Optimize RAIDZ expansion
[zfs.git] / module / zfs / dsl_dir.c
blob8788ba11aea989b7a09324883e3f0394d9b62280
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
24 * Copyright (c) 2013 Martin Matuska. All rights reserved.
25 * Copyright (c) 2014 Joyent, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
28 * Copyright (c) 2018, loli10K <ezomori.nozomu@gmail.com>. All rights reserved.
29 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
32 #include <sys/dmu.h>
33 #include <sys/dmu_objset.h>
34 #include <sys/dmu_tx.h>
35 #include <sys/dsl_dataset.h>
36 #include <sys/dsl_dir.h>
37 #include <sys/dsl_prop.h>
38 #include <sys/dsl_synctask.h>
39 #include <sys/dsl_deleg.h>
40 #include <sys/dmu_impl.h>
41 #include <sys/spa.h>
42 #include <sys/spa_impl.h>
43 #include <sys/metaslab.h>
44 #include <sys/zap.h>
45 #include <sys/zio.h>
46 #include <sys/arc.h>
47 #include <sys/sunddi.h>
48 #include <sys/zfeature.h>
49 #include <sys/policy.h>
50 #include <sys/zfs_vfsops.h>
51 #include <sys/zfs_znode.h>
52 #include <sys/zvol.h>
53 #include <sys/zthr.h>
54 #include "zfs_namecheck.h"
55 #include "zfs_prop.h"
58 * This controls if we verify the ZVOL quota or not.
59 * Currently, quotas are not implemented for ZVOLs.
60 * The quota size is the size of the ZVOL.
61 * The size of the volume already implies the ZVOL size quota.
62 * The quota mechanism can introduce a significant performance drop.
64 static int zvol_enforce_quotas = B_TRUE;
67 * Filesystem and Snapshot Limits
68 * ------------------------------
70 * These limits are used to restrict the number of filesystems and/or snapshots
71 * that can be created at a given level in the tree or below. A typical
72 * use-case is with a delegated dataset where the administrator wants to ensure
73 * that a user within the zone is not creating too many additional filesystems
74 * or snapshots, even though they're not exceeding their space quota.
76 * The filesystem and snapshot counts are stored as extensible properties. This
77 * capability is controlled by a feature flag and must be enabled to be used.
78 * Once enabled, the feature is not active until the first limit is set. At
79 * that point, future operations to create/destroy filesystems or snapshots
80 * will validate and update the counts.
82 * Because the count properties will not exist before the feature is active,
83 * the counts are updated when a limit is first set on an uninitialized
84 * dsl_dir node in the tree (The filesystem/snapshot count on a node includes
85 * all of the nested filesystems/snapshots. Thus, a new leaf node has a
86 * filesystem count of 0 and a snapshot count of 0. Non-existent filesystem and
87 * snapshot count properties on a node indicate uninitialized counts on that
88 * node.) When first setting a limit on an uninitialized node, the code starts
89 * at the filesystem with the new limit and descends into all sub-filesystems
90 * to add the count properties.
92 * In practice this is lightweight since a limit is typically set when the
93 * filesystem is created and thus has no children. Once valid, changing the
94 * limit value won't require a re-traversal since the counts are already valid.
95 * When recursively fixing the counts, if a node with a limit is encountered
96 * during the descent, the counts are known to be valid and there is no need to
97 * descend into that filesystem's children. The counts on filesystems above the
98 * one with the new limit will still be uninitialized, unless a limit is
99 * eventually set on one of those filesystems. The counts are always recursively
100 * updated when a limit is set on a dataset, unless there is already a limit.
101 * When a new limit value is set on a filesystem with an existing limit, it is
102 * possible for the new limit to be less than the current count at that level
103 * since a user who can change the limit is also allowed to exceed the limit.
105 * Once the feature is active, then whenever a filesystem or snapshot is
106 * created, the code recurses up the tree, validating the new count against the
107 * limit at each initialized level. In practice, most levels will not have a
108 * limit set. If there is a limit at any initialized level up the tree, the
109 * check must pass or the creation will fail. Likewise, when a filesystem or
110 * snapshot is destroyed, the counts are recursively adjusted all the way up
111 * the initialized nodes in the tree. Renaming a filesystem into different point
112 * in the tree will first validate, then update the counts on each branch up to
113 * the common ancestor. A receive will also validate the counts and then update
114 * them.
116 * An exception to the above behavior is that the limit is not enforced if the
117 * user has permission to modify the limit. This is primarily so that
118 * recursive snapshots in the global zone always work. We want to prevent a
119 * denial-of-service in which a lower level delegated dataset could max out its
120 * limit and thus block recursive snapshots from being taken in the global zone.
121 * Because of this, it is possible for the snapshot count to be over the limit
122 * and snapshots taken in the global zone could cause a lower level dataset to
123 * hit or exceed its limit. The administrator taking the global zone recursive
124 * snapshot should be aware of this side-effect and behave accordingly.
125 * For consistency, the filesystem limit is also not enforced if the user can
126 * modify the limit.
128 * The filesystem and snapshot limits are validated by dsl_fs_ss_limit_check()
129 * and updated by dsl_fs_ss_count_adjust(). A new limit value is setup in
130 * dsl_dir_activate_fs_ss_limit() and the counts are adjusted, if necessary, by
131 * dsl_dir_init_fs_ss_count().
134 static uint64_t dsl_dir_space_towrite(dsl_dir_t *dd);
136 typedef struct ddulrt_arg {
137 dsl_dir_t *ddulrta_dd;
138 uint64_t ddlrta_txg;
139 } ddulrt_arg_t;
141 static void
142 dsl_dir_evict_async(void *dbu)
144 dsl_dir_t *dd = dbu;
145 int t;
146 dsl_pool_t *dp __maybe_unused = dd->dd_pool;
148 dd->dd_dbuf = NULL;
150 for (t = 0; t < TXG_SIZE; t++) {
151 ASSERT(!txg_list_member(&dp->dp_dirty_dirs, dd, t));
152 ASSERT(dd->dd_tempreserved[t] == 0);
153 ASSERT(dd->dd_space_towrite[t] == 0);
156 if (dd->dd_parent)
157 dsl_dir_async_rele(dd->dd_parent, dd);
159 spa_async_close(dd->dd_pool->dp_spa, dd);
161 if (dsl_deadlist_is_open(&dd->dd_livelist))
162 dsl_dir_livelist_close(dd);
164 dsl_prop_fini(dd);
165 cv_destroy(&dd->dd_activity_cv);
166 mutex_destroy(&dd->dd_activity_lock);
167 mutex_destroy(&dd->dd_lock);
168 kmem_free(dd, sizeof (dsl_dir_t));
172 dsl_dir_hold_obj(dsl_pool_t *dp, uint64_t ddobj,
173 const char *tail, const void *tag, dsl_dir_t **ddp)
175 dmu_buf_t *dbuf;
176 dsl_dir_t *dd;
177 dmu_object_info_t doi;
178 int err;
180 ASSERT(dsl_pool_config_held(dp));
182 err = dmu_bonus_hold(dp->dp_meta_objset, ddobj, tag, &dbuf);
183 if (err != 0)
184 return (err);
185 dd = dmu_buf_get_user(dbuf);
187 dmu_object_info_from_db(dbuf, &doi);
188 ASSERT3U(doi.doi_bonus_type, ==, DMU_OT_DSL_DIR);
189 ASSERT3U(doi.doi_bonus_size, >=, sizeof (dsl_dir_phys_t));
191 if (dd == NULL) {
192 dsl_dir_t *winner;
194 dd = kmem_zalloc(sizeof (dsl_dir_t), KM_SLEEP);
195 dd->dd_object = ddobj;
196 dd->dd_dbuf = dbuf;
197 dd->dd_pool = dp;
199 mutex_init(&dd->dd_lock, NULL, MUTEX_DEFAULT, NULL);
200 mutex_init(&dd->dd_activity_lock, NULL, MUTEX_DEFAULT, NULL);
201 cv_init(&dd->dd_activity_cv, NULL, CV_DEFAULT, NULL);
202 dsl_prop_init(dd);
204 if (dsl_dir_is_zapified(dd)) {
205 err = zap_lookup(dp->dp_meta_objset,
206 ddobj, DD_FIELD_CRYPTO_KEY_OBJ,
207 sizeof (uint64_t), 1, &dd->dd_crypto_obj);
208 if (err == 0) {
209 /* check for on-disk format errata */
210 if (dsl_dir_incompatible_encryption_version(
211 dd)) {
212 dp->dp_spa->spa_errata =
213 ZPOOL_ERRATA_ZOL_6845_ENCRYPTION;
215 } else if (err != ENOENT) {
216 goto errout;
220 if (dsl_dir_phys(dd)->dd_parent_obj) {
221 err = dsl_dir_hold_obj(dp,
222 dsl_dir_phys(dd)->dd_parent_obj, NULL, dd,
223 &dd->dd_parent);
224 if (err != 0)
225 goto errout;
226 if (tail) {
227 #ifdef ZFS_DEBUG
228 uint64_t foundobj;
230 err = zap_lookup(dp->dp_meta_objset,
231 dsl_dir_phys(dd->dd_parent)->
232 dd_child_dir_zapobj, tail,
233 sizeof (foundobj), 1, &foundobj);
234 ASSERT(err || foundobj == ddobj);
235 #endif
236 (void) strlcpy(dd->dd_myname, tail,
237 sizeof (dd->dd_myname));
238 } else {
239 err = zap_value_search(dp->dp_meta_objset,
240 dsl_dir_phys(dd->dd_parent)->
241 dd_child_dir_zapobj,
242 ddobj, 0, dd->dd_myname,
243 sizeof (dd->dd_myname));
245 if (err != 0)
246 goto errout;
247 } else {
248 (void) strlcpy(dd->dd_myname, spa_name(dp->dp_spa),
249 sizeof (dd->dd_myname));
252 if (dsl_dir_is_clone(dd)) {
253 dmu_buf_t *origin_bonus;
254 dsl_dataset_phys_t *origin_phys;
257 * We can't open the origin dataset, because
258 * that would require opening this dsl_dir.
259 * Just look at its phys directly instead.
261 err = dmu_bonus_hold(dp->dp_meta_objset,
262 dsl_dir_phys(dd)->dd_origin_obj, FTAG,
263 &origin_bonus);
264 if (err != 0)
265 goto errout;
266 origin_phys = origin_bonus->db_data;
267 dd->dd_origin_txg =
268 origin_phys->ds_creation_txg;
269 dmu_buf_rele(origin_bonus, FTAG);
270 if (dsl_dir_is_zapified(dd)) {
271 uint64_t obj;
272 err = zap_lookup(dp->dp_meta_objset,
273 dd->dd_object, DD_FIELD_LIVELIST,
274 sizeof (uint64_t), 1, &obj);
275 if (err == 0) {
276 err = dsl_dir_livelist_open(dd, obj);
277 if (err != 0)
278 goto errout;
279 } else if (err != ENOENT)
280 goto errout;
284 if (dsl_dir_is_zapified(dd)) {
285 inode_timespec_t t = {0};
286 (void) zap_lookup(dp->dp_meta_objset, ddobj,
287 DD_FIELD_SNAPSHOTS_CHANGED,
288 sizeof (uint64_t),
289 sizeof (inode_timespec_t) / sizeof (uint64_t),
290 &t);
291 dd->dd_snap_cmtime = t;
294 dmu_buf_init_user(&dd->dd_dbu, NULL, dsl_dir_evict_async,
295 &dd->dd_dbuf);
296 winner = dmu_buf_set_user_ie(dbuf, &dd->dd_dbu);
297 if (winner != NULL) {
298 if (dd->dd_parent)
299 dsl_dir_rele(dd->dd_parent, dd);
300 if (dsl_deadlist_is_open(&dd->dd_livelist))
301 dsl_dir_livelist_close(dd);
302 dsl_prop_fini(dd);
303 cv_destroy(&dd->dd_activity_cv);
304 mutex_destroy(&dd->dd_activity_lock);
305 mutex_destroy(&dd->dd_lock);
306 kmem_free(dd, sizeof (dsl_dir_t));
307 dd = winner;
308 } else {
309 spa_open_ref(dp->dp_spa, dd);
314 * The dsl_dir_t has both open-to-close and instantiate-to-evict
315 * holds on the spa. We need the open-to-close holds because
316 * otherwise the spa_refcnt wouldn't change when we open a
317 * dir which the spa also has open, so we could incorrectly
318 * think it was OK to unload/export/destroy the pool. We need
319 * the instantiate-to-evict hold because the dsl_dir_t has a
320 * pointer to the dd_pool, which has a pointer to the spa_t.
322 spa_open_ref(dp->dp_spa, tag);
323 ASSERT3P(dd->dd_pool, ==, dp);
324 ASSERT3U(dd->dd_object, ==, ddobj);
325 ASSERT3P(dd->dd_dbuf, ==, dbuf);
326 *ddp = dd;
327 return (0);
329 errout:
330 if (dd->dd_parent)
331 dsl_dir_rele(dd->dd_parent, dd);
332 if (dsl_deadlist_is_open(&dd->dd_livelist))
333 dsl_dir_livelist_close(dd);
334 dsl_prop_fini(dd);
335 cv_destroy(&dd->dd_activity_cv);
336 mutex_destroy(&dd->dd_activity_lock);
337 mutex_destroy(&dd->dd_lock);
338 kmem_free(dd, sizeof (dsl_dir_t));
339 dmu_buf_rele(dbuf, tag);
340 return (err);
343 void
344 dsl_dir_rele(dsl_dir_t *dd, const void *tag)
346 dprintf_dd(dd, "%s\n", "");
347 spa_close(dd->dd_pool->dp_spa, tag);
348 dmu_buf_rele(dd->dd_dbuf, tag);
352 * Remove a reference to the given dsl dir that is being asynchronously
353 * released. Async releases occur from a taskq performing eviction of
354 * dsl datasets and dirs. This process is identical to a normal release
355 * with the exception of using the async API for releasing the reference on
356 * the spa.
358 void
359 dsl_dir_async_rele(dsl_dir_t *dd, const void *tag)
361 dprintf_dd(dd, "%s\n", "");
362 spa_async_close(dd->dd_pool->dp_spa, tag);
363 dmu_buf_rele(dd->dd_dbuf, tag);
366 /* buf must be at least ZFS_MAX_DATASET_NAME_LEN bytes */
367 void
368 dsl_dir_name(dsl_dir_t *dd, char *buf)
370 if (dd->dd_parent) {
371 dsl_dir_name(dd->dd_parent, buf);
372 VERIFY3U(strlcat(buf, "/", ZFS_MAX_DATASET_NAME_LEN), <,
373 ZFS_MAX_DATASET_NAME_LEN);
374 } else {
375 buf[0] = '\0';
377 if (!MUTEX_HELD(&dd->dd_lock)) {
379 * recursive mutex so that we can use
380 * dprintf_dd() with dd_lock held
382 mutex_enter(&dd->dd_lock);
383 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
384 <, ZFS_MAX_DATASET_NAME_LEN);
385 mutex_exit(&dd->dd_lock);
386 } else {
387 VERIFY3U(strlcat(buf, dd->dd_myname, ZFS_MAX_DATASET_NAME_LEN),
388 <, ZFS_MAX_DATASET_NAME_LEN);
392 /* Calculate name length, avoiding all the strcat calls of dsl_dir_name */
394 dsl_dir_namelen(dsl_dir_t *dd)
396 int result = 0;
398 if (dd->dd_parent) {
399 /* parent's name + 1 for the "/" */
400 result = dsl_dir_namelen(dd->dd_parent) + 1;
403 if (!MUTEX_HELD(&dd->dd_lock)) {
404 /* see dsl_dir_name */
405 mutex_enter(&dd->dd_lock);
406 result += strlen(dd->dd_myname);
407 mutex_exit(&dd->dd_lock);
408 } else {
409 result += strlen(dd->dd_myname);
412 return (result);
415 static int
416 getcomponent(const char *path, char *component, const char **nextp)
418 char *p;
420 if ((path == NULL) || (path[0] == '\0'))
421 return (SET_ERROR(ENOENT));
422 /* This would be a good place to reserve some namespace... */
423 p = strpbrk(path, "/@");
424 if (p && (p[1] == '/' || p[1] == '@')) {
425 /* two separators in a row */
426 return (SET_ERROR(EINVAL));
428 if (p == NULL || p == path) {
430 * if the first thing is an @ or /, it had better be an
431 * @ and it had better not have any more ats or slashes,
432 * and it had better have something after the @.
434 if (p != NULL &&
435 (p[0] != '@' || strpbrk(path+1, "/@") || p[1] == '\0'))
436 return (SET_ERROR(EINVAL));
437 if (strlen(path) >= ZFS_MAX_DATASET_NAME_LEN)
438 return (SET_ERROR(ENAMETOOLONG));
439 (void) strlcpy(component, path, ZFS_MAX_DATASET_NAME_LEN);
440 p = NULL;
441 } else if (p[0] == '/') {
442 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
443 return (SET_ERROR(ENAMETOOLONG));
444 (void) strlcpy(component, path, p - path + 1);
445 p++;
446 } else if (p[0] == '@') {
448 * if the next separator is an @, there better not be
449 * any more slashes.
451 if (strchr(path, '/'))
452 return (SET_ERROR(EINVAL));
453 if (p - path >= ZFS_MAX_DATASET_NAME_LEN)
454 return (SET_ERROR(ENAMETOOLONG));
455 (void) strlcpy(component, path, p - path + 1);
456 } else {
457 panic("invalid p=%p", (void *)p);
459 *nextp = p;
460 return (0);
464 * Return the dsl_dir_t, and possibly the last component which couldn't
465 * be found in *tail. The name must be in the specified dsl_pool_t. This
466 * thread must hold the dp_config_rwlock for the pool. Returns NULL if the
467 * path is bogus, or if tail==NULL and we couldn't parse the whole name.
468 * (*tail)[0] == '@' means that the last component is a snapshot.
471 dsl_dir_hold(dsl_pool_t *dp, const char *name, const void *tag,
472 dsl_dir_t **ddp, const char **tailp)
474 char *buf;
475 const char *spaname, *next, *nextnext = NULL;
476 int err;
477 dsl_dir_t *dd;
478 uint64_t ddobj;
480 buf = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
481 err = getcomponent(name, buf, &next);
482 if (err != 0)
483 goto error;
485 /* Make sure the name is in the specified pool. */
486 spaname = spa_name(dp->dp_spa);
487 if (strcmp(buf, spaname) != 0) {
488 err = SET_ERROR(EXDEV);
489 goto error;
492 ASSERT(dsl_pool_config_held(dp));
494 err = dsl_dir_hold_obj(dp, dp->dp_root_dir_obj, NULL, tag, &dd);
495 if (err != 0) {
496 goto error;
499 while (next != NULL) {
500 dsl_dir_t *child_dd;
501 err = getcomponent(next, buf, &nextnext);
502 if (err != 0)
503 break;
504 ASSERT(next[0] != '\0');
505 if (next[0] == '@')
506 break;
507 dprintf("looking up %s in obj%lld\n",
508 buf, (longlong_t)dsl_dir_phys(dd)->dd_child_dir_zapobj);
510 err = zap_lookup(dp->dp_meta_objset,
511 dsl_dir_phys(dd)->dd_child_dir_zapobj,
512 buf, sizeof (ddobj), 1, &ddobj);
513 if (err != 0) {
514 if (err == ENOENT)
515 err = 0;
516 break;
519 err = dsl_dir_hold_obj(dp, ddobj, buf, tag, &child_dd);
520 if (err != 0)
521 break;
522 dsl_dir_rele(dd, tag);
523 dd = child_dd;
524 next = nextnext;
527 if (err != 0) {
528 dsl_dir_rele(dd, tag);
529 goto error;
533 * It's an error if there's more than one component left, or
534 * tailp==NULL and there's any component left.
536 if (next != NULL &&
537 (tailp == NULL || (nextnext && nextnext[0] != '\0'))) {
538 /* bad path name */
539 dsl_dir_rele(dd, tag);
540 dprintf("next=%p (%s) tail=%p\n", next, next?next:"", tailp);
541 err = SET_ERROR(ENOENT);
543 if (tailp != NULL)
544 *tailp = next;
545 if (err == 0)
546 *ddp = dd;
547 error:
548 kmem_free(buf, ZFS_MAX_DATASET_NAME_LEN);
549 return (err);
553 * If the counts are already initialized for this filesystem and its
554 * descendants then do nothing, otherwise initialize the counts.
556 * The counts on this filesystem, and those below, may be uninitialized due to
557 * either the use of a pre-existing pool which did not support the
558 * filesystem/snapshot limit feature, or one in which the feature had not yet
559 * been enabled.
561 * Recursively descend the filesystem tree and update the filesystem/snapshot
562 * counts on each filesystem below, then update the cumulative count on the
563 * current filesystem. If the filesystem already has a count set on it,
564 * then we know that its counts, and the counts on the filesystems below it,
565 * are already correct, so we don't have to update this filesystem.
567 static void
568 dsl_dir_init_fs_ss_count(dsl_dir_t *dd, dmu_tx_t *tx)
570 uint64_t my_fs_cnt = 0;
571 uint64_t my_ss_cnt = 0;
572 dsl_pool_t *dp = dd->dd_pool;
573 objset_t *os = dp->dp_meta_objset;
574 zap_cursor_t *zc;
575 zap_attribute_t *za;
576 dsl_dataset_t *ds;
578 ASSERT(spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT));
579 ASSERT(dsl_pool_config_held(dp));
580 ASSERT(dmu_tx_is_syncing(tx));
582 dsl_dir_zapify(dd, tx);
585 * If the filesystem count has already been initialized then we
586 * don't need to recurse down any further.
588 if (zap_contains(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT) == 0)
589 return;
591 zc = kmem_alloc(sizeof (zap_cursor_t), KM_SLEEP);
592 za = zap_attribute_alloc();
594 /* Iterate my child dirs */
595 for (zap_cursor_init(zc, os, dsl_dir_phys(dd)->dd_child_dir_zapobj);
596 zap_cursor_retrieve(zc, za) == 0; zap_cursor_advance(zc)) {
597 dsl_dir_t *chld_dd;
598 uint64_t count;
600 VERIFY0(dsl_dir_hold_obj(dp, za->za_first_integer, NULL, FTAG,
601 &chld_dd));
604 * Ignore hidden ($FREE, $MOS & $ORIGIN) objsets.
606 if (chld_dd->dd_myname[0] == '$') {
607 dsl_dir_rele(chld_dd, FTAG);
608 continue;
611 my_fs_cnt++; /* count this child */
613 dsl_dir_init_fs_ss_count(chld_dd, tx);
615 VERIFY0(zap_lookup(os, chld_dd->dd_object,
616 DD_FIELD_FILESYSTEM_COUNT, sizeof (count), 1, &count));
617 my_fs_cnt += count;
618 VERIFY0(zap_lookup(os, chld_dd->dd_object,
619 DD_FIELD_SNAPSHOT_COUNT, sizeof (count), 1, &count));
620 my_ss_cnt += count;
622 dsl_dir_rele(chld_dd, FTAG);
624 zap_cursor_fini(zc);
625 /* Count my snapshots (we counted children's snapshots above) */
626 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
627 dsl_dir_phys(dd)->dd_head_dataset_obj, FTAG, &ds));
629 for (zap_cursor_init(zc, os, dsl_dataset_phys(ds)->ds_snapnames_zapobj);
630 zap_cursor_retrieve(zc, za) == 0;
631 zap_cursor_advance(zc)) {
632 /* Don't count temporary snapshots */
633 if (za->za_name[0] != '%')
634 my_ss_cnt++;
636 zap_cursor_fini(zc);
638 dsl_dataset_rele(ds, FTAG);
640 kmem_free(zc, sizeof (zap_cursor_t));
641 zap_attribute_free(za);
643 /* we're in a sync task, update counts */
644 dmu_buf_will_dirty(dd->dd_dbuf, tx);
645 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
646 sizeof (my_fs_cnt), 1, &my_fs_cnt, tx));
647 VERIFY0(zap_add(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
648 sizeof (my_ss_cnt), 1, &my_ss_cnt, tx));
651 static int
652 dsl_dir_actv_fs_ss_limit_check(void *arg, dmu_tx_t *tx)
654 char *ddname = (char *)arg;
655 dsl_pool_t *dp = dmu_tx_pool(tx);
656 dsl_dataset_t *ds;
657 dsl_dir_t *dd;
658 int error;
660 error = dsl_dataset_hold(dp, ddname, FTAG, &ds);
661 if (error != 0)
662 return (error);
664 if (!spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT)) {
665 dsl_dataset_rele(ds, FTAG);
666 return (SET_ERROR(ENOTSUP));
669 dd = ds->ds_dir;
670 if (spa_feature_is_active(dp->dp_spa, SPA_FEATURE_FS_SS_LIMIT) &&
671 dsl_dir_is_zapified(dd) &&
672 zap_contains(dp->dp_meta_objset, dd->dd_object,
673 DD_FIELD_FILESYSTEM_COUNT) == 0) {
674 dsl_dataset_rele(ds, FTAG);
675 return (SET_ERROR(EALREADY));
678 dsl_dataset_rele(ds, FTAG);
679 return (0);
682 static void
683 dsl_dir_actv_fs_ss_limit_sync(void *arg, dmu_tx_t *tx)
685 char *ddname = (char *)arg;
686 dsl_pool_t *dp = dmu_tx_pool(tx);
687 dsl_dataset_t *ds;
688 spa_t *spa;
690 VERIFY0(dsl_dataset_hold(dp, ddname, FTAG, &ds));
692 spa = dsl_dataset_get_spa(ds);
694 if (!spa_feature_is_active(spa, SPA_FEATURE_FS_SS_LIMIT)) {
696 * Since the feature was not active and we're now setting a
697 * limit, increment the feature-active counter so that the
698 * feature becomes active for the first time.
700 * We are already in a sync task so we can update the MOS.
702 spa_feature_incr(spa, SPA_FEATURE_FS_SS_LIMIT, tx);
706 * Since we are now setting a non-UINT64_MAX limit on the filesystem,
707 * we need to ensure the counts are correct. Descend down the tree from
708 * this point and update all of the counts to be accurate.
710 dsl_dir_init_fs_ss_count(ds->ds_dir, tx);
712 dsl_dataset_rele(ds, FTAG);
716 * Make sure the feature is enabled and activate it if necessary.
717 * Since we're setting a limit, ensure the on-disk counts are valid.
718 * This is only called by the ioctl path when setting a limit value.
720 * We do not need to validate the new limit, since users who can change the
721 * limit are also allowed to exceed the limit.
724 dsl_dir_activate_fs_ss_limit(const char *ddname)
726 int error;
728 error = dsl_sync_task(ddname, dsl_dir_actv_fs_ss_limit_check,
729 dsl_dir_actv_fs_ss_limit_sync, (void *)ddname, 0,
730 ZFS_SPACE_CHECK_RESERVED);
732 if (error == EALREADY)
733 error = 0;
735 return (error);
739 * Used to determine if the filesystem_limit or snapshot_limit should be
740 * enforced. We allow the limit to be exceeded if the user has permission to
741 * write the property value. We pass in the creds that we got in the open
742 * context since we will always be the GZ root in syncing context. We also have
743 * to handle the case where we are allowed to change the limit on the current
744 * dataset, but there may be another limit in the tree above.
746 * We can never modify these two properties within a non-global zone. In
747 * addition, the other checks are modeled on zfs_secpolicy_write_perms. We
748 * can't use that function since we are already holding the dp_config_rwlock.
749 * In addition, we already have the dd and dealing with snapshots is simplified
750 * in this code.
753 typedef enum {
754 ENFORCE_ALWAYS,
755 ENFORCE_NEVER,
756 ENFORCE_ABOVE
757 } enforce_res_t;
759 static enforce_res_t
760 dsl_enforce_ds_ss_limits(dsl_dir_t *dd, zfs_prop_t prop,
761 cred_t *cr, proc_t *proc)
763 enforce_res_t enforce = ENFORCE_ALWAYS;
764 uint64_t obj;
765 dsl_dataset_t *ds;
766 uint64_t zoned;
767 const char *zonedstr;
769 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
770 prop == ZFS_PROP_SNAPSHOT_LIMIT);
772 #ifdef _KERNEL
773 if (crgetzoneid(cr) != GLOBAL_ZONEID)
774 return (ENFORCE_ALWAYS);
777 * We are checking the saved credentials of the user process, which is
778 * not the current process. Note that we can't use secpolicy_zfs(),
779 * because it only works if the cred is that of the current process (on
780 * Linux).
782 if (secpolicy_zfs_proc(cr, proc) == 0)
783 return (ENFORCE_NEVER);
784 #else
785 (void) proc;
786 #endif
788 if ((obj = dsl_dir_phys(dd)->dd_head_dataset_obj) == 0)
789 return (ENFORCE_ALWAYS);
791 ASSERT(dsl_pool_config_held(dd->dd_pool));
793 if (dsl_dataset_hold_obj(dd->dd_pool, obj, FTAG, &ds) != 0)
794 return (ENFORCE_ALWAYS);
796 zonedstr = zfs_prop_to_name(ZFS_PROP_ZONED);
797 if (dsl_prop_get_ds(ds, zonedstr, 8, 1, &zoned, NULL) || zoned) {
798 /* Only root can access zoned fs's from the GZ */
799 enforce = ENFORCE_ALWAYS;
800 } else {
801 if (dsl_deleg_access_impl(ds, zfs_prop_to_name(prop), cr) == 0)
802 enforce = ENFORCE_ABOVE;
805 dsl_dataset_rele(ds, FTAG);
806 return (enforce);
810 * Check if adding additional child filesystem(s) would exceed any filesystem
811 * limits or adding additional snapshot(s) would exceed any snapshot limits.
812 * The prop argument indicates which limit to check.
814 * Note that all filesystem limits up to the root (or the highest
815 * initialized) filesystem or the given ancestor must be satisfied.
818 dsl_fs_ss_limit_check(dsl_dir_t *dd, uint64_t delta, zfs_prop_t prop,
819 dsl_dir_t *ancestor, cred_t *cr, proc_t *proc)
821 objset_t *os = dd->dd_pool->dp_meta_objset;
822 uint64_t limit, count;
823 const char *count_prop;
824 enforce_res_t enforce;
825 int err = 0;
827 ASSERT(dsl_pool_config_held(dd->dd_pool));
828 ASSERT(prop == ZFS_PROP_FILESYSTEM_LIMIT ||
829 prop == ZFS_PROP_SNAPSHOT_LIMIT);
831 if (prop == ZFS_PROP_SNAPSHOT_LIMIT) {
833 * We don't enforce the limit for temporary snapshots. This is
834 * indicated by a NULL cred_t argument.
836 if (cr == NULL)
837 return (0);
839 count_prop = DD_FIELD_SNAPSHOT_COUNT;
840 } else {
841 count_prop = DD_FIELD_FILESYSTEM_COUNT;
844 * If we're allowed to change the limit, don't enforce the limit
845 * e.g. this can happen if a snapshot is taken by an administrative
846 * user in the global zone (i.e. a recursive snapshot by root).
847 * However, we must handle the case of delegated permissions where we
848 * are allowed to change the limit on the current dataset, but there
849 * is another limit in the tree above.
851 enforce = dsl_enforce_ds_ss_limits(dd, prop, cr, proc);
852 if (enforce == ENFORCE_NEVER)
853 return (0);
856 * e.g. if renaming a dataset with no snapshots, count adjustment
857 * is 0.
859 if (delta == 0)
860 return (0);
863 * If an ancestor has been provided, stop checking the limit once we
864 * hit that dir. We need this during rename so that we don't overcount
865 * the check once we recurse up to the common ancestor.
867 if (ancestor == dd)
868 return (0);
871 * If we hit an uninitialized node while recursing up the tree, we can
872 * stop since we know there is no limit here (or above). The counts are
873 * not valid on this node and we know we won't touch this node's counts.
875 if (!dsl_dir_is_zapified(dd))
876 return (0);
877 err = zap_lookup(os, dd->dd_object,
878 count_prop, sizeof (count), 1, &count);
879 if (err == ENOENT)
880 return (0);
881 if (err != 0)
882 return (err);
884 err = dsl_prop_get_dd(dd, zfs_prop_to_name(prop), 8, 1, &limit, NULL,
885 B_FALSE);
886 if (err != 0)
887 return (err);
889 /* Is there a limit which we've hit? */
890 if (enforce == ENFORCE_ALWAYS && (count + delta) > limit)
891 return (SET_ERROR(EDQUOT));
893 if (dd->dd_parent != NULL)
894 err = dsl_fs_ss_limit_check(dd->dd_parent, delta, prop,
895 ancestor, cr, proc);
897 return (err);
901 * Adjust the filesystem or snapshot count for the specified dsl_dir_t and all
902 * parents. When a new filesystem/snapshot is created, increment the count on
903 * all parents, and when a filesystem/snapshot is destroyed, decrement the
904 * count.
906 void
907 dsl_fs_ss_count_adjust(dsl_dir_t *dd, int64_t delta, const char *prop,
908 dmu_tx_t *tx)
910 int err;
911 objset_t *os = dd->dd_pool->dp_meta_objset;
912 uint64_t count;
914 ASSERT(dsl_pool_config_held(dd->dd_pool));
915 ASSERT(dmu_tx_is_syncing(tx));
916 ASSERT(strcmp(prop, DD_FIELD_FILESYSTEM_COUNT) == 0 ||
917 strcmp(prop, DD_FIELD_SNAPSHOT_COUNT) == 0);
920 * We don't do accounting for hidden ($FREE, $MOS & $ORIGIN) objsets.
922 if (dd->dd_myname[0] == '$' && strcmp(prop,
923 DD_FIELD_FILESYSTEM_COUNT) == 0) {
924 return;
928 * e.g. if renaming a dataset with no snapshots, count adjustment is 0
930 if (delta == 0)
931 return;
934 * If we hit an uninitialized node while recursing up the tree, we can
935 * stop since we know the counts are not valid on this node and we
936 * know we shouldn't touch this node's counts. An uninitialized count
937 * on the node indicates that either the feature has not yet been
938 * activated or there are no limits on this part of the tree.
940 if (!dsl_dir_is_zapified(dd) || (err = zap_lookup(os, dd->dd_object,
941 prop, sizeof (count), 1, &count)) == ENOENT)
942 return;
943 VERIFY0(err);
945 count += delta;
946 /* Use a signed verify to make sure we're not neg. */
947 VERIFY3S(count, >=, 0);
949 VERIFY0(zap_update(os, dd->dd_object, prop, sizeof (count), 1, &count,
950 tx));
952 /* Roll up this additional count into our ancestors */
953 if (dd->dd_parent != NULL)
954 dsl_fs_ss_count_adjust(dd->dd_parent, delta, prop, tx);
957 uint64_t
958 dsl_dir_create_sync(dsl_pool_t *dp, dsl_dir_t *pds, const char *name,
959 dmu_tx_t *tx)
961 objset_t *mos = dp->dp_meta_objset;
962 uint64_t ddobj;
963 dsl_dir_phys_t *ddphys;
964 dmu_buf_t *dbuf;
966 ddobj = dmu_object_alloc(mos, DMU_OT_DSL_DIR, 0,
967 DMU_OT_DSL_DIR, sizeof (dsl_dir_phys_t), tx);
968 if (pds) {
969 VERIFY0(zap_add(mos, dsl_dir_phys(pds)->dd_child_dir_zapobj,
970 name, sizeof (uint64_t), 1, &ddobj, tx));
971 } else {
972 /* it's the root dir */
973 VERIFY0(zap_add(mos, DMU_POOL_DIRECTORY_OBJECT,
974 DMU_POOL_ROOT_DATASET, sizeof (uint64_t), 1, &ddobj, tx));
976 VERIFY0(dmu_bonus_hold(mos, ddobj, FTAG, &dbuf));
977 dmu_buf_will_dirty(dbuf, tx);
978 ddphys = dbuf->db_data;
980 ddphys->dd_creation_time = gethrestime_sec();
981 if (pds) {
982 ddphys->dd_parent_obj = pds->dd_object;
984 /* update the filesystem counts */
985 dsl_fs_ss_count_adjust(pds, 1, DD_FIELD_FILESYSTEM_COUNT, tx);
987 ddphys->dd_props_zapobj = zap_create(mos,
988 DMU_OT_DSL_PROPS, DMU_OT_NONE, 0, tx);
989 ddphys->dd_child_dir_zapobj = zap_create(mos,
990 DMU_OT_DSL_DIR_CHILD_MAP, DMU_OT_NONE, 0, tx);
991 if (spa_version(dp->dp_spa) >= SPA_VERSION_USED_BREAKDOWN)
992 ddphys->dd_flags |= DD_FLAG_USED_BREAKDOWN;
994 dmu_buf_rele(dbuf, FTAG);
996 return (ddobj);
999 boolean_t
1000 dsl_dir_is_clone(dsl_dir_t *dd)
1002 return (dsl_dir_phys(dd)->dd_origin_obj &&
1003 (dd->dd_pool->dp_origin_snap == NULL ||
1004 dsl_dir_phys(dd)->dd_origin_obj !=
1005 dd->dd_pool->dp_origin_snap->ds_object));
1008 uint64_t
1009 dsl_dir_get_used(dsl_dir_t *dd)
1011 return (dsl_dir_phys(dd)->dd_used_bytes);
1014 uint64_t
1015 dsl_dir_get_compressed(dsl_dir_t *dd)
1017 return (dsl_dir_phys(dd)->dd_compressed_bytes);
1020 uint64_t
1021 dsl_dir_get_quota(dsl_dir_t *dd)
1023 return (dsl_dir_phys(dd)->dd_quota);
1026 uint64_t
1027 dsl_dir_get_reservation(dsl_dir_t *dd)
1029 return (dsl_dir_phys(dd)->dd_reserved);
1032 uint64_t
1033 dsl_dir_get_compressratio(dsl_dir_t *dd)
1035 /* a fixed point number, 100x the ratio */
1036 return (dsl_dir_phys(dd)->dd_compressed_bytes == 0 ? 100 :
1037 (dsl_dir_phys(dd)->dd_uncompressed_bytes * 100 /
1038 dsl_dir_phys(dd)->dd_compressed_bytes));
1041 uint64_t
1042 dsl_dir_get_logicalused(dsl_dir_t *dd)
1044 return (dsl_dir_phys(dd)->dd_uncompressed_bytes);
1047 uint64_t
1048 dsl_dir_get_usedsnap(dsl_dir_t *dd)
1050 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_SNAP]);
1053 uint64_t
1054 dsl_dir_get_usedds(dsl_dir_t *dd)
1056 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_HEAD]);
1059 uint64_t
1060 dsl_dir_get_usedrefreserv(dsl_dir_t *dd)
1062 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_REFRSRV]);
1065 uint64_t
1066 dsl_dir_get_usedchild(dsl_dir_t *dd)
1068 return (dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD] +
1069 dsl_dir_phys(dd)->dd_used_breakdown[DD_USED_CHILD_RSRV]);
1072 void
1073 dsl_dir_get_origin(dsl_dir_t *dd, char *buf)
1075 dsl_dataset_t *ds;
1076 VERIFY0(dsl_dataset_hold_obj(dd->dd_pool,
1077 dsl_dir_phys(dd)->dd_origin_obj, FTAG, &ds));
1079 dsl_dataset_name(ds, buf);
1081 dsl_dataset_rele(ds, FTAG);
1085 dsl_dir_get_filesystem_count(dsl_dir_t *dd, uint64_t *count)
1087 if (dsl_dir_is_zapified(dd)) {
1088 objset_t *os = dd->dd_pool->dp_meta_objset;
1089 return (zap_lookup(os, dd->dd_object, DD_FIELD_FILESYSTEM_COUNT,
1090 sizeof (*count), 1, count));
1091 } else {
1092 return (SET_ERROR(ENOENT));
1097 dsl_dir_get_snapshot_count(dsl_dir_t *dd, uint64_t *count)
1099 if (dsl_dir_is_zapified(dd)) {
1100 objset_t *os = dd->dd_pool->dp_meta_objset;
1101 return (zap_lookup(os, dd->dd_object, DD_FIELD_SNAPSHOT_COUNT,
1102 sizeof (*count), 1, count));
1103 } else {
1104 return (SET_ERROR(ENOENT));
1108 void
1109 dsl_dir_stats(dsl_dir_t *dd, nvlist_t *nv)
1111 mutex_enter(&dd->dd_lock);
1112 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_QUOTA,
1113 dsl_dir_get_quota(dd));
1114 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_RESERVATION,
1115 dsl_dir_get_reservation(dd));
1116 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_LOGICALUSED,
1117 dsl_dir_get_logicalused(dd));
1118 if (dsl_dir_phys(dd)->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1119 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDSNAP,
1120 dsl_dir_get_usedsnap(dd));
1121 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDDS,
1122 dsl_dir_get_usedds(dd));
1123 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDREFRESERV,
1124 dsl_dir_get_usedrefreserv(dd));
1125 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_USEDCHILD,
1126 dsl_dir_get_usedchild(dd));
1128 mutex_exit(&dd->dd_lock);
1130 uint64_t count;
1131 if (dsl_dir_get_filesystem_count(dd, &count) == 0) {
1132 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_FILESYSTEM_COUNT,
1133 count);
1135 if (dsl_dir_get_snapshot_count(dd, &count) == 0) {
1136 dsl_prop_nvlist_add_uint64(nv, ZFS_PROP_SNAPSHOT_COUNT,
1137 count);
1140 if (dsl_dir_is_clone(dd)) {
1141 char buf[ZFS_MAX_DATASET_NAME_LEN];
1142 dsl_dir_get_origin(dd, buf);
1143 dsl_prop_nvlist_add_string(nv, ZFS_PROP_ORIGIN, buf);
1148 void
1149 dsl_dir_dirty(dsl_dir_t *dd, dmu_tx_t *tx)
1151 dsl_pool_t *dp = dd->dd_pool;
1153 ASSERT(dsl_dir_phys(dd));
1155 if (txg_list_add(&dp->dp_dirty_dirs, dd, tx->tx_txg)) {
1156 /* up the hold count until we can be written out */
1157 dmu_buf_add_ref(dd->dd_dbuf, dd);
1161 static int64_t
1162 parent_delta(dsl_dir_t *dd, uint64_t used, int64_t delta)
1164 uint64_t old_accounted = MAX(used, dsl_dir_phys(dd)->dd_reserved);
1165 uint64_t new_accounted =
1166 MAX(used + delta, dsl_dir_phys(dd)->dd_reserved);
1167 return (new_accounted - old_accounted);
1170 void
1171 dsl_dir_sync(dsl_dir_t *dd, dmu_tx_t *tx)
1173 ASSERT(dmu_tx_is_syncing(tx));
1175 mutex_enter(&dd->dd_lock);
1176 ASSERT0(dd->dd_tempreserved[tx->tx_txg & TXG_MASK]);
1177 dprintf_dd(dd, "txg=%llu towrite=%lluK\n", (u_longlong_t)tx->tx_txg,
1178 (u_longlong_t)dd->dd_space_towrite[tx->tx_txg & TXG_MASK] / 1024);
1179 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] = 0;
1180 mutex_exit(&dd->dd_lock);
1182 /* release the hold from dsl_dir_dirty */
1183 dmu_buf_rele(dd->dd_dbuf, dd);
1186 static uint64_t
1187 dsl_dir_space_towrite(dsl_dir_t *dd)
1189 uint64_t space = 0;
1191 ASSERT(MUTEX_HELD(&dd->dd_lock));
1193 for (int i = 0; i < TXG_SIZE; i++)
1194 space += dd->dd_space_towrite[i & TXG_MASK];
1196 return (space);
1200 * How much space would dd have available if ancestor had delta applied
1201 * to it? If ondiskonly is set, we're only interested in what's
1202 * on-disk, not estimated pending changes.
1204 uint64_t
1205 dsl_dir_space_available(dsl_dir_t *dd,
1206 dsl_dir_t *ancestor, int64_t delta, int ondiskonly)
1208 uint64_t parentspace, myspace, quota, used;
1211 * If there are no restrictions otherwise, assume we have
1212 * unlimited space available.
1214 quota = UINT64_MAX;
1215 parentspace = UINT64_MAX;
1217 if (dd->dd_parent != NULL) {
1218 parentspace = dsl_dir_space_available(dd->dd_parent,
1219 ancestor, delta, ondiskonly);
1222 mutex_enter(&dd->dd_lock);
1223 if (dsl_dir_phys(dd)->dd_quota != 0)
1224 quota = dsl_dir_phys(dd)->dd_quota;
1225 used = dsl_dir_phys(dd)->dd_used_bytes;
1226 if (!ondiskonly)
1227 used += dsl_dir_space_towrite(dd);
1229 if (dd->dd_parent == NULL) {
1230 uint64_t poolsize = dsl_pool_adjustedsize(dd->dd_pool,
1231 ZFS_SPACE_CHECK_NORMAL);
1232 quota = MIN(quota, poolsize);
1235 if (dsl_dir_phys(dd)->dd_reserved > used && parentspace != UINT64_MAX) {
1237 * We have some space reserved, in addition to what our
1238 * parent gave us.
1240 parentspace += dsl_dir_phys(dd)->dd_reserved - used;
1243 if (dd == ancestor) {
1244 ASSERT(delta <= 0);
1245 ASSERT(used >= -delta);
1246 used += delta;
1247 if (parentspace != UINT64_MAX)
1248 parentspace -= delta;
1251 if (used > quota) {
1252 /* over quota */
1253 myspace = 0;
1254 } else {
1256 * the lesser of the space provided by our parent and
1257 * the space left in our quota
1259 myspace = MIN(parentspace, quota - used);
1262 mutex_exit(&dd->dd_lock);
1264 return (myspace);
1267 struct tempreserve {
1268 list_node_t tr_node;
1269 dsl_dir_t *tr_ds;
1270 uint64_t tr_size;
1273 static int
1274 dsl_dir_tempreserve_impl(dsl_dir_t *dd, uint64_t asize, boolean_t netfree,
1275 boolean_t ignorequota, list_t *tr_list,
1276 dmu_tx_t *tx, boolean_t first)
1278 uint64_t txg;
1279 uint64_t quota;
1280 struct tempreserve *tr;
1281 int retval;
1282 uint64_t ext_quota;
1283 uint64_t ref_rsrv;
1285 top_of_function:
1286 txg = tx->tx_txg;
1287 retval = EDQUOT;
1288 ref_rsrv = 0;
1290 ASSERT3U(txg, !=, 0);
1291 ASSERT3S(asize, >, 0);
1293 mutex_enter(&dd->dd_lock);
1296 * Check against the dsl_dir's quota. We don't add in the delta
1297 * when checking for over-quota because they get one free hit.
1299 uint64_t est_inflight = dsl_dir_space_towrite(dd);
1300 for (int i = 0; i < TXG_SIZE; i++)
1301 est_inflight += dd->dd_tempreserved[i];
1302 uint64_t used_on_disk = dsl_dir_phys(dd)->dd_used_bytes;
1305 * On the first iteration, fetch the dataset's used-on-disk and
1306 * refreservation values. Also, if checkrefquota is set, test if
1307 * allocating this space would exceed the dataset's refquota.
1309 if (first && tx->tx_objset) {
1310 int error;
1311 dsl_dataset_t *ds = tx->tx_objset->os_dsl_dataset;
1313 error = dsl_dataset_check_quota(ds, !netfree,
1314 asize, est_inflight, &used_on_disk, &ref_rsrv);
1315 if (error != 0) {
1316 mutex_exit(&dd->dd_lock);
1317 DMU_TX_STAT_BUMP(dmu_tx_quota);
1318 return (error);
1323 * If this transaction will result in a net free of space,
1324 * we want to let it through.
1326 if (ignorequota || netfree || dsl_dir_phys(dd)->dd_quota == 0 ||
1327 (tx->tx_objset && dmu_objset_type(tx->tx_objset) == DMU_OST_ZVOL &&
1328 zvol_enforce_quotas == B_FALSE))
1329 quota = UINT64_MAX;
1330 else
1331 quota = dsl_dir_phys(dd)->dd_quota;
1334 * Adjust the quota against the actual pool size at the root
1335 * minus any outstanding deferred frees.
1336 * To ensure that it's possible to remove files from a full
1337 * pool without inducing transient overcommits, we throttle
1338 * netfree transactions against a quota that is slightly larger,
1339 * but still within the pool's allocation slop. In cases where
1340 * we're very close to full, this will allow a steady trickle of
1341 * removes to get through.
1343 if (dd->dd_parent == NULL) {
1344 uint64_t avail = dsl_pool_unreserved_space(dd->dd_pool,
1345 (netfree) ?
1346 ZFS_SPACE_CHECK_RESERVED : ZFS_SPACE_CHECK_NORMAL);
1348 if (avail < quota) {
1349 quota = avail;
1350 retval = SET_ERROR(ENOSPC);
1355 * If they are requesting more space, and our current estimate
1356 * is over quota, they get to try again unless the actual
1357 * on-disk is over quota and there are no pending changes
1358 * or deferred frees (which may free up space for us).
1360 ext_quota = quota >> 5;
1361 if (quota == UINT64_MAX)
1362 ext_quota = 0;
1364 if (used_on_disk >= quota) {
1365 if (retval == ENOSPC && (used_on_disk - quota) <
1366 dsl_pool_deferred_space(dd->dd_pool)) {
1367 retval = SET_ERROR(ERESTART);
1369 /* Quota exceeded */
1370 mutex_exit(&dd->dd_lock);
1371 DMU_TX_STAT_BUMP(dmu_tx_quota);
1372 return (retval);
1373 } else if (used_on_disk + est_inflight >= quota + ext_quota) {
1374 dprintf_dd(dd, "failing: used=%lluK inflight = %lluK "
1375 "quota=%lluK tr=%lluK\n",
1376 (u_longlong_t)used_on_disk>>10,
1377 (u_longlong_t)est_inflight>>10,
1378 (u_longlong_t)quota>>10, (u_longlong_t)asize>>10);
1379 mutex_exit(&dd->dd_lock);
1380 DMU_TX_STAT_BUMP(dmu_tx_quota);
1381 return (SET_ERROR(ERESTART));
1384 /* We need to up our estimated delta before dropping dd_lock */
1385 dd->dd_tempreserved[txg & TXG_MASK] += asize;
1387 uint64_t parent_rsrv = parent_delta(dd, used_on_disk + est_inflight,
1388 asize - ref_rsrv);
1389 mutex_exit(&dd->dd_lock);
1391 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1392 tr->tr_ds = dd;
1393 tr->tr_size = asize;
1394 list_insert_tail(tr_list, tr);
1396 /* see if it's OK with our parent */
1397 if (dd->dd_parent != NULL && parent_rsrv != 0) {
1399 * Recurse on our parent without recursion. This has been
1400 * observed to be potentially large stack usage even within
1401 * the test suite. Largest seen stack was 7632 bytes on linux.
1404 dd = dd->dd_parent;
1405 asize = parent_rsrv;
1406 ignorequota = (dsl_dir_phys(dd)->dd_head_dataset_obj == 0);
1407 first = B_FALSE;
1408 goto top_of_function;
1411 return (0);
1415 * Reserve space in this dsl_dir, to be used in this tx's txg.
1416 * After the space has been dirtied (and dsl_dir_willuse_space()
1417 * has been called), the reservation should be canceled, using
1418 * dsl_dir_tempreserve_clear().
1421 dsl_dir_tempreserve_space(dsl_dir_t *dd, uint64_t lsize, uint64_t asize,
1422 boolean_t netfree, void **tr_cookiep, dmu_tx_t *tx)
1424 int err;
1425 list_t *tr_list;
1427 if (asize == 0) {
1428 *tr_cookiep = NULL;
1429 return (0);
1432 tr_list = kmem_alloc(sizeof (list_t), KM_SLEEP);
1433 list_create(tr_list, sizeof (struct tempreserve),
1434 offsetof(struct tempreserve, tr_node));
1435 ASSERT3S(asize, >, 0);
1437 err = arc_tempreserve_space(dd->dd_pool->dp_spa, lsize, tx->tx_txg);
1438 if (err == 0) {
1439 struct tempreserve *tr;
1441 tr = kmem_zalloc(sizeof (struct tempreserve), KM_SLEEP);
1442 tr->tr_size = lsize;
1443 list_insert_tail(tr_list, tr);
1444 } else {
1445 if (err == EAGAIN) {
1447 * If arc_memory_throttle() detected that pageout
1448 * is running and we are low on memory, we delay new
1449 * non-pageout transactions to give pageout an
1450 * advantage.
1452 * It is unfortunate to be delaying while the caller's
1453 * locks are held.
1455 txg_delay(dd->dd_pool, tx->tx_txg,
1456 MSEC2NSEC(10), MSEC2NSEC(10));
1457 err = SET_ERROR(ERESTART);
1461 if (err == 0) {
1462 err = dsl_dir_tempreserve_impl(dd, asize, netfree,
1463 B_FALSE, tr_list, tx, B_TRUE);
1466 if (err != 0)
1467 dsl_dir_tempreserve_clear(tr_list, tx);
1468 else
1469 *tr_cookiep = tr_list;
1471 return (err);
1475 * Clear a temporary reservation that we previously made with
1476 * dsl_dir_tempreserve_space().
1478 void
1479 dsl_dir_tempreserve_clear(void *tr_cookie, dmu_tx_t *tx)
1481 int txgidx = tx->tx_txg & TXG_MASK;
1482 list_t *tr_list = tr_cookie;
1483 struct tempreserve *tr;
1485 ASSERT3U(tx->tx_txg, !=, 0);
1487 if (tr_cookie == NULL)
1488 return;
1490 while ((tr = list_remove_head(tr_list)) != NULL) {
1491 if (tr->tr_ds) {
1492 mutex_enter(&tr->tr_ds->dd_lock);
1493 ASSERT3U(tr->tr_ds->dd_tempreserved[txgidx], >=,
1494 tr->tr_size);
1495 tr->tr_ds->dd_tempreserved[txgidx] -= tr->tr_size;
1496 mutex_exit(&tr->tr_ds->dd_lock);
1497 } else {
1498 arc_tempreserve_clear(tr->tr_size);
1500 kmem_free(tr, sizeof (struct tempreserve));
1503 kmem_free(tr_list, sizeof (list_t));
1507 * This should be called from open context when we think we're going to write
1508 * or free space, for example when dirtying data. Be conservative; it's okay
1509 * to write less space or free more, but we don't want to write more or free
1510 * less than the amount specified.
1512 * NOTE: The behavior of this function is identical to the Illumos / FreeBSD
1513 * version however it has been adjusted to use an iterative rather than
1514 * recursive algorithm to minimize stack usage.
1516 void
1517 dsl_dir_willuse_space(dsl_dir_t *dd, int64_t space, dmu_tx_t *tx)
1519 int64_t parent_space;
1520 uint64_t est_used;
1522 do {
1523 mutex_enter(&dd->dd_lock);
1524 if (space > 0)
1525 dd->dd_space_towrite[tx->tx_txg & TXG_MASK] += space;
1527 est_used = dsl_dir_space_towrite(dd) +
1528 dsl_dir_phys(dd)->dd_used_bytes;
1529 parent_space = parent_delta(dd, est_used, space);
1530 mutex_exit(&dd->dd_lock);
1532 /* Make sure that we clean up dd_space_to* */
1533 dsl_dir_dirty(dd, tx);
1535 dd = dd->dd_parent;
1536 space = parent_space;
1537 } while (space && dd);
1540 /* call from syncing context when we actually write/free space for this dd */
1541 void
1542 dsl_dir_diduse_space(dsl_dir_t *dd, dd_used_t type,
1543 int64_t used, int64_t compressed, int64_t uncompressed, dmu_tx_t *tx)
1545 int64_t accounted_delta;
1547 ASSERT(dmu_tx_is_syncing(tx));
1548 ASSERT(type < DD_USED_NUM);
1550 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1553 * dsl_dataset_set_refreservation_sync_impl() calls this with
1554 * dd_lock held, so that it can atomically update
1555 * ds->ds_reserved and the dsl_dir accounting, so that
1556 * dsl_dataset_check_quota() can see dataset and dir accounting
1557 * consistently.
1559 boolean_t needlock = !MUTEX_HELD(&dd->dd_lock);
1560 if (needlock)
1561 mutex_enter(&dd->dd_lock);
1562 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1563 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1564 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1565 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1566 ASSERT(uncompressed >= 0 ||
1567 ddp->dd_uncompressed_bytes >= -uncompressed);
1568 ddp->dd_used_bytes += used;
1569 ddp->dd_uncompressed_bytes += uncompressed;
1570 ddp->dd_compressed_bytes += compressed;
1572 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1573 ASSERT(used >= 0 || ddp->dd_used_breakdown[type] >= -used);
1574 ddp->dd_used_breakdown[type] += used;
1575 #ifdef ZFS_DEBUG
1577 dd_used_t t;
1578 uint64_t u = 0;
1579 for (t = 0; t < DD_USED_NUM; t++)
1580 u += ddp->dd_used_breakdown[t];
1581 ASSERT3U(u, ==, ddp->dd_used_bytes);
1583 #endif
1585 if (needlock)
1586 mutex_exit(&dd->dd_lock);
1588 if (dd->dd_parent != NULL) {
1589 dsl_dir_diduse_transfer_space(dd->dd_parent,
1590 accounted_delta, compressed, uncompressed,
1591 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1595 void
1596 dsl_dir_transfer_space(dsl_dir_t *dd, int64_t delta,
1597 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1599 ASSERT(dmu_tx_is_syncing(tx));
1600 ASSERT(oldtype < DD_USED_NUM);
1601 ASSERT(newtype < DD_USED_NUM);
1603 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1604 if (delta == 0 ||
1605 !(ddp->dd_flags & DD_FLAG_USED_BREAKDOWN))
1606 return;
1608 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1609 mutex_enter(&dd->dd_lock);
1610 ASSERT(delta > 0 ?
1611 ddp->dd_used_breakdown[oldtype] >= delta :
1612 ddp->dd_used_breakdown[newtype] >= -delta);
1613 ASSERT(ddp->dd_used_bytes >= ABS(delta));
1614 ddp->dd_used_breakdown[oldtype] -= delta;
1615 ddp->dd_used_breakdown[newtype] += delta;
1616 mutex_exit(&dd->dd_lock);
1619 void
1620 dsl_dir_diduse_transfer_space(dsl_dir_t *dd, int64_t used,
1621 int64_t compressed, int64_t uncompressed, int64_t tonew,
1622 dd_used_t oldtype, dd_used_t newtype, dmu_tx_t *tx)
1624 int64_t accounted_delta;
1626 ASSERT(dmu_tx_is_syncing(tx));
1627 ASSERT(oldtype < DD_USED_NUM);
1628 ASSERT(newtype < DD_USED_NUM);
1630 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1632 mutex_enter(&dd->dd_lock);
1633 dsl_dir_phys_t *ddp = dsl_dir_phys(dd);
1634 accounted_delta = parent_delta(dd, ddp->dd_used_bytes, used);
1635 ASSERT(used >= 0 || ddp->dd_used_bytes >= -used);
1636 ASSERT(compressed >= 0 || ddp->dd_compressed_bytes >= -compressed);
1637 ASSERT(uncompressed >= 0 ||
1638 ddp->dd_uncompressed_bytes >= -uncompressed);
1639 ddp->dd_used_bytes += used;
1640 ddp->dd_uncompressed_bytes += uncompressed;
1641 ddp->dd_compressed_bytes += compressed;
1643 if (ddp->dd_flags & DD_FLAG_USED_BREAKDOWN) {
1644 ASSERT(tonew - used <= 0 ||
1645 ddp->dd_used_breakdown[oldtype] >= tonew - used);
1646 ASSERT(tonew >= 0 ||
1647 ddp->dd_used_breakdown[newtype] >= -tonew);
1648 ddp->dd_used_breakdown[oldtype] -= tonew - used;
1649 ddp->dd_used_breakdown[newtype] += tonew;
1650 #ifdef ZFS_DEBUG
1652 dd_used_t t;
1653 uint64_t u = 0;
1654 for (t = 0; t < DD_USED_NUM; t++)
1655 u += ddp->dd_used_breakdown[t];
1656 ASSERT3U(u, ==, ddp->dd_used_bytes);
1658 #endif
1660 mutex_exit(&dd->dd_lock);
1662 if (dd->dd_parent != NULL) {
1663 dsl_dir_diduse_transfer_space(dd->dd_parent,
1664 accounted_delta, compressed, uncompressed,
1665 used, DD_USED_CHILD_RSRV, DD_USED_CHILD, tx);
1669 typedef struct dsl_dir_set_qr_arg {
1670 const char *ddsqra_name;
1671 zprop_source_t ddsqra_source;
1672 uint64_t ddsqra_value;
1673 } dsl_dir_set_qr_arg_t;
1675 static int
1676 dsl_dir_set_quota_check(void *arg, dmu_tx_t *tx)
1678 dsl_dir_set_qr_arg_t *ddsqra = arg;
1679 dsl_pool_t *dp = dmu_tx_pool(tx);
1680 dsl_dataset_t *ds;
1681 int error;
1682 uint64_t towrite, newval;
1684 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1685 if (error != 0)
1686 return (error);
1688 error = dsl_prop_predict(ds->ds_dir, "quota",
1689 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1690 if (error != 0) {
1691 dsl_dataset_rele(ds, FTAG);
1692 return (error);
1695 if (newval == 0) {
1696 dsl_dataset_rele(ds, FTAG);
1697 return (0);
1700 mutex_enter(&ds->ds_dir->dd_lock);
1702 * If we are doing the preliminary check in open context, and
1703 * there are pending changes, then don't fail it, since the
1704 * pending changes could under-estimate the amount of space to be
1705 * freed up.
1707 towrite = dsl_dir_space_towrite(ds->ds_dir);
1708 if ((dmu_tx_is_syncing(tx) || towrite == 0) &&
1709 (newval < dsl_dir_phys(ds->ds_dir)->dd_reserved ||
1710 newval < dsl_dir_phys(ds->ds_dir)->dd_used_bytes + towrite)) {
1711 error = SET_ERROR(ENOSPC);
1713 mutex_exit(&ds->ds_dir->dd_lock);
1714 dsl_dataset_rele(ds, FTAG);
1715 return (error);
1718 static void
1719 dsl_dir_set_quota_sync(void *arg, dmu_tx_t *tx)
1721 dsl_dir_set_qr_arg_t *ddsqra = arg;
1722 dsl_pool_t *dp = dmu_tx_pool(tx);
1723 dsl_dataset_t *ds;
1724 uint64_t newval;
1726 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1728 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1729 dsl_prop_set_sync_impl(ds, zfs_prop_to_name(ZFS_PROP_QUOTA),
1730 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1731 &ddsqra->ddsqra_value, tx);
1733 VERIFY0(dsl_prop_get_int_ds(ds,
1734 zfs_prop_to_name(ZFS_PROP_QUOTA), &newval));
1735 } else {
1736 newval = ddsqra->ddsqra_value;
1737 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1738 zfs_prop_to_name(ZFS_PROP_QUOTA), (longlong_t)newval);
1741 dmu_buf_will_dirty(ds->ds_dir->dd_dbuf, tx);
1742 mutex_enter(&ds->ds_dir->dd_lock);
1743 dsl_dir_phys(ds->ds_dir)->dd_quota = newval;
1744 mutex_exit(&ds->ds_dir->dd_lock);
1745 dsl_dataset_rele(ds, FTAG);
1749 dsl_dir_set_quota(const char *ddname, zprop_source_t source, uint64_t quota)
1751 dsl_dir_set_qr_arg_t ddsqra;
1753 ddsqra.ddsqra_name = ddname;
1754 ddsqra.ddsqra_source = source;
1755 ddsqra.ddsqra_value = quota;
1757 return (dsl_sync_task(ddname, dsl_dir_set_quota_check,
1758 dsl_dir_set_quota_sync, &ddsqra, 0,
1759 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1762 static int
1763 dsl_dir_set_reservation_check(void *arg, dmu_tx_t *tx)
1765 dsl_dir_set_qr_arg_t *ddsqra = arg;
1766 dsl_pool_t *dp = dmu_tx_pool(tx);
1767 dsl_dataset_t *ds;
1768 dsl_dir_t *dd;
1769 uint64_t newval, used, avail;
1770 int error;
1772 error = dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds);
1773 if (error != 0)
1774 return (error);
1775 dd = ds->ds_dir;
1778 * If we are doing the preliminary check in open context, the
1779 * space estimates may be inaccurate.
1781 if (!dmu_tx_is_syncing(tx)) {
1782 dsl_dataset_rele(ds, FTAG);
1783 return (0);
1786 error = dsl_prop_predict(ds->ds_dir,
1787 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1788 ddsqra->ddsqra_source, ddsqra->ddsqra_value, &newval);
1789 if (error != 0) {
1790 dsl_dataset_rele(ds, FTAG);
1791 return (error);
1794 mutex_enter(&dd->dd_lock);
1795 used = dsl_dir_phys(dd)->dd_used_bytes;
1796 mutex_exit(&dd->dd_lock);
1798 if (dd->dd_parent) {
1799 avail = dsl_dir_space_available(dd->dd_parent,
1800 NULL, 0, FALSE);
1801 } else {
1802 avail = dsl_pool_adjustedsize(dd->dd_pool,
1803 ZFS_SPACE_CHECK_NORMAL) - used;
1806 if (MAX(used, newval) > MAX(used, dsl_dir_phys(dd)->dd_reserved)) {
1807 uint64_t delta = MAX(used, newval) -
1808 MAX(used, dsl_dir_phys(dd)->dd_reserved);
1810 if (delta > avail ||
1811 (dsl_dir_phys(dd)->dd_quota > 0 &&
1812 newval > dsl_dir_phys(dd)->dd_quota))
1813 error = SET_ERROR(ENOSPC);
1816 dsl_dataset_rele(ds, FTAG);
1817 return (error);
1820 void
1821 dsl_dir_set_reservation_sync_impl(dsl_dir_t *dd, uint64_t value, dmu_tx_t *tx)
1823 uint64_t used;
1824 int64_t delta;
1826 dmu_buf_will_dirty(dd->dd_dbuf, tx);
1828 mutex_enter(&dd->dd_lock);
1829 used = dsl_dir_phys(dd)->dd_used_bytes;
1830 delta = MAX(used, value) - MAX(used, dsl_dir_phys(dd)->dd_reserved);
1831 dsl_dir_phys(dd)->dd_reserved = value;
1833 if (dd->dd_parent != NULL) {
1834 /* Roll up this additional usage into our ancestors */
1835 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
1836 delta, 0, 0, tx);
1838 mutex_exit(&dd->dd_lock);
1841 static void
1842 dsl_dir_set_reservation_sync(void *arg, dmu_tx_t *tx)
1844 dsl_dir_set_qr_arg_t *ddsqra = arg;
1845 dsl_pool_t *dp = dmu_tx_pool(tx);
1846 dsl_dataset_t *ds;
1847 uint64_t newval;
1849 VERIFY0(dsl_dataset_hold(dp, ddsqra->ddsqra_name, FTAG, &ds));
1851 if (spa_version(dp->dp_spa) >= SPA_VERSION_RECVD_PROPS) {
1852 dsl_prop_set_sync_impl(ds,
1853 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1854 ddsqra->ddsqra_source, sizeof (ddsqra->ddsqra_value), 1,
1855 &ddsqra->ddsqra_value, tx);
1857 VERIFY0(dsl_prop_get_int_ds(ds,
1858 zfs_prop_to_name(ZFS_PROP_RESERVATION), &newval));
1859 } else {
1860 newval = ddsqra->ddsqra_value;
1861 spa_history_log_internal_ds(ds, "set", tx, "%s=%lld",
1862 zfs_prop_to_name(ZFS_PROP_RESERVATION),
1863 (longlong_t)newval);
1866 dsl_dir_set_reservation_sync_impl(ds->ds_dir, newval, tx);
1867 dsl_dataset_rele(ds, FTAG);
1871 dsl_dir_set_reservation(const char *ddname, zprop_source_t source,
1872 uint64_t reservation)
1874 dsl_dir_set_qr_arg_t ddsqra;
1876 ddsqra.ddsqra_name = ddname;
1877 ddsqra.ddsqra_source = source;
1878 ddsqra.ddsqra_value = reservation;
1880 return (dsl_sync_task(ddname, dsl_dir_set_reservation_check,
1881 dsl_dir_set_reservation_sync, &ddsqra, 0,
1882 ZFS_SPACE_CHECK_EXTRA_RESERVED));
1885 static dsl_dir_t *
1886 closest_common_ancestor(dsl_dir_t *ds1, dsl_dir_t *ds2)
1888 for (; ds1; ds1 = ds1->dd_parent) {
1889 dsl_dir_t *dd;
1890 for (dd = ds2; dd; dd = dd->dd_parent) {
1891 if (ds1 == dd)
1892 return (dd);
1895 return (NULL);
1899 * If delta is applied to dd, how much of that delta would be applied to
1900 * ancestor? Syncing context only.
1902 static int64_t
1903 would_change(dsl_dir_t *dd, int64_t delta, dsl_dir_t *ancestor)
1905 if (dd == ancestor)
1906 return (delta);
1908 mutex_enter(&dd->dd_lock);
1909 delta = parent_delta(dd, dsl_dir_phys(dd)->dd_used_bytes, delta);
1910 mutex_exit(&dd->dd_lock);
1911 return (would_change(dd->dd_parent, delta, ancestor));
1914 typedef struct dsl_dir_rename_arg {
1915 const char *ddra_oldname;
1916 const char *ddra_newname;
1917 cred_t *ddra_cred;
1918 proc_t *ddra_proc;
1919 } dsl_dir_rename_arg_t;
1921 typedef struct dsl_valid_rename_arg {
1922 int char_delta;
1923 int nest_delta;
1924 } dsl_valid_rename_arg_t;
1926 static int
1927 dsl_valid_rename(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
1929 (void) dp;
1930 dsl_valid_rename_arg_t *dvra = arg;
1931 char namebuf[ZFS_MAX_DATASET_NAME_LEN];
1933 dsl_dataset_name(ds, namebuf);
1935 ASSERT3U(strnlen(namebuf, ZFS_MAX_DATASET_NAME_LEN),
1936 <, ZFS_MAX_DATASET_NAME_LEN);
1937 int namelen = strlen(namebuf) + dvra->char_delta;
1938 int depth = get_dataset_depth(namebuf) + dvra->nest_delta;
1940 if (namelen >= ZFS_MAX_DATASET_NAME_LEN)
1941 return (SET_ERROR(ENAMETOOLONG));
1942 if (dvra->nest_delta > 0 && depth >= zfs_max_dataset_nesting)
1943 return (SET_ERROR(ENAMETOOLONG));
1944 return (0);
1947 static int
1948 dsl_dir_rename_check(void *arg, dmu_tx_t *tx)
1950 dsl_dir_rename_arg_t *ddra = arg;
1951 dsl_pool_t *dp = dmu_tx_pool(tx);
1952 dsl_dir_t *dd, *newparent;
1953 dsl_valid_rename_arg_t dvra;
1954 dsl_dataset_t *parentds;
1955 objset_t *parentos;
1956 const char *mynewname;
1957 int error;
1959 /* target dir should exist */
1960 error = dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL);
1961 if (error != 0)
1962 return (error);
1964 /* new parent should exist */
1965 error = dsl_dir_hold(dp, ddra->ddra_newname, FTAG,
1966 &newparent, &mynewname);
1967 if (error != 0) {
1968 dsl_dir_rele(dd, FTAG);
1969 return (error);
1972 /* can't rename to different pool */
1973 if (dd->dd_pool != newparent->dd_pool) {
1974 dsl_dir_rele(newparent, FTAG);
1975 dsl_dir_rele(dd, FTAG);
1976 return (SET_ERROR(EXDEV));
1979 /* new name should not already exist */
1980 if (mynewname == NULL) {
1981 dsl_dir_rele(newparent, FTAG);
1982 dsl_dir_rele(dd, FTAG);
1983 return (SET_ERROR(EEXIST));
1986 /* can't rename below anything but filesystems (eg. no ZVOLs) */
1987 error = dsl_dataset_hold_obj(newparent->dd_pool,
1988 dsl_dir_phys(newparent)->dd_head_dataset_obj, FTAG, &parentds);
1989 if (error != 0) {
1990 dsl_dir_rele(newparent, FTAG);
1991 dsl_dir_rele(dd, FTAG);
1992 return (error);
1994 error = dmu_objset_from_ds(parentds, &parentos);
1995 if (error != 0) {
1996 dsl_dataset_rele(parentds, FTAG);
1997 dsl_dir_rele(newparent, FTAG);
1998 dsl_dir_rele(dd, FTAG);
1999 return (error);
2001 if (dmu_objset_type(parentos) != DMU_OST_ZFS) {
2002 dsl_dataset_rele(parentds, FTAG);
2003 dsl_dir_rele(newparent, FTAG);
2004 dsl_dir_rele(dd, FTAG);
2005 return (SET_ERROR(ZFS_ERR_WRONG_PARENT));
2007 dsl_dataset_rele(parentds, FTAG);
2009 ASSERT3U(strnlen(ddra->ddra_newname, ZFS_MAX_DATASET_NAME_LEN),
2010 <, ZFS_MAX_DATASET_NAME_LEN);
2011 ASSERT3U(strnlen(ddra->ddra_oldname, ZFS_MAX_DATASET_NAME_LEN),
2012 <, ZFS_MAX_DATASET_NAME_LEN);
2013 dvra.char_delta = strlen(ddra->ddra_newname)
2014 - strlen(ddra->ddra_oldname);
2015 dvra.nest_delta = get_dataset_depth(ddra->ddra_newname)
2016 - get_dataset_depth(ddra->ddra_oldname);
2018 /* if the name length is growing, validate child name lengths */
2019 if (dvra.char_delta > 0 || dvra.nest_delta > 0) {
2020 error = dmu_objset_find_dp(dp, dd->dd_object, dsl_valid_rename,
2021 &dvra, DS_FIND_CHILDREN | DS_FIND_SNAPSHOTS);
2022 if (error != 0) {
2023 dsl_dir_rele(newparent, FTAG);
2024 dsl_dir_rele(dd, FTAG);
2025 return (error);
2029 if (dmu_tx_is_syncing(tx)) {
2030 if (spa_feature_is_active(dp->dp_spa,
2031 SPA_FEATURE_FS_SS_LIMIT)) {
2033 * Although this is the check function and we don't
2034 * normally make on-disk changes in check functions,
2035 * we need to do that here.
2037 * Ensure this portion of the tree's counts have been
2038 * initialized in case the new parent has limits set.
2040 dsl_dir_init_fs_ss_count(dd, tx);
2044 if (newparent != dd->dd_parent) {
2045 /* is there enough space? */
2046 uint64_t myspace =
2047 MAX(dsl_dir_phys(dd)->dd_used_bytes,
2048 dsl_dir_phys(dd)->dd_reserved);
2049 objset_t *os = dd->dd_pool->dp_meta_objset;
2050 uint64_t fs_cnt = 0;
2051 uint64_t ss_cnt = 0;
2053 if (dsl_dir_is_zapified(dd)) {
2054 int err;
2056 err = zap_lookup(os, dd->dd_object,
2057 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2058 &fs_cnt);
2059 if (err != ENOENT && err != 0) {
2060 dsl_dir_rele(newparent, FTAG);
2061 dsl_dir_rele(dd, FTAG);
2062 return (err);
2066 * have to add 1 for the filesystem itself that we're
2067 * moving
2069 fs_cnt++;
2071 err = zap_lookup(os, dd->dd_object,
2072 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2073 &ss_cnt);
2074 if (err != ENOENT && err != 0) {
2075 dsl_dir_rele(newparent, FTAG);
2076 dsl_dir_rele(dd, FTAG);
2077 return (err);
2081 /* check for encryption errors */
2082 error = dsl_dir_rename_crypt_check(dd, newparent);
2083 if (error != 0) {
2084 dsl_dir_rele(newparent, FTAG);
2085 dsl_dir_rele(dd, FTAG);
2086 return (SET_ERROR(EACCES));
2089 /* no rename into our descendant */
2090 if (closest_common_ancestor(dd, newparent) == dd) {
2091 dsl_dir_rele(newparent, FTAG);
2092 dsl_dir_rele(dd, FTAG);
2093 return (SET_ERROR(EINVAL));
2096 error = dsl_dir_transfer_possible(dd->dd_parent,
2097 newparent, fs_cnt, ss_cnt, myspace,
2098 ddra->ddra_cred, ddra->ddra_proc);
2099 if (error != 0) {
2100 dsl_dir_rele(newparent, FTAG);
2101 dsl_dir_rele(dd, FTAG);
2102 return (error);
2106 dsl_dir_rele(newparent, FTAG);
2107 dsl_dir_rele(dd, FTAG);
2108 return (0);
2111 static void
2112 dsl_dir_rename_sync(void *arg, dmu_tx_t *tx)
2114 dsl_dir_rename_arg_t *ddra = arg;
2115 dsl_pool_t *dp = dmu_tx_pool(tx);
2116 dsl_dir_t *dd, *newparent;
2117 const char *mynewname;
2118 objset_t *mos = dp->dp_meta_objset;
2120 VERIFY0(dsl_dir_hold(dp, ddra->ddra_oldname, FTAG, &dd, NULL));
2121 VERIFY0(dsl_dir_hold(dp, ddra->ddra_newname, FTAG, &newparent,
2122 &mynewname));
2124 ASSERT3P(mynewname, !=, NULL);
2126 /* Log this before we change the name. */
2127 spa_history_log_internal_dd(dd, "rename", tx,
2128 "-> %s", ddra->ddra_newname);
2130 if (newparent != dd->dd_parent) {
2131 objset_t *os = dd->dd_pool->dp_meta_objset;
2132 uint64_t fs_cnt = 0;
2133 uint64_t ss_cnt = 0;
2136 * We already made sure the dd counts were initialized in the
2137 * check function.
2139 if (spa_feature_is_active(dp->dp_spa,
2140 SPA_FEATURE_FS_SS_LIMIT)) {
2141 VERIFY0(zap_lookup(os, dd->dd_object,
2142 DD_FIELD_FILESYSTEM_COUNT, sizeof (fs_cnt), 1,
2143 &fs_cnt));
2144 /* add 1 for the filesystem itself that we're moving */
2145 fs_cnt++;
2147 VERIFY0(zap_lookup(os, dd->dd_object,
2148 DD_FIELD_SNAPSHOT_COUNT, sizeof (ss_cnt), 1,
2149 &ss_cnt));
2152 dsl_fs_ss_count_adjust(dd->dd_parent, -fs_cnt,
2153 DD_FIELD_FILESYSTEM_COUNT, tx);
2154 dsl_fs_ss_count_adjust(newparent, fs_cnt,
2155 DD_FIELD_FILESYSTEM_COUNT, tx);
2157 dsl_fs_ss_count_adjust(dd->dd_parent, -ss_cnt,
2158 DD_FIELD_SNAPSHOT_COUNT, tx);
2159 dsl_fs_ss_count_adjust(newparent, ss_cnt,
2160 DD_FIELD_SNAPSHOT_COUNT, tx);
2162 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD,
2163 -dsl_dir_phys(dd)->dd_used_bytes,
2164 -dsl_dir_phys(dd)->dd_compressed_bytes,
2165 -dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2166 dsl_dir_diduse_space(newparent, DD_USED_CHILD,
2167 dsl_dir_phys(dd)->dd_used_bytes,
2168 dsl_dir_phys(dd)->dd_compressed_bytes,
2169 dsl_dir_phys(dd)->dd_uncompressed_bytes, tx);
2171 if (dsl_dir_phys(dd)->dd_reserved >
2172 dsl_dir_phys(dd)->dd_used_bytes) {
2173 uint64_t unused_rsrv = dsl_dir_phys(dd)->dd_reserved -
2174 dsl_dir_phys(dd)->dd_used_bytes;
2176 dsl_dir_diduse_space(dd->dd_parent, DD_USED_CHILD_RSRV,
2177 -unused_rsrv, 0, 0, tx);
2178 dsl_dir_diduse_space(newparent, DD_USED_CHILD_RSRV,
2179 unused_rsrv, 0, 0, tx);
2183 dmu_buf_will_dirty(dd->dd_dbuf, tx);
2185 /* remove from old parent zapobj */
2186 VERIFY0(zap_remove(mos,
2187 dsl_dir_phys(dd->dd_parent)->dd_child_dir_zapobj,
2188 dd->dd_myname, tx));
2190 (void) strlcpy(dd->dd_myname, mynewname,
2191 sizeof (dd->dd_myname));
2192 dsl_dir_rele(dd->dd_parent, dd);
2193 dsl_dir_phys(dd)->dd_parent_obj = newparent->dd_object;
2194 VERIFY0(dsl_dir_hold_obj(dp,
2195 newparent->dd_object, NULL, dd, &dd->dd_parent));
2197 /* add to new parent zapobj */
2198 VERIFY0(zap_add(mos, dsl_dir_phys(newparent)->dd_child_dir_zapobj,
2199 dd->dd_myname, 8, 1, &dd->dd_object, tx));
2201 /* TODO: A rename callback to avoid these layering violations. */
2202 zfsvfs_update_fromname(ddra->ddra_oldname, ddra->ddra_newname);
2203 zvol_rename_minors(dp->dp_spa, ddra->ddra_oldname,
2204 ddra->ddra_newname, B_TRUE);
2206 dsl_prop_notify_all(dd);
2208 dsl_dir_rele(newparent, FTAG);
2209 dsl_dir_rele(dd, FTAG);
2213 dsl_dir_rename(const char *oldname, const char *newname)
2215 dsl_dir_rename_arg_t ddra;
2217 ddra.ddra_oldname = oldname;
2218 ddra.ddra_newname = newname;
2219 ddra.ddra_cred = CRED();
2220 ddra.ddra_proc = curproc;
2222 return (dsl_sync_task(oldname,
2223 dsl_dir_rename_check, dsl_dir_rename_sync, &ddra,
2224 3, ZFS_SPACE_CHECK_RESERVED));
2228 dsl_dir_transfer_possible(dsl_dir_t *sdd, dsl_dir_t *tdd,
2229 uint64_t fs_cnt, uint64_t ss_cnt, uint64_t space,
2230 cred_t *cr, proc_t *proc)
2232 dsl_dir_t *ancestor;
2233 int64_t adelta;
2234 uint64_t avail;
2235 int err;
2237 ancestor = closest_common_ancestor(sdd, tdd);
2238 adelta = would_change(sdd, -space, ancestor);
2239 avail = dsl_dir_space_available(tdd, ancestor, adelta, FALSE);
2240 if (avail < space)
2241 return (SET_ERROR(ENOSPC));
2243 err = dsl_fs_ss_limit_check(tdd, fs_cnt, ZFS_PROP_FILESYSTEM_LIMIT,
2244 ancestor, cr, proc);
2245 if (err != 0)
2246 return (err);
2247 err = dsl_fs_ss_limit_check(tdd, ss_cnt, ZFS_PROP_SNAPSHOT_LIMIT,
2248 ancestor, cr, proc);
2249 if (err != 0)
2250 return (err);
2252 return (0);
2255 inode_timespec_t
2256 dsl_dir_snap_cmtime(dsl_dir_t *dd)
2258 inode_timespec_t t;
2260 mutex_enter(&dd->dd_lock);
2261 t = dd->dd_snap_cmtime;
2262 mutex_exit(&dd->dd_lock);
2264 return (t);
2267 void
2268 dsl_dir_snap_cmtime_update(dsl_dir_t *dd, dmu_tx_t *tx)
2270 dsl_pool_t *dp = dmu_tx_pool(tx);
2271 inode_timespec_t t;
2272 gethrestime(&t);
2274 mutex_enter(&dd->dd_lock);
2275 dd->dd_snap_cmtime = t;
2276 if (spa_feature_is_enabled(dp->dp_spa,
2277 SPA_FEATURE_EXTENSIBLE_DATASET)) {
2278 objset_t *mos = dd->dd_pool->dp_meta_objset;
2279 uint64_t ddobj = dd->dd_object;
2280 dsl_dir_zapify(dd, tx);
2281 VERIFY0(zap_update(mos, ddobj,
2282 DD_FIELD_SNAPSHOTS_CHANGED,
2283 sizeof (uint64_t),
2284 sizeof (inode_timespec_t) / sizeof (uint64_t),
2285 &t, tx));
2287 mutex_exit(&dd->dd_lock);
2290 void
2291 dsl_dir_zapify(dsl_dir_t *dd, dmu_tx_t *tx)
2293 objset_t *mos = dd->dd_pool->dp_meta_objset;
2294 dmu_object_zapify(mos, dd->dd_object, DMU_OT_DSL_DIR, tx);
2297 boolean_t
2298 dsl_dir_is_zapified(dsl_dir_t *dd)
2300 dmu_object_info_t doi;
2302 dmu_object_info_from_db(dd->dd_dbuf, &doi);
2303 return (doi.doi_type == DMU_OTN_ZAP_METADATA);
2307 dsl_dir_livelist_open(dsl_dir_t *dd, uint64_t obj)
2309 objset_t *mos = dd->dd_pool->dp_meta_objset;
2310 ASSERT(spa_feature_is_active(dd->dd_pool->dp_spa,
2311 SPA_FEATURE_LIVELIST));
2312 int err = dsl_deadlist_open(&dd->dd_livelist, mos, obj);
2313 if (err != 0)
2314 return (err);
2315 bplist_create(&dd->dd_pending_allocs);
2316 bplist_create(&dd->dd_pending_frees);
2317 return (0);
2320 void
2321 dsl_dir_livelist_close(dsl_dir_t *dd)
2323 dsl_deadlist_close(&dd->dd_livelist);
2324 bplist_destroy(&dd->dd_pending_allocs);
2325 bplist_destroy(&dd->dd_pending_frees);
2328 void
2329 dsl_dir_remove_livelist(dsl_dir_t *dd, dmu_tx_t *tx, boolean_t total)
2331 uint64_t obj;
2332 dsl_pool_t *dp = dmu_tx_pool(tx);
2333 spa_t *spa = dp->dp_spa;
2334 livelist_condense_entry_t to_condense = spa->spa_to_condense;
2336 if (!dsl_deadlist_is_open(&dd->dd_livelist))
2337 return;
2340 * If the livelist being removed is set to be condensed, stop the
2341 * condense zthr and indicate the cancellation in the spa_to_condense
2342 * struct in case the condense no-wait synctask has already started
2344 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
2345 if (ll_condense_thread != NULL &&
2346 (to_condense.ds != NULL) && (to_condense.ds->ds_dir == dd)) {
2348 * We use zthr_wait_cycle_done instead of zthr_cancel
2349 * because we don't want to destroy the zthr, just have
2350 * it skip its current task.
2352 spa->spa_to_condense.cancelled = B_TRUE;
2353 zthr_wait_cycle_done(ll_condense_thread);
2355 * If we've returned from zthr_wait_cycle_done without
2356 * clearing the to_condense data structure it's either
2357 * because the no-wait synctask has started (which is
2358 * indicated by 'syncing' field of to_condense) and we
2359 * can expect it to clear to_condense on its own.
2360 * Otherwise, we returned before the zthr ran. The
2361 * checkfunc will now fail as cancelled == B_TRUE so we
2362 * can safely NULL out ds, allowing a different dir's
2363 * livelist to be condensed.
2365 * We can be sure that the to_condense struct will not
2366 * be repopulated at this stage because both this
2367 * function and dsl_livelist_try_condense execute in
2368 * syncing context.
2370 if ((spa->spa_to_condense.ds != NULL) &&
2371 !spa->spa_to_condense.syncing) {
2372 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf,
2373 spa);
2374 spa->spa_to_condense.ds = NULL;
2378 dsl_dir_livelist_close(dd);
2379 VERIFY0(zap_lookup(dp->dp_meta_objset, dd->dd_object,
2380 DD_FIELD_LIVELIST, sizeof (uint64_t), 1, &obj));
2381 VERIFY0(zap_remove(dp->dp_meta_objset, dd->dd_object,
2382 DD_FIELD_LIVELIST, tx));
2383 if (total) {
2384 dsl_deadlist_free(dp->dp_meta_objset, obj, tx);
2385 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
2389 static int
2390 dsl_dir_activity_in_progress(dsl_dir_t *dd, dsl_dataset_t *ds,
2391 zfs_wait_activity_t activity, boolean_t *in_progress)
2393 int error = 0;
2395 ASSERT(MUTEX_HELD(&dd->dd_activity_lock));
2397 switch (activity) {
2398 case ZFS_WAIT_DELETEQ: {
2399 #ifdef _KERNEL
2400 objset_t *os;
2401 error = dmu_objset_from_ds(ds, &os);
2402 if (error != 0)
2403 break;
2405 mutex_enter(&os->os_user_ptr_lock);
2406 void *user = dmu_objset_get_user(os);
2407 mutex_exit(&os->os_user_ptr_lock);
2408 if (dmu_objset_type(os) != DMU_OST_ZFS ||
2409 user == NULL || zfs_get_vfs_flag_unmounted(os)) {
2410 *in_progress = B_FALSE;
2411 return (0);
2414 uint64_t readonly = B_FALSE;
2415 error = zfs_get_temporary_prop(ds, ZFS_PROP_READONLY, &readonly,
2416 NULL);
2418 if (error != 0)
2419 break;
2421 if (readonly || !spa_writeable(dd->dd_pool->dp_spa)) {
2422 *in_progress = B_FALSE;
2423 return (0);
2426 uint64_t count, unlinked_obj;
2427 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
2428 &unlinked_obj);
2429 if (error != 0) {
2430 dsl_dataset_rele(ds, FTAG);
2431 break;
2433 error = zap_count(os, unlinked_obj, &count);
2435 if (error == 0)
2436 *in_progress = (count != 0);
2437 break;
2438 #else
2440 * The delete queue is ZPL specific, and libzpool doesn't have
2441 * it. It doesn't make sense to wait for it.
2443 (void) ds;
2444 *in_progress = B_FALSE;
2445 break;
2446 #endif
2448 default:
2449 panic("unrecognized value for activity %d", activity);
2452 return (error);
2456 dsl_dir_wait(dsl_dir_t *dd, dsl_dataset_t *ds, zfs_wait_activity_t activity,
2457 boolean_t *waited)
2459 int error = 0;
2460 boolean_t in_progress;
2461 dsl_pool_t *dp = dd->dd_pool;
2462 for (;;) {
2463 dsl_pool_config_enter(dp, FTAG);
2464 error = dsl_dir_activity_in_progress(dd, ds, activity,
2465 &in_progress);
2466 dsl_pool_config_exit(dp, FTAG);
2467 if (error != 0 || !in_progress)
2468 break;
2470 *waited = B_TRUE;
2472 if (cv_wait_sig(&dd->dd_activity_cv, &dd->dd_activity_lock) ==
2473 0 || dd->dd_activity_cancelled) {
2474 error = SET_ERROR(EINTR);
2475 break;
2478 return (error);
2481 void
2482 dsl_dir_cancel_waiters(dsl_dir_t *dd)
2484 mutex_enter(&dd->dd_activity_lock);
2485 dd->dd_activity_cancelled = B_TRUE;
2486 cv_broadcast(&dd->dd_activity_cv);
2487 while (dd->dd_activity_waiters > 0)
2488 cv_wait(&dd->dd_activity_cv, &dd->dd_activity_lock);
2489 mutex_exit(&dd->dd_activity_lock);
2492 #if defined(_KERNEL)
2493 EXPORT_SYMBOL(dsl_dir_set_quota);
2494 EXPORT_SYMBOL(dsl_dir_set_reservation);
2495 #endif
2497 /* CSTYLED */
2498 ZFS_MODULE_PARAM(zfs, , zvol_enforce_quotas, INT, ZMOD_RW,
2499 "Enable strict ZVOL quota enforcment");