4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dsl_prop.h>
38 #include <sys/dsl_synctask.h>
39 #include <sys/dsl_deleg.h>
40 #include <sys/dmu_impl.h>
42 #include <sys/spa_impl.h>
43 #include <sys/metaslab.h>
47 #include <sys/sunddi.h>
48 #include <sys/zfeature.h>
49 #include <sys/policy.h>
50 #include <sys/zfs_vfsops.h>
51 #include <sys/zfs_znode.h>
54 #include "zfs_namecheck.h"
58 * This controls if we verify the ZVOL quota or not.
59 * Currently, quotas are not implemented for ZVOLs.
60 * The quota size is the size of the ZVOL.
61 * The size of the volume already implies the ZVOL size quota.
62 * The quota mechanism can introduce a significant performance drop.
64 static int zvol_enforce_quotas
= B_TRUE
;
67 * Filesystem and Snapshot Limits
68 * ------------------------------
70 * These limits are used to restrict the number of filesystems and/or snapshots
71 * that can be created at a given level in the tree or below. A typical
72 * use-case is with a delegated dataset where the administrator wants to ensure
73 * that a user within the zone is not creating too many additional filesystems
74 * or snapshots, even though they're not exceeding their space quota.
76 * The filesystem and snapshot counts are stored as extensible properties. This
77 * capability is controlled by a feature flag and must be enabled to be used.
78 * Once enabled, the feature is not active until the first limit is set. At
79 * that point, future operations to create/destroy filesystems or snapshots
80 * will validate and update the counts.
82 * Because the count properties will not exist before the feature is active,
83 * the counts are updated when a limit is first set on an uninitialized
84 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
85 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
86 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
87 * snapshot count properties on a node indicate uninitialized counts on that
88 * node.) When first setting a limit on an uninitialized node, the code starts
89 * at the filesystem with the new limit and descends into all sub-filesystems
90 * to add the count properties.
92 * In practice this is lightweight since a limit is typically set when the
93 * filesystem is created and thus has no children. Once valid, changing the
94 * limit value won't require a re-traversal since the counts are already valid.
95 * When recursively fixing the counts, if a node with a limit is encountered
96 * during the descent, the counts are known to be valid and there is no need to
97 * descend into that filesystem's children. The counts on filesystems above the
98 * one with the new limit will still be uninitialized, unless a limit is
99 * eventually set on one of those filesystems. The counts are always recursively
100 * updated when a limit is set on a dataset, unless there is already a limit.
101 * When a new limit value is set on a filesystem with an existing limit, it is
102 * possible for the new limit to be less than the current count at that level
103 * since a user who can change the limit is also allowed to exceed the limit.
105 * Once the feature is active, then whenever a filesystem or snapshot is
106 * created, the code recurses up the tree, validating the new count against the
107 * limit at each initialized level. In practice, most levels will not have a
108 * limit set. If there is a limit at any initialized level up the tree, the
109 * check must pass or the creation will fail. Likewise, when a filesystem or
110 * snapshot is destroyed, the counts are recursively adjusted all the way up
111 * the initialized nodes in the tree. Renaming a filesystem into different point
112 * in the tree will first validate, then update the counts on each branch up to
113 * the common ancestor. A receive will also validate the counts and then update
116 * An exception to the above behavior is that the limit is not enforced if the
117 * user has permission to modify the limit. This is primarily so that
118 * recursive snapshots in the global zone always work. We want to prevent a
119 * denial-of-service in which a lower level delegated dataset could max out its
120 * limit and thus block recursive snapshots from being taken in the global zone.
121 * Because of this, it is possible for the snapshot count to be over the limit
122 * and snapshots taken in the global zone could cause a lower level dataset to
123 * hit or exceed its limit. The administrator taking the global zone recursive
124 * snapshot should be aware of this side-effect and behave accordingly.
125 * For consistency, the filesystem limit is also not enforced if the user can
128 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
129 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
130 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
131 * dsl_dir_init_fs_ss_count().
134 static uint64_t dsl_dir_space_towrite(dsl_dir_t
*dd
);
136 typedef struct ddulrt_arg
{
137 dsl_dir_t
*ddulrta_dd
;
142 dsl_dir_evict_async(void *dbu
)
146 dsl_pool_t
*dp __maybe_unused
= dd
->dd_pool
;
150 for (t
= 0; t
< TXG_SIZE
; t
++) {
151 ASSERT(!txg_list_member(&dp
->dp_dirty_dirs
, dd
, t
));
152 ASSERT(dd
->dd_tempreserved
[t
] == 0);
153 ASSERT(dd
->dd_space_towrite
[t
] == 0);
157 dsl_dir_async_rele(dd
->dd_parent
, dd
);
159 spa_async_close(dd
->dd_pool
->dp_spa
, dd
);
161 if (dsl_deadlist_is_open(&dd
->dd_livelist
))
162 dsl_dir_livelist_close(dd
);
165 cv_destroy(&dd
->dd_activity_cv
);
166 mutex_destroy(&dd
->dd_activity_lock
);
167 mutex_destroy(&dd
->dd_lock
);
168 kmem_free(dd
, sizeof (dsl_dir_t
));
172 dsl_dir_hold_obj(dsl_pool_t
*dp
, uint64_t ddobj
,
173 const char *tail
, const void *tag
, dsl_dir_t
**ddp
)
177 dmu_object_info_t doi
;
180 ASSERT(dsl_pool_config_held(dp
));
182 err
= dmu_bonus_hold(dp
->dp_meta_objset
, ddobj
, tag
, &dbuf
);
185 dd
= dmu_buf_get_user(dbuf
);
187 dmu_object_info_from_db(dbuf
, &doi
);
188 ASSERT3U(doi
.doi_bonus_type
, ==, DMU_OT_DSL_DIR
);
189 ASSERT3U(doi
.doi_bonus_size
, >=, sizeof (dsl_dir_phys_t
));
194 dd
= kmem_zalloc(sizeof (dsl_dir_t
), KM_SLEEP
);
195 dd
->dd_object
= ddobj
;
199 mutex_init(&dd
->dd_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
200 mutex_init(&dd
->dd_activity_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
201 cv_init(&dd
->dd_activity_cv
, NULL
, CV_DEFAULT
, NULL
);
204 if (dsl_dir_is_zapified(dd
)) {
205 err
= zap_lookup(dp
->dp_meta_objset
,
206 ddobj
, DD_FIELD_CRYPTO_KEY_OBJ
,
207 sizeof (uint64_t), 1, &dd
->dd_crypto_obj
);
209 /* check for on-disk format errata */
210 if (dsl_dir_incompatible_encryption_version(
212 dp
->dp_spa
->spa_errata
=
213 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION
;
215 } else if (err
!= ENOENT
) {
220 if (dsl_dir_phys(dd
)->dd_parent_obj
) {
221 err
= dsl_dir_hold_obj(dp
,
222 dsl_dir_phys(dd
)->dd_parent_obj
, NULL
, dd
,
230 err
= zap_lookup(dp
->dp_meta_objset
,
231 dsl_dir_phys(dd
->dd_parent
)->
232 dd_child_dir_zapobj
, tail
,
233 sizeof (foundobj
), 1, &foundobj
);
234 ASSERT(err
|| foundobj
== ddobj
);
236 (void) strlcpy(dd
->dd_myname
, tail
,
237 sizeof (dd
->dd_myname
));
239 err
= zap_value_search(dp
->dp_meta_objset
,
240 dsl_dir_phys(dd
->dd_parent
)->
242 ddobj
, 0, dd
->dd_myname
,
243 sizeof (dd
->dd_myname
));
248 (void) strlcpy(dd
->dd_myname
, spa_name(dp
->dp_spa
),
249 sizeof (dd
->dd_myname
));
252 if (dsl_dir_is_clone(dd
)) {
253 dmu_buf_t
*origin_bonus
;
254 dsl_dataset_phys_t
*origin_phys
;
257 * We can't open the origin dataset, because
258 * that would require opening this dsl_dir.
259 * Just look at its phys directly instead.
261 err
= dmu_bonus_hold(dp
->dp_meta_objset
,
262 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
,
266 origin_phys
= origin_bonus
->db_data
;
268 origin_phys
->ds_creation_txg
;
269 dmu_buf_rele(origin_bonus
, FTAG
);
270 if (dsl_dir_is_zapified(dd
)) {
272 err
= zap_lookup(dp
->dp_meta_objset
,
273 dd
->dd_object
, DD_FIELD_LIVELIST
,
274 sizeof (uint64_t), 1, &obj
);
276 err
= dsl_dir_livelist_open(dd
, obj
);
279 } else if (err
!= ENOENT
)
284 if (dsl_dir_is_zapified(dd
)) {
285 inode_timespec_t t
= {0};
286 (void) zap_lookup(dp
->dp_meta_objset
, ddobj
,
287 DD_FIELD_SNAPSHOTS_CHANGED
,
289 sizeof (inode_timespec_t
) / sizeof (uint64_t),
291 dd
->dd_snap_cmtime
= t
;
294 dmu_buf_init_user(&dd
->dd_dbu
, NULL
, dsl_dir_evict_async
,
296 winner
= dmu_buf_set_user_ie(dbuf
, &dd
->dd_dbu
);
297 if (winner
!= NULL
) {
299 dsl_dir_rele(dd
->dd_parent
, dd
);
300 if (dsl_deadlist_is_open(&dd
->dd_livelist
))
301 dsl_dir_livelist_close(dd
);
303 cv_destroy(&dd
->dd_activity_cv
);
304 mutex_destroy(&dd
->dd_activity_lock
);
305 mutex_destroy(&dd
->dd_lock
);
306 kmem_free(dd
, sizeof (dsl_dir_t
));
309 spa_open_ref(dp
->dp_spa
, dd
);
314 * The dsl_dir_t has both open-to-close and instantiate-to-evict
315 * holds on the spa. We need the open-to-close holds because
316 * otherwise the spa_refcnt wouldn't change when we open a
317 * dir which the spa also has open, so we could incorrectly
318 * think it was OK to unload/export/destroy the pool. We need
319 * the instantiate-to-evict hold because the dsl_dir_t has a
320 * pointer to the dd_pool, which has a pointer to the spa_t.
322 spa_open_ref(dp
->dp_spa
, tag
);
323 ASSERT3P(dd
->dd_pool
, ==, dp
);
324 ASSERT3U(dd
->dd_object
, ==, ddobj
);
325 ASSERT3P(dd
->dd_dbuf
, ==, dbuf
);
331 dsl_dir_rele(dd
->dd_parent
, dd
);
332 if (dsl_deadlist_is_open(&dd
->dd_livelist
))
333 dsl_dir_livelist_close(dd
);
335 cv_destroy(&dd
->dd_activity_cv
);
336 mutex_destroy(&dd
->dd_activity_lock
);
337 mutex_destroy(&dd
->dd_lock
);
338 kmem_free(dd
, sizeof (dsl_dir_t
));
339 dmu_buf_rele(dbuf
, tag
);
344 dsl_dir_rele(dsl_dir_t
*dd
, const void *tag
)
346 dprintf_dd(dd
, "%s\n", "");
347 spa_close(dd
->dd_pool
->dp_spa
, tag
);
348 dmu_buf_rele(dd
->dd_dbuf
, tag
);
352 * Remove a reference to the given dsl dir that is being asynchronously
353 * released. Async releases occur from a taskq performing eviction of
354 * dsl datasets and dirs. This process is identical to a normal release
355 * with the exception of using the async API for releasing the reference on
359 dsl_dir_async_rele(dsl_dir_t
*dd
, const void *tag
)
361 dprintf_dd(dd
, "%s\n", "");
362 spa_async_close(dd
->dd_pool
->dp_spa
, tag
);
363 dmu_buf_rele(dd
->dd_dbuf
, tag
);
366 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
368 dsl_dir_name(dsl_dir_t
*dd
, char *buf
)
371 dsl_dir_name(dd
->dd_parent
, buf
);
372 VERIFY3U(strlcat(buf
, "/", ZFS_MAX_DATASET_NAME_LEN
), <,
373 ZFS_MAX_DATASET_NAME_LEN
);
377 if (!MUTEX_HELD(&dd
->dd_lock
)) {
379 * recursive mutex so that we can use
380 * dprintf_dd() with dd_lock held
382 mutex_enter(&dd
->dd_lock
);
383 VERIFY3U(strlcat(buf
, dd
->dd_myname
, ZFS_MAX_DATASET_NAME_LEN
),
384 <, ZFS_MAX_DATASET_NAME_LEN
);
385 mutex_exit(&dd
->dd_lock
);
387 VERIFY3U(strlcat(buf
, dd
->dd_myname
, ZFS_MAX_DATASET_NAME_LEN
),
388 <, ZFS_MAX_DATASET_NAME_LEN
);
392 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
394 dsl_dir_namelen(dsl_dir_t
*dd
)
399 /* parent's name + 1 for the "/" */
400 result
= dsl_dir_namelen(dd
->dd_parent
) + 1;
403 if (!MUTEX_HELD(&dd
->dd_lock
)) {
404 /* see dsl_dir_name */
405 mutex_enter(&dd
->dd_lock
);
406 result
+= strlen(dd
->dd_myname
);
407 mutex_exit(&dd
->dd_lock
);
409 result
+= strlen(dd
->dd_myname
);
416 getcomponent(const char *path
, char *component
, const char **nextp
)
420 if ((path
== NULL
) || (path
[0] == '\0'))
421 return (SET_ERROR(ENOENT
));
422 /* This would be a good place to reserve some namespace... */
423 p
= strpbrk(path
, "/@");
424 if (p
&& (p
[1] == '/' || p
[1] == '@')) {
425 /* two separators in a row */
426 return (SET_ERROR(EINVAL
));
428 if (p
== NULL
|| p
== path
) {
430 * if the first thing is an @ or /, it had better be an
431 * @ and it had better not have any more ats or slashes,
432 * and it had better have something after the @.
435 (p
[0] != '@' || strpbrk(path
+1, "/@") || p
[1] == '\0'))
436 return (SET_ERROR(EINVAL
));
437 if (strlen(path
) >= ZFS_MAX_DATASET_NAME_LEN
)
438 return (SET_ERROR(ENAMETOOLONG
));
439 (void) strlcpy(component
, path
, ZFS_MAX_DATASET_NAME_LEN
);
441 } else if (p
[0] == '/') {
442 if (p
- path
>= ZFS_MAX_DATASET_NAME_LEN
)
443 return (SET_ERROR(ENAMETOOLONG
));
444 (void) strlcpy(component
, path
, p
- path
+ 1);
446 } else if (p
[0] == '@') {
448 * if the next separator is an @, there better not be
451 if (strchr(path
, '/'))
452 return (SET_ERROR(EINVAL
));
453 if (p
- path
>= ZFS_MAX_DATASET_NAME_LEN
)
454 return (SET_ERROR(ENAMETOOLONG
));
455 (void) strlcpy(component
, path
, p
- path
+ 1);
457 panic("invalid p=%p", (void *)p
);
464 * Return the dsl_dir_t, and possibly the last component which couldn't
465 * be found in *tail. The name must be in the specified dsl_pool_t. This
466 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
467 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
468 * (*tail)[0] == '@' means that the last component is a snapshot.
471 dsl_dir_hold(dsl_pool_t
*dp
, const char *name
, const void *tag
,
472 dsl_dir_t
**ddp
, const char **tailp
)
475 const char *spaname
, *next
, *nextnext
= NULL
;
480 buf
= kmem_alloc(ZFS_MAX_DATASET_NAME_LEN
, KM_SLEEP
);
481 err
= getcomponent(name
, buf
, &next
);
485 /* Make sure the name is in the specified pool. */
486 spaname
= spa_name(dp
->dp_spa
);
487 if (strcmp(buf
, spaname
) != 0) {
488 err
= SET_ERROR(EXDEV
);
492 ASSERT(dsl_pool_config_held(dp
));
494 err
= dsl_dir_hold_obj(dp
, dp
->dp_root_dir_obj
, NULL
, tag
, &dd
);
499 while (next
!= NULL
) {
501 err
= getcomponent(next
, buf
, &nextnext
);
504 ASSERT(next
[0] != '\0');
507 dprintf("looking up %s in obj%lld\n",
508 buf
, (longlong_t
)dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
510 err
= zap_lookup(dp
->dp_meta_objset
,
511 dsl_dir_phys(dd
)->dd_child_dir_zapobj
,
512 buf
, sizeof (ddobj
), 1, &ddobj
);
519 err
= dsl_dir_hold_obj(dp
, ddobj
, buf
, tag
, &child_dd
);
522 dsl_dir_rele(dd
, tag
);
528 dsl_dir_rele(dd
, tag
);
533 * It's an error if there's more than one component left, or
534 * tailp==NULL and there's any component left.
537 (tailp
== NULL
|| (nextnext
&& nextnext
[0] != '\0'))) {
539 dsl_dir_rele(dd
, tag
);
540 dprintf("next=%p (%s) tail=%p\n", next
, next
?next
:"", tailp
);
541 err
= SET_ERROR(ENOENT
);
548 kmem_free(buf
, ZFS_MAX_DATASET_NAME_LEN
);
553 * If the counts are already initialized for this filesystem and its
554 * descendants then do nothing, otherwise initialize the counts.
556 * The counts on this filesystem, and those below, may be uninitialized due to
557 * either the use of a pre-existing pool which did not support the
558 * filesystem/snapshot limit feature, or one in which the feature had not yet
561 * Recursively descend the filesystem tree and update the filesystem/snapshot
562 * counts on each filesystem below, then update the cumulative count on the
563 * current filesystem. If the filesystem already has a count set on it,
564 * then we know that its counts, and the counts on the filesystems below it,
565 * are already correct, so we don't have to update this filesystem.
568 dsl_dir_init_fs_ss_count(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
570 uint64_t my_fs_cnt
= 0;
571 uint64_t my_ss_cnt
= 0;
572 dsl_pool_t
*dp
= dd
->dd_pool
;
573 objset_t
*os
= dp
->dp_meta_objset
;
578 ASSERT(spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
));
579 ASSERT(dsl_pool_config_held(dp
));
580 ASSERT(dmu_tx_is_syncing(tx
));
582 dsl_dir_zapify(dd
, tx
);
585 * If the filesystem count has already been initialized then we
586 * don't need to recurse down any further.
588 if (zap_contains(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
) == 0)
591 zc
= kmem_alloc(sizeof (zap_cursor_t
), KM_SLEEP
);
592 za
= zap_attribute_alloc();
594 /* Iterate my child dirs */
595 for (zap_cursor_init(zc
, os
, dsl_dir_phys(dd
)->dd_child_dir_zapobj
);
596 zap_cursor_retrieve(zc
, za
) == 0; zap_cursor_advance(zc
)) {
600 VERIFY0(dsl_dir_hold_obj(dp
, za
->za_first_integer
, NULL
, FTAG
,
604 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
606 if (chld_dd
->dd_myname
[0] == '$') {
607 dsl_dir_rele(chld_dd
, FTAG
);
611 my_fs_cnt
++; /* count this child */
613 dsl_dir_init_fs_ss_count(chld_dd
, tx
);
615 VERIFY0(zap_lookup(os
, chld_dd
->dd_object
,
616 DD_FIELD_FILESYSTEM_COUNT
, sizeof (count
), 1, &count
));
618 VERIFY0(zap_lookup(os
, chld_dd
->dd_object
,
619 DD_FIELD_SNAPSHOT_COUNT
, sizeof (count
), 1, &count
));
622 dsl_dir_rele(chld_dd
, FTAG
);
625 /* Count my snapshots (we counted children's snapshots above) */
626 VERIFY0(dsl_dataset_hold_obj(dd
->dd_pool
,
627 dsl_dir_phys(dd
)->dd_head_dataset_obj
, FTAG
, &ds
));
629 for (zap_cursor_init(zc
, os
, dsl_dataset_phys(ds
)->ds_snapnames_zapobj
);
630 zap_cursor_retrieve(zc
, za
) == 0;
631 zap_cursor_advance(zc
)) {
632 /* Don't count temporary snapshots */
633 if (za
->za_name
[0] != '%')
638 dsl_dataset_rele(ds
, FTAG
);
640 kmem_free(zc
, sizeof (zap_cursor_t
));
641 zap_attribute_free(za
);
643 /* we're in a sync task, update counts */
644 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
645 VERIFY0(zap_add(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
,
646 sizeof (my_fs_cnt
), 1, &my_fs_cnt
, tx
));
647 VERIFY0(zap_add(os
, dd
->dd_object
, DD_FIELD_SNAPSHOT_COUNT
,
648 sizeof (my_ss_cnt
), 1, &my_ss_cnt
, tx
));
652 dsl_dir_actv_fs_ss_limit_check(void *arg
, dmu_tx_t
*tx
)
654 char *ddname
= (char *)arg
;
655 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
660 error
= dsl_dataset_hold(dp
, ddname
, FTAG
, &ds
);
664 if (!spa_feature_is_enabled(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
)) {
665 dsl_dataset_rele(ds
, FTAG
);
666 return (SET_ERROR(ENOTSUP
));
670 if (spa_feature_is_active(dp
->dp_spa
, SPA_FEATURE_FS_SS_LIMIT
) &&
671 dsl_dir_is_zapified(dd
) &&
672 zap_contains(dp
->dp_meta_objset
, dd
->dd_object
,
673 DD_FIELD_FILESYSTEM_COUNT
) == 0) {
674 dsl_dataset_rele(ds
, FTAG
);
675 return (SET_ERROR(EALREADY
));
678 dsl_dataset_rele(ds
, FTAG
);
683 dsl_dir_actv_fs_ss_limit_sync(void *arg
, dmu_tx_t
*tx
)
685 char *ddname
= (char *)arg
;
686 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
690 VERIFY0(dsl_dataset_hold(dp
, ddname
, FTAG
, &ds
));
692 spa
= dsl_dataset_get_spa(ds
);
694 if (!spa_feature_is_active(spa
, SPA_FEATURE_FS_SS_LIMIT
)) {
696 * Since the feature was not active and we're now setting a
697 * limit, increment the feature-active counter so that the
698 * feature becomes active for the first time.
700 * We are already in a sync task so we can update the MOS.
702 spa_feature_incr(spa
, SPA_FEATURE_FS_SS_LIMIT
, tx
);
706 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
707 * we need to ensure the counts are correct. Descend down the tree from
708 * this point and update all of the counts to be accurate.
710 dsl_dir_init_fs_ss_count(ds
->ds_dir
, tx
);
712 dsl_dataset_rele(ds
, FTAG
);
716 * Make sure the feature is enabled and activate it if necessary.
717 * Since we're setting a limit, ensure the on-disk counts are valid.
718 * This is only called by the ioctl path when setting a limit value.
720 * We do not need to validate the new limit, since users who can change the
721 * limit are also allowed to exceed the limit.
724 dsl_dir_activate_fs_ss_limit(const char *ddname
)
728 error
= dsl_sync_task(ddname
, dsl_dir_actv_fs_ss_limit_check
,
729 dsl_dir_actv_fs_ss_limit_sync
, (void *)ddname
, 0,
730 ZFS_SPACE_CHECK_RESERVED
);
732 if (error
== EALREADY
)
739 * Used to determine if the filesystem_limit or snapshot_limit should be
740 * enforced. We allow the limit to be exceeded if the user has permission to
741 * write the property value. We pass in the creds that we got in the open
742 * context since we will always be the GZ root in syncing context. We also have
743 * to handle the case where we are allowed to change the limit on the current
744 * dataset, but there may be another limit in the tree above.
746 * We can never modify these two properties within a non-global zone. In
747 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
748 * can't use that function since we are already holding the dp_config_rwlock.
749 * In addition, we already have the dd and dealing with snapshots is simplified
760 dsl_enforce_ds_ss_limits(dsl_dir_t
*dd
, zfs_prop_t prop
,
761 cred_t
*cr
, proc_t
*proc
)
763 enforce_res_t enforce
= ENFORCE_ALWAYS
;
767 const char *zonedstr
;
769 ASSERT(prop
== ZFS_PROP_FILESYSTEM_LIMIT
||
770 prop
== ZFS_PROP_SNAPSHOT_LIMIT
);
773 if (crgetzoneid(cr
) != GLOBAL_ZONEID
)
774 return (ENFORCE_ALWAYS
);
777 * We are checking the saved credentials of the user process, which is
778 * not the current process. Note that we can't use secpolicy_zfs(),
779 * because it only works if the cred is that of the current process (on
782 if (secpolicy_zfs_proc(cr
, proc
) == 0)
783 return (ENFORCE_NEVER
);
788 if ((obj
= dsl_dir_phys(dd
)->dd_head_dataset_obj
) == 0)
789 return (ENFORCE_ALWAYS
);
791 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
793 if (dsl_dataset_hold_obj(dd
->dd_pool
, obj
, FTAG
, &ds
) != 0)
794 return (ENFORCE_ALWAYS
);
796 zonedstr
= zfs_prop_to_name(ZFS_PROP_ZONED
);
797 if (dsl_prop_get_ds(ds
, zonedstr
, 8, 1, &zoned
, NULL
) || zoned
) {
798 /* Only root can access zoned fs's from the GZ */
799 enforce
= ENFORCE_ALWAYS
;
801 if (dsl_deleg_access_impl(ds
, zfs_prop_to_name(prop
), cr
) == 0)
802 enforce
= ENFORCE_ABOVE
;
805 dsl_dataset_rele(ds
, FTAG
);
810 * Check if adding additional child filesystem(s) would exceed any filesystem
811 * limits or adding additional snapshot(s) would exceed any snapshot limits.
812 * The prop argument indicates which limit to check.
814 * Note that all filesystem limits up to the root (or the highest
815 * initialized) filesystem or the given ancestor must be satisfied.
818 dsl_fs_ss_limit_check(dsl_dir_t
*dd
, uint64_t delta
, zfs_prop_t prop
,
819 dsl_dir_t
*ancestor
, cred_t
*cr
, proc_t
*proc
)
821 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
822 uint64_t limit
, count
;
823 const char *count_prop
;
824 enforce_res_t enforce
;
827 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
828 ASSERT(prop
== ZFS_PROP_FILESYSTEM_LIMIT
||
829 prop
== ZFS_PROP_SNAPSHOT_LIMIT
);
831 if (prop
== ZFS_PROP_SNAPSHOT_LIMIT
) {
833 * We don't enforce the limit for temporary snapshots. This is
834 * indicated by a NULL cred_t argument.
839 count_prop
= DD_FIELD_SNAPSHOT_COUNT
;
841 count_prop
= DD_FIELD_FILESYSTEM_COUNT
;
844 * If we're allowed to change the limit, don't enforce the limit
845 * e.g. this can happen if a snapshot is taken by an administrative
846 * user in the global zone (i.e. a recursive snapshot by root).
847 * However, we must handle the case of delegated permissions where we
848 * are allowed to change the limit on the current dataset, but there
849 * is another limit in the tree above.
851 enforce
= dsl_enforce_ds_ss_limits(dd
, prop
, cr
, proc
);
852 if (enforce
== ENFORCE_NEVER
)
856 * e.g. if renaming a dataset with no snapshots, count adjustment
863 * If an ancestor has been provided, stop checking the limit once we
864 * hit that dir. We need this during rename so that we don't overcount
865 * the check once we recurse up to the common ancestor.
871 * If we hit an uninitialized node while recursing up the tree, we can
872 * stop since we know there is no limit here (or above). The counts are
873 * not valid on this node and we know we won't touch this node's counts.
875 if (!dsl_dir_is_zapified(dd
))
877 err
= zap_lookup(os
, dd
->dd_object
,
878 count_prop
, sizeof (count
), 1, &count
);
884 err
= dsl_prop_get_dd(dd
, zfs_prop_to_name(prop
), 8, 1, &limit
, NULL
,
889 /* Is there a limit which we've hit? */
890 if (enforce
== ENFORCE_ALWAYS
&& (count
+ delta
) > limit
)
891 return (SET_ERROR(EDQUOT
));
893 if (dd
->dd_parent
!= NULL
)
894 err
= dsl_fs_ss_limit_check(dd
->dd_parent
, delta
, prop
,
901 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
902 * parents. When a new filesystem/snapshot is created, increment the count on
903 * all parents, and when a filesystem/snapshot is destroyed, decrement the
907 dsl_fs_ss_count_adjust(dsl_dir_t
*dd
, int64_t delta
, const char *prop
,
911 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
914 ASSERT(dsl_pool_config_held(dd
->dd_pool
));
915 ASSERT(dmu_tx_is_syncing(tx
));
916 ASSERT(strcmp(prop
, DD_FIELD_FILESYSTEM_COUNT
) == 0 ||
917 strcmp(prop
, DD_FIELD_SNAPSHOT_COUNT
) == 0);
920 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
922 if (dd
->dd_myname
[0] == '$' && strcmp(prop
,
923 DD_FIELD_FILESYSTEM_COUNT
) == 0) {
928 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
934 * If we hit an uninitialized node while recursing up the tree, we can
935 * stop since we know the counts are not valid on this node and we
936 * know we shouldn't touch this node's counts. An uninitialized count
937 * on the node indicates that either the feature has not yet been
938 * activated or there are no limits on this part of the tree.
940 if (!dsl_dir_is_zapified(dd
) || (err
= zap_lookup(os
, dd
->dd_object
,
941 prop
, sizeof (count
), 1, &count
)) == ENOENT
)
946 /* Use a signed verify to make sure we're not neg. */
947 VERIFY3S(count
, >=, 0);
949 VERIFY0(zap_update(os
, dd
->dd_object
, prop
, sizeof (count
), 1, &count
,
952 /* Roll up this additional count into our ancestors */
953 if (dd
->dd_parent
!= NULL
)
954 dsl_fs_ss_count_adjust(dd
->dd_parent
, delta
, prop
, tx
);
958 dsl_dir_create_sync(dsl_pool_t
*dp
, dsl_dir_t
*pds
, const char *name
,
961 objset_t
*mos
= dp
->dp_meta_objset
;
963 dsl_dir_phys_t
*ddphys
;
966 ddobj
= dmu_object_alloc(mos
, DMU_OT_DSL_DIR
, 0,
967 DMU_OT_DSL_DIR
, sizeof (dsl_dir_phys_t
), tx
);
969 VERIFY0(zap_add(mos
, dsl_dir_phys(pds
)->dd_child_dir_zapobj
,
970 name
, sizeof (uint64_t), 1, &ddobj
, tx
));
972 /* it's the root dir */
973 VERIFY0(zap_add(mos
, DMU_POOL_DIRECTORY_OBJECT
,
974 DMU_POOL_ROOT_DATASET
, sizeof (uint64_t), 1, &ddobj
, tx
));
976 VERIFY0(dmu_bonus_hold(mos
, ddobj
, FTAG
, &dbuf
));
977 dmu_buf_will_dirty(dbuf
, tx
);
978 ddphys
= dbuf
->db_data
;
980 ddphys
->dd_creation_time
= gethrestime_sec();
982 ddphys
->dd_parent_obj
= pds
->dd_object
;
984 /* update the filesystem counts */
985 dsl_fs_ss_count_adjust(pds
, 1, DD_FIELD_FILESYSTEM_COUNT
, tx
);
987 ddphys
->dd_props_zapobj
= zap_create(mos
,
988 DMU_OT_DSL_PROPS
, DMU_OT_NONE
, 0, tx
);
989 ddphys
->dd_child_dir_zapobj
= zap_create(mos
,
990 DMU_OT_DSL_DIR_CHILD_MAP
, DMU_OT_NONE
, 0, tx
);
991 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_USED_BREAKDOWN
)
992 ddphys
->dd_flags
|= DD_FLAG_USED_BREAKDOWN
;
994 dmu_buf_rele(dbuf
, FTAG
);
1000 dsl_dir_is_clone(dsl_dir_t
*dd
)
1002 return (dsl_dir_phys(dd
)->dd_origin_obj
&&
1003 (dd
->dd_pool
->dp_origin_snap
== NULL
||
1004 dsl_dir_phys(dd
)->dd_origin_obj
!=
1005 dd
->dd_pool
->dp_origin_snap
->ds_object
));
1009 dsl_dir_get_used(dsl_dir_t
*dd
)
1011 return (dsl_dir_phys(dd
)->dd_used_bytes
);
1015 dsl_dir_get_compressed(dsl_dir_t
*dd
)
1017 return (dsl_dir_phys(dd
)->dd_compressed_bytes
);
1021 dsl_dir_get_quota(dsl_dir_t
*dd
)
1023 return (dsl_dir_phys(dd
)->dd_quota
);
1027 dsl_dir_get_reservation(dsl_dir_t
*dd
)
1029 return (dsl_dir_phys(dd
)->dd_reserved
);
1033 dsl_dir_get_compressratio(dsl_dir_t
*dd
)
1035 /* a fixed point number, 100x the ratio */
1036 return (dsl_dir_phys(dd
)->dd_compressed_bytes
== 0 ? 100 :
1037 (dsl_dir_phys(dd
)->dd_uncompressed_bytes
* 100 /
1038 dsl_dir_phys(dd
)->dd_compressed_bytes
));
1042 dsl_dir_get_logicalused(dsl_dir_t
*dd
)
1044 return (dsl_dir_phys(dd
)->dd_uncompressed_bytes
);
1048 dsl_dir_get_usedsnap(dsl_dir_t
*dd
)
1050 return (dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_SNAP
]);
1054 dsl_dir_get_usedds(dsl_dir_t
*dd
)
1056 return (dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_HEAD
]);
1060 dsl_dir_get_usedrefreserv(dsl_dir_t
*dd
)
1062 return (dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_REFRSRV
]);
1066 dsl_dir_get_usedchild(dsl_dir_t
*dd
)
1068 return (dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_CHILD
] +
1069 dsl_dir_phys(dd
)->dd_used_breakdown
[DD_USED_CHILD_RSRV
]);
1073 dsl_dir_get_origin(dsl_dir_t
*dd
, char *buf
)
1076 VERIFY0(dsl_dataset_hold_obj(dd
->dd_pool
,
1077 dsl_dir_phys(dd
)->dd_origin_obj
, FTAG
, &ds
));
1079 dsl_dataset_name(ds
, buf
);
1081 dsl_dataset_rele(ds
, FTAG
);
1085 dsl_dir_get_filesystem_count(dsl_dir_t
*dd
, uint64_t *count
)
1087 if (dsl_dir_is_zapified(dd
)) {
1088 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
1089 return (zap_lookup(os
, dd
->dd_object
, DD_FIELD_FILESYSTEM_COUNT
,
1090 sizeof (*count
), 1, count
));
1092 return (SET_ERROR(ENOENT
));
1097 dsl_dir_get_snapshot_count(dsl_dir_t
*dd
, uint64_t *count
)
1099 if (dsl_dir_is_zapified(dd
)) {
1100 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
1101 return (zap_lookup(os
, dd
->dd_object
, DD_FIELD_SNAPSHOT_COUNT
,
1102 sizeof (*count
), 1, count
));
1104 return (SET_ERROR(ENOENT
));
1109 dsl_dir_stats(dsl_dir_t
*dd
, nvlist_t
*nv
)
1111 mutex_enter(&dd
->dd_lock
);
1112 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_QUOTA
,
1113 dsl_dir_get_quota(dd
));
1114 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_RESERVATION
,
1115 dsl_dir_get_reservation(dd
));
1116 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_LOGICALUSED
,
1117 dsl_dir_get_logicalused(dd
));
1118 if (dsl_dir_phys(dd
)->dd_flags
& DD_FLAG_USED_BREAKDOWN
) {
1119 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDSNAP
,
1120 dsl_dir_get_usedsnap(dd
));
1121 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDDS
,
1122 dsl_dir_get_usedds(dd
));
1123 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDREFRESERV
,
1124 dsl_dir_get_usedrefreserv(dd
));
1125 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_USEDCHILD
,
1126 dsl_dir_get_usedchild(dd
));
1128 mutex_exit(&dd
->dd_lock
);
1131 if (dsl_dir_get_filesystem_count(dd
, &count
) == 0) {
1132 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_FILESYSTEM_COUNT
,
1135 if (dsl_dir_get_snapshot_count(dd
, &count
) == 0) {
1136 dsl_prop_nvlist_add_uint64(nv
, ZFS_PROP_SNAPSHOT_COUNT
,
1140 if (dsl_dir_is_clone(dd
)) {
1141 char buf
[ZFS_MAX_DATASET_NAME_LEN
];
1142 dsl_dir_get_origin(dd
, buf
);
1143 dsl_prop_nvlist_add_string(nv
, ZFS_PROP_ORIGIN
, buf
);
1149 dsl_dir_dirty(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
1151 dsl_pool_t
*dp
= dd
->dd_pool
;
1153 ASSERT(dsl_dir_phys(dd
));
1155 if (txg_list_add(&dp
->dp_dirty_dirs
, dd
, tx
->tx_txg
)) {
1156 /* up the hold count until we can be written out */
1157 dmu_buf_add_ref(dd
->dd_dbuf
, dd
);
1162 parent_delta(dsl_dir_t
*dd
, uint64_t used
, int64_t delta
)
1164 uint64_t old_accounted
= MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1165 uint64_t new_accounted
=
1166 MAX(used
+ delta
, dsl_dir_phys(dd
)->dd_reserved
);
1167 return (new_accounted
- old_accounted
);
1171 dsl_dir_sync(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
1173 ASSERT(dmu_tx_is_syncing(tx
));
1175 mutex_enter(&dd
->dd_lock
);
1176 ASSERT0(dd
->dd_tempreserved
[tx
->tx_txg
& TXG_MASK
]);
1177 dprintf_dd(dd
, "txg=%llu towrite=%lluK\n", (u_longlong_t
)tx
->tx_txg
,
1178 (u_longlong_t
)dd
->dd_space_towrite
[tx
->tx_txg
& TXG_MASK
] / 1024);
1179 dd
->dd_space_towrite
[tx
->tx_txg
& TXG_MASK
] = 0;
1180 mutex_exit(&dd
->dd_lock
);
1182 /* release the hold from dsl_dir_dirty */
1183 dmu_buf_rele(dd
->dd_dbuf
, dd
);
1187 dsl_dir_space_towrite(dsl_dir_t
*dd
)
1191 ASSERT(MUTEX_HELD(&dd
->dd_lock
));
1193 for (int i
= 0; i
< TXG_SIZE
; i
++)
1194 space
+= dd
->dd_space_towrite
[i
& TXG_MASK
];
1200 * How much space would dd have available if ancestor had delta applied
1201 * to it? If ondiskonly is set, we're only interested in what's
1202 * on-disk, not estimated pending changes.
1205 dsl_dir_space_available(dsl_dir_t
*dd
,
1206 dsl_dir_t
*ancestor
, int64_t delta
, int ondiskonly
)
1208 uint64_t parentspace
, myspace
, quota
, used
;
1211 * If there are no restrictions otherwise, assume we have
1212 * unlimited space available.
1215 parentspace
= UINT64_MAX
;
1217 if (dd
->dd_parent
!= NULL
) {
1218 parentspace
= dsl_dir_space_available(dd
->dd_parent
,
1219 ancestor
, delta
, ondiskonly
);
1222 mutex_enter(&dd
->dd_lock
);
1223 if (dsl_dir_phys(dd
)->dd_quota
!= 0)
1224 quota
= dsl_dir_phys(dd
)->dd_quota
;
1225 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1227 used
+= dsl_dir_space_towrite(dd
);
1229 if (dd
->dd_parent
== NULL
) {
1230 uint64_t poolsize
= dsl_pool_adjustedsize(dd
->dd_pool
,
1231 ZFS_SPACE_CHECK_NORMAL
);
1232 quota
= MIN(quota
, poolsize
);
1235 if (dsl_dir_phys(dd
)->dd_reserved
> used
&& parentspace
!= UINT64_MAX
) {
1237 * We have some space reserved, in addition to what our
1240 parentspace
+= dsl_dir_phys(dd
)->dd_reserved
- used
;
1243 if (dd
== ancestor
) {
1245 ASSERT(used
>= -delta
);
1247 if (parentspace
!= UINT64_MAX
)
1248 parentspace
-= delta
;
1256 * the lesser of the space provided by our parent and
1257 * the space left in our quota
1259 myspace
= MIN(parentspace
, quota
- used
);
1262 mutex_exit(&dd
->dd_lock
);
1267 struct tempreserve
{
1268 list_node_t tr_node
;
1274 dsl_dir_tempreserve_impl(dsl_dir_t
*dd
, uint64_t asize
, boolean_t netfree
,
1275 boolean_t ignorequota
, list_t
*tr_list
,
1276 dmu_tx_t
*tx
, boolean_t first
)
1280 struct tempreserve
*tr
;
1290 ASSERT3U(txg
, !=, 0);
1291 ASSERT3S(asize
, >, 0);
1293 mutex_enter(&dd
->dd_lock
);
1296 * Check against the dsl_dir's quota. We don't add in the delta
1297 * when checking for over-quota because they get one free hit.
1299 uint64_t est_inflight
= dsl_dir_space_towrite(dd
);
1300 for (int i
= 0; i
< TXG_SIZE
; i
++)
1301 est_inflight
+= dd
->dd_tempreserved
[i
];
1302 uint64_t used_on_disk
= dsl_dir_phys(dd
)->dd_used_bytes
;
1305 * On the first iteration, fetch the dataset's used-on-disk and
1306 * refreservation values. Also, if checkrefquota is set, test if
1307 * allocating this space would exceed the dataset's refquota.
1309 if (first
&& tx
->tx_objset
) {
1311 dsl_dataset_t
*ds
= tx
->tx_objset
->os_dsl_dataset
;
1313 error
= dsl_dataset_check_quota(ds
, !netfree
,
1314 asize
, est_inflight
, &used_on_disk
, &ref_rsrv
);
1316 mutex_exit(&dd
->dd_lock
);
1317 DMU_TX_STAT_BUMP(dmu_tx_quota
);
1323 * If this transaction will result in a net free of space,
1324 * we want to let it through.
1326 if (ignorequota
|| netfree
|| dsl_dir_phys(dd
)->dd_quota
== 0 ||
1327 (tx
->tx_objset
&& dmu_objset_type(tx
->tx_objset
) == DMU_OST_ZVOL
&&
1328 zvol_enforce_quotas
== B_FALSE
))
1331 quota
= dsl_dir_phys(dd
)->dd_quota
;
1334 * Adjust the quota against the actual pool size at the root
1335 * minus any outstanding deferred frees.
1336 * To ensure that it's possible to remove files from a full
1337 * pool without inducing transient overcommits, we throttle
1338 * netfree transactions against a quota that is slightly larger,
1339 * but still within the pool's allocation slop. In cases where
1340 * we're very close to full, this will allow a steady trickle of
1341 * removes to get through.
1343 if (dd
->dd_parent
== NULL
) {
1344 uint64_t avail
= dsl_pool_unreserved_space(dd
->dd_pool
,
1346 ZFS_SPACE_CHECK_RESERVED
: ZFS_SPACE_CHECK_NORMAL
);
1348 if (avail
< quota
) {
1350 retval
= SET_ERROR(ENOSPC
);
1355 * If they are requesting more space, and our current estimate
1356 * is over quota, they get to try again unless the actual
1357 * on-disk is over quota and there are no pending changes
1358 * or deferred frees (which may free up space for us).
1360 ext_quota
= quota
>> 5;
1361 if (quota
== UINT64_MAX
)
1364 if (used_on_disk
>= quota
) {
1365 if (retval
== ENOSPC
&& (used_on_disk
- quota
) <
1366 dsl_pool_deferred_space(dd
->dd_pool
)) {
1367 retval
= SET_ERROR(ERESTART
);
1369 /* Quota exceeded */
1370 mutex_exit(&dd
->dd_lock
);
1371 DMU_TX_STAT_BUMP(dmu_tx_quota
);
1373 } else if (used_on_disk
+ est_inflight
>= quota
+ ext_quota
) {
1374 dprintf_dd(dd
, "failing: used=%lluK inflight = %lluK "
1375 "quota=%lluK tr=%lluK\n",
1376 (u_longlong_t
)used_on_disk
>>10,
1377 (u_longlong_t
)est_inflight
>>10,
1378 (u_longlong_t
)quota
>>10, (u_longlong_t
)asize
>>10);
1379 mutex_exit(&dd
->dd_lock
);
1380 DMU_TX_STAT_BUMP(dmu_tx_quota
);
1381 return (SET_ERROR(ERESTART
));
1384 /* We need to up our estimated delta before dropping dd_lock */
1385 dd
->dd_tempreserved
[txg
& TXG_MASK
] += asize
;
1387 uint64_t parent_rsrv
= parent_delta(dd
, used_on_disk
+ est_inflight
,
1389 mutex_exit(&dd
->dd_lock
);
1391 tr
= kmem_zalloc(sizeof (struct tempreserve
), KM_SLEEP
);
1393 tr
->tr_size
= asize
;
1394 list_insert_tail(tr_list
, tr
);
1396 /* see if it's OK with our parent */
1397 if (dd
->dd_parent
!= NULL
&& parent_rsrv
!= 0) {
1399 * Recurse on our parent without recursion. This has been
1400 * observed to be potentially large stack usage even within
1401 * the test suite. Largest seen stack was 7632 bytes on linux.
1405 asize
= parent_rsrv
;
1406 ignorequota
= (dsl_dir_phys(dd
)->dd_head_dataset_obj
== 0);
1408 goto top_of_function
;
1415 * Reserve space in this dsl_dir, to be used in this tx's txg.
1416 * After the space has been dirtied (and dsl_dir_willuse_space()
1417 * has been called), the reservation should be canceled, using
1418 * dsl_dir_tempreserve_clear().
1421 dsl_dir_tempreserve_space(dsl_dir_t
*dd
, uint64_t lsize
, uint64_t asize
,
1422 boolean_t netfree
, void **tr_cookiep
, dmu_tx_t
*tx
)
1432 tr_list
= kmem_alloc(sizeof (list_t
), KM_SLEEP
);
1433 list_create(tr_list
, sizeof (struct tempreserve
),
1434 offsetof(struct tempreserve
, tr_node
));
1435 ASSERT3S(asize
, >, 0);
1437 err
= arc_tempreserve_space(dd
->dd_pool
->dp_spa
, lsize
, tx
->tx_txg
);
1439 struct tempreserve
*tr
;
1441 tr
= kmem_zalloc(sizeof (struct tempreserve
), KM_SLEEP
);
1442 tr
->tr_size
= lsize
;
1443 list_insert_tail(tr_list
, tr
);
1445 if (err
== EAGAIN
) {
1447 * If arc_memory_throttle() detected that pageout
1448 * is running and we are low on memory, we delay new
1449 * non-pageout transactions to give pageout an
1452 * It is unfortunate to be delaying while the caller's
1455 txg_delay(dd
->dd_pool
, tx
->tx_txg
,
1456 MSEC2NSEC(10), MSEC2NSEC(10));
1457 err
= SET_ERROR(ERESTART
);
1462 err
= dsl_dir_tempreserve_impl(dd
, asize
, netfree
,
1463 B_FALSE
, tr_list
, tx
, B_TRUE
);
1467 dsl_dir_tempreserve_clear(tr_list
, tx
);
1469 *tr_cookiep
= tr_list
;
1475 * Clear a temporary reservation that we previously made with
1476 * dsl_dir_tempreserve_space().
1479 dsl_dir_tempreserve_clear(void *tr_cookie
, dmu_tx_t
*tx
)
1481 int txgidx
= tx
->tx_txg
& TXG_MASK
;
1482 list_t
*tr_list
= tr_cookie
;
1483 struct tempreserve
*tr
;
1485 ASSERT3U(tx
->tx_txg
, !=, 0);
1487 if (tr_cookie
== NULL
)
1490 while ((tr
= list_remove_head(tr_list
)) != NULL
) {
1492 mutex_enter(&tr
->tr_ds
->dd_lock
);
1493 ASSERT3U(tr
->tr_ds
->dd_tempreserved
[txgidx
], >=,
1495 tr
->tr_ds
->dd_tempreserved
[txgidx
] -= tr
->tr_size
;
1496 mutex_exit(&tr
->tr_ds
->dd_lock
);
1498 arc_tempreserve_clear(tr
->tr_size
);
1500 kmem_free(tr
, sizeof (struct tempreserve
));
1503 kmem_free(tr_list
, sizeof (list_t
));
1507 * This should be called from open context when we think we're going to write
1508 * or free space, for example when dirtying data. Be conservative; it's okay
1509 * to write less space or free more, but we don't want to write more or free
1510 * less than the amount specified.
1512 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1513 * version however it has been adjusted to use an iterative rather than
1514 * recursive algorithm to minimize stack usage.
1517 dsl_dir_willuse_space(dsl_dir_t
*dd
, int64_t space
, dmu_tx_t
*tx
)
1519 int64_t parent_space
;
1523 mutex_enter(&dd
->dd_lock
);
1525 dd
->dd_space_towrite
[tx
->tx_txg
& TXG_MASK
] += space
;
1527 est_used
= dsl_dir_space_towrite(dd
) +
1528 dsl_dir_phys(dd
)->dd_used_bytes
;
1529 parent_space
= parent_delta(dd
, est_used
, space
);
1530 mutex_exit(&dd
->dd_lock
);
1532 /* Make sure that we clean up dd_space_to* */
1533 dsl_dir_dirty(dd
, tx
);
1536 space
= parent_space
;
1537 } while (space
&& dd
);
1540 /* call from syncing context when we actually write/free space for this dd */
1542 dsl_dir_diduse_space(dsl_dir_t
*dd
, dd_used_t type
,
1543 int64_t used
, int64_t compressed
, int64_t uncompressed
, dmu_tx_t
*tx
)
1545 int64_t accounted_delta
;
1547 ASSERT(dmu_tx_is_syncing(tx
));
1548 ASSERT(type
< DD_USED_NUM
);
1550 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1553 * dsl_dataset_set_refreservation_sync_impl() calls this with
1554 * dd_lock held, so that it can atomically update
1555 * ds->ds_reserved and the dsl_dir accounting, so that
1556 * dsl_dataset_check_quota() can see dataset and dir accounting
1559 boolean_t needlock
= !MUTEX_HELD(&dd
->dd_lock
);
1561 mutex_enter(&dd
->dd_lock
);
1562 dsl_dir_phys_t
*ddp
= dsl_dir_phys(dd
);
1563 accounted_delta
= parent_delta(dd
, ddp
->dd_used_bytes
, used
);
1564 ASSERT(used
>= 0 || ddp
->dd_used_bytes
>= -used
);
1565 ASSERT(compressed
>= 0 || ddp
->dd_compressed_bytes
>= -compressed
);
1566 ASSERT(uncompressed
>= 0 ||
1567 ddp
->dd_uncompressed_bytes
>= -uncompressed
);
1568 ddp
->dd_used_bytes
+= used
;
1569 ddp
->dd_uncompressed_bytes
+= uncompressed
;
1570 ddp
->dd_compressed_bytes
+= compressed
;
1572 if (ddp
->dd_flags
& DD_FLAG_USED_BREAKDOWN
) {
1573 ASSERT(used
>= 0 || ddp
->dd_used_breakdown
[type
] >= -used
);
1574 ddp
->dd_used_breakdown
[type
] += used
;
1579 for (t
= 0; t
< DD_USED_NUM
; t
++)
1580 u
+= ddp
->dd_used_breakdown
[t
];
1581 ASSERT3U(u
, ==, ddp
->dd_used_bytes
);
1586 mutex_exit(&dd
->dd_lock
);
1588 if (dd
->dd_parent
!= NULL
) {
1589 dsl_dir_diduse_transfer_space(dd
->dd_parent
,
1590 accounted_delta
, compressed
, uncompressed
,
1591 used
, DD_USED_CHILD_RSRV
, DD_USED_CHILD
, tx
);
1596 dsl_dir_transfer_space(dsl_dir_t
*dd
, int64_t delta
,
1597 dd_used_t oldtype
, dd_used_t newtype
, dmu_tx_t
*tx
)
1599 ASSERT(dmu_tx_is_syncing(tx
));
1600 ASSERT(oldtype
< DD_USED_NUM
);
1601 ASSERT(newtype
< DD_USED_NUM
);
1603 dsl_dir_phys_t
*ddp
= dsl_dir_phys(dd
);
1605 !(ddp
->dd_flags
& DD_FLAG_USED_BREAKDOWN
))
1608 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1609 mutex_enter(&dd
->dd_lock
);
1611 ddp
->dd_used_breakdown
[oldtype
] >= delta
:
1612 ddp
->dd_used_breakdown
[newtype
] >= -delta
);
1613 ASSERT(ddp
->dd_used_bytes
>= ABS(delta
));
1614 ddp
->dd_used_breakdown
[oldtype
] -= delta
;
1615 ddp
->dd_used_breakdown
[newtype
] += delta
;
1616 mutex_exit(&dd
->dd_lock
);
1620 dsl_dir_diduse_transfer_space(dsl_dir_t
*dd
, int64_t used
,
1621 int64_t compressed
, int64_t uncompressed
, int64_t tonew
,
1622 dd_used_t oldtype
, dd_used_t newtype
, dmu_tx_t
*tx
)
1624 int64_t accounted_delta
;
1626 ASSERT(dmu_tx_is_syncing(tx
));
1627 ASSERT(oldtype
< DD_USED_NUM
);
1628 ASSERT(newtype
< DD_USED_NUM
);
1630 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1632 mutex_enter(&dd
->dd_lock
);
1633 dsl_dir_phys_t
*ddp
= dsl_dir_phys(dd
);
1634 accounted_delta
= parent_delta(dd
, ddp
->dd_used_bytes
, used
);
1635 ASSERT(used
>= 0 || ddp
->dd_used_bytes
>= -used
);
1636 ASSERT(compressed
>= 0 || ddp
->dd_compressed_bytes
>= -compressed
);
1637 ASSERT(uncompressed
>= 0 ||
1638 ddp
->dd_uncompressed_bytes
>= -uncompressed
);
1639 ddp
->dd_used_bytes
+= used
;
1640 ddp
->dd_uncompressed_bytes
+= uncompressed
;
1641 ddp
->dd_compressed_bytes
+= compressed
;
1643 if (ddp
->dd_flags
& DD_FLAG_USED_BREAKDOWN
) {
1644 ASSERT(tonew
- used
<= 0 ||
1645 ddp
->dd_used_breakdown
[oldtype
] >= tonew
- used
);
1646 ASSERT(tonew
>= 0 ||
1647 ddp
->dd_used_breakdown
[newtype
] >= -tonew
);
1648 ddp
->dd_used_breakdown
[oldtype
] -= tonew
- used
;
1649 ddp
->dd_used_breakdown
[newtype
] += tonew
;
1654 for (t
= 0; t
< DD_USED_NUM
; t
++)
1655 u
+= ddp
->dd_used_breakdown
[t
];
1656 ASSERT3U(u
, ==, ddp
->dd_used_bytes
);
1660 mutex_exit(&dd
->dd_lock
);
1662 if (dd
->dd_parent
!= NULL
) {
1663 dsl_dir_diduse_transfer_space(dd
->dd_parent
,
1664 accounted_delta
, compressed
, uncompressed
,
1665 used
, DD_USED_CHILD_RSRV
, DD_USED_CHILD
, tx
);
1669 typedef struct dsl_dir_set_qr_arg
{
1670 const char *ddsqra_name
;
1671 zprop_source_t ddsqra_source
;
1672 uint64_t ddsqra_value
;
1673 } dsl_dir_set_qr_arg_t
;
1676 dsl_dir_set_quota_check(void *arg
, dmu_tx_t
*tx
)
1678 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1679 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1682 uint64_t towrite
, newval
;
1684 error
= dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
);
1688 error
= dsl_prop_predict(ds
->ds_dir
, "quota",
1689 ddsqra
->ddsqra_source
, ddsqra
->ddsqra_value
, &newval
);
1691 dsl_dataset_rele(ds
, FTAG
);
1696 dsl_dataset_rele(ds
, FTAG
);
1700 mutex_enter(&ds
->ds_dir
->dd_lock
);
1702 * If we are doing the preliminary check in open context, and
1703 * there are pending changes, then don't fail it, since the
1704 * pending changes could under-estimate the amount of space to be
1707 towrite
= dsl_dir_space_towrite(ds
->ds_dir
);
1708 if ((dmu_tx_is_syncing(tx
) || towrite
== 0) &&
1709 (newval
< dsl_dir_phys(ds
->ds_dir
)->dd_reserved
||
1710 newval
< dsl_dir_phys(ds
->ds_dir
)->dd_used_bytes
+ towrite
)) {
1711 error
= SET_ERROR(ENOSPC
);
1713 mutex_exit(&ds
->ds_dir
->dd_lock
);
1714 dsl_dataset_rele(ds
, FTAG
);
1719 dsl_dir_set_quota_sync(void *arg
, dmu_tx_t
*tx
)
1721 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1722 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1726 VERIFY0(dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
));
1728 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_RECVD_PROPS
) {
1729 dsl_prop_set_sync_impl(ds
, zfs_prop_to_name(ZFS_PROP_QUOTA
),
1730 ddsqra
->ddsqra_source
, sizeof (ddsqra
->ddsqra_value
), 1,
1731 &ddsqra
->ddsqra_value
, tx
);
1733 VERIFY0(dsl_prop_get_int_ds(ds
,
1734 zfs_prop_to_name(ZFS_PROP_QUOTA
), &newval
));
1736 newval
= ddsqra
->ddsqra_value
;
1737 spa_history_log_internal_ds(ds
, "set", tx
, "%s=%lld",
1738 zfs_prop_to_name(ZFS_PROP_QUOTA
), (longlong_t
)newval
);
1741 dmu_buf_will_dirty(ds
->ds_dir
->dd_dbuf
, tx
);
1742 mutex_enter(&ds
->ds_dir
->dd_lock
);
1743 dsl_dir_phys(ds
->ds_dir
)->dd_quota
= newval
;
1744 mutex_exit(&ds
->ds_dir
->dd_lock
);
1745 dsl_dataset_rele(ds
, FTAG
);
1749 dsl_dir_set_quota(const char *ddname
, zprop_source_t source
, uint64_t quota
)
1751 dsl_dir_set_qr_arg_t ddsqra
;
1753 ddsqra
.ddsqra_name
= ddname
;
1754 ddsqra
.ddsqra_source
= source
;
1755 ddsqra
.ddsqra_value
= quota
;
1757 return (dsl_sync_task(ddname
, dsl_dir_set_quota_check
,
1758 dsl_dir_set_quota_sync
, &ddsqra
, 0,
1759 ZFS_SPACE_CHECK_EXTRA_RESERVED
));
1763 dsl_dir_set_reservation_check(void *arg
, dmu_tx_t
*tx
)
1765 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1766 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1769 uint64_t newval
, used
, avail
;
1772 error
= dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
);
1778 * If we are doing the preliminary check in open context, the
1779 * space estimates may be inaccurate.
1781 if (!dmu_tx_is_syncing(tx
)) {
1782 dsl_dataset_rele(ds
, FTAG
);
1786 error
= dsl_prop_predict(ds
->ds_dir
,
1787 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1788 ddsqra
->ddsqra_source
, ddsqra
->ddsqra_value
, &newval
);
1790 dsl_dataset_rele(ds
, FTAG
);
1794 mutex_enter(&dd
->dd_lock
);
1795 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1796 mutex_exit(&dd
->dd_lock
);
1798 if (dd
->dd_parent
) {
1799 avail
= dsl_dir_space_available(dd
->dd_parent
,
1802 avail
= dsl_pool_adjustedsize(dd
->dd_pool
,
1803 ZFS_SPACE_CHECK_NORMAL
) - used
;
1806 if (MAX(used
, newval
) > MAX(used
, dsl_dir_phys(dd
)->dd_reserved
)) {
1807 uint64_t delta
= MAX(used
, newval
) -
1808 MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1810 if (delta
> avail
||
1811 (dsl_dir_phys(dd
)->dd_quota
> 0 &&
1812 newval
> dsl_dir_phys(dd
)->dd_quota
))
1813 error
= SET_ERROR(ENOSPC
);
1816 dsl_dataset_rele(ds
, FTAG
);
1821 dsl_dir_set_reservation_sync_impl(dsl_dir_t
*dd
, uint64_t value
, dmu_tx_t
*tx
)
1826 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
1828 mutex_enter(&dd
->dd_lock
);
1829 used
= dsl_dir_phys(dd
)->dd_used_bytes
;
1830 delta
= MAX(used
, value
) - MAX(used
, dsl_dir_phys(dd
)->dd_reserved
);
1831 dsl_dir_phys(dd
)->dd_reserved
= value
;
1833 if (dd
->dd_parent
!= NULL
) {
1834 /* Roll up this additional usage into our ancestors */
1835 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD_RSRV
,
1838 mutex_exit(&dd
->dd_lock
);
1842 dsl_dir_set_reservation_sync(void *arg
, dmu_tx_t
*tx
)
1844 dsl_dir_set_qr_arg_t
*ddsqra
= arg
;
1845 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1849 VERIFY0(dsl_dataset_hold(dp
, ddsqra
->ddsqra_name
, FTAG
, &ds
));
1851 if (spa_version(dp
->dp_spa
) >= SPA_VERSION_RECVD_PROPS
) {
1852 dsl_prop_set_sync_impl(ds
,
1853 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1854 ddsqra
->ddsqra_source
, sizeof (ddsqra
->ddsqra_value
), 1,
1855 &ddsqra
->ddsqra_value
, tx
);
1857 VERIFY0(dsl_prop_get_int_ds(ds
,
1858 zfs_prop_to_name(ZFS_PROP_RESERVATION
), &newval
));
1860 newval
= ddsqra
->ddsqra_value
;
1861 spa_history_log_internal_ds(ds
, "set", tx
, "%s=%lld",
1862 zfs_prop_to_name(ZFS_PROP_RESERVATION
),
1863 (longlong_t
)newval
);
1866 dsl_dir_set_reservation_sync_impl(ds
->ds_dir
, newval
, tx
);
1867 dsl_dataset_rele(ds
, FTAG
);
1871 dsl_dir_set_reservation(const char *ddname
, zprop_source_t source
,
1872 uint64_t reservation
)
1874 dsl_dir_set_qr_arg_t ddsqra
;
1876 ddsqra
.ddsqra_name
= ddname
;
1877 ddsqra
.ddsqra_source
= source
;
1878 ddsqra
.ddsqra_value
= reservation
;
1880 return (dsl_sync_task(ddname
, dsl_dir_set_reservation_check
,
1881 dsl_dir_set_reservation_sync
, &ddsqra
, 0,
1882 ZFS_SPACE_CHECK_EXTRA_RESERVED
));
1886 closest_common_ancestor(dsl_dir_t
*ds1
, dsl_dir_t
*ds2
)
1888 for (; ds1
; ds1
= ds1
->dd_parent
) {
1890 for (dd
= ds2
; dd
; dd
= dd
->dd_parent
) {
1899 * If delta is applied to dd, how much of that delta would be applied to
1900 * ancestor? Syncing context only.
1903 would_change(dsl_dir_t
*dd
, int64_t delta
, dsl_dir_t
*ancestor
)
1908 mutex_enter(&dd
->dd_lock
);
1909 delta
= parent_delta(dd
, dsl_dir_phys(dd
)->dd_used_bytes
, delta
);
1910 mutex_exit(&dd
->dd_lock
);
1911 return (would_change(dd
->dd_parent
, delta
, ancestor
));
1914 typedef struct dsl_dir_rename_arg
{
1915 const char *ddra_oldname
;
1916 const char *ddra_newname
;
1919 } dsl_dir_rename_arg_t
;
1921 typedef struct dsl_valid_rename_arg
{
1924 } dsl_valid_rename_arg_t
;
1927 dsl_valid_rename(dsl_pool_t
*dp
, dsl_dataset_t
*ds
, void *arg
)
1930 dsl_valid_rename_arg_t
*dvra
= arg
;
1931 char namebuf
[ZFS_MAX_DATASET_NAME_LEN
];
1933 dsl_dataset_name(ds
, namebuf
);
1935 ASSERT3U(strnlen(namebuf
, ZFS_MAX_DATASET_NAME_LEN
),
1936 <, ZFS_MAX_DATASET_NAME_LEN
);
1937 int namelen
= strlen(namebuf
) + dvra
->char_delta
;
1938 int depth
= get_dataset_depth(namebuf
) + dvra
->nest_delta
;
1940 if (namelen
>= ZFS_MAX_DATASET_NAME_LEN
)
1941 return (SET_ERROR(ENAMETOOLONG
));
1942 if (dvra
->nest_delta
> 0 && depth
>= zfs_max_dataset_nesting
)
1943 return (SET_ERROR(ENAMETOOLONG
));
1948 dsl_dir_rename_check(void *arg
, dmu_tx_t
*tx
)
1950 dsl_dir_rename_arg_t
*ddra
= arg
;
1951 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
1952 dsl_dir_t
*dd
, *newparent
;
1953 dsl_valid_rename_arg_t dvra
;
1954 dsl_dataset_t
*parentds
;
1956 const char *mynewname
;
1959 /* target dir should exist */
1960 error
= dsl_dir_hold(dp
, ddra
->ddra_oldname
, FTAG
, &dd
, NULL
);
1964 /* new parent should exist */
1965 error
= dsl_dir_hold(dp
, ddra
->ddra_newname
, FTAG
,
1966 &newparent
, &mynewname
);
1968 dsl_dir_rele(dd
, FTAG
);
1972 /* can't rename to different pool */
1973 if (dd
->dd_pool
!= newparent
->dd_pool
) {
1974 dsl_dir_rele(newparent
, FTAG
);
1975 dsl_dir_rele(dd
, FTAG
);
1976 return (SET_ERROR(EXDEV
));
1979 /* new name should not already exist */
1980 if (mynewname
== NULL
) {
1981 dsl_dir_rele(newparent
, FTAG
);
1982 dsl_dir_rele(dd
, FTAG
);
1983 return (SET_ERROR(EEXIST
));
1986 /* can't rename below anything but filesystems (eg. no ZVOLs) */
1987 error
= dsl_dataset_hold_obj(newparent
->dd_pool
,
1988 dsl_dir_phys(newparent
)->dd_head_dataset_obj
, FTAG
, &parentds
);
1990 dsl_dir_rele(newparent
, FTAG
);
1991 dsl_dir_rele(dd
, FTAG
);
1994 error
= dmu_objset_from_ds(parentds
, &parentos
);
1996 dsl_dataset_rele(parentds
, FTAG
);
1997 dsl_dir_rele(newparent
, FTAG
);
1998 dsl_dir_rele(dd
, FTAG
);
2001 if (dmu_objset_type(parentos
) != DMU_OST_ZFS
) {
2002 dsl_dataset_rele(parentds
, FTAG
);
2003 dsl_dir_rele(newparent
, FTAG
);
2004 dsl_dir_rele(dd
, FTAG
);
2005 return (SET_ERROR(ZFS_ERR_WRONG_PARENT
));
2007 dsl_dataset_rele(parentds
, FTAG
);
2009 ASSERT3U(strnlen(ddra
->ddra_newname
, ZFS_MAX_DATASET_NAME_LEN
),
2010 <, ZFS_MAX_DATASET_NAME_LEN
);
2011 ASSERT3U(strnlen(ddra
->ddra_oldname
, ZFS_MAX_DATASET_NAME_LEN
),
2012 <, ZFS_MAX_DATASET_NAME_LEN
);
2013 dvra
.char_delta
= strlen(ddra
->ddra_newname
)
2014 - strlen(ddra
->ddra_oldname
);
2015 dvra
.nest_delta
= get_dataset_depth(ddra
->ddra_newname
)
2016 - get_dataset_depth(ddra
->ddra_oldname
);
2018 /* if the name length is growing, validate child name lengths */
2019 if (dvra
.char_delta
> 0 || dvra
.nest_delta
> 0) {
2020 error
= dmu_objset_find_dp(dp
, dd
->dd_object
, dsl_valid_rename
,
2021 &dvra
, DS_FIND_CHILDREN
| DS_FIND_SNAPSHOTS
);
2023 dsl_dir_rele(newparent
, FTAG
);
2024 dsl_dir_rele(dd
, FTAG
);
2029 if (dmu_tx_is_syncing(tx
)) {
2030 if (spa_feature_is_active(dp
->dp_spa
,
2031 SPA_FEATURE_FS_SS_LIMIT
)) {
2033 * Although this is the check function and we don't
2034 * normally make on-disk changes in check functions,
2035 * we need to do that here.
2037 * Ensure this portion of the tree's counts have been
2038 * initialized in case the new parent has limits set.
2040 dsl_dir_init_fs_ss_count(dd
, tx
);
2044 if (newparent
!= dd
->dd_parent
) {
2045 /* is there enough space? */
2047 MAX(dsl_dir_phys(dd
)->dd_used_bytes
,
2048 dsl_dir_phys(dd
)->dd_reserved
);
2049 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
2050 uint64_t fs_cnt
= 0;
2051 uint64_t ss_cnt
= 0;
2053 if (dsl_dir_is_zapified(dd
)) {
2056 err
= zap_lookup(os
, dd
->dd_object
,
2057 DD_FIELD_FILESYSTEM_COUNT
, sizeof (fs_cnt
), 1,
2059 if (err
!= ENOENT
&& err
!= 0) {
2060 dsl_dir_rele(newparent
, FTAG
);
2061 dsl_dir_rele(dd
, FTAG
);
2066 * have to add 1 for the filesystem itself that we're
2071 err
= zap_lookup(os
, dd
->dd_object
,
2072 DD_FIELD_SNAPSHOT_COUNT
, sizeof (ss_cnt
), 1,
2074 if (err
!= ENOENT
&& err
!= 0) {
2075 dsl_dir_rele(newparent
, FTAG
);
2076 dsl_dir_rele(dd
, FTAG
);
2081 /* check for encryption errors */
2082 error
= dsl_dir_rename_crypt_check(dd
, newparent
);
2084 dsl_dir_rele(newparent
, FTAG
);
2085 dsl_dir_rele(dd
, FTAG
);
2086 return (SET_ERROR(EACCES
));
2089 /* no rename into our descendant */
2090 if (closest_common_ancestor(dd
, newparent
) == dd
) {
2091 dsl_dir_rele(newparent
, FTAG
);
2092 dsl_dir_rele(dd
, FTAG
);
2093 return (SET_ERROR(EINVAL
));
2096 error
= dsl_dir_transfer_possible(dd
->dd_parent
,
2097 newparent
, fs_cnt
, ss_cnt
, myspace
,
2098 ddra
->ddra_cred
, ddra
->ddra_proc
);
2100 dsl_dir_rele(newparent
, FTAG
);
2101 dsl_dir_rele(dd
, FTAG
);
2106 dsl_dir_rele(newparent
, FTAG
);
2107 dsl_dir_rele(dd
, FTAG
);
2112 dsl_dir_rename_sync(void *arg
, dmu_tx_t
*tx
)
2114 dsl_dir_rename_arg_t
*ddra
= arg
;
2115 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
2116 dsl_dir_t
*dd
, *newparent
;
2117 const char *mynewname
;
2118 objset_t
*mos
= dp
->dp_meta_objset
;
2120 VERIFY0(dsl_dir_hold(dp
, ddra
->ddra_oldname
, FTAG
, &dd
, NULL
));
2121 VERIFY0(dsl_dir_hold(dp
, ddra
->ddra_newname
, FTAG
, &newparent
,
2124 ASSERT3P(mynewname
, !=, NULL
);
2126 /* Log this before we change the name. */
2127 spa_history_log_internal_dd(dd
, "rename", tx
,
2128 "-> %s", ddra
->ddra_newname
);
2130 if (newparent
!= dd
->dd_parent
) {
2131 objset_t
*os
= dd
->dd_pool
->dp_meta_objset
;
2132 uint64_t fs_cnt
= 0;
2133 uint64_t ss_cnt
= 0;
2136 * We already made sure the dd counts were initialized in the
2139 if (spa_feature_is_active(dp
->dp_spa
,
2140 SPA_FEATURE_FS_SS_LIMIT
)) {
2141 VERIFY0(zap_lookup(os
, dd
->dd_object
,
2142 DD_FIELD_FILESYSTEM_COUNT
, sizeof (fs_cnt
), 1,
2144 /* add 1 for the filesystem itself that we're moving */
2147 VERIFY0(zap_lookup(os
, dd
->dd_object
,
2148 DD_FIELD_SNAPSHOT_COUNT
, sizeof (ss_cnt
), 1,
2152 dsl_fs_ss_count_adjust(dd
->dd_parent
, -fs_cnt
,
2153 DD_FIELD_FILESYSTEM_COUNT
, tx
);
2154 dsl_fs_ss_count_adjust(newparent
, fs_cnt
,
2155 DD_FIELD_FILESYSTEM_COUNT
, tx
);
2157 dsl_fs_ss_count_adjust(dd
->dd_parent
, -ss_cnt
,
2158 DD_FIELD_SNAPSHOT_COUNT
, tx
);
2159 dsl_fs_ss_count_adjust(newparent
, ss_cnt
,
2160 DD_FIELD_SNAPSHOT_COUNT
, tx
);
2162 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD
,
2163 -dsl_dir_phys(dd
)->dd_used_bytes
,
2164 -dsl_dir_phys(dd
)->dd_compressed_bytes
,
2165 -dsl_dir_phys(dd
)->dd_uncompressed_bytes
, tx
);
2166 dsl_dir_diduse_space(newparent
, DD_USED_CHILD
,
2167 dsl_dir_phys(dd
)->dd_used_bytes
,
2168 dsl_dir_phys(dd
)->dd_compressed_bytes
,
2169 dsl_dir_phys(dd
)->dd_uncompressed_bytes
, tx
);
2171 if (dsl_dir_phys(dd
)->dd_reserved
>
2172 dsl_dir_phys(dd
)->dd_used_bytes
) {
2173 uint64_t unused_rsrv
= dsl_dir_phys(dd
)->dd_reserved
-
2174 dsl_dir_phys(dd
)->dd_used_bytes
;
2176 dsl_dir_diduse_space(dd
->dd_parent
, DD_USED_CHILD_RSRV
,
2177 -unused_rsrv
, 0, 0, tx
);
2178 dsl_dir_diduse_space(newparent
, DD_USED_CHILD_RSRV
,
2179 unused_rsrv
, 0, 0, tx
);
2183 dmu_buf_will_dirty(dd
->dd_dbuf
, tx
);
2185 /* remove from old parent zapobj */
2186 VERIFY0(zap_remove(mos
,
2187 dsl_dir_phys(dd
->dd_parent
)->dd_child_dir_zapobj
,
2188 dd
->dd_myname
, tx
));
2190 (void) strlcpy(dd
->dd_myname
, mynewname
,
2191 sizeof (dd
->dd_myname
));
2192 dsl_dir_rele(dd
->dd_parent
, dd
);
2193 dsl_dir_phys(dd
)->dd_parent_obj
= newparent
->dd_object
;
2194 VERIFY0(dsl_dir_hold_obj(dp
,
2195 newparent
->dd_object
, NULL
, dd
, &dd
->dd_parent
));
2197 /* add to new parent zapobj */
2198 VERIFY0(zap_add(mos
, dsl_dir_phys(newparent
)->dd_child_dir_zapobj
,
2199 dd
->dd_myname
, 8, 1, &dd
->dd_object
, tx
));
2201 /* TODO: A rename callback to avoid these layering violations. */
2202 zfsvfs_update_fromname(ddra
->ddra_oldname
, ddra
->ddra_newname
);
2203 zvol_rename_minors(dp
->dp_spa
, ddra
->ddra_oldname
,
2204 ddra
->ddra_newname
, B_TRUE
);
2206 dsl_prop_notify_all(dd
);
2208 dsl_dir_rele(newparent
, FTAG
);
2209 dsl_dir_rele(dd
, FTAG
);
2213 dsl_dir_rename(const char *oldname
, const char *newname
)
2215 dsl_dir_rename_arg_t ddra
;
2217 ddra
.ddra_oldname
= oldname
;
2218 ddra
.ddra_newname
= newname
;
2219 ddra
.ddra_cred
= CRED();
2220 ddra
.ddra_proc
= curproc
;
2222 return (dsl_sync_task(oldname
,
2223 dsl_dir_rename_check
, dsl_dir_rename_sync
, &ddra
,
2224 3, ZFS_SPACE_CHECK_RESERVED
));
2228 dsl_dir_transfer_possible(dsl_dir_t
*sdd
, dsl_dir_t
*tdd
,
2229 uint64_t fs_cnt
, uint64_t ss_cnt
, uint64_t space
,
2230 cred_t
*cr
, proc_t
*proc
)
2232 dsl_dir_t
*ancestor
;
2237 ancestor
= closest_common_ancestor(sdd
, tdd
);
2238 adelta
= would_change(sdd
, -space
, ancestor
);
2239 avail
= dsl_dir_space_available(tdd
, ancestor
, adelta
, FALSE
);
2241 return (SET_ERROR(ENOSPC
));
2243 err
= dsl_fs_ss_limit_check(tdd
, fs_cnt
, ZFS_PROP_FILESYSTEM_LIMIT
,
2244 ancestor
, cr
, proc
);
2247 err
= dsl_fs_ss_limit_check(tdd
, ss_cnt
, ZFS_PROP_SNAPSHOT_LIMIT
,
2248 ancestor
, cr
, proc
);
2256 dsl_dir_snap_cmtime(dsl_dir_t
*dd
)
2260 mutex_enter(&dd
->dd_lock
);
2261 t
= dd
->dd_snap_cmtime
;
2262 mutex_exit(&dd
->dd_lock
);
2268 dsl_dir_snap_cmtime_update(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
2270 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
2274 mutex_enter(&dd
->dd_lock
);
2275 dd
->dd_snap_cmtime
= t
;
2276 if (spa_feature_is_enabled(dp
->dp_spa
,
2277 SPA_FEATURE_EXTENSIBLE_DATASET
)) {
2278 objset_t
*mos
= dd
->dd_pool
->dp_meta_objset
;
2279 uint64_t ddobj
= dd
->dd_object
;
2280 dsl_dir_zapify(dd
, tx
);
2281 VERIFY0(zap_update(mos
, ddobj
,
2282 DD_FIELD_SNAPSHOTS_CHANGED
,
2284 sizeof (inode_timespec_t
) / sizeof (uint64_t),
2287 mutex_exit(&dd
->dd_lock
);
2291 dsl_dir_zapify(dsl_dir_t
*dd
, dmu_tx_t
*tx
)
2293 objset_t
*mos
= dd
->dd_pool
->dp_meta_objset
;
2294 dmu_object_zapify(mos
, dd
->dd_object
, DMU_OT_DSL_DIR
, tx
);
2298 dsl_dir_is_zapified(dsl_dir_t
*dd
)
2300 dmu_object_info_t doi
;
2302 dmu_object_info_from_db(dd
->dd_dbuf
, &doi
);
2303 return (doi
.doi_type
== DMU_OTN_ZAP_METADATA
);
2307 dsl_dir_livelist_open(dsl_dir_t
*dd
, uint64_t obj
)
2309 objset_t
*mos
= dd
->dd_pool
->dp_meta_objset
;
2310 ASSERT(spa_feature_is_active(dd
->dd_pool
->dp_spa
,
2311 SPA_FEATURE_LIVELIST
));
2312 int err
= dsl_deadlist_open(&dd
->dd_livelist
, mos
, obj
);
2315 bplist_create(&dd
->dd_pending_allocs
);
2316 bplist_create(&dd
->dd_pending_frees
);
2321 dsl_dir_livelist_close(dsl_dir_t
*dd
)
2323 dsl_deadlist_close(&dd
->dd_livelist
);
2324 bplist_destroy(&dd
->dd_pending_allocs
);
2325 bplist_destroy(&dd
->dd_pending_frees
);
2329 dsl_dir_remove_livelist(dsl_dir_t
*dd
, dmu_tx_t
*tx
, boolean_t total
)
2332 dsl_pool_t
*dp
= dmu_tx_pool(tx
);
2333 spa_t
*spa
= dp
->dp_spa
;
2334 livelist_condense_entry_t to_condense
= spa
->spa_to_condense
;
2336 if (!dsl_deadlist_is_open(&dd
->dd_livelist
))
2340 * If the livelist being removed is set to be condensed, stop the
2341 * condense zthr and indicate the cancellation in the spa_to_condense
2342 * struct in case the condense no-wait synctask has already started
2344 zthr_t
*ll_condense_thread
= spa
->spa_livelist_condense_zthr
;
2345 if (ll_condense_thread
!= NULL
&&
2346 (to_condense
.ds
!= NULL
) && (to_condense
.ds
->ds_dir
== dd
)) {
2348 * We use zthr_wait_cycle_done instead of zthr_cancel
2349 * because we don't want to destroy the zthr, just have
2350 * it skip its current task.
2352 spa
->spa_to_condense
.cancelled
= B_TRUE
;
2353 zthr_wait_cycle_done(ll_condense_thread
);
2355 * If we've returned from zthr_wait_cycle_done without
2356 * clearing the to_condense data structure it's either
2357 * because the no-wait synctask has started (which is
2358 * indicated by 'syncing' field of to_condense) and we
2359 * can expect it to clear to_condense on its own.
2360 * Otherwise, we returned before the zthr ran. The
2361 * checkfunc will now fail as cancelled == B_TRUE so we
2362 * can safely NULL out ds, allowing a different dir's
2363 * livelist to be condensed.
2365 * We can be sure that the to_condense struct will not
2366 * be repopulated at this stage because both this
2367 * function and dsl_livelist_try_condense execute in
2370 if ((spa
->spa_to_condense
.ds
!= NULL
) &&
2371 !spa
->spa_to_condense
.syncing
) {
2372 dmu_buf_rele(spa
->spa_to_condense
.ds
->ds_dbuf
,
2374 spa
->spa_to_condense
.ds
= NULL
;
2378 dsl_dir_livelist_close(dd
);
2379 VERIFY0(zap_lookup(dp
->dp_meta_objset
, dd
->dd_object
,
2380 DD_FIELD_LIVELIST
, sizeof (uint64_t), 1, &obj
));
2381 VERIFY0(zap_remove(dp
->dp_meta_objset
, dd
->dd_object
,
2382 DD_FIELD_LIVELIST
, tx
));
2384 dsl_deadlist_free(dp
->dp_meta_objset
, obj
, tx
);
2385 spa_feature_decr(spa
, SPA_FEATURE_LIVELIST
, tx
);
2390 dsl_dir_activity_in_progress(dsl_dir_t
*dd
, dsl_dataset_t
*ds
,
2391 zfs_wait_activity_t activity
, boolean_t
*in_progress
)
2395 ASSERT(MUTEX_HELD(&dd
->dd_activity_lock
));
2398 case ZFS_WAIT_DELETEQ
: {
2401 error
= dmu_objset_from_ds(ds
, &os
);
2405 mutex_enter(&os
->os_user_ptr_lock
);
2406 void *user
= dmu_objset_get_user(os
);
2407 mutex_exit(&os
->os_user_ptr_lock
);
2408 if (dmu_objset_type(os
) != DMU_OST_ZFS
||
2409 user
== NULL
|| zfs_get_vfs_flag_unmounted(os
)) {
2410 *in_progress
= B_FALSE
;
2414 uint64_t readonly
= B_FALSE
;
2415 error
= zfs_get_temporary_prop(ds
, ZFS_PROP_READONLY
, &readonly
,
2421 if (readonly
|| !spa_writeable(dd
->dd_pool
->dp_spa
)) {
2422 *in_progress
= B_FALSE
;
2426 uint64_t count
, unlinked_obj
;
2427 error
= zap_lookup(os
, MASTER_NODE_OBJ
, ZFS_UNLINKED_SET
, 8, 1,
2430 dsl_dataset_rele(ds
, FTAG
);
2433 error
= zap_count(os
, unlinked_obj
, &count
);
2436 *in_progress
= (count
!= 0);
2440 * The delete queue is ZPL specific, and libzpool doesn't have
2441 * it. It doesn't make sense to wait for it.
2444 *in_progress
= B_FALSE
;
2449 panic("unrecognized value for activity %d", activity
);
2456 dsl_dir_wait(dsl_dir_t
*dd
, dsl_dataset_t
*ds
, zfs_wait_activity_t activity
,
2460 boolean_t in_progress
;
2461 dsl_pool_t
*dp
= dd
->dd_pool
;
2463 dsl_pool_config_enter(dp
, FTAG
);
2464 error
= dsl_dir_activity_in_progress(dd
, ds
, activity
,
2466 dsl_pool_config_exit(dp
, FTAG
);
2467 if (error
!= 0 || !in_progress
)
2472 if (cv_wait_sig(&dd
->dd_activity_cv
, &dd
->dd_activity_lock
) ==
2473 0 || dd
->dd_activity_cancelled
) {
2474 error
= SET_ERROR(EINTR
);
2482 dsl_dir_cancel_waiters(dsl_dir_t
*dd
)
2484 mutex_enter(&dd
->dd_activity_lock
);
2485 dd
->dd_activity_cancelled
= B_TRUE
;
2486 cv_broadcast(&dd
->dd_activity_cv
);
2487 while (dd
->dd_activity_waiters
> 0)
2488 cv_wait(&dd
->dd_activity_cv
, &dd
->dd_activity_lock
);
2489 mutex_exit(&dd
->dd_activity_lock
);
2492 #if defined(_KERNEL)
2493 EXPORT_SYMBOL(dsl_dir_set_quota
);
2494 EXPORT_SYMBOL(dsl_dir_set_reservation
);
2498 ZFS_MODULE_PARAM(zfs
, , zvol_enforce_quotas
, INT
, ZMOD_RW
,
2499 "Enable strict ZVOL quota enforcment");