4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
32 * ZAP - ZFS Attribute Processor
34 * The ZAP is a module which sits on top of the DMU (Data Management
35 * Unit) and implements a higher-level storage primitive using DMU
36 * objects. Its primary consumer is the ZPL (ZFS Posix Layer).
38 * A "zapobj" is a DMU object which the ZAP uses to stores attributes.
39 * Users should use only zap routines to access a zapobj - they should
40 * not access the DMU object directly using DMU routines.
42 * The attributes stored in a zapobj are name-value pairs. The name is
43 * a zero-terminated string of up to ZAP_MAXNAMELEN bytes (including
44 * terminating NULL). The value is an array of integers, which may be
45 * 1, 2, 4, or 8 bytes long. The total space used by the array (number
46 * of integers * integer length) can be up to ZAP_MAXVALUELEN bytes.
47 * Note that an 8-byte integer value can be used to store the location
48 * (object number) of another dmu object (which may be itself a zapobj).
49 * Note that you can use a zero-length attribute to store a single bit
50 * of information - the attribute is present or not.
52 * The ZAP routines are thread-safe. However, you must observe the
53 * DMU's restriction that a transaction may not be operated on
56 * Any of the routines that return an int may return an I/O error (EIO
60 * Implementation / Performance Notes:
62 * The ZAP is intended to operate most efficiently on attributes with
63 * short (49 bytes or less) names and single 8-byte values, for which
64 * the microzap will be used. The ZAP should be efficient enough so
65 * that the user does not need to cache these attributes.
67 * The ZAP's locking scheme makes its routines thread-safe. Operations
68 * on different zapobjs will be processed concurrently. Operations on
69 * the same zapobj which only read data will be processed concurrently.
70 * Operations on the same zapobj which modify data will be processed
71 * concurrently when there are many attributes in the zapobj (because
72 * the ZAP uses per-block locking - more than 128 * (number of cpus)
73 * small attributes will suffice).
77 * We're using zero-terminated byte strings (ie. ASCII or UTF-8 C
78 * strings) for the names of attributes, rather than a byte string
79 * bounded by an explicit length. If some day we want to support names
80 * in character sets which have embedded zeros (eg. UTF-16, UTF-32),
81 * we'll have to add routines for using length-bounded strings.
91 * Specifies matching criteria for ZAP lookups.
92 * MT_NORMALIZE Use ZAP normalization flags, which can include both
93 * unicode normalization and case-insensitivity.
94 * MT_MATCH_CASE Do case-sensitive lookups even if MT_NORMALIZE is
95 * specified and ZAP normalization flags include
96 * U8_TEXTPREP_TOUPPER.
98 typedef enum matchtype
{
99 MT_NORMALIZE
= 1 << 0,
100 MT_MATCH_CASE
= 1 << 1,
103 typedef enum zap_flags
{
104 /* Use 64-bit hash value (serialized cursors will always use 64-bits) */
105 ZAP_FLAG_HASH64
= 1 << 0,
106 /* Key is binary, not string (zap_add_uint64() can be used) */
107 ZAP_FLAG_UINT64_KEY
= 1 << 1,
109 * First word of key (which must be an array of uint64) is
110 * already randomly distributed.
112 ZAP_FLAG_PRE_HASHED_KEY
= 1 << 2,
113 #if defined(__linux__) && defined(_KERNEL)
115 #define zap_flags_t zfs_zap_flags_t
121 * Create a new zapobj with no attributes and return its object number.
123 uint64_t zap_create(objset_t
*ds
, dmu_object_type_t ot
,
124 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
);
125 uint64_t zap_create_dnsize(objset_t
*ds
, dmu_object_type_t ot
,
126 dmu_object_type_t bonustype
, int bonuslen
, int dnodesize
, dmu_tx_t
*tx
);
127 uint64_t zap_create_norm(objset_t
*ds
, int normflags
, dmu_object_type_t ot
,
128 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
);
129 uint64_t zap_create_norm_dnsize(objset_t
*ds
, int normflags
,
130 dmu_object_type_t ot
, dmu_object_type_t bonustype
, int bonuslen
,
131 int dnodesize
, dmu_tx_t
*tx
);
132 uint64_t zap_create_flags(objset_t
*os
, int normflags
, zap_flags_t flags
,
133 dmu_object_type_t ot
, int leaf_blockshift
, int indirect_blockshift
,
134 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
);
135 uint64_t zap_create_flags_dnsize(objset_t
*os
, int normflags
,
136 zap_flags_t flags
, dmu_object_type_t ot
, int leaf_blockshift
,
137 int indirect_blockshift
, dmu_object_type_t bonustype
, int bonuslen
,
138 int dnodesize
, dmu_tx_t
*tx
);
139 uint64_t zap_create_hold(objset_t
*os
, int normflags
, zap_flags_t flags
,
140 dmu_object_type_t ot
, int leaf_blockshift
, int indirect_blockshift
,
141 dmu_object_type_t bonustype
, int bonuslen
, int dnodesize
,
142 dnode_t
**allocated_dnode
, const void *tag
, dmu_tx_t
*tx
);
144 uint64_t zap_create_link(objset_t
*os
, dmu_object_type_t ot
,
145 uint64_t parent_obj
, const char *name
, dmu_tx_t
*tx
);
146 uint64_t zap_create_link_dnsize(objset_t
*os
, dmu_object_type_t ot
,
147 uint64_t parent_obj
, const char *name
, int dnodesize
, dmu_tx_t
*tx
);
150 * Initialize an already-allocated object.
152 void mzap_create_impl(dnode_t
*dn
, int normflags
, zap_flags_t flags
,
156 * Create a new zapobj with no attributes from the given (unallocated)
159 int zap_create_claim(objset_t
*ds
, uint64_t obj
, dmu_object_type_t ot
,
160 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
);
161 int zap_create_claim_dnsize(objset_t
*ds
, uint64_t obj
, dmu_object_type_t ot
,
162 dmu_object_type_t bonustype
, int bonuslen
, int dnodesize
, dmu_tx_t
*tx
);
163 int zap_create_claim_norm(objset_t
*ds
, uint64_t obj
,
164 int normflags
, dmu_object_type_t ot
,
165 dmu_object_type_t bonustype
, int bonuslen
, dmu_tx_t
*tx
);
166 int zap_create_claim_norm_dnsize(objset_t
*ds
, uint64_t obj
,
167 int normflags
, dmu_object_type_t ot
,
168 dmu_object_type_t bonustype
, int bonuslen
, int dnodesize
, dmu_tx_t
*tx
);
171 * The zapobj passed in must be a valid ZAP object for all of the
172 * following routines.
176 * Destroy this zapobj and all its attributes.
178 * Frees the object number using dmu_object_free.
180 int zap_destroy(objset_t
*ds
, uint64_t zapobj
, dmu_tx_t
*tx
);
183 * Manipulate attributes.
185 * 'integer_size' is in bytes, and must be 1, 2, 4, or 8.
189 * Retrieve the contents of the attribute with the given name.
191 * If the requested attribute does not exist, the call will fail and
194 * If 'integer_size' is smaller than the attribute's integer size, the
195 * call will fail and return EINVAL.
197 * If 'integer_size' is equal to or larger than the attribute's integer
198 * size, the call will succeed and return 0.
200 * When converting to a larger integer size, the integers will be treated as
201 * unsigned (ie. no sign-extension will be performed).
203 * 'num_integers' is the length (in integers) of 'buf'.
205 * If the attribute is longer than the buffer, as many integers as will
206 * fit will be transferred to 'buf'. If the entire attribute was not
207 * transferred, the call will return EOVERFLOW.
209 int zap_lookup(objset_t
*ds
, uint64_t zapobj
, const char *name
,
210 uint64_t integer_size
, uint64_t num_integers
, void *buf
);
213 * If rn_len is nonzero, realname will be set to the name of the found
214 * entry (which may be different from the requested name if matchtype is
217 * If normalization_conflictp is not NULL, it will be set if there is
218 * another name with the same case/unicode normalized form.
220 int zap_lookup_norm(objset_t
*ds
, uint64_t zapobj
, const char *name
,
221 uint64_t integer_size
, uint64_t num_integers
, void *buf
,
222 matchtype_t mt
, char *realname
, int rn_len
,
223 boolean_t
*normalization_conflictp
);
224 int zap_lookup_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
225 int key_numints
, uint64_t integer_size
, uint64_t num_integers
, void *buf
);
226 int zap_lookup_uint64_by_dnode(dnode_t
*dn
, const uint64_t *key
,
227 int key_numints
, uint64_t integer_size
, uint64_t num_integers
, void *buf
);
228 int zap_contains(objset_t
*ds
, uint64_t zapobj
, const char *name
);
229 int zap_prefetch(objset_t
*os
, uint64_t zapobj
, const char *name
);
230 int zap_prefetch_object(objset_t
*os
, uint64_t zapobj
);
231 int zap_prefetch_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
233 int zap_prefetch_uint64_by_dnode(dnode_t
*dn
, const uint64_t *key
,
236 int zap_lookup_by_dnode(dnode_t
*dn
, const char *name
,
237 uint64_t integer_size
, uint64_t num_integers
, void *buf
);
238 int zap_lookup_norm_by_dnode(dnode_t
*dn
, const char *name
,
239 uint64_t integer_size
, uint64_t num_integers
, void *buf
,
240 matchtype_t mt
, char *realname
, int rn_len
,
244 * Create an attribute with the given name and value.
246 * If an attribute with the given name already exists, the call will
247 * fail and return EEXIST.
249 int zap_add(objset_t
*ds
, uint64_t zapobj
, const char *key
,
250 int integer_size
, uint64_t num_integers
,
251 const void *val
, dmu_tx_t
*tx
);
252 int zap_add_by_dnode(dnode_t
*dn
, const char *key
,
253 int integer_size
, uint64_t num_integers
,
254 const void *val
, dmu_tx_t
*tx
);
255 int zap_add_uint64(objset_t
*ds
, uint64_t zapobj
, const uint64_t *key
,
256 int key_numints
, int integer_size
, uint64_t num_integers
,
257 const void *val
, dmu_tx_t
*tx
);
258 int zap_add_uint64_by_dnode(dnode_t
*dn
, const uint64_t *key
,
259 int key_numints
, int integer_size
, uint64_t num_integers
,
260 const void *val
, dmu_tx_t
*tx
);
263 * Set the attribute with the given name to the given value. If an
264 * attribute with the given name does not exist, it will be created. If
265 * an attribute with the given name already exists, the previous value
266 * will be overwritten. The integer_size may be different from the
267 * existing attribute's integer size, in which case the attribute's
268 * integer size will be updated to the new value.
270 int zap_update(objset_t
*ds
, uint64_t zapobj
, const char *name
,
271 int integer_size
, uint64_t num_integers
, const void *val
, dmu_tx_t
*tx
);
272 int zap_update_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
274 int integer_size
, uint64_t num_integers
, const void *val
, dmu_tx_t
*tx
);
275 int zap_update_uint64_by_dnode(dnode_t
*dn
, const uint64_t *key
,
277 int integer_size
, uint64_t num_integers
, const void *val
, dmu_tx_t
*tx
);
280 * Get the length (in integers) and the integer size of the specified
283 * If the requested attribute does not exist, the call will fail and
286 int zap_length(objset_t
*ds
, uint64_t zapobj
, const char *name
,
287 uint64_t *integer_size
, uint64_t *num_integers
);
288 int zap_length_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
289 int key_numints
, uint64_t *integer_size
, uint64_t *num_integers
);
292 * Remove the specified attribute.
294 * If the specified attribute does not exist, the call will fail and
297 int zap_remove(objset_t
*ds
, uint64_t zapobj
, const char *name
, dmu_tx_t
*tx
);
298 int zap_remove_norm(objset_t
*ds
, uint64_t zapobj
, const char *name
,
299 matchtype_t mt
, dmu_tx_t
*tx
);
300 int zap_remove_by_dnode(dnode_t
*dn
, const char *name
, dmu_tx_t
*tx
);
301 int zap_remove_uint64(objset_t
*os
, uint64_t zapobj
, const uint64_t *key
,
302 int key_numints
, dmu_tx_t
*tx
);
303 int zap_remove_uint64_by_dnode(dnode_t
*dn
, const uint64_t *key
,
304 int key_numints
, dmu_tx_t
*tx
);
307 * Returns (in *count) the number of attributes in the specified zap
310 int zap_count(objset_t
*ds
, uint64_t zapobj
, uint64_t *count
);
313 * Returns (in name) the name of the entry whose (value & mask)
314 * (za_first_integer) is value, or ENOENT if not found. The string
315 * pointed to by name must be at least 256 bytes long. If mask==0, the
316 * match must be exact (ie, same as mask=-1ULL).
318 int zap_value_search(objset_t
*os
, uint64_t zapobj
,
319 uint64_t value
, uint64_t mask
, char *name
, uint64_t namelen
);
322 * Transfer all the entries from fromobj into intoobj. Only works on
323 * int_size=8 num_integers=1 values. Fails if there are any duplicated
326 int zap_join(objset_t
*os
, uint64_t fromobj
, uint64_t intoobj
, dmu_tx_t
*tx
);
328 /* Same as zap_join, but set the values to 'value'. */
329 int zap_join_key(objset_t
*os
, uint64_t fromobj
, uint64_t intoobj
,
330 uint64_t value
, dmu_tx_t
*tx
);
332 /* Same as zap_join, but add together any duplicated entries. */
333 int zap_join_increment(objset_t
*os
, uint64_t fromobj
, uint64_t intoobj
,
337 * Manipulate entries where the name + value are the "same" (the name is
338 * a stringified version of the value).
340 int zap_add_int(objset_t
*os
, uint64_t obj
, uint64_t value
, dmu_tx_t
*tx
);
341 int zap_remove_int(objset_t
*os
, uint64_t obj
, uint64_t value
, dmu_tx_t
*tx
);
342 int zap_lookup_int(objset_t
*os
, uint64_t obj
, uint64_t value
);
343 int zap_increment_int(objset_t
*os
, uint64_t obj
, uint64_t key
, int64_t delta
,
346 /* Here the key is an int and the value is a different int. */
347 int zap_add_int_key(objset_t
*os
, uint64_t obj
,
348 uint64_t key
, uint64_t value
, dmu_tx_t
*tx
);
349 int zap_update_int_key(objset_t
*os
, uint64_t obj
,
350 uint64_t key
, uint64_t value
, dmu_tx_t
*tx
);
351 int zap_lookup_int_key(objset_t
*os
, uint64_t obj
,
352 uint64_t key
, uint64_t *valuep
);
354 int zap_increment(objset_t
*os
, uint64_t obj
, const char *name
, int64_t delta
,
359 typedef struct zap_cursor
{
360 /* This structure is opaque! */
363 struct zap_leaf
*zc_leaf
;
365 uint64_t zc_serialized
;
368 boolean_t zc_prefetch
;
372 int za_integer_length
;
374 * za_normalization_conflict will be set if there are additional
375 * entries with this normalized form (eg, "foo" and "Foo").
377 boolean_t za_normalization_conflict
;
378 uint64_t za_num_integers
;
379 uint64_t za_first_integer
; /* no sign extension for <8byte ints */
380 uint32_t za_name_len
;
381 uint32_t za_pad
; /* We want za_name aligned to uint64_t. */
389 * Alloc and free zap_attribute_t.
391 zap_attribute_t
*zap_attribute_alloc(void);
392 zap_attribute_t
*zap_attribute_long_alloc(void);
393 void zap_attribute_free(zap_attribute_t
*attrp
);
396 * The interface for listing all the attributes of a zapobj can be
397 * thought of as cursor moving down a list of the attributes one by
398 * one. The cookie returned by the zap_cursor_serialize routine is
399 * persistent across system calls (and across reboot, even).
403 * Initialize a zap cursor, pointing to the "first" attribute of the
404 * zapobj. You must _fini the cursor when you are done with it.
406 void zap_cursor_init(zap_cursor_t
*zc
, objset_t
*os
, uint64_t zapobj
);
407 void zap_cursor_init_noprefetch(zap_cursor_t
*zc
, objset_t
*os
,
409 void zap_cursor_fini(zap_cursor_t
*zc
);
412 * Get the attribute currently pointed to by the cursor. Returns
413 * ENOENT if at the end of the attributes.
415 int zap_cursor_retrieve(zap_cursor_t
*zc
, zap_attribute_t
*za
);
418 * Advance the cursor to the next attribute.
420 void zap_cursor_advance(zap_cursor_t
*zc
);
423 * Get a persistent cookie pointing to the current position of the zap
424 * cursor. The low 4 bits in the cookie are always zero, and thus can
425 * be used as to differentiate a serialized cookie from a different type
426 * of value. The cookie will be less than 2^32 as long as there are
427 * fewer than 2^22 (4.2 million) entries in the zap object.
429 uint64_t zap_cursor_serialize(zap_cursor_t
*zc
);
432 * Initialize a zap cursor pointing to the position recorded by
433 * zap_cursor_serialize (in the "serialized" argument). You can also
434 * use a "serialized" argument of 0 to start at the beginning of the
435 * zapobj (ie. zap_cursor_init_serialized(..., 0) is equivalent to
436 * zap_cursor_init(...).)
438 void zap_cursor_init_serialized(zap_cursor_t
*zc
, objset_t
*ds
,
439 uint64_t zapobj
, uint64_t serialized
);
442 #define ZAP_HISTOGRAM_SIZE 10
444 typedef struct zap_stats
{
446 * Size of the pointer table (in number of entries).
447 * This is always a power of 2, or zero if it's a microzap.
448 * In general, it should be considerably greater than zs_num_leafs.
450 uint64_t zs_ptrtbl_len
;
452 uint64_t zs_blocksize
; /* size of zap blocks */
455 * The number of blocks used. Note that some blocks may be
456 * wasted because old ptrtbl's and large name/value blocks are
457 * not reused. (Although their space is reclaimed, we don't
458 * reuse those offsets in the object.)
460 uint64_t zs_num_blocks
;
463 * Pointer table values from zap_ptrtbl in the zap_phys_t
465 uint64_t zs_ptrtbl_nextblk
; /* next (larger) copy start block */
466 uint64_t zs_ptrtbl_blks_copied
; /* number source blocks copied */
467 uint64_t zs_ptrtbl_zt_blk
; /* starting block number */
468 uint64_t zs_ptrtbl_zt_numblks
; /* number of blocks */
469 uint64_t zs_ptrtbl_zt_shift
; /* bits to index it */
472 * Values of the other members of the zap_phys_t
474 uint64_t zs_block_type
; /* ZBT_HEADER */
475 uint64_t zs_magic
; /* ZAP_MAGIC */
476 uint64_t zs_num_leafs
; /* The number of leaf blocks */
477 uint64_t zs_num_entries
; /* The number of zap entries */
478 uint64_t zs_salt
; /* salt to stir into hash function */
481 * Histograms. For all histograms, the last index
482 * (ZAP_HISTOGRAM_SIZE-1) includes any values which are greater
483 * than what can be represented. For example
484 * zs_leafs_with_n5_entries[ZAP_HISTOGRAM_SIZE-1] is the number
485 * of leafs with more than 45 entries.
489 * zs_leafs_with_n_pointers[n] is the number of leafs with
490 * 2^n pointers to it.
492 uint64_t zs_leafs_with_2n_pointers
[ZAP_HISTOGRAM_SIZE
];
495 * zs_leafs_with_n_entries[n] is the number of leafs with
496 * [n*5, (n+1)*5) entries. In the current implementation, there
497 * can be at most 55 entries in any block, but there may be
498 * fewer if the name or value is large, or the block is not
501 uint64_t zs_blocks_with_n5_entries
[ZAP_HISTOGRAM_SIZE
];
504 * zs_leafs_n_tenths_full[n] is the number of leafs whose
505 * fullness is in the range [n/10, (n+1)/10).
507 uint64_t zs_blocks_n_tenths_full
[ZAP_HISTOGRAM_SIZE
];
510 * zs_entries_using_n_chunks[n] is the number of entries which
511 * consume n 24-byte chunks. (Note, large names/values only use
512 * one chunk, but contribute to zs_num_blocks_large.)
514 uint64_t zs_entries_using_n_chunks
[ZAP_HISTOGRAM_SIZE
];
517 * zs_buckets_with_n_entries[n] is the number of buckets (each
518 * leaf has 64 buckets) with n entries.
519 * zs_buckets_with_n_entries[1] should be very close to
522 uint64_t zs_buckets_with_n_entries
[ZAP_HISTOGRAM_SIZE
];
526 * Get statistics about a ZAP object. Note: you need to be aware of the
527 * internal implementation of the ZAP to correctly interpret some of the
528 * statistics. This interface shouldn't be relied on unless you really
529 * know what you're doing.
531 int zap_get_stats(objset_t
*ds
, uint64_t zapobj
, zap_stats_t
*zs
);
537 #endif /* _SYS_ZAP_H */