4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2018, Intel Corporation.
24 * Copyright (c) 2020 by Lawrence Livermore National Security, LLC.
25 * Copyright (c) 2022 Hewlett Packard Enterprise Development LP.
26 * Copyright (c) 2024 by Delphix. All rights reserved.
29 #include <sys/vdev_impl.h>
30 #include <sys/vdev_draid.h>
31 #include <sys/dsl_scan.h>
32 #include <sys/spa_impl.h>
33 #include <sys/metaslab_impl.h>
34 #include <sys/vdev_rebuild.h>
36 #include <sys/dmu_tx.h>
38 #include <sys/arc_impl.h>
42 * This file contains the sequential reconstruction implementation for
43 * resilvering. This form of resilvering is internally referred to as device
44 * rebuild to avoid conflating it with the traditional healing reconstruction
45 * performed by the dsl scan code.
47 * When replacing a device, or scrubbing the pool, ZFS has historically used
48 * a process called resilvering which is a form of healing reconstruction.
49 * This approach has the advantage that as blocks are read from disk their
50 * checksums can be immediately verified and the data repaired. Unfortunately,
51 * it also results in a random IO pattern to the disk even when extra care
52 * is taken to sequentialize the IO as much as possible. This substantially
53 * increases the time required to resilver the pool and restore redundancy.
55 * For mirrored devices it's possible to implement an alternate sequential
56 * reconstruction strategy when resilvering. Sequential reconstruction
57 * behaves like a traditional RAID rebuild and reconstructs a device in LBA
58 * order without verifying the checksum. After this phase completes a second
59 * scrub phase is started to verify all of the checksums. This two phase
60 * process will take longer than the healing reconstruction described above.
61 * However, it has that advantage that after the reconstruction first phase
62 * completes redundancy has been restored. At this point the pool can incur
63 * another device failure without risking data loss.
65 * There are a few noteworthy limitations and other advantages of resilvering
66 * using sequential reconstruction vs healing reconstruction.
70 * - Sequential reconstruction is not possible on RAIDZ due to its
71 * variable stripe width. Note dRAID uses a fixed stripe width which
72 * avoids this issue, but comes at the expense of some usable capacity.
74 * - Block checksums are not verified during sequential reconstruction.
75 * Similar to traditional RAID the parity/mirror data is reconstructed
76 * but cannot be immediately double checked. For this reason when the
77 * last active resilver completes the pool is automatically scrubbed
80 * - Deferred resilvers using sequential reconstruction are not currently
81 * supported. When adding another vdev to an active top-level resilver
82 * it must be restarted.
86 * - Sequential reconstruction is performed in LBA order which may be faster
87 * than healing reconstruction particularly when using HDDs (or
88 * especially with SMR devices). Only allocated capacity is resilvered.
90 * - Sequential reconstruction is not constrained by ZFS block boundaries.
91 * This allows it to issue larger IOs to disk which span multiple blocks
92 * allowing all of these logical blocks to be repaired with a single IO.
94 * - Unlike a healing resilver or scrub which are pool wide operations,
95 * sequential reconstruction is handled by the top-level vdevs. This
96 * allows for it to be started or canceled on a top-level vdev without
97 * impacting any other top-level vdevs in the pool.
99 * - Data only referenced by a pool checkpoint will be repaired because
100 * that space is reflected in the space maps. This differs for a
101 * healing resilver or scrub which will not repair that data.
106 * Size of rebuild reads; defaults to 1MiB per data disk and is capped at
109 static uint64_t zfs_rebuild_max_segment
= 1024 * 1024;
112 * Maximum number of parallelly executed bytes per leaf vdev caused by a
113 * sequential resilver. We attempt to strike a balance here between keeping
114 * the vdev queues full of I/Os at all times and not overflowing the queues
115 * to cause long latency, which would cause long txg sync times.
117 * A large default value can be safely used here because the default target
118 * segment size is also large (zfs_rebuild_max_segment=1M). This helps keep
119 * the queue depth short.
121 * 64MB was observed to deliver the best performance and set as the default.
122 * Testing was performed with a 106-drive dRAID HDD pool (draid2:11d:106c)
123 * and a rebuild rate of 1.2GB/s was measured to the distribute spare.
124 * Smaller values were unable to fully saturate the available pool I/O.
126 static uint64_t zfs_rebuild_vdev_limit
= 64 << 20;
129 * Automatically start a pool scrub when the last active sequential resilver
130 * completes in order to verify the checksums of all blocks which have been
131 * resilvered. This option is enabled by default and is strongly recommended.
133 static int zfs_rebuild_scrub_enabled
= 1;
136 * For vdev_rebuild_initiate_sync() and vdev_rebuild_reset_sync().
138 static __attribute__((noreturn
)) void vdev_rebuild_thread(void *arg
);
139 static void vdev_rebuild_reset_sync(void *arg
, dmu_tx_t
*tx
);
142 * Clear the per-vdev rebuild bytes value for a vdev tree.
145 clear_rebuild_bytes(vdev_t
*vd
)
147 vdev_stat_t
*vs
= &vd
->vdev_stat
;
149 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
150 clear_rebuild_bytes(vd
->vdev_child
[i
]);
152 mutex_enter(&vd
->vdev_stat_lock
);
153 vs
->vs_rebuild_processed
= 0;
154 mutex_exit(&vd
->vdev_stat_lock
);
158 * Determines whether a vdev_rebuild_thread() should be stopped.
161 vdev_rebuild_should_stop(vdev_t
*vd
)
163 return (!vdev_writeable(vd
) || vd
->vdev_removing
||
164 vd
->vdev_rebuild_exit_wanted
||
165 vd
->vdev_rebuild_cancel_wanted
||
166 vd
->vdev_rebuild_reset_wanted
);
170 * Determine if the rebuild should be canceled. This may happen when all
171 * vdevs with MISSING DTLs are detached.
174 vdev_rebuild_should_cancel(vdev_t
*vd
)
176 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
177 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
179 if (!vdev_resilver_needed(vd
, &vrp
->vrp_min_txg
, &vrp
->vrp_max_txg
))
186 * The sync task for updating the on-disk state of a rebuild. This is
187 * scheduled by vdev_rebuild_range().
190 vdev_rebuild_update_sync(void *arg
, dmu_tx_t
*tx
)
192 int vdev_id
= (uintptr_t)arg
;
193 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
194 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
195 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
196 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
197 uint64_t txg
= dmu_tx_get_txg(tx
);
199 mutex_enter(&vd
->vdev_rebuild_lock
);
201 if (vr
->vr_scan_offset
[txg
& TXG_MASK
] > 0) {
202 vrp
->vrp_last_offset
= vr
->vr_scan_offset
[txg
& TXG_MASK
];
203 vr
->vr_scan_offset
[txg
& TXG_MASK
] = 0;
206 vrp
->vrp_scan_time_ms
= vr
->vr_prev_scan_time_ms
+
207 NSEC2MSEC(gethrtime() - vr
->vr_pass_start_time
);
209 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
210 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
211 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
213 mutex_exit(&vd
->vdev_rebuild_lock
);
217 * Initialize the on-disk state for a new rebuild, start the rebuild thread.
220 vdev_rebuild_initiate_sync(void *arg
, dmu_tx_t
*tx
)
222 int vdev_id
= (uintptr_t)arg
;
223 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
224 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
225 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
226 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
228 ASSERT(vd
->vdev_rebuilding
);
230 spa_feature_incr(vd
->vdev_spa
, SPA_FEATURE_DEVICE_REBUILD
, tx
);
232 mutex_enter(&vd
->vdev_rebuild_lock
);
233 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
234 vrp
->vrp_rebuild_state
= VDEV_REBUILD_ACTIVE
;
235 vrp
->vrp_min_txg
= 0;
236 vrp
->vrp_max_txg
= dmu_tx_get_txg(tx
);
237 vrp
->vrp_start_time
= gethrestime_sec();
238 vrp
->vrp_scan_time_ms
= 0;
239 vr
->vr_prev_scan_time_ms
= 0;
242 * Rebuilds are currently only used when replacing a device, in which
243 * case there must be DTL_MISSING entries. In the future, we could
244 * allow rebuilds to be used in a way similar to a scrub. This would
245 * be useful because it would allow us to rebuild the space used by
248 VERIFY(vdev_resilver_needed(vd
, &vrp
->vrp_min_txg
, &vrp
->vrp_max_txg
));
250 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
251 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
252 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
254 spa_history_log_internal(spa
, "rebuild", tx
,
255 "vdev_id=%llu vdev_guid=%llu started",
256 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
258 ASSERT3P(vd
->vdev_rebuild_thread
, ==, NULL
);
259 vd
->vdev_rebuild_thread
= thread_create(NULL
, 0,
260 vdev_rebuild_thread
, vd
, 0, &p0
, TS_RUN
, maxclsyspri
);
262 mutex_exit(&vd
->vdev_rebuild_lock
);
266 vdev_rebuild_log_notify(spa_t
*spa
, vdev_t
*vd
, const char *name
)
268 nvlist_t
*aux
= fnvlist_alloc();
270 fnvlist_add_string(aux
, ZFS_EV_RESILVER_TYPE
, "sequential");
271 spa_event_notify(spa
, vd
, aux
, name
);
276 * Called to request that a new rebuild be started. The feature will remain
277 * active for the duration of the rebuild, then revert to the enabled state.
280 vdev_rebuild_initiate(vdev_t
*vd
)
282 spa_t
*spa
= vd
->vdev_spa
;
284 ASSERT(vd
->vdev_top
== vd
);
285 ASSERT(MUTEX_HELD(&vd
->vdev_rebuild_lock
));
286 ASSERT(!vd
->vdev_rebuilding
);
288 dmu_tx_t
*tx
= dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
289 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
291 vd
->vdev_rebuilding
= B_TRUE
;
293 dsl_sync_task_nowait(spa_get_dsl(spa
), vdev_rebuild_initiate_sync
,
294 (void *)(uintptr_t)vd
->vdev_id
, tx
);
297 vdev_rebuild_log_notify(spa
, vd
, ESC_ZFS_RESILVER_START
);
301 * Update the on-disk state to completed when a rebuild finishes.
304 vdev_rebuild_complete_sync(void *arg
, dmu_tx_t
*tx
)
306 int vdev_id
= (uintptr_t)arg
;
307 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
308 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
309 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
310 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
312 mutex_enter(&vd
->vdev_rebuild_lock
);
315 * Handle a second device failure if it occurs after all rebuild I/O
316 * has completed but before this sync task has been executed.
318 if (vd
->vdev_rebuild_reset_wanted
) {
319 mutex_exit(&vd
->vdev_rebuild_lock
);
320 vdev_rebuild_reset_sync(arg
, tx
);
324 vrp
->vrp_rebuild_state
= VDEV_REBUILD_COMPLETE
;
325 vrp
->vrp_end_time
= gethrestime_sec();
327 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
328 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
329 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
331 vdev_dtl_reassess(vd
, tx
->tx_txg
, vrp
->vrp_max_txg
, B_TRUE
, B_TRUE
);
332 spa_feature_decr(vd
->vdev_spa
, SPA_FEATURE_DEVICE_REBUILD
, tx
);
334 spa_history_log_internal(spa
, "rebuild", tx
,
335 "vdev_id=%llu vdev_guid=%llu complete",
336 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
337 vdev_rebuild_log_notify(spa
, vd
, ESC_ZFS_RESILVER_FINISH
);
339 /* Handles detaching of spares */
340 spa_async_request(spa
, SPA_ASYNC_REBUILD_DONE
);
341 vd
->vdev_rebuilding
= B_FALSE
;
342 mutex_exit(&vd
->vdev_rebuild_lock
);
345 * While we're in syncing context take the opportunity to
346 * setup the scrub when there are no more active rebuilds.
348 setup_sync_arg_t setup_sync_arg
= {
349 .func
= POOL_SCAN_SCRUB
,
353 if (dsl_scan_setup_check(&setup_sync_arg
.func
, tx
) == 0 &&
354 zfs_rebuild_scrub_enabled
) {
355 dsl_scan_setup_sync(&setup_sync_arg
, tx
);
358 cv_broadcast(&vd
->vdev_rebuild_cv
);
360 /* Clear recent error events (i.e. duplicate events tracking) */
361 zfs_ereport_clear(spa
, NULL
);
365 * Update the on-disk state to canceled when a rebuild finishes.
368 vdev_rebuild_cancel_sync(void *arg
, dmu_tx_t
*tx
)
370 int vdev_id
= (uintptr_t)arg
;
371 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
372 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
373 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
374 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
376 mutex_enter(&vd
->vdev_rebuild_lock
);
377 vrp
->vrp_rebuild_state
= VDEV_REBUILD_CANCELED
;
378 vrp
->vrp_end_time
= gethrestime_sec();
380 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
381 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
382 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
384 spa_feature_decr(vd
->vdev_spa
, SPA_FEATURE_DEVICE_REBUILD
, tx
);
386 spa_history_log_internal(spa
, "rebuild", tx
,
387 "vdev_id=%llu vdev_guid=%llu canceled",
388 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
389 vdev_rebuild_log_notify(spa
, vd
, ESC_ZFS_RESILVER_FINISH
);
391 vd
->vdev_rebuild_cancel_wanted
= B_FALSE
;
392 vd
->vdev_rebuilding
= B_FALSE
;
393 mutex_exit(&vd
->vdev_rebuild_lock
);
395 spa_notify_waiters(spa
);
396 cv_broadcast(&vd
->vdev_rebuild_cv
);
400 * Resets the progress of a running rebuild. This will occur when a new
401 * vdev is added to rebuild.
404 vdev_rebuild_reset_sync(void *arg
, dmu_tx_t
*tx
)
406 int vdev_id
= (uintptr_t)arg
;
407 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
408 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
409 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
410 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
412 mutex_enter(&vd
->vdev_rebuild_lock
);
414 ASSERT(vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
);
415 ASSERT3P(vd
->vdev_rebuild_thread
, ==, NULL
);
417 vrp
->vrp_last_offset
= 0;
418 vrp
->vrp_min_txg
= 0;
419 vrp
->vrp_max_txg
= dmu_tx_get_txg(tx
);
420 vrp
->vrp_bytes_scanned
= 0;
421 vrp
->vrp_bytes_issued
= 0;
422 vrp
->vrp_bytes_rebuilt
= 0;
423 vrp
->vrp_bytes_est
= 0;
424 vrp
->vrp_scan_time_ms
= 0;
425 vr
->vr_prev_scan_time_ms
= 0;
427 /* See vdev_rebuild_initiate_sync comment */
428 VERIFY(vdev_resilver_needed(vd
, &vrp
->vrp_min_txg
, &vrp
->vrp_max_txg
));
430 VERIFY0(zap_update(vd
->vdev_spa
->spa_meta_objset
, vd
->vdev_top_zap
,
431 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
432 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
434 spa_history_log_internal(spa
, "rebuild", tx
,
435 "vdev_id=%llu vdev_guid=%llu reset",
436 (u_longlong_t
)vd
->vdev_id
, (u_longlong_t
)vd
->vdev_guid
);
438 vd
->vdev_rebuild_reset_wanted
= B_FALSE
;
439 ASSERT(vd
->vdev_rebuilding
);
441 vd
->vdev_rebuild_thread
= thread_create(NULL
, 0,
442 vdev_rebuild_thread
, vd
, 0, &p0
, TS_RUN
, maxclsyspri
);
444 mutex_exit(&vd
->vdev_rebuild_lock
);
448 * Clear the last rebuild status.
451 vdev_rebuild_clear_sync(void *arg
, dmu_tx_t
*tx
)
453 int vdev_id
= (uintptr_t)arg
;
454 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
455 vdev_t
*vd
= vdev_lookup_top(spa
, vdev_id
);
456 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
457 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
458 objset_t
*mos
= spa_meta_objset(spa
);
460 mutex_enter(&vd
->vdev_rebuild_lock
);
462 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REBUILD
) ||
463 vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
) {
464 mutex_exit(&vd
->vdev_rebuild_lock
);
468 clear_rebuild_bytes(vd
);
469 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
471 if (vd
->vdev_top_zap
!= 0 && zap_contains(mos
, vd
->vdev_top_zap
,
472 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
) == 0) {
473 VERIFY0(zap_update(mos
, vd
->vdev_top_zap
,
474 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
475 REBUILD_PHYS_ENTRIES
, vrp
, tx
));
478 mutex_exit(&vd
->vdev_rebuild_lock
);
482 * The zio_done_func_t callback for each rebuild I/O issued. It's responsible
483 * for updating the rebuild stats and limiting the number of in flight I/Os.
486 vdev_rebuild_cb(zio_t
*zio
)
488 vdev_rebuild_t
*vr
= zio
->io_private
;
489 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
490 vdev_t
*vd
= vr
->vr_top_vdev
;
492 mutex_enter(&vr
->vr_io_lock
);
493 if (zio
->io_error
== ENXIO
&& !vdev_writeable(vd
)) {
495 * The I/O failed because the top-level vdev was unavailable.
496 * Attempt to roll back to the last completed offset, in order
497 * resume from the correct location if the pool is resumed.
498 * (This works because spa_sync waits on spa_txg_zio before
499 * it runs sync tasks.)
501 uint64_t *off
= &vr
->vr_scan_offset
[zio
->io_txg
& TXG_MASK
];
502 *off
= MIN(*off
, zio
->io_offset
);
503 } else if (zio
->io_error
) {
507 abd_free(zio
->io_abd
);
509 ASSERT3U(vr
->vr_bytes_inflight
, >, 0);
510 vr
->vr_bytes_inflight
-= zio
->io_size
;
511 cv_broadcast(&vr
->vr_io_cv
);
512 mutex_exit(&vr
->vr_io_lock
);
514 spa_config_exit(vd
->vdev_spa
, SCL_STATE_ALL
, vd
);
518 * Initialize a block pointer that can be used to read the given segment
519 * for sequential rebuild.
522 vdev_rebuild_blkptr_init(blkptr_t
*bp
, vdev_t
*vd
, uint64_t start
,
525 ASSERT(vd
->vdev_ops
== &vdev_draid_ops
||
526 vd
->vdev_ops
== &vdev_mirror_ops
||
527 vd
->vdev_ops
== &vdev_replacing_ops
||
528 vd
->vdev_ops
== &vdev_spare_ops
);
530 uint64_t psize
= vd
->vdev_ops
== &vdev_draid_ops
?
531 vdev_draid_asize_to_psize(vd
, asize
) : asize
;
535 DVA_SET_VDEV(&bp
->blk_dva
[0], vd
->vdev_id
);
536 DVA_SET_OFFSET(&bp
->blk_dva
[0], start
);
537 DVA_SET_GANG(&bp
->blk_dva
[0], 0);
538 DVA_SET_ASIZE(&bp
->blk_dva
[0], asize
);
540 BP_SET_BIRTH(bp
, TXG_INITIAL
, TXG_INITIAL
);
541 BP_SET_LSIZE(bp
, psize
);
542 BP_SET_PSIZE(bp
, psize
);
543 BP_SET_COMPRESS(bp
, ZIO_COMPRESS_OFF
);
544 BP_SET_CHECKSUM(bp
, ZIO_CHECKSUM_OFF
);
545 BP_SET_TYPE(bp
, DMU_OT_NONE
);
548 BP_SET_BYTEORDER(bp
, ZFS_HOST_BYTEORDER
);
552 * Issues a rebuild I/O and takes care of rate limiting the number of queued
553 * rebuild I/Os. The provided start and size must be properly aligned for the
554 * top-level vdev type being rebuilt.
557 vdev_rebuild_range(vdev_rebuild_t
*vr
, uint64_t start
, uint64_t size
)
559 uint64_t ms_id __maybe_unused
= vr
->vr_scan_msp
->ms_id
;
560 vdev_t
*vd
= vr
->vr_top_vdev
;
561 spa_t
*spa
= vd
->vdev_spa
;
564 ASSERT3U(ms_id
, ==, start
>> vd
->vdev_ms_shift
);
565 ASSERT3U(ms_id
, ==, (start
+ size
- 1) >> vd
->vdev_ms_shift
);
567 vr
->vr_pass_bytes_scanned
+= size
;
568 vr
->vr_rebuild_phys
.vrp_bytes_scanned
+= size
;
571 * Rebuild the data in this range by constructing a special block
572 * pointer. It has no relation to any existing blocks in the pool.
573 * However, by disabling checksum verification and issuing a scrub IO
574 * we can reconstruct and repair any children with missing data.
576 vdev_rebuild_blkptr_init(&blk
, vd
, start
, size
);
577 uint64_t psize
= BP_GET_PSIZE(&blk
);
579 if (!vdev_dtl_need_resilver(vd
, &blk
.blk_dva
[0], psize
, TXG_UNKNOWN
)) {
580 vr
->vr_pass_bytes_skipped
+= size
;
584 mutex_enter(&vr
->vr_io_lock
);
586 /* Limit in flight rebuild I/Os */
587 while (vr
->vr_bytes_inflight
>= vr
->vr_bytes_inflight_max
)
588 cv_wait(&vr
->vr_io_cv
, &vr
->vr_io_lock
);
590 vr
->vr_bytes_inflight
+= psize
;
591 mutex_exit(&vr
->vr_io_lock
);
593 dmu_tx_t
*tx
= dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
594 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
595 uint64_t txg
= dmu_tx_get_txg(tx
);
597 spa_config_enter(spa
, SCL_STATE_ALL
, vd
, RW_READER
);
598 mutex_enter(&vd
->vdev_rebuild_lock
);
600 /* This is the first I/O for this txg. */
601 if (vr
->vr_scan_offset
[txg
& TXG_MASK
] == 0) {
602 vr
->vr_scan_offset
[txg
& TXG_MASK
] = start
;
603 dsl_sync_task_nowait(spa_get_dsl(spa
),
604 vdev_rebuild_update_sync
,
605 (void *)(uintptr_t)vd
->vdev_id
, tx
);
608 /* When exiting write out our progress. */
609 if (vdev_rebuild_should_stop(vd
)) {
610 mutex_enter(&vr
->vr_io_lock
);
611 vr
->vr_bytes_inflight
-= psize
;
612 mutex_exit(&vr
->vr_io_lock
);
613 spa_config_exit(vd
->vdev_spa
, SCL_STATE_ALL
, vd
);
614 mutex_exit(&vd
->vdev_rebuild_lock
);
616 return (SET_ERROR(EINTR
));
618 mutex_exit(&vd
->vdev_rebuild_lock
);
621 vr
->vr_scan_offset
[txg
& TXG_MASK
] = start
+ size
;
622 vr
->vr_pass_bytes_issued
+= size
;
623 vr
->vr_rebuild_phys
.vrp_bytes_issued
+= size
;
625 zio_nowait(zio_read(spa
->spa_txg_zio
[txg
& TXG_MASK
], spa
, &blk
,
626 abd_alloc(psize
, B_FALSE
), psize
, vdev_rebuild_cb
, vr
,
627 ZIO_PRIORITY_REBUILD
, ZIO_FLAG_RAW
| ZIO_FLAG_CANFAIL
|
628 ZIO_FLAG_RESILVER
, NULL
));
634 * Issues rebuild I/Os for all ranges in the provided vr->vr_tree range tree.
637 vdev_rebuild_ranges(vdev_rebuild_t
*vr
)
639 vdev_t
*vd
= vr
->vr_top_vdev
;
640 zfs_btree_t
*t
= &vr
->vr_scan_tree
->rt_root
;
641 zfs_btree_index_t idx
;
644 for (range_seg_t
*rs
= zfs_btree_first(t
, &idx
); rs
!= NULL
;
645 rs
= zfs_btree_next(t
, &idx
, &idx
)) {
646 uint64_t start
= rs_get_start(rs
, vr
->vr_scan_tree
);
647 uint64_t size
= rs_get_end(rs
, vr
->vr_scan_tree
) - start
;
650 * zfs_scan_suspend_progress can be set to disable rebuild
651 * progress for testing. See comment in dsl_scan_sync().
653 while (zfs_scan_suspend_progress
&&
654 !vdev_rebuild_should_stop(vd
)) {
662 * Split range into legally-sized logical chunks
663 * given the constraints of the top-level vdev
664 * being rebuilt (dRAID or mirror).
666 ASSERT3P(vd
->vdev_ops
, !=, NULL
);
667 chunk_size
= vd
->vdev_ops
->vdev_op_rebuild_asize(vd
,
668 start
, size
, zfs_rebuild_max_segment
);
670 error
= vdev_rebuild_range(vr
, start
, chunk_size
);
683 * Calculates the estimated capacity which remains to be scanned. Since
684 * we traverse the pool in metaslab order only allocated capacity beyond
685 * the vrp_last_offset need be considered. All lower offsets must have
686 * already been rebuilt and are thus already included in vrp_bytes_scanned.
689 vdev_rebuild_update_bytes_est(vdev_t
*vd
, uint64_t ms_id
)
691 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
692 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
693 uint64_t bytes_est
= vrp
->vrp_bytes_scanned
;
695 if (vrp
->vrp_last_offset
< vd
->vdev_ms
[ms_id
]->ms_start
)
698 for (uint64_t i
= ms_id
; i
< vd
->vdev_ms_count
; i
++) {
699 metaslab_t
*msp
= vd
->vdev_ms
[i
];
701 mutex_enter(&msp
->ms_lock
);
702 bytes_est
+= metaslab_allocated_space(msp
);
703 mutex_exit(&msp
->ms_lock
);
706 vrp
->vrp_bytes_est
= bytes_est
;
710 * Load from disk the top-level vdev's rebuild information.
713 vdev_rebuild_load(vdev_t
*vd
)
715 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
716 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
717 spa_t
*spa
= vd
->vdev_spa
;
720 mutex_enter(&vd
->vdev_rebuild_lock
);
721 vd
->vdev_rebuilding
= B_FALSE
;
723 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REBUILD
)) {
724 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
725 mutex_exit(&vd
->vdev_rebuild_lock
);
726 return (SET_ERROR(ENOTSUP
));
729 ASSERT(vd
->vdev_top
== vd
);
731 err
= zap_lookup(spa
->spa_meta_objset
, vd
->vdev_top_zap
,
732 VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
, sizeof (uint64_t),
733 REBUILD_PHYS_ENTRIES
, vrp
);
736 * A missing or damaged VDEV_TOP_ZAP_VDEV_REBUILD_PHYS should
737 * not prevent a pool from being imported. Clear the rebuild
738 * status allowing a new resilver/rebuild to be started.
740 if (err
== ENOENT
|| err
== EOVERFLOW
|| err
== ECKSUM
) {
741 memset(vrp
, 0, sizeof (uint64_t) * REBUILD_PHYS_ENTRIES
);
743 mutex_exit(&vd
->vdev_rebuild_lock
);
747 vr
->vr_prev_scan_time_ms
= vrp
->vrp_scan_time_ms
;
748 vr
->vr_top_vdev
= vd
;
750 mutex_exit(&vd
->vdev_rebuild_lock
);
756 * Each scan thread is responsible for rebuilding a top-level vdev. The
757 * rebuild progress in tracked on-disk in VDEV_TOP_ZAP_VDEV_REBUILD_PHYS.
759 static __attribute__((noreturn
)) void
760 vdev_rebuild_thread(void *arg
)
763 spa_t
*spa
= vd
->vdev_spa
;
764 vdev_t
*rvd
= spa
->spa_root_vdev
;
768 * If there's a scrub in process request that it be stopped. This
769 * is not required for a correct rebuild, but we do want rebuilds to
770 * emulate the resilver behavior as much as possible.
772 dsl_pool_t
*dsl
= spa_get_dsl(spa
);
773 if (dsl_scan_scrubbing(dsl
))
774 dsl_scan_cancel(dsl
);
776 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
777 mutex_enter(&vd
->vdev_rebuild_lock
);
779 ASSERT3P(vd
->vdev_top
, ==, vd
);
780 ASSERT3P(vd
->vdev_rebuild_thread
, !=, NULL
);
781 ASSERT(vd
->vdev_rebuilding
);
782 ASSERT(spa_feature_is_active(spa
, SPA_FEATURE_DEVICE_REBUILD
));
783 ASSERT3B(vd
->vdev_rebuild_cancel_wanted
, ==, B_FALSE
);
785 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
786 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
787 vr
->vr_top_vdev
= vd
;
788 vr
->vr_scan_msp
= NULL
;
789 vr
->vr_scan_tree
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
790 mutex_init(&vr
->vr_io_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
791 cv_init(&vr
->vr_io_cv
, NULL
, CV_DEFAULT
, NULL
);
793 vr
->vr_pass_start_time
= gethrtime();
794 vr
->vr_pass_bytes_scanned
= 0;
795 vr
->vr_pass_bytes_issued
= 0;
796 vr
->vr_pass_bytes_skipped
= 0;
798 uint64_t update_est_time
= gethrtime();
799 vdev_rebuild_update_bytes_est(vd
, 0);
801 clear_rebuild_bytes(vr
->vr_top_vdev
);
803 mutex_exit(&vd
->vdev_rebuild_lock
);
806 * Systematically walk the metaslabs and issue rebuild I/Os for
807 * all ranges in the allocated space map.
809 for (uint64_t i
= 0; i
< vd
->vdev_ms_count
; i
++) {
810 metaslab_t
*msp
= vd
->vdev_ms
[i
];
811 vr
->vr_scan_msp
= msp
;
814 * Calculate the max number of in-flight bytes for top-level
815 * vdev scanning operations (minimum 1MB, maximum 1/2 of
816 * arc_c_max shared by all top-level vdevs). Limits for the
817 * issuing phase are done per top-level vdev and are handled
820 uint64_t limit
= (arc_c_max
/ 2) / MAX(rvd
->vdev_children
, 1);
821 vr
->vr_bytes_inflight_max
= MIN(limit
, MAX(1ULL << 20,
822 zfs_rebuild_vdev_limit
* vd
->vdev_children
));
825 * Removal of vdevs from the vdev tree may eliminate the need
826 * for the rebuild, in which case it should be canceled. The
827 * vdev_rebuild_cancel_wanted flag is set until the sync task
828 * completes. This may be after the rebuild thread exits.
830 if (vdev_rebuild_should_cancel(vd
)) {
831 vd
->vdev_rebuild_cancel_wanted
= B_TRUE
;
836 ASSERT0(range_tree_space(vr
->vr_scan_tree
));
838 /* Disable any new allocations to this metaslab */
839 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
840 metaslab_disable(msp
);
842 mutex_enter(&msp
->ms_sync_lock
);
843 mutex_enter(&msp
->ms_lock
);
846 * If there are outstanding allocations wait for them to be
847 * synced. This is needed to ensure all allocated ranges are
848 * on disk and therefore will be rebuilt.
850 for (int j
= 0; j
< TXG_SIZE
; j
++) {
851 if (range_tree_space(msp
->ms_allocating
[j
])) {
852 mutex_exit(&msp
->ms_lock
);
853 mutex_exit(&msp
->ms_sync_lock
);
854 txg_wait_synced(dsl
, 0);
855 mutex_enter(&msp
->ms_sync_lock
);
856 mutex_enter(&msp
->ms_lock
);
862 * When a metaslab has been allocated from read its allocated
863 * ranges from the space map object into the vr_scan_tree.
864 * Then add inflight / unflushed ranges and remove inflight /
865 * unflushed frees. This is the minimum range to be rebuilt.
867 if (msp
->ms_sm
!= NULL
) {
868 VERIFY0(space_map_load(msp
->ms_sm
,
869 vr
->vr_scan_tree
, SM_ALLOC
));
871 for (int i
= 0; i
< TXG_SIZE
; i
++) {
872 ASSERT0(range_tree_space(
873 msp
->ms_allocating
[i
]));
876 range_tree_walk(msp
->ms_unflushed_allocs
,
877 range_tree_add
, vr
->vr_scan_tree
);
878 range_tree_walk(msp
->ms_unflushed_frees
,
879 range_tree_remove
, vr
->vr_scan_tree
);
882 * Remove ranges which have already been rebuilt based
883 * on the last offset. This can happen when restarting
884 * a scan after exporting and re-importing the pool.
886 range_tree_clear(vr
->vr_scan_tree
, 0,
887 vrp
->vrp_last_offset
);
890 mutex_exit(&msp
->ms_lock
);
891 mutex_exit(&msp
->ms_sync_lock
);
894 * To provide an accurate estimate re-calculate the estimated
895 * size every 5 minutes to account for recent allocations and
896 * frees made to space maps which have not yet been rebuilt.
898 if (gethrtime() > update_est_time
+ SEC2NSEC(300)) {
899 update_est_time
= gethrtime();
900 vdev_rebuild_update_bytes_est(vd
, i
);
904 * Walk the allocated space map and issue the rebuild I/O.
906 error
= vdev_rebuild_ranges(vr
);
907 range_tree_vacate(vr
->vr_scan_tree
, NULL
, NULL
);
909 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
910 metaslab_enable(msp
, B_FALSE
, B_FALSE
);
916 range_tree_destroy(vr
->vr_scan_tree
);
917 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
919 /* Wait for any remaining rebuild I/O to complete */
920 mutex_enter(&vr
->vr_io_lock
);
921 while (vr
->vr_bytes_inflight
> 0)
922 cv_wait(&vr
->vr_io_cv
, &vr
->vr_io_lock
);
924 mutex_exit(&vr
->vr_io_lock
);
926 mutex_destroy(&vr
->vr_io_lock
);
927 cv_destroy(&vr
->vr_io_cv
);
929 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
931 dsl_pool_t
*dp
= spa_get_dsl(spa
);
932 dmu_tx_t
*tx
= dmu_tx_create_dd(dp
->dp_mos_dir
);
933 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
935 mutex_enter(&vd
->vdev_rebuild_lock
);
938 * After a successful rebuild clear the DTLs of all ranges
939 * which were missing when the rebuild was started. These
940 * ranges must have been rebuilt as a consequence of rebuilding
941 * all allocated space. Note that unlike a scrub or resilver
942 * the rebuild operation will reconstruct data only referenced
943 * by a pool checkpoint. See the dsl_scan_done() comments.
945 dsl_sync_task_nowait(dp
, vdev_rebuild_complete_sync
,
946 (void *)(uintptr_t)vd
->vdev_id
, tx
);
947 } else if (vd
->vdev_rebuild_cancel_wanted
) {
949 * The rebuild operation was canceled. This will occur when
950 * a device participating in the rebuild is detached.
952 dsl_sync_task_nowait(dp
, vdev_rebuild_cancel_sync
,
953 (void *)(uintptr_t)vd
->vdev_id
, tx
);
954 } else if (vd
->vdev_rebuild_reset_wanted
) {
956 * Reset the running rebuild without canceling and restarting
957 * it. This will occur when a new device is attached and must
958 * participate in the rebuild.
960 dsl_sync_task_nowait(dp
, vdev_rebuild_reset_sync
,
961 (void *)(uintptr_t)vd
->vdev_id
, tx
);
964 * The rebuild operation should be suspended. This may occur
965 * when detaching a child vdev or when exporting the pool. The
966 * rebuild is left in the active state so it will be resumed.
968 ASSERT(vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
);
969 vd
->vdev_rebuilding
= B_FALSE
;
974 vd
->vdev_rebuild_thread
= NULL
;
975 mutex_exit(&vd
->vdev_rebuild_lock
);
976 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
978 cv_broadcast(&vd
->vdev_rebuild_cv
);
984 * Returns B_TRUE if any top-level vdev are rebuilding.
987 vdev_rebuild_active(vdev_t
*vd
)
989 spa_t
*spa
= vd
->vdev_spa
;
990 boolean_t ret
= B_FALSE
;
992 if (vd
== spa
->spa_root_vdev
) {
993 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++) {
994 ret
= vdev_rebuild_active(vd
->vdev_child
[i
]);
998 } else if (vd
->vdev_top_zap
!= 0) {
999 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
1000 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
1002 mutex_enter(&vd
->vdev_rebuild_lock
);
1003 ret
= (vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
);
1004 mutex_exit(&vd
->vdev_rebuild_lock
);
1011 * Start a rebuild operation. The rebuild may be restarted when the
1012 * top-level vdev is currently actively rebuilding.
1015 vdev_rebuild(vdev_t
*vd
)
1017 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
1018 vdev_rebuild_phys_t
*vrp __maybe_unused
= &vr
->vr_rebuild_phys
;
1020 ASSERT(vd
->vdev_top
== vd
);
1021 ASSERT(vdev_is_concrete(vd
));
1022 ASSERT(!vd
->vdev_removing
);
1023 ASSERT(spa_feature_is_enabled(vd
->vdev_spa
,
1024 SPA_FEATURE_DEVICE_REBUILD
));
1026 mutex_enter(&vd
->vdev_rebuild_lock
);
1027 if (vd
->vdev_rebuilding
) {
1028 ASSERT3U(vrp
->vrp_rebuild_state
, ==, VDEV_REBUILD_ACTIVE
);
1031 * Signal a running rebuild operation that it should restart
1032 * from the beginning because a new device was attached. The
1033 * vdev_rebuild_reset_wanted flag is set until the sync task
1034 * completes. This may be after the rebuild thread exits.
1036 if (!vd
->vdev_rebuild_reset_wanted
)
1037 vd
->vdev_rebuild_reset_wanted
= B_TRUE
;
1039 vdev_rebuild_initiate(vd
);
1041 mutex_exit(&vd
->vdev_rebuild_lock
);
1045 vdev_rebuild_restart_impl(vdev_t
*vd
)
1047 spa_t
*spa
= vd
->vdev_spa
;
1049 if (vd
== spa
->spa_root_vdev
) {
1050 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
1051 vdev_rebuild_restart_impl(vd
->vdev_child
[i
]);
1053 } else if (vd
->vdev_top_zap
!= 0) {
1054 vdev_rebuild_t
*vr
= &vd
->vdev_rebuild_config
;
1055 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
1057 mutex_enter(&vd
->vdev_rebuild_lock
);
1058 if (vrp
->vrp_rebuild_state
== VDEV_REBUILD_ACTIVE
&&
1059 vdev_writeable(vd
) && !vd
->vdev_rebuilding
) {
1060 ASSERT(spa_feature_is_active(spa
,
1061 SPA_FEATURE_DEVICE_REBUILD
));
1062 vd
->vdev_rebuilding
= B_TRUE
;
1063 vd
->vdev_rebuild_thread
= thread_create(NULL
, 0,
1064 vdev_rebuild_thread
, vd
, 0, &p0
, TS_RUN
,
1067 mutex_exit(&vd
->vdev_rebuild_lock
);
1072 * Conditionally restart all of the vdev_rebuild_thread's for a pool. The
1073 * feature flag must be active and the rebuild in the active state. This
1074 * cannot be used to start a new rebuild.
1077 vdev_rebuild_restart(spa_t
*spa
)
1079 ASSERT(MUTEX_HELD(&spa_namespace_lock
) ||
1080 spa
->spa_load_thread
== curthread
);
1082 vdev_rebuild_restart_impl(spa
->spa_root_vdev
);
1086 * Stop and wait for all of the vdev_rebuild_thread's associated with the
1087 * vdev tree provide to be terminated (canceled or stopped).
1090 vdev_rebuild_stop_wait(vdev_t
*vd
)
1092 spa_t
*spa
= vd
->vdev_spa
;
1094 ASSERT(MUTEX_HELD(&spa_namespace_lock
) ||
1095 spa
->spa_export_thread
== curthread
);
1097 if (vd
== spa
->spa_root_vdev
) {
1098 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++)
1099 vdev_rebuild_stop_wait(vd
->vdev_child
[i
]);
1101 } else if (vd
->vdev_top_zap
!= 0) {
1102 ASSERT(vd
== vd
->vdev_top
);
1104 mutex_enter(&vd
->vdev_rebuild_lock
);
1105 if (vd
->vdev_rebuild_thread
!= NULL
) {
1106 vd
->vdev_rebuild_exit_wanted
= B_TRUE
;
1107 while (vd
->vdev_rebuilding
) {
1108 cv_wait(&vd
->vdev_rebuild_cv
,
1109 &vd
->vdev_rebuild_lock
);
1111 vd
->vdev_rebuild_exit_wanted
= B_FALSE
;
1113 mutex_exit(&vd
->vdev_rebuild_lock
);
1118 * Stop all rebuild operations but leave them in the active state so they
1119 * will be resumed when importing the pool.
1122 vdev_rebuild_stop_all(spa_t
*spa
)
1124 vdev_rebuild_stop_wait(spa
->spa_root_vdev
);
1128 * Rebuild statistics reported per top-level vdev.
1131 vdev_rebuild_get_stats(vdev_t
*tvd
, vdev_rebuild_stat_t
*vrs
)
1133 spa_t
*spa
= tvd
->vdev_spa
;
1135 if (!spa_feature_is_enabled(spa
, SPA_FEATURE_DEVICE_REBUILD
))
1136 return (SET_ERROR(ENOTSUP
));
1138 if (tvd
!= tvd
->vdev_top
|| tvd
->vdev_top_zap
== 0)
1139 return (SET_ERROR(EINVAL
));
1141 int error
= zap_contains(spa_meta_objset(spa
),
1142 tvd
->vdev_top_zap
, VDEV_TOP_ZAP_VDEV_REBUILD_PHYS
);
1144 if (error
== ENOENT
) {
1145 memset(vrs
, 0, sizeof (vdev_rebuild_stat_t
));
1146 vrs
->vrs_state
= VDEV_REBUILD_NONE
;
1148 } else if (error
== 0) {
1149 vdev_rebuild_t
*vr
= &tvd
->vdev_rebuild_config
;
1150 vdev_rebuild_phys_t
*vrp
= &vr
->vr_rebuild_phys
;
1152 mutex_enter(&tvd
->vdev_rebuild_lock
);
1153 vrs
->vrs_state
= vrp
->vrp_rebuild_state
;
1154 vrs
->vrs_start_time
= vrp
->vrp_start_time
;
1155 vrs
->vrs_end_time
= vrp
->vrp_end_time
;
1156 vrs
->vrs_scan_time_ms
= vrp
->vrp_scan_time_ms
;
1157 vrs
->vrs_bytes_scanned
= vrp
->vrp_bytes_scanned
;
1158 vrs
->vrs_bytes_issued
= vrp
->vrp_bytes_issued
;
1159 vrs
->vrs_bytes_rebuilt
= vrp
->vrp_bytes_rebuilt
;
1160 vrs
->vrs_bytes_est
= vrp
->vrp_bytes_est
;
1161 vrs
->vrs_errors
= vrp
->vrp_errors
;
1162 vrs
->vrs_pass_time_ms
= NSEC2MSEC(gethrtime() -
1163 vr
->vr_pass_start_time
);
1164 vrs
->vrs_pass_bytes_scanned
= vr
->vr_pass_bytes_scanned
;
1165 vrs
->vrs_pass_bytes_issued
= vr
->vr_pass_bytes_issued
;
1166 vrs
->vrs_pass_bytes_skipped
= vr
->vr_pass_bytes_skipped
;
1167 mutex_exit(&tvd
->vdev_rebuild_lock
);
1173 ZFS_MODULE_PARAM(zfs
, zfs_
, rebuild_max_segment
, U64
, ZMOD_RW
,
1174 "Max segment size in bytes of rebuild reads");
1176 ZFS_MODULE_PARAM(zfs
, zfs_
, rebuild_vdev_limit
, U64
, ZMOD_RW
,
1177 "Max bytes in flight per leaf vdev for sequential resilvers");
1179 ZFS_MODULE_PARAM(zfs
, zfs_
, rebuild_scrub_enabled
, INT
, ZMOD_RW
,
1180 "Automatically scrub after sequential resilver completes");