4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2017, 2018 by Delphix. All rights reserved.
25 #include <sys/zfs_context.h>
27 #include <sys/dmu_objset.h>
28 #include <sys/dmu_traverse.h>
29 #include <sys/dmu_redact.h>
30 #include <sys/bqueue.h>
31 #include <sys/objlist.h>
32 #include <sys/dmu_tx.h>
34 #include <sys/zfs_vfsops.h>
36 #include <sys/zfs_znode.h>
40 * This controls the number of entries in the buffer the redaction_list_update
41 * synctask uses to buffer writes to the redaction list.
43 static const int redact_sync_bufsize
= 1024;
46 * Controls how often to update the redaction list when creating a redaction
49 static const uint64_t redaction_list_update_interval_ns
=
50 1000 * 1000 * 1000ULL; /* 1s */
53 * This tunable controls the length of the queues that zfs redact worker threads
54 * use to communicate. If the dmu_redact_snap thread is blocking on these
55 * queues, this variable may need to be increased. If there is a significant
56 * slowdown at the start of a redact operation as these threads consume all the
57 * available IO resources, or the queues are consuming too much memory, this
58 * variable may need to be decreased.
60 static const int zfs_redact_queue_length
= 1024 * 1024;
63 * These tunables control the fill fraction of the queues by zfs redact. The
64 * fill fraction controls the frequency with which threads have to be
65 * cv_signaled. If a lot of cpu time is being spent on cv_signal, then these
66 * should be tuned down. If the queues empty before the signalled thread can
67 * catch up, then these should be tuned up.
69 static const uint64_t zfs_redact_queue_ff
= 20;
71 struct redact_record
{
73 boolean_t eos_marker
; /* Marks the end of the stream */
74 uint64_t start_object
;
82 struct redact_thread_arg
{
84 objset_t
*os
; /* Objset to traverse */
85 dsl_dataset_t
*ds
; /* Dataset to traverse */
86 struct redact_record
*current_record
;
89 zbookmark_phys_t resume
;
90 objlist_t
*deleted_objs
;
91 uint64_t *num_blocks_visited
;
92 uint64_t ignore_object
; /* ignore further callbacks on this */
93 uint64_t txg
; /* txg to traverse since */
97 * The redaction node is a wrapper around the redaction record that is used
98 * by the redaction merging thread to sort the records and determine overlaps.
100 * It contains two nodes; one sorts the records by their start_zb, and the other
101 * sorts the records by their end_zb.
104 avl_node_t avl_node_start
;
105 avl_node_t avl_node_end
;
106 struct redact_record
*record
;
107 struct redact_thread_arg
*rt_arg
;
112 list_t md_redact_block_pending
;
113 redact_block_phys_t md_coalesce_block
;
114 uint64_t md_last_time
;
115 redact_block_phys_t md_furthest
[TXG_SIZE
];
116 /* Lists of struct redact_block_list_node. */
117 list_t md_blocks
[TXG_SIZE
];
118 boolean_t md_synctask_txg
[TXG_SIZE
];
119 uint64_t md_latest_synctask_txg
;
120 redaction_list_t
*md_redaction_list
;
124 * A wrapper around struct redact_block so it can be stored in a list_t.
126 struct redact_block_list_node
{
127 redact_block_phys_t block
;
132 * We've found a new redaction candidate. In order to improve performance, we
133 * coalesce these blocks when they're adjacent to each other. This function
134 * handles that. If the new candidate block range is immediately after the
135 * range we're building, coalesce it into the range we're building. Otherwise,
136 * put the record we're building on the queue, and update the build pointer to
137 * point to the new record.
140 record_merge_enqueue(bqueue_t
*q
, struct redact_record
**build
,
141 struct redact_record
*new)
143 if (new->eos_marker
) {
145 bqueue_enqueue(q
, *build
, sizeof (**build
));
146 bqueue_enqueue_flush(q
, new, sizeof (*new));
149 if (*build
== NULL
) {
153 struct redact_record
*curbuild
= *build
;
154 if ((curbuild
->end_object
== new->start_object
&&
155 curbuild
->end_blkid
+ 1 == new->start_blkid
&&
156 curbuild
->end_blkid
!= UINT64_MAX
) ||
157 (curbuild
->end_object
+ 1 == new->start_object
&&
158 curbuild
->end_blkid
== UINT64_MAX
&& new->start_blkid
== 0)) {
159 curbuild
->end_object
= new->end_object
;
160 curbuild
->end_blkid
= new->end_blkid
;
161 kmem_free(new, sizeof (*new));
163 bqueue_enqueue(q
, curbuild
, sizeof (*curbuild
));
174 objnode_compare(const void *o1
, const void *o2
)
176 const struct objnode
*obj1
= o1
;
177 const struct objnode
*obj2
= o2
;
178 if (obj1
->obj
< obj2
->obj
)
180 if (obj1
->obj
> obj2
->obj
)
187 zfs_get_deleteq(objset_t
*os
)
189 objlist_t
*deleteq_objlist
= objlist_create();
190 uint64_t deleteq_obj
;
193 dmu_object_info_t doi
;
195 ASSERT3U(os
->os_phys
->os_type
, ==, DMU_OST_ZFS
);
196 VERIFY0(dmu_object_info(os
, MASTER_NODE_OBJ
, &doi
));
197 ASSERT3U(doi
.doi_type
, ==, DMU_OT_MASTER_NODE
);
199 VERIFY0(zap_lookup(os
, MASTER_NODE_OBJ
,
200 ZFS_UNLINKED_SET
, sizeof (uint64_t), 1, &deleteq_obj
));
203 * In order to insert objects into the objlist, they must be in sorted
204 * order. We don't know what order we'll get them out of the ZAP in, so
205 * we insert them into and remove them from an avl_tree_t to sort them.
208 avl_create(&at
, objnode_compare
, sizeof (struct objnode
),
209 offsetof(struct objnode
, node
));
211 za
= zap_attribute_alloc();
212 for (zap_cursor_init(&zc
, os
, deleteq_obj
);
213 zap_cursor_retrieve(&zc
, za
) == 0; zap_cursor_advance(&zc
)) {
214 struct objnode
*obj
= kmem_zalloc(sizeof (*obj
), KM_SLEEP
);
215 obj
->obj
= za
->za_first_integer
;
218 zap_cursor_fini(&zc
);
219 zap_attribute_free(za
);
221 struct objnode
*next
, *found
= avl_first(&at
);
222 while (found
!= NULL
) {
223 next
= AVL_NEXT(&at
, found
);
224 objlist_insert(deleteq_objlist
, found
->obj
);
229 while ((found
= avl_destroy_nodes(&at
, &cookie
)) != NULL
)
230 kmem_free(found
, sizeof (*found
));
232 return (deleteq_objlist
);
237 * This is the callback function to traverse_dataset for the redaction threads
238 * for dmu_redact_snap. This thread is responsible for creating redaction
239 * records for all the data that is modified by the snapshots we're redacting
240 * with respect to. Redaction records represent ranges of data that have been
241 * modified by one of the redaction snapshots, and are stored in the
242 * redact_record struct. We need to create redaction records for three
245 * First, if there's a normal write, we need to create a redaction record for
248 * Second, if there's a hole, we need to create a redaction record that covers
249 * the whole range of the hole. If the hole is in the meta-dnode, it must cover
250 * every block in all of the objects in the hole.
252 * Third, if there is a deleted object, we need to create a redaction record for
253 * all of the blocks in that object.
256 redact_cb(spa_t
*spa
, zilog_t
*zilog
, const blkptr_t
*bp
,
257 const zbookmark_phys_t
*zb
, const struct dnode_phys
*dnp
, void *arg
)
259 (void) spa
, (void) zilog
;
260 struct redact_thread_arg
*rta
= arg
;
261 struct redact_record
*record
;
263 ASSERT(zb
->zb_object
== DMU_META_DNODE_OBJECT
||
264 zb
->zb_object
>= rta
->resume
.zb_object
);
267 return (SET_ERROR(EINTR
));
269 if (rta
->ignore_object
== zb
->zb_object
)
273 * If we're visiting a dnode, we need to handle the case where the
274 * object has been deleted.
276 if (zb
->zb_level
== ZB_DNODE_LEVEL
) {
277 ASSERT3U(zb
->zb_level
, ==, ZB_DNODE_LEVEL
);
279 if (zb
->zb_object
== 0)
283 * If the object has been deleted, redact all of the blocks in
286 if (dnp
->dn_type
== DMU_OT_NONE
||
287 objlist_exists(rta
->deleted_objs
, zb
->zb_object
)) {
288 rta
->ignore_object
= zb
->zb_object
;
289 record
= kmem_zalloc(sizeof (struct redact_record
),
292 record
->eos_marker
= B_FALSE
;
293 record
->start_object
= record
->end_object
=
295 record
->start_blkid
= 0;
296 record
->end_blkid
= UINT64_MAX
;
297 record_merge_enqueue(&rta
->q
,
298 &rta
->current_record
, record
);
301 } else if (zb
->zb_level
< 0) {
303 } else if (zb
->zb_level
> 0 && !BP_IS_HOLE(bp
)) {
305 * If this is an indirect block, but not a hole, it doesn't
306 * provide any useful information for redaction, so ignore it.
312 * At this point, there are two options left for the type of block we're
313 * looking at. Either this is a hole (which could be in the dnode or
314 * the meta-dnode), or it's a level 0 block of some sort. If it's a
315 * hole, we create a redaction record that covers the whole range. If
316 * the hole is in a dnode, we need to redact all the blocks in that
317 * hole. If the hole is in the meta-dnode, we instead need to redact
318 * all blocks in every object covered by that hole. If it's a level 0
319 * block, we only need to redact that single block.
321 record
= kmem_zalloc(sizeof (struct redact_record
), KM_SLEEP
);
322 record
->eos_marker
= B_FALSE
;
324 record
->start_object
= record
->end_object
= zb
->zb_object
;
325 if (BP_IS_HOLE(bp
)) {
326 record
->start_blkid
= zb
->zb_blkid
*
327 bp_span_in_blocks(dnp
->dn_indblkshift
, zb
->zb_level
);
329 record
->end_blkid
= ((zb
->zb_blkid
+ 1) *
330 bp_span_in_blocks(dnp
->dn_indblkshift
, zb
->zb_level
)) - 1;
332 if (zb
->zb_object
== DMU_META_DNODE_OBJECT
) {
333 record
->start_object
= record
->start_blkid
*
334 ((SPA_MINBLOCKSIZE
* dnp
->dn_datablkszsec
) /
335 sizeof (dnode_phys_t
));
336 record
->start_blkid
= 0;
337 record
->end_object
= ((record
->end_blkid
+
338 1) * ((SPA_MINBLOCKSIZE
* dnp
->dn_datablkszsec
) /
339 sizeof (dnode_phys_t
))) - 1;
340 record
->end_blkid
= UINT64_MAX
;
342 } else if (zb
->zb_level
!= 0 ||
343 zb
->zb_object
== DMU_META_DNODE_OBJECT
) {
344 kmem_free(record
, sizeof (*record
));
347 record
->start_blkid
= record
->end_blkid
= zb
->zb_blkid
;
349 record
->indblkshift
= dnp
->dn_indblkshift
;
350 record
->datablksz
= dnp
->dn_datablkszsec
<< SPA_MINBLOCKSHIFT
;
351 record_merge_enqueue(&rta
->q
, &rta
->current_record
, record
);
356 static __attribute__((noreturn
)) void
357 redact_traverse_thread(void *arg
)
359 struct redact_thread_arg
*rt_arg
= arg
;
361 struct redact_record
*data
;
363 if (rt_arg
->os
->os_phys
->os_type
== DMU_OST_ZFS
)
364 rt_arg
->deleted_objs
= zfs_get_deleteq(rt_arg
->os
);
366 rt_arg
->deleted_objs
= objlist_create();
368 rt_arg
->deleted_objs
= objlist_create();
371 err
= traverse_dataset_resume(rt_arg
->ds
, rt_arg
->txg
,
372 &rt_arg
->resume
, TRAVERSE_PRE
| TRAVERSE_PREFETCH_METADATA
,
376 rt_arg
->error_code
= err
;
377 objlist_destroy(rt_arg
->deleted_objs
);
378 data
= kmem_zalloc(sizeof (*data
), KM_SLEEP
);
379 data
->eos_marker
= B_TRUE
;
380 record_merge_enqueue(&rt_arg
->q
, &rt_arg
->current_record
, data
);
385 create_zbookmark_from_obj_off(zbookmark_phys_t
*zb
, uint64_t object
,
388 zb
->zb_object
= object
;
390 zb
->zb_blkid
= blkid
;
394 * This is a utility function that can do the comparison for the start or ends
395 * of the ranges in a redact_record.
398 redact_range_compare(uint64_t obj1
, uint64_t off1
, uint32_t dbss1
,
399 uint64_t obj2
, uint64_t off2
, uint32_t dbss2
)
401 zbookmark_phys_t z1
, z2
;
402 create_zbookmark_from_obj_off(&z1
, obj1
, off1
);
403 create_zbookmark_from_obj_off(&z2
, obj2
, off2
);
405 return (zbookmark_compare(dbss1
>> SPA_MINBLOCKSHIFT
, 0,
406 dbss2
>> SPA_MINBLOCKSHIFT
, 0, &z1
, &z2
));
410 * Compare two redaction records by their range's start location. Also makes
411 * eos records always compare last. We use the thread number in the redact_node
412 * to ensure that records do not compare equal (which is not allowed in our avl
416 redact_node_compare_start(const void *arg1
, const void *arg2
)
418 const struct redact_node
*rn1
= arg1
;
419 const struct redact_node
*rn2
= arg2
;
420 const struct redact_record
*rr1
= rn1
->record
;
421 const struct redact_record
*rr2
= rn2
->record
;
427 int cmp
= redact_range_compare(rr1
->start_object
, rr1
->start_blkid
,
428 rr1
->datablksz
, rr2
->start_object
, rr2
->start_blkid
,
431 cmp
= (rn1
->thread_num
< rn2
->thread_num
? -1 : 1);
436 * Compare two redaction records by their range's end location. Also makes
437 * eos records always compare last. We use the thread number in the redact_node
438 * to ensure that records do not compare equal (which is not allowed in our avl
442 redact_node_compare_end(const void *arg1
, const void *arg2
)
444 const struct redact_node
*rn1
= arg1
;
445 const struct redact_node
*rn2
= arg2
;
446 const struct redact_record
*srr1
= rn1
->record
;
447 const struct redact_record
*srr2
= rn2
->record
;
448 if (srr1
->eos_marker
)
450 if (srr2
->eos_marker
)
453 int cmp
= redact_range_compare(srr1
->end_object
, srr1
->end_blkid
,
454 srr1
->datablksz
, srr2
->end_object
, srr2
->end_blkid
,
457 cmp
= (rn1
->thread_num
< rn2
->thread_num
? -1 : 1);
462 * Utility function that compares two redaction records to determine if any part
463 * of the "from" record is before any part of the "to" record. Also causes End
464 * of Stream redaction records to compare after all others, so that the
465 * redaction merging logic can stay simple.
468 redact_record_before(const struct redact_record
*from
,
469 const struct redact_record
*to
)
471 if (from
->eos_marker
== B_TRUE
)
473 else if (to
->eos_marker
== B_TRUE
)
475 return (redact_range_compare(from
->start_object
, from
->start_blkid
,
476 from
->datablksz
, to
->end_object
, to
->end_blkid
,
477 to
->datablksz
) <= 0);
481 * Pop a new redaction record off the queue, check that the records are in the
482 * right order, and free the old data.
484 static struct redact_record
*
485 get_next_redact_record(bqueue_t
*bq
, struct redact_record
*prev
)
487 struct redact_record
*next
= bqueue_dequeue(bq
);
488 ASSERT(redact_record_before(prev
, next
));
489 kmem_free(prev
, sizeof (*prev
));
494 * Remove the given redaction node from both trees, pull a new redaction record
495 * off the queue, free the old redaction record, update the redaction node, and
496 * reinsert the node into the trees.
499 update_avl_trees(avl_tree_t
*start_tree
, avl_tree_t
*end_tree
,
500 struct redact_node
*redact_node
)
502 avl_remove(start_tree
, redact_node
);
503 avl_remove(end_tree
, redact_node
);
504 redact_node
->record
= get_next_redact_record(&redact_node
->rt_arg
->q
,
505 redact_node
->record
);
506 avl_add(end_tree
, redact_node
);
507 avl_add(start_tree
, redact_node
);
508 return (redact_node
->rt_arg
->error_code
);
512 * Synctask for updating redaction lists. We first take this txg's list of
513 * redacted blocks and append those to the redaction list. We then update the
514 * redaction list's bonus buffer. We store the furthest blocks we visited and
515 * the list of snapshots that we're redacting with respect to. We need these so
516 * that redacted sends and receives can be correctly resumed.
519 redaction_list_update_sync(void *arg
, dmu_tx_t
*tx
)
521 struct merge_data
*md
= arg
;
522 uint64_t txg
= dmu_tx_get_txg(tx
);
523 list_t
*list
= &md
->md_blocks
[txg
& TXG_MASK
];
524 redact_block_phys_t
*furthest_visited
=
525 &md
->md_furthest
[txg
& TXG_MASK
];
526 objset_t
*mos
= tx
->tx_pool
->dp_meta_objset
;
527 redaction_list_t
*rl
= md
->md_redaction_list
;
528 int bufsize
= redact_sync_bufsize
;
529 redact_block_phys_t
*buf
= kmem_alloc(bufsize
* sizeof (*buf
),
533 dmu_buf_will_dirty(rl
->rl_dbuf
, tx
);
535 for (struct redact_block_list_node
*rbln
= list_remove_head(list
);
536 rbln
!= NULL
; rbln
= list_remove_head(list
)) {
537 ASSERT3U(rbln
->block
.rbp_object
, <=,
538 furthest_visited
->rbp_object
);
539 ASSERT(rbln
->block
.rbp_object
< furthest_visited
->rbp_object
||
540 rbln
->block
.rbp_blkid
<= furthest_visited
->rbp_blkid
);
541 buf
[index
] = rbln
->block
;
543 if (index
== bufsize
) {
544 dmu_write(mos
, rl
->rl_object
,
545 rl
->rl_phys
->rlp_num_entries
* sizeof (*buf
),
546 bufsize
* sizeof (*buf
), buf
, tx
);
547 rl
->rl_phys
->rlp_num_entries
+= bufsize
;
550 kmem_free(rbln
, sizeof (*rbln
));
553 dmu_write(mos
, rl
->rl_object
, rl
->rl_phys
->rlp_num_entries
*
554 sizeof (*buf
), index
* sizeof (*buf
), buf
, tx
);
555 rl
->rl_phys
->rlp_num_entries
+= index
;
557 kmem_free(buf
, bufsize
* sizeof (*buf
));
559 md
->md_synctask_txg
[txg
& TXG_MASK
] = B_FALSE
;
560 rl
->rl_phys
->rlp_last_object
= furthest_visited
->rbp_object
;
561 rl
->rl_phys
->rlp_last_blkid
= furthest_visited
->rbp_blkid
;
565 commit_rl_updates(objset_t
*os
, struct merge_data
*md
, uint64_t object
,
568 dmu_tx_t
*tx
= dmu_tx_create_dd(spa_get_dsl(os
->os_spa
)->dp_mos_dir
);
569 dmu_tx_hold_space(tx
, sizeof (struct redact_block_list_node
));
570 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
571 uint64_t txg
= dmu_tx_get_txg(tx
);
572 if (!md
->md_synctask_txg
[txg
& TXG_MASK
]) {
573 dsl_sync_task_nowait(dmu_tx_pool(tx
),
574 redaction_list_update_sync
, md
, tx
);
575 md
->md_synctask_txg
[txg
& TXG_MASK
] = B_TRUE
;
576 md
->md_latest_synctask_txg
= txg
;
578 md
->md_furthest
[txg
& TXG_MASK
].rbp_object
= object
;
579 md
->md_furthest
[txg
& TXG_MASK
].rbp_blkid
= blkid
;
580 list_move_tail(&md
->md_blocks
[txg
& TXG_MASK
],
581 &md
->md_redact_block_pending
);
583 md
->md_last_time
= gethrtime();
587 * We want to store the list of blocks that we're redacting in the bookmark's
588 * redaction list. However, this list is stored in the MOS, which means it can
589 * only be written to in syncing context. To get around this, we create a
590 * synctask that will write to the mos for us. We tell it what to write by
591 * a linked list for each current transaction group; every time we decide to
592 * redact a block, we append it to the transaction group that is currently in
593 * open context. We also update some progress information that the synctask
594 * will store to enable resumable redacted sends.
597 update_redaction_list(struct merge_data
*md
, objset_t
*os
,
598 uint64_t object
, uint64_t blkid
, uint64_t endblkid
, uint32_t blksz
)
600 boolean_t enqueue
= B_FALSE
;
601 redact_block_phys_t cur
= {0};
602 uint64_t count
= endblkid
- blkid
+ 1;
603 while (count
> REDACT_BLOCK_MAX_COUNT
) {
604 update_redaction_list(md
, os
, object
, blkid
,
605 blkid
+ REDACT_BLOCK_MAX_COUNT
- 1, blksz
);
606 blkid
+= REDACT_BLOCK_MAX_COUNT
;
607 count
-= REDACT_BLOCK_MAX_COUNT
;
609 redact_block_phys_t
*coalesce
= &md
->md_coalesce_block
;
611 if (coalesce
->rbp_size_count
== 0) {
615 uint64_t old_count
= redact_block_get_count(coalesce
);
616 if (coalesce
->rbp_object
== object
&&
617 coalesce
->rbp_blkid
+ old_count
== blkid
&&
618 old_count
+ count
<= REDACT_BLOCK_MAX_COUNT
) {
619 ASSERT3U(redact_block_get_size(coalesce
), ==, blksz
);
620 redact_block_set_count(coalesce
, old_count
+ count
);
631 coalesce
->rbp_blkid
= blkid
;
632 coalesce
->rbp_object
= object
;
634 redact_block_set_count(coalesce
, count
);
635 redact_block_set_size(coalesce
, blksz
);
638 if (enqueue
&& redact_block_get_size(&cur
) != 0) {
639 struct redact_block_list_node
*rbln
=
640 kmem_alloc(sizeof (struct redact_block_list_node
),
643 list_insert_tail(&md
->md_redact_block_pending
, rbln
);
646 if (gethrtime() > md
->md_last_time
+
647 redaction_list_update_interval_ns
) {
648 commit_rl_updates(os
, md
, object
, blkid
);
653 * This thread merges all the redaction records provided by the worker threads,
654 * and determines which blocks are redacted by all the snapshots. The algorithm
655 * for doing so is similar to performing a merge in mergesort with n sub-lists
656 * instead of 2, with some added complexity due to the fact that the entries are
657 * ranges, not just single blocks. This algorithm relies on the fact that the
658 * queues are sorted, which is ensured by the fact that traverse_dataset
659 * traverses the dataset in a consistent order. We pull one entry off the front
660 * of the queues of each secure dataset traversal thread. Then we repeat the
661 * following: each record represents a range of blocks modified by one of the
662 * redaction snapshots, and each block in that range may need to be redacted in
663 * the send stream. Find the record with the latest start of its range, and the
664 * record with the earliest end of its range. If the last start is before the
665 * first end, then we know that the blocks in the range [last_start, first_end]
666 * are covered by all of the ranges at the front of the queues, which means
667 * every thread redacts that whole range. For example, let's say the ranges on
668 * each queue look like this:
670 * Block Id 1 2 3 4 5 6 7 8 9 10 11
671 * Thread 1 | [====================]
672 * Thread 2 | [========]
673 * Thread 3 | [=================]
675 * Thread 3 has the last start (5), and the thread 2 has the last end (6). All
676 * three threads modified the range [5,6], so that data should not be sent over
677 * the wire. After we've determined whether or not to redact anything, we take
678 * the record with the first end. We discard that record, and pull a new one
679 * off the front of the queue it came from. In the above example, we would
680 * discard Thread 2's record, and pull a new one. Let's say the next record we
681 * pulled from Thread 2 covered range [10,11]. The new layout would look like
684 * Block Id 1 2 3 4 5 6 7 8 9 10 11
685 * Thread 1 | [====================]
687 * Thread 3 | [=================]
689 * When we compare the last start (10, from Thread 2) and the first end (9, from
690 * Thread 1), we see that the last start is greater than the first end.
691 * Therefore, we do not redact anything from these records. We'll iterate by
692 * replacing the record from Thread 1.
694 * We iterate by replacing the record with the lowest end because we know
695 * that the record with the lowest end has helped us as much as it can. All the
696 * ranges before it that we will ever redact have been redacted. In addition,
697 * by replacing the one with the lowest end, we guarantee we catch all ranges
698 * that need to be redacted. For example, if in the case above we had replaced
699 * the record from Thread 1 instead, we might have ended up with the following:
701 * Block Id 1 2 3 4 5 6 7 8 9 10 11 12
703 * Thread 2 | [========]
704 * Thread 3 | [=================]
706 * If the next record from Thread 2 had been [8,10], for example, we should have
707 * redacted part of that range, but because we updated Thread 1's record, we
710 * We implement this algorithm by using two trees. The first sorts the
711 * redaction records by their start_zb, and the second sorts them by their
712 * end_zb. We use these to find the record with the last start and the record
713 * with the first end. We create a record with that start and end, and send it
714 * on. The overall runtime of this implementation is O(n log m), where n is the
715 * total number of redaction records from all the different redaction snapshots,
716 * and m is the number of redaction snapshots.
718 * If we redact with respect to zero snapshots, we create a redaction
719 * record with the start object and blkid to 0, and the end object and blkid to
720 * UINT64_MAX. This will result in us redacting every block.
723 perform_thread_merge(bqueue_t
*q
, uint32_t num_threads
,
724 struct redact_thread_arg
*thread_args
, boolean_t
*cancel
)
726 struct redact_node
*redact_nodes
= NULL
;
727 avl_tree_t start_tree
, end_tree
;
728 struct redact_record
*record
;
729 struct redact_record
*current_record
= NULL
;
731 struct merge_data md
= { {0} };
732 list_create(&md
.md_redact_block_pending
,
733 sizeof (struct redact_block_list_node
),
734 offsetof(struct redact_block_list_node
, node
));
737 * If we're redacting with respect to zero snapshots, then no data is
738 * permitted to be sent. We enqueue a record that redacts all blocks,
741 if (num_threads
== 0) {
742 record
= kmem_zalloc(sizeof (struct redact_record
),
744 // We can't redact object 0, so don't try.
745 record
->start_object
= 1;
746 record
->start_blkid
= 0;
747 record
->end_object
= record
->end_blkid
= UINT64_MAX
;
748 bqueue_enqueue(q
, record
, sizeof (*record
));
751 redact_nodes
= vmem_zalloc(num_threads
*
752 sizeof (*redact_nodes
), KM_SLEEP
);
754 avl_create(&start_tree
, redact_node_compare_start
,
755 sizeof (struct redact_node
),
756 offsetof(struct redact_node
, avl_node_start
));
757 avl_create(&end_tree
, redact_node_compare_end
,
758 sizeof (struct redact_node
),
759 offsetof(struct redact_node
, avl_node_end
));
761 for (int i
= 0; i
< num_threads
; i
++) {
762 struct redact_node
*node
= &redact_nodes
[i
];
763 struct redact_thread_arg
*targ
= &thread_args
[i
];
764 node
->record
= bqueue_dequeue(&targ
->q
);
766 node
->thread_num
= i
;
767 avl_add(&start_tree
, node
);
768 avl_add(&end_tree
, node
);
772 * Once the first record in the end tree has returned EOS, every record
773 * must be an EOS record, so we should stop.
775 while (err
== 0 && !((struct redact_node
*)avl_first(&end_tree
))->
776 record
->eos_marker
) {
781 struct redact_node
*last_start
= avl_last(&start_tree
);
782 struct redact_node
*first_end
= avl_first(&end_tree
);
785 * If the last start record is before the first end record,
786 * then we have blocks that are redacted by all threads.
787 * Therefore, we should redact them. Copy the record, and send
788 * it to the main thread.
790 if (redact_record_before(last_start
->record
,
791 first_end
->record
)) {
792 record
= kmem_zalloc(sizeof (struct redact_record
),
794 *record
= *first_end
->record
;
795 record
->start_object
= last_start
->record
->start_object
;
796 record
->start_blkid
= last_start
->record
->start_blkid
;
797 record_merge_enqueue(q
, ¤t_record
,
800 err
= update_avl_trees(&start_tree
, &end_tree
, first_end
);
804 * We're done; if we were cancelled, we need to cancel our workers and
805 * clear out their queues. Either way, we need to remove every thread's
806 * redact_node struct from the avl trees.
808 for (int i
= 0; i
< num_threads
; i
++) {
810 thread_args
[i
].cancel
= B_TRUE
;
811 while (!redact_nodes
[i
].record
->eos_marker
) {
812 (void) update_avl_trees(&start_tree
, &end_tree
,
816 avl_remove(&start_tree
, &redact_nodes
[i
]);
817 avl_remove(&end_tree
, &redact_nodes
[i
]);
818 kmem_free(redact_nodes
[i
].record
,
819 sizeof (struct redact_record
));
820 bqueue_destroy(&thread_args
[i
].q
);
823 avl_destroy(&start_tree
);
824 avl_destroy(&end_tree
);
825 vmem_free(redact_nodes
, num_threads
* sizeof (*redact_nodes
));
826 if (current_record
!= NULL
)
827 bqueue_enqueue(q
, current_record
, sizeof (*current_record
));
831 struct redact_merge_thread_arg
{
835 struct redact_thread_arg
*thr_args
;
840 static __attribute__((noreturn
)) void
841 redact_merge_thread(void *arg
)
843 struct redact_merge_thread_arg
*rmta
= arg
;
844 rmta
->error_code
= perform_thread_merge(&rmta
->q
,
845 rmta
->numsnaps
, rmta
->thr_args
, &rmta
->cancel
);
846 struct redact_record
*rec
= kmem_zalloc(sizeof (*rec
), KM_SLEEP
);
847 rec
->eos_marker
= B_TRUE
;
848 bqueue_enqueue_flush(&rmta
->q
, rec
, 1);
853 * Find the next object in or after the redaction range passed in, and hold
854 * its dnode with the provided tag. Also update *object to contain the new
858 hold_next_object(objset_t
*os
, struct redact_record
*rec
, const void *tag
,
859 uint64_t *object
, dnode_t
**dn
)
863 dnode_rele(*dn
, tag
);
865 if (*object
< rec
->start_object
) {
866 *object
= rec
->start_object
- 1;
868 err
= dmu_object_next(os
, object
, B_FALSE
, 0);
872 err
= dnode_hold(os
, *object
, tag
, dn
);
873 while (err
== 0 && (*object
< rec
->start_object
||
874 DMU_OT_IS_METADATA((*dn
)->dn_type
))) {
875 dnode_rele(*dn
, tag
);
877 err
= dmu_object_next(os
, object
, B_FALSE
, 0);
880 err
= dnode_hold(os
, *object
, tag
, dn
);
886 perform_redaction(objset_t
*os
, redaction_list_t
*rl
,
887 struct redact_merge_thread_arg
*rmta
)
890 bqueue_t
*q
= &rmta
->q
;
891 struct redact_record
*rec
= NULL
;
892 struct merge_data md
= { {0} };
894 list_create(&md
.md_redact_block_pending
,
895 sizeof (struct redact_block_list_node
),
896 offsetof(struct redact_block_list_node
, node
));
897 md
.md_redaction_list
= rl
;
899 for (int i
= 0; i
< TXG_SIZE
; i
++) {
900 list_create(&md
.md_blocks
[i
],
901 sizeof (struct redact_block_list_node
),
902 offsetof(struct redact_block_list_node
, node
));
905 uint64_t prev_obj
= 0;
906 for (rec
= bqueue_dequeue(q
); !rec
->eos_marker
&& err
== 0;
907 rec
= get_next_redact_record(q
, rec
)) {
908 ASSERT3U(rec
->start_object
, !=, 0);
910 if (prev_obj
!= rec
->start_object
) {
911 object
= rec
->start_object
- 1;
912 err
= hold_next_object(os
, rec
, FTAG
, &object
, &dn
);
916 while (err
== 0 && object
<= rec
->end_object
) {
922 * Part of the current object is contained somewhere in
923 * the range covered by rec.
927 uint64_t maxblkid
= dn
->dn_phys
->dn_maxblkid
;
929 if (rec
->start_object
< object
)
931 else if (rec
->start_blkid
> maxblkid
)
934 startblkid
= rec
->start_blkid
;
936 if (rec
->end_object
> object
|| rec
->end_blkid
>
940 endblkid
= rec
->end_blkid
;
942 update_redaction_list(&md
, os
, object
, startblkid
,
943 endblkid
, dn
->dn_datablksz
);
945 if (object
== rec
->end_object
)
947 err
= hold_next_object(os
, rec
, FTAG
, &object
, &dn
);
954 if (err
== 0 && dn
!= NULL
)
955 dnode_rele(dn
, FTAG
);
959 rmta
->cancel
= B_TRUE
;
960 while (!rec
->eos_marker
)
961 rec
= get_next_redact_record(q
, rec
);
962 kmem_free(rec
, sizeof (*rec
));
965 * There may be a block that's being coalesced, sync that out before we
968 if (err
== 0 && md
.md_coalesce_block
.rbp_size_count
!= 0) {
969 struct redact_block_list_node
*rbln
=
970 kmem_alloc(sizeof (struct redact_block_list_node
),
972 rbln
->block
= md
.md_coalesce_block
;
973 list_insert_tail(&md
.md_redact_block_pending
, rbln
);
975 commit_rl_updates(os
, &md
, UINT64_MAX
, UINT64_MAX
);
978 * Wait for all the redaction info to sync out before we return, so that
979 * anyone who attempts to resume this redaction will have all the data
982 dsl_pool_t
*dp
= spa_get_dsl(os
->os_spa
);
983 if (md
.md_latest_synctask_txg
!= 0)
984 txg_wait_synced(dp
, md
.md_latest_synctask_txg
);
985 for (int i
= 0; i
< TXG_SIZE
; i
++)
986 list_destroy(&md
.md_blocks
[i
]);
991 redact_snaps_contains(uint64_t *snaps
, uint64_t num_snaps
, uint64_t guid
)
993 for (int i
= 0; i
< num_snaps
; i
++) {
994 if (snaps
[i
] == guid
)
1001 dmu_redact_snap(const char *snapname
, nvlist_t
*redactnvl
,
1002 const char *redactbook
)
1005 dsl_pool_t
*dp
= NULL
;
1006 dsl_dataset_t
*ds
= NULL
;
1009 struct redact_thread_arg
*args
= NULL
;
1010 redaction_list_t
*new_rl
= NULL
;
1011 char *newredactbook
;
1013 if ((err
= dsl_pool_hold(snapname
, FTAG
, &dp
)) != 0)
1016 newredactbook
= kmem_zalloc(sizeof (char) * ZFS_MAX_DATASET_NAME_LEN
,
1019 if ((err
= dsl_dataset_hold_flags(dp
, snapname
, DS_HOLD_FLAG_DECRYPT
,
1023 dsl_dataset_long_hold(ds
, FTAG
);
1024 if (!ds
->ds_is_snapshot
|| dmu_objset_from_ds(ds
, &os
) != 0) {
1028 if (dsl_dataset_feature_is_active(ds
, SPA_FEATURE_REDACTED_DATASETS
)) {
1033 numsnaps
= fnvlist_num_pairs(redactnvl
);
1035 args
= vmem_zalloc(numsnaps
* sizeof (*args
), KM_SLEEP
);
1037 nvpair_t
*pair
= NULL
;
1038 for (int i
= 0; i
< numsnaps
; i
++) {
1039 pair
= nvlist_next_nvpair(redactnvl
, pair
);
1040 const char *name
= nvpair_name(pair
);
1041 struct redact_thread_arg
*rta
= &args
[i
];
1042 err
= dsl_dataset_hold_flags(dp
, name
, DS_HOLD_FLAG_DECRYPT
,
1047 * We want to do the long hold before we can get any other
1048 * errors, because the cleanup code will release the long
1049 * hold if rta->ds is filled in.
1051 dsl_dataset_long_hold(rta
->ds
, FTAG
);
1053 err
= dmu_objset_from_ds(rta
->ds
, &rta
->os
);
1056 if (!dsl_dataset_is_before(rta
->ds
, ds
, 0)) {
1060 if (dsl_dataset_feature_is_active(rta
->ds
,
1061 SPA_FEATURE_REDACTED_DATASETS
)) {
1069 VERIFY3P(nvlist_next_nvpair(redactnvl
, pair
), ==, NULL
);
1071 boolean_t resuming
= B_FALSE
;
1072 zfs_bookmark_phys_t bookmark
;
1074 (void) strlcpy(newredactbook
, snapname
, ZFS_MAX_DATASET_NAME_LEN
);
1075 char *c
= strchr(newredactbook
, '@');
1076 ASSERT3P(c
, !=, NULL
);
1077 int n
= snprintf(c
, ZFS_MAX_DATASET_NAME_LEN
- (c
- newredactbook
),
1079 if (n
>= ZFS_MAX_DATASET_NAME_LEN
- (c
- newredactbook
)) {
1080 dsl_pool_rele(dp
, FTAG
);
1081 kmem_free(newredactbook
,
1082 sizeof (char) * ZFS_MAX_DATASET_NAME_LEN
);
1084 vmem_free(args
, numsnaps
* sizeof (*args
));
1085 return (SET_ERROR(ENAMETOOLONG
));
1087 err
= dsl_bookmark_lookup(dp
, newredactbook
, NULL
, &bookmark
);
1090 if (bookmark
.zbm_redaction_obj
== 0) {
1094 err
= dsl_redaction_list_hold_obj(dp
,
1095 bookmark
.zbm_redaction_obj
, FTAG
, &new_rl
);
1100 dsl_redaction_list_long_hold(dp
, new_rl
, FTAG
);
1101 if (new_rl
->rl_phys
->rlp_num_snaps
!= numsnaps
) {
1105 for (int i
= 0; i
< numsnaps
; i
++) {
1106 struct redact_thread_arg
*rta
= &args
[i
];
1107 if (!redact_snaps_contains(new_rl
->rl_phys
->rlp_snaps
,
1108 new_rl
->rl_phys
->rlp_num_snaps
,
1109 dsl_dataset_phys(rta
->ds
)->ds_guid
)) {
1114 if (new_rl
->rl_phys
->rlp_last_blkid
== UINT64_MAX
&&
1115 new_rl
->rl_phys
->rlp_last_object
== UINT64_MAX
) {
1119 dsl_pool_rele(dp
, FTAG
);
1122 uint64_t *guids
= NULL
;
1124 guids
= vmem_zalloc(numsnaps
* sizeof (uint64_t),
1127 for (int i
= 0; i
< numsnaps
; i
++) {
1128 struct redact_thread_arg
*rta
= &args
[i
];
1129 guids
[i
] = dsl_dataset_phys(rta
->ds
)->ds_guid
;
1132 dsl_pool_rele(dp
, FTAG
);
1134 err
= dsl_bookmark_create_redacted(newredactbook
, snapname
,
1135 numsnaps
, guids
, FTAG
, &new_rl
);
1136 vmem_free(guids
, numsnaps
* sizeof (uint64_t));
1141 for (int i
= 0; i
< numsnaps
; i
++) {
1142 struct redact_thread_arg
*rta
= &args
[i
];
1143 (void) bqueue_init(&rta
->q
, zfs_redact_queue_ff
,
1144 zfs_redact_queue_length
,
1145 offsetof(struct redact_record
, ln
));
1147 rta
->resume
.zb_blkid
=
1148 new_rl
->rl_phys
->rlp_last_blkid
;
1149 rta
->resume
.zb_object
=
1150 new_rl
->rl_phys
->rlp_last_object
;
1152 rta
->txg
= dsl_dataset_phys(ds
)->ds_creation_txg
;
1153 (void) thread_create(NULL
, 0, redact_traverse_thread
, rta
,
1154 0, curproc
, TS_RUN
, minclsyspri
);
1157 struct redact_merge_thread_arg
*rmta
;
1158 rmta
= kmem_zalloc(sizeof (struct redact_merge_thread_arg
), KM_SLEEP
);
1160 (void) bqueue_init(&rmta
->q
, zfs_redact_queue_ff
,
1161 zfs_redact_queue_length
, offsetof(struct redact_record
, ln
));
1162 rmta
->numsnaps
= numsnaps
;
1163 rmta
->spa
= os
->os_spa
;
1164 rmta
->thr_args
= args
;
1165 (void) thread_create(NULL
, 0, redact_merge_thread
, rmta
, 0, curproc
,
1166 TS_RUN
, minclsyspri
);
1167 err
= perform_redaction(os
, new_rl
, rmta
);
1168 bqueue_destroy(&rmta
->q
);
1169 kmem_free(rmta
, sizeof (struct redact_merge_thread_arg
));
1172 kmem_free(newredactbook
, sizeof (char) * ZFS_MAX_DATASET_NAME_LEN
);
1174 if (new_rl
!= NULL
) {
1175 dsl_redaction_list_long_rele(new_rl
, FTAG
);
1176 dsl_redaction_list_rele(new_rl
, FTAG
);
1178 for (int i
= 0; i
< numsnaps
; i
++) {
1179 struct redact_thread_arg
*rta
= &args
[i
];
1181 * rta->ds may be NULL if we got an error while filling
1184 if (rta
->ds
!= NULL
) {
1185 dsl_dataset_long_rele(rta
->ds
, FTAG
);
1186 dsl_dataset_rele_flags(rta
->ds
,
1187 DS_HOLD_FLAG_DECRYPT
, FTAG
);
1192 vmem_free(args
, numsnaps
* sizeof (*args
));
1194 dsl_pool_rele(dp
, FTAG
);
1196 dsl_dataset_long_rele(ds
, FTAG
);
1197 dsl_dataset_rele_flags(ds
, DS_HOLD_FLAG_DECRYPT
, FTAG
);
1199 return (SET_ERROR(err
));