zdb: show dedup table and log attributes
[zfs.git] / module / os / linux / zfs / zvol_os.c
blob47aa6417068d0e01e82e376c88af2a874806c673
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
23 * Copyright (c) 2024, Rob Norris <robn@despairlabs.com>
24 * Copyright (c) 2024, Klara, Inc.
27 #include <sys/dataset_kstats.h>
28 #include <sys/dbuf.h>
29 #include <sys/dmu_traverse.h>
30 #include <sys/dsl_dataset.h>
31 #include <sys/dsl_prop.h>
32 #include <sys/dsl_dir.h>
33 #include <sys/zap.h>
34 #include <sys/zfeature.h>
35 #include <sys/zil_impl.h>
36 #include <sys/dmu_tx.h>
37 #include <sys/zio.h>
38 #include <sys/zfs_rlock.h>
39 #include <sys/spa_impl.h>
40 #include <sys/zvol.h>
41 #include <sys/zvol_impl.h>
42 #include <cityhash.h>
44 #include <linux/blkdev_compat.h>
45 #include <linux/task_io_accounting_ops.h>
46 #include <linux/workqueue.h>
47 #include <linux/blk-mq.h>
49 static void zvol_request_impl(zvol_state_t *zv, struct bio *bio,
50 struct request *rq, boolean_t force_sync);
52 static unsigned int zvol_major = ZVOL_MAJOR;
53 static unsigned int zvol_request_sync = 0;
54 static unsigned int zvol_prefetch_bytes = (128 * 1024);
55 static unsigned long zvol_max_discard_blocks = 16384;
58 * Switch taskq at multiple of 512 MB offset. This can be set to a lower value
59 * to utilize more threads for small files but may affect prefetch hits.
61 #define ZVOL_TASKQ_OFFSET_SHIFT 29
63 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
64 static unsigned int zvol_open_timeout_ms = 1000;
65 #endif
67 static unsigned int zvol_threads = 0;
68 static unsigned int zvol_blk_mq_threads = 0;
69 static unsigned int zvol_blk_mq_actual_threads;
70 static boolean_t zvol_use_blk_mq = B_FALSE;
73 * The maximum number of volblocksize blocks to process per thread. Typically,
74 * write heavy workloads preform better with higher values here, and read
75 * heavy workloads preform better with lower values, but that's not a hard
76 * and fast rule. It's basically a knob to tune between "less overhead with
77 * less parallelism" and "more overhead, but more parallelism".
79 * '8' was chosen as a reasonable, balanced, default based off of sequential
80 * read and write tests to a zvol in an NVMe pool (with 16 CPUs).
82 static unsigned int zvol_blk_mq_blocks_per_thread = 8;
84 static unsigned int zvol_num_taskqs = 0;
86 #ifndef BLKDEV_DEFAULT_RQ
87 /* BLKDEV_MAX_RQ was renamed to BLKDEV_DEFAULT_RQ in the 5.16 kernel */
88 #define BLKDEV_DEFAULT_RQ BLKDEV_MAX_RQ
89 #endif
92 * Finalize our BIO or request.
94 static inline void
95 zvol_end_io(struct bio *bio, struct request *rq, int error)
97 if (bio) {
98 bio->bi_status = errno_to_bi_status(-error);
99 bio_endio(bio);
100 } else {
101 blk_mq_end_request(rq, errno_to_bi_status(error));
105 static unsigned int zvol_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
106 static unsigned int zvol_actual_blk_mq_queue_depth;
108 struct zvol_state_os {
109 struct gendisk *zvo_disk; /* generic disk */
110 struct request_queue *zvo_queue; /* request queue */
111 dev_t zvo_dev; /* device id */
113 struct blk_mq_tag_set tag_set;
115 /* Set from the global 'zvol_use_blk_mq' at zvol load */
116 boolean_t use_blk_mq;
119 typedef struct zv_taskq {
120 uint_t tqs_cnt;
121 taskq_t **tqs_taskq;
122 } zv_taskq_t;
123 static zv_taskq_t zvol_taskqs;
124 static struct ida zvol_ida;
126 typedef struct zv_request_stack {
127 zvol_state_t *zv;
128 struct bio *bio;
129 struct request *rq;
130 } zv_request_t;
132 typedef struct zv_work {
133 struct request *rq;
134 struct work_struct work;
135 } zv_work_t;
137 typedef struct zv_request_task {
138 zv_request_t zvr;
139 taskq_ent_t ent;
140 } zv_request_task_t;
142 static zv_request_task_t *
143 zv_request_task_create(zv_request_t zvr)
145 zv_request_task_t *task;
146 task = kmem_alloc(sizeof (zv_request_task_t), KM_SLEEP);
147 taskq_init_ent(&task->ent);
148 task->zvr = zvr;
149 return (task);
152 static void
153 zv_request_task_free(zv_request_task_t *task)
155 kmem_free(task, sizeof (*task));
159 * This is called when a new block multiqueue request comes in. A request
160 * contains one or more BIOs.
162 static blk_status_t zvol_mq_queue_rq(struct blk_mq_hw_ctx *hctx,
163 const struct blk_mq_queue_data *bd)
165 struct request *rq = bd->rq;
166 zvol_state_t *zv = rq->q->queuedata;
168 /* Tell the kernel that we are starting to process this request */
169 blk_mq_start_request(rq);
171 if (blk_rq_is_passthrough(rq)) {
172 /* Skip non filesystem request */
173 blk_mq_end_request(rq, BLK_STS_IOERR);
174 return (BLK_STS_IOERR);
177 zvol_request_impl(zv, NULL, rq, 0);
179 /* Acknowledge to the kernel that we got this request */
180 return (BLK_STS_OK);
183 static struct blk_mq_ops zvol_blk_mq_queue_ops = {
184 .queue_rq = zvol_mq_queue_rq,
187 /* Initialize our blk-mq struct */
188 static int zvol_blk_mq_alloc_tag_set(zvol_state_t *zv)
190 struct zvol_state_os *zso = zv->zv_zso;
192 memset(&zso->tag_set, 0, sizeof (zso->tag_set));
194 /* Initialize tag set. */
195 zso->tag_set.ops = &zvol_blk_mq_queue_ops;
196 zso->tag_set.nr_hw_queues = zvol_blk_mq_actual_threads;
197 zso->tag_set.queue_depth = zvol_actual_blk_mq_queue_depth;
198 zso->tag_set.numa_node = NUMA_NO_NODE;
199 zso->tag_set.cmd_size = 0;
202 * We need BLK_MQ_F_BLOCKING here since we do blocking calls in
203 * zvol_request_impl()
205 zso->tag_set.flags = BLK_MQ_F_SHOULD_MERGE | BLK_MQ_F_BLOCKING;
206 zso->tag_set.driver_data = zv;
208 return (blk_mq_alloc_tag_set(&zso->tag_set));
212 * Given a path, return TRUE if path is a ZVOL.
214 boolean_t
215 zvol_os_is_zvol(const char *path)
217 dev_t dev = 0;
219 if (vdev_lookup_bdev(path, &dev) != 0)
220 return (B_FALSE);
222 if (MAJOR(dev) == zvol_major)
223 return (B_TRUE);
225 return (B_FALSE);
228 static void
229 zvol_write(zv_request_t *zvr)
231 struct bio *bio = zvr->bio;
232 struct request *rq = zvr->rq;
233 int error = 0;
234 zfs_uio_t uio;
235 zvol_state_t *zv = zvr->zv;
236 struct request_queue *q;
237 struct gendisk *disk;
238 unsigned long start_time = 0;
239 boolean_t acct = B_FALSE;
241 ASSERT3P(zv, !=, NULL);
242 ASSERT3U(zv->zv_open_count, >, 0);
243 ASSERT3P(zv->zv_zilog, !=, NULL);
245 q = zv->zv_zso->zvo_queue;
246 disk = zv->zv_zso->zvo_disk;
248 /* bio marked as FLUSH need to flush before write */
249 if (io_is_flush(bio, rq))
250 zil_commit(zv->zv_zilog, ZVOL_OBJ);
252 /* Some requests are just for flush and nothing else. */
253 if (io_size(bio, rq) == 0) {
254 rw_exit(&zv->zv_suspend_lock);
255 zvol_end_io(bio, rq, 0);
256 return;
259 zfs_uio_bvec_init(&uio, bio, rq);
261 ssize_t start_resid = uio.uio_resid;
264 * With use_blk_mq, accounting is done by blk_mq_start_request()
265 * and blk_mq_end_request(), so we can skip it here.
267 if (bio) {
268 acct = blk_queue_io_stat(q);
269 if (acct) {
270 start_time = blk_generic_start_io_acct(q, disk, WRITE,
271 bio);
275 boolean_t sync =
276 io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
278 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
279 uio.uio_loffset, uio.uio_resid, RL_WRITER);
281 uint64_t volsize = zv->zv_volsize;
282 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
283 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
284 uint64_t off = uio.uio_loffset;
285 dmu_tx_t *tx = dmu_tx_create(zv->zv_objset);
287 if (bytes > volsize - off) /* don't write past the end */
288 bytes = volsize - off;
290 dmu_tx_hold_write_by_dnode(tx, zv->zv_dn, off, bytes);
292 /* This will only fail for ENOSPC */
293 error = dmu_tx_assign(tx, TXG_WAIT);
294 if (error) {
295 dmu_tx_abort(tx);
296 break;
298 error = dmu_write_uio_dnode(zv->zv_dn, &uio, bytes, tx);
299 if (error == 0) {
300 zvol_log_write(zv, tx, off, bytes, sync);
302 dmu_tx_commit(tx);
304 if (error)
305 break;
307 zfs_rangelock_exit(lr);
309 int64_t nwritten = start_resid - uio.uio_resid;
310 dataset_kstats_update_write_kstats(&zv->zv_kstat, nwritten);
311 task_io_account_write(nwritten);
313 if (sync)
314 zil_commit(zv->zv_zilog, ZVOL_OBJ);
316 rw_exit(&zv->zv_suspend_lock);
318 if (bio && acct) {
319 blk_generic_end_io_acct(q, disk, WRITE, bio, start_time);
322 zvol_end_io(bio, rq, -error);
325 static void
326 zvol_write_task(void *arg)
328 zv_request_task_t *task = arg;
329 zvol_write(&task->zvr);
330 zv_request_task_free(task);
333 static void
334 zvol_discard(zv_request_t *zvr)
336 struct bio *bio = zvr->bio;
337 struct request *rq = zvr->rq;
338 zvol_state_t *zv = zvr->zv;
339 uint64_t start = io_offset(bio, rq);
340 uint64_t size = io_size(bio, rq);
341 uint64_t end = start + size;
342 boolean_t sync;
343 int error = 0;
344 dmu_tx_t *tx;
345 struct request_queue *q = zv->zv_zso->zvo_queue;
346 struct gendisk *disk = zv->zv_zso->zvo_disk;
347 unsigned long start_time = 0;
348 boolean_t acct = B_FALSE;
350 ASSERT3P(zv, !=, NULL);
351 ASSERT3U(zv->zv_open_count, >, 0);
352 ASSERT3P(zv->zv_zilog, !=, NULL);
354 if (bio) {
355 acct = blk_queue_io_stat(q);
356 if (acct) {
357 start_time = blk_generic_start_io_acct(q, disk, WRITE,
358 bio);
362 sync = io_is_fua(bio, rq) || zv->zv_objset->os_sync == ZFS_SYNC_ALWAYS;
364 if (end > zv->zv_volsize) {
365 error = SET_ERROR(EIO);
366 goto unlock;
370 * Align the request to volume block boundaries when a secure erase is
371 * not required. This will prevent dnode_free_range() from zeroing out
372 * the unaligned parts which is slow (read-modify-write) and useless
373 * since we are not freeing any space by doing so.
375 if (!io_is_secure_erase(bio, rq)) {
376 start = P2ROUNDUP(start, zv->zv_volblocksize);
377 end = P2ALIGN_TYPED(end, zv->zv_volblocksize, uint64_t);
378 size = end - start;
381 if (start >= end)
382 goto unlock;
384 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
385 start, size, RL_WRITER);
387 tx = dmu_tx_create(zv->zv_objset);
388 dmu_tx_mark_netfree(tx);
389 error = dmu_tx_assign(tx, TXG_WAIT);
390 if (error != 0) {
391 dmu_tx_abort(tx);
392 } else {
393 zvol_log_truncate(zv, tx, start, size);
394 dmu_tx_commit(tx);
395 error = dmu_free_long_range(zv->zv_objset,
396 ZVOL_OBJ, start, size);
398 zfs_rangelock_exit(lr);
400 if (error == 0 && sync)
401 zil_commit(zv->zv_zilog, ZVOL_OBJ);
403 unlock:
404 rw_exit(&zv->zv_suspend_lock);
406 if (bio && acct) {
407 blk_generic_end_io_acct(q, disk, WRITE, bio,
408 start_time);
411 zvol_end_io(bio, rq, -error);
414 static void
415 zvol_discard_task(void *arg)
417 zv_request_task_t *task = arg;
418 zvol_discard(&task->zvr);
419 zv_request_task_free(task);
422 static void
423 zvol_read(zv_request_t *zvr)
425 struct bio *bio = zvr->bio;
426 struct request *rq = zvr->rq;
427 int error = 0;
428 zfs_uio_t uio;
429 boolean_t acct = B_FALSE;
430 zvol_state_t *zv = zvr->zv;
431 struct request_queue *q;
432 struct gendisk *disk;
433 unsigned long start_time = 0;
435 ASSERT3P(zv, !=, NULL);
436 ASSERT3U(zv->zv_open_count, >, 0);
438 zfs_uio_bvec_init(&uio, bio, rq);
440 q = zv->zv_zso->zvo_queue;
441 disk = zv->zv_zso->zvo_disk;
443 ssize_t start_resid = uio.uio_resid;
446 * When blk-mq is being used, accounting is done by
447 * blk_mq_start_request() and blk_mq_end_request().
449 if (bio) {
450 acct = blk_queue_io_stat(q);
451 if (acct)
452 start_time = blk_generic_start_io_acct(q, disk, READ,
453 bio);
456 zfs_locked_range_t *lr = zfs_rangelock_enter(&zv->zv_rangelock,
457 uio.uio_loffset, uio.uio_resid, RL_READER);
459 uint64_t volsize = zv->zv_volsize;
461 while (uio.uio_resid > 0 && uio.uio_loffset < volsize) {
462 uint64_t bytes = MIN(uio.uio_resid, DMU_MAX_ACCESS >> 1);
464 /* don't read past the end */
465 if (bytes > volsize - uio.uio_loffset)
466 bytes = volsize - uio.uio_loffset;
468 error = dmu_read_uio_dnode(zv->zv_dn, &uio, bytes);
469 if (error) {
470 /* convert checksum errors into IO errors */
471 if (error == ECKSUM)
472 error = SET_ERROR(EIO);
473 break;
476 zfs_rangelock_exit(lr);
478 int64_t nread = start_resid - uio.uio_resid;
479 dataset_kstats_update_read_kstats(&zv->zv_kstat, nread);
480 task_io_account_read(nread);
482 rw_exit(&zv->zv_suspend_lock);
484 if (bio && acct) {
485 blk_generic_end_io_acct(q, disk, READ, bio, start_time);
488 zvol_end_io(bio, rq, -error);
491 static void
492 zvol_read_task(void *arg)
494 zv_request_task_t *task = arg;
495 zvol_read(&task->zvr);
496 zv_request_task_free(task);
501 * Process a BIO or request
503 * Either 'bio' or 'rq' should be set depending on if we are processing a
504 * bio or a request (both should not be set).
506 * force_sync: Set to 0 to defer processing to a background taskq
507 * Set to 1 to process data synchronously
509 static void
510 zvol_request_impl(zvol_state_t *zv, struct bio *bio, struct request *rq,
511 boolean_t force_sync)
513 fstrans_cookie_t cookie = spl_fstrans_mark();
514 uint64_t offset = io_offset(bio, rq);
515 uint64_t size = io_size(bio, rq);
516 int rw = io_data_dir(bio, rq);
518 if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
519 zvol_end_io(bio, rq, -SET_ERROR(ENXIO));
520 goto out;
523 if (zvol_request_sync || zv->zv_threading == B_FALSE)
524 force_sync = 1;
526 zv_request_t zvr = {
527 .zv = zv,
528 .bio = bio,
529 .rq = rq,
532 if (io_has_data(bio, rq) && offset + size > zv->zv_volsize) {
533 printk(KERN_INFO "%s: bad access: offset=%llu, size=%lu\n",
534 zv->zv_zso->zvo_disk->disk_name,
535 (long long unsigned)offset,
536 (long unsigned)size);
538 zvol_end_io(bio, rq, -SET_ERROR(EIO));
539 goto out;
542 zv_request_task_t *task;
543 zv_taskq_t *ztqs = &zvol_taskqs;
544 uint_t blk_mq_hw_queue = 0;
545 uint_t tq_idx;
546 uint_t taskq_hash;
547 if (rq)
548 #ifdef HAVE_BLK_MQ_RQ_HCTX
549 blk_mq_hw_queue = rq->mq_hctx->queue_num;
550 #else
551 blk_mq_hw_queue =
552 rq->q->queue_hw_ctx[rq->q->mq_map[rq->cpu]]->queue_num;
553 #endif
554 taskq_hash = cityhash3((uintptr_t)zv, offset >> ZVOL_TASKQ_OFFSET_SHIFT,
555 blk_mq_hw_queue);
556 tq_idx = taskq_hash % ztqs->tqs_cnt;
558 if (rw == WRITE) {
559 if (unlikely(zv->zv_flags & ZVOL_RDONLY)) {
560 zvol_end_io(bio, rq, -SET_ERROR(EROFS));
561 goto out;
565 * Prevents the zvol from being suspended, or the ZIL being
566 * concurrently opened. Will be released after the i/o
567 * completes.
569 rw_enter(&zv->zv_suspend_lock, RW_READER);
572 * Open a ZIL if this is the first time we have written to this
573 * zvol. We protect zv->zv_zilog with zv_suspend_lock rather
574 * than zv_state_lock so that we don't need to acquire an
575 * additional lock in this path.
577 if (zv->zv_zilog == NULL) {
578 rw_exit(&zv->zv_suspend_lock);
579 rw_enter(&zv->zv_suspend_lock, RW_WRITER);
580 if (zv->zv_zilog == NULL) {
581 zv->zv_zilog = zil_open(zv->zv_objset,
582 zvol_get_data, &zv->zv_kstat.dk_zil_sums);
583 zv->zv_flags |= ZVOL_WRITTEN_TO;
584 /* replay / destroy done in zvol_create_minor */
585 VERIFY0((zv->zv_zilog->zl_header->zh_flags &
586 ZIL_REPLAY_NEEDED));
588 rw_downgrade(&zv->zv_suspend_lock);
592 * We don't want this thread to be blocked waiting for i/o to
593 * complete, so we instead wait from a taskq callback. The
594 * i/o may be a ZIL write (via zil_commit()), or a read of an
595 * indirect block, or a read of a data block (if this is a
596 * partial-block write). We will indicate that the i/o is
597 * complete by calling END_IO() from the taskq callback.
599 * This design allows the calling thread to continue and
600 * initiate more concurrent operations by calling
601 * zvol_request() again. There are typically only a small
602 * number of threads available to call zvol_request() (e.g.
603 * one per iSCSI target), so keeping the latency of
604 * zvol_request() low is important for performance.
606 * The zvol_request_sync module parameter allows this
607 * behavior to be altered, for performance evaluation
608 * purposes. If the callback blocks, setting
609 * zvol_request_sync=1 will result in much worse performance.
611 * We can have up to zvol_threads concurrent i/o's being
612 * processed for all zvols on the system. This is typically
613 * a vast improvement over the zvol_request_sync=1 behavior
614 * of one i/o at a time per zvol. However, an even better
615 * design would be for zvol_request() to initiate the zio
616 * directly, and then be notified by the zio_done callback,
617 * which would call END_IO(). Unfortunately, the DMU/ZIL
618 * interfaces lack this functionality (they block waiting for
619 * the i/o to complete).
621 if (io_is_discard(bio, rq) || io_is_secure_erase(bio, rq)) {
622 if (force_sync) {
623 zvol_discard(&zvr);
624 } else {
625 task = zv_request_task_create(zvr);
626 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
627 zvol_discard_task, task, 0, &task->ent);
629 } else {
630 if (force_sync) {
631 zvol_write(&zvr);
632 } else {
633 task = zv_request_task_create(zvr);
634 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
635 zvol_write_task, task, 0, &task->ent);
638 } else {
640 * The SCST driver, and possibly others, may issue READ I/Os
641 * with a length of zero bytes. These empty I/Os contain no
642 * data and require no additional handling.
644 if (size == 0) {
645 zvol_end_io(bio, rq, 0);
646 goto out;
649 rw_enter(&zv->zv_suspend_lock, RW_READER);
651 /* See comment in WRITE case above. */
652 if (force_sync) {
653 zvol_read(&zvr);
654 } else {
655 task = zv_request_task_create(zvr);
656 taskq_dispatch_ent(ztqs->tqs_taskq[tq_idx],
657 zvol_read_task, task, 0, &task->ent);
661 out:
662 spl_fstrans_unmark(cookie);
665 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
666 #ifdef HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID
667 static void
668 zvol_submit_bio(struct bio *bio)
669 #else
670 static blk_qc_t
671 zvol_submit_bio(struct bio *bio)
672 #endif
673 #else
674 static MAKE_REQUEST_FN_RET
675 zvol_request(struct request_queue *q, struct bio *bio)
676 #endif
678 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
679 #if defined(HAVE_BIO_BDEV_DISK)
680 struct request_queue *q = bio->bi_bdev->bd_disk->queue;
681 #else
682 struct request_queue *q = bio->bi_disk->queue;
683 #endif
684 #endif
685 zvol_state_t *zv = q->queuedata;
687 zvol_request_impl(zv, bio, NULL, 0);
688 #if defined(HAVE_MAKE_REQUEST_FN_RET_QC) || \
689 defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
690 !defined(HAVE_BDEV_SUBMIT_BIO_RETURNS_VOID)
691 return (BLK_QC_T_NONE);
692 #endif
695 static int
696 #ifdef HAVE_BLK_MODE_T
697 zvol_open(struct gendisk *disk, blk_mode_t flag)
698 #else
699 zvol_open(struct block_device *bdev, fmode_t flag)
700 #endif
702 zvol_state_t *zv;
703 int error = 0;
704 boolean_t drop_suspend = B_FALSE;
705 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
706 hrtime_t timeout = MSEC2NSEC(zvol_open_timeout_ms);
707 hrtime_t start = gethrtime();
709 retry:
710 #endif
711 rw_enter(&zvol_state_lock, RW_READER);
713 * Obtain a copy of private_data under the zvol_state_lock to make
714 * sure that either the result of zvol free code path setting
715 * disk->private_data to NULL is observed, or zvol_os_free()
716 * is not called on this zv because of the positive zv_open_count.
718 #ifdef HAVE_BLK_MODE_T
719 zv = disk->private_data;
720 #else
721 zv = bdev->bd_disk->private_data;
722 #endif
723 if (zv == NULL) {
724 rw_exit(&zvol_state_lock);
725 return (-SET_ERROR(ENXIO));
728 mutex_enter(&zv->zv_state_lock);
730 if (unlikely(zv->zv_flags & ZVOL_REMOVING)) {
731 mutex_exit(&zv->zv_state_lock);
732 rw_exit(&zvol_state_lock);
733 return (-SET_ERROR(ENXIO));
737 * Make sure zvol is not suspended during first open
738 * (hold zv_suspend_lock) and respect proper lock acquisition
739 * ordering - zv_suspend_lock before zv_state_lock
741 if (zv->zv_open_count == 0) {
742 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
743 mutex_exit(&zv->zv_state_lock);
744 rw_enter(&zv->zv_suspend_lock, RW_READER);
745 mutex_enter(&zv->zv_state_lock);
746 /* check to see if zv_suspend_lock is needed */
747 if (zv->zv_open_count != 0) {
748 rw_exit(&zv->zv_suspend_lock);
749 } else {
750 drop_suspend = B_TRUE;
752 } else {
753 drop_suspend = B_TRUE;
756 rw_exit(&zvol_state_lock);
758 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
760 if (zv->zv_open_count == 0) {
761 boolean_t drop_namespace = B_FALSE;
763 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
766 * In all other call paths the spa_namespace_lock is taken
767 * before the bdev->bd_mutex lock. However, on open(2)
768 * the __blkdev_get() function calls fops->open() with the
769 * bdev->bd_mutex lock held. This can result in a deadlock
770 * when zvols from one pool are used as vdevs in another.
772 * To prevent a lock inversion deadlock we preemptively
773 * take the spa_namespace_lock. Normally the lock will not
774 * be contended and this is safe because spa_open_common()
775 * handles the case where the caller already holds the
776 * spa_namespace_lock.
778 * When the lock cannot be aquired after multiple retries
779 * this must be the vdev on zvol deadlock case and we have
780 * no choice but to return an error. For 5.12 and older
781 * kernels returning -ERESTARTSYS will result in the
782 * bdev->bd_mutex being dropped, then reacquired, and
783 * fops->open() being called again. This process can be
784 * repeated safely until both locks are acquired. For 5.13
785 * and newer the -ERESTARTSYS retry logic was removed from
786 * the kernel so the only option is to return the error for
787 * the caller to handle it.
789 if (!mutex_owned(&spa_namespace_lock)) {
790 if (!mutex_tryenter(&spa_namespace_lock)) {
791 mutex_exit(&zv->zv_state_lock);
792 rw_exit(&zv->zv_suspend_lock);
793 drop_suspend = B_FALSE;
795 #ifdef HAVE_BLKDEV_GET_ERESTARTSYS
796 schedule();
797 return (-SET_ERROR(ERESTARTSYS));
798 #else
799 if ((gethrtime() - start) > timeout)
800 return (-SET_ERROR(ERESTARTSYS));
802 schedule_timeout_interruptible(
803 MSEC_TO_TICK(10));
804 goto retry;
805 #endif
806 } else {
807 drop_namespace = B_TRUE;
811 error = -zvol_first_open(zv, !(blk_mode_is_open_write(flag)));
813 if (drop_namespace)
814 mutex_exit(&spa_namespace_lock);
817 if (error == 0) {
818 if ((blk_mode_is_open_write(flag)) &&
819 (zv->zv_flags & ZVOL_RDONLY)) {
820 if (zv->zv_open_count == 0)
821 zvol_last_close(zv);
823 error = -SET_ERROR(EROFS);
824 } else {
825 zv->zv_open_count++;
829 mutex_exit(&zv->zv_state_lock);
830 if (drop_suspend)
831 rw_exit(&zv->zv_suspend_lock);
833 if (error == 0)
834 #ifdef HAVE_BLK_MODE_T
835 disk_check_media_change(disk);
836 #else
837 zfs_check_media_change(bdev);
838 #endif
840 return (error);
843 static void
844 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG
845 zvol_release(struct gendisk *disk)
846 #else
847 zvol_release(struct gendisk *disk, fmode_t unused)
848 #endif
850 #if !defined(HAVE_BLOCK_DEVICE_OPERATIONS_RELEASE_1ARG)
851 (void) unused;
852 #endif
853 zvol_state_t *zv;
854 boolean_t drop_suspend = B_TRUE;
856 rw_enter(&zvol_state_lock, RW_READER);
857 zv = disk->private_data;
859 mutex_enter(&zv->zv_state_lock);
860 ASSERT3U(zv->zv_open_count, >, 0);
862 * make sure zvol is not suspended during last close
863 * (hold zv_suspend_lock) and respect proper lock acquisition
864 * ordering - zv_suspend_lock before zv_state_lock
866 if (zv->zv_open_count == 1) {
867 if (!rw_tryenter(&zv->zv_suspend_lock, RW_READER)) {
868 mutex_exit(&zv->zv_state_lock);
869 rw_enter(&zv->zv_suspend_lock, RW_READER);
870 mutex_enter(&zv->zv_state_lock);
871 /* check to see if zv_suspend_lock is needed */
872 if (zv->zv_open_count != 1) {
873 rw_exit(&zv->zv_suspend_lock);
874 drop_suspend = B_FALSE;
877 } else {
878 drop_suspend = B_FALSE;
880 rw_exit(&zvol_state_lock);
882 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
884 zv->zv_open_count--;
885 if (zv->zv_open_count == 0) {
886 ASSERT(RW_READ_HELD(&zv->zv_suspend_lock));
887 zvol_last_close(zv);
890 mutex_exit(&zv->zv_state_lock);
892 if (drop_suspend)
893 rw_exit(&zv->zv_suspend_lock);
896 static int
897 zvol_ioctl(struct block_device *bdev, fmode_t mode,
898 unsigned int cmd, unsigned long arg)
900 zvol_state_t *zv = bdev->bd_disk->private_data;
901 int error = 0;
903 ASSERT3U(zv->zv_open_count, >, 0);
905 switch (cmd) {
906 case BLKFLSBUF:
907 #ifdef HAVE_FSYNC_BDEV
908 fsync_bdev(bdev);
909 #elif defined(HAVE_SYNC_BLOCKDEV)
910 sync_blockdev(bdev);
911 #else
912 #error "Neither fsync_bdev() nor sync_blockdev() found"
913 #endif
914 invalidate_bdev(bdev);
915 rw_enter(&zv->zv_suspend_lock, RW_READER);
917 if (!(zv->zv_flags & ZVOL_RDONLY))
918 txg_wait_synced(dmu_objset_pool(zv->zv_objset), 0);
920 rw_exit(&zv->zv_suspend_lock);
921 break;
923 case BLKZNAME:
924 mutex_enter(&zv->zv_state_lock);
925 error = copy_to_user((void *)arg, zv->zv_name, MAXNAMELEN);
926 mutex_exit(&zv->zv_state_lock);
927 break;
929 default:
930 error = -ENOTTY;
931 break;
934 return (SET_ERROR(error));
937 #ifdef CONFIG_COMPAT
938 static int
939 zvol_compat_ioctl(struct block_device *bdev, fmode_t mode,
940 unsigned cmd, unsigned long arg)
942 return (zvol_ioctl(bdev, mode, cmd, arg));
944 #else
945 #define zvol_compat_ioctl NULL
946 #endif
948 static unsigned int
949 zvol_check_events(struct gendisk *disk, unsigned int clearing)
951 unsigned int mask = 0;
953 rw_enter(&zvol_state_lock, RW_READER);
955 zvol_state_t *zv = disk->private_data;
956 if (zv != NULL) {
957 mutex_enter(&zv->zv_state_lock);
958 mask = zv->zv_changed ? DISK_EVENT_MEDIA_CHANGE : 0;
959 zv->zv_changed = 0;
960 mutex_exit(&zv->zv_state_lock);
963 rw_exit(&zvol_state_lock);
965 return (mask);
968 static int
969 zvol_revalidate_disk(struct gendisk *disk)
971 rw_enter(&zvol_state_lock, RW_READER);
973 zvol_state_t *zv = disk->private_data;
974 if (zv != NULL) {
975 mutex_enter(&zv->zv_state_lock);
976 set_capacity(zv->zv_zso->zvo_disk,
977 zv->zv_volsize >> SECTOR_BITS);
978 mutex_exit(&zv->zv_state_lock);
981 rw_exit(&zvol_state_lock);
983 return (0);
987 zvol_os_update_volsize(zvol_state_t *zv, uint64_t volsize)
989 struct gendisk *disk = zv->zv_zso->zvo_disk;
991 #if defined(HAVE_REVALIDATE_DISK_SIZE)
992 revalidate_disk_size(disk, zvol_revalidate_disk(disk) == 0);
993 #elif defined(HAVE_REVALIDATE_DISK)
994 revalidate_disk(disk);
995 #else
996 zvol_revalidate_disk(disk);
997 #endif
998 return (0);
1001 void
1002 zvol_os_clear_private(zvol_state_t *zv)
1005 * Cleared while holding zvol_state_lock as a writer
1006 * which will prevent zvol_open() from opening it.
1008 zv->zv_zso->zvo_disk->private_data = NULL;
1012 * Provide a simple virtual geometry for legacy compatibility. For devices
1013 * smaller than 1 MiB a small head and sector count is used to allow very
1014 * tiny devices. For devices over 1 Mib a standard head and sector count
1015 * is used to keep the cylinders count reasonable.
1017 static int
1018 zvol_getgeo(struct block_device *bdev, struct hd_geometry *geo)
1020 zvol_state_t *zv = bdev->bd_disk->private_data;
1021 sector_t sectors;
1023 ASSERT3U(zv->zv_open_count, >, 0);
1025 sectors = get_capacity(zv->zv_zso->zvo_disk);
1027 if (sectors > 2048) {
1028 geo->heads = 16;
1029 geo->sectors = 63;
1030 } else {
1031 geo->heads = 2;
1032 geo->sectors = 4;
1035 geo->start = 0;
1036 geo->cylinders = sectors / (geo->heads * geo->sectors);
1038 return (0);
1042 * Why have two separate block_device_operations structs?
1044 * Normally we'd just have one, and assign 'submit_bio' as needed. However,
1045 * it's possible the user's kernel is built with CONSTIFY_PLUGIN, meaning we
1046 * can't just change submit_bio dynamically at runtime. So just create two
1047 * separate structs to get around this.
1049 static const struct block_device_operations zvol_ops_blk_mq = {
1050 .open = zvol_open,
1051 .release = zvol_release,
1052 .ioctl = zvol_ioctl,
1053 .compat_ioctl = zvol_compat_ioctl,
1054 .check_events = zvol_check_events,
1055 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1056 .revalidate_disk = zvol_revalidate_disk,
1057 #endif
1058 .getgeo = zvol_getgeo,
1059 .owner = THIS_MODULE,
1062 static const struct block_device_operations zvol_ops = {
1063 .open = zvol_open,
1064 .release = zvol_release,
1065 .ioctl = zvol_ioctl,
1066 .compat_ioctl = zvol_compat_ioctl,
1067 .check_events = zvol_check_events,
1068 #ifdef HAVE_BLOCK_DEVICE_OPERATIONS_REVALIDATE_DISK
1069 .revalidate_disk = zvol_revalidate_disk,
1070 #endif
1071 .getgeo = zvol_getgeo,
1072 .owner = THIS_MODULE,
1073 #ifdef HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS
1074 .submit_bio = zvol_submit_bio,
1075 #endif
1079 * Since 6.9, Linux has been removing queue limit setters in favour of an
1080 * initial queue_limits struct applied when the device is open. Since 6.11,
1081 * queue_limits is being extended to allow more things to be applied when the
1082 * device is open. Setters are also being removed for this.
1084 * For OpenZFS, this means that depending on kernel version, some options may
1085 * be set up before the device is open, and some applied to an open device
1086 * (queue) after the fact.
1088 * We manage this complexity by having our own limits struct,
1089 * zvol_queue_limits_t, in which we carry any queue config that we're
1090 * interested in setting. This structure is the same on all kernels.
1092 * These limits are then applied to the queue at device open time by the most
1093 * appropriate method for the kernel.
1095 * zvol_queue_limits_convert() is used on 6.9+ (where the two-arg form of
1096 * blk_alloc_disk() exists). This converts our limits struct to a proper Linux
1097 * struct queue_limits, and passes it in. Any fields added in later kernels are
1098 * (obviously) not set up here.
1100 * zvol_queue_limits_apply() is called on all kernel versions after the queue
1101 * is created, and applies any remaining config. Before 6.9 that will be
1102 * everything, via setter methods. After 6.9 that will be whatever couldn't be
1103 * put into struct queue_limits. (This implies that zvol_queue_limits_apply()
1104 * will always be a no-op on the latest kernel we support).
1106 typedef struct zvol_queue_limits {
1107 unsigned int zql_max_hw_sectors;
1108 unsigned short zql_max_segments;
1109 unsigned int zql_max_segment_size;
1110 unsigned int zql_io_opt;
1111 unsigned int zql_physical_block_size;
1112 unsigned int zql_max_discard_sectors;
1113 unsigned int zql_discard_granularity;
1114 } zvol_queue_limits_t;
1116 static void
1117 zvol_queue_limits_init(zvol_queue_limits_t *limits, zvol_state_t *zv,
1118 boolean_t use_blk_mq)
1120 limits->zql_max_hw_sectors = (DMU_MAX_ACCESS / 4) >> 9;
1122 if (use_blk_mq) {
1124 * IO requests can be really big (1MB). When an IO request
1125 * comes in, it is passed off to zvol_read() or zvol_write()
1126 * in a new thread, where it is chunked up into 'volblocksize'
1127 * sized pieces and processed. So for example, if the request
1128 * is a 1MB write and your volblocksize is 128k, one zvol_write
1129 * thread will take that request and sequentially do ten 128k
1130 * IOs. This is due to the fact that the thread needs to lock
1131 * each volblocksize sized block. So you might be wondering:
1132 * "instead of passing the whole 1MB request to one thread,
1133 * why not pass ten individual 128k chunks to ten threads and
1134 * process the whole write in parallel?" The short answer is
1135 * that there's a sweet spot number of chunks that balances
1136 * the greater parallelism with the added overhead of more
1137 * threads. The sweet spot can be different depending on if you
1138 * have a read or write heavy workload. Writes typically want
1139 * high chunk counts while reads typically want lower ones. On
1140 * a test pool with 6 NVMe drives in a 3x 2-disk mirror
1141 * configuration, with volblocksize=8k, the sweet spot for good
1142 * sequential reads and writes was at 8 chunks.
1146 * Below we tell the kernel how big we want our requests
1147 * to be. You would think that blk_queue_io_opt() would be
1148 * used to do this since it is used to "set optimal request
1149 * size for the queue", but that doesn't seem to do
1150 * anything - the kernel still gives you huge requests
1151 * with tons of little PAGE_SIZE segments contained within it.
1153 * Knowing that the kernel will just give you PAGE_SIZE segments
1154 * no matter what, you can say "ok, I want PAGE_SIZE byte
1155 * segments, and I want 'N' of them per request", where N is
1156 * the correct number of segments for the volblocksize and
1157 * number of chunks you want.
1159 if (zvol_blk_mq_blocks_per_thread != 0) {
1160 unsigned int chunks;
1161 chunks = MIN(zvol_blk_mq_blocks_per_thread, UINT16_MAX);
1163 limits->zql_max_segment_size = PAGE_SIZE;
1164 limits->zql_max_segments =
1165 (zv->zv_volblocksize * chunks) / PAGE_SIZE;
1166 } else {
1168 * Special case: zvol_blk_mq_blocks_per_thread = 0
1169 * Max everything out.
1171 limits->zql_max_segments = UINT16_MAX;
1172 limits->zql_max_segment_size = UINT_MAX;
1174 } else {
1175 limits->zql_max_segments = UINT16_MAX;
1176 limits->zql_max_segment_size = UINT_MAX;
1179 limits->zql_io_opt = DMU_MAX_ACCESS / 2;
1181 limits->zql_physical_block_size = zv->zv_volblocksize;
1182 limits->zql_max_discard_sectors =
1183 (zvol_max_discard_blocks * zv->zv_volblocksize) >> 9;
1184 limits->zql_discard_granularity = zv->zv_volblocksize;
1187 #ifdef HAVE_BLK_ALLOC_DISK_2ARG
1188 static void
1189 zvol_queue_limits_convert(zvol_queue_limits_t *limits,
1190 struct queue_limits *qlimits)
1192 memset(qlimits, 0, sizeof (struct queue_limits));
1193 qlimits->max_hw_sectors = limits->zql_max_hw_sectors;
1194 qlimits->max_segments = limits->zql_max_segments;
1195 qlimits->max_segment_size = limits->zql_max_segment_size;
1196 qlimits->io_opt = limits->zql_io_opt;
1197 qlimits->physical_block_size = limits->zql_physical_block_size;
1198 qlimits->max_discard_sectors = limits->zql_max_discard_sectors;
1199 qlimits->max_hw_discard_sectors = limits->zql_max_discard_sectors;
1200 qlimits->discard_granularity = limits->zql_discard_granularity;
1201 #ifdef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
1202 qlimits->features =
1203 BLK_FEAT_WRITE_CACHE | BLK_FEAT_FUA | BLK_FEAT_IO_STAT;
1204 #endif
1206 #endif
1208 static void
1209 zvol_queue_limits_apply(zvol_queue_limits_t *limits,
1210 struct request_queue *queue)
1212 #ifndef HAVE_BLK_ALLOC_DISK_2ARG
1213 blk_queue_max_hw_sectors(queue, limits->zql_max_hw_sectors);
1214 blk_queue_max_segments(queue, limits->zql_max_segments);
1215 blk_queue_max_segment_size(queue, limits->zql_max_segment_size);
1216 blk_queue_io_opt(queue, limits->zql_io_opt);
1217 blk_queue_physical_block_size(queue, limits->zql_physical_block_size);
1218 blk_queue_max_discard_sectors(queue, limits->zql_max_discard_sectors);
1219 blk_queue_discard_granularity(queue, limits->zql_discard_granularity);
1220 #endif
1221 #ifndef HAVE_BLKDEV_QUEUE_LIMITS_FEATURES
1222 blk_queue_set_write_cache(queue, B_TRUE);
1223 blk_queue_flag_set(QUEUE_FLAG_IO_STAT, queue);
1224 #endif
1227 static int
1228 zvol_alloc_non_blk_mq(struct zvol_state_os *zso, zvol_queue_limits_t *limits)
1230 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS)
1231 #if defined(HAVE_BLK_ALLOC_DISK)
1232 zso->zvo_disk = blk_alloc_disk(NUMA_NO_NODE);
1233 if (zso->zvo_disk == NULL)
1234 return (1);
1236 zso->zvo_disk->minors = ZVOL_MINORS;
1237 zso->zvo_queue = zso->zvo_disk->queue;
1238 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1239 struct queue_limits qlimits;
1240 zvol_queue_limits_convert(limits, &qlimits);
1241 struct gendisk *disk = blk_alloc_disk(&qlimits, NUMA_NO_NODE);
1242 if (IS_ERR(disk)) {
1243 zso->zvo_disk = NULL;
1244 return (1);
1247 zso->zvo_disk = disk;
1248 zso->zvo_disk->minors = ZVOL_MINORS;
1249 zso->zvo_queue = zso->zvo_disk->queue;
1251 #else
1252 zso->zvo_queue = blk_alloc_queue(NUMA_NO_NODE);
1253 if (zso->zvo_queue == NULL)
1254 return (1);
1256 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1257 if (zso->zvo_disk == NULL) {
1258 blk_cleanup_queue(zso->zvo_queue);
1259 return (1);
1262 zso->zvo_disk->queue = zso->zvo_queue;
1263 #endif /* HAVE_BLK_ALLOC_DISK */
1264 #else
1265 zso->zvo_queue = blk_generic_alloc_queue(zvol_request, NUMA_NO_NODE);
1266 if (zso->zvo_queue == NULL)
1267 return (1);
1269 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1270 if (zso->zvo_disk == NULL) {
1271 blk_cleanup_queue(zso->zvo_queue);
1272 return (1);
1275 zso->zvo_disk->queue = zso->zvo_queue;
1276 #endif /* HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS */
1278 zvol_queue_limits_apply(limits, zso->zvo_queue);
1280 return (0);
1284 static int
1285 zvol_alloc_blk_mq(zvol_state_t *zv, zvol_queue_limits_t *limits)
1287 struct zvol_state_os *zso = zv->zv_zso;
1289 /* Allocate our blk-mq tag_set */
1290 if (zvol_blk_mq_alloc_tag_set(zv) != 0)
1291 return (1);
1293 #if defined(HAVE_BLK_ALLOC_DISK)
1294 zso->zvo_disk = blk_mq_alloc_disk(&zso->tag_set, zv);
1295 if (zso->zvo_disk == NULL) {
1296 blk_mq_free_tag_set(&zso->tag_set);
1297 return (1);
1299 zso->zvo_queue = zso->zvo_disk->queue;
1300 zso->zvo_disk->minors = ZVOL_MINORS;
1301 #elif defined(HAVE_BLK_ALLOC_DISK_2ARG)
1302 struct queue_limits qlimits;
1303 zvol_queue_limits_convert(limits, &qlimits);
1304 struct gendisk *disk = blk_mq_alloc_disk(&zso->tag_set, &qlimits, zv);
1305 if (IS_ERR(disk)) {
1306 zso->zvo_disk = NULL;
1307 blk_mq_free_tag_set(&zso->tag_set);
1308 return (1);
1311 zso->zvo_disk = disk;
1312 zso->zvo_queue = zso->zvo_disk->queue;
1313 zso->zvo_disk->minors = ZVOL_MINORS;
1314 #else
1315 zso->zvo_disk = alloc_disk(ZVOL_MINORS);
1316 if (zso->zvo_disk == NULL) {
1317 blk_cleanup_queue(zso->zvo_queue);
1318 blk_mq_free_tag_set(&zso->tag_set);
1319 return (1);
1321 /* Allocate queue */
1322 zso->zvo_queue = blk_mq_init_queue(&zso->tag_set);
1323 if (IS_ERR(zso->zvo_queue)) {
1324 blk_mq_free_tag_set(&zso->tag_set);
1325 return (1);
1328 /* Our queue is now created, assign it to our disk */
1329 zso->zvo_disk->queue = zso->zvo_queue;
1330 #endif
1332 zvol_queue_limits_apply(limits, zso->zvo_queue);
1334 return (0);
1338 * Allocate memory for a new zvol_state_t and setup the required
1339 * request queue and generic disk structures for the block device.
1341 static zvol_state_t *
1342 zvol_alloc(dev_t dev, const char *name, uint64_t volblocksize)
1344 zvol_state_t *zv;
1345 struct zvol_state_os *zso;
1346 uint64_t volmode;
1347 int ret;
1349 if (dsl_prop_get_integer(name, "volmode", &volmode, NULL) != 0)
1350 return (NULL);
1352 if (volmode == ZFS_VOLMODE_DEFAULT)
1353 volmode = zvol_volmode;
1355 if (volmode == ZFS_VOLMODE_NONE)
1356 return (NULL);
1358 zv = kmem_zalloc(sizeof (zvol_state_t), KM_SLEEP);
1359 zso = kmem_zalloc(sizeof (struct zvol_state_os), KM_SLEEP);
1360 zv->zv_zso = zso;
1361 zv->zv_volmode = volmode;
1362 zv->zv_volblocksize = volblocksize;
1364 list_link_init(&zv->zv_next);
1365 mutex_init(&zv->zv_state_lock, NULL, MUTEX_DEFAULT, NULL);
1366 cv_init(&zv->zv_removing_cv, NULL, CV_DEFAULT, NULL);
1368 zv->zv_zso->use_blk_mq = zvol_use_blk_mq;
1370 zvol_queue_limits_t limits;
1371 zvol_queue_limits_init(&limits, zv, zv->zv_zso->use_blk_mq);
1374 * The block layer has 3 interfaces for getting BIOs:
1376 * 1. blk-mq request queues (new)
1377 * 2. submit_bio() (oldest)
1378 * 3. regular request queues (old).
1380 * Each of those interfaces has two permutations:
1382 * a) We have blk_alloc_disk()/blk_mq_alloc_disk(), which allocates
1383 * both the disk and its queue (5.14 kernel or newer)
1385 * b) We don't have blk_*alloc_disk(), and have to allocate the
1386 * disk and the queue separately. (5.13 kernel or older)
1388 if (zv->zv_zso->use_blk_mq) {
1389 ret = zvol_alloc_blk_mq(zv, &limits);
1390 zso->zvo_disk->fops = &zvol_ops_blk_mq;
1391 } else {
1392 ret = zvol_alloc_non_blk_mq(zso, &limits);
1393 zso->zvo_disk->fops = &zvol_ops;
1395 if (ret != 0)
1396 goto out_kmem;
1398 /* Limit read-ahead to a single page to prevent over-prefetching. */
1399 blk_queue_set_read_ahead(zso->zvo_queue, 1);
1401 if (!zv->zv_zso->use_blk_mq) {
1402 /* Disable write merging in favor of the ZIO pipeline. */
1403 blk_queue_flag_set(QUEUE_FLAG_NOMERGES, zso->zvo_queue);
1406 zso->zvo_queue->queuedata = zv;
1407 zso->zvo_dev = dev;
1408 zv->zv_open_count = 0;
1409 strlcpy(zv->zv_name, name, sizeof (zv->zv_name));
1411 zfs_rangelock_init(&zv->zv_rangelock, NULL, NULL);
1412 rw_init(&zv->zv_suspend_lock, NULL, RW_DEFAULT, NULL);
1414 zso->zvo_disk->major = zvol_major;
1415 zso->zvo_disk->events = DISK_EVENT_MEDIA_CHANGE;
1418 * Setting ZFS_VOLMODE_DEV disables partitioning on ZVOL devices.
1419 * This is accomplished by limiting the number of minors for the
1420 * device to one and explicitly disabling partition scanning.
1422 if (volmode == ZFS_VOLMODE_DEV) {
1423 zso->zvo_disk->minors = 1;
1424 zso->zvo_disk->flags &= ~GENHD_FL_EXT_DEVT;
1425 zso->zvo_disk->flags |= GENHD_FL_NO_PART;
1428 zso->zvo_disk->first_minor = (dev & MINORMASK);
1429 zso->zvo_disk->private_data = zv;
1430 snprintf(zso->zvo_disk->disk_name, DISK_NAME_LEN, "%s%d",
1431 ZVOL_DEV_NAME, (dev & MINORMASK));
1433 return (zv);
1435 out_kmem:
1436 kmem_free(zso, sizeof (struct zvol_state_os));
1437 kmem_free(zv, sizeof (zvol_state_t));
1438 return (NULL);
1442 * Cleanup then free a zvol_state_t which was created by zvol_alloc().
1443 * At this time, the structure is not opened by anyone, is taken off
1444 * the zvol_state_list, and has its private data set to NULL.
1445 * The zvol_state_lock is dropped.
1447 * This function may take many milliseconds to complete (e.g. we've seen
1448 * it take over 256ms), due to the calls to "blk_cleanup_queue" and
1449 * "del_gendisk". Thus, consumers need to be careful to account for this
1450 * latency when calling this function.
1452 void
1453 zvol_os_free(zvol_state_t *zv)
1456 ASSERT(!RW_LOCK_HELD(&zv->zv_suspend_lock));
1457 ASSERT(!MUTEX_HELD(&zv->zv_state_lock));
1458 ASSERT0(zv->zv_open_count);
1459 ASSERT3P(zv->zv_zso->zvo_disk->private_data, ==, NULL);
1461 rw_destroy(&zv->zv_suspend_lock);
1462 zfs_rangelock_fini(&zv->zv_rangelock);
1464 del_gendisk(zv->zv_zso->zvo_disk);
1465 #if defined(HAVE_SUBMIT_BIO_IN_BLOCK_DEVICE_OPERATIONS) && \
1466 (defined(HAVE_BLK_ALLOC_DISK) || defined(HAVE_BLK_ALLOC_DISK_2ARG))
1467 #if defined(HAVE_BLK_CLEANUP_DISK)
1468 blk_cleanup_disk(zv->zv_zso->zvo_disk);
1469 #else
1470 put_disk(zv->zv_zso->zvo_disk);
1471 #endif
1472 #else
1473 blk_cleanup_queue(zv->zv_zso->zvo_queue);
1474 put_disk(zv->zv_zso->zvo_disk);
1475 #endif
1477 if (zv->zv_zso->use_blk_mq)
1478 blk_mq_free_tag_set(&zv->zv_zso->tag_set);
1480 ida_simple_remove(&zvol_ida,
1481 MINOR(zv->zv_zso->zvo_dev) >> ZVOL_MINOR_BITS);
1483 cv_destroy(&zv->zv_removing_cv);
1484 mutex_destroy(&zv->zv_state_lock);
1485 dataset_kstats_destroy(&zv->zv_kstat);
1487 kmem_free(zv->zv_zso, sizeof (struct zvol_state_os));
1488 kmem_free(zv, sizeof (zvol_state_t));
1491 void
1492 zvol_wait_close(zvol_state_t *zv)
1496 struct add_disk_work {
1497 struct delayed_work work;
1498 struct gendisk *disk;
1499 int error;
1502 static int
1503 __zvol_os_add_disk(struct gendisk *disk)
1505 int error = 0;
1506 #ifdef HAVE_ADD_DISK_RET
1507 error = add_disk(disk);
1508 #else
1509 add_disk(disk);
1510 #endif
1511 return (error);
1514 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH)
1515 static void
1516 zvol_os_add_disk_work(struct work_struct *work)
1518 struct add_disk_work *add_disk_work;
1519 add_disk_work = container_of(work, struct add_disk_work, work.work);
1520 add_disk_work->error = __zvol_os_add_disk(add_disk_work->disk);
1522 #endif
1525 * SPECIAL CASE:
1527 * This function basically calls add_disk() from a workqueue. You may be
1528 * thinking: why not just call add_disk() directly?
1530 * When you call add_disk(), the zvol appears to the world. When this happens,
1531 * the kernel calls disk_scan_partitions() on the zvol, which behaves
1532 * differently on the 6.9+ kernels:
1534 * - 6.8 and older kernels -
1535 * disk_scan_partitions()
1536 * handle = bdev_open_by_dev(
1537 * zvol_open()
1538 * bdev_release(handle);
1539 * zvol_release()
1542 * - 6.9+ kernels -
1543 * disk_scan_partitions()
1544 * file = bdev_file_open_by_dev()
1545 * zvol_open()
1546 * fput(file)
1547 * < wait for return to userspace >
1548 * zvol_release()
1550 * The difference is that the bdev_release() from the 6.8 kernel is synchronous
1551 * while the fput() from the 6.9 kernel is async. Or more specifically it's
1552 * async that has to wait until we return to userspace (since it adds the fput
1553 * into the caller's work queue with the TWA_RESUME flag set). This is not the
1554 * behavior we want, since we want do things like create+destroy a zvol within
1555 * a single ZFS_IOC_CREATE ioctl, and the "create" part needs to release the
1556 * reference to the zvol while we're in the IOCTL, which can't wait until we
1557 * return to userspace.
1559 * We can get around this since fput() has a special codepath for when it's
1560 * running in a kernel thread or interrupt. In those cases, it just puts the
1561 * fput into the system workqueue, which we can force to run with
1562 * __flush_workqueue(). That is why we call add_disk() from a workqueue - so it
1563 * run from a kernel thread and "tricks" the fput() codepaths.
1565 * Note that __flush_workqueue() is slowly getting deprecated. This may be ok
1566 * though, since our IOCTL will spin on EBUSY waiting for the zvol release (via
1567 * fput) to happen, which it eventually, naturally, will from the system_wq
1568 * without us explicitly calling __flush_workqueue().
1570 static int
1571 zvol_os_add_disk(struct gendisk *disk)
1573 #if defined(HAVE_BDEV_FILE_OPEN_BY_PATH) /* 6.9+ kernel */
1574 struct add_disk_work add_disk_work;
1576 INIT_DELAYED_WORK(&add_disk_work.work, zvol_os_add_disk_work);
1577 add_disk_work.disk = disk;
1578 add_disk_work.error = 0;
1580 /* Use *_delayed_work functions since they're not GPL'd */
1581 schedule_delayed_work(&add_disk_work.work, 0);
1582 flush_delayed_work(&add_disk_work.work);
1584 __flush_workqueue(system_wq);
1585 return (add_disk_work.error);
1586 #else /* <= 6.8 kernel */
1587 return (__zvol_os_add_disk(disk));
1588 #endif
1592 * Create a block device minor node and setup the linkage between it
1593 * and the specified volume. Once this function returns the block
1594 * device is live and ready for use.
1597 zvol_os_create_minor(const char *name)
1599 zvol_state_t *zv;
1600 objset_t *os;
1601 dmu_object_info_t *doi;
1602 uint64_t volsize;
1603 uint64_t len;
1604 unsigned minor = 0;
1605 int error = 0;
1606 int idx;
1607 uint64_t hash = zvol_name_hash(name);
1608 uint64_t volthreading;
1609 bool replayed_zil = B_FALSE;
1611 if (zvol_inhibit_dev)
1612 return (0);
1614 idx = ida_simple_get(&zvol_ida, 0, 0, kmem_flags_convert(KM_SLEEP));
1615 if (idx < 0)
1616 return (SET_ERROR(-idx));
1617 minor = idx << ZVOL_MINOR_BITS;
1618 if (MINOR(minor) != minor) {
1619 /* too many partitions can cause an overflow */
1620 zfs_dbgmsg("zvol: create minor overflow: %s, minor %u/%u",
1621 name, minor, MINOR(minor));
1622 ida_simple_remove(&zvol_ida, idx);
1623 return (SET_ERROR(EINVAL));
1626 zv = zvol_find_by_name_hash(name, hash, RW_NONE);
1627 if (zv) {
1628 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1629 mutex_exit(&zv->zv_state_lock);
1630 ida_simple_remove(&zvol_ida, idx);
1631 return (SET_ERROR(EEXIST));
1634 doi = kmem_alloc(sizeof (dmu_object_info_t), KM_SLEEP);
1636 error = dmu_objset_own(name, DMU_OST_ZVOL, B_TRUE, B_TRUE, FTAG, &os);
1637 if (error)
1638 goto out_doi;
1640 error = dmu_object_info(os, ZVOL_OBJ, doi);
1641 if (error)
1642 goto out_dmu_objset_disown;
1644 error = zap_lookup(os, ZVOL_ZAP_OBJ, "size", 8, 1, &volsize);
1645 if (error)
1646 goto out_dmu_objset_disown;
1648 zv = zvol_alloc(MKDEV(zvol_major, minor), name,
1649 doi->doi_data_block_size);
1650 if (zv == NULL) {
1651 error = SET_ERROR(EAGAIN);
1652 goto out_dmu_objset_disown;
1654 zv->zv_hash = hash;
1656 if (dmu_objset_is_snapshot(os))
1657 zv->zv_flags |= ZVOL_RDONLY;
1659 zv->zv_volsize = volsize;
1660 zv->zv_objset = os;
1662 /* Default */
1663 zv->zv_threading = B_TRUE;
1664 if (dsl_prop_get_integer(name, "volthreading", &volthreading, NULL)
1665 == 0)
1666 zv->zv_threading = volthreading;
1668 set_capacity(zv->zv_zso->zvo_disk, zv->zv_volsize >> 9);
1670 #ifdef QUEUE_FLAG_DISCARD
1671 blk_queue_flag_set(QUEUE_FLAG_DISCARD, zv->zv_zso->zvo_queue);
1672 #endif
1673 #ifdef QUEUE_FLAG_NONROT
1674 blk_queue_flag_set(QUEUE_FLAG_NONROT, zv->zv_zso->zvo_queue);
1675 #endif
1676 #ifdef QUEUE_FLAG_ADD_RANDOM
1677 blk_queue_flag_clear(QUEUE_FLAG_ADD_RANDOM, zv->zv_zso->zvo_queue);
1678 #endif
1679 /* This flag was introduced in kernel version 4.12. */
1680 #ifdef QUEUE_FLAG_SCSI_PASSTHROUGH
1681 blk_queue_flag_set(QUEUE_FLAG_SCSI_PASSTHROUGH, zv->zv_zso->zvo_queue);
1682 #endif
1684 ASSERT3P(zv->zv_kstat.dk_kstats, ==, NULL);
1685 error = dataset_kstats_create(&zv->zv_kstat, zv->zv_objset);
1686 if (error)
1687 goto out_dmu_objset_disown;
1688 ASSERT3P(zv->zv_zilog, ==, NULL);
1689 zv->zv_zilog = zil_open(os, zvol_get_data, &zv->zv_kstat.dk_zil_sums);
1690 if (spa_writeable(dmu_objset_spa(os))) {
1691 if (zil_replay_disable)
1692 replayed_zil = zil_destroy(zv->zv_zilog, B_FALSE);
1693 else
1694 replayed_zil = zil_replay(os, zv, zvol_replay_vector);
1696 if (replayed_zil)
1697 zil_close(zv->zv_zilog);
1698 zv->zv_zilog = NULL;
1701 * When udev detects the addition of the device it will immediately
1702 * invoke blkid(8) to determine the type of content on the device.
1703 * Prefetching the blocks commonly scanned by blkid(8) will speed
1704 * up this process.
1706 len = MIN(zvol_prefetch_bytes, SPA_MAXBLOCKSIZE);
1707 if (len > 0) {
1708 dmu_prefetch(os, ZVOL_OBJ, 0, 0, len, ZIO_PRIORITY_SYNC_READ);
1709 dmu_prefetch(os, ZVOL_OBJ, 0, volsize - len, len,
1710 ZIO_PRIORITY_SYNC_READ);
1713 zv->zv_objset = NULL;
1714 out_dmu_objset_disown:
1715 dmu_objset_disown(os, B_TRUE, FTAG);
1716 out_doi:
1717 kmem_free(doi, sizeof (dmu_object_info_t));
1720 * Keep in mind that once add_disk() is called, the zvol is
1721 * announced to the world, and zvol_open()/zvol_release() can
1722 * be called at any time. Incidentally, add_disk() itself calls
1723 * zvol_open()->zvol_first_open() and zvol_release()->zvol_last_close()
1724 * directly as well.
1726 if (error == 0) {
1727 rw_enter(&zvol_state_lock, RW_WRITER);
1728 zvol_insert(zv);
1729 rw_exit(&zvol_state_lock);
1730 error = zvol_os_add_disk(zv->zv_zso->zvo_disk);
1731 } else {
1732 ida_simple_remove(&zvol_ida, idx);
1735 return (error);
1738 void
1739 zvol_os_rename_minor(zvol_state_t *zv, const char *newname)
1741 int readonly = get_disk_ro(zv->zv_zso->zvo_disk);
1743 ASSERT(RW_LOCK_HELD(&zvol_state_lock));
1744 ASSERT(MUTEX_HELD(&zv->zv_state_lock));
1746 strlcpy(zv->zv_name, newname, sizeof (zv->zv_name));
1748 /* move to new hashtable entry */
1749 zv->zv_hash = zvol_name_hash(newname);
1750 hlist_del(&zv->zv_hlink);
1751 hlist_add_head(&zv->zv_hlink, ZVOL_HT_HEAD(zv->zv_hash));
1754 * The block device's read-only state is briefly changed causing
1755 * a KOBJ_CHANGE uevent to be issued. This ensures udev detects
1756 * the name change and fixes the symlinks. This does not change
1757 * ZVOL_RDONLY in zv->zv_flags so the actual read-only state never
1758 * changes. This would normally be done using kobject_uevent() but
1759 * that is a GPL-only symbol which is why we need this workaround.
1761 set_disk_ro(zv->zv_zso->zvo_disk, !readonly);
1762 set_disk_ro(zv->zv_zso->zvo_disk, readonly);
1764 dataset_kstats_rename(&zv->zv_kstat, newname);
1767 void
1768 zvol_os_set_disk_ro(zvol_state_t *zv, int flags)
1771 set_disk_ro(zv->zv_zso->zvo_disk, flags);
1774 void
1775 zvol_os_set_capacity(zvol_state_t *zv, uint64_t capacity)
1778 set_capacity(zv->zv_zso->zvo_disk, capacity);
1782 zvol_init(void)
1784 int error;
1787 * zvol_threads is the module param the user passes in.
1789 * zvol_actual_threads is what we use internally, since the user can
1790 * pass zvol_thread = 0 to mean "use all the CPUs" (the default).
1792 static unsigned int zvol_actual_threads;
1794 if (zvol_threads == 0) {
1796 * See dde9380a1 for why 32 was chosen here. This should
1797 * probably be refined to be some multiple of the number
1798 * of CPUs.
1800 zvol_actual_threads = MAX(num_online_cpus(), 32);
1801 } else {
1802 zvol_actual_threads = MIN(MAX(zvol_threads, 1), 1024);
1806 * Use atleast 32 zvol_threads but for many core system,
1807 * prefer 6 threads per taskq, but no more taskqs
1808 * than threads in them on large systems.
1810 * taskq total
1811 * cpus taskqs threads threads
1812 * ------- ------- ------- -------
1813 * 1 1 32 32
1814 * 2 1 32 32
1815 * 4 1 32 32
1816 * 8 2 16 32
1817 * 16 3 11 33
1818 * 32 5 7 35
1819 * 64 8 8 64
1820 * 128 11 12 132
1821 * 256 16 16 256
1823 zv_taskq_t *ztqs = &zvol_taskqs;
1824 uint_t num_tqs = MIN(num_online_cpus(), zvol_num_taskqs);
1825 if (num_tqs == 0) {
1826 num_tqs = 1 + num_online_cpus() / 6;
1827 while (num_tqs * num_tqs > zvol_actual_threads)
1828 num_tqs--;
1830 uint_t per_tq_thread = zvol_actual_threads / num_tqs;
1831 if (per_tq_thread * num_tqs < zvol_actual_threads)
1832 per_tq_thread++;
1833 ztqs->tqs_cnt = num_tqs;
1834 ztqs->tqs_taskq = kmem_alloc(num_tqs * sizeof (taskq_t *), KM_SLEEP);
1835 error = register_blkdev(zvol_major, ZVOL_DRIVER);
1836 if (error) {
1837 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt * sizeof (taskq_t *));
1838 ztqs->tqs_taskq = NULL;
1839 printk(KERN_INFO "ZFS: register_blkdev() failed %d\n", error);
1840 return (error);
1843 if (zvol_blk_mq_queue_depth == 0) {
1844 zvol_actual_blk_mq_queue_depth = BLKDEV_DEFAULT_RQ;
1845 } else {
1846 zvol_actual_blk_mq_queue_depth =
1847 MAX(zvol_blk_mq_queue_depth, BLKDEV_MIN_RQ);
1850 if (zvol_blk_mq_threads == 0) {
1851 zvol_blk_mq_actual_threads = num_online_cpus();
1852 } else {
1853 zvol_blk_mq_actual_threads = MIN(MAX(zvol_blk_mq_threads, 1),
1854 1024);
1857 for (uint_t i = 0; i < num_tqs; i++) {
1858 char name[32];
1859 (void) snprintf(name, sizeof (name), "%s_tq-%u",
1860 ZVOL_DRIVER, i);
1861 ztqs->tqs_taskq[i] = taskq_create(name, per_tq_thread,
1862 maxclsyspri, per_tq_thread, INT_MAX,
1863 TASKQ_PREPOPULATE | TASKQ_DYNAMIC);
1864 if (ztqs->tqs_taskq[i] == NULL) {
1865 for (int j = i - 1; j >= 0; j--)
1866 taskq_destroy(ztqs->tqs_taskq[j]);
1867 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1868 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
1869 sizeof (taskq_t *));
1870 ztqs->tqs_taskq = NULL;
1871 return (-ENOMEM);
1875 zvol_init_impl();
1876 ida_init(&zvol_ida);
1877 return (0);
1880 void
1881 zvol_fini(void)
1883 zv_taskq_t *ztqs = &zvol_taskqs;
1884 zvol_fini_impl();
1885 unregister_blkdev(zvol_major, ZVOL_DRIVER);
1887 if (ztqs->tqs_taskq == NULL) {
1888 ASSERT3U(ztqs->tqs_cnt, ==, 0);
1889 } else {
1890 for (uint_t i = 0; i < ztqs->tqs_cnt; i++) {
1891 ASSERT3P(ztqs->tqs_taskq[i], !=, NULL);
1892 taskq_destroy(ztqs->tqs_taskq[i]);
1894 kmem_free(ztqs->tqs_taskq, ztqs->tqs_cnt *
1895 sizeof (taskq_t *));
1896 ztqs->tqs_taskq = NULL;
1899 ida_destroy(&zvol_ida);
1902 /* BEGIN CSTYLED */
1903 module_param(zvol_inhibit_dev, uint, 0644);
1904 MODULE_PARM_DESC(zvol_inhibit_dev, "Do not create zvol device nodes");
1906 module_param(zvol_major, uint, 0444);
1907 MODULE_PARM_DESC(zvol_major, "Major number for zvol device");
1909 module_param(zvol_threads, uint, 0444);
1910 MODULE_PARM_DESC(zvol_threads, "Number of threads to handle I/O requests. Set"
1911 "to 0 to use all active CPUs");
1913 module_param(zvol_request_sync, uint, 0644);
1914 MODULE_PARM_DESC(zvol_request_sync, "Synchronously handle bio requests");
1916 module_param(zvol_max_discard_blocks, ulong, 0444);
1917 MODULE_PARM_DESC(zvol_max_discard_blocks, "Max number of blocks to discard");
1919 module_param(zvol_num_taskqs, uint, 0444);
1920 MODULE_PARM_DESC(zvol_num_taskqs, "Number of zvol taskqs");
1922 module_param(zvol_prefetch_bytes, uint, 0644);
1923 MODULE_PARM_DESC(zvol_prefetch_bytes, "Prefetch N bytes at zvol start+end");
1925 module_param(zvol_volmode, uint, 0644);
1926 MODULE_PARM_DESC(zvol_volmode, "Default volmode property value");
1928 module_param(zvol_blk_mq_queue_depth, uint, 0644);
1929 MODULE_PARM_DESC(zvol_blk_mq_queue_depth, "Default blk-mq queue depth");
1931 module_param(zvol_use_blk_mq, uint, 0644);
1932 MODULE_PARM_DESC(zvol_use_blk_mq, "Use the blk-mq API for zvols");
1934 module_param(zvol_blk_mq_blocks_per_thread, uint, 0644);
1935 MODULE_PARM_DESC(zvol_blk_mq_blocks_per_thread,
1936 "Process volblocksize blocks per thread");
1938 #ifndef HAVE_BLKDEV_GET_ERESTARTSYS
1939 module_param(zvol_open_timeout_ms, uint, 0644);
1940 MODULE_PARM_DESC(zvol_open_timeout_ms, "Timeout for ZVOL open retries");
1941 #endif
1943 /* END CSTYLED */