zfs_main: fix alignment on props usage output
[zfs.git] / module / os / linux / spl / spl-kmem-cache.c
blob33c7d0879741342be71cd0673053f4a871fac950
1 /*
2 * Copyright (C) 2007-2010 Lawrence Livermore National Security, LLC.
3 * Copyright (C) 2007 The Regents of the University of California.
4 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
5 * Written by Brian Behlendorf <behlendorf1@llnl.gov>.
6 * UCRL-CODE-235197
8 * This file is part of the SPL, Solaris Porting Layer.
10 * The SPL is free software; you can redistribute it and/or modify it
11 * under the terms of the GNU General Public License as published by the
12 * Free Software Foundation; either version 2 of the License, or (at your
13 * option) any later version.
15 * The SPL is distributed in the hope that it will be useful, but WITHOUT
16 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
17 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
18 * for more details.
20 * You should have received a copy of the GNU General Public License along
21 * with the SPL. If not, see <http://www.gnu.org/licenses/>.
24 #define SPL_KMEM_CACHE_IMPLEMENTING
26 #include <sys/kmem.h>
27 #include <sys/kmem_cache.h>
28 #include <sys/taskq.h>
29 #include <sys/timer.h>
30 #include <sys/vmem.h>
31 #include <sys/wait.h>
32 #include <sys/string.h>
33 #include <linux/slab.h>
34 #include <linux/swap.h>
35 #include <linux/prefetch.h>
38 * Linux 3.16 replaced smp_mb__{before,after}_{atomic,clear}_{dec,inc,bit}()
39 * with smp_mb__{before,after}_atomic() because they were redundant. This is
40 * only used inside our SLAB allocator, so we implement an internal wrapper
41 * here to give us smp_mb__{before,after}_atomic() on older kernels.
43 #ifndef smp_mb__before_atomic
44 #define smp_mb__before_atomic(x) smp_mb__before_clear_bit(x)
45 #endif
47 #ifndef smp_mb__after_atomic
48 #define smp_mb__after_atomic(x) smp_mb__after_clear_bit(x)
49 #endif
52 * Cache magazines are an optimization designed to minimize the cost of
53 * allocating memory. They do this by keeping a per-cpu cache of recently
54 * freed objects, which can then be reallocated without taking a lock. This
55 * can improve performance on highly contended caches. However, because
56 * objects in magazines will prevent otherwise empty slabs from being
57 * immediately released this may not be ideal for low memory machines.
59 * For this reason spl_kmem_cache_magazine_size can be used to set a maximum
60 * magazine size. When this value is set to 0 the magazine size will be
61 * automatically determined based on the object size. Otherwise magazines
62 * will be limited to 2-256 objects per magazine (i.e per cpu). Magazines
63 * may never be entirely disabled in this implementation.
65 static unsigned int spl_kmem_cache_magazine_size = 0;
66 module_param(spl_kmem_cache_magazine_size, uint, 0444);
67 MODULE_PARM_DESC(spl_kmem_cache_magazine_size,
68 "Default magazine size (2-256), set automatically (0)");
70 static unsigned int spl_kmem_cache_obj_per_slab = SPL_KMEM_CACHE_OBJ_PER_SLAB;
71 module_param(spl_kmem_cache_obj_per_slab, uint, 0644);
72 MODULE_PARM_DESC(spl_kmem_cache_obj_per_slab, "Number of objects per slab");
74 static unsigned int spl_kmem_cache_max_size = SPL_KMEM_CACHE_MAX_SIZE;
75 module_param(spl_kmem_cache_max_size, uint, 0644);
76 MODULE_PARM_DESC(spl_kmem_cache_max_size, "Maximum size of slab in MB");
79 * For small objects the Linux slab allocator should be used to make the most
80 * efficient use of the memory. However, large objects are not supported by
81 * the Linux slab and therefore the SPL implementation is preferred. A cutoff
82 * of 16K was determined to be optimal for architectures using 4K pages and
83 * to also work well on architecutres using larger 64K page sizes.
85 static unsigned int spl_kmem_cache_slab_limit =
86 SPL_MAX_KMEM_ORDER_NR_PAGES * PAGE_SIZE;
87 module_param(spl_kmem_cache_slab_limit, uint, 0644);
88 MODULE_PARM_DESC(spl_kmem_cache_slab_limit,
89 "Objects less than N bytes use the Linux slab");
92 * The number of threads available to allocate new slabs for caches. This
93 * should not need to be tuned but it is available for performance analysis.
95 static unsigned int spl_kmem_cache_kmem_threads = 4;
96 module_param(spl_kmem_cache_kmem_threads, uint, 0444);
97 MODULE_PARM_DESC(spl_kmem_cache_kmem_threads,
98 "Number of spl_kmem_cache threads");
101 * Slab allocation interfaces
103 * While the Linux slab implementation was inspired by the Solaris
104 * implementation I cannot use it to emulate the Solaris APIs. I
105 * require two features which are not provided by the Linux slab.
107 * 1) Constructors AND destructors. Recent versions of the Linux
108 * kernel have removed support for destructors. This is a deal
109 * breaker for the SPL which contains particularly expensive
110 * initializers for mutex's, condition variables, etc. We also
111 * require a minimal level of cleanup for these data types unlike
112 * many Linux data types which do need to be explicitly destroyed.
114 * 2) Virtual address space backed slab. Callers of the Solaris slab
115 * expect it to work well for both small are very large allocations.
116 * Because of memory fragmentation the Linux slab which is backed
117 * by kmalloc'ed memory performs very badly when confronted with
118 * large numbers of large allocations. Basing the slab on the
119 * virtual address space removes the need for contiguous pages
120 * and greatly improve performance for large allocations.
122 * For these reasons, the SPL has its own slab implementation with
123 * the needed features. It is not as highly optimized as either the
124 * Solaris or Linux slabs, but it should get me most of what is
125 * needed until it can be optimized or obsoleted by another approach.
127 * One serious concern I do have about this method is the relatively
128 * small virtual address space on 32bit arches. This will seriously
129 * constrain the size of the slab caches and their performance.
132 struct list_head spl_kmem_cache_list; /* List of caches */
133 struct rw_semaphore spl_kmem_cache_sem; /* Cache list lock */
134 static taskq_t *spl_kmem_cache_taskq; /* Task queue for aging / reclaim */
136 static void spl_cache_shrink(spl_kmem_cache_t *skc, void *obj);
138 static void *
139 kv_alloc(spl_kmem_cache_t *skc, int size, int flags)
141 gfp_t lflags = kmem_flags_convert(flags);
142 void *ptr;
144 if (skc->skc_flags & KMC_RECLAIMABLE)
145 lflags |= __GFP_RECLAIMABLE;
146 ptr = spl_vmalloc(size, lflags | __GFP_HIGHMEM);
148 /* Resulting allocated memory will be page aligned */
149 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
151 return (ptr);
154 static void
155 kv_free(spl_kmem_cache_t *skc, void *ptr, int size)
157 ASSERT(IS_P2ALIGNED(ptr, PAGE_SIZE));
160 * The Linux direct reclaim path uses this out of band value to
161 * determine if forward progress is being made. Normally this is
162 * incremented by kmem_freepages() which is part of the various
163 * Linux slab implementations. However, since we are using none
164 * of that infrastructure we are responsible for incrementing it.
166 if (current->reclaim_state)
167 #ifdef HAVE_RECLAIM_STATE_RECLAIMED
168 current->reclaim_state->reclaimed += size >> PAGE_SHIFT;
169 #else
170 current->reclaim_state->reclaimed_slab += size >> PAGE_SHIFT;
171 #endif
172 vfree(ptr);
176 * Required space for each aligned sks.
178 static inline uint32_t
179 spl_sks_size(spl_kmem_cache_t *skc)
181 return (P2ROUNDUP_TYPED(sizeof (spl_kmem_slab_t),
182 skc->skc_obj_align, uint32_t));
186 * Required space for each aligned object.
188 static inline uint32_t
189 spl_obj_size(spl_kmem_cache_t *skc)
191 uint32_t align = skc->skc_obj_align;
193 return (P2ROUNDUP_TYPED(skc->skc_obj_size, align, uint32_t) +
194 P2ROUNDUP_TYPED(sizeof (spl_kmem_obj_t), align, uint32_t));
197 uint64_t
198 spl_kmem_cache_inuse(kmem_cache_t *cache)
200 return (cache->skc_obj_total);
202 EXPORT_SYMBOL(spl_kmem_cache_inuse);
204 uint64_t
205 spl_kmem_cache_entry_size(kmem_cache_t *cache)
207 return (cache->skc_obj_size);
209 EXPORT_SYMBOL(spl_kmem_cache_entry_size);
212 * Lookup the spl_kmem_object_t for an object given that object.
214 static inline spl_kmem_obj_t *
215 spl_sko_from_obj(spl_kmem_cache_t *skc, void *obj)
217 return (obj + P2ROUNDUP_TYPED(skc->skc_obj_size,
218 skc->skc_obj_align, uint32_t));
222 * It's important that we pack the spl_kmem_obj_t structure and the
223 * actual objects in to one large address space to minimize the number
224 * of calls to the allocator. It is far better to do a few large
225 * allocations and then subdivide it ourselves. Now which allocator
226 * we use requires balancing a few trade offs.
228 * For small objects we use kmem_alloc() because as long as you are
229 * only requesting a small number of pages (ideally just one) its cheap.
230 * However, when you start requesting multiple pages with kmem_alloc()
231 * it gets increasingly expensive since it requires contiguous pages.
232 * For this reason we shift to vmem_alloc() for slabs of large objects
233 * which removes the need for contiguous pages. We do not use
234 * vmem_alloc() in all cases because there is significant locking
235 * overhead in __get_vm_area_node(). This function takes a single
236 * global lock when acquiring an available virtual address range which
237 * serializes all vmem_alloc()'s for all slab caches. Using slightly
238 * different allocation functions for small and large objects should
239 * give us the best of both worlds.
241 * +------------------------+
242 * | spl_kmem_slab_t --+-+ |
243 * | skc_obj_size <-+ | |
244 * | spl_kmem_obj_t | |
245 * | skc_obj_size <---+ |
246 * | spl_kmem_obj_t | |
247 * | ... v |
248 * +------------------------+
250 static spl_kmem_slab_t *
251 spl_slab_alloc(spl_kmem_cache_t *skc, int flags)
253 spl_kmem_slab_t *sks;
254 void *base;
255 uint32_t obj_size;
257 base = kv_alloc(skc, skc->skc_slab_size, flags);
258 if (base == NULL)
259 return (NULL);
261 sks = (spl_kmem_slab_t *)base;
262 sks->sks_magic = SKS_MAGIC;
263 sks->sks_objs = skc->skc_slab_objs;
264 sks->sks_age = jiffies;
265 sks->sks_cache = skc;
266 INIT_LIST_HEAD(&sks->sks_list);
267 INIT_LIST_HEAD(&sks->sks_free_list);
268 sks->sks_ref = 0;
269 obj_size = spl_obj_size(skc);
271 for (int i = 0; i < sks->sks_objs; i++) {
272 void *obj = base + spl_sks_size(skc) + (i * obj_size);
274 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
275 spl_kmem_obj_t *sko = spl_sko_from_obj(skc, obj);
276 sko->sko_addr = obj;
277 sko->sko_magic = SKO_MAGIC;
278 sko->sko_slab = sks;
279 INIT_LIST_HEAD(&sko->sko_list);
280 list_add_tail(&sko->sko_list, &sks->sks_free_list);
283 return (sks);
287 * Remove a slab from complete or partial list, it must be called with
288 * the 'skc->skc_lock' held but the actual free must be performed
289 * outside the lock to prevent deadlocking on vmem addresses.
291 static void
292 spl_slab_free(spl_kmem_slab_t *sks,
293 struct list_head *sks_list, struct list_head *sko_list)
295 spl_kmem_cache_t *skc;
297 ASSERT(sks->sks_magic == SKS_MAGIC);
298 ASSERT(sks->sks_ref == 0);
300 skc = sks->sks_cache;
301 ASSERT(skc->skc_magic == SKC_MAGIC);
304 * Update slab/objects counters in the cache, then remove the
305 * slab from the skc->skc_partial_list. Finally add the slab
306 * and all its objects in to the private work lists where the
307 * destructors will be called and the memory freed to the system.
309 skc->skc_obj_total -= sks->sks_objs;
310 skc->skc_slab_total--;
311 list_del(&sks->sks_list);
312 list_add(&sks->sks_list, sks_list);
313 list_splice_init(&sks->sks_free_list, sko_list);
317 * Reclaim empty slabs at the end of the partial list.
319 static void
320 spl_slab_reclaim(spl_kmem_cache_t *skc)
322 spl_kmem_slab_t *sks = NULL, *m = NULL;
323 spl_kmem_obj_t *sko = NULL, *n = NULL;
324 LIST_HEAD(sks_list);
325 LIST_HEAD(sko_list);
328 * Empty slabs and objects must be moved to a private list so they
329 * can be safely freed outside the spin lock. All empty slabs are
330 * at the end of skc->skc_partial_list, therefore once a non-empty
331 * slab is found we can stop scanning.
333 spin_lock(&skc->skc_lock);
334 list_for_each_entry_safe_reverse(sks, m,
335 &skc->skc_partial_list, sks_list) {
337 if (sks->sks_ref > 0)
338 break;
340 spl_slab_free(sks, &sks_list, &sko_list);
342 spin_unlock(&skc->skc_lock);
345 * The following two loops ensure all the object destructors are run,
346 * and the slabs themselves are freed. This is all done outside the
347 * skc->skc_lock since this allows the destructor to sleep, and
348 * allows us to perform a conditional reschedule when a freeing a
349 * large number of objects and slabs back to the system.
352 list_for_each_entry_safe(sko, n, &sko_list, sko_list) {
353 ASSERT(sko->sko_magic == SKO_MAGIC);
356 list_for_each_entry_safe(sks, m, &sks_list, sks_list) {
357 ASSERT(sks->sks_magic == SKS_MAGIC);
358 kv_free(skc, sks, skc->skc_slab_size);
362 static spl_kmem_emergency_t *
363 spl_emergency_search(struct rb_root *root, void *obj)
365 struct rb_node *node = root->rb_node;
366 spl_kmem_emergency_t *ske;
367 unsigned long address = (unsigned long)obj;
369 while (node) {
370 ske = container_of(node, spl_kmem_emergency_t, ske_node);
372 if (address < ske->ske_obj)
373 node = node->rb_left;
374 else if (address > ske->ske_obj)
375 node = node->rb_right;
376 else
377 return (ske);
380 return (NULL);
383 static int
384 spl_emergency_insert(struct rb_root *root, spl_kmem_emergency_t *ske)
386 struct rb_node **new = &(root->rb_node), *parent = NULL;
387 spl_kmem_emergency_t *ske_tmp;
388 unsigned long address = ske->ske_obj;
390 while (*new) {
391 ske_tmp = container_of(*new, spl_kmem_emergency_t, ske_node);
393 parent = *new;
394 if (address < ske_tmp->ske_obj)
395 new = &((*new)->rb_left);
396 else if (address > ske_tmp->ske_obj)
397 new = &((*new)->rb_right);
398 else
399 return (0);
402 rb_link_node(&ske->ske_node, parent, new);
403 rb_insert_color(&ske->ske_node, root);
405 return (1);
409 * Allocate a single emergency object and track it in a red black tree.
411 static int
412 spl_emergency_alloc(spl_kmem_cache_t *skc, int flags, void **obj)
414 gfp_t lflags = kmem_flags_convert(flags);
415 spl_kmem_emergency_t *ske;
416 int order = get_order(skc->skc_obj_size);
417 int empty;
419 /* Last chance use a partial slab if one now exists */
420 spin_lock(&skc->skc_lock);
421 empty = list_empty(&skc->skc_partial_list);
422 spin_unlock(&skc->skc_lock);
423 if (!empty)
424 return (-EEXIST);
426 if (skc->skc_flags & KMC_RECLAIMABLE)
427 lflags |= __GFP_RECLAIMABLE;
428 ske = kmalloc(sizeof (*ske), lflags);
429 if (ske == NULL)
430 return (-ENOMEM);
432 ske->ske_obj = __get_free_pages(lflags, order);
433 if (ske->ske_obj == 0) {
434 kfree(ske);
435 return (-ENOMEM);
438 spin_lock(&skc->skc_lock);
439 empty = spl_emergency_insert(&skc->skc_emergency_tree, ske);
440 if (likely(empty)) {
441 skc->skc_obj_total++;
442 skc->skc_obj_emergency++;
443 if (skc->skc_obj_emergency > skc->skc_obj_emergency_max)
444 skc->skc_obj_emergency_max = skc->skc_obj_emergency;
446 spin_unlock(&skc->skc_lock);
448 if (unlikely(!empty)) {
449 free_pages(ske->ske_obj, order);
450 kfree(ske);
451 return (-EINVAL);
454 *obj = (void *)ske->ske_obj;
456 return (0);
460 * Locate the passed object in the red black tree and free it.
462 static int
463 spl_emergency_free(spl_kmem_cache_t *skc, void *obj)
465 spl_kmem_emergency_t *ske;
466 int order = get_order(skc->skc_obj_size);
468 spin_lock(&skc->skc_lock);
469 ske = spl_emergency_search(&skc->skc_emergency_tree, obj);
470 if (ske) {
471 rb_erase(&ske->ske_node, &skc->skc_emergency_tree);
472 skc->skc_obj_emergency--;
473 skc->skc_obj_total--;
475 spin_unlock(&skc->skc_lock);
477 if (ske == NULL)
478 return (-ENOENT);
480 free_pages(ske->ske_obj, order);
481 kfree(ske);
483 return (0);
487 * Release objects from the per-cpu magazine back to their slab. The flush
488 * argument contains the max number of entries to remove from the magazine.
490 static void
491 spl_cache_flush(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flush)
493 spin_lock(&skc->skc_lock);
495 ASSERT(skc->skc_magic == SKC_MAGIC);
496 ASSERT(skm->skm_magic == SKM_MAGIC);
498 int count = MIN(flush, skm->skm_avail);
499 for (int i = 0; i < count; i++)
500 spl_cache_shrink(skc, skm->skm_objs[i]);
502 skm->skm_avail -= count;
503 memmove(skm->skm_objs, &(skm->skm_objs[count]),
504 sizeof (void *) * skm->skm_avail);
506 spin_unlock(&skc->skc_lock);
510 * Size a slab based on the size of each aligned object plus spl_kmem_obj_t.
511 * When on-slab we want to target spl_kmem_cache_obj_per_slab. However,
512 * for very small objects we may end up with more than this so as not
513 * to waste space in the minimal allocation of a single page.
515 static int
516 spl_slab_size(spl_kmem_cache_t *skc, uint32_t *objs, uint32_t *size)
518 uint32_t sks_size, obj_size, max_size, tgt_size, tgt_objs;
520 sks_size = spl_sks_size(skc);
521 obj_size = spl_obj_size(skc);
522 max_size = (spl_kmem_cache_max_size * 1024 * 1024);
523 tgt_size = (spl_kmem_cache_obj_per_slab * obj_size + sks_size);
525 if (tgt_size <= max_size) {
526 tgt_objs = (tgt_size - sks_size) / obj_size;
527 } else {
528 tgt_objs = (max_size - sks_size) / obj_size;
529 tgt_size = (tgt_objs * obj_size) + sks_size;
532 if (tgt_objs == 0)
533 return (-ENOSPC);
535 *objs = tgt_objs;
536 *size = tgt_size;
538 return (0);
542 * Make a guess at reasonable per-cpu magazine size based on the size of
543 * each object and the cost of caching N of them in each magazine. Long
544 * term this should really adapt based on an observed usage heuristic.
546 static int
547 spl_magazine_size(spl_kmem_cache_t *skc)
549 uint32_t obj_size = spl_obj_size(skc);
550 int size;
552 if (spl_kmem_cache_magazine_size > 0)
553 return (MAX(MIN(spl_kmem_cache_magazine_size, 256), 2));
555 /* Per-magazine sizes below assume a 4Kib page size */
556 if (obj_size > (PAGE_SIZE * 256))
557 size = 4; /* Minimum 4Mib per-magazine */
558 else if (obj_size > (PAGE_SIZE * 32))
559 size = 16; /* Minimum 2Mib per-magazine */
560 else if (obj_size > (PAGE_SIZE))
561 size = 64; /* Minimum 256Kib per-magazine */
562 else if (obj_size > (PAGE_SIZE / 4))
563 size = 128; /* Minimum 128Kib per-magazine */
564 else
565 size = 256;
567 return (size);
571 * Allocate a per-cpu magazine to associate with a specific core.
573 static spl_kmem_magazine_t *
574 spl_magazine_alloc(spl_kmem_cache_t *skc, int cpu)
576 spl_kmem_magazine_t *skm;
577 int size = sizeof (spl_kmem_magazine_t) +
578 sizeof (void *) * skc->skc_mag_size;
580 skm = kmalloc_node(size, GFP_KERNEL, cpu_to_node(cpu));
581 if (skm) {
582 skm->skm_magic = SKM_MAGIC;
583 skm->skm_avail = 0;
584 skm->skm_size = skc->skc_mag_size;
585 skm->skm_refill = skc->skc_mag_refill;
586 skm->skm_cache = skc;
587 skm->skm_cpu = cpu;
590 return (skm);
594 * Free a per-cpu magazine associated with a specific core.
596 static void
597 spl_magazine_free(spl_kmem_magazine_t *skm)
599 ASSERT(skm->skm_magic == SKM_MAGIC);
600 ASSERT(skm->skm_avail == 0);
601 kfree(skm);
605 * Create all pre-cpu magazines of reasonable sizes.
607 static int
608 spl_magazine_create(spl_kmem_cache_t *skc)
610 int i = 0;
612 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
614 skc->skc_mag = kzalloc(sizeof (spl_kmem_magazine_t *) *
615 num_possible_cpus(), kmem_flags_convert(KM_SLEEP));
616 skc->skc_mag_size = spl_magazine_size(skc);
617 skc->skc_mag_refill = (skc->skc_mag_size + 1) / 2;
619 for_each_possible_cpu(i) {
620 skc->skc_mag[i] = spl_magazine_alloc(skc, i);
621 if (!skc->skc_mag[i]) {
622 for (i--; i >= 0; i--)
623 spl_magazine_free(skc->skc_mag[i]);
625 kfree(skc->skc_mag);
626 return (-ENOMEM);
630 return (0);
634 * Destroy all pre-cpu magazines.
636 static void
637 spl_magazine_destroy(spl_kmem_cache_t *skc)
639 spl_kmem_magazine_t *skm;
640 int i = 0;
642 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
644 for_each_possible_cpu(i) {
645 skm = skc->skc_mag[i];
646 spl_cache_flush(skc, skm, skm->skm_avail);
647 spl_magazine_free(skm);
650 kfree(skc->skc_mag);
654 * Create a object cache based on the following arguments:
655 * name cache name
656 * size cache object size
657 * align cache object alignment
658 * ctor cache object constructor
659 * dtor cache object destructor
660 * reclaim cache object reclaim
661 * priv cache private data for ctor/dtor/reclaim
662 * vmp unused must be NULL
663 * flags
664 * KMC_KVMEM Force kvmem backed SPL cache
665 * KMC_SLAB Force Linux slab backed cache
666 * KMC_NODEBUG Disable debugging (unsupported)
667 * KMC_RECLAIMABLE Memory can be freed under pressure
669 spl_kmem_cache_t *
670 spl_kmem_cache_create(const char *name, size_t size, size_t align,
671 spl_kmem_ctor_t ctor, spl_kmem_dtor_t dtor, void *reclaim,
672 void *priv, void *vmp, int flags)
674 gfp_t lflags = kmem_flags_convert(KM_SLEEP);
675 spl_kmem_cache_t *skc;
676 int rc;
679 * Unsupported flags
681 ASSERT(vmp == NULL);
682 ASSERT(reclaim == NULL);
684 might_sleep();
686 skc = kzalloc(sizeof (*skc), lflags);
687 if (skc == NULL)
688 return (NULL);
690 skc->skc_magic = SKC_MAGIC;
691 skc->skc_name_size = strlen(name) + 1;
692 skc->skc_name = kmalloc(skc->skc_name_size, lflags);
693 if (skc->skc_name == NULL) {
694 kfree(skc);
695 return (NULL);
697 strlcpy(skc->skc_name, name, skc->skc_name_size);
699 skc->skc_ctor = ctor;
700 skc->skc_dtor = dtor;
701 skc->skc_private = priv;
702 skc->skc_vmp = vmp;
703 skc->skc_linux_cache = NULL;
704 skc->skc_flags = flags;
705 skc->skc_obj_size = size;
706 skc->skc_obj_align = SPL_KMEM_CACHE_ALIGN;
707 atomic_set(&skc->skc_ref, 0);
709 INIT_LIST_HEAD(&skc->skc_list);
710 INIT_LIST_HEAD(&skc->skc_complete_list);
711 INIT_LIST_HEAD(&skc->skc_partial_list);
712 skc->skc_emergency_tree = RB_ROOT;
713 spin_lock_init(&skc->skc_lock);
714 init_waitqueue_head(&skc->skc_waitq);
715 skc->skc_slab_fail = 0;
716 skc->skc_slab_create = 0;
717 skc->skc_slab_destroy = 0;
718 skc->skc_slab_total = 0;
719 skc->skc_slab_alloc = 0;
720 skc->skc_slab_max = 0;
721 skc->skc_obj_total = 0;
722 skc->skc_obj_alloc = 0;
723 skc->skc_obj_max = 0;
724 skc->skc_obj_deadlock = 0;
725 skc->skc_obj_emergency = 0;
726 skc->skc_obj_emergency_max = 0;
728 rc = percpu_counter_init(&skc->skc_linux_alloc, 0, GFP_KERNEL);
729 if (rc != 0) {
730 kfree(skc);
731 return (NULL);
735 * Verify the requested alignment restriction is sane.
737 if (align) {
738 VERIFY(ISP2(align));
739 VERIFY3U(align, >=, SPL_KMEM_CACHE_ALIGN);
740 VERIFY3U(align, <=, PAGE_SIZE);
741 skc->skc_obj_align = align;
745 * When no specific type of slab is requested (kmem, vmem, or
746 * linuxslab) then select a cache type based on the object size
747 * and default tunables.
749 if (!(skc->skc_flags & (KMC_SLAB | KMC_KVMEM))) {
750 if (spl_kmem_cache_slab_limit &&
751 size <= (size_t)spl_kmem_cache_slab_limit) {
753 * Objects smaller than spl_kmem_cache_slab_limit can
754 * use the Linux slab for better space-efficiency.
756 skc->skc_flags |= KMC_SLAB;
757 } else {
759 * All other objects are considered large and are
760 * placed on kvmem backed slabs.
762 skc->skc_flags |= KMC_KVMEM;
767 * Given the type of slab allocate the required resources.
769 if (skc->skc_flags & KMC_KVMEM) {
770 rc = spl_slab_size(skc,
771 &skc->skc_slab_objs, &skc->skc_slab_size);
772 if (rc)
773 goto out;
775 rc = spl_magazine_create(skc);
776 if (rc)
777 goto out;
778 } else {
779 unsigned long slabflags = 0;
781 if (size > spl_kmem_cache_slab_limit)
782 goto out;
784 if (skc->skc_flags & KMC_RECLAIMABLE)
785 slabflags |= SLAB_RECLAIM_ACCOUNT;
787 skc->skc_linux_cache = kmem_cache_create_usercopy(
788 skc->skc_name, size, align, slabflags, 0, size, NULL);
789 if (skc->skc_linux_cache == NULL)
790 goto out;
793 down_write(&spl_kmem_cache_sem);
794 list_add_tail(&skc->skc_list, &spl_kmem_cache_list);
795 up_write(&spl_kmem_cache_sem);
797 return (skc);
798 out:
799 kfree(skc->skc_name);
800 percpu_counter_destroy(&skc->skc_linux_alloc);
801 kfree(skc);
802 return (NULL);
804 EXPORT_SYMBOL(spl_kmem_cache_create);
807 * Register a move callback for cache defragmentation.
808 * XXX: Unimplemented but harmless to stub out for now.
810 void
811 spl_kmem_cache_set_move(spl_kmem_cache_t *skc,
812 kmem_cbrc_t (move)(void *, void *, size_t, void *))
814 ASSERT(move != NULL);
816 EXPORT_SYMBOL(spl_kmem_cache_set_move);
819 * Destroy a cache and all objects associated with the cache.
821 void
822 spl_kmem_cache_destroy(spl_kmem_cache_t *skc)
824 DECLARE_WAIT_QUEUE_HEAD(wq);
825 taskqid_t id;
827 ASSERT(skc->skc_magic == SKC_MAGIC);
828 ASSERT(skc->skc_flags & (KMC_KVMEM | KMC_SLAB));
830 down_write(&spl_kmem_cache_sem);
831 list_del_init(&skc->skc_list);
832 up_write(&spl_kmem_cache_sem);
834 /* Cancel any and wait for any pending delayed tasks */
835 VERIFY(!test_and_set_bit(KMC_BIT_DESTROY, &skc->skc_flags));
837 spin_lock(&skc->skc_lock);
838 id = skc->skc_taskqid;
839 spin_unlock(&skc->skc_lock);
841 taskq_cancel_id(spl_kmem_cache_taskq, id);
844 * Wait until all current callers complete, this is mainly
845 * to catch the case where a low memory situation triggers a
846 * cache reaping action which races with this destroy.
848 wait_event(wq, atomic_read(&skc->skc_ref) == 0);
850 if (skc->skc_flags & KMC_KVMEM) {
851 spl_magazine_destroy(skc);
852 spl_slab_reclaim(skc);
853 } else {
854 ASSERT(skc->skc_flags & KMC_SLAB);
855 kmem_cache_destroy(skc->skc_linux_cache);
858 spin_lock(&skc->skc_lock);
861 * Validate there are no objects in use and free all the
862 * spl_kmem_slab_t, spl_kmem_obj_t, and object buffers.
864 ASSERT3U(skc->skc_slab_alloc, ==, 0);
865 ASSERT3U(skc->skc_obj_alloc, ==, 0);
866 ASSERT3U(skc->skc_slab_total, ==, 0);
867 ASSERT3U(skc->skc_obj_total, ==, 0);
868 ASSERT3U(skc->skc_obj_emergency, ==, 0);
869 ASSERT(list_empty(&skc->skc_complete_list));
871 ASSERT3U(percpu_counter_sum(&skc->skc_linux_alloc), ==, 0);
872 percpu_counter_destroy(&skc->skc_linux_alloc);
874 spin_unlock(&skc->skc_lock);
876 kfree(skc->skc_name);
877 kfree(skc);
879 EXPORT_SYMBOL(spl_kmem_cache_destroy);
882 * Allocate an object from a slab attached to the cache. This is used to
883 * repopulate the per-cpu magazine caches in batches when they run low.
885 static void *
886 spl_cache_obj(spl_kmem_cache_t *skc, spl_kmem_slab_t *sks)
888 spl_kmem_obj_t *sko;
890 ASSERT(skc->skc_magic == SKC_MAGIC);
891 ASSERT(sks->sks_magic == SKS_MAGIC);
893 sko = list_entry(sks->sks_free_list.next, spl_kmem_obj_t, sko_list);
894 ASSERT(sko->sko_magic == SKO_MAGIC);
895 ASSERT(sko->sko_addr != NULL);
897 /* Remove from sks_free_list */
898 list_del_init(&sko->sko_list);
900 sks->sks_age = jiffies;
901 sks->sks_ref++;
902 skc->skc_obj_alloc++;
904 /* Track max obj usage statistics */
905 if (skc->skc_obj_alloc > skc->skc_obj_max)
906 skc->skc_obj_max = skc->skc_obj_alloc;
908 /* Track max slab usage statistics */
909 if (sks->sks_ref == 1) {
910 skc->skc_slab_alloc++;
912 if (skc->skc_slab_alloc > skc->skc_slab_max)
913 skc->skc_slab_max = skc->skc_slab_alloc;
916 return (sko->sko_addr);
920 * Generic slab allocation function to run by the global work queues.
921 * It is responsible for allocating a new slab, linking it in to the list
922 * of partial slabs, and then waking any waiters.
924 static int
925 __spl_cache_grow(spl_kmem_cache_t *skc, int flags)
927 spl_kmem_slab_t *sks;
929 fstrans_cookie_t cookie = spl_fstrans_mark();
930 sks = spl_slab_alloc(skc, flags);
931 spl_fstrans_unmark(cookie);
933 spin_lock(&skc->skc_lock);
934 if (sks) {
935 skc->skc_slab_total++;
936 skc->skc_obj_total += sks->sks_objs;
937 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
939 smp_mb__before_atomic();
940 clear_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
941 smp_mb__after_atomic();
943 spin_unlock(&skc->skc_lock);
945 return (sks == NULL ? -ENOMEM : 0);
948 static void
949 spl_cache_grow_work(void *data)
951 spl_kmem_alloc_t *ska = (spl_kmem_alloc_t *)data;
952 spl_kmem_cache_t *skc = ska->ska_cache;
954 int error = __spl_cache_grow(skc, ska->ska_flags);
956 atomic_dec(&skc->skc_ref);
957 smp_mb__before_atomic();
958 clear_bit(KMC_BIT_GROWING, &skc->skc_flags);
959 smp_mb__after_atomic();
960 if (error == 0)
961 wake_up_all(&skc->skc_waitq);
963 kfree(ska);
967 * Returns non-zero when a new slab should be available.
969 static int
970 spl_cache_grow_wait(spl_kmem_cache_t *skc)
972 return (!test_bit(KMC_BIT_GROWING, &skc->skc_flags));
976 * No available objects on any slabs, create a new slab. Note that this
977 * functionality is disabled for KMC_SLAB caches which are backed by the
978 * Linux slab.
980 static int
981 spl_cache_grow(spl_kmem_cache_t *skc, int flags, void **obj)
983 int remaining, rc = 0;
985 ASSERT0(flags & ~KM_PUBLIC_MASK);
986 ASSERT(skc->skc_magic == SKC_MAGIC);
987 ASSERT((skc->skc_flags & KMC_SLAB) == 0);
989 *obj = NULL;
992 * Since we can't sleep attempt an emergency allocation to satisfy
993 * the request. The only alterative is to fail the allocation but
994 * it's preferable try. The use of KM_NOSLEEP is expected to be rare.
996 if (flags & KM_NOSLEEP)
997 return (spl_emergency_alloc(skc, flags, obj));
999 might_sleep();
1002 * Before allocating a new slab wait for any reaping to complete and
1003 * then return so the local magazine can be rechecked for new objects.
1005 if (test_bit(KMC_BIT_REAPING, &skc->skc_flags)) {
1006 rc = wait_on_bit(&skc->skc_flags, KMC_BIT_REAPING,
1007 TASK_UNINTERRUPTIBLE);
1008 return (rc ? rc : -EAGAIN);
1012 * Note: It would be nice to reduce the overhead of context switch
1013 * and improve NUMA locality, by trying to allocate a new slab in the
1014 * current process context with KM_NOSLEEP flag.
1016 * However, this can't be applied to vmem/kvmem due to a bug that
1017 * spl_vmalloc() doesn't honor gfp flags in page table allocation.
1021 * This is handled by dispatching a work request to the global work
1022 * queue. This allows us to asynchronously allocate a new slab while
1023 * retaining the ability to safely fall back to a smaller synchronous
1024 * allocations to ensure forward progress is always maintained.
1026 if (test_and_set_bit(KMC_BIT_GROWING, &skc->skc_flags) == 0) {
1027 spl_kmem_alloc_t *ska;
1029 ska = kmalloc(sizeof (*ska), kmem_flags_convert(flags));
1030 if (ska == NULL) {
1031 clear_bit_unlock(KMC_BIT_GROWING, &skc->skc_flags);
1032 smp_mb__after_atomic();
1033 wake_up_all(&skc->skc_waitq);
1034 return (-ENOMEM);
1037 atomic_inc(&skc->skc_ref);
1038 ska->ska_cache = skc;
1039 ska->ska_flags = flags;
1040 taskq_init_ent(&ska->ska_tqe);
1041 taskq_dispatch_ent(spl_kmem_cache_taskq,
1042 spl_cache_grow_work, ska, 0, &ska->ska_tqe);
1046 * The goal here is to only detect the rare case where a virtual slab
1047 * allocation has deadlocked. We must be careful to minimize the use
1048 * of emergency objects which are more expensive to track. Therefore,
1049 * we set a very long timeout for the asynchronous allocation and if
1050 * the timeout is reached the cache is flagged as deadlocked. From
1051 * this point only new emergency objects will be allocated until the
1052 * asynchronous allocation completes and clears the deadlocked flag.
1054 if (test_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags)) {
1055 rc = spl_emergency_alloc(skc, flags, obj);
1056 } else {
1057 remaining = wait_event_timeout(skc->skc_waitq,
1058 spl_cache_grow_wait(skc), HZ / 10);
1060 if (!remaining) {
1061 spin_lock(&skc->skc_lock);
1062 if (test_bit(KMC_BIT_GROWING, &skc->skc_flags)) {
1063 set_bit(KMC_BIT_DEADLOCKED, &skc->skc_flags);
1064 skc->skc_obj_deadlock++;
1066 spin_unlock(&skc->skc_lock);
1069 rc = -ENOMEM;
1072 return (rc);
1076 * Refill a per-cpu magazine with objects from the slabs for this cache.
1077 * Ideally the magazine can be repopulated using existing objects which have
1078 * been released, however if we are unable to locate enough free objects new
1079 * slabs of objects will be created. On success NULL is returned, otherwise
1080 * the address of a single emergency object is returned for use by the caller.
1082 static void *
1083 spl_cache_refill(spl_kmem_cache_t *skc, spl_kmem_magazine_t *skm, int flags)
1085 spl_kmem_slab_t *sks;
1086 int count = 0, rc, refill;
1087 void *obj = NULL;
1089 ASSERT(skc->skc_magic == SKC_MAGIC);
1090 ASSERT(skm->skm_magic == SKM_MAGIC);
1092 refill = MIN(skm->skm_refill, skm->skm_size - skm->skm_avail);
1093 spin_lock(&skc->skc_lock);
1095 while (refill > 0) {
1096 /* No slabs available we may need to grow the cache */
1097 if (list_empty(&skc->skc_partial_list)) {
1098 spin_unlock(&skc->skc_lock);
1100 local_irq_enable();
1101 rc = spl_cache_grow(skc, flags, &obj);
1102 local_irq_disable();
1104 /* Emergency object for immediate use by caller */
1105 if (rc == 0 && obj != NULL)
1106 return (obj);
1108 if (rc)
1109 goto out;
1111 /* Rescheduled to different CPU skm is not local */
1112 if (skm != skc->skc_mag[smp_processor_id()])
1113 goto out;
1116 * Potentially rescheduled to the same CPU but
1117 * allocations may have occurred from this CPU while
1118 * we were sleeping so recalculate max refill.
1120 refill = MIN(refill, skm->skm_size - skm->skm_avail);
1122 spin_lock(&skc->skc_lock);
1123 continue;
1126 /* Grab the next available slab */
1127 sks = list_entry((&skc->skc_partial_list)->next,
1128 spl_kmem_slab_t, sks_list);
1129 ASSERT(sks->sks_magic == SKS_MAGIC);
1130 ASSERT(sks->sks_ref < sks->sks_objs);
1131 ASSERT(!list_empty(&sks->sks_free_list));
1134 * Consume as many objects as needed to refill the requested
1135 * cache. We must also be careful not to overfill it.
1137 while (sks->sks_ref < sks->sks_objs && refill-- > 0 &&
1138 ++count) {
1139 ASSERT(skm->skm_avail < skm->skm_size);
1140 ASSERT(count < skm->skm_size);
1141 skm->skm_objs[skm->skm_avail++] =
1142 spl_cache_obj(skc, sks);
1145 /* Move slab to skc_complete_list when full */
1146 if (sks->sks_ref == sks->sks_objs) {
1147 list_del(&sks->sks_list);
1148 list_add(&sks->sks_list, &skc->skc_complete_list);
1152 spin_unlock(&skc->skc_lock);
1153 out:
1154 return (NULL);
1158 * Release an object back to the slab from which it came.
1160 static void
1161 spl_cache_shrink(spl_kmem_cache_t *skc, void *obj)
1163 spl_kmem_slab_t *sks = NULL;
1164 spl_kmem_obj_t *sko = NULL;
1166 ASSERT(skc->skc_magic == SKC_MAGIC);
1168 sko = spl_sko_from_obj(skc, obj);
1169 ASSERT(sko->sko_magic == SKO_MAGIC);
1170 sks = sko->sko_slab;
1171 ASSERT(sks->sks_magic == SKS_MAGIC);
1172 ASSERT(sks->sks_cache == skc);
1173 list_add(&sko->sko_list, &sks->sks_free_list);
1175 sks->sks_age = jiffies;
1176 sks->sks_ref--;
1177 skc->skc_obj_alloc--;
1180 * Move slab to skc_partial_list when no longer full. Slabs
1181 * are added to the head to keep the partial list is quasi-full
1182 * sorted order. Fuller at the head, emptier at the tail.
1184 if (sks->sks_ref == (sks->sks_objs - 1)) {
1185 list_del(&sks->sks_list);
1186 list_add(&sks->sks_list, &skc->skc_partial_list);
1190 * Move empty slabs to the end of the partial list so
1191 * they can be easily found and freed during reclamation.
1193 if (sks->sks_ref == 0) {
1194 list_del(&sks->sks_list);
1195 list_add_tail(&sks->sks_list, &skc->skc_partial_list);
1196 skc->skc_slab_alloc--;
1201 * Allocate an object from the per-cpu magazine, or if the magazine
1202 * is empty directly allocate from a slab and repopulate the magazine.
1204 void *
1205 spl_kmem_cache_alloc(spl_kmem_cache_t *skc, int flags)
1207 spl_kmem_magazine_t *skm;
1208 void *obj = NULL;
1210 ASSERT0(flags & ~KM_PUBLIC_MASK);
1211 ASSERT(skc->skc_magic == SKC_MAGIC);
1212 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1215 * Allocate directly from a Linux slab. All optimizations are left
1216 * to the underlying cache we only need to guarantee that KM_SLEEP
1217 * callers will never fail.
1219 if (skc->skc_flags & KMC_SLAB) {
1220 struct kmem_cache *slc = skc->skc_linux_cache;
1221 do {
1222 obj = kmem_cache_alloc(slc, kmem_flags_convert(flags));
1223 } while ((obj == NULL) && !(flags & KM_NOSLEEP));
1225 if (obj != NULL) {
1227 * Even though we leave everything up to the
1228 * underlying cache we still keep track of
1229 * how many objects we've allocated in it for
1230 * better debuggability.
1232 percpu_counter_inc(&skc->skc_linux_alloc);
1234 goto ret;
1237 local_irq_disable();
1239 restart:
1241 * Safe to update per-cpu structure without lock, but
1242 * in the restart case we must be careful to reacquire
1243 * the local magazine since this may have changed
1244 * when we need to grow the cache.
1246 skm = skc->skc_mag[smp_processor_id()];
1247 ASSERT(skm->skm_magic == SKM_MAGIC);
1249 if (likely(skm->skm_avail)) {
1250 /* Object available in CPU cache, use it */
1251 obj = skm->skm_objs[--skm->skm_avail];
1252 } else {
1253 obj = spl_cache_refill(skc, skm, flags);
1254 if ((obj == NULL) && !(flags & KM_NOSLEEP))
1255 goto restart;
1257 local_irq_enable();
1258 goto ret;
1261 local_irq_enable();
1262 ASSERT(obj);
1263 ASSERT(IS_P2ALIGNED(obj, skc->skc_obj_align));
1265 ret:
1266 /* Pre-emptively migrate object to CPU L1 cache */
1267 if (obj) {
1268 if (obj && skc->skc_ctor)
1269 skc->skc_ctor(obj, skc->skc_private, flags);
1270 else
1271 prefetchw(obj);
1274 return (obj);
1276 EXPORT_SYMBOL(spl_kmem_cache_alloc);
1279 * Free an object back to the local per-cpu magazine, there is no
1280 * guarantee that this is the same magazine the object was originally
1281 * allocated from. We may need to flush entire from the magazine
1282 * back to the slabs to make space.
1284 void
1285 spl_kmem_cache_free(spl_kmem_cache_t *skc, void *obj)
1287 spl_kmem_magazine_t *skm;
1288 unsigned long flags;
1289 int do_reclaim = 0;
1290 int do_emergency = 0;
1292 ASSERT(skc->skc_magic == SKC_MAGIC);
1293 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1296 * Run the destructor
1298 if (skc->skc_dtor)
1299 skc->skc_dtor(obj, skc->skc_private);
1302 * Free the object from the Linux underlying Linux slab.
1304 if (skc->skc_flags & KMC_SLAB) {
1305 kmem_cache_free(skc->skc_linux_cache, obj);
1306 percpu_counter_dec(&skc->skc_linux_alloc);
1307 return;
1311 * While a cache has outstanding emergency objects all freed objects
1312 * must be checked. However, since emergency objects will never use
1313 * a virtual address these objects can be safely excluded as an
1314 * optimization.
1316 if (!is_vmalloc_addr(obj)) {
1317 spin_lock(&skc->skc_lock);
1318 do_emergency = (skc->skc_obj_emergency > 0);
1319 spin_unlock(&skc->skc_lock);
1321 if (do_emergency && (spl_emergency_free(skc, obj) == 0))
1322 return;
1325 local_irq_save(flags);
1328 * Safe to update per-cpu structure without lock, but
1329 * no remote memory allocation tracking is being performed
1330 * it is entirely possible to allocate an object from one
1331 * CPU cache and return it to another.
1333 skm = skc->skc_mag[smp_processor_id()];
1334 ASSERT(skm->skm_magic == SKM_MAGIC);
1337 * Per-CPU cache full, flush it to make space for this object,
1338 * this may result in an empty slab which can be reclaimed once
1339 * interrupts are re-enabled.
1341 if (unlikely(skm->skm_avail >= skm->skm_size)) {
1342 spl_cache_flush(skc, skm, skm->skm_refill);
1343 do_reclaim = 1;
1346 /* Available space in cache, use it */
1347 skm->skm_objs[skm->skm_avail++] = obj;
1349 local_irq_restore(flags);
1351 if (do_reclaim)
1352 spl_slab_reclaim(skc);
1354 EXPORT_SYMBOL(spl_kmem_cache_free);
1357 * Depending on how many and which objects are released it may simply
1358 * repopulate the local magazine which will then need to age-out. Objects
1359 * which cannot fit in the magazine will be released back to their slabs
1360 * which will also need to age out before being released. This is all just
1361 * best effort and we do not want to thrash creating and destroying slabs.
1363 void
1364 spl_kmem_cache_reap_now(spl_kmem_cache_t *skc)
1366 ASSERT(skc->skc_magic == SKC_MAGIC);
1367 ASSERT(!test_bit(KMC_BIT_DESTROY, &skc->skc_flags));
1369 if (skc->skc_flags & KMC_SLAB)
1370 return;
1372 atomic_inc(&skc->skc_ref);
1375 * Prevent concurrent cache reaping when contended.
1377 if (test_and_set_bit(KMC_BIT_REAPING, &skc->skc_flags))
1378 goto out;
1380 /* Reclaim from the magazine and free all now empty slabs. */
1381 unsigned long irq_flags;
1382 local_irq_save(irq_flags);
1383 spl_kmem_magazine_t *skm = skc->skc_mag[smp_processor_id()];
1384 spl_cache_flush(skc, skm, skm->skm_avail);
1385 local_irq_restore(irq_flags);
1387 spl_slab_reclaim(skc);
1388 clear_bit_unlock(KMC_BIT_REAPING, &skc->skc_flags);
1389 smp_mb__after_atomic();
1390 wake_up_bit(&skc->skc_flags, KMC_BIT_REAPING);
1391 out:
1392 atomic_dec(&skc->skc_ref);
1394 EXPORT_SYMBOL(spl_kmem_cache_reap_now);
1397 * This is stubbed out for code consistency with other platforms. There
1398 * is existing logic to prevent concurrent reaping so while this is ugly
1399 * it should do no harm.
1402 spl_kmem_cache_reap_active(void)
1404 return (0);
1406 EXPORT_SYMBOL(spl_kmem_cache_reap_active);
1409 * Reap all free slabs from all registered caches.
1411 void
1412 spl_kmem_reap(void)
1414 spl_kmem_cache_t *skc = NULL;
1416 down_read(&spl_kmem_cache_sem);
1417 list_for_each_entry(skc, &spl_kmem_cache_list, skc_list) {
1418 spl_kmem_cache_reap_now(skc);
1420 up_read(&spl_kmem_cache_sem);
1422 EXPORT_SYMBOL(spl_kmem_reap);
1425 spl_kmem_cache_init(void)
1427 init_rwsem(&spl_kmem_cache_sem);
1428 INIT_LIST_HEAD(&spl_kmem_cache_list);
1429 spl_kmem_cache_taskq = taskq_create("spl_kmem_cache",
1430 spl_kmem_cache_kmem_threads, maxclsyspri,
1431 spl_kmem_cache_kmem_threads * 8, INT_MAX,
1432 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1434 if (spl_kmem_cache_taskq == NULL)
1435 return (-ENOMEM);
1437 return (0);
1440 void
1441 spl_kmem_cache_fini(void)
1443 taskq_destroy(spl_kmem_cache_taskq);