 compare_and_update_pbbufs(uint64_t s
, bufwad_t
*packbuf
, bufwad_t
*bigbuf
,
4917 uint64_t bigsize
, uint64_t n
, uint64_t chunksize
, uint64_t txg
)
4925 * For each index from n to n + s, verify that the existing bufwad
4926 * in packobj matches the bufwads at the head and tail of the
4927 * corresponding chunk in bigobj. Then update all three bufwads
4928 * with the new values we want to write out.
4930 for (i
= 0; i
< s
; i
++) {
4932 pack
= (bufwad_t
*)((char *)packbuf
+ i
* sizeof (bufwad_t
));
4934 bigH
= (bufwad_t
*)((char *)bigbuf
+ i
* chunksize
);
4936 bigT
= (bufwad_t
*)((char *)bigH
+ chunksize
) - 1;
4938 ASSERT3U((uintptr_t)bigH
- (uintptr_t)bigbuf
, <, bigsize
);
4939 ASSERT3U((uintptr_t)bigT
- (uintptr_t)bigbuf
, <, bigsize
);
4941 if (pack
->bw_txg
> txg
)
4943 "future leak: got %"PRIx64
", open txg is %"PRIx64
"",
4946 if (pack
->bw_data
!= 0 && pack
->bw_index
!= n
+ i
)
4947 fatal(B_FALSE
, "wrong index: "
4948 "got %"PRIx64
", wanted %"PRIx64
"+%"PRIx64
"",
4949 pack
->bw_index
, n
, i
);
4951 if (memcmp(pack
, bigH
, sizeof (bufwad_t
)) != 0)
4952 fatal(B_FALSE
, "pack/bigH mismatch in %p/%p",
4955 if (memcmp(pack
, bigT
, sizeof (bufwad_t
)) != 0)
4956 fatal(B_FALSE
, "pack/bigT mismatch in %p/%p",
4959 pack
->bw_index
= n
+ i
;
4961 pack
->bw_data
= 1 + ztest_random(-2ULL);
4968 #undef OD_ARRAY_SIZE
4969 #define OD_ARRAY_SIZE 2
4972 ztest_dmu_read_write_zcopy(ztest_ds_t
*zd
, uint64_t id
)
4974 objset_t
*os
= zd
->zd_os
;
4981 bufwad_t
*packbuf
, *bigbuf
;
4982 uint64_t packobj
, packoff
, packsize
, bigobj
, bigoff
, bigsize
;
4983 uint64_t blocksize
= ztest_random_blocksize();
4984 uint64_t chunksize
= blocksize
;
4985 uint64_t regions
= 997;
4986 uint64_t stride
= 123456789ULL;
4988 dmu_buf_t
*bonus_db
;
4989 arc_buf_t
**bigbuf_arcbufs
;
4990 dmu_object_info_t doi
;
4992 size
= sizeof (ztest_od_t
) * OD_ARRAY_SIZE
;
4993 od
= umem_alloc(size
, UMEM_NOFAIL
);
4996 * This test uses two objects, packobj and bigobj, that are always
4997 * updated together (i.e. in the same tx) so that their contents are
4998 * in sync and can be compared. Their contents relate to each other
4999 * in a simple way: packobj is a dense array of 'bufwad' structures,
5000 * while bigobj is a sparse array of the same bufwads. Specifically,
5001 * for any index n, there are three bufwads that should be identical:
5003 * packobj, at offset n * sizeof (bufwad_t)
5004 * bigobj, at the head of the nth chunk
5005 * bigobj, at the tail of the nth chunk
5007 * The chunk size is set equal to bigobj block size so that
5008 * dmu_assign_arcbuf_by_dbuf() can be tested for object updates.
5012 * Read the directory info. If it's the first time, set things up.
5014 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5015 ztest_od_init(od
+ 1, id
, FTAG
, 1, DMU_OT_UINT64_OTHER
, 0, 0,
5019 if (ztest_object_init(zd
, od
, size
, B_FALSE
) != 0) {
5020 umem_free(od
, size
);
5024 bigobj
= od
[0].od_object
;
5025 packobj
= od
[1].od_object
;
5026 blocksize
= od
[0].od_blocksize
;
5027 chunksize
= blocksize
;
5028 ASSERT3U(chunksize
, ==, od
[1].od_gen
);
5030 VERIFY0(dmu_object_info(os
, bigobj
, &doi
));
5031 VERIFY(ISP2(doi
.doi_data_block_size
));
5032 VERIFY3U(chunksize
, ==, doi
.doi_data_block_size
);
5033 VERIFY3U(chunksize
, >=, 2 * sizeof (bufwad_t
));
5036 * Pick a random index and compute the offsets into packobj and bigobj.
5038 n
= ztest_random(regions
) * stride
+ ztest_random(width
);
5039 s
= 1 + ztest_random(width
- 1);
5041 packoff
= n
* sizeof (bufwad_t
);
5042 packsize
= s
* sizeof (bufwad_t
);
5044 bigoff
= n
* chunksize
;
5045 bigsize
= s
* chunksize
;
5047 packbuf
= umem_zalloc(packsize
, UMEM_NOFAIL
);
5048 bigbuf
= umem_zalloc(bigsize
, UMEM_NOFAIL
);
5050 VERIFY0(dmu_bonus_hold(os
, bigobj
, FTAG
, &bonus_db
));
5052 bigbuf_arcbufs
= umem_zalloc(2 * s
* sizeof (arc_buf_t
*), UMEM_NOFAIL
);
5055 * Iteration 0 test zcopy for DB_UNCACHED dbufs.
5056 * Iteration 1 test zcopy to already referenced dbufs.
5057 * Iteration 2 test zcopy to dirty dbuf in the same txg.
5058 * Iteration 3 test zcopy to dbuf dirty in previous txg.
5059 * Iteration 4 test zcopy when dbuf is no longer dirty.
5060 * Iteration 5 test zcopy when it can't be done.
5061 * Iteration 6 one more zcopy write.
5063 for (i
= 0; i
< 7; i
++) {
5068 * In iteration 5 (i == 5) use arcbufs
5069 * that don't match bigobj blksz to test
5070 * dmu_assign_arcbuf_by_dbuf() when it can't directly
5071 * assign an arcbuf to a dbuf.
5073 for (j
= 0; j
< s
; j
++) {
5074 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5076 dmu_request_arcbuf(bonus_db
, chunksize
);
5078 bigbuf_arcbufs
[2 * j
] =
5079 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5080 bigbuf_arcbufs
[2 * j
+ 1] =
5081 dmu_request_arcbuf(bonus_db
, chunksize
/ 2);
5086 * Get a tx for the mods to both packobj and bigobj.
5088 tx
= dmu_tx_create(os
);
5090 dmu_tx_hold_write(tx
, packobj
, packoff
, packsize
);
5091 dmu_tx_hold_write(tx
, bigobj
, bigoff
, bigsize
);
5093 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5095 umem_free(packbuf
, packsize
);
5096 umem_free(bigbuf
, bigsize
);
5097 for (j
= 0; j
< s
; j
++) {
5099 chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5100 dmu_return_arcbuf(bigbuf_arcbufs
[j
]);
5103 bigbuf_arcbufs
[2 * j
]);
5105 bigbuf_arcbufs
[2 * j
+ 1]);
5108 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5109 umem_free(od
, size
);
5110 dmu_buf_rele(bonus_db
, FTAG
);
5115 * 50% of the time don't read objects in the 1st iteration to
5116 * test dmu_assign_arcbuf_by_dbuf() for the case when there are
5117 * no existing dbufs for the specified offsets.
5119 if (i
!= 0 || ztest_random(2) != 0) {
5120 error
= dmu_read(os
, packobj
, packoff
,
5121 packsize
, packbuf
, DMU_READ_PREFETCH
);
5123 error
= dmu_read(os
, bigobj
, bigoff
, bigsize
,
5124 bigbuf
, DMU_READ_PREFETCH
);
5127 compare_and_update_pbbufs(s
, packbuf
, bigbuf
, bigsize
,
5131 * We've verified all the old bufwads, and made new ones.
5132 * Now write them out.
5134 dmu_write(os
, packobj
, packoff
, packsize
, packbuf
, tx
);
5135 if (ztest_opts
.zo_verbose
>= 7) {
5136 (void) printf("writing offset %"PRIx64
" size %"PRIx64
""
5138 bigoff
, bigsize
, txg
);
5140 for (off
= bigoff
, j
= 0; j
< s
; j
++, off
+= chunksize
) {
5142 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5143 memcpy(bigbuf_arcbufs
[j
]->b_data
,
5144 (caddr_t
)bigbuf
+ (off
- bigoff
),
5147 memcpy(bigbuf_arcbufs
[2 * j
]->b_data
,
5148 (caddr_t
)bigbuf
+ (off
- bigoff
),
5150 memcpy(bigbuf_arcbufs
[2 * j
+ 1]->b_data
,
5151 (caddr_t
)bigbuf
+ (off
- bigoff
) +
5157 VERIFY(dmu_buf_hold(os
, bigobj
, off
,
5158 FTAG
, &dbt
, DMU_READ_NO_PREFETCH
) == 0);
5160 if (i
!= 5 || chunksize
< (SPA_MINBLOCKSIZE
* 2)) {
5161 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5162 off
, bigbuf_arcbufs
[j
], tx
));
5164 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5165 off
, bigbuf_arcbufs
[2 * j
], tx
));
5166 VERIFY0(dmu_assign_arcbuf_by_dbuf(bonus_db
,
5167 off
+ chunksize
/ 2,
5168 bigbuf_arcbufs
[2 * j
+ 1], tx
));
5171 dmu_buf_rele(dbt
, FTAG
);
5177 * Sanity check the stuff we just wrote.
5180 void *packcheck
= umem_alloc(packsize
, UMEM_NOFAIL
);
5181 void *bigcheck
= umem_alloc(bigsize
, UMEM_NOFAIL
);
5183 VERIFY0(dmu_read(os
, packobj
, packoff
,
5184 packsize
, packcheck
, DMU_READ_PREFETCH
));
5185 VERIFY0(dmu_read(os
, bigobj
, bigoff
,
5186 bigsize
, bigcheck
, DMU_READ_PREFETCH
));
5188 ASSERT0(memcmp(packbuf
, packcheck
, packsize
));
5189 ASSERT0(memcmp(bigbuf
, bigcheck
, bigsize
));
5191 umem_free(packcheck
, packsize
);
5192 umem_free(bigcheck
, bigsize
);
5195 txg_wait_open(dmu_objset_pool(os
), 0, B_TRUE
);
5196 } else if (i
== 3) {
5197 txg_wait_synced(dmu_objset_pool(os
), 0);
5201 dmu_buf_rele(bonus_db
, FTAG
);
5202 umem_free(packbuf
, packsize
);
5203 umem_free(bigbuf
, bigsize
);
5204 umem_free(bigbuf_arcbufs
, 2 * s
* sizeof (arc_buf_t
*));
5205 umem_free(od
, size
);
5209 ztest_dmu_write_parallel(ztest_ds_t
*zd
, uint64_t id
)
5214 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5215 uint64_t offset
= (1ULL << (ztest_random(20) + 43)) +
5216 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5219 * Have multiple threads write to large offsets in an object
5220 * to verify that parallel writes to an object -- even to the
5221 * same blocks within the object -- doesn't cause any trouble.
5223 ztest_od_init(od
, ID_PARALLEL
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
5225 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0)
5228 while (ztest_random(10) != 0)
5229 ztest_io(zd
, od
->od_object
, offset
);
5231 umem_free(od
, sizeof (ztest_od_t
));
5235 ztest_dmu_prealloc(ztest_ds_t
*zd
, uint64_t id
)
5238 uint64_t offset
= (1ULL << (ztest_random(4) + SPA_MAXBLOCKSHIFT
)) +
5239 (ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
5240 uint64_t count
= ztest_random(20) + 1;
5241 uint64_t blocksize
= ztest_random_blocksize();
5244 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5246 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, blocksize
, 0, 0);
5248 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5249 !ztest_random(2)) != 0) {
5250 umem_free(od
, sizeof (ztest_od_t
));
5254 if (ztest_truncate(zd
, od
->od_object
, offset
, count
* blocksize
) != 0) {
5255 umem_free(od
, sizeof (ztest_od_t
));
5259 ztest_prealloc(zd
, od
->od_object
, offset
, count
* blocksize
);
5261 data
= umem_zalloc(blocksize
, UMEM_NOFAIL
);
5263 while (ztest_random(count
) != 0) {
5264 uint64_t randoff
= offset
+ (ztest_random(count
) * blocksize
);
5265 if (ztest_write(zd
, od
->od_object
, randoff
, blocksize
,
5268 while (ztest_random(4) != 0)
5269 ztest_io(zd
, od
->od_object
, randoff
);
5272 umem_free(data
, blocksize
);
5273 umem_free(od
, sizeof (ztest_od_t
));
5277 * Verify that zap_{create,destroy,add,remove,update} work as expected.
5279 #define ZTEST_ZAP_MIN_INTS 1
5280 #define ZTEST_ZAP_MAX_INTS 4
5281 #define ZTEST_ZAP_MAX_PROPS 1000
5284 ztest_zap(ztest_ds_t
*zd
, uint64_t id
)
5286 objset_t
*os
= zd
->zd_os
;
5289 uint64_t txg
, last_txg
;
5290 uint64_t value
[ZTEST_ZAP_MAX_INTS
];
5291 uint64_t zl_ints
, zl_intsize
, prop
;
5294 char propname
[100], txgname
[100];
5296 const char *const hc
[2] = { "s.acl.h", ".s.open.h.hyLZlg" };
5298 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5299 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5301 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5302 !ztest_random(2)) != 0)
5305 object
= od
->od_object
;
5308 * Generate a known hash collision, and verify that
5309 * we can lookup and remove both entries.
5311 tx
= dmu_tx_create(os
);
5312 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5313 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5316 for (i
= 0; i
< 2; i
++) {
5318 VERIFY0(zap_add(os
, object
, hc
[i
], sizeof (uint64_t),
5321 for (i
= 0; i
< 2; i
++) {
5322 VERIFY3U(EEXIST
, ==, zap_add(os
, object
, hc
[i
],
5323 sizeof (uint64_t), 1, &value
[i
], tx
));
5325 zap_length(os
, object
, hc
[i
], &zl_intsize
, &zl_ints
));
5326 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5327 ASSERT3U(zl_ints
, ==, 1);
5329 for (i
= 0; i
< 2; i
++) {
5330 VERIFY0(zap_remove(os
, object
, hc
[i
], tx
));
5335 * Generate a bunch of random entries.
5337 ints
= MAX(ZTEST_ZAP_MIN_INTS
, object
% ZTEST_ZAP_MAX_INTS
);
5339 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5340 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5341 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5342 memset(value
, 0, sizeof (value
));
5346 * If these zap entries already exist, validate their contents.
5348 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5350 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5351 ASSERT3U(zl_ints
, ==, 1);
5353 VERIFY0(zap_lookup(os
, object
, txgname
, zl_intsize
,
5354 zl_ints
, &last_txg
));
5356 VERIFY0(zap_length(os
, object
, propname
, &zl_intsize
,
5359 ASSERT3U(zl_intsize
, ==, sizeof (uint64_t));
5360 ASSERT3U(zl_ints
, ==, ints
);
5362 VERIFY0(zap_lookup(os
, object
, propname
, zl_intsize
,
5365 for (i
= 0; i
< ints
; i
++) {
5366 ASSERT3U(value
[i
], ==, last_txg
+ object
+ i
);
5369 ASSERT3U(error
, ==, ENOENT
);
5373 * Atomically update two entries in our zap object.
5374 * The first is named txg_%llu, and contains the txg
5375 * in which the property was last updated. The second
5376 * is named prop_%llu, and the nth element of its value
5377 * should be txg + object + n.
5379 tx
= dmu_tx_create(os
);
5380 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5381 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5386 fatal(B_FALSE
, "zap future leak: old %"PRIu64
" new %"PRIu64
"",
5389 for (i
= 0; i
< ints
; i
++)
5390 value
[i
] = txg
+ object
+ i
;
5392 VERIFY0(zap_update(os
, object
, txgname
, sizeof (uint64_t),
5394 VERIFY0(zap_update(os
, object
, propname
, sizeof (uint64_t),
5400 * Remove a random pair of entries.
5402 prop
= ztest_random(ZTEST_ZAP_MAX_PROPS
);
5403 (void) sprintf(propname
, "prop_%"PRIu64
"", prop
);
5404 (void) sprintf(txgname
, "txg_%"PRIu64
"", prop
);
5406 error
= zap_length(os
, object
, txgname
, &zl_intsize
, &zl_ints
);
5408 if (error
== ENOENT
)
5413 tx
= dmu_tx_create(os
);
5414 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5415 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5418 VERIFY0(zap_remove(os
, object
, txgname
, tx
));
5419 VERIFY0(zap_remove(os
, object
, propname
, tx
));
5422 umem_free(od
, sizeof (ztest_od_t
));
5426 * Test case to test the upgrading of a microzap to fatzap.
5429 ztest_fzap(ztest_ds_t
*zd
, uint64_t id
)
5431 objset_t
*os
= zd
->zd_os
;
5433 uint64_t object
, txg
, value
;
5435 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5436 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5438 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
),
5439 !ztest_random(2)) != 0)
5441 object
= od
->od_object
;
5444 * Add entries to this ZAP and make sure it spills over
5445 * and gets upgraded to a fatzap. Also, since we are adding
5446 * 2050 entries we should see ptrtbl growth and leaf-block split.
5448 for (value
= 0; value
< 2050; value
++) {
5449 char name
[ZFS_MAX_DATASET_NAME_LEN
];
5453 (void) snprintf(name
, sizeof (name
), "fzap-%"PRIu64
"-%"PRIu64
"",
5456 tx
= dmu_tx_create(os
);
5457 dmu_tx_hold_zap(tx
, object
, B_TRUE
, name
);
5458 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5461 error
= zap_add(os
, object
, name
, sizeof (uint64_t), 1,
5463 ASSERT(error
== 0 || error
== EEXIST
);
5467 umem_free(od
, sizeof (ztest_od_t
));
5471 ztest_zap_parallel(ztest_ds_t
*zd
, uint64_t id
)
5474 objset_t
*os
= zd
->zd_os
;
5476 uint64_t txg
, object
, count
, wsize
, wc
, zl_wsize
, zl_wc
;
5478 int i
, namelen
, error
;
5479 int micro
= ztest_random(2);
5480 char name
[20], string_value
[20];
5483 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5484 ztest_od_init(od
, ID_PARALLEL
, FTAG
, micro
, DMU_OT_ZAP_OTHER
, 0, 0, 0);
5486 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
5487 umem_free(od
, sizeof (ztest_od_t
));
5491 object
= od
->od_object
;
5494 * Generate a random name of the form 'xxx.....' where each
5495 * x is a random printable character and the dots are dots.
5496 * There are 94 such characters, and the name length goes from
5497 * 6 to 20, so there are 94^3 * 15 = 12,458,760 possible names.
5499 namelen
= ztest_random(sizeof (name
) - 5) + 5 + 1;
5501 for (i
= 0; i
< 3; i
++)
5502 name
[i
] = '!' + ztest_random('~' - '!' + 1);
5503 for (; i
< namelen
- 1; i
++)
5507 if ((namelen
& 1) || micro
) {
5508 wsize
= sizeof (txg
);
5514 data
= string_value
;
5518 VERIFY0(zap_count(os
, object
, &count
));
5519 ASSERT3S(count
, !=, -1ULL);
5522 * Select an operation: length, lookup, add, update, remove.
5524 i
= ztest_random(5);
5527 tx
= dmu_tx_create(os
);
5528 dmu_tx_hold_zap(tx
, object
, B_TRUE
, NULL
);
5529 txg
= ztest_tx_assign(tx
, TXG_MIGHTWAIT
, FTAG
);
5531 umem_free(od
, sizeof (ztest_od_t
));
5534 memcpy(string_value
, name
, namelen
);
5538 memset(string_value
, 0, namelen
);
5544 error
= zap_length(os
, object
, name
, &zl_wsize
, &zl_wc
);
5546 ASSERT3U(wsize
, ==, zl_wsize
);
5547 ASSERT3U(wc
, ==, zl_wc
);
5549 ASSERT3U(error
, ==, ENOENT
);
5554 error
= zap_lookup(os
, object
, name
, wsize
, wc
, data
);
5556 if (data
== string_value
&&
5557 memcmp(name
, data
, namelen
) != 0)
5558 fatal(B_FALSE
, "name '%s' != val '%s' len %d",
5559 name
, (char *)data
, namelen
);
5561 ASSERT3U(error
, ==, ENOENT
);
5566 error
= zap_add(os
, object
, name
, wsize
, wc
, data
, tx
);
5567 ASSERT(error
== 0 || error
== EEXIST
);
5571 VERIFY0(zap_update(os
, object
, name
, wsize
, wc
, data
, tx
));
5575 error
= zap_remove(os
, object
, name
, tx
);
5576 ASSERT(error
== 0 || error
== ENOENT
);
5583 umem_free(od
, sizeof (ztest_od_t
));
5587 * Commit callback data.
5589 typedef struct ztest_cb_data
{
5590 list_node_t zcd_node
;
5592 int zcd_expected_err
;
5593 boolean_t zcd_added
;
5594 boolean_t zcd_called
;
5598 /* This is the actual commit callback function */
5600 ztest_commit_callback(void *arg
, int error
)
5602 ztest_cb_data_t
*data
= arg
;
5603 uint64_t synced_txg
;
5605 VERIFY3P(data
, !=, NULL
);
5606 VERIFY3S(data
->zcd_expected_err
, ==, error
);
5607 VERIFY(!data
->zcd_called
);
5609 synced_txg
= spa_last_synced_txg(data
->zcd_spa
);
5610 if (data
->zcd_txg
> synced_txg
)
5612 "commit callback of txg %"PRIu64
" called prematurely, "
5613 "last synced txg = %"PRIu64
"\n",
5614 data
->zcd_txg
, synced_txg
);
5616 data
->zcd_called
= B_TRUE
;
5618 if (error
== ECANCELED
) {
5619 ASSERT0(data
->zcd_txg
);
5620 ASSERT(!data
->zcd_added
);
5623 * The private callback data should be destroyed here, but
5624 * since we are going to check the zcd_called field after
5625 * dmu_tx_abort(), we will destroy it there.
5630 ASSERT(data
->zcd_added
);
5631 ASSERT3U(data
->zcd_txg
, !=, 0);
5633 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
5635 /* See if this cb was called more quickly */
5636 if ((synced_txg
- data
->zcd_txg
) < zc_min_txg_delay
)
5637 zc_min_txg_delay
= synced_txg
- data
->zcd_txg
;
5639 /* Remove our callback from the list */
5640 list_remove(&zcl
.zcl_callbacks
, data
);
5642 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
5644 umem_free(data
, sizeof (ztest_cb_data_t
));
5647 /* Allocate and initialize callback data structure */
5648 static ztest_cb_data_t
*
5649 ztest_create_cb_data(objset_t
*os
, uint64_t txg
)
5651 ztest_cb_data_t
*cb_data
;
5653 cb_data
= umem_zalloc(sizeof (ztest_cb_data_t
), UMEM_NOFAIL
);
5655 cb_data
->zcd_txg
= txg
;
5656 cb_data
->zcd_spa
= dmu_objset_spa(os
);
5657 list_link_init(&cb_data
->zcd_node
);
5663 * Commit callback test.
5666 ztest_dmu_commit_callbacks(ztest_ds_t
*zd
, uint64_t id
)
5668 objset_t
*os
= zd
->zd_os
;
5671 ztest_cb_data_t
*cb_data
[3], *tmp_cb
;
5672 uint64_t old_txg
, txg
;
5675 od
= umem_alloc(sizeof (ztest_od_t
), UMEM_NOFAIL
);
5676 ztest_od_init(od
, id
, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
5678 if (ztest_object_init(zd
, od
, sizeof (ztest_od_t
), B_FALSE
) != 0) {
5679 umem_free(od
, sizeof (ztest_od_t
));
5683 tx
= dmu_tx_create(os
);
5685 cb_data
[0] = ztest_create_cb_data(os
, 0);
5686 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[0]);
5688 dmu_tx_hold_write(tx
, od
->od_object
, 0, sizeof (uint64_t));
5690 /* Every once in a while, abort the transaction on purpose */
5691 if (ztest_random(100) == 0)
5695 error
= dmu_tx_assign(tx
, TXG_NOWAIT
);
5697 txg
= error
? 0 : dmu_tx_get_txg(tx
);
5699 cb_data
[0]->zcd_txg
= txg
;
5700 cb_data
[1] = ztest_create_cb_data(os
, txg
);
5701 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[1]);
5705 * It's not a strict requirement to call the registered
5706 * callbacks from inside dmu_tx_abort(), but that's what
5707 * it's supposed to happen in the current implementation
5708 * so we will check for that.
5710 for (i
= 0; i
< 2; i
++) {
5711 cb_data
[i
]->zcd_expected_err
= ECANCELED
;
5712 VERIFY(!cb_data
[i
]->zcd_called
);
5717 for (i
= 0; i
< 2; i
++) {
5718 VERIFY(cb_data
[i
]->zcd_called
);
5719 umem_free(cb_data
[i
], sizeof (ztest_cb_data_t
));
5722 umem_free(od
, sizeof (ztest_od_t
));
5726 cb_data
[2] = ztest_create_cb_data(os
, txg
);
5727 dmu_tx_callback_register(tx
, ztest_commit_callback
, cb_data
[2]);
5730 * Read existing data to make sure there isn't a future leak.
5732 VERIFY0(dmu_read(os
, od
->od_object
, 0, sizeof (uint64_t),
5733 &old_txg
, DMU_READ_PREFETCH
));
5737 "future leak: got %"PRIu64
", open txg is %"PRIu64
"",
5740 dmu_write(os
, od
->od_object
, 0, sizeof (uint64_t), &txg
, tx
);
5742 (void) mutex_enter(&zcl
.zcl_callbacks_lock
);
5745 * Since commit callbacks don't have any ordering requirement and since
5746 * it is theoretically possible for a commit callback to be called
5747 * after an arbitrary amount of time has elapsed since its txg has been
5748 * synced, it is difficult to reliably determine whether a commit
5749 * callback hasn't been called due to high load or due to a flawed
5752 * In practice, we will assume that if after a certain number of txgs a
5753 * commit callback hasn't been called, then most likely there's an
5754 * implementation bug..
5756 tmp_cb
= list_head(&zcl
.zcl_callbacks
);
5757 if (tmp_cb
!= NULL
&&
5758 tmp_cb
->zcd_txg
+ ZTEST_COMMIT_CB_THRESH
< txg
) {
5760 "Commit callback threshold exceeded, "
5761 "oldest txg: %"PRIu64
", open txg: %"PRIu64
"\n",
5762 tmp_cb
->zcd_txg
, txg
);
5766 * Let's find the place to insert our callbacks.
5768 * Even though the list is ordered by txg, it is possible for the
5769 * insertion point to not be the end because our txg may already be
5770 * quiescing at this point and other callbacks in the open txg
5771 * (from other objsets) may have sneaked in.
5773 tmp_cb
= list_tail(&zcl
.zcl_callbacks
);
5774 while (tmp_cb
!= NULL
&& tmp_cb
->zcd_txg
> txg
)
5775 tmp_cb
= list_prev(&zcl
.zcl_callbacks
, tmp_cb
);
5777 /* Add the 3 callbacks to the list */
5778 for (i
= 0; i
< 3; i
++) {
5780 list_insert_head(&zcl
.zcl_callbacks
, cb_data
[i
]);
5782 list_insert_after(&zcl
.zcl_callbacks
, tmp_cb
,
5785 cb_data
[i
]->zcd_added
= B_TRUE
;
5786 VERIFY(!cb_data
[i
]->zcd_called
);
5788 tmp_cb
= cb_data
[i
];
5793 (void) mutex_exit(&zcl
.zcl_callbacks_lock
);
5797 umem_free(od
, sizeof (ztest_od_t
));
5801 * Visit each object in the dataset. Verify that its properties
5802 * are consistent what was stored in the block tag when it was created,
5803 * and that its unused bonus buffer space has not been overwritten.
5806 ztest_verify_dnode_bt(ztest_ds_t
*zd
, uint64_t id
)
5809 objset_t
*os
= zd
->zd_os
;
5813 for (obj
= 0; err
== 0; err
= dmu_object_next(os
, &obj
, FALSE
, 0)) {
5814 ztest_block_tag_t
*bt
= NULL
;
5815 dmu_object_info_t doi
;
5818 ztest_object_lock(zd
, obj
, RL_READER
);
5819 if (dmu_bonus_hold(os
, obj
, FTAG
, &db
) != 0) {
5820 ztest_object_unlock(zd
, obj
);
5824 dmu_object_info_from_db(db
, &doi
);
5825 if (doi
.doi_bonus_size
>= sizeof (*bt
))
5826 bt
= ztest_bt_bonus(db
);
5828 if (bt
&& bt
->bt_magic
== BT_MAGIC
) {
5829 ztest_bt_verify(bt
, os
, obj
, doi
.doi_dnodesize
,
5830 bt
->bt_offset
, bt
->bt_gen
, bt
->bt_txg
,
5832 ztest_verify_unused_bonus(db
, bt
, obj
, os
, bt
->bt_gen
);
5835 dmu_buf_rele(db
, FTAG
);
5836 ztest_object_unlock(zd
, obj
);
5841 ztest_dsl_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
5844 zfs_prop_t proplist
[] = {
5846 ZFS_PROP_COMPRESSION
,
5851 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
5853 for (int p
= 0; p
< sizeof (proplist
) / sizeof (proplist
[0]); p
++) {
5854 int error
= ztest_dsl_prop_set_uint64(zd
->zd_name
, proplist
[p
],
5855 ztest_random_dsl_prop(proplist
[p
]), (int)ztest_random(2));
5856 ASSERT(error
== 0 || error
== ENOSPC
);
5859 int error
= ztest_dsl_prop_set_uint64(zd
->zd_name
, ZFS_PROP_RECORDSIZE
,
5860 ztest_random_blocksize(), (int)ztest_random(2));
5861 ASSERT(error
== 0 || error
== ENOSPC
);
5863 (void) pthread_rwlock_unlock(&ztest_name_lock
);
5867 ztest_spa_prop_get_set(ztest_ds_t
*zd
, uint64_t id
)
5869 (void) zd
, (void) id
;
5870 nvlist_t
*props
= NULL
;
5872 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
5874 (void) ztest_spa_prop_set_uint64(ZPOOL_PROP_AUTOTRIM
, ztest_random(2));
5876 VERIFY0(spa_prop_get(ztest_spa
, &props
));
5878 if (ztest_opts
.zo_verbose
>= 6)
5879 dump_nvlist(props
, 4);
5881 fnvlist_free(props
);
5883 (void) pthread_rwlock_unlock(&ztest_name_lock
);
5887 user_release_one(const char *snapname
, const char *holdname
)
5889 nvlist_t
*snaps
, *holds
;
5892 snaps
= fnvlist_alloc();
5893 holds
= fnvlist_alloc();
5894 fnvlist_add_boolean(holds
, holdname
);
5895 fnvlist_add_nvlist(snaps
, snapname
, holds
);
5896 fnvlist_free(holds
);
5897 error
= dsl_dataset_user_release(snaps
, NULL
);
5898 fnvlist_free(snaps
);
5903 * Test snapshot hold/release and deferred destroy.
5906 ztest_dmu_snapshot_hold(ztest_ds_t
*zd
, uint64_t id
)
5909 objset_t
*os
= zd
->zd_os
;
5913 char clonename
[100];
5915 char osname
[ZFS_MAX_DATASET_NAME_LEN
];
5918 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
5920 dmu_objset_name(os
, osname
);
5922 (void) snprintf(snapname
, sizeof (snapname
), "sh1_%"PRIu64
"", id
);
5923 (void) snprintf(fullname
, sizeof (fullname
), "%s@%s", osname
, snapname
);
5924 (void) snprintf(clonename
, sizeof (clonename
), "%s/ch1_%"PRIu64
"",
5926 (void) snprintf(tag
, sizeof (tag
), "tag_%"PRIu64
"", id
);
5929 * Clean up from any previous run.
5931 error
= dsl_destroy_head(clonename
);
5932 if (error
!= ENOENT
)
5934 error
= user_release_one(fullname
, tag
);
5935 if (error
!= ESRCH
&& error
!= ENOENT
)
5937 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
5938 if (error
!= ENOENT
)
5942 * Create snapshot, clone it, mark snap for deferred destroy,
5943 * destroy clone, verify snap was also destroyed.
5945 error
= dmu_objset_snapshot_one(osname
, snapname
);
5947 if (error
== ENOSPC
) {
5948 ztest_record_enospc("dmu_objset_snapshot");
5951 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
5954 error
= dmu_objset_clone(clonename
, fullname
);
5956 if (error
== ENOSPC
) {
5957 ztest_record_enospc("dmu_objset_clone");
5960 fatal(B_FALSE
, "dmu_objset_clone(%s) = %d", clonename
, error
);
5963 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
5965 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
5969 error
= dsl_destroy_head(clonename
);
5971 fatal(B_FALSE
, "dsl_destroy_head(%s) = %d", clonename
, error
);
5973 error
= dmu_objset_hold(fullname
, FTAG
, &origin
);
5974 if (error
!= ENOENT
)
5975 fatal(B_FALSE
, "dmu_objset_hold(%s) = %d", fullname
, error
);
5978 * Create snapshot, add temporary hold, verify that we can't
5979 * destroy a held snapshot, mark for deferred destroy,
5980 * release hold, verify snapshot was destroyed.
5982 error
= dmu_objset_snapshot_one(osname
, snapname
);
5984 if (error
== ENOSPC
) {
5985 ztest_record_enospc("dmu_objset_snapshot");
5988 fatal(B_FALSE
, "dmu_objset_snapshot(%s) = %d", fullname
, error
);
5991 holds
= fnvlist_alloc();
5992 fnvlist_add_string(holds
, fullname
, tag
);
5993 error
= dsl_dataset_user_hold(holds
, 0, NULL
);
5994 fnvlist_free(holds
);
5996 if (error
== ENOSPC
) {
5997 ztest_record_enospc("dsl_dataset_user_hold");
6000 fatal(B_FALSE
, "dsl_dataset_user_hold(%s, %s) = %u",
6001 fullname
, tag
, error
);
6004 error
= dsl_destroy_snapshot(fullname
, B_FALSE
);
6005 if (error
!= EBUSY
) {
6006 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_FALSE) = %d",
6010 error
= dsl_destroy_snapshot(fullname
, B_TRUE
);
6012 fatal(B_FALSE
, "dsl_destroy_snapshot(%s, B_TRUE) = %d",
6016 error
= user_release_one(fullname
, tag
);
6018 fatal(B_FALSE
, "user_release_one(%s, %s) = %d",
6019 fullname
, tag
, error
);
6021 VERIFY3U(dmu_objset_hold(fullname
, FTAG
, &origin
), ==, ENOENT
);
6024 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6028 * Inject random faults into the on-disk data.
6031 ztest_fault_inject(ztest_ds_t
*zd
, uint64_t id
)
6033 (void) zd
, (void) id
;
6034 ztest_shared_t
*zs
= ztest_shared
;
6035 spa_t
*spa
= ztest_spa
;
6039 uint64_t bad
= 0x1990c0ffeedecadeull
;
6044 int bshift
= SPA_MAXBLOCKSHIFT
+ 2;
6050 boolean_t islog
= B_FALSE
;
6052 path0
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6053 pathrand
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
6055 mutex_enter(&ztest_vdev_lock
);
6058 * Device removal is in progress, fault injection must be disabled
6059 * until it completes and the pool is scrubbed. The fault injection
6060 * strategy for damaging blocks does not take in to account evacuated
6061 * blocks which may have already been damaged.
6063 if (ztest_device_removal_active
) {
6064 mutex_exit(&ztest_vdev_lock
);
6068 maxfaults
= MAXFAULTS(zs
);
6069 leaves
= MAX(zs
->zs_mirrors
, 1) * ztest_opts
.zo_raid_children
;
6070 mirror_save
= zs
->zs_mirrors
;
6071 mutex_exit(&ztest_vdev_lock
);
6073 ASSERT3U(leaves
, >=, 1);
6076 * While ztest is running the number of leaves will not change. This
6077 * is critical for the fault injection logic as it determines where
6078 * errors can be safely injected such that they are always repairable.
6080 * When restarting ztest a different number of leaves may be requested
6081 * which will shift the regions to be damaged. This is fine as long
6082 * as the pool has been scrubbed prior to using the new mapping.
6083 * Failure to do can result in non-repairable damage being injected.
6085 if (ztest_pool_scrubbed
== B_FALSE
)
6089 * Grab the name lock as reader. There are some operations
6090 * which don't like to have their vdevs changed while
6091 * they are in progress (i.e. spa_change_guid). Those
6092 * operations will have grabbed the name lock as writer.
6094 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
6097 * We need SCL_STATE here because we're going to look at vd0->vdev_tsd.
6099 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
6101 if (ztest_random(2) == 0) {
6103 * Inject errors on a normal data device or slog device.
6105 top
= ztest_random_vdev_top(spa
, B_TRUE
);
6106 leaf
= ztest_random(leaves
) + zs
->zs_splits
;
6109 * Generate paths to the first leaf in this top-level vdev,
6110 * and to the random leaf we selected. We'll induce transient
6111 * write failures and random online/offline activity on leaf 0,
6112 * and we'll write random garbage to the randomly chosen leaf.
6114 (void) snprintf(path0
, MAXPATHLEN
, ztest_dev_template
,
6115 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6116 top
* leaves
+ zs
->zs_splits
);
6117 (void) snprintf(pathrand
, MAXPATHLEN
, ztest_dev_template
,
6118 ztest_opts
.zo_dir
, ztest_opts
.zo_pool
,
6119 top
* leaves
+ leaf
);
6121 vd0
= vdev_lookup_by_path(spa
->spa_root_vdev
, path0
);
6122 if (vd0
!= NULL
&& vd0
->vdev_top
->vdev_islog
)
6126 * If the top-level vdev needs to be resilvered
6127 * then we only allow faults on the device that is
6130 if (vd0
!= NULL
&& maxfaults
!= 1 &&
6131 (!vdev_resilver_needed(vd0
->vdev_top
, NULL
, NULL
) ||
6132 vd0
->vdev_resilver_txg
!= 0)) {
6134 * Make vd0 explicitly claim to be unreadable,
6135 * or unwritable, or reach behind its back
6136 * and close the underlying fd. We can do this if
6137 * maxfaults == 0 because we'll fail and reexecute,
6138 * and we can do it if maxfaults >= 2 because we'll
6139 * have enough redundancy. If maxfaults == 1, the
6140 * combination of this with injection of random data
6141 * corruption below exceeds the pool's fault tolerance.
6143 vdev_file_t
*vf
= vd0
->vdev_tsd
;
6145 zfs_dbgmsg("injecting fault to vdev %llu; maxfaults=%d",
6146 (long long)vd0
->vdev_id
, (int)maxfaults
);
6148 if (vf
!= NULL
&& ztest_random(3) == 0) {
6149 (void) close(vf
->vf_file
->f_fd
);
6150 vf
->vf_file
->f_fd
= -1;
6151 } else if (ztest_random(2) == 0) {
6152 vd0
->vdev_cant_read
= B_TRUE
;
6154 vd0
->vdev_cant_write
= B_TRUE
;
6156 guid0
= vd0
->vdev_guid
;
6160 * Inject errors on an l2cache device.
6162 spa_aux_vdev_t
*sav
= &spa
->spa_l2cache
;
6164 if (sav
->sav_count
== 0) {
6165 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6166 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6169 vd0
= sav
->sav_vdevs
[ztest_random(sav
->sav_count
)];
6170 guid0
= vd0
->vdev_guid
;
6171 (void) strlcpy(path0
, vd0
->vdev_path
, MAXPATHLEN
);
6172 (void) strlcpy(pathrand
, vd0
->vdev_path
, MAXPATHLEN
);
6176 maxfaults
= INT_MAX
; /* no limit on cache devices */
6179 spa_config_exit(spa
, SCL_STATE
, FTAG
);
6180 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6183 * If we can tolerate two or more faults, or we're dealing
6184 * with a slog, randomly online/offline vd0.
6186 if ((maxfaults
>= 2 || islog
) && guid0
!= 0) {
6187 if (ztest_random(10) < 6) {
6188 int flags
= (ztest_random(2) == 0 ?
6189 ZFS_OFFLINE_TEMPORARY
: 0);
6192 * We have to grab the zs_name_lock as writer to
6193 * prevent a race between offlining a slog and
6194 * destroying a dataset. Offlining the slog will
6195 * grab a reference on the dataset which may cause
6196 * dsl_destroy_head() to fail with EBUSY thus
6197 * leaving the dataset in an inconsistent state.
6200 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6202 VERIFY3U(vdev_offline(spa
, guid0
, flags
), !=, EBUSY
);
6205 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6208 * Ideally we would like to be able to randomly
6209 * call vdev_[on|off]line without holding locks
6210 * to force unpredictable failures but the side
6211 * effects of vdev_[on|off]line prevent us from
6212 * doing so. We grab the ztest_vdev_lock here to
6213 * prevent a race between injection testing and
6216 mutex_enter(&ztest_vdev_lock
);
6217 (void) vdev_online(spa
, guid0
, 0, NULL
);
6218 mutex_exit(&ztest_vdev_lock
);
6226 * We have at least single-fault tolerance, so inject data corruption.
6228 fd
= open(pathrand
, O_RDWR
);
6230 if (fd
== -1) /* we hit a gap in the device namespace */
6233 fsize
= lseek(fd
, 0, SEEK_END
);
6235 while (--iters
!= 0) {
6237 * The offset must be chosen carefully to ensure that
6238 * we do not inject a given logical block with errors
6239 * on two different leaf devices, because ZFS can not
6240 * tolerate that (if maxfaults==1).
6242 * To achieve this we divide each leaf device into
6243 * chunks of size (# leaves * SPA_MAXBLOCKSIZE * 4).
6244 * Each chunk is further divided into error-injection
6245 * ranges (can accept errors) and clear ranges (we do
6246 * not inject errors in those). Each error-injection
6247 * range can accept errors only for a single leaf vdev.
6248 * Error-injection ranges are separated by clear ranges.
6250 * For example, with 3 leaves, each chunk looks like:
6251 * 0 to 32M: injection range for leaf 0
6252 * 32M to 64M: clear range - no injection allowed
6253 * 64M to 96M: injection range for leaf 1
6254 * 96M to 128M: clear range - no injection allowed
6255 * 128M to 160M: injection range for leaf 2
6256 * 160M to 192M: clear range - no injection allowed
6258 * Each clear range must be large enough such that a
6259 * single block cannot straddle it. This way a block
6260 * can't be a target in two different injection ranges
6261 * (on different leaf vdevs).
6263 offset
= ztest_random(fsize
/ (leaves
<< bshift
)) *
6264 (leaves
<< bshift
) + (leaf
<< bshift
) +
6265 (ztest_random(1ULL << (bshift
- 1)) & -8ULL);
6268 * Only allow damage to the labels at one end of the vdev.
6270 * If all labels are damaged, the device will be totally
6271 * inaccessible, which will result in loss of data,
6272 * because we also damage (parts of) the other side of
6275 * Additionally, we will always have both an even and an
6276 * odd label, so that we can handle crashes in the
6277 * middle of vdev_config_sync().
6279 if ((leaf
& 1) == 0 && offset
< VDEV_LABEL_START_SIZE
)
6283 * The two end labels are stored at the "end" of the disk, but
6284 * the end of the disk (vdev_psize) is aligned to
6285 * sizeof (vdev_label_t).
6287 uint64_t psize
= P2ALIGN(fsize
, sizeof (vdev_label_t
));
6288 if ((leaf
& 1) == 1 &&
6289 offset
+ sizeof (bad
) > psize
- VDEV_LABEL_END_SIZE
)
6292 mutex_enter(&ztest_vdev_lock
);
6293 if (mirror_save
!= zs
->zs_mirrors
) {
6294 mutex_exit(&ztest_vdev_lock
);
6299 if (pwrite(fd
, &bad
, sizeof (bad
), offset
) != sizeof (bad
))
6301 "can't inject bad word at 0x%"PRIx64
" in %s",
6304 mutex_exit(&ztest_vdev_lock
);
6306 if (ztest_opts
.zo_verbose
>= 7)
6307 (void) printf("injected bad word into %s,"
6308 " offset 0x%"PRIx64
"\n", pathrand
, offset
);
6313 umem_free(path0
, MAXPATHLEN
);
6314 umem_free(pathrand
, MAXPATHLEN
);
6318 * By design ztest will never inject uncorrectable damage in to the pool.
6319 * Issue a scrub, wait for it to complete, and verify there is never any
6320 * persistent damage.
6322 * Only after a full scrub has been completed is it safe to start injecting
6323 * data corruption. See the comment in zfs_fault_inject().
6326 ztest_scrub_impl(spa_t
*spa
)
6328 int error
= spa_scan(spa
, POOL_SCAN_SCRUB
);
6332 while (dsl_scan_scrubbing(spa_get_dsl(spa
)))
6333 txg_wait_synced(spa_get_dsl(spa
), 0);
6335 if (spa_approx_errlog_size(spa
) > 0)
6338 ztest_pool_scrubbed
= B_TRUE
;
6347 ztest_scrub(ztest_ds_t
*zd
, uint64_t id
)
6349 (void) zd
, (void) id
;
6350 spa_t
*spa
= ztest_spa
;
6354 * Scrub in progress by device removal.
6356 if (ztest_device_removal_active
)
6360 * Start a scrub, wait a moment, then force a restart.
6362 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
6363 (void) poll(NULL
, 0, 100);
6365 error
= ztest_scrub_impl(spa
);
6372 * Change the guid for the pool.
6375 ztest_reguid(ztest_ds_t
*zd
, uint64_t id
)
6377 (void) zd
, (void) id
;
6378 spa_t
*spa
= ztest_spa
;
6379 uint64_t orig
, load
;
6381 ztest_shared_t
*zs
= ztest_shared
;
6383 if (ztest_opts
.zo_mmp_test
)
6386 orig
= spa_guid(spa
);
6387 load
= spa_load_guid(spa
);
6389 (void) pthread_rwlock_wrlock(&ztest_name_lock
);
6390 error
= spa_change_guid(spa
);
6391 zs
->zs_guid
= spa_guid(spa
);
6392 (void) pthread_rwlock_unlock(&ztest_name_lock
);
6397 if (ztest_opts
.zo_verbose
>= 4) {
6398 (void) printf("Changed guid old %"PRIu64
" -> %"PRIu64
"\n",
6399 orig
, spa_guid(spa
));
6402 VERIFY3U(orig
, !=, spa_guid(spa
));
6403 VERIFY3U(load
, ==, spa_load_guid(spa
));
6407 ztest_blake3(ztest_ds_t
*zd
, uint64_t id
)
6409 (void) zd
, (void) id
;
6410 hrtime_t end
= gethrtime() + NANOSEC
;
6411 zio_cksum_salt_t salt
;
6412 void *salt_ptr
= &salt
.zcs_bytes
;
6413 struct abd
*abd_data
, *abd_meta
;
6418 const zfs_impl_t
*blake3
= zfs_impl_get_ops("blake3");
6420 size
= ztest_random_blocksize();
6421 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6422 abd_data
= abd_alloc(size
, B_FALSE
);
6423 abd_meta
= abd_alloc(size
, B_TRUE
);
6425 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6426 *ptr
= ztest_random(UINT_MAX
);
6427 memset(salt_ptr
, 'A', 32);
6429 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6430 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6432 while (gethrtime() <= end
) {
6433 int run_count
= 100;
6434 zio_cksum_t zc_ref1
, zc_ref2
;
6435 zio_cksum_t zc_res1
, zc_res2
;
6437 void *ref1
= &zc_ref1
;
6438 void *ref2
= &zc_ref2
;
6439 void *res1
= &zc_res1
;
6440 void *res2
= &zc_res2
;
6442 /* BLAKE3_KEY_LEN = 32 */
6443 VERIFY0(blake3
->setname("generic"));
6444 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6445 Blake3_InitKeyed(&ctx
, salt_ptr
);
6446 Blake3_Update(&ctx
, buf
, size
);
6447 Blake3_Final(&ctx
, ref1
);
6449 ZIO_CHECKSUM_BSWAP(&zc_ref2
);
6450 abd_checksum_blake3_tmpl_free(templ
);
6452 VERIFY0(blake3
->setname("cycle"));
6453 while (run_count
-- > 0) {
6455 /* Test current implementation */
6456 Blake3_InitKeyed(&ctx
, salt_ptr
);
6457 Blake3_Update(&ctx
, buf
, size
);
6458 Blake3_Final(&ctx
, res1
);
6460 ZIO_CHECKSUM_BSWAP(&zc_res2
);
6462 VERIFY0(memcmp(ref1
, res1
, 32));
6463 VERIFY0(memcmp(ref2
, res2
, 32));
6465 /* Test ABD - data */
6466 templ
= abd_checksum_blake3_tmpl_init(&salt
);
6467 abd_checksum_blake3_native(abd_data
, size
,
6469 abd_checksum_blake3_byteswap(abd_data
, size
,
6472 VERIFY0(memcmp(ref1
, res1
, 32));
6473 VERIFY0(memcmp(ref2
, res2
, 32));
6475 /* Test ABD - metadata */
6476 abd_checksum_blake3_native(abd_meta
, size
,
6478 abd_checksum_blake3_byteswap(abd_meta
, size
,
6480 abd_checksum_blake3_tmpl_free(templ
);
6482 VERIFY0(memcmp(ref1
, res1
, 32));
6483 VERIFY0(memcmp(ref2
, res2
, 32));
6490 umem_free(buf
, size
);
6494 ztest_fletcher(ztest_ds_t
*zd
, uint64_t id
)
6496 (void) zd
, (void) id
;
6497 hrtime_t end
= gethrtime() + NANOSEC
;
6499 while (gethrtime() <= end
) {
6500 int run_count
= 100;
6502 struct abd
*abd_data
, *abd_meta
;
6507 zio_cksum_t zc_ref_byteswap
;
6509 size
= ztest_random_blocksize();
6511 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6512 abd_data
= abd_alloc(size
, B_FALSE
);
6513 abd_meta
= abd_alloc(size
, B_TRUE
);
6515 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6516 *ptr
= ztest_random(UINT_MAX
);
6518 abd_copy_from_buf_off(abd_data
, buf
, 0, size
);
6519 abd_copy_from_buf_off(abd_meta
, buf
, 0, size
);
6521 VERIFY0(fletcher_4_impl_set("scalar"));
6522 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6523 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_byteswap
);
6525 VERIFY0(fletcher_4_impl_set("cycle"));
6526 while (run_count
-- > 0) {
6528 zio_cksum_t zc_byteswap
;
6530 fletcher_4_byteswap(buf
, size
, NULL
, &zc_byteswap
);
6531 fletcher_4_native(buf
, size
, NULL
, &zc
);
6533 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6534 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6535 sizeof (zc_byteswap
)));
6537 /* Test ABD - data */
6538 abd_fletcher_4_byteswap(abd_data
, size
, NULL
,
6540 abd_fletcher_4_native(abd_data
, size
, NULL
, &zc
);
6542 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6543 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6544 sizeof (zc_byteswap
)));
6546 /* Test ABD - metadata */
6547 abd_fletcher_4_byteswap(abd_meta
, size
, NULL
,
6549 abd_fletcher_4_native(abd_meta
, size
, NULL
, &zc
);
6551 VERIFY0(memcmp(&zc
, &zc_ref
, sizeof (zc
)));
6552 VERIFY0(memcmp(&zc_byteswap
, &zc_ref_byteswap
,
6553 sizeof (zc_byteswap
)));
6557 umem_free(buf
, size
);
6564 ztest_fletcher_incr(ztest_ds_t
*zd
, uint64_t id
)
6566 (void) zd
, (void) id
;
6572 zio_cksum_t zc_ref_bswap
;
6574 hrtime_t end
= gethrtime() + NANOSEC
;
6576 while (gethrtime() <= end
) {
6577 int run_count
= 100;
6579 size
= ztest_random_blocksize();
6580 buf
= umem_alloc(size
, UMEM_NOFAIL
);
6582 for (i
= 0, ptr
= buf
; i
< size
/ sizeof (*ptr
); i
++, ptr
++)
6583 *ptr
= ztest_random(UINT_MAX
);
6585 VERIFY0(fletcher_4_impl_set("scalar"));
6586 fletcher_4_native(buf
, size
, NULL
, &zc_ref
);
6587 fletcher_4_byteswap(buf
, size
, NULL
, &zc_ref_bswap
);
6589 VERIFY0(fletcher_4_impl_set("cycle"));
6591 while (run_count
-- > 0) {
6593 zio_cksum_t zc_bswap
;
6596 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
6597 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
6599 while (pos
< size
) {
6600 size_t inc
= 64 * ztest_random(size
/ 67);
6601 /* sometimes add few bytes to test non-simd */
6602 if (ztest_random(100) < 10)
6603 inc
+= P2ALIGN(ztest_random(64),
6606 if (inc
> (size
- pos
))
6609 fletcher_4_incremental_native(buf
+ pos
, inc
,
6611 fletcher_4_incremental_byteswap(buf
+ pos
, inc
,
6617 VERIFY3U(pos
, ==, size
);
6619 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
6620 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
6623 * verify if incremental on the whole buffer is
6624 * equivalent to non-incremental version
6626 ZIO_SET_CHECKSUM(&zc
, 0, 0, 0, 0);
6627 ZIO_SET_CHECKSUM(&zc_bswap
, 0, 0, 0, 0);
6629 fletcher_4_incremental_native(buf
, size
, &zc
);
6630 fletcher_4_incremental_byteswap(buf
, size
, &zc_bswap
);
6632 VERIFY(ZIO_CHECKSUM_EQUAL(zc
, zc_ref
));
6633 VERIFY(ZIO_CHECKSUM_EQUAL(zc_bswap
, zc_ref_bswap
));
6636 umem_free(buf
, size
);
6641 ztest_set_global_vars(void)
6643 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
6644 char *kv
= ztest_opts
.zo_gvars
[i
];
6645 VERIFY3U(strlen(kv
), <=, ZO_GVARS_MAX_ARGLEN
);
6646 VERIFY3U(strlen(kv
), >, 0);
6647 int err
= set_global_var(kv
);
6648 if (ztest_opts
.zo_verbose
> 0) {
6649 (void) printf("setting global var %s ... %s\n", kv
,
6650 err
? "failed" : "ok");
6653 (void) fprintf(stderr
,
6654 "failed to set global var '%s'\n", kv
);
6662 ztest_global_vars_to_zdb_args(void)
6664 char **args
= calloc(2*ztest_opts
.zo_gvars_count
+ 1, sizeof (char *));
6668 for (size_t i
= 0; i
< ztest_opts
.zo_gvars_count
; i
++) {
6669 *cur
++ = (char *)"-o";
6670 *cur
++ = ztest_opts
.zo_gvars
[i
];
6672 ASSERT3P(cur
, ==, &args
[2*ztest_opts
.zo_gvars_count
]);
6677 /* The end of strings is indicated by a NULL element */
6679 join_strings(char **strings
, const char *sep
)
6681 size_t totallen
= 0;
6682 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
6683 totallen
+= strlen(*sp
);
6684 totallen
+= strlen(sep
);
6687 ASSERT(totallen
>= strlen(sep
));
6688 totallen
-= strlen(sep
);
6691 size_t buflen
= totallen
+ 1;
6692 char *o
= umem_alloc(buflen
, UMEM_NOFAIL
); /* trailing 0 byte */
6694 for (char **sp
= strings
; *sp
!= NULL
; sp
++) {
6696 would
= strlcat(o
, *sp
, buflen
);
6697 VERIFY3U(would
, <, buflen
);
6698 if (*(sp
+1) == NULL
) {
6701 would
= strlcat(o
, sep
, buflen
);
6702 VERIFY3U(would
, <, buflen
);
6704 ASSERT3S(strlen(o
), ==, totallen
);
6709 ztest_check_path(char *path
)
6712 /* return true on success */
6713 return (!stat(path
, &s
));
6717 ztest_get_zdb_bin(char *bin
, int len
)
6721 * Try to use $ZDB and in-tree zdb path. If not successful, just
6722 * let popen to search through PATH.
6724 if ((zdb_path
= getenv("ZDB"))) {
6725 strlcpy(bin
, zdb_path
, len
); /* In env */
6726 if (!ztest_check_path(bin
)) {
6727 ztest_dump_core
= 0;
6728 fatal(B_TRUE
, "invalid ZDB '%s'", bin
);
6733 VERIFY3P(realpath(getexecname(), bin
), !=, NULL
);
6734 if (strstr(bin
, ".libs/ztest")) {
6735 strstr(bin
, ".libs/ztest")[0] = '\0'; /* In-tree */
6737 if (ztest_check_path(bin
))
6744 ztest_random_concrete_vdev_leaf(vdev_t
*vd
)
6749 if (vd
->vdev_children
== 0)
6752 vdev_t
*eligible
[vd
->vdev_children
];
6753 int eligible_idx
= 0, i
;
6754 for (i
= 0; i
< vd
->vdev_children
; i
++) {
6755 vdev_t
*cvd
= vd
->vdev_child
[i
];
6756 if (cvd
->vdev_top
->vdev_removing
)
6758 if (cvd
->vdev_children
> 0 ||
6759 (vdev_is_concrete(cvd
) && !cvd
->vdev_detached
)) {
6760 eligible
[eligible_idx
++] = cvd
;
6763 VERIFY3S(eligible_idx
, >, 0);
6765 uint64_t child_no
= ztest_random(eligible_idx
);
6766 return (ztest_random_concrete_vdev_leaf(eligible
[child_no
]));
6770 ztest_initialize(ztest_ds_t
*zd
, uint64_t id
)
6772 (void) zd
, (void) id
;
6773 spa_t
*spa
= ztest_spa
;
6776 mutex_enter(&ztest_vdev_lock
);
6778 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
6780 /* Random leaf vdev */
6781 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
6782 if (rand_vd
== NULL
) {
6783 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6784 mutex_exit(&ztest_vdev_lock
);
6789 * The random vdev we've selected may change as soon as we
6790 * drop the spa_config_lock. We create local copies of things
6791 * we're interested in.
6793 uint64_t guid
= rand_vd
->vdev_guid
;
6794 char *path
= strdup(rand_vd
->vdev_path
);
6795 boolean_t active
= rand_vd
->vdev_initialize_thread
!= NULL
;
6797 zfs_dbgmsg("vd %px, guid %llu", rand_vd
, (u_longlong_t
)guid
);
6798 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6800 uint64_t cmd
= ztest_random(POOL_INITIALIZE_FUNCS
);
6802 nvlist_t
*vdev_guids
= fnvlist_alloc();
6803 nvlist_t
*vdev_errlist
= fnvlist_alloc();
6804 fnvlist_add_uint64(vdev_guids
, path
, guid
);
6805 error
= spa_vdev_initialize(spa
, vdev_guids
, cmd
, vdev_errlist
);
6806 fnvlist_free(vdev_guids
);
6807 fnvlist_free(vdev_errlist
);
6810 case POOL_INITIALIZE_CANCEL
:
6811 if (ztest_opts
.zo_verbose
>= 4) {
6812 (void) printf("Cancel initialize %s", path
);
6814 (void) printf(" failed (no initialize active)");
6815 (void) printf("\n");
6818 case POOL_INITIALIZE_START
:
6819 if (ztest_opts
.zo_verbose
>= 4) {
6820 (void) printf("Start initialize %s", path
);
6821 if (active
&& error
== 0)
6822 (void) printf(" failed (already active)");
6823 else if (error
!= 0)
6824 (void) printf(" failed (error %d)", error
);
6825 (void) printf("\n");
6828 case POOL_INITIALIZE_SUSPEND
:
6829 if (ztest_opts
.zo_verbose
>= 4) {
6830 (void) printf("Suspend initialize %s", path
);
6832 (void) printf(" failed (no initialize active)");
6833 (void) printf("\n");
6838 mutex_exit(&ztest_vdev_lock
);
6842 ztest_trim(ztest_ds_t
*zd
, uint64_t id
)
6844 (void) zd
, (void) id
;
6845 spa_t
*spa
= ztest_spa
;
6848 mutex_enter(&ztest_vdev_lock
);
6850 spa_config_enter(spa
, SCL_VDEV
, FTAG
, RW_READER
);
6852 /* Random leaf vdev */
6853 vdev_t
*rand_vd
= ztest_random_concrete_vdev_leaf(spa
->spa_root_vdev
);
6854 if (rand_vd
== NULL
) {
6855 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6856 mutex_exit(&ztest_vdev_lock
);
6861 * The random vdev we've selected may change as soon as we
6862 * drop the spa_config_lock. We create local copies of things
6863 * we're interested in.
6865 uint64_t guid
= rand_vd
->vdev_guid
;
6866 char *path
= strdup(rand_vd
->vdev_path
);
6867 boolean_t active
= rand_vd
->vdev_trim_thread
!= NULL
;
6869 zfs_dbgmsg("vd %p, guid %llu", rand_vd
, (u_longlong_t
)guid
);
6870 spa_config_exit(spa
, SCL_VDEV
, FTAG
);
6872 uint64_t cmd
= ztest_random(POOL_TRIM_FUNCS
);
6873 uint64_t rate
= 1 << ztest_random(30);
6874 boolean_t partial
= (ztest_random(5) > 0);
6875 boolean_t secure
= (ztest_random(5) > 0);
6877 nvlist_t
*vdev_guids
= fnvlist_alloc();
6878 nvlist_t
*vdev_errlist
= fnvlist_alloc();
6879 fnvlist_add_uint64(vdev_guids
, path
, guid
);
6880 error
= spa_vdev_trim(spa
, vdev_guids
, cmd
, rate
, partial
,
6881 secure
, vdev_errlist
);
6882 fnvlist_free(vdev_guids
);
6883 fnvlist_free(vdev_errlist
);
6886 case POOL_TRIM_CANCEL
:
6887 if (ztest_opts
.zo_verbose
>= 4) {
6888 (void) printf("Cancel TRIM %s", path
);
6890 (void) printf(" failed (no TRIM active)");
6891 (void) printf("\n");
6894 case POOL_TRIM_START
:
6895 if (ztest_opts
.zo_verbose
>= 4) {
6896 (void) printf("Start TRIM %s", path
);
6897 if (active
&& error
== 0)
6898 (void) printf(" failed (already active)");
6899 else if (error
!= 0)
6900 (void) printf(" failed (error %d)", error
);
6901 (void) printf("\n");
6904 case POOL_TRIM_SUSPEND
:
6905 if (ztest_opts
.zo_verbose
>= 4) {
6906 (void) printf("Suspend TRIM %s", path
);
6908 (void) printf(" failed (no TRIM active)");
6909 (void) printf("\n");
6914 mutex_exit(&ztest_vdev_lock
);
6918 * Verify pool integrity by running zdb.
6921 ztest_run_zdb(uint64_t guid
)
6927 const int len
= MAXPATHLEN
+ MAXNAMELEN
+ 20;
6930 bin
= umem_alloc(len
, UMEM_NOFAIL
);
6931 zdb
= umem_alloc(len
, UMEM_NOFAIL
);
6932 zbuf
= umem_alloc(1024, UMEM_NOFAIL
);
6934 ztest_get_zdb_bin(bin
, len
);
6936 char **set_gvars_args
= ztest_global_vars_to_zdb_args();
6937 if (set_gvars_args
== NULL
) {
6938 fatal(B_FALSE
, "Failed to allocate memory in "
6939 "ztest_global_vars_to_zdb_args(). Cannot run zdb.\n");
6941 char *set_gvars_args_joined
= join_strings(set_gvars_args
, " ");
6942 free(set_gvars_args
);
6944 size_t would
= snprintf(zdb
, len
,
6945 "%s -bcc%s%s -G -d -Y -e -y %s -p %s %"PRIu64
,
6947 ztest_opts
.zo_verbose
>= 3 ? "s" : "",
6948 ztest_opts
.zo_verbose
>= 4 ? "v" : "",
6949 set_gvars_args_joined
,
6952 ASSERT3U(would
, <, len
);
6954 umem_free(set_gvars_args_joined
, strlen(set_gvars_args_joined
) + 1);
6956 if (ztest_opts
.zo_verbose
>= 5)
6957 (void) printf("Executing %s\n", zdb
);
6959 fp
= popen(zdb
, "r");
6961 while (fgets(zbuf
, 1024, fp
) != NULL
)
6962 if (ztest_opts
.zo_verbose
>= 3)
6963 (void) printf("%s", zbuf
);
6965 status
= pclose(fp
);
6970 ztest_dump_core
= 0;
6971 if (WIFEXITED(status
))
6972 fatal(B_FALSE
, "'%s' exit code %d", zdb
, WEXITSTATUS(status
));
6974 fatal(B_FALSE
, "'%s' died with signal %d",
6975 zdb
, WTERMSIG(status
));
6977 umem_free(bin
, len
);
6978 umem_free(zdb
, len
);
6979 umem_free(zbuf
, 1024);
6983 ztest_walk_pool_directory(const char *header
)
6987 if (ztest_opts
.zo_verbose
>= 6)
6988 (void) puts(header
);
6990 mutex_enter(&spa_namespace_lock
);
6991 while ((spa
= spa_next(spa
)) != NULL
)
6992 if (ztest_opts
.zo_verbose
>= 6)
6993 (void) printf("\t%s\n", spa_name(spa
));
6994 mutex_exit(&spa_namespace_lock
);
6998 ztest_spa_import_export(char *oldname
, char *newname
)
7000 nvlist_t
*config
, *newconfig
;
7005 if (ztest_opts
.zo_verbose
>= 4) {
7006 (void) printf("import/export: old = %s, new = %s\n",
7011 * Clean up from previous runs.
7013 (void) spa_destroy(newname
);
7016 * Get the pool's configuration and guid.
7018 VERIFY0(spa_open(oldname
, &spa
, FTAG
));
7021 * Kick off a scrub to tickle scrub/export races.
7023 if (ztest_random(2) == 0)
7024 (void) spa_scan(spa
, POOL_SCAN_SCRUB
);
7026 pool_guid
= spa_guid(spa
);
7027 spa_close(spa
, FTAG
);
7029 ztest_walk_pool_directory("pools before export");
7034 VERIFY0(spa_export(oldname
, &config
, B_FALSE
, B_FALSE
));
7036 ztest_walk_pool_directory("pools after export");
7041 newconfig
= spa_tryimport(config
);
7042 ASSERT3P(newconfig
, !=, NULL
);
7043 fnvlist_free(newconfig
);
7046 * Import it under the new name.
7048 error
= spa_import(newname
, config
, NULL
, 0);
7050 dump_nvlist(config
, 0);
7051 fatal(B_FALSE
, "couldn't import pool %s as %s: error %u",
7052 oldname
, newname
, error
);
7055 ztest_walk_pool_directory("pools after import");
7058 * Try to import it again -- should fail with EEXIST.
7060 VERIFY3U(EEXIST
, ==, spa_import(newname
, config
, NULL
, 0));
7063 * Try to import it under a different name -- should fail with EEXIST.
7065 VERIFY3U(EEXIST
, ==, spa_import(oldname
, config
, NULL
, 0));
7068 * Verify that the pool is no longer visible under the old name.
7070 VERIFY3U(ENOENT
, ==, spa_open(oldname
, &spa
, FTAG
));
7073 * Verify that we can open and close the pool using the new name.
7075 VERIFY0(spa_open(newname
, &spa
, FTAG
));
7076 ASSERT3U(pool_guid
, ==, spa_guid(spa
));
7077 spa_close(spa
, FTAG
);
7079 fnvlist_free(config
);
7083 ztest_resume(spa_t
*spa
)
7085 if (spa_suspended(spa
) && ztest_opts
.zo_verbose
>= 6)
7086 (void) printf("resuming from suspended state\n");
7087 spa_vdev_state_enter(spa
, SCL_NONE
);
7088 vdev_clear(spa
, NULL
);
7089 (void) spa_vdev_state_exit(spa
, NULL
, 0);
7090 (void) zio_resume(spa
);
7093 static __attribute__((noreturn
)) void
7094 ztest_resume_thread(void *arg
)
7098 while (!ztest_exiting
) {
7099 if (spa_suspended(spa
))
7101 (void) poll(NULL
, 0, 100);
7104 * Periodically change the zfs_compressed_arc_enabled setting.
7106 if (ztest_random(10) == 0)
7107 zfs_compressed_arc_enabled
= ztest_random(2);
7110 * Periodically change the zfs_abd_scatter_enabled setting.
7112 if (ztest_random(10) == 0)
7113 zfs_abd_scatter_enabled
= ztest_random(2);
7119 static __attribute__((noreturn
)) void
7120 ztest_deadman_thread(void *arg
)
7122 ztest_shared_t
*zs
= arg
;
7123 spa_t
*spa
= ztest_spa
;
7124 hrtime_t delay
, overdue
, last_run
= gethrtime();
7126 delay
= (zs
->zs_thread_stop
- zs
->zs_thread_start
) +
7127 MSEC2NSEC(zfs_deadman_synctime_ms
);
7129 while (!ztest_exiting
) {
7131 * Wait for the delay timer while checking occasionally
7132 * if we should stop.
7134 if (gethrtime() < last_run
+ delay
) {
7135 (void) poll(NULL
, 0, 1000);
7140 * If the pool is suspended then fail immediately. Otherwise,
7141 * check to see if the pool is making any progress. If
7142 * vdev_deadman() discovers that there hasn't been any recent
7143 * I/Os then it will end up aborting the tests.
7145 if (spa_suspended(spa
) || spa
->spa_root_vdev
== NULL
) {
7147 "aborting test after %llu seconds because "
7148 "pool has transitioned to a suspended state.",
7149 (u_longlong_t
)zfs_deadman_synctime_ms
/ 1000);
7151 vdev_deadman(spa
->spa_root_vdev
, FTAG
);
7154 * If the process doesn't complete within a grace period of
7155 * zfs_deadman_synctime_ms over the expected finish time,
7156 * then it may be hung and is terminated.
7158 overdue
= zs
->zs_proc_stop
+ MSEC2NSEC(zfs_deadman_synctime_ms
);
7159 if (gethrtime() > overdue
) {
7161 "aborting test after %llu seconds because "
7162 "the process is overdue for termination.",
7163 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7166 (void) printf("ztest has been running for %lld seconds\n",
7167 (gethrtime() - zs
->zs_proc_start
) / NANOSEC
);
7169 last_run
= gethrtime();
7170 delay
= MSEC2NSEC(zfs_deadman_checktime_ms
);
7177 ztest_execute(int test
, ztest_info_t
*zi
, uint64_t id
)
7179 ztest_ds_t
*zd
= &ztest_ds
[id
% ztest_opts
.zo_datasets
];
7180 ztest_shared_callstate_t
*zc
= ZTEST_GET_SHARED_CALLSTATE(test
);
7181 hrtime_t functime
= gethrtime();
7184 for (i
= 0; i
< zi
->zi_iters
; i
++)
7185 zi
->zi_func(zd
, id
);
7187 functime
= gethrtime() - functime
;
7189 atomic_add_64(&zc
->zc_count
, 1);
7190 atomic_add_64(&zc
->zc_time
, functime
);
7192 if (ztest_opts
.zo_verbose
>= 4)
7193 (void) printf("%6.2f sec in %s\n",
7194 (double)functime
/ NANOSEC
, zi
->zi_funcname
);
7197 static __attribute__((noreturn
)) void
7198 ztest_thread(void *arg
)
7201 uint64_t id
= (uintptr_t)arg
;
7202 ztest_shared_t
*zs
= ztest_shared
;
7206 ztest_shared_callstate_t
*zc
;
7208 while ((now
= gethrtime()) < zs
->zs_thread_stop
) {
7210 * See if it's time to force a crash.
7212 if (now
> zs
->zs_thread_kill
)
7216 * If we're getting ENOSPC with some regularity, stop.
7218 if (zs
->zs_enospc_count
> 10)
7222 * Pick a random function to execute.
7224 rand
= ztest_random(ZTEST_FUNCS
);
7225 zi
= &ztest_info
[rand
];
7226 zc
= ZTEST_GET_SHARED_CALLSTATE(rand
);
7227 call_next
= zc
->zc_next
;
7229 if (now
>= call_next
&&
7230 atomic_cas_64(&zc
->zc_next
, call_next
, call_next
+
7231 ztest_random(2 * zi
->zi_interval
[0] + 1)) == call_next
) {
7232 ztest_execute(rand
, zi
, id
);
7240 ztest_dataset_name(char *dsname
, const char *pool
, int d
)
7242 (void) snprintf(dsname
, ZFS_MAX_DATASET_NAME_LEN
, "%s/ds_%d", pool
, d
);
7246 ztest_dataset_destroy(int d
)
7248 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7251 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7253 if (ztest_opts
.zo_verbose
>= 3)
7254 (void) printf("Destroying %s to free up space\n", name
);
7257 * Cleanup any non-standard clones and snapshots. In general,
7258 * ztest thread t operates on dataset (t % zopt_datasets),
7259 * so there may be more than one thing to clean up.
7261 for (t
= d
; t
< ztest_opts
.zo_threads
;
7262 t
+= ztest_opts
.zo_datasets
)
7263 ztest_dsl_dataset_cleanup(name
, t
);
7265 (void) dmu_objset_find(name
, ztest_objset_destroy_cb
, NULL
,
7266 DS_FIND_SNAPSHOTS
| DS_FIND_CHILDREN
);
7270 ztest_dataset_dirobj_verify(ztest_ds_t
*zd
)
7272 uint64_t usedobjs
, dirobjs
, scratch
;
7275 * ZTEST_DIROBJ is the object directory for the entire dataset.
7276 * Therefore, the number of objects in use should equal the
7277 * number of ZTEST_DIROBJ entries, +1 for ZTEST_DIROBJ itself.
7278 * If not, we have an object leak.
7280 * Note that we can only check this in ztest_dataset_open(),
7281 * when the open-context and syncing-context values agree.
7282 * That's because zap_count() returns the open-context value,
7283 * while dmu_objset_space() returns the rootbp fill count.
7285 VERIFY0(zap_count(zd
->zd_os
, ZTEST_DIROBJ
, &dirobjs
));
7286 dmu_objset_space(zd
->zd_os
, &scratch
, &scratch
, &usedobjs
, &scratch
);
7287 ASSERT3U(dirobjs
+ 1, ==, usedobjs
);
7291 ztest_dataset_open(int d
)
7293 ztest_ds_t
*zd
= &ztest_ds
[d
];
7294 uint64_t committed_seq
= ZTEST_GET_SHARED_DS(d
)->zd_seq
;
7297 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7300 ztest_dataset_name(name
, ztest_opts
.zo_pool
, d
);
7302 (void) pthread_rwlock_rdlock(&ztest_name_lock
);
7304 error
= ztest_dataset_create(name
);
7305 if (error
== ENOSPC
) {
7306 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7307 ztest_record_enospc(FTAG
);
7310 ASSERT(error
== 0 || error
== EEXIST
);
7312 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_OTHER
, B_FALSE
,
7314 (void) pthread_rwlock_unlock(&ztest_name_lock
);
7316 ztest_zd_init(zd
, ZTEST_GET_SHARED_DS(d
), os
);
7318 zilog
= zd
->zd_zilog
;
7320 if (zilog
->zl_header
->zh_claim_lr_seq
!= 0 &&
7321 zilog
->zl_header
->zh_claim_lr_seq
< committed_seq
)
7322 fatal(B_FALSE
, "missing log records: "
7323 "claimed %"PRIu64
" < committed %"PRIu64
"",
7324 zilog
->zl_header
->zh_claim_lr_seq
, committed_seq
);
7326 ztest_dataset_dirobj_verify(zd
);
7328 zil_replay(os
, zd
, ztest_replay_vector
);
7330 ztest_dataset_dirobj_verify(zd
);
7332 if (ztest_opts
.zo_verbose
>= 6)
7333 (void) printf("%s replay %"PRIu64
" blocks, "
7334 "%"PRIu64
" records, seq %"PRIu64
"\n",
7336 zilog
->zl_parse_blk_count
,
7337 zilog
->zl_parse_lr_count
,
7338 zilog
->zl_replaying_seq
);
7340 zilog
= zil_open(os
, ztest_get_data
, NULL
);
7342 if (zilog
->zl_replaying_seq
!= 0 &&
7343 zilog
->zl_replaying_seq
< committed_seq
)
7344 fatal(B_FALSE
, "missing log records: "
7345 "replayed %"PRIu64
" < committed %"PRIu64
"",
7346 zilog
->zl_replaying_seq
, committed_seq
);
7352 ztest_dataset_close(int d
)
7354 ztest_ds_t
*zd
= &ztest_ds
[d
];
7356 zil_close(zd
->zd_zilog
);
7357 dmu_objset_disown(zd
->zd_os
, B_TRUE
, zd
);
7363 ztest_replay_zil_cb(const char *name
, void *arg
)
7369 VERIFY0(ztest_dmu_objset_own(name
, DMU_OST_ANY
, B_TRUE
,
7370 B_TRUE
, FTAG
, &os
));
7372 zdtmp
= umem_alloc(sizeof (ztest_ds_t
), UMEM_NOFAIL
);
7374 ztest_zd_init(zdtmp
, NULL
, os
);
7375 zil_replay(os
, zdtmp
, ztest_replay_vector
);
7376 ztest_zd_fini(zdtmp
);
7378 if (dmu_objset_zil(os
)->zl_parse_lr_count
!= 0 &&
7379 ztest_opts
.zo_verbose
>= 6) {
7380 zilog_t
*zilog
= dmu_objset_zil(os
);
7382 (void) printf("%s replay %"PRIu64
" blocks, "
7383 "%"PRIu64
" records, seq %"PRIu64
"\n",
7385 zilog
->zl_parse_blk_count
,
7386 zilog
->zl_parse_lr_count
,
7387 zilog
->zl_replaying_seq
);
7390 umem_free(zdtmp
, sizeof (ztest_ds_t
));
7392 dmu_objset_disown(os
, B_TRUE
, FTAG
);
7399 ztest_ds_t
*zd
= &ztest_ds
[0];
7403 if (ztest_opts
.zo_verbose
>= 3)
7404 (void) printf("testing spa_freeze()...\n");
7406 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7407 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7408 VERIFY0(ztest_dataset_open(0));
7412 * Force the first log block to be transactionally allocated.
7413 * We have to do this before we freeze the pool -- otherwise
7414 * the log chain won't be anchored.
7416 while (BP_IS_HOLE(&zd
->zd_zilog
->zl_header
->zh_log
)) {
7417 ztest_dmu_object_alloc_free(zd
, 0);
7418 zil_commit(zd
->zd_zilog
, 0);
7421 txg_wait_synced(spa_get_dsl(spa
), 0);
7424 * Freeze the pool. This stops spa_sync() from doing anything,
7425 * so that the only way to record changes from now on is the ZIL.
7430 * Because it is hard to predict how much space a write will actually
7431 * require beforehand, we leave ourselves some fudge space to write over
7434 uint64_t capacity
= metaslab_class_get_space(spa_normal_class(spa
)) / 2;
7437 * Run tests that generate log records but don't alter the pool config
7438 * or depend on DSL sync tasks (snapshots, objset create/destroy, etc).
7439 * We do a txg_wait_synced() after each iteration to force the txg
7440 * to increase well beyond the last synced value in the uberblock.
7441 * The ZIL should be OK with that.
7443 * Run a random number of times less than zo_maxloops and ensure we do
7444 * not run out of space on the pool.
7446 while (ztest_random(10) != 0 &&
7447 numloops
++ < ztest_opts
.zo_maxloops
&&
7448 metaslab_class_get_alloc(spa_normal_class(spa
)) < capacity
) {
7450 ztest_od_init(&od
, 0, FTAG
, 0, DMU_OT_UINT64_OTHER
, 0, 0, 0);
7451 VERIFY0(ztest_object_init(zd
, &od
, sizeof (od
), B_FALSE
));
7452 ztest_io(zd
, od
.od_object
,
7453 ztest_random(ZTEST_RANGE_LOCKS
) << SPA_MAXBLOCKSHIFT
);
7454 txg_wait_synced(spa_get_dsl(spa
), 0);
7458 * Commit all of the changes we just generated.
7460 zil_commit(zd
->zd_zilog
, 0);
7461 txg_wait_synced(spa_get_dsl(spa
), 0);
7464 * Close our dataset and close the pool.
7466 ztest_dataset_close(0);
7467 spa_close(spa
, FTAG
);
7471 * Open and close the pool and dataset to induce log replay.
7473 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7474 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7475 ASSERT3U(spa_freeze_txg(spa
), ==, UINT64_MAX
);
7476 VERIFY0(ztest_dataset_open(0));
7478 txg_wait_synced(spa_get_dsl(spa
), 0);
7479 ztest_dataset_close(0);
7480 ztest_reguid(NULL
, 0);
7482 spa_close(spa
, FTAG
);
7487 ztest_import_impl(void)
7489 importargs_t args
= { 0 };
7490 nvlist_t
*cfg
= NULL
;
7492 char *searchdirs
[nsearch
];
7493 int flags
= ZFS_IMPORT_MISSING_LOG
;
7495 searchdirs
[0] = ztest_opts
.zo_dir
;
7496 args
.paths
= nsearch
;
7497 args
.path
= searchdirs
;
7498 args
.can_be_active
= B_FALSE
;
7500 libpc_handle_t lpch
= {
7501 .lpc_lib_handle
= NULL
,
7502 .lpc_ops
= &libzpool_config_ops
,
7503 .lpc_printerr
= B_TRUE
7505 VERIFY0(zpool_find_config(&lpch
, ztest_opts
.zo_pool
, &cfg
, &args
));
7506 VERIFY0(spa_import(ztest_opts
.zo_pool
, cfg
, NULL
, flags
));
7511 * Import a storage pool with the given name.
7514 ztest_import(ztest_shared_t
*zs
)
7518 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7519 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7520 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
7522 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7524 ztest_import_impl();
7526 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7527 zs
->zs_metaslab_sz
=
7528 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
7529 zs
->zs_guid
= spa_guid(spa
);
7530 spa_close(spa
, FTAG
);
7534 if (!ztest_opts
.zo_mmp_test
) {
7535 ztest_run_zdb(zs
->zs_guid
);
7537 ztest_run_zdb(zs
->zs_guid
);
7540 (void) pthread_rwlock_destroy(&ztest_name_lock
);
7541 mutex_destroy(&ztest_vdev_lock
);
7542 mutex_destroy(&ztest_checkpoint_lock
);
7546 * Kick off threads to run tests on all datasets in parallel.
7549 ztest_run(ztest_shared_t
*zs
)
7553 kthread_t
*resume_thread
, *deadman_thread
;
7554 kthread_t
**run_threads
;
7559 ztest_exiting
= B_FALSE
;
7562 * Initialize parent/child shared state.
7564 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7565 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7566 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
7568 zs
->zs_thread_start
= gethrtime();
7569 zs
->zs_thread_stop
=
7570 zs
->zs_thread_start
+ ztest_opts
.zo_passtime
* NANOSEC
;
7571 zs
->zs_thread_stop
= MIN(zs
->zs_thread_stop
, zs
->zs_proc_stop
);
7572 zs
->zs_thread_kill
= zs
->zs_thread_stop
;
7573 if (ztest_random(100) < ztest_opts
.zo_killrate
) {
7574 zs
->zs_thread_kill
-=
7575 ztest_random(ztest_opts
.zo_passtime
* NANOSEC
);
7578 mutex_init(&zcl
.zcl_callbacks_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7580 list_create(&zcl
.zcl_callbacks
, sizeof (ztest_cb_data_t
),
7581 offsetof(ztest_cb_data_t
, zcd_node
));
7584 * Open our pool. It may need to be imported first depending on
7585 * what tests were running when the previous pass was terminated.
7587 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7588 error
= spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
);
7590 VERIFY3S(error
, ==, ENOENT
);
7591 ztest_import_impl();
7592 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7593 zs
->zs_metaslab_sz
=
7594 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
7597 metaslab_preload_limit
= ztest_random(20) + 1;
7600 VERIFY0(vdev_raidz_impl_set("cycle"));
7602 dmu_objset_stats_t dds
;
7603 VERIFY0(ztest_dmu_objset_own(ztest_opts
.zo_pool
,
7604 DMU_OST_ANY
, B_TRUE
, B_TRUE
, FTAG
, &os
));
7605 dsl_pool_config_enter(dmu_objset_pool(os
), FTAG
);
7606 dmu_objset_fast_stat(os
, &dds
);
7607 dsl_pool_config_exit(dmu_objset_pool(os
), FTAG
);
7608 dmu_objset_disown(os
, B_TRUE
, FTAG
);
7611 * Create a thread to periodically resume suspended I/O.
7613 resume_thread
= thread_create(NULL
, 0, ztest_resume_thread
,
7614 spa
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
7617 * Create a deadman thread and set to panic if we hang.
7619 deadman_thread
= thread_create(NULL
, 0, ztest_deadman_thread
,
7620 zs
, 0, NULL
, TS_RUN
| TS_JOINABLE
, defclsyspri
);
7622 spa
->spa_deadman_failmode
= ZIO_FAILURE_MODE_PANIC
;
7625 * Verify that we can safely inquire about any object,
7626 * whether it's allocated or not. To make it interesting,
7627 * we probe a 5-wide window around each power of two.
7628 * This hits all edge cases, including zero and the max.
7630 for (t
= 0; t
< 64; t
++) {
7631 for (d
= -5; d
<= 5; d
++) {
7632 error
= dmu_object_info(spa
->spa_meta_objset
,
7633 (1ULL << t
) + d
, NULL
);
7634 ASSERT(error
== 0 || error
== ENOENT
||
7640 * If we got any ENOSPC errors on the previous run, destroy something.
7642 if (zs
->zs_enospc_count
!= 0) {
7643 int d
= ztest_random(ztest_opts
.zo_datasets
);
7644 ztest_dataset_destroy(d
);
7646 zs
->zs_enospc_count
= 0;
7649 * If we were in the middle of ztest_device_removal() and were killed
7650 * we need to ensure the removal and scrub complete before running
7651 * any tests that check ztest_device_removal_active. The removal will
7652 * be restarted automatically when the spa is opened, but we need to
7653 * initiate the scrub manually if it is not already in progress. Note
7654 * that we always run the scrub whenever an indirect vdev exists
7655 * because we have no way of knowing for sure if ztest_device_removal()
7656 * fully completed its scrub before the pool was reimported.
7658 if (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
||
7659 spa
->spa_removing_phys
.sr_prev_indirect_vdev
!= -1) {
7660 while (spa
->spa_removing_phys
.sr_state
== DSS_SCANNING
)
7661 txg_wait_synced(spa_get_dsl(spa
), 0);
7663 error
= ztest_scrub_impl(spa
);
7669 run_threads
= umem_zalloc(ztest_opts
.zo_threads
* sizeof (kthread_t
*),
7672 if (ztest_opts
.zo_verbose
>= 4)
7673 (void) printf("starting main threads...\n");
7676 * Replay all logs of all datasets in the pool. This is primarily for
7677 * temporary datasets which wouldn't otherwise get replayed, which
7678 * can trigger failures when attempting to offline a SLOG in
7679 * ztest_fault_inject().
7681 (void) dmu_objset_find(ztest_opts
.zo_pool
, ztest_replay_zil_cb
,
7682 NULL
, DS_FIND_CHILDREN
);
7685 * Kick off all the tests that run in parallel.
7687 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
7688 if (t
< ztest_opts
.zo_datasets
&& ztest_dataset_open(t
) != 0) {
7689 umem_free(run_threads
, ztest_opts
.zo_threads
*
7690 sizeof (kthread_t
*));
7694 run_threads
[t
] = thread_create(NULL
, 0, ztest_thread
,
7695 (void *)(uintptr_t)t
, 0, NULL
, TS_RUN
| TS_JOINABLE
,
7700 * Wait for all of the tests to complete.
7702 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++)
7703 VERIFY0(thread_join(run_threads
[t
]));
7706 * Close all datasets. This must be done after all the threads
7707 * are joined so we can be sure none of the datasets are in-use
7708 * by any of the threads.
7710 for (t
= 0; t
< ztest_opts
.zo_threads
; t
++) {
7711 if (t
< ztest_opts
.zo_datasets
)
7712 ztest_dataset_close(t
);
7715 txg_wait_synced(spa_get_dsl(spa
), 0);
7717 zs
->zs_alloc
= metaslab_class_get_alloc(spa_normal_class(spa
));
7718 zs
->zs_space
= metaslab_class_get_space(spa_normal_class(spa
));
7720 umem_free(run_threads
, ztest_opts
.zo_threads
* sizeof (kthread_t
*));
7722 /* Kill the resume and deadman threads */
7723 ztest_exiting
= B_TRUE
;
7724 VERIFY0(thread_join(resume_thread
));
7725 VERIFY0(thread_join(deadman_thread
));
7729 * Right before closing the pool, kick off a bunch of async I/O;
7730 * spa_close() should wait for it to complete.
7732 for (object
= 1; object
< 50; object
++) {
7733 dmu_prefetch(spa
->spa_meta_objset
, object
, 0, 0, 1ULL << 20,
7734 ZIO_PRIORITY_SYNC_READ
);
7737 /* Verify that at least one commit cb was called in a timely fashion */
7738 if (zc_cb_counter
>= ZTEST_COMMIT_CB_MIN_REG
)
7739 VERIFY0(zc_min_txg_delay
);
7741 spa_close(spa
, FTAG
);
7744 * Verify that we can loop over all pools.
7746 mutex_enter(&spa_namespace_lock
);
7747 for (spa
= spa_next(NULL
); spa
!= NULL
; spa
= spa_next(spa
))
7748 if (ztest_opts
.zo_verbose
> 3)
7749 (void) printf("spa_next: found %s\n", spa_name(spa
));
7750 mutex_exit(&spa_namespace_lock
);
7753 * Verify that we can export the pool and reimport it under a
7756 if ((ztest_random(2) == 0) && !ztest_opts
.zo_mmp_test
) {
7757 char name
[ZFS_MAX_DATASET_NAME_LEN
];
7758 (void) snprintf(name
, sizeof (name
), "%s_import",
7759 ztest_opts
.zo_pool
);
7760 ztest_spa_import_export(ztest_opts
.zo_pool
, name
);
7761 ztest_spa_import_export(name
, ztest_opts
.zo_pool
);
7766 list_destroy(&zcl
.zcl_callbacks
);
7767 mutex_destroy(&zcl
.zcl_callbacks_lock
);
7768 (void) pthread_rwlock_destroy(&ztest_name_lock
);
7769 mutex_destroy(&ztest_vdev_lock
);
7770 mutex_destroy(&ztest_checkpoint_lock
);
7774 print_time(hrtime_t t
, char *timebuf
)
7776 hrtime_t s
= t
/ NANOSEC
;
7777 hrtime_t m
= s
/ 60;
7778 hrtime_t h
= m
/ 60;
7779 hrtime_t d
= h
/ 24;
7788 (void) sprintf(timebuf
,
7789 "%llud%02lluh%02llum%02llus", d
, h
, m
, s
);
7791 (void) sprintf(timebuf
, "%lluh%02llum%02llus", h
, m
, s
);
7793 (void) sprintf(timebuf
, "%llum%02llus", m
, s
);
7795 (void) sprintf(timebuf
, "%llus", s
);
7799 make_random_props(void)
7803 props
= fnvlist_alloc();
7805 if (ztest_random(2) == 0)
7808 fnvlist_add_uint64(props
,
7809 zpool_prop_to_name(ZPOOL_PROP_AUTOREPLACE
), 1);
7815 * Create a storage pool with the given name and initial vdev size.
7816 * Then test spa_freeze() functionality.
7819 ztest_init(ztest_shared_t
*zs
)
7822 nvlist_t
*nvroot
, *props
;
7825 mutex_init(&ztest_vdev_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7826 mutex_init(&ztest_checkpoint_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
7827 VERIFY0(pthread_rwlock_init(&ztest_name_lock
, NULL
));
7829 kernel_init(SPA_MODE_READ
| SPA_MODE_WRITE
);
7832 * Create the storage pool.
7834 (void) spa_destroy(ztest_opts
.zo_pool
);
7835 ztest_shared
->zs_vdev_next_leaf
= 0;
7837 zs
->zs_mirrors
= ztest_opts
.zo_mirrors
;
7838 nvroot
= make_vdev_root(NULL
, NULL
, NULL
, ztest_opts
.zo_vdev_size
, 0,
7839 NULL
, ztest_opts
.zo_raid_children
, zs
->zs_mirrors
, 1);
7840 props
= make_random_props();
7843 * We don't expect the pool to suspend unless maxfaults == 0,
7844 * in which case ztest_fault_inject() temporarily takes away
7845 * the only valid replica.
7847 fnvlist_add_uint64(props
,
7848 zpool_prop_to_name(ZPOOL_PROP_FAILUREMODE
),
7849 MAXFAULTS(zs
) ? ZIO_FAILURE_MODE_PANIC
: ZIO_FAILURE_MODE_WAIT
);
7851 for (i
= 0; i
< SPA_FEATURES
; i
++) {
7854 if (!spa_feature_table
[i
].fi_zfs_mod_supported
)
7858 * 75% chance of using the log space map feature. We want ztest
7859 * to exercise both the code paths that use the log space map
7860 * feature and the ones that don't.
7862 if (i
== SPA_FEATURE_LOG_SPACEMAP
&& ztest_random(4) == 0)
7865 VERIFY3S(-1, !=, asprintf(&buf
, "feature@%s",
7866 spa_feature_table
[i
].fi_uname
));
7867 fnvlist_add_uint64(props
, buf
, 0);
7871 VERIFY0(spa_create(ztest_opts
.zo_pool
, nvroot
, props
, NULL
, NULL
));
7872 fnvlist_free(nvroot
);
7873 fnvlist_free(props
);
7875 VERIFY0(spa_open(ztest_opts
.zo_pool
, &spa
, FTAG
));
7876 zs
->zs_metaslab_sz
=
7877 1ULL << spa
->spa_root_vdev
->vdev_child
[0]->vdev_ms_shift
;
7878 zs
->zs_guid
= spa_guid(spa
);
7879 spa_close(spa
, FTAG
);
7883 if (!ztest_opts
.zo_mmp_test
) {
7884 ztest_run_zdb(zs
->zs_guid
);
7886 ztest_run_zdb(zs
->zs_guid
);
7889 (void) pthread_rwlock_destroy(&ztest_name_lock
);
7890 mutex_destroy(&ztest_vdev_lock
);
7891 mutex_destroy(&ztest_checkpoint_lock
);
7897 static char ztest_name_data
[] = "/tmp/ztest.data.XXXXXX";
7899 ztest_fd_data
= mkstemp(ztest_name_data
);
7900 ASSERT3S(ztest_fd_data
, >=, 0);
7901 (void) unlink(ztest_name_data
);
7905 shared_data_size(ztest_shared_hdr_t
*hdr
)
7909 size
= hdr
->zh_hdr_size
;
7910 size
+= hdr
->zh_opts_size
;
7911 size
+= hdr
->zh_size
;
7912 size
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
7913 size
+= hdr
->zh_ds_size
* hdr
->zh_ds_count
;
7922 ztest_shared_hdr_t
*hdr
;
7924 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
7925 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
7926 ASSERT3P(hdr
, !=, MAP_FAILED
);
7928 VERIFY0(ftruncate(ztest_fd_data
, sizeof (ztest_shared_hdr_t
)));
7930 hdr
->zh_hdr_size
= sizeof (ztest_shared_hdr_t
);
7931 hdr
->zh_opts_size
= sizeof (ztest_shared_opts_t
);
7932 hdr
->zh_size
= sizeof (ztest_shared_t
);
7933 hdr
->zh_stats_size
= sizeof (ztest_shared_callstate_t
);
7934 hdr
->zh_stats_count
= ZTEST_FUNCS
;
7935 hdr
->zh_ds_size
= sizeof (ztest_shared_ds_t
);
7936 hdr
->zh_ds_count
= ztest_opts
.zo_datasets
;
7938 size
= shared_data_size(hdr
);
7939 VERIFY0(ftruncate(ztest_fd_data
, size
));
7941 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
7948 ztest_shared_hdr_t
*hdr
;
7951 hdr
= (void *)mmap(0, P2ROUNDUP(sizeof (*hdr
), getpagesize()),
7952 PROT_READ
, MAP_SHARED
, ztest_fd_data
, 0);
7953 ASSERT3P(hdr
, !=, MAP_FAILED
);
7955 size
= shared_data_size(hdr
);
7957 (void) munmap((caddr_t
)hdr
, P2ROUNDUP(sizeof (*hdr
), getpagesize()));
7958 hdr
= ztest_shared_hdr
= (void *)mmap(0, P2ROUNDUP(size
, getpagesize()),
7959 PROT_READ
| PROT_WRITE
, MAP_SHARED
, ztest_fd_data
, 0);
7960 ASSERT3P(hdr
, !=, MAP_FAILED
);
7961 buf
= (uint8_t *)hdr
;
7963 offset
= hdr
->zh_hdr_size
;
7964 ztest_shared_opts
= (void *)&buf
[offset
];
7965 offset
+= hdr
->zh_opts_size
;
7966 ztest_shared
= (void *)&buf
[offset
];
7967 offset
+= hdr
->zh_size
;
7968 ztest_shared_callstate
= (void *)&buf
[offset
];
7969 offset
+= hdr
->zh_stats_size
* hdr
->zh_stats_count
;
7970 ztest_shared_ds
= (void *)&buf
[offset
];
7974 exec_child(char *cmd
, char *libpath
, boolean_t ignorekill
, int *statusp
)
7978 char *cmdbuf
= NULL
;
7983 cmdbuf
= umem_alloc(MAXPATHLEN
, UMEM_NOFAIL
);
7984 (void) strlcpy(cmdbuf
, getexecname(), MAXPATHLEN
);
7989 fatal(B_TRUE
, "fork failed");
7991 if (pid
== 0) { /* child */
7992 char fd_data_str
[12];
7995 snprintf(fd_data_str
, 12, "%d", ztest_fd_data
));
7996 VERIFY0(setenv("ZTEST_FD_DATA", fd_data_str
, 1));
7998 if (libpath
!= NULL
) {
7999 const char *curlp
= getenv("LD_LIBRARY_PATH");
8001 VERIFY0(setenv("LD_LIBRARY_PATH", libpath
, 1));
8005 asprintf(&newlp
, "%s:%s", libpath
, curlp
));
8006 VERIFY0(setenv("LD_LIBRARY_PATH", newlp
, 1));
8010 (void) execl(cmd
, cmd
, (char *)NULL
);
8011 ztest_dump_core
= B_FALSE
;
8012 fatal(B_TRUE
, "exec failed: %s", cmd
);
8015 if (cmdbuf
!= NULL
) {
8016 umem_free(cmdbuf
, MAXPATHLEN
);
8020 while (waitpid(pid
, &status
, 0) != pid
)
8022 if (statusp
!= NULL
)
8025 if (WIFEXITED(status
)) {
8026 if (WEXITSTATUS(status
) != 0) {
8027 (void) fprintf(stderr
, "child exited with code %d\n",
8028 WEXITSTATUS(status
));
8032 } else if (WIFSIGNALED(status
)) {
8033 if (!ignorekill
|| WTERMSIG(status
) != SIGKILL
) {
8034 (void) fprintf(stderr
, "child died with signal %d\n",
8040 (void) fprintf(stderr
, "something strange happened to child\n");
8046 ztest_run_init(void)
8050 ztest_shared_t
*zs
= ztest_shared
;
8053 * Blow away any existing copy of zpool.cache
8055 (void) remove(spa_config_path
);
8057 if (ztest_opts
.zo_init
== 0) {
8058 if (ztest_opts
.zo_verbose
>= 1)
8059 (void) printf("Importing pool %s\n",
8060 ztest_opts
.zo_pool
);
8066 * Create and initialize our storage pool.
8068 for (i
= 1; i
<= ztest_opts
.zo_init
; i
++) {
8069 memset(zs
, 0, sizeof (*zs
));
8070 if (ztest_opts
.zo_verbose
>= 3 &&
8071 ztest_opts
.zo_init
!= 1) {
8072 (void) printf("ztest_init(), pass %d\n", i
);
8079 main(int argc
, char **argv
)
8087 ztest_shared_callstate_t
*zc
;
8089 char numbuf
[NN_NUMBUF_SZ
];
8093 char *fd_data_str
= getenv("ZTEST_FD_DATA");
8094 struct sigaction action
;
8096 (void) setvbuf(stdout
, NULL
, _IOLBF
, 0);
8098 dprintf_setup(&argc
, argv
);
8099 zfs_deadman_synctime_ms
= 300000;
8100 zfs_deadman_checktime_ms
= 30000;
8102 * As two-word space map entries may not come up often (especially
8103 * if pool and vdev sizes are small) we want to force at least some
8104 * of them so the feature get tested.
8106 zfs_force_some_double_word_sm_entries
= B_TRUE
;
8109 * Verify that even extensively damaged split blocks with many
8110 * segments can be reconstructed in a reasonable amount of time
8111 * when reconstruction is known to be possible.
8113 * Note: the lower this value is, the more damage we inflict, and
8114 * the more time ztest spends in recovering that damage. We chose
8115 * to induce damage 1/100th of the time so recovery is tested but
8116 * not so frequently that ztest doesn't get to test other code paths.
8118 zfs_reconstruct_indirect_damage_fraction
= 100;
8120 action
.sa_handler
= sig_handler
;
8121 sigemptyset(&action
.sa_mask
);
8122 action
.sa_flags
= 0;
8124 if (sigaction(SIGSEGV
, &action
, NULL
) < 0) {
8125 (void) fprintf(stderr
, "ztest: cannot catch SIGSEGV: %s.\n",
8130 if (sigaction(SIGABRT
, &action
, NULL
) < 0) {
8131 (void) fprintf(stderr
, "ztest: cannot catch SIGABRT: %s.\n",
8137 * Force random_get_bytes() to use /dev/urandom in order to prevent
8138 * ztest from needlessly depleting the system entropy pool.
8140 random_path
= "/dev/urandom";
8141 ztest_fd_rand
= open(random_path
, O_RDONLY
| O_CLOEXEC
);
8142 ASSERT3S(ztest_fd_rand
, >=, 0);
8145 process_options(argc
, argv
);
8150 memcpy(ztest_shared_opts
, &ztest_opts
,
8151 sizeof (*ztest_shared_opts
));
8153 ztest_fd_data
= atoi(fd_data_str
);
8155 memcpy(&ztest_opts
, ztest_shared_opts
, sizeof (ztest_opts
));
8157 ASSERT3U(ztest_opts
.zo_datasets
, ==, ztest_shared_hdr
->zh_ds_count
);
8159 err
= ztest_set_global_vars();
8160 if (err
!= 0 && !fd_data_str
) {
8161 /* error message done by ztest_set_global_vars */
8164 /* children should not be spawned if setting gvars fails */
8165 VERIFY3S(err
, ==, 0);
8168 /* Override location of zpool.cache */
8169 VERIFY3S(asprintf((char **)&spa_config_path
, "%s/zpool.cache",
8170 ztest_opts
.zo_dir
), !=, -1);
8172 ztest_ds
= umem_alloc(ztest_opts
.zo_datasets
* sizeof (ztest_ds_t
),
8177 metaslab_force_ganging
= ztest_opts
.zo_metaslab_force_ganging
;
8178 metaslab_df_alloc_threshold
=
8179 zs
->zs_metaslab_df_alloc_threshold
;
8188 hasalt
= (strlen(ztest_opts
.zo_alt_ztest
) != 0);
8190 if (ztest_opts
.zo_verbose
>= 1) {
8191 (void) printf("%"PRIu64
" vdevs, %d datasets, %d threads,"
8192 "%d %s disks, %"PRIu64
" seconds...\n\n",
8193 ztest_opts
.zo_vdevs
,
8194 ztest_opts
.zo_datasets
,
8195 ztest_opts
.zo_threads
,
8196 ztest_opts
.zo_raid_children
,
8197 ztest_opts
.zo_raid_type
,
8198 ztest_opts
.zo_time
);
8201 cmd
= umem_alloc(MAXNAMELEN
, UMEM_NOFAIL
);
8202 (void) strlcpy(cmd
, getexecname(), MAXNAMELEN
);
8204 zs
->zs_do_init
= B_TRUE
;
8205 if (strlen(ztest_opts
.zo_alt_ztest
) != 0) {
8206 if (ztest_opts
.zo_verbose
>= 1) {
8207 (void) printf("Executing older ztest for "
8208 "initialization: %s\n", ztest_opts
.zo_alt_ztest
);
8210 VERIFY(!exec_child(ztest_opts
.zo_alt_ztest
,
8211 ztest_opts
.zo_alt_libpath
, B_FALSE
, NULL
));
8213 VERIFY(!exec_child(NULL
, NULL
, B_FALSE
, NULL
));
8215 zs
->zs_do_init
= B_FALSE
;
8217 zs
->zs_proc_start
= gethrtime();
8218 zs
->zs_proc_stop
= zs
->zs_proc_start
+ ztest_opts
.zo_time
* NANOSEC
;
8220 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8221 zi
= &ztest_info
[f
];
8222 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8223 if (zs
->zs_proc_start
+ zi
->zi_interval
[0] > zs
->zs_proc_stop
)
8224 zc
->zc_next
= UINT64_MAX
;
8226 zc
->zc_next
= zs
->zs_proc_start
+
8227 ztest_random(2 * zi
->zi_interval
[0] + 1);
8231 * Run the tests in a loop. These tests include fault injection
8232 * to verify that self-healing data works, and forced crashes
8233 * to verify that we never lose on-disk consistency.
8235 while (gethrtime() < zs
->zs_proc_stop
) {
8240 * Initialize the workload counters for each function.
8242 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8243 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8248 /* Set the allocation switch size */
8249 zs
->zs_metaslab_df_alloc_threshold
=
8250 ztest_random(zs
->zs_metaslab_sz
/ 4) + 1;
8252 if (!hasalt
|| ztest_random(2) == 0) {
8253 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
8254 (void) printf("Executing newer ztest: %s\n",
8258 killed
= exec_child(cmd
, NULL
, B_TRUE
, &status
);
8260 if (hasalt
&& ztest_opts
.zo_verbose
>= 1) {
8261 (void) printf("Executing older ztest: %s\n",
8262 ztest_opts
.zo_alt_ztest
);
8265 killed
= exec_child(ztest_opts
.zo_alt_ztest
,
8266 ztest_opts
.zo_alt_libpath
, B_TRUE
, &status
);
8273 if (ztest_opts
.zo_verbose
>= 1) {
8274 hrtime_t now
= gethrtime();
8276 now
= MIN(now
, zs
->zs_proc_stop
);
8277 print_time(zs
->zs_proc_stop
- now
, timebuf
);
8278 nicenum(zs
->zs_space
, numbuf
, sizeof (numbuf
));
8280 (void) printf("Pass %3d, %8s, %3"PRIu64
" ENOSPC, "
8281 "%4.1f%% of %5s used, %3.0f%% done, %8s to go\n",
8283 WIFEXITED(status
) ? "Complete" : "SIGKILL",
8284 zs
->zs_enospc_count
,
8285 100.0 * zs
->zs_alloc
/ zs
->zs_space
,
8287 100.0 * (now
- zs
->zs_proc_start
) /
8288 (ztest_opts
.zo_time
* NANOSEC
), timebuf
);
8291 if (ztest_opts
.zo_verbose
>= 2) {
8292 (void) printf("\nWorkload summary:\n\n");
8293 (void) printf("%7s %9s %s\n",
8294 "Calls", "Time", "Function");
8295 (void) printf("%7s %9s %s\n",
8296 "-----", "----", "--------");
8297 for (f
= 0; f
< ZTEST_FUNCS
; f
++) {
8298 zi
= &ztest_info
[f
];
8299 zc
= ZTEST_GET_SHARED_CALLSTATE(f
);
8300 print_time(zc
->zc_time
, timebuf
);
8301 (void) printf("%7"PRIu64
" %9s %s\n",
8302 zc
->zc_count
, timebuf
,
8305 (void) printf("\n");
8308 if (!ztest_opts
.zo_mmp_test
)
8309 ztest_run_zdb(zs
->zs_guid
);
8312 if (ztest_opts
.zo_verbose
>= 1) {
8314 (void) printf("%d runs of older ztest: %s\n", older
,
8315 ztest_opts
.zo_alt_ztest
);
8316 (void) printf("%d runs of newer ztest: %s\n", newer
,
8319 (void) printf("%d killed, %d completed, %.0f%% kill rate\n",
8320 kills
, iters
- kills
, (100.0 * kills
) / MAX(1, iters
));
8323 umem_free(cmd
, MAXNAMELEN
);