4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
25 * Copyright 2017 Nexenta Systems, Inc.
29 * The 512-byte leaf is broken into 32 16-byte chunks.
30 * chunk number n means l_chunk[n], even though the header precedes it.
31 * the names are stored null-terminated.
37 #include <sys/zfs_context.h>
38 #include <sys/fs/zfs.h>
40 #include <sys/zap_impl.h>
41 #include <sys/zap_leaf.h>
44 static uint16_t *zap_leaf_rehash_entry(zap_leaf_t
*l
, struct zap_leaf_entry
*le
,
47 #define CHAIN_END 0xffff /* end of the chunk chain */
49 #define LEAF_HASH(l, h) \
50 ((ZAP_LEAF_HASH_NUMENTRIES(l)-1) & \
52 (64 - ZAP_LEAF_HASH_SHIFT(l) - zap_leaf_phys(l)->l_hdr.lh_prefix_len)))
54 #define LEAF_HASH_ENTPTR(l, h) (&zap_leaf_phys(l)->l_hash[LEAF_HASH(l, h)])
57 stv(int len
, void *addr
, uint64_t value
)
61 *(uint8_t *)addr
= value
;
64 *(uint16_t *)addr
= value
;
67 *(uint32_t *)addr
= value
;
70 *(uint64_t *)addr
= value
;
73 PANIC("bad int len %d", len
);
78 ldv(int len
, const void *addr
)
82 return (*(uint8_t *)addr
);
84 return (*(uint16_t *)addr
);
86 return (*(uint32_t *)addr
);
88 return (*(uint64_t *)addr
);
90 PANIC("bad int len %d", len
);
92 return (0xFEEDFACEDEADBEEFULL
);
96 zap_leaf_byteswap(zap_leaf_phys_t
*buf
, size_t size
)
101 l_dbuf
.db_data
= buf
;
102 l
.l_bs
= highbit64(size
) - 1;
105 buf
->l_hdr
.lh_block_type
= BSWAP_64(buf
->l_hdr
.lh_block_type
);
106 buf
->l_hdr
.lh_prefix
= BSWAP_64(buf
->l_hdr
.lh_prefix
);
107 buf
->l_hdr
.lh_magic
= BSWAP_32(buf
->l_hdr
.lh_magic
);
108 buf
->l_hdr
.lh_nfree
= BSWAP_16(buf
->l_hdr
.lh_nfree
);
109 buf
->l_hdr
.lh_nentries
= BSWAP_16(buf
->l_hdr
.lh_nentries
);
110 buf
->l_hdr
.lh_prefix_len
= BSWAP_16(buf
->l_hdr
.lh_prefix_len
);
111 buf
->l_hdr
.lh_freelist
= BSWAP_16(buf
->l_hdr
.lh_freelist
);
113 for (uint_t i
= 0; i
< ZAP_LEAF_HASH_NUMENTRIES(&l
); i
++)
114 buf
->l_hash
[i
] = BSWAP_16(buf
->l_hash
[i
]);
116 for (uint_t i
= 0; i
< ZAP_LEAF_NUMCHUNKS(&l
); i
++) {
117 zap_leaf_chunk_t
*lc
= &ZAP_LEAF_CHUNK(&l
, i
);
118 struct zap_leaf_entry
*le
;
120 switch (lc
->l_free
.lf_type
) {
121 case ZAP_CHUNK_ENTRY
:
124 le
->le_type
= BSWAP_8(le
->le_type
);
125 le
->le_value_intlen
= BSWAP_8(le
->le_value_intlen
);
126 le
->le_next
= BSWAP_16(le
->le_next
);
127 le
->le_name_chunk
= BSWAP_16(le
->le_name_chunk
);
128 le
->le_name_numints
= BSWAP_16(le
->le_name_numints
);
129 le
->le_value_chunk
= BSWAP_16(le
->le_value_chunk
);
130 le
->le_value_numints
= BSWAP_16(le
->le_value_numints
);
131 le
->le_cd
= BSWAP_32(le
->le_cd
);
132 le
->le_hash
= BSWAP_64(le
->le_hash
);
135 lc
->l_free
.lf_type
= BSWAP_8(lc
->l_free
.lf_type
);
136 lc
->l_free
.lf_next
= BSWAP_16(lc
->l_free
.lf_next
);
138 case ZAP_CHUNK_ARRAY
:
139 lc
->l_array
.la_type
= BSWAP_8(lc
->l_array
.la_type
);
140 lc
->l_array
.la_next
= BSWAP_16(lc
->l_array
.la_next
);
141 /* la_array doesn't need swapping */
144 cmn_err(CE_PANIC
, "bad leaf type %d",
151 zap_leaf_init(zap_leaf_t
*l
, boolean_t sort
)
153 l
->l_bs
= highbit64(l
->l_dbuf
->db_size
) - 1;
154 memset(&zap_leaf_phys(l
)->l_hdr
, 0,
155 sizeof (struct zap_leaf_header
));
156 memset(zap_leaf_phys(l
)->l_hash
, CHAIN_END
,
157 2*ZAP_LEAF_HASH_NUMENTRIES(l
));
158 for (uint_t i
= 0; i
< ZAP_LEAF_NUMCHUNKS(l
); i
++) {
159 ZAP_LEAF_CHUNK(l
, i
).l_free
.lf_type
= ZAP_CHUNK_FREE
;
160 ZAP_LEAF_CHUNK(l
, i
).l_free
.lf_next
= i
+1;
162 ZAP_LEAF_CHUNK(l
, ZAP_LEAF_NUMCHUNKS(l
)-1).l_free
.lf_next
= CHAIN_END
;
163 zap_leaf_phys(l
)->l_hdr
.lh_block_type
= ZBT_LEAF
;
164 zap_leaf_phys(l
)->l_hdr
.lh_magic
= ZAP_LEAF_MAGIC
;
165 zap_leaf_phys(l
)->l_hdr
.lh_nfree
= ZAP_LEAF_NUMCHUNKS(l
);
167 zap_leaf_phys(l
)->l_hdr
.lh_flags
|= ZLF_ENTRIES_CDSORTED
;
171 * Routines which manipulate leaf chunks (l_chunk[]).
175 zap_leaf_chunk_alloc(zap_leaf_t
*l
)
177 ASSERT(zap_leaf_phys(l
)->l_hdr
.lh_nfree
> 0);
179 uint_t chunk
= zap_leaf_phys(l
)->l_hdr
.lh_freelist
;
180 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
181 ASSERT3U(ZAP_LEAF_CHUNK(l
, chunk
).l_free
.lf_type
, ==, ZAP_CHUNK_FREE
);
183 zap_leaf_phys(l
)->l_hdr
.lh_freelist
=
184 ZAP_LEAF_CHUNK(l
, chunk
).l_free
.lf_next
;
186 zap_leaf_phys(l
)->l_hdr
.lh_nfree
--;
192 zap_leaf_chunk_free(zap_leaf_t
*l
, uint16_t chunk
)
194 struct zap_leaf_free
*zlf
= &ZAP_LEAF_CHUNK(l
, chunk
).l_free
;
195 ASSERT3U(zap_leaf_phys(l
)->l_hdr
.lh_nfree
, <, ZAP_LEAF_NUMCHUNKS(l
));
196 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
197 ASSERT(zlf
->lf_type
!= ZAP_CHUNK_FREE
);
199 zlf
->lf_type
= ZAP_CHUNK_FREE
;
200 zlf
->lf_next
= zap_leaf_phys(l
)->l_hdr
.lh_freelist
;
201 memset(zlf
->lf_pad
, 0, sizeof (zlf
->lf_pad
)); /* help it to compress */
202 zap_leaf_phys(l
)->l_hdr
.lh_freelist
= chunk
;
204 zap_leaf_phys(l
)->l_hdr
.lh_nfree
++;
208 * Routines which manipulate leaf arrays (zap_leaf_array type chunks).
212 zap_leaf_array_create(zap_leaf_t
*l
, const char *buf
,
213 int integer_size
, int num_integers
)
216 uint16_t *chunkp
= &chunk_head
;
217 int byten
= integer_size
;
219 int shift
= (integer_size
- 1) * 8;
220 int len
= num_integers
;
222 ASSERT3U(num_integers
* integer_size
, <=, ZAP_MAXVALUELEN
);
225 value
= ldv(integer_size
, buf
);
227 uint16_t chunk
= zap_leaf_chunk_alloc(l
);
228 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
230 la
->la_type
= ZAP_CHUNK_ARRAY
;
231 for (int i
= 0; i
< ZAP_LEAF_ARRAY_BYTES
; i
++) {
232 la
->la_array
[i
] = value
>> shift
;
237 byten
= integer_size
;
239 value
= ldv(integer_size
, buf
);
244 chunkp
= &la
->la_next
;
252 * Non-destructively copy array between leaves.
255 zap_leaf_array_copy(zap_leaf_t
*l
, uint16_t chunk
, zap_leaf_t
*nl
)
258 uint16_t *nchunkp
= &new_chunk
;
260 while (chunk
!= CHAIN_END
) {
261 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
262 uint16_t nchunk
= zap_leaf_chunk_alloc(nl
);
264 struct zap_leaf_array
*la
=
265 &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
266 struct zap_leaf_array
*nla
=
267 &ZAP_LEAF_CHUNK(nl
, nchunk
).l_array
;
268 ASSERT3U(la
->la_type
, ==, ZAP_CHUNK_ARRAY
);
270 *nla
= *la
; /* structure assignment */
274 nchunkp
= &nla
->la_next
;
276 *nchunkp
= CHAIN_END
;
281 * Free array. Unlike trivial loop of zap_leaf_chunk_free() this does
282 * not reverse order of chunks in the free list, reducing fragmentation.
285 zap_leaf_array_free(zap_leaf_t
*l
, uint16_t chunk
)
287 struct zap_leaf_header
*hdr
= &zap_leaf_phys(l
)->l_hdr
;
288 uint16_t *tailp
= &hdr
->lh_freelist
;
289 uint16_t oldfree
= *tailp
;
291 while (chunk
!= CHAIN_END
) {
292 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
293 zap_leaf_chunk_t
*c
= &ZAP_LEAF_CHUNK(l
, chunk
);
294 ASSERT3U(c
->l_array
.la_type
, ==, ZAP_CHUNK_ARRAY
);
297 chunk
= c
->l_array
.la_next
;
299 c
->l_free
.lf_type
= ZAP_CHUNK_FREE
;
300 memset(c
->l_free
.lf_pad
, 0, sizeof (c
->l_free
.lf_pad
));
301 tailp
= &c
->l_free
.lf_next
;
303 ASSERT3U(hdr
->lh_nfree
, <, ZAP_LEAF_NUMCHUNKS(l
));
310 /* array_len and buf_len are in integers, not bytes */
312 zap_leaf_array_read(zap_leaf_t
*l
, uint16_t chunk
,
313 int array_int_len
, int array_len
, int buf_int_len
, uint64_t buf_len
,
316 int len
= MIN(array_len
, buf_len
);
321 ASSERT3U(array_int_len
, <=, buf_int_len
);
323 /* Fast path for one 8-byte integer */
324 if (array_int_len
== 8 && buf_int_len
== 8 && len
== 1) {
325 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
326 uint8_t *ip
= la
->la_array
;
327 uint64_t *buf64
= buf
;
329 *buf64
= (uint64_t)ip
[0] << 56 | (uint64_t)ip
[1] << 48 |
330 (uint64_t)ip
[2] << 40 | (uint64_t)ip
[3] << 32 |
331 (uint64_t)ip
[4] << 24 | (uint64_t)ip
[5] << 16 |
332 (uint64_t)ip
[6] << 8 | (uint64_t)ip
[7];
336 /* Fast path for an array of 1-byte integers (eg. the entry name) */
337 if (array_int_len
== 1 && buf_int_len
== 1 &&
338 buf_len
> array_len
+ ZAP_LEAF_ARRAY_BYTES
) {
339 while (chunk
!= CHAIN_END
) {
340 struct zap_leaf_array
*la
=
341 &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
342 memcpy(p
, la
->la_array
, ZAP_LEAF_ARRAY_BYTES
);
343 p
+= ZAP_LEAF_ARRAY_BYTES
;
350 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
352 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
353 for (int i
= 0; i
< ZAP_LEAF_ARRAY_BYTES
; i
++) {
354 value
= (value
<< 8) | la
->la_array
[i
];
356 if (byten
== array_int_len
) {
357 stv(buf_int_len
, p
, value
);
370 zap_leaf_array_match(zap_leaf_t
*l
, zap_name_t
*zn
,
371 uint_t chunk
, int array_numints
)
375 if (zap_getflags(zn
->zn_zap
) & ZAP_FLAG_UINT64_KEY
) {
377 kmem_alloc(array_numints
* sizeof (*thiskey
), KM_SLEEP
);
378 ASSERT(zn
->zn_key_intlen
== sizeof (*thiskey
));
380 zap_leaf_array_read(l
, chunk
, sizeof (*thiskey
), array_numints
,
381 sizeof (*thiskey
), array_numints
, thiskey
);
382 boolean_t match
= memcmp(thiskey
, zn
->zn_key_orig
,
383 array_numints
* sizeof (*thiskey
)) == 0;
384 kmem_free(thiskey
, array_numints
* sizeof (*thiskey
));
388 ASSERT(zn
->zn_key_intlen
== 1);
389 if (zn
->zn_matchtype
& MT_NORMALIZE
) {
390 char *thisname
= kmem_alloc(array_numints
, KM_SLEEP
);
392 zap_leaf_array_read(l
, chunk
, sizeof (char), array_numints
,
393 sizeof (char), array_numints
, thisname
);
394 boolean_t match
= zap_match(zn
, thisname
);
395 kmem_free(thisname
, array_numints
);
400 * Fast path for exact matching.
401 * First check that the lengths match, so that we don't read
402 * past the end of the zn_key_orig array.
404 if (array_numints
!= zn
->zn_key_orig_numints
)
406 while (bseen
< array_numints
) {
407 struct zap_leaf_array
*la
= &ZAP_LEAF_CHUNK(l
, chunk
).l_array
;
408 int toread
= MIN(array_numints
- bseen
, ZAP_LEAF_ARRAY_BYTES
);
409 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
410 if (memcmp(la
->la_array
, (char *)zn
->zn_key_orig
+ bseen
,
416 return (bseen
== array_numints
);
420 * Routines which manipulate leaf entries.
424 zap_leaf_lookup(zap_leaf_t
*l
, zap_name_t
*zn
, zap_entry_handle_t
*zeh
)
426 struct zap_leaf_entry
*le
;
428 ASSERT3U(zap_leaf_phys(l
)->l_hdr
.lh_magic
, ==, ZAP_LEAF_MAGIC
);
430 for (uint16_t *chunkp
= LEAF_HASH_ENTPTR(l
, zn
->zn_hash
);
431 *chunkp
!= CHAIN_END
; chunkp
= &le
->le_next
) {
432 uint16_t chunk
= *chunkp
;
433 le
= ZAP_LEAF_ENTRY(l
, chunk
);
435 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
436 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
438 if (le
->le_hash
!= zn
->zn_hash
)
442 * NB: the entry chain is always sorted by cd on
443 * normalized zap objects, so this will find the
444 * lowest-cd match for MT_NORMALIZE.
446 ASSERT((zn
->zn_matchtype
== 0) ||
447 (zap_leaf_phys(l
)->l_hdr
.lh_flags
& ZLF_ENTRIES_CDSORTED
));
448 if (zap_leaf_array_match(l
, zn
, le
->le_name_chunk
,
449 le
->le_name_numints
)) {
450 zeh
->zeh_num_integers
= le
->le_value_numints
;
451 zeh
->zeh_integer_size
= le
->le_value_intlen
;
452 zeh
->zeh_cd
= le
->le_cd
;
453 zeh
->zeh_hash
= le
->le_hash
;
454 zeh
->zeh_chunkp
= chunkp
;
460 return (SET_ERROR(ENOENT
));
463 /* Return (h1,cd1 >= h2,cd2) */
464 #define HCD_GTEQ(h1, cd1, h2, cd2) \
465 ((h1 > h2) ? TRUE : ((h1 == h2 && cd1 >= cd2) ? TRUE : FALSE))
468 zap_leaf_lookup_closest(zap_leaf_t
*l
,
469 uint64_t h
, uint32_t cd
, zap_entry_handle_t
*zeh
)
471 uint64_t besth
= -1ULL;
472 uint32_t bestcd
= -1U;
473 uint16_t bestlh
= ZAP_LEAF_HASH_NUMENTRIES(l
)-1;
474 struct zap_leaf_entry
*le
;
476 ASSERT3U(zap_leaf_phys(l
)->l_hdr
.lh_magic
, ==, ZAP_LEAF_MAGIC
);
478 for (uint16_t lh
= LEAF_HASH(l
, h
); lh
<= bestlh
; lh
++) {
479 for (uint16_t chunk
= zap_leaf_phys(l
)->l_hash
[lh
];
480 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
481 le
= ZAP_LEAF_ENTRY(l
, chunk
);
483 ASSERT3U(chunk
, <, ZAP_LEAF_NUMCHUNKS(l
));
484 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
486 if (HCD_GTEQ(le
->le_hash
, le
->le_cd
, h
, cd
) &&
487 HCD_GTEQ(besth
, bestcd
, le
->le_hash
, le
->le_cd
)) {
488 ASSERT3U(bestlh
, >=, lh
);
493 zeh
->zeh_num_integers
= le
->le_value_numints
;
494 zeh
->zeh_integer_size
= le
->le_value_intlen
;
495 zeh
->zeh_cd
= le
->le_cd
;
496 zeh
->zeh_hash
= le
->le_hash
;
497 zeh
->zeh_fakechunk
= chunk
;
498 zeh
->zeh_chunkp
= &zeh
->zeh_fakechunk
;
504 return (bestcd
== -1U ? SET_ERROR(ENOENT
) : 0);
508 zap_entry_read(const zap_entry_handle_t
*zeh
,
509 uint8_t integer_size
, uint64_t num_integers
, void *buf
)
511 struct zap_leaf_entry
*le
=
512 ZAP_LEAF_ENTRY(zeh
->zeh_leaf
, *zeh
->zeh_chunkp
);
513 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
515 if (le
->le_value_intlen
> integer_size
)
516 return (SET_ERROR(EINVAL
));
518 zap_leaf_array_read(zeh
->zeh_leaf
, le
->le_value_chunk
,
519 le
->le_value_intlen
, le
->le_value_numints
,
520 integer_size
, num_integers
, buf
);
522 if (zeh
->zeh_num_integers
> num_integers
)
523 return (SET_ERROR(EOVERFLOW
));
529 zap_entry_read_name(zap_t
*zap
, const zap_entry_handle_t
*zeh
, uint16_t buflen
,
532 struct zap_leaf_entry
*le
=
533 ZAP_LEAF_ENTRY(zeh
->zeh_leaf
, *zeh
->zeh_chunkp
);
534 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
536 if (zap_getflags(zap
) & ZAP_FLAG_UINT64_KEY
) {
537 zap_leaf_array_read(zeh
->zeh_leaf
, le
->le_name_chunk
, 8,
538 le
->le_name_numints
, 8, buflen
/ 8, buf
);
540 zap_leaf_array_read(zeh
->zeh_leaf
, le
->le_name_chunk
, 1,
541 le
->le_name_numints
, 1, buflen
, buf
);
543 if (le
->le_name_numints
> buflen
)
544 return (SET_ERROR(EOVERFLOW
));
549 zap_entry_update(zap_entry_handle_t
*zeh
,
550 uint8_t integer_size
, uint64_t num_integers
, const void *buf
)
552 zap_leaf_t
*l
= zeh
->zeh_leaf
;
553 struct zap_leaf_entry
*le
= ZAP_LEAF_ENTRY(l
, *zeh
->zeh_chunkp
);
555 int delta_chunks
= ZAP_LEAF_ARRAY_NCHUNKS(num_integers
* integer_size
) -
556 ZAP_LEAF_ARRAY_NCHUNKS(le
->le_value_numints
* le
->le_value_intlen
);
558 if ((int)zap_leaf_phys(l
)->l_hdr
.lh_nfree
< delta_chunks
)
559 return (SET_ERROR(EAGAIN
));
561 zap_leaf_array_free(l
, le
->le_value_chunk
);
563 zap_leaf_array_create(l
, buf
, integer_size
, num_integers
);
564 le
->le_value_numints
= num_integers
;
565 le
->le_value_intlen
= integer_size
;
570 zap_entry_remove(zap_entry_handle_t
*zeh
)
572 zap_leaf_t
*l
= zeh
->zeh_leaf
;
574 ASSERT3P(zeh
->zeh_chunkp
, !=, &zeh
->zeh_fakechunk
);
576 uint16_t entry_chunk
= *zeh
->zeh_chunkp
;
577 struct zap_leaf_entry
*le
= ZAP_LEAF_ENTRY(l
, entry_chunk
);
578 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
580 *zeh
->zeh_chunkp
= le
->le_next
;
582 /* Free in opposite order to reduce fragmentation. */
583 zap_leaf_array_free(l
, le
->le_value_chunk
);
584 zap_leaf_array_free(l
, le
->le_name_chunk
);
585 zap_leaf_chunk_free(l
, entry_chunk
);
587 zap_leaf_phys(l
)->l_hdr
.lh_nentries
--;
591 zap_entry_create(zap_leaf_t
*l
, zap_name_t
*zn
, uint32_t cd
,
592 uint8_t integer_size
, uint64_t num_integers
, const void *buf
,
593 zap_entry_handle_t
*zeh
)
596 struct zap_leaf_entry
*le
;
597 uint64_t h
= zn
->zn_hash
;
599 uint64_t valuelen
= integer_size
* num_integers
;
601 uint_t numchunks
= 1 + ZAP_LEAF_ARRAY_NCHUNKS(zn
->zn_key_orig_numints
*
602 zn
->zn_key_intlen
) + ZAP_LEAF_ARRAY_NCHUNKS(valuelen
);
603 if (numchunks
> ZAP_LEAF_NUMCHUNKS(l
))
604 return (SET_ERROR(E2BIG
));
606 if (cd
== ZAP_NEED_CD
) {
607 /* find the lowest unused cd */
608 if (zap_leaf_phys(l
)->l_hdr
.lh_flags
& ZLF_ENTRIES_CDSORTED
) {
611 for (chunk
= *LEAF_HASH_ENTPTR(l
, h
);
612 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
613 le
= ZAP_LEAF_ENTRY(l
, chunk
);
616 if (le
->le_hash
== h
) {
617 ASSERT3U(cd
, ==, le
->le_cd
);
622 /* old unsorted format; do it the O(n^2) way */
623 for (cd
= 0; ; cd
++) {
624 for (chunk
= *LEAF_HASH_ENTPTR(l
, h
);
625 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
626 le
= ZAP_LEAF_ENTRY(l
, chunk
);
627 if (le
->le_hash
== h
&&
632 /* If this cd is not in use, we are good. */
633 if (chunk
== CHAIN_END
)
638 * We would run out of space in a block before we could
639 * store enough entries to run out of CD values.
641 ASSERT3U(cd
, <, zap_maxcd(zn
->zn_zap
));
644 if (zap_leaf_phys(l
)->l_hdr
.lh_nfree
< numchunks
)
645 return (SET_ERROR(EAGAIN
));
648 chunk
= zap_leaf_chunk_alloc(l
);
649 le
= ZAP_LEAF_ENTRY(l
, chunk
);
650 le
->le_type
= ZAP_CHUNK_ENTRY
;
651 le
->le_name_chunk
= zap_leaf_array_create(l
, zn
->zn_key_orig
,
652 zn
->zn_key_intlen
, zn
->zn_key_orig_numints
);
653 le
->le_name_numints
= zn
->zn_key_orig_numints
;
655 zap_leaf_array_create(l
, buf
, integer_size
, num_integers
);
656 le
->le_value_numints
= num_integers
;
657 le
->le_value_intlen
= integer_size
;
661 /* link it into the hash chain */
662 /* XXX if we did the search above, we could just use that */
663 uint16_t *chunkp
= zap_leaf_rehash_entry(l
, le
, chunk
);
665 zap_leaf_phys(l
)->l_hdr
.lh_nentries
++;
668 zeh
->zeh_num_integers
= num_integers
;
669 zeh
->zeh_integer_size
= le
->le_value_intlen
;
670 zeh
->zeh_cd
= le
->le_cd
;
671 zeh
->zeh_hash
= le
->le_hash
;
672 zeh
->zeh_chunkp
= chunkp
;
678 * Determine if there is another entry with the same normalized form.
679 * For performance purposes, either zn or name must be provided (the
680 * other can be NULL). Note, there usually won't be any hash
681 * conflicts, in which case we don't need the concatenated/normalized
682 * form of the name. But all callers have one of these on hand anyway,
683 * so might as well take advantage. A cleaner but slower interface
684 * would accept neither argument, and compute the normalized name as
685 * needed (using zap_name_alloc_str(zap_entry_read_name(zeh))).
688 zap_entry_normalization_conflict(zap_entry_handle_t
*zeh
, zap_name_t
*zn
,
689 const char *name
, zap_t
*zap
)
691 struct zap_leaf_entry
*le
;
692 boolean_t allocdzn
= B_FALSE
;
694 if (zap
->zap_normflags
== 0)
697 for (uint16_t chunk
= *LEAF_HASH_ENTPTR(zeh
->zeh_leaf
, zeh
->zeh_hash
);
698 chunk
!= CHAIN_END
; chunk
= le
->le_next
) {
699 le
= ZAP_LEAF_ENTRY(zeh
->zeh_leaf
, chunk
);
700 if (le
->le_hash
!= zeh
->zeh_hash
)
702 if (le
->le_cd
== zeh
->zeh_cd
)
706 zn
= zap_name_alloc_str(zap
, name
, MT_NORMALIZE
);
709 if (zap_leaf_array_match(zeh
->zeh_leaf
, zn
,
710 le
->le_name_chunk
, le
->le_name_numints
)) {
722 * Routines for transferring entries between leafs.
726 zap_leaf_rehash_entry(zap_leaf_t
*l
, struct zap_leaf_entry
*le
, uint16_t entry
)
728 struct zap_leaf_entry
*le2
;
732 * keep the entry chain sorted by cd
733 * NB: this will not cause problems for unsorted leafs, though
734 * it is unnecessary there.
736 for (chunkp
= LEAF_HASH_ENTPTR(l
, le
->le_hash
);
737 *chunkp
!= CHAIN_END
; chunkp
= &le2
->le_next
) {
738 le2
= ZAP_LEAF_ENTRY(l
, *chunkp
);
739 if (le2
->le_cd
> le
->le_cd
)
743 le
->le_next
= *chunkp
;
749 zap_leaf_transfer_entry(zap_leaf_t
*l
, uint_t entry
, zap_leaf_t
*nl
)
751 struct zap_leaf_entry
*le
= ZAP_LEAF_ENTRY(l
, entry
);
752 ASSERT3U(le
->le_type
, ==, ZAP_CHUNK_ENTRY
);
754 uint16_t chunk
= zap_leaf_chunk_alloc(nl
);
755 struct zap_leaf_entry
*nle
= ZAP_LEAF_ENTRY(nl
, chunk
);
756 *nle
= *le
; /* structure assignment */
758 (void) zap_leaf_rehash_entry(nl
, nle
, chunk
);
760 nle
->le_name_chunk
= zap_leaf_array_copy(l
, le
->le_name_chunk
, nl
);
761 nle
->le_value_chunk
= zap_leaf_array_copy(l
, le
->le_value_chunk
, nl
);
763 /* Free in opposite order to reduce fragmentation. */
764 zap_leaf_array_free(l
, le
->le_value_chunk
);
765 zap_leaf_array_free(l
, le
->le_name_chunk
);
766 zap_leaf_chunk_free(l
, entry
);
768 zap_leaf_phys(l
)->l_hdr
.lh_nentries
--;
769 zap_leaf_phys(nl
)->l_hdr
.lh_nentries
++;
773 * Transfer the entries whose hash prefix ends in 1 to the new leaf.
776 zap_leaf_split(zap_leaf_t
*l
, zap_leaf_t
*nl
, boolean_t sort
)
778 uint_t bit
= 64 - 1 - zap_leaf_phys(l
)->l_hdr
.lh_prefix_len
;
780 /* set new prefix and prefix_len */
781 zap_leaf_phys(l
)->l_hdr
.lh_prefix
<<= 1;
782 zap_leaf_phys(l
)->l_hdr
.lh_prefix_len
++;
783 zap_leaf_phys(nl
)->l_hdr
.lh_prefix
=
784 zap_leaf_phys(l
)->l_hdr
.lh_prefix
| 1;
785 zap_leaf_phys(nl
)->l_hdr
.lh_prefix_len
=
786 zap_leaf_phys(l
)->l_hdr
.lh_prefix_len
;
788 /* break existing hash chains */
789 memset(zap_leaf_phys(l
)->l_hash
, CHAIN_END
,
790 2*ZAP_LEAF_HASH_NUMENTRIES(l
));
793 zap_leaf_phys(l
)->l_hdr
.lh_flags
|= ZLF_ENTRIES_CDSORTED
;
796 * Transfer entries whose hash bit 'bit' is set to nl; rehash
797 * the remaining entries
799 * NB: We could find entries via the hashtable instead. That
800 * would be O(hashents+numents) rather than O(numblks+numents),
801 * but this accesses memory more sequentially, and when we're
802 * called, the block is usually pretty full.
804 for (uint_t i
= 0; i
< ZAP_LEAF_NUMCHUNKS(l
); i
++) {
805 struct zap_leaf_entry
*le
= ZAP_LEAF_ENTRY(l
, i
);
806 if (le
->le_type
!= ZAP_CHUNK_ENTRY
)
809 if (le
->le_hash
& (1ULL << bit
))
810 zap_leaf_transfer_entry(l
, i
, nl
);
812 (void) zap_leaf_rehash_entry(l
, le
, i
);
817 zap_leaf_stats(zap_t
*zap
, zap_leaf_t
*l
, zap_stats_t
*zs
)
819 uint_t n
= zap_f_phys(zap
)->zap_ptrtbl
.zt_shift
-
820 zap_leaf_phys(l
)->l_hdr
.lh_prefix_len
;
821 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
822 zs
->zs_leafs_with_2n_pointers
[n
]++;
825 n
= zap_leaf_phys(l
)->l_hdr
.lh_nentries
/5;
826 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
827 zs
->zs_blocks_with_n5_entries
[n
]++;
829 n
= ((1<<FZAP_BLOCK_SHIFT(zap
)) -
830 zap_leaf_phys(l
)->l_hdr
.lh_nfree
* (ZAP_LEAF_ARRAY_BYTES
+1))*10 /
831 (1<<FZAP_BLOCK_SHIFT(zap
));
832 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
833 zs
->zs_blocks_n_tenths_full
[n
]++;
835 for (uint_t i
= 0; i
< ZAP_LEAF_HASH_NUMENTRIES(l
); i
++) {
837 uint_t chunk
= zap_leaf_phys(l
)->l_hash
[i
];
839 while (chunk
!= CHAIN_END
) {
840 struct zap_leaf_entry
*le
=
841 ZAP_LEAF_ENTRY(l
, chunk
);
843 n
= 1 + ZAP_LEAF_ARRAY_NCHUNKS(le
->le_name_numints
) +
844 ZAP_LEAF_ARRAY_NCHUNKS(le
->le_value_numints
*
845 le
->le_value_intlen
);
846 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
847 zs
->zs_entries_using_n_chunks
[n
]++;
854 n
= MIN(n
, ZAP_HISTOGRAM_SIZE
-1);
855 zs
->zs_buckets_with_n_entries
[n
]++;