4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2013, 2016 by Delphix. All rights reserved.
24 * Copyright 2013 Saso Kiselkov. All rights reserved.
27 #include <sys/zfs_context.h>
29 #include <sys/spa_impl.h>
31 #include <sys/zio_checksum.h>
34 #include <zfs_fletcher.h>
39 * In the SPA, everything is checksummed. We support checksum vectors
40 * for three distinct reasons:
42 * 1. Different kinds of data need different levels of protection.
43 * For SPA metadata, we always want a very strong checksum.
44 * For user data, we let users make the trade-off between speed
45 * and checksum strength.
47 * 2. Cryptographic hash and MAC algorithms are an area of active research.
48 * It is likely that in future hash functions will be at least as strong
49 * as current best-of-breed, and may be substantially faster as well.
50 * We want the ability to take advantage of these new hashes as soon as
51 * they become available.
53 * 3. If someone develops hardware that can compute a strong hash quickly,
54 * we want the ability to take advantage of that hardware.
56 * Of course, we don't want a checksum upgrade to invalidate existing
57 * data, so we store the checksum *function* in eight bits of the bp.
58 * This gives us room for up to 256 different checksum functions.
60 * When writing a block, we always checksum it with the latest-and-greatest
61 * checksum function of the appropriate strength. When reading a block,
62 * we compare the expected checksum against the actual checksum, which we
63 * compute via the checksum function specified by BP_GET_CHECKSUM(bp).
67 * To enable the use of less secure hash algorithms with dedup, we
68 * introduce the notion of salted checksums (MACs, really). A salted
69 * checksum is fed both a random 256-bit value (the salt) and the data
70 * to be checksummed. This salt is kept secret (stored on the pool, but
71 * never shown to the user). Thus even if an attacker knew of collision
72 * weaknesses in the hash algorithm, they won't be able to mount a known
73 * plaintext attack on the DDT, since the actual hash value cannot be
74 * known ahead of time. How the salt is used is algorithm-specific
75 * (some might simply prefix it to the data block, others might need to
76 * utilize a full-blown HMAC). On disk the salt is stored in a ZAP
77 * object in the MOS (DMU_POOL_CHECKSUM_SALT).
81 * Some hashing algorithms need to perform a substantial amount of
82 * initialization work (e.g. salted checksums above may need to pre-hash
83 * the salt) before being able to process data. Performing this
84 * redundant work for each block would be wasteful, so we instead allow
85 * a checksum algorithm to do the work once (the first time it's used)
86 * and then keep this pre-initialized context as a template inside the
87 * spa_t (spa_cksum_tmpls). If the zio_checksum_info_t contains
88 * non-NULL ci_tmpl_init and ci_tmpl_free callbacks, they are used to
89 * construct and destruct the pre-initialized checksum context. The
90 * pre-initialized context is then reused during each checksum
91 * invocation and passed to the checksum function.
95 abd_checksum_off(abd_t
*abd
, uint64_t size
,
96 const void *ctx_template
, zio_cksum_t
*zcp
)
98 (void) abd
, (void) size
, (void) ctx_template
;
99 ZIO_SET_CHECKSUM(zcp
, 0, 0, 0, 0);
103 abd_fletcher_2_native(abd_t
*abd
, uint64_t size
,
104 const void *ctx_template
, zio_cksum_t
*zcp
)
108 (void) abd_iterate_func(abd
, 0, size
,
109 fletcher_2_incremental_native
, zcp
);
113 abd_fletcher_2_byteswap(abd_t
*abd
, uint64_t size
,
114 const void *ctx_template
, zio_cksum_t
*zcp
)
118 (void) abd_iterate_func(abd
, 0, size
,
119 fletcher_2_incremental_byteswap
, zcp
);
123 abd_fletcher_4_impl(abd_t
*abd
, uint64_t size
, zio_abd_checksum_data_t
*acdp
)
125 fletcher_4_abd_ops
.acf_init(acdp
);
126 abd_iterate_func(abd
, 0, size
, fletcher_4_abd_ops
.acf_iter
, acdp
);
127 fletcher_4_abd_ops
.acf_fini(acdp
);
131 abd_fletcher_4_native(abd_t
*abd
, uint64_t size
,
132 const void *ctx_template
, zio_cksum_t
*zcp
)
135 fletcher_4_ctx_t ctx
;
137 zio_abd_checksum_data_t acd
= {
138 .acd_byteorder
= ZIO_CHECKSUM_NATIVE
,
143 abd_fletcher_4_impl(abd
, size
, &acd
);
148 abd_fletcher_4_byteswap(abd_t
*abd
, uint64_t size
,
149 const void *ctx_template
, zio_cksum_t
*zcp
)
152 fletcher_4_ctx_t ctx
;
154 zio_abd_checksum_data_t acd
= {
155 .acd_byteorder
= ZIO_CHECKSUM_BYTESWAP
,
160 abd_fletcher_4_impl(abd
, size
, &acd
);
166 * Note: you cannot change the name string for these functions, as they are
167 * embedded in on-disk data in some places (eg dedup table names).
169 zio_checksum_info_t zio_checksum_table
[ZIO_CHECKSUM_FUNCTIONS
] = {
170 {{NULL
, NULL
}, NULL
, NULL
, 0, "inherit"},
171 {{NULL
, NULL
}, NULL
, NULL
, 0, "on"},
172 {{abd_checksum_off
, abd_checksum_off
},
173 NULL
, NULL
, 0, "off"},
174 {{abd_checksum_sha256
, abd_checksum_sha256
},
175 NULL
, NULL
, ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_EMBEDDED
,
177 {{abd_checksum_sha256
, abd_checksum_sha256
},
178 NULL
, NULL
, ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_EMBEDDED
,
180 {{abd_fletcher_2_native
, abd_fletcher_2_byteswap
},
181 NULL
, NULL
, ZCHECKSUM_FLAG_EMBEDDED
, "zilog"},
182 {{abd_fletcher_2_native
, abd_fletcher_2_byteswap
},
183 NULL
, NULL
, 0, "fletcher2"},
184 {{abd_fletcher_4_native
, abd_fletcher_4_byteswap
},
185 NULL
, NULL
, ZCHECKSUM_FLAG_METADATA
, "fletcher4"},
186 {{abd_checksum_sha256
, abd_checksum_sha256
},
187 NULL
, NULL
, ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_DEDUP
|
188 ZCHECKSUM_FLAG_NOPWRITE
, "sha256"},
189 {{abd_fletcher_4_native
, abd_fletcher_4_byteswap
},
190 NULL
, NULL
, ZCHECKSUM_FLAG_EMBEDDED
, "zilog2"},
191 {{abd_checksum_off
, abd_checksum_off
},
192 NULL
, NULL
, 0, "noparity"},
193 {{abd_checksum_sha512_native
, abd_checksum_sha512_byteswap
},
194 NULL
, NULL
, ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_DEDUP
|
195 ZCHECKSUM_FLAG_NOPWRITE
, "sha512"},
196 {{abd_checksum_skein_native
, abd_checksum_skein_byteswap
},
197 abd_checksum_skein_tmpl_init
, abd_checksum_skein_tmpl_free
,
198 ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_DEDUP
|
199 ZCHECKSUM_FLAG_SALTED
| ZCHECKSUM_FLAG_NOPWRITE
, "skein"},
200 {{abd_checksum_edonr_native
, abd_checksum_edonr_byteswap
},
201 abd_checksum_edonr_tmpl_init
, abd_checksum_edonr_tmpl_free
,
202 ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_SALTED
|
203 ZCHECKSUM_FLAG_NOPWRITE
, "edonr"},
204 {{abd_checksum_blake3_native
, abd_checksum_blake3_byteswap
},
205 abd_checksum_blake3_tmpl_init
, abd_checksum_blake3_tmpl_free
,
206 ZCHECKSUM_FLAG_METADATA
| ZCHECKSUM_FLAG_DEDUP
|
207 ZCHECKSUM_FLAG_SALTED
| ZCHECKSUM_FLAG_NOPWRITE
, "blake3"},
211 * The flag corresponding to the "verify" in dedup=[checksum,]verify
212 * must be cleared first, so callers should use ZIO_CHECKSUM_MASK.
215 zio_checksum_to_feature(enum zio_checksum cksum
)
217 VERIFY((cksum
& ~ZIO_CHECKSUM_MASK
) == 0);
220 case ZIO_CHECKSUM_BLAKE3
:
221 return (SPA_FEATURE_BLAKE3
);
222 case ZIO_CHECKSUM_SHA512
:
223 return (SPA_FEATURE_SHA512
);
224 case ZIO_CHECKSUM_SKEIN
:
225 return (SPA_FEATURE_SKEIN
);
226 case ZIO_CHECKSUM_EDONR
:
227 return (SPA_FEATURE_EDONR
);
229 return (SPA_FEATURE_NONE
);
234 zio_checksum_select(enum zio_checksum child
, enum zio_checksum parent
)
236 ASSERT(child
< ZIO_CHECKSUM_FUNCTIONS
);
237 ASSERT(parent
< ZIO_CHECKSUM_FUNCTIONS
);
238 ASSERT(parent
!= ZIO_CHECKSUM_INHERIT
&& parent
!= ZIO_CHECKSUM_ON
);
240 if (child
== ZIO_CHECKSUM_INHERIT
)
243 if (child
== ZIO_CHECKSUM_ON
)
244 return (ZIO_CHECKSUM_ON_VALUE
);
250 zio_checksum_dedup_select(spa_t
*spa
, enum zio_checksum child
,
251 enum zio_checksum parent
)
253 ASSERT((child
& ZIO_CHECKSUM_MASK
) < ZIO_CHECKSUM_FUNCTIONS
);
254 ASSERT((parent
& ZIO_CHECKSUM_MASK
) < ZIO_CHECKSUM_FUNCTIONS
);
255 ASSERT(parent
!= ZIO_CHECKSUM_INHERIT
&& parent
!= ZIO_CHECKSUM_ON
);
257 if (child
== ZIO_CHECKSUM_INHERIT
)
260 if (child
== ZIO_CHECKSUM_ON
)
261 return (spa_dedup_checksum(spa
));
263 if (child
== (ZIO_CHECKSUM_ON
| ZIO_CHECKSUM_VERIFY
))
264 return (spa_dedup_checksum(spa
) | ZIO_CHECKSUM_VERIFY
);
266 ASSERT((zio_checksum_table
[child
& ZIO_CHECKSUM_MASK
].ci_flags
&
267 ZCHECKSUM_FLAG_DEDUP
) ||
268 (child
& ZIO_CHECKSUM_VERIFY
) || child
== ZIO_CHECKSUM_OFF
);
274 * Set the external verifier for a gang block based on <vdev, offset, txg>,
275 * a tuple which is guaranteed to be unique for the life of the pool.
278 zio_checksum_gang_verifier(zio_cksum_t
*zcp
, const blkptr_t
*bp
)
280 const dva_t
*dva
= BP_IDENTITY(bp
);
281 uint64_t txg
= BP_GET_BIRTH(bp
);
283 ASSERT(BP_IS_GANG(bp
));
285 ZIO_SET_CHECKSUM(zcp
, DVA_GET_VDEV(dva
), DVA_GET_OFFSET(dva
), txg
, 0);
289 * Set the external verifier for a label block based on its offset.
290 * The vdev is implicit, and the txg is unknowable at pool open time --
291 * hence the logic in vdev_uberblock_load() to find the most recent copy.
294 zio_checksum_label_verifier(zio_cksum_t
*zcp
, uint64_t offset
)
296 ZIO_SET_CHECKSUM(zcp
, offset
, 0, 0, 0);
300 * Calls the template init function of a checksum which supports context
301 * templates and installs the template into the spa_t.
304 zio_checksum_template_init(enum zio_checksum checksum
, spa_t
*spa
)
306 zio_checksum_info_t
*ci
= &zio_checksum_table
[checksum
];
308 if (ci
->ci_tmpl_init
== NULL
)
310 if (spa
->spa_cksum_tmpls
[checksum
] != NULL
)
313 VERIFY(ci
->ci_tmpl_free
!= NULL
);
314 mutex_enter(&spa
->spa_cksum_tmpls_lock
);
315 if (spa
->spa_cksum_tmpls
[checksum
] == NULL
) {
316 spa
->spa_cksum_tmpls
[checksum
] =
317 ci
->ci_tmpl_init(&spa
->spa_cksum_salt
);
318 VERIFY(spa
->spa_cksum_tmpls
[checksum
] != NULL
);
320 mutex_exit(&spa
->spa_cksum_tmpls_lock
);
323 /* convenience function to update a checksum to accommodate an encryption MAC */
325 zio_checksum_handle_crypt(zio_cksum_t
*cksum
, zio_cksum_t
*saved
, boolean_t
xor)
328 * Weak checksums do not have their entropy spread evenly
329 * across the bits of the checksum. Therefore, when truncating
330 * a weak checksum we XOR the first 2 words with the last 2 so
331 * that we don't "lose" any entropy unnecessarily.
334 cksum
->zc_word
[0] ^= cksum
->zc_word
[2];
335 cksum
->zc_word
[1] ^= cksum
->zc_word
[3];
338 cksum
->zc_word
[2] = saved
->zc_word
[2];
339 cksum
->zc_word
[3] = saved
->zc_word
[3];
343 * Generate the checksum.
346 zio_checksum_compute(zio_t
*zio
, enum zio_checksum checksum
,
347 abd_t
*abd
, uint64_t size
)
349 static const uint64_t zec_magic
= ZEC_MAGIC
;
350 blkptr_t
*bp
= zio
->io_bp
;
351 uint64_t offset
= zio
->io_offset
;
352 zio_checksum_info_t
*ci
= &zio_checksum_table
[checksum
];
353 zio_cksum_t cksum
, saved
;
354 spa_t
*spa
= zio
->io_spa
;
355 boolean_t insecure
= (ci
->ci_flags
& ZCHECKSUM_FLAG_DEDUP
) == 0;
357 ASSERT((uint_t
)checksum
< ZIO_CHECKSUM_FUNCTIONS
);
358 ASSERT(ci
->ci_func
[0] != NULL
);
360 zio_checksum_template_init(checksum
, spa
);
362 if (ci
->ci_flags
& ZCHECKSUM_FLAG_EMBEDDED
) {
366 memset(&saved
, 0, sizeof (zio_cksum_t
));
368 if (checksum
== ZIO_CHECKSUM_ZILOG2
) {
370 abd_copy_to_buf(&zilc
, abd
, sizeof (zil_chain_t
));
372 uint64_t nused
= P2ROUNDUP_TYPED(zilc
.zc_nused
,
373 ZIL_MIN_BLKSZ
, uint64_t);
374 ASSERT3U(size
, >=, nused
);
377 eck_offset
= offsetof(zil_chain_t
, zc_eck
);
379 ASSERT3U(size
, >=, sizeof (zio_eck_t
));
380 eck_offset
= size
- sizeof (zio_eck_t
);
381 abd_copy_to_buf_off(&eck
, abd
, eck_offset
,
385 if (checksum
== ZIO_CHECKSUM_GANG_HEADER
) {
386 zio_checksum_gang_verifier(&eck
.zec_cksum
, bp
);
387 } else if (checksum
== ZIO_CHECKSUM_LABEL
) {
388 zio_checksum_label_verifier(&eck
.zec_cksum
, offset
);
390 saved
= eck
.zec_cksum
;
391 eck
.zec_cksum
= bp
->blk_cksum
;
394 abd_copy_from_buf_off(abd
, &zec_magic
,
395 eck_offset
+ offsetof(zio_eck_t
, zec_magic
),
397 abd_copy_from_buf_off(abd
, &eck
.zec_cksum
,
398 eck_offset
+ offsetof(zio_eck_t
, zec_cksum
),
399 sizeof (zio_cksum_t
));
401 ci
->ci_func
[0](abd
, size
, spa
->spa_cksum_tmpls
[checksum
],
403 if (bp
!= NULL
&& BP_USES_CRYPT(bp
) &&
404 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)
405 zio_checksum_handle_crypt(&cksum
, &saved
, insecure
);
407 abd_copy_from_buf_off(abd
, &cksum
,
408 eck_offset
+ offsetof(zio_eck_t
, zec_cksum
),
409 sizeof (zio_cksum_t
));
411 saved
= bp
->blk_cksum
;
412 ci
->ci_func
[0](abd
, size
, spa
->spa_cksum_tmpls
[checksum
],
414 if (BP_USES_CRYPT(bp
) && BP_GET_TYPE(bp
) != DMU_OT_OBJSET
)
415 zio_checksum_handle_crypt(&cksum
, &saved
, insecure
);
416 bp
->blk_cksum
= cksum
;
421 zio_checksum_error_impl(spa_t
*spa
, const blkptr_t
*bp
,
422 enum zio_checksum checksum
, abd_t
*abd
, uint64_t size
, uint64_t offset
,
423 zio_bad_cksum_t
*info
)
425 zio_checksum_info_t
*ci
= &zio_checksum_table
[checksum
];
426 zio_cksum_t actual_cksum
, expected_cksum
;
430 if (checksum
>= ZIO_CHECKSUM_FUNCTIONS
|| ci
->ci_func
[0] == NULL
)
431 return (SET_ERROR(EINVAL
));
433 zio_checksum_template_init(checksum
, spa
);
435 IMPLY(bp
== NULL
, ci
->ci_flags
& ZCHECKSUM_FLAG_EMBEDDED
);
436 IMPLY(bp
== NULL
, checksum
== ZIO_CHECKSUM_LABEL
);
438 if (ci
->ci_flags
& ZCHECKSUM_FLAG_EMBEDDED
) {
439 zio_cksum_t verifier
;
442 if (checksum
== ZIO_CHECKSUM_ZILOG2
) {
446 abd_copy_to_buf(&zilc
, abd
, sizeof (zil_chain_t
));
449 eck_offset
= offsetof(zil_chain_t
, zc_eck
) +
450 offsetof(zio_eck_t
, zec_cksum
);
452 if (eck
.zec_magic
== ZEC_MAGIC
) {
453 nused
= zilc
.zc_nused
;
454 } else if (eck
.zec_magic
== BSWAP_64(ZEC_MAGIC
)) {
455 nused
= BSWAP_64(zilc
.zc_nused
);
457 return (SET_ERROR(ECKSUM
));
460 nused
= P2ROUNDUP_TYPED(nused
, ZIL_MIN_BLKSZ
, uint64_t);
462 return (SET_ERROR(ECKSUM
));
465 if (size
< sizeof (zio_eck_t
))
466 return (SET_ERROR(ECKSUM
));
467 eck_offset
= size
- sizeof (zio_eck_t
);
468 abd_copy_to_buf_off(&eck
, abd
, eck_offset
,
470 eck_offset
+= offsetof(zio_eck_t
, zec_cksum
);
473 if (checksum
== ZIO_CHECKSUM_GANG_HEADER
)
474 zio_checksum_gang_verifier(&verifier
, bp
);
475 else if (checksum
== ZIO_CHECKSUM_LABEL
)
476 zio_checksum_label_verifier(&verifier
, offset
);
478 verifier
= bp
->blk_cksum
;
480 byteswap
= (eck
.zec_magic
== BSWAP_64(ZEC_MAGIC
));
483 byteswap_uint64_array(&verifier
, sizeof (zio_cksum_t
));
485 expected_cksum
= eck
.zec_cksum
;
487 abd_copy_from_buf_off(abd
, &verifier
, eck_offset
,
488 sizeof (zio_cksum_t
));
490 ci
->ci_func
[byteswap
](abd
, size
,
491 spa
->spa_cksum_tmpls
[checksum
], &actual_cksum
);
493 abd_copy_from_buf_off(abd
, &expected_cksum
, eck_offset
,
494 sizeof (zio_cksum_t
));
497 byteswap_uint64_array(&expected_cksum
,
498 sizeof (zio_cksum_t
));
501 byteswap
= BP_SHOULD_BYTESWAP(bp
);
502 expected_cksum
= bp
->blk_cksum
;
503 ci
->ci_func
[byteswap
](abd
, size
,
504 spa
->spa_cksum_tmpls
[checksum
], &actual_cksum
);
508 * MAC checksums are a special case since half of this checksum will
509 * actually be the encryption MAC. This will be verified by the
510 * decryption process, so we just check the truncated checksum now.
511 * Objset blocks use embedded MACs so we don't truncate the checksum
514 if (bp
!= NULL
&& BP_USES_CRYPT(bp
) &&
515 BP_GET_TYPE(bp
) != DMU_OT_OBJSET
) {
516 if (!(ci
->ci_flags
& ZCHECKSUM_FLAG_DEDUP
)) {
517 actual_cksum
.zc_word
[0] ^= actual_cksum
.zc_word
[2];
518 actual_cksum
.zc_word
[1] ^= actual_cksum
.zc_word
[3];
521 actual_cksum
.zc_word
[2] = 0;
522 actual_cksum
.zc_word
[3] = 0;
523 expected_cksum
.zc_word
[2] = 0;
524 expected_cksum
.zc_word
[3] = 0;
528 info
->zbc_checksum_name
= ci
->ci_name
;
529 info
->zbc_byteswapped
= byteswap
;
530 info
->zbc_injected
= 0;
531 info
->zbc_has_cksum
= 1;
534 if (!ZIO_CHECKSUM_EQUAL(actual_cksum
, expected_cksum
))
535 return (SET_ERROR(ECKSUM
));
541 zio_checksum_error(zio_t
*zio
, zio_bad_cksum_t
*info
)
543 blkptr_t
*bp
= zio
->io_bp
;
544 uint_t checksum
= (bp
== NULL
? zio
->io_prop
.zp_checksum
:
545 (BP_IS_GANG(bp
) ? ZIO_CHECKSUM_GANG_HEADER
: BP_GET_CHECKSUM(bp
)));
547 uint64_t size
= (bp
== NULL
? zio
->io_size
:
548 (BP_IS_GANG(bp
) ? SPA_GANGBLOCKSIZE
: BP_GET_PSIZE(bp
)));
549 uint64_t offset
= zio
->io_offset
;
550 abd_t
*data
= zio
->io_abd
;
551 spa_t
*spa
= zio
->io_spa
;
553 error
= zio_checksum_error_impl(spa
, bp
, checksum
, data
, size
,
556 if (zio_injection_enabled
&& error
== 0 && zio
->io_error
== 0) {
557 error
= zio_handle_fault_injection(zio
, ECKSUM
);
559 info
->zbc_injected
= 1;
566 * Called by a spa_t that's about to be deallocated. This steps through
567 * all of the checksum context templates and deallocates any that were
568 * initialized using the algorithm-specific template init function.
571 zio_checksum_templates_free(spa_t
*spa
)
573 for (enum zio_checksum checksum
= 0;
574 checksum
< ZIO_CHECKSUM_FUNCTIONS
; checksum
++) {
575 if (spa
->spa_cksum_tmpls
[checksum
] != NULL
) {
576 zio_checksum_info_t
*ci
= &zio_checksum_table
[checksum
];
578 VERIFY(ci
->ci_tmpl_free
!= NULL
);
579 ci
->ci_tmpl_free(spa
->spa_cksum_tmpls
[checksum
]);
580 spa
->spa_cksum_tmpls
[checksum
] = NULL
;