4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright 2008 Sun Microsystems, Inc. All rights reserved.
23 * Use is subject to license terms.
27 * Copyright 2022 MNX Cloud, Inc.
33 * UTF-8 text preparation functions (PSARC/2007/149, PSARC/2007/458).
35 * Man pages: u8_textprep_open(9F), u8_textprep_buf(9F), u8_textprep_close(9F),
36 * u8_textprep_str(9F), u8_strcmp(9F), and u8_validate(9F). See also
37 * the section 3C man pages.
38 * Interface stability: Committed.
41 #include <sys/types.h>
42 #include <sys/string.h>
43 #include <sys/param.h>
44 #include <sys/sysmacros.h>
45 #include <sys/debug.h>
47 #include <sys/sunddi.h>
48 #include <sys/u8_textprep.h>
49 #include <sys/byteorder.h>
50 #include <sys/errno.h>
51 #include <sys/u8_textprep_data.h>
54 /* The maximum possible number of bytes in a UTF-8 character. */
55 #define U8_MB_CUR_MAX (4)
58 * The maximum number of bytes needed for a UTF-8 character to cover
59 * U+0000 - U+FFFF, i.e., the coding space of now deprecated UCS-2.
61 #define U8_MAX_BYTES_UCS2 (3)
63 /* The maximum possible number of bytes in a Stream-Safe Text. */
64 #define U8_STREAM_SAFE_TEXT_MAX (128)
67 * The maximum number of characters in a combining/conjoining sequence and
68 * the actual upperbound limit of a combining/conjoining sequence.
70 #define U8_MAX_CHARS_A_SEQ (32)
71 #define U8_UPPER_LIMIT_IN_A_SEQ (31)
73 /* The combining class value for Starter. */
74 #define U8_COMBINING_CLASS_STARTER (0)
77 * Some Hangul related macros at below.
79 * The first and the last of Hangul syllables, Hangul Jamo Leading consonants,
80 * Vowels, and optional Trailing consonants in Unicode scalar values.
82 * Please be noted that the U8_HANGUL_JAMO_T_FIRST is 0x11A7 at below not
83 * the actual U+11A8. This is due to that the trailing consonant is optional
84 * and thus we are doing a pre-calculation of subtracting one.
86 * Each of 19 modern leading consonants has total 588 possible syllables since
87 * Hangul has 21 modern vowels and 27 modern trailing consonants plus 1 for
88 * no trailing consonant case, i.e., 21 x 28 = 588.
90 * We also have bunch of Hangul related macros at below. Please bear in mind
91 * that the U8_HANGUL_JAMO_1ST_BYTE can be used to check whether it is
92 * a Hangul Jamo or not but the value does not guarantee that it is a Hangul
93 * Jamo; it just guarantee that it will be most likely.
95 #define U8_HANGUL_SYL_FIRST (0xAC00U)
96 #define U8_HANGUL_SYL_LAST (0xD7A3U)
98 #define U8_HANGUL_JAMO_L_FIRST (0x1100U)
99 #define U8_HANGUL_JAMO_L_LAST (0x1112U)
100 #define U8_HANGUL_JAMO_V_FIRST (0x1161U)
101 #define U8_HANGUL_JAMO_V_LAST (0x1175U)
102 #define U8_HANGUL_JAMO_T_FIRST (0x11A7U)
103 #define U8_HANGUL_JAMO_T_LAST (0x11C2U)
105 #define U8_HANGUL_V_COUNT (21)
106 #define U8_HANGUL_VT_COUNT (588)
107 #define U8_HANGUL_T_COUNT (28)
109 #define U8_HANGUL_JAMO_1ST_BYTE (0xE1U)
111 #define U8_SAVE_HANGUL_AS_UTF8(s, i, j, k, b) \
112 (s)[(i)] = (uchar_t)(0xE0U | ((uint32_t)(b) & 0xF000U) >> 12); \
113 (s)[(j)] = (uchar_t)(0x80U | ((uint32_t)(b) & 0x0FC0U) >> 6); \
114 (s)[(k)] = (uchar_t)(0x80U | ((uint32_t)(b) & 0x003FU));
116 #define U8_HANGUL_JAMO_L(u) \
117 ((u) >= U8_HANGUL_JAMO_L_FIRST && (u) <= U8_HANGUL_JAMO_L_LAST)
119 #define U8_HANGUL_JAMO_V(u) \
120 ((u) >= U8_HANGUL_JAMO_V_FIRST && (u) <= U8_HANGUL_JAMO_V_LAST)
122 #define U8_HANGUL_JAMO_T(u) \
123 ((u) > U8_HANGUL_JAMO_T_FIRST && (u) <= U8_HANGUL_JAMO_T_LAST)
125 #define U8_HANGUL_JAMO(u) \
126 ((u) >= U8_HANGUL_JAMO_L_FIRST && (u) <= U8_HANGUL_JAMO_T_LAST)
128 #define U8_HANGUL_SYLLABLE(u) \
129 ((u) >= U8_HANGUL_SYL_FIRST && (u) <= U8_HANGUL_SYL_LAST)
131 #define U8_HANGUL_COMPOSABLE_L_V(s, u) \
132 ((s) == U8_STATE_HANGUL_L && U8_HANGUL_JAMO_V((u)))
134 #define U8_HANGUL_COMPOSABLE_LV_T(s, u) \
135 ((s) == U8_STATE_HANGUL_LV && U8_HANGUL_JAMO_T((u)))
137 /* The types of decomposition mappings. */
138 #define U8_DECOMP_BOTH (0xF5U)
139 #define U8_DECOMP_CANONICAL (0xF6U)
141 /* The indicator for 16-bit table. */
142 #define U8_16BIT_TABLE_INDICATOR (0x8000U)
144 /* The following are some convenience macros. */
145 #define U8_PUT_3BYTES_INTO_UTF32(u, b1, b2, b3) \
146 (u) = ((((uint32_t)(b1) & 0x0F) << 12) | \
147 (((uint32_t)(b2) & 0x3F) << 6) | \
148 ((uint32_t)(b3) & 0x3F));
150 #define U8_SIMPLE_SWAP(a, b, t) \
155 #define U8_ASCII_TOUPPER(c) \
156 (((c) >= 'a' && (c) <= 'z') ? (c) - 'a' + 'A' : (c))
158 #define U8_ASCII_TOLOWER(c) \
159 (((c) >= 'A' && (c) <= 'Z') ? (c) - 'A' + 'a' : (c))
161 #define U8_ISASCII(c) (((uchar_t)(c)) < 0x80U)
163 * The following macro assumes that the two characters that are to be
164 * swapped are adjacent to each other and 'a' comes before 'b'.
166 * If the assumptions are not met, then, the macro will fail.
168 #define U8_SWAP_COMB_MARKS(a, b) \
169 for (k = 0; k < disp[(a)]; k++) \
170 u8t[k] = u8s[start[(a)] + k]; \
171 for (k = 0; k < disp[(b)]; k++) \
172 u8s[start[(a)] + k] = u8s[start[(b)] + k]; \
173 start[(b)] = start[(a)] + disp[(b)]; \
174 for (k = 0; k < disp[(a)]; k++) \
175 u8s[start[(b)] + k] = u8t[k]; \
176 U8_SIMPLE_SWAP(comb_class[(a)], comb_class[(b)], tc); \
177 U8_SIMPLE_SWAP(disp[(a)], disp[(b)], tc);
179 /* The possible states during normalization. */
182 U8_STATE_HANGUL_L
= 1,
183 U8_STATE_HANGUL_LV
= 2,
184 U8_STATE_HANGUL_LVT
= 3,
185 U8_STATE_HANGUL_V
= 4,
186 U8_STATE_HANGUL_T
= 5,
187 U8_STATE_COMBINING_MARK
= 6
188 } u8_normalization_states_t
;
191 * The three vectors at below are used to check bytes of a given UTF-8
192 * character are valid and not containing any malformed byte values.
194 * We used to have a quite relaxed UTF-8 binary representation but then there
195 * was some security related issues and so the Unicode Consortium defined
196 * and announced the UTF-8 Corrigendum at Unicode 3.1 and then refined it
197 * one more time at the Unicode 3.2. The following three tables are based on
201 #define U8_ILLEGAL_NEXT_BYTE_COMMON(c) ((c) < 0x80 || (c) > 0xBF)
203 #define I_ U8_ILLEGAL_CHAR
204 #define O_ U8_OUT_OF_RANGE_CHAR
206 static const int8_t u8_number_of_bytes
[0x100] = {
207 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
208 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
209 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
210 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
211 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
212 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
213 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
214 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,
216 /* 80 81 82 83 84 85 86 87 88 89 8A 8B 8C 8D 8E 8F */
217 I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
,
219 /* 90 91 92 93 94 95 96 97 98 99 9A 9B 9C 9D 9E 9F */
220 I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
,
222 /* A0 A1 A2 A3 A4 A5 A6 A7 A8 A9 AA AB AC AD AE AF */
223 I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
,
225 /* B0 B1 B2 B3 B4 B5 B6 B7 B8 B9 BA BB BC BD BE BF */
226 I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
, I_
,
228 /* C0 C1 C2 C3 C4 C5 C6 C7 C8 C9 CA CB CC CD CE CF */
229 I_
, I_
, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
231 /* D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 DA DB DC DD DE DF */
232 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,
234 /* E0 E1 E2 E3 E4 E5 E6 E7 E8 E9 EA EB EC ED EE EF */
235 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 3,
237 /* F0 F1 F2 F3 F4 F5 F6 F7 F8 F9 FA FB FC FD FE FF */
238 4, 4, 4, 4, 4, O_
, O_
, O_
, O_
, O_
, O_
, O_
, O_
, O_
, O_
, O_
,
244 static const uint8_t u8_valid_min_2nd_byte
[0x100] = {
245 0, 0, 0, 0, 0, 0, 0, 0,
246 0, 0, 0, 0, 0, 0, 0, 0,
247 0, 0, 0, 0, 0, 0, 0, 0,
248 0, 0, 0, 0, 0, 0, 0, 0,
249 0, 0, 0, 0, 0, 0, 0, 0,
250 0, 0, 0, 0, 0, 0, 0, 0,
251 0, 0, 0, 0, 0, 0, 0, 0,
252 0, 0, 0, 0, 0, 0, 0, 0,
253 0, 0, 0, 0, 0, 0, 0, 0,
254 0, 0, 0, 0, 0, 0, 0, 0,
255 0, 0, 0, 0, 0, 0, 0, 0,
256 0, 0, 0, 0, 0, 0, 0, 0,
257 0, 0, 0, 0, 0, 0, 0, 0,
258 0, 0, 0, 0, 0, 0, 0, 0,
259 0, 0, 0, 0, 0, 0, 0, 0,
260 0, 0, 0, 0, 0, 0, 0, 0,
261 0, 0, 0, 0, 0, 0, 0, 0,
262 0, 0, 0, 0, 0, 0, 0, 0,
263 0, 0, 0, 0, 0, 0, 0, 0,
264 0, 0, 0, 0, 0, 0, 0, 0,
265 0, 0, 0, 0, 0, 0, 0, 0,
266 0, 0, 0, 0, 0, 0, 0, 0,
267 0, 0, 0, 0, 0, 0, 0, 0,
268 0, 0, 0, 0, 0, 0, 0, 0,
269 /* C0 C1 C2 C3 C4 C5 C6 C7 */
270 0, 0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
271 /* C8 C9 CA CB CC CD CE CF */
272 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
273 /* D0 D1 D2 D3 D4 D5 D6 D7 */
274 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
275 /* D8 D9 DA DB DC DD DE DF */
276 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
277 /* E0 E1 E2 E3 E4 E5 E6 E7 */
278 0xa0, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
279 /* E8 E9 EA EB EC ED EE EF */
280 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80, 0x80,
281 /* F0 F1 F2 F3 F4 F5 F6 F7 */
282 0x90, 0x80, 0x80, 0x80, 0x80, 0, 0, 0,
283 0, 0, 0, 0, 0, 0, 0, 0,
286 static const uint8_t u8_valid_max_2nd_byte
[0x100] = {
287 0, 0, 0, 0, 0, 0, 0, 0,
288 0, 0, 0, 0, 0, 0, 0, 0,
289 0, 0, 0, 0, 0, 0, 0, 0,
290 0, 0, 0, 0, 0, 0, 0, 0,
291 0, 0, 0, 0, 0, 0, 0, 0,
292 0, 0, 0, 0, 0, 0, 0, 0,
293 0, 0, 0, 0, 0, 0, 0, 0,
294 0, 0, 0, 0, 0, 0, 0, 0,
295 0, 0, 0, 0, 0, 0, 0, 0,
296 0, 0, 0, 0, 0, 0, 0, 0,
297 0, 0, 0, 0, 0, 0, 0, 0,
298 0, 0, 0, 0, 0, 0, 0, 0,
299 0, 0, 0, 0, 0, 0, 0, 0,
300 0, 0, 0, 0, 0, 0, 0, 0,
301 0, 0, 0, 0, 0, 0, 0, 0,
302 0, 0, 0, 0, 0, 0, 0, 0,
303 0, 0, 0, 0, 0, 0, 0, 0,
304 0, 0, 0, 0, 0, 0, 0, 0,
305 0, 0, 0, 0, 0, 0, 0, 0,
306 0, 0, 0, 0, 0, 0, 0, 0,
307 0, 0, 0, 0, 0, 0, 0, 0,
308 0, 0, 0, 0, 0, 0, 0, 0,
309 0, 0, 0, 0, 0, 0, 0, 0,
310 0, 0, 0, 0, 0, 0, 0, 0,
311 /* C0 C1 C2 C3 C4 C5 C6 C7 */
312 0, 0, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
313 /* C8 C9 CA CB CC CD CE CF */
314 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
315 /* D0 D1 D2 D3 D4 D5 D6 D7 */
316 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
317 /* D8 D9 DA DB DC DD DE DF */
318 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
319 /* E0 E1 E2 E3 E4 E5 E6 E7 */
320 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0xbf,
321 /* E8 E9 EA EB EC ED EE EF */
322 0xbf, 0xbf, 0xbf, 0xbf, 0xbf, 0x9f, 0xbf, 0xbf,
323 /* F0 F1 F2 F3 F4 F5 F6 F7 */
324 0xbf, 0xbf, 0xbf, 0xbf, 0x8f, 0, 0, 0,
325 0, 0, 0, 0, 0, 0, 0, 0,
330 * The u8_validate() validates on the given UTF-8 character string and
331 * calculate the byte length. It is quite similar to mblen(3C) except that
332 * this will validate against the list of characters if required and
333 * specific to UTF-8 and Unicode.
336 u8_validate(const char *u8str
, size_t n
, char **list
, int flag
, int *errnum
)
348 boolean_t no_need_to_validate_entire
;
349 boolean_t check_additional
;
350 boolean_t validate_ucs2_range_only
;
355 ib
= (uchar_t
*)u8str
;
360 no_need_to_validate_entire
= ! (flag
& U8_VALIDATE_ENTIRE
);
361 check_additional
= flag
& U8_VALIDATE_CHECK_ADDITIONAL
;
362 validate_ucs2_range_only
= flag
& U8_VALIDATE_UCS2_RANGE
;
364 while (ib
< ibtail
) {
366 * The first byte of a UTF-8 character tells how many
367 * bytes will follow for the character. If the first byte
368 * is an illegal byte value or out of range value, we just
369 * return -1 with an appropriate error number.
371 sz
= u8_number_of_bytes
[*ib
];
372 if (sz
== U8_ILLEGAL_CHAR
) {
377 if (sz
== U8_OUT_OF_RANGE_CHAR
||
378 (validate_ucs2_range_only
&& sz
> U8_MAX_BYTES_UCS2
)) {
384 * If we don't have enough bytes to check on, that's also
385 * an error. As you can see, we give illegal byte sequence
386 * checking higher priority then EINVAL cases.
388 if ((ibtail
- ib
) < sz
) {
398 * Check on the multi-byte UTF-8 character. For more
399 * details on this, see comment added for the used
400 * data structures at the beginning of the file.
405 for (i
= 1; i
< sz
; i
++) {
407 if (*ib
< u8_valid_min_2nd_byte
[f
] ||
408 *ib
> u8_valid_max_2nd_byte
[f
]) {
413 } else if (U8_ILLEGAL_NEXT_BYTE_COMMON(*ib
)) {
422 if (check_additional
) {
423 for (p
= (uchar_t
**)list
, i
= 0; p
[i
]; i
++) {
427 if (*s1
!= *s2
|| *s2
== '\0')
433 if (s1
>= ib
&& *s2
== '\0') {
440 if (no_need_to_validate_entire
)
448 * The do_case_conv() looks at the mapping tables and returns found
449 * bytes if any. If not found, the input bytes are returned. The function
450 * always terminate the return bytes with a null character assuming that
451 * there are plenty of room to do so.
453 * The case conversions are simple case conversions mapping a character to
454 * another character as specified in the Unicode data. The byte size of
455 * the mapped character could be different from that of the input character.
457 * The return value is the byte length of the returned character excluding
458 * the terminating null byte.
461 do_case_conv(int uv
, uchar_t
*u8s
, uchar_t
*s
, int sz
, boolean_t is_it_toupper
)
474 * At this point, the only possible values for sz are 2, 3, and 4.
475 * The u8s should point to a vector that is well beyond the size of
481 } else if (sz
== 3) {
485 } else if (sz
== 4) {
491 /* This is not possible but just in case as a fallback. */
493 *u8s
= U8_ASCII_TOUPPER(*s
);
495 *u8s
= U8_ASCII_TOLOWER(*s
);
503 * Let's find out if we have a corresponding character.
505 b1
= u8_common_b1_tbl
[uv
][b1
];
506 if (b1
== U8_TBL_ELEMENT_NOT_DEF
)
509 b2
= u8_case_common_b2_tbl
[uv
][b1
][b2
];
510 if (b2
== U8_TBL_ELEMENT_NOT_DEF
)
514 b3_tbl
= u8_toupper_b3_tbl
[uv
][b2
][b3
].tbl_id
;
515 if (b3_tbl
== U8_TBL_ELEMENT_NOT_DEF
)
518 start_id
= u8_toupper_b4_tbl
[uv
][b3_tbl
][b4
];
519 end_id
= u8_toupper_b4_tbl
[uv
][b3_tbl
][b4
+ 1];
521 /* Either there is no match or an error at the table. */
522 if (start_id
>= end_id
|| (end_id
- start_id
) > U8_MB_CUR_MAX
)
525 b3_base
= u8_toupper_b3_tbl
[uv
][b2
][b3
].base
;
527 for (i
= 0; start_id
< end_id
; start_id
++)
528 u8s
[i
++] = u8_toupper_final_tbl
[uv
][b3_base
+ start_id
];
530 #ifdef U8_STRCMP_CI_LOWER
531 b3_tbl
= u8_tolower_b3_tbl
[uv
][b2
][b3
].tbl_id
;
532 if (b3_tbl
== U8_TBL_ELEMENT_NOT_DEF
)
535 start_id
= u8_tolower_b4_tbl
[uv
][b3_tbl
][b4
];
536 end_id
= u8_tolower_b4_tbl
[uv
][b3_tbl
][b4
+ 1];
538 if (start_id
>= end_id
|| (end_id
- start_id
) > U8_MB_CUR_MAX
)
541 b3_base
= u8_tolower_b3_tbl
[uv
][b2
][b3
].base
;
543 for (i
= 0; start_id
< end_id
; start_id
++)
544 u8s
[i
++] = u8_tolower_final_tbl
[uv
][b3_base
+ start_id
];
546 __builtin_unreachable();
551 * If i is still zero, that means there is no corresponding character.
562 * The do_case_compare() function compares the two input strings, s1 and s2,
563 * one character at a time doing case conversions if applicable and return
564 * the comparison result as like strcmp().
566 * Since, in empirical sense, most of text data are 7-bit ASCII characters,
567 * we treat the 7-bit ASCII characters as a special case trying to yield
568 * faster processing time.
571 do_case_compare(size_t uv
, uchar_t
*s1
, uchar_t
*s2
, size_t n1
,
572 size_t n2
, boolean_t is_it_toupper
, int *errnum
)
580 uchar_t u8s1
[U8_MB_CUR_MAX
+ 1];
581 uchar_t u8s2
[U8_MB_CUR_MAX
+ 1];
584 while (i1
< n1
&& i2
< n2
) {
586 * Find out what would be the byte length for this UTF-8
587 * character at string s1 and also find out if this is
588 * an illegal start byte or not and if so, issue a proper
589 * error number and yet treat this byte as a character.
591 sz1
= u8_number_of_bytes
[*s1
];
598 * For 7-bit ASCII characters mainly, we do a quick case
599 * conversion right at here.
601 * If we don't have enough bytes for this character, issue
602 * an EINVAL error and use what are available.
604 * If we have enough bytes, find out if there is
605 * a corresponding uppercase character and if so, copy over
606 * the bytes for a comparison later. If there is no
607 * corresponding uppercase character, then, use what we have
608 * for the comparison.
612 u8s1
[0] = U8_ASCII_TOUPPER(*s1
);
614 u8s1
[0] = U8_ASCII_TOLOWER(*s1
);
617 } else if ((i1
+ sz1
) > n1
) {
619 for (j
= 0; (i1
+ j
) < n1
; )
623 (void) do_case_conv(uv
, u8s1
, s1
, sz1
, is_it_toupper
);
627 /* Do the same for the string s2. */
628 sz2
= u8_number_of_bytes
[*s2
];
636 u8s2
[0] = U8_ASCII_TOUPPER(*s2
);
638 u8s2
[0] = U8_ASCII_TOLOWER(*s2
);
641 } else if ((i2
+ sz2
) > n2
) {
643 for (j
= 0; (i2
+ j
) < n2
; )
647 (void) do_case_conv(uv
, u8s2
, s2
, sz2
, is_it_toupper
);
651 /* Now compare the two characters. */
652 if (sz1
== 1 && sz2
== 1) {
658 f
= strcmp((const char *)u8s1
, (const char *)u8s2
);
664 * They were the same. Let's move on to the next
672 * We compared until the end of either or both strings.
674 * If we reached to or went over the ends for the both, that means
677 * If we reached only one of the two ends, that means the other string
678 * has something which then the fact can be used to determine
690 * The combining_class() function checks on the given bytes and find out
691 * the corresponding Unicode combining class value. The return value 0 means
692 * it is a Starter. Any illegal UTF-8 character will also be treated as
696 combining_class(size_t uv
, uchar_t
*s
, size_t sz
)
703 if (sz
== 1 || sz
> 4)
709 } else if (sz
== 3) {
713 } else if (sz
== 4) {
720 b1
= u8_common_b1_tbl
[uv
][b1
];
721 if (b1
== U8_TBL_ELEMENT_NOT_DEF
)
724 b2
= u8_combining_class_b2_tbl
[uv
][b1
][b2
];
725 if (b2
== U8_TBL_ELEMENT_NOT_DEF
)
728 b3
= u8_combining_class_b3_tbl
[uv
][b2
][b3
];
729 if (b3
== U8_TBL_ELEMENT_NOT_DEF
)
732 return (u8_combining_class_b4_tbl
[uv
][b3
][b4
]);
736 * The do_decomp() function finds out a matching decomposition if any
737 * and return. If there is no match, the input bytes are copied and returned.
738 * The function also checks if there is a Hangul, decomposes it if necessary
741 * To save time, a single byte 7-bit ASCII character should be handled by
744 * The function returns the number of bytes returned sans always terminating
745 * the null byte. It will also return a state that will tell if there was
746 * a Hangul character decomposed which then will be used by the caller.
749 do_decomp(size_t uv
, uchar_t
*u8s
, uchar_t
*s
, int sz
,
750 boolean_t canonical_decomposition
, u8_normalization_states_t
*state
)
767 } else if (sz
== 3) {
768 /* Convert it to a Unicode scalar value. */
769 U8_PUT_3BYTES_INTO_UTF32(u1
, s
[0], s
[1], s
[2]);
772 * If this is a Hangul syllable, we decompose it into
773 * a leading consonant, a vowel, and an optional trailing
774 * consonant and then return.
776 if (U8_HANGUL_SYLLABLE(u1
)) {
777 u1
-= U8_HANGUL_SYL_FIRST
;
779 b1
= U8_HANGUL_JAMO_L_FIRST
+ u1
/ U8_HANGUL_VT_COUNT
;
780 b2
= U8_HANGUL_JAMO_V_FIRST
+ (u1
% U8_HANGUL_VT_COUNT
)
782 b3
= u1
% U8_HANGUL_T_COUNT
;
784 U8_SAVE_HANGUL_AS_UTF8(u8s
, 0, 1, 2, b1
);
785 U8_SAVE_HANGUL_AS_UTF8(u8s
, 3, 4, 5, b2
);
787 b3
+= U8_HANGUL_JAMO_T_FIRST
;
788 U8_SAVE_HANGUL_AS_UTF8(u8s
, 6, 7, 8, b3
);
791 *state
= U8_STATE_HANGUL_LVT
;
796 *state
= U8_STATE_HANGUL_LV
;
806 * If this is a Hangul Jamo, we know there is nothing
807 * further that we can decompose.
809 if (U8_HANGUL_JAMO_L(u1
)) {
810 *state
= U8_STATE_HANGUL_L
;
814 if (U8_HANGUL_JAMO_V(u1
)) {
815 if (*state
== U8_STATE_HANGUL_L
)
816 *state
= U8_STATE_HANGUL_LV
;
818 *state
= U8_STATE_HANGUL_V
;
822 if (U8_HANGUL_JAMO_T(u1
)) {
823 if (*state
== U8_STATE_HANGUL_LV
)
824 *state
= U8_STATE_HANGUL_LVT
;
826 *state
= U8_STATE_HANGUL_T
;
829 } else if (sz
== 4) {
837 * This is a fallback and should not happen if the function
838 * was called properly.
842 *state
= U8_STATE_START
;
847 * At this point, this routine does not know what it would get.
848 * The caller should sort it out if the state isn't a Hangul one.
850 *state
= U8_STATE_START
;
852 /* Try to find matching decomposition mapping byte sequence. */
853 b1
= u8_common_b1_tbl
[uv
][b1
];
854 if (b1
== U8_TBL_ELEMENT_NOT_DEF
)
857 b2
= u8_decomp_b2_tbl
[uv
][b1
][b2
];
858 if (b2
== U8_TBL_ELEMENT_NOT_DEF
)
861 b3_tbl
= u8_decomp_b3_tbl
[uv
][b2
][b3
].tbl_id
;
862 if (b3_tbl
== U8_TBL_ELEMENT_NOT_DEF
)
866 * If b3_tbl is bigger than or equal to U8_16BIT_TABLE_INDICATOR
867 * which is 0x8000, this means we couldn't fit the mappings into
868 * the cardinality of a unsigned byte.
870 if (b3_tbl
>= U8_16BIT_TABLE_INDICATOR
) {
871 b3_tbl
-= U8_16BIT_TABLE_INDICATOR
;
872 start_id
= u8_decomp_b4_16bit_tbl
[uv
][b3_tbl
][b4
];
873 end_id
= u8_decomp_b4_16bit_tbl
[uv
][b3_tbl
][b4
+ 1];
875 // cppcheck-suppress arrayIndexOutOfBoundsCond
876 start_id
= u8_decomp_b4_tbl
[uv
][b3_tbl
][b4
];
877 // cppcheck-suppress arrayIndexOutOfBoundsCond
878 end_id
= u8_decomp_b4_tbl
[uv
][b3_tbl
][b4
+ 1];
881 /* This also means there wasn't any matching decomposition. */
882 if (start_id
>= end_id
)
886 * The final table for decomposition mappings has three types of
887 * byte sequences depending on whether a mapping is for compatibility
888 * decomposition, canonical decomposition, or both like the following:
890 * (1) Compatibility decomposition mappings:
892 * +---+---+-...-+---+
893 * | B0| B1| ... | Bm|
894 * +---+---+-...-+---+
896 * The first byte, B0, is always less than 0xF5 (U8_DECOMP_BOTH).
898 * (2) Canonical decomposition mappings:
900 * +---+---+---+-...-+---+
901 * | T | b0| b1| ... | bn|
902 * +---+---+---+-...-+---+
904 * where the first byte, T, is 0xF6 (U8_DECOMP_CANONICAL).
908 * +---+---+---+---+-...-+---+---+---+-...-+---+
909 * | T | D | b0| b1| ... | bn| B0| B1| ... | Bm|
910 * +---+---+---+---+-...-+---+---+---+-...-+---+
912 * where T is 0xF5 (U8_DECOMP_BOTH) and D is a displacement
913 * byte, b0 to bn are canonical mapping bytes and B0 to Bm are
914 * compatibility mapping bytes.
916 * Note that compatibility decomposition means doing recursive
917 * decompositions using both compatibility decomposition mappings and
918 * canonical decomposition mappings. On the other hand, canonical
919 * decomposition means doing recursive decompositions using only
920 * canonical decomposition mappings. Since the table we have has gone
921 * through the recursions already, we do not need to do so during
922 * runtime, i.e., the table has been completely flattened out
926 b3_base
= u8_decomp_b3_tbl
[uv
][b2
][b3
].base
;
928 /* Get the type, T, of the byte sequence. */
929 b1
= u8_decomp_final_tbl
[uv
][b3_base
+ start_id
];
932 * If necessary, adjust start_id, end_id, or both. Note that if
933 * this is compatibility decomposition mapping, there is no
936 if (canonical_decomposition
) {
937 /* Is the mapping only for compatibility decomposition? */
938 if (b1
< U8_DECOMP_BOTH
)
943 if (b1
== U8_DECOMP_BOTH
) {
945 u8_decomp_final_tbl
[uv
][b3_base
+ start_id
];
950 * Unless this is a compatibility decomposition mapping,
951 * we adjust the start_id.
953 if (b1
== U8_DECOMP_BOTH
) {
955 start_id
+= u8_decomp_final_tbl
[uv
][b3_base
+ start_id
];
956 } else if (b1
== U8_DECOMP_CANONICAL
) {
961 for (i
= 0; start_id
< end_id
; start_id
++)
962 u8s
[i
++] = u8_decomp_final_tbl
[uv
][b3_base
+ start_id
];
969 * The find_composition_start() function uses the character bytes given and
970 * find out the matching composition mappings if any and return the address
971 * to the composition mappings as explained in the do_composition().
974 find_composition_start(size_t uv
, uchar_t
*s
, size_t sz
)
987 } else if (sz
== 2) {
990 } else if (sz
== 3) {
994 } else if (sz
== 4) {
1001 * This is a fallback and should not happen if the function
1002 * was called properly.
1007 b1
= u8_composition_b1_tbl
[uv
][b1
];
1008 if (b1
== U8_TBL_ELEMENT_NOT_DEF
)
1011 b2
= u8_composition_b2_tbl
[uv
][b1
][b2
];
1012 if (b2
== U8_TBL_ELEMENT_NOT_DEF
)
1015 b3_tbl
= u8_composition_b3_tbl
[uv
][b2
][b3
].tbl_id
;
1016 if (b3_tbl
== U8_TBL_ELEMENT_NOT_DEF
)
1019 if (b3_tbl
>= U8_16BIT_TABLE_INDICATOR
) {
1020 b3_tbl
-= U8_16BIT_TABLE_INDICATOR
;
1021 start_id
= u8_composition_b4_16bit_tbl
[uv
][b3_tbl
][b4
];
1022 end_id
= u8_composition_b4_16bit_tbl
[uv
][b3_tbl
][b4
+ 1];
1024 // cppcheck-suppress arrayIndexOutOfBoundsCond
1025 start_id
= u8_composition_b4_tbl
[uv
][b3_tbl
][b4
];
1026 // cppcheck-suppress arrayIndexOutOfBoundsCond
1027 end_id
= u8_composition_b4_tbl
[uv
][b3_tbl
][b4
+ 1];
1030 if (start_id
>= end_id
)
1033 b3_base
= u8_composition_b3_tbl
[uv
][b2
][b3
].base
;
1035 return ((uchar_t
*)&(u8_composition_final_tbl
[uv
][b3_base
+ start_id
]));
1039 * The blocked() function checks on the combining class values of previous
1040 * characters in this sequence and return whether it is blocked or not.
1043 blocked(uchar_t
*comb_class
, size_t last
)
1045 uchar_t my_comb_class
;
1048 my_comb_class
= comb_class
[last
];
1049 for (i
= 1; i
< last
; i
++)
1050 if (comb_class
[i
] >= my_comb_class
||
1051 comb_class
[i
] == U8_COMBINING_CLASS_STARTER
)
1058 * The do_composition() reads the character string pointed by 's' and
1059 * do necessary canonical composition and then copy over the result back to
1062 * The input argument 's' cannot contain more than 32 characters.
1065 do_composition(size_t uv
, uchar_t
*s
, uchar_t
*comb_class
, uchar_t
*start
,
1066 uchar_t
*disp
, size_t last
, uchar_t
**os
, uchar_t
*oslast
)
1068 uchar_t t
[U8_STREAM_SAFE_TEXT_MAX
+ 1];
1069 uchar_t tc
[U8_MB_CUR_MAX
] = { '\0' };
1070 uint8_t saved_marks
[U8_MAX_CHARS_A_SEQ
];
1071 size_t saved_marks_count
;
1085 boolean_t match_not_found
= B_TRUE
;
1088 * This should never happen unless the callers are doing some strange
1089 * and unexpected things.
1091 * The "last" is the index pointing to the last character not last + 1.
1093 if (last
>= U8_MAX_CHARS_A_SEQ
)
1094 last
= U8_UPPER_LIMIT_IN_A_SEQ
;
1096 for (i
= l
= 0; i
<= last
; i
++) {
1098 * The last or any non-Starters at the beginning, we don't
1099 * have any chance to do composition and so we just copy them
1100 * to the temporary buffer.
1102 if (i
>= last
|| comb_class
[i
] != U8_COMBINING_CLASS_STARTER
) {
1106 for (k
= 0; k
< size
; k
++)
1112 * If this could be a start of Hangul Jamos, then, we try to
1115 if (s
[start
[i
]] == U8_HANGUL_JAMO_1ST_BYTE
) {
1116 U8_PUT_3BYTES_INTO_UTF32(u1
, s
[start
[i
]],
1117 s
[start
[i
] + 1], s
[start
[i
] + 2]);
1118 U8_PUT_3BYTES_INTO_UTF32(u2
, s
[start
[i
] + 3],
1119 s
[start
[i
] + 4], s
[start
[i
] + 5]);
1121 if (U8_HANGUL_JAMO_L(u1
) && U8_HANGUL_JAMO_V(u2
)) {
1122 u1
-= U8_HANGUL_JAMO_L_FIRST
;
1123 u2
-= U8_HANGUL_JAMO_V_FIRST
;
1124 u1
= U8_HANGUL_SYL_FIRST
+
1125 (u1
* U8_HANGUL_V_COUNT
+ u2
) *
1130 U8_PUT_3BYTES_INTO_UTF32(u2
,
1131 s
[start
[i
]], s
[start
[i
] + 1],
1134 if (U8_HANGUL_JAMO_T(u2
)) {
1136 U8_HANGUL_JAMO_T_FIRST
;
1141 U8_SAVE_HANGUL_AS_UTF8(t
+ l
, 0, 1, 2, u1
);
1149 * Let's then find out if this Starter has composition
1152 p
= find_composition_start(uv
, s
+ start
[i
], disp
[i
]);
1157 * We have a Starter with composition mapping and the next
1158 * character is a non-Starter. Let's try to find out if
1159 * we can do composition.
1165 saved_marks_count
= 0;
1172 * The next for() loop compares the non-Starter pointed by
1173 * 'q' with the possible (joinable) characters pointed by 'p'.
1175 * The composition final table entry pointed by the 'p'
1176 * looks like the following:
1178 * +---+---+---+-...-+---+---+---+---+-...-+---+---+
1179 * | C | b0| b2| ... | bn| F | B0| B1| ... | Bm| F |
1180 * +---+---+---+-...-+---+---+---+---+-...-+---+---+
1182 * where C is the count byte indicating the number of
1183 * mapping pairs where each pair would be look like
1184 * (b0-bn F, B0-Bm F). The b0-bn are the bytes of the second
1185 * character of a canonical decomposition and the B0-Bm are
1186 * the bytes of a matching composite character. The F is
1187 * a filler byte after each character as the separator.
1190 match_not_found
= B_TRUE
;
1192 for (C
= *p
++; C
> 0; C
--) {
1193 for (k
= 0; k
< size
; p
++, k
++)
1197 /* Have we found it? */
1198 if (k
>= size
&& *p
== U8_TBL_ELEMENT_FILLER
) {
1199 match_not_found
= B_FALSE
;
1203 while (*++p
!= U8_TBL_ELEMENT_FILLER
)
1209 /* We didn't find; skip to the next pair. */
1210 if (*p
!= U8_TBL_ELEMENT_FILLER
)
1211 while (*++p
!= U8_TBL_ELEMENT_FILLER
)
1213 while (*++p
!= U8_TBL_ELEMENT_FILLER
)
1219 * If there was no match, we will need to save the combining
1220 * mark for later appending. After that, if the next one
1221 * is a non-Starter and not blocked, then, we try once
1222 * again to do composition with the next non-Starter.
1224 * If there was no match and this was a Starter, then,
1225 * this is a new start.
1227 * If there was a match and a composition done and we have
1228 * more to check on, then, we retrieve a new composition final
1229 * table entry for the composite and then try to do the
1230 * composition again.
1233 if (match_not_found
) {
1234 if (comb_class
[i
] == U8_COMBINING_CLASS_STARTER
) {
1239 saved_marks
[saved_marks_count
++] = i
;
1244 if (blocked(comb_class
, i
+ 1))
1245 saved_marks
[saved_marks_count
++] = ++i
;
1251 goto TRY_THE_NEXT_MARK
;
1253 } else if (i
< last
) {
1254 p
= find_composition_start(uv
, t
+ saved_l
,
1258 goto TRY_THE_NEXT_MARK
;
1263 * There is no more composition possible.
1265 * If there was no composition what so ever then we copy
1266 * over the original Starter and then append any non-Starters
1267 * remaining at the target string sequentially after that.
1271 p
= s
+ start
[saved_i
];
1272 size
= disp
[saved_i
];
1273 for (j
= 0; j
< size
; j
++)
1277 for (k
= 0; k
< saved_marks_count
; k
++) {
1278 p
= s
+ start
[saved_marks
[k
]];
1279 size
= disp
[saved_marks
[k
]];
1280 for (j
= 0; j
< size
; j
++)
1286 * If the last character is a Starter and if we have a character
1287 * (possibly another Starter) that can be turned into a composite,
1288 * we do so and we do so until there is no more of composition
1291 if (comb_class
[last
] == U8_COMBINING_CLASS_STARTER
) {
1293 saved_l
= l
- disp
[last
];
1295 while (p
< oslast
) {
1296 int8_t number_of_bytes
= u8_number_of_bytes
[*p
];
1298 if (number_of_bytes
<= 1)
1300 size
= number_of_bytes
;
1301 if ((p
+ size
) > oslast
)
1306 for (i
= 0; i
< size
; i
++)
1309 q
= find_composition_start(uv
, t
+ saved_l
,
1316 match_not_found
= B_TRUE
;
1318 for (C
= *q
++; C
> 0; C
--) {
1319 for (k
= 0; k
< size
; q
++, k
++)
1323 if (k
>= size
&& *q
== U8_TBL_ELEMENT_FILLER
) {
1324 match_not_found
= B_FALSE
;
1328 while (*++q
!= U8_TBL_ELEMENT_FILLER
) {
1330 * This is practically
1331 * impossible but we don't
1332 * want to take any chances.
1335 U8_STREAM_SAFE_TEXT_MAX
) {
1345 if (*q
!= U8_TBL_ELEMENT_FILLER
)
1346 while (*++q
!= U8_TBL_ELEMENT_FILLER
)
1348 while (*++q
!= U8_TBL_ELEMENT_FILLER
)
1353 if (match_not_found
) {
1363 * Now we copy over the temporary string to the target string.
1364 * Since composition always reduces the number of characters or
1365 * the number of characters stay, we don't need to worry about
1366 * the buffer overflow here.
1368 for (i
= 0; i
< l
; i
++)
1376 * The collect_a_seq() function checks on the given string s, collect
1377 * a sequence of characters at u8s, and return the sequence. While it collects
1378 * a sequence, it also applies case conversion, canonical or compatibility
1379 * decomposition, canonical decomposition, or some or all of them and
1382 * The collected sequence cannot be bigger than 32 characters since if
1383 * it is having more than 31 characters, the sequence will be terminated
1384 * with a U+034F COMBINING GRAPHEME JOINER (CGJ) character and turned into
1385 * a Stream-Safe Text. The collected sequence is always terminated with
1386 * a null byte and the return value is the byte length of the sequence
1387 * including 0. The return value does not include the terminating
1391 collect_a_seq(size_t uv
, uchar_t
*u8s
, uchar_t
**source
, uchar_t
*slast
,
1392 boolean_t is_it_toupper
,
1393 boolean_t is_it_tolower
,
1394 boolean_t canonical_decomposition
,
1395 boolean_t compatibility_decomposition
,
1396 boolean_t canonical_composition
,
1397 int *errnum
, u8_normalization_states_t
*state
)
1406 uchar_t comb_class
[U8_MAX_CHARS_A_SEQ
];
1407 uchar_t disp
[U8_MAX_CHARS_A_SEQ
];
1408 uchar_t start
[U8_MAX_CHARS_A_SEQ
];
1409 uchar_t u8t
[U8_MB_CUR_MAX
] = { '\0' };
1410 uchar_t uts
[U8_STREAM_SAFE_TEXT_MAX
+ 1];
1417 * Save the source string pointer which we will return a changed
1418 * pointer if we do processing.
1423 * The following is a fallback for just in case callers are not
1424 * checking the string boundaries before the calling.
1433 * As the first thing, let's collect a character and do case
1434 * conversion if necessary.
1437 sz
= u8_number_of_bytes
[*s
];
1452 u8s
[0] = U8_ASCII_TOUPPER(*s
);
1453 else if (is_it_tolower
)
1454 u8s
[0] = U8_ASCII_TOLOWER(*s
);
1459 } else if ((s
+ sz
) > slast
) {
1462 for (i
= 0; s
< slast
; )
1470 if (is_it_toupper
|| is_it_tolower
) {
1471 i
= do_case_conv(uv
, u8s
, s
, sz
, is_it_toupper
);
1475 for (i
= 0; i
< sz
; )
1482 * And then canonical/compatibility decomposition followed by
1483 * an optional canonical composition. Please be noted that
1484 * canonical composition is done only when a decomposition is
1487 if (canonical_decomposition
|| compatibility_decomposition
) {
1489 *state
= U8_STATE_START
;
1499 saved_sz
= do_decomp(uv
, u8s
, u8s
, sz
,
1500 canonical_decomposition
, state
);
1504 for (i
= 0; i
< saved_sz
; ) {
1505 sz
= u8_number_of_bytes
[u8s
[i
]];
1507 comb_class
[last
] = combining_class(uv
,
1517 * Decomposition yields various Hangul related
1518 * states but not on combining marks. We need to
1519 * find out at here by checking on the last
1522 if (*state
== U8_STATE_START
) {
1523 if (comb_class
[last
- 1])
1524 *state
= U8_STATE_COMBINING_MARK
;
1531 sz
= u8_number_of_bytes
[*s
];
1534 * If this is an illegal character, an incomplete
1535 * character, or an 7-bit ASCII Starter character,
1536 * then we have collected a sequence; break and let
1537 * the next call deal with the two cases.
1539 * Note that this is okay only if you are using this
1540 * function with a fixed length string, not on
1541 * a buffer with multiple calls of one chunk at a time.
1545 } else if ((s
+ sz
) > slast
) {
1549 * If the previous character was a Hangul Jamo
1550 * and this character is a Hangul Jamo that
1551 * can be conjoined, we collect the Jamo.
1553 if (*s
== U8_HANGUL_JAMO_1ST_BYTE
) {
1554 U8_PUT_3BYTES_INTO_UTF32(u1
,
1555 *s
, *(s
+ 1), *(s
+ 2));
1557 if (U8_HANGUL_COMPOSABLE_L_V(*state
,
1560 *state
= U8_STATE_HANGUL_LV
;
1561 goto COLLECT_A_HANGUL
;
1564 if (U8_HANGUL_COMPOSABLE_LV_T(*state
,
1567 *state
= U8_STATE_HANGUL_LVT
;
1568 goto COLLECT_A_HANGUL
;
1573 * Regardless of whatever it was, if this is
1574 * a Starter, we don't collect the character
1575 * since that's a new start and we will deal
1576 * with it at the next time.
1578 i
= combining_class(uv
, s
, sz
);
1579 if (i
== U8_COMBINING_CLASS_STARTER
)
1583 * We know the current character is a combining
1584 * mark. If the previous character wasn't
1585 * a Starter (not Hangul) or a combining mark,
1586 * then, we don't collect this combining mark.
1588 if (*state
!= U8_STATE_START
&&
1589 *state
!= U8_STATE_COMBINING_MARK
)
1592 *state
= U8_STATE_COMBINING_MARK
;
1595 * If we collected a Starter and combining
1596 * marks up to 30, i.e., total 31 characters,
1597 * then, we terminate this degenerately long
1598 * combining sequence with a U+034F COMBINING
1599 * GRAPHEME JOINER (CGJ) which is 0xCD 0x8F in
1600 * UTF-8 and turn this into a Stream-Safe
1601 * Text. This will be extremely rare but
1604 * The following will also guarantee that
1605 * we are not writing more than 32 characters
1606 * plus a NULL at u8s[].
1608 if (last
>= U8_UPPER_LIMIT_IN_A_SEQ
) {
1610 *state
= U8_STATE_START
;
1611 comb_class
[last
] = 0;
1612 start
[last
] = saved_sz
;
1616 u8s
[saved_sz
++] = 0xCD;
1617 u8s
[saved_sz
++] = 0x8F;
1623 * Some combining marks also do decompose into
1624 * another combining mark or marks.
1626 if (*state
== U8_STATE_COMBINING_MARK
) {
1629 i
= do_decomp(uv
, uts
, s
, sz
,
1630 canonical_decomposition
, state
);
1631 for (j
= 0; j
< i
; ) {
1632 sz
= u8_number_of_bytes
[uts
[j
]];
1637 start
[last
] = saved_sz
+ j
;
1642 U8_UPPER_LIMIT_IN_A_SEQ
) {
1644 goto TURN_STREAM_SAFE
;
1649 *state
= U8_STATE_COMBINING_MARK
;
1653 for (i
= 0; i
< sz
; i
++)
1654 u8s
[saved_sz
++] = uts
[i
];
1656 comb_class
[last
] = i
;
1657 start
[last
] = saved_sz
;
1661 for (i
= 0; i
< sz
; i
++)
1662 u8s
[saved_sz
++] = *s
++;
1666 * If this is U+0345 COMBINING GREEK
1667 * YPOGEGRAMMENI (0xCD 0x85 in UTF-8), a.k.a.,
1668 * iota subscript, and need to be converted to
1669 * uppercase letter, convert it to U+0399 GREEK
1670 * CAPITAL LETTER IOTA (0xCE 0x99 in UTF-8),
1671 * i.e., convert to capital adscript form as
1672 * specified in the Unicode standard.
1674 * This is the only special case of (ambiguous)
1675 * case conversion at combining marks and
1676 * probably the standard will never have
1677 * anything similar like this in future.
1679 if (is_it_toupper
&& sz
>= 2 &&
1680 u8s
[saved_sz
- 2] == 0xCD &&
1681 u8s
[saved_sz
- 1] == 0x85) {
1682 u8s
[saved_sz
- 2] = 0xCE;
1683 u8s
[saved_sz
- 1] = 0x99;
1689 * Let's try to ensure a canonical ordering for the collected
1690 * combining marks. We do this only if we have collected
1691 * at least one more non-Starter. (The decomposition mapping
1692 * data tables have fully (and recursively) expanded and
1693 * canonically ordered decompositions.)
1695 * The U8_SWAP_COMB_MARKS() convenience macro has some
1696 * assumptions and we are meeting the assumptions.
1699 if (last
>= saved_last
) {
1700 for (i
= 0; i
< last
; i
++)
1701 for (j
= last
; j
> i
; j
--)
1702 if (comb_class
[j
] &&
1703 comb_class
[j
- 1] > comb_class
[j
]) {
1704 U8_SWAP_COMB_MARKS(j
- 1, j
);
1710 if (! canonical_composition
) {
1711 u8s
[saved_sz
] = '\0';
1716 * Now do the canonical composition. Note that we do this
1717 * only after a canonical or compatibility decomposition to
1718 * finish up NFC or NFKC.
1720 sz
= do_composition(uv
, u8s
, comb_class
, start
, disp
, last
,
1726 return ((size_t)sz
);
1730 * The do_norm_compare() function does string comparison based on Unicode
1731 * simple case mappings and Unicode Normalization definitions.
1733 * It does so by collecting a sequence of character at a time and comparing
1734 * the collected sequences from the strings.
1736 * The meanings on the return values are the same as the usual strcmp().
1739 do_norm_compare(size_t uv
, uchar_t
*s1
, uchar_t
*s2
, size_t n1
, size_t n2
,
1740 int flag
, int *errnum
)
1745 uchar_t u8s1
[U8_STREAM_SAFE_TEXT_MAX
+ 1];
1746 uchar_t u8s2
[U8_STREAM_SAFE_TEXT_MAX
+ 1];
1749 boolean_t is_it_toupper
;
1750 boolean_t is_it_tolower
;
1751 boolean_t canonical_decomposition
;
1752 boolean_t compatibility_decomposition
;
1753 boolean_t canonical_composition
;
1754 u8_normalization_states_t state
;
1759 is_it_toupper
= flag
& U8_TEXTPREP_TOUPPER
;
1760 #ifdef U8_STRCMP_CI_LOWER
1761 is_it_tolower
= flag
& U8_TEXTPREP_TOLOWER
;
1765 canonical_decomposition
= flag
& U8_CANON_DECOMP
;
1766 compatibility_decomposition
= flag
& U8_COMPAT_DECOMP
;
1767 canonical_composition
= flag
& U8_CANON_COMP
;
1769 while (s1
< s1last
&& s2
< s2last
) {
1771 * If the current character is a 7-bit ASCII and the last
1772 * character, or, if the current character and the next
1773 * character are both some 7-bit ASCII characters then
1774 * we treat the current character as a sequence.
1776 * In any other cases, we need to call collect_a_seq().
1779 if (U8_ISASCII(*s1
) && ((s1
+ 1) >= s1last
||
1780 ((s1
+ 1) < s1last
&& U8_ISASCII(*(s1
+ 1))))) {
1782 u8s1
[0] = U8_ASCII_TOUPPER(*s1
);
1783 else if (is_it_tolower
)
1784 u8s1
[0] = U8_ASCII_TOLOWER(*s1
);
1791 state
= U8_STATE_START
;
1792 sz1
= collect_a_seq(uv
, u8s1
, &s1
, s1last
,
1793 is_it_toupper
, is_it_tolower
,
1794 canonical_decomposition
,
1795 compatibility_decomposition
,
1796 canonical_composition
, errnum
, &state
);
1799 if (U8_ISASCII(*s2
) && ((s2
+ 1) >= s2last
||
1800 ((s2
+ 1) < s2last
&& U8_ISASCII(*(s2
+ 1))))) {
1802 u8s2
[0] = U8_ASCII_TOUPPER(*s2
);
1803 else if (is_it_tolower
)
1804 u8s2
[0] = U8_ASCII_TOLOWER(*s2
);
1811 state
= U8_STATE_START
;
1812 sz2
= collect_a_seq(uv
, u8s2
, &s2
, s2last
,
1813 is_it_toupper
, is_it_tolower
,
1814 canonical_decomposition
,
1815 compatibility_decomposition
,
1816 canonical_composition
, errnum
, &state
);
1820 * Now compare the two characters. If they are the same,
1821 * we move on to the next character sequences.
1823 if (sz1
== 1 && sz2
== 1) {
1829 result
= strcmp((const char *)u8s1
, (const char *)u8s2
);
1836 * We compared until the end of either or both strings.
1838 * If we reached to or went over the ends for the both, that means
1839 * they are the same.
1841 * If we reached only one end, that means the other string has
1842 * something which then can be used to determine the return value.
1853 * The u8_strcmp() function compares two UTF-8 strings quite similar to
1854 * the strcmp(). For the comparison, however, Unicode Normalization specific
1855 * equivalency and Unicode simple case conversion mappings based equivalency
1856 * can be requested and checked against.
1859 u8_strcmp(const char *s1
, const char *s2
, size_t n
, int flag
, size_t uv
,
1869 * Check on the requested Unicode version, case conversion, and
1870 * normalization flag values.
1873 if (uv
> U8_UNICODE_LATEST
) {
1875 uv
= U8_UNICODE_LATEST
;
1879 flag
= U8_STRCMP_CS
;
1881 #ifdef U8_STRCMP_CI_LOWER
1882 f
= flag
& (U8_STRCMP_CS
| U8_STRCMP_CI_UPPER
1883 | U8_STRCMP_CI_LOWER
);
1885 f
= flag
& (U8_STRCMP_CS
| U8_STRCMP_CI_UPPER
);
1888 flag
|= U8_STRCMP_CS
;
1890 #ifdef U8_STRCMP_CI_LOWER
1891 else if (f
!= U8_STRCMP_CS
&& f
!= U8_STRCMP_CI_UPPER
&&
1892 f
!= U8_STRCMP_CI_LOWER
)
1894 else if (f
!= U8_STRCMP_CS
&& f
!= U8_STRCMP_CI_UPPER
)
1898 flag
= U8_STRCMP_CS
;
1901 f
= flag
& (U8_CANON_DECOMP
| U8_COMPAT_DECOMP
| U8_CANON_COMP
);
1902 if (f
&& f
!= U8_STRCMP_NFD
&& f
!= U8_STRCMP_NFC
&&
1903 f
!= U8_STRCMP_NFKD
&& f
!= U8_STRCMP_NFKC
) {
1905 flag
= U8_STRCMP_CS
;
1909 if (flag
== U8_STRCMP_CS
) {
1910 return (n
== 0 ? strcmp(s1
, s2
) : strncmp(s1
, s2
, n
));
1923 * Simple case conversion can be done much faster and so we do
1924 * them separately here.
1926 if (flag
== U8_STRCMP_CI_UPPER
) {
1927 return (do_case_compare(uv
, (uchar_t
*)s1
, (uchar_t
*)s2
,
1928 n1
, n2
, B_TRUE
, errnum
));
1930 #ifdef U8_STRCMP_CI_LOWER
1931 else if (flag
== U8_STRCMP_CI_LOWER
) {
1932 return (do_case_compare(uv
, (uchar_t
*)s1
, (uchar_t
*)s2
,
1933 n1
, n2
, B_FALSE
, errnum
));
1937 return (do_norm_compare(uv
, (uchar_t
*)s1
, (uchar_t
*)s2
, n1
, n2
,
1942 u8_textprep_str(char *inarray
, size_t *inlen
, char *outarray
, size_t *outlen
,
1943 int flag
, size_t unicode_version
, int *errnum
)
1951 boolean_t do_not_ignore_null
;
1952 boolean_t do_not_ignore_invalid
;
1953 boolean_t is_it_toupper
;
1954 boolean_t is_it_tolower
;
1955 boolean_t canonical_decomposition
;
1956 boolean_t compatibility_decomposition
;
1957 boolean_t canonical_composition
;
1961 uchar_t u8s
[U8_STREAM_SAFE_TEXT_MAX
+ 1];
1962 u8_normalization_states_t state
;
1964 if (unicode_version
> U8_UNICODE_LATEST
) {
1966 return ((size_t)-1);
1969 #ifdef U8_TEXTPREP_TOLOWER
1970 f
= flag
& (U8_TEXTPREP_TOUPPER
| U8_TEXTPREP_TOLOWER
);
1971 if (f
== (U8_TEXTPREP_TOUPPER
| U8_TEXTPREP_TOLOWER
)) {
1973 return ((size_t)-1);
1977 f
= flag
& (U8_CANON_DECOMP
| U8_COMPAT_DECOMP
| U8_CANON_COMP
);
1978 if (f
&& f
!= U8_TEXTPREP_NFD
&& f
!= U8_TEXTPREP_NFC
&&
1979 f
!= U8_TEXTPREP_NFKD
&& f
!= U8_TEXTPREP_NFKC
) {
1981 return ((size_t)-1);
1984 if (inarray
== NULL
|| *inlen
== 0)
1987 if (outarray
== NULL
) {
1989 return ((size_t)-1);
1992 ib
= (uchar_t
*)inarray
;
1993 ob
= (uchar_t
*)outarray
;
1994 ibtail
= ib
+ *inlen
;
1995 obtail
= ob
+ *outlen
;
1997 do_not_ignore_null
= !(flag
& U8_TEXTPREP_IGNORE_NULL
);
1998 do_not_ignore_invalid
= !(flag
& U8_TEXTPREP_IGNORE_INVALID
);
1999 is_it_toupper
= flag
& U8_TEXTPREP_TOUPPER
;
2000 #ifdef U8_TEXTPREP_TOLOWER
2001 is_it_tolower
= flag
& U8_TEXTPREP_TOLOWER
;
2009 * If we don't have a normalization flag set, we do the simple case
2010 * conversion based text preparation separately below. Text
2011 * preparation involving Normalization will be done in the false task
2012 * block, again, separately since it will take much more time and
2013 * resource than doing simple case conversions.
2016 while (ib
< ibtail
) {
2017 if (*ib
== '\0' && do_not_ignore_null
)
2020 sz
= u8_number_of_bytes
[*ib
];
2023 if (do_not_ignore_invalid
) {
2025 ret_val
= (size_t)-1;
2036 ret_val
= (size_t)-1;
2041 *ob
= U8_ASCII_TOUPPER(*ib
);
2042 else if (is_it_tolower
)
2043 *ob
= U8_ASCII_TOLOWER(*ib
);
2048 } else if ((ib
+ sz
) > ibtail
) {
2049 if (do_not_ignore_invalid
) {
2051 ret_val
= (size_t)-1;
2055 if ((obtail
- ob
) < (ibtail
- ib
)) {
2057 ret_val
= (size_t)-1;
2062 * We treat the remaining incomplete character
2063 * bytes as a character.
2070 if (is_it_toupper
|| is_it_tolower
) {
2071 i
= do_case_conv(unicode_version
, u8s
,
2072 ib
, sz
, is_it_toupper
);
2074 if ((obtail
- ob
) < i
) {
2076 ret_val
= (size_t)-1;
2082 for (sz
= 0; sz
< i
; sz
++)
2085 if ((obtail
- ob
) < sz
) {
2087 ret_val
= (size_t)-1;
2091 for (i
= 0; i
< sz
; i
++)
2097 canonical_decomposition
= flag
& U8_CANON_DECOMP
;
2098 compatibility_decomposition
= flag
& U8_COMPAT_DECOMP
;
2099 canonical_composition
= flag
& U8_CANON_COMP
;
2101 while (ib
< ibtail
) {
2102 if (*ib
== '\0' && do_not_ignore_null
)
2106 * If the current character is a 7-bit ASCII
2107 * character and it is the last character, or,
2108 * if the current character is a 7-bit ASCII
2109 * character and the next character is also a 7-bit
2110 * ASCII character, then, we copy over this
2111 * character without going through collect_a_seq().
2113 * In any other cases, we need to look further with
2114 * the collect_a_seq() function.
2116 if (U8_ISASCII(*ib
) && ((ib
+ 1) >= ibtail
||
2117 ((ib
+ 1) < ibtail
&& U8_ISASCII(*(ib
+ 1))))) {
2120 ret_val
= (size_t)-1;
2125 *ob
= U8_ASCII_TOUPPER(*ib
);
2126 else if (is_it_tolower
)
2127 *ob
= U8_ASCII_TOLOWER(*ib
);
2134 state
= U8_STATE_START
;
2136 j
= collect_a_seq(unicode_version
, u8s
,
2140 canonical_decomposition
,
2141 compatibility_decomposition
,
2142 canonical_composition
,
2145 if (*errnum
&& do_not_ignore_invalid
) {
2146 ret_val
= (size_t)-1;
2150 if ((obtail
- ob
) < j
) {
2152 ret_val
= (size_t)-1;
2156 for (i
= 0; i
< j
; i
++)
2162 *inlen
= ibtail
- ib
;
2163 *outlen
= obtail
- ob
;
2168 EXPORT_SYMBOL(u8_validate
);
2169 EXPORT_SYMBOL(u8_strcmp
);
2170 EXPORT_SYMBOL(u8_textprep_str
);