Optimize RAIDZ expansion
[zfs.git] / module / zfs / spa.c
blob5a616adb41a2fceb717d9d04926618c760bcd81a
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2011, 2024 by Delphix. All rights reserved.
25 * Copyright (c) 2018, Nexenta Systems, Inc. All rights reserved.
26 * Copyright (c) 2014 Spectra Logic Corporation, All rights reserved.
27 * Copyright 2013 Saso Kiselkov. All rights reserved.
28 * Copyright (c) 2014 Integros [integros.com]
29 * Copyright 2016 Toomas Soome <tsoome@me.com>
30 * Copyright (c) 2016 Actifio, Inc. All rights reserved.
31 * Copyright 2018 Joyent, Inc.
32 * Copyright (c) 2017, 2019, Datto Inc. All rights reserved.
33 * Copyright 2017 Joyent, Inc.
34 * Copyright (c) 2017, Intel Corporation.
35 * Copyright (c) 2021, Colm Buckley <colm@tuatha.org>
36 * Copyright (c) 2023 Hewlett Packard Enterprise Development LP.
37 * Copyright (c) 2023, 2024, Klara Inc.
41 * SPA: Storage Pool Allocator
43 * This file contains all the routines used when modifying on-disk SPA state.
44 * This includes opening, importing, destroying, exporting a pool, and syncing a
45 * pool.
48 #include <sys/zfs_context.h>
49 #include <sys/fm/fs/zfs.h>
50 #include <sys/spa_impl.h>
51 #include <sys/zio.h>
52 #include <sys/zio_checksum.h>
53 #include <sys/dmu.h>
54 #include <sys/dmu_tx.h>
55 #include <sys/zap.h>
56 #include <sys/zil.h>
57 #include <sys/brt.h>
58 #include <sys/ddt.h>
59 #include <sys/vdev_impl.h>
60 #include <sys/vdev_removal.h>
61 #include <sys/vdev_indirect_mapping.h>
62 #include <sys/vdev_indirect_births.h>
63 #include <sys/vdev_initialize.h>
64 #include <sys/vdev_rebuild.h>
65 #include <sys/vdev_trim.h>
66 #include <sys/vdev_disk.h>
67 #include <sys/vdev_raidz.h>
68 #include <sys/vdev_draid.h>
69 #include <sys/metaslab.h>
70 #include <sys/metaslab_impl.h>
71 #include <sys/mmp.h>
72 #include <sys/uberblock_impl.h>
73 #include <sys/txg.h>
74 #include <sys/avl.h>
75 #include <sys/bpobj.h>
76 #include <sys/dmu_traverse.h>
77 #include <sys/dmu_objset.h>
78 #include <sys/unique.h>
79 #include <sys/dsl_pool.h>
80 #include <sys/dsl_dataset.h>
81 #include <sys/dsl_dir.h>
82 #include <sys/dsl_prop.h>
83 #include <sys/dsl_synctask.h>
84 #include <sys/fs/zfs.h>
85 #include <sys/arc.h>
86 #include <sys/callb.h>
87 #include <sys/systeminfo.h>
88 #include <sys/zfs_ioctl.h>
89 #include <sys/dsl_scan.h>
90 #include <sys/zfeature.h>
91 #include <sys/dsl_destroy.h>
92 #include <sys/zvol.h>
94 #ifdef _KERNEL
95 #include <sys/fm/protocol.h>
96 #include <sys/fm/util.h>
97 #include <sys/callb.h>
98 #include <sys/zone.h>
99 #include <sys/vmsystm.h>
100 #endif /* _KERNEL */
102 #include "zfs_prop.h"
103 #include "zfs_comutil.h"
104 #include <cityhash.h>
107 * spa_thread() existed on Illumos as a parent thread for the various worker
108 * threads that actually run the pool, as a way to both reference the entire
109 * pool work as a single object, and to share properties like scheduling
110 * options. It has not yet been adapted to Linux or FreeBSD. This define is
111 * used to mark related parts of the code to make things easier for the reader,
112 * and to compile this code out. It can be removed when someone implements it,
113 * moves it to some Illumos-specific place, or removes it entirely.
115 #undef HAVE_SPA_THREAD
118 * The "System Duty Cycle" scheduling class is an Illumos feature to help
119 * prevent CPU-intensive kernel threads from affecting latency on interactive
120 * threads. It doesn't exist on Linux or FreeBSD, so the supporting code is
121 * gated behind a define. On Illumos SDC depends on spa_thread(), but
122 * spa_thread() also has other uses, so this is a separate define.
124 #undef HAVE_SYSDC
127 * The interval, in seconds, at which failed configuration cache file writes
128 * should be retried.
130 int zfs_ccw_retry_interval = 300;
132 typedef enum zti_modes {
133 ZTI_MODE_FIXED, /* value is # of threads (min 1) */
134 ZTI_MODE_SCALE, /* Taskqs scale with CPUs. */
135 ZTI_MODE_SYNC, /* sync thread assigned */
136 ZTI_MODE_NULL, /* don't create a taskq */
137 ZTI_NMODES
138 } zti_modes_t;
140 #define ZTI_P(n, q) { ZTI_MODE_FIXED, (n), (q) }
141 #define ZTI_PCT(n) { ZTI_MODE_ONLINE_PERCENT, (n), 1 }
142 #define ZTI_SCALE { ZTI_MODE_SCALE, 0, 1 }
143 #define ZTI_SYNC { ZTI_MODE_SYNC, 0, 1 }
144 #define ZTI_NULL { ZTI_MODE_NULL, 0, 0 }
146 #define ZTI_N(n) ZTI_P(n, 1)
147 #define ZTI_ONE ZTI_N(1)
149 typedef struct zio_taskq_info {
150 zti_modes_t zti_mode;
151 uint_t zti_value;
152 uint_t zti_count;
153 } zio_taskq_info_t;
155 static const char *const zio_taskq_types[ZIO_TASKQ_TYPES] = {
156 "iss", "iss_h", "int", "int_h"
160 * This table defines the taskq settings for each ZFS I/O type. When
161 * initializing a pool, we use this table to create an appropriately sized
162 * taskq. Some operations are low volume and therefore have a small, static
163 * number of threads assigned to their taskqs using the ZTI_N(#) or ZTI_ONE
164 * macros. Other operations process a large amount of data; the ZTI_SCALE
165 * macro causes us to create a taskq oriented for throughput. Some operations
166 * are so high frequency and short-lived that the taskq itself can become a
167 * point of lock contention. The ZTI_P(#, #) macro indicates that we need an
168 * additional degree of parallelism specified by the number of threads per-
169 * taskq and the number of taskqs; when dispatching an event in this case, the
170 * particular taskq is chosen at random. ZTI_SCALE uses a number of taskqs
171 * that scales with the number of CPUs.
173 * The different taskq priorities are to handle the different contexts (issue
174 * and interrupt) and then to reserve threads for high priority I/Os that
175 * need to be handled with minimum delay. Illumos taskq has unfair TQ_FRONT
176 * implementation, so separate high priority threads are used there.
178 static zio_taskq_info_t zio_taskqs[ZIO_TYPES][ZIO_TASKQ_TYPES] = {
179 /* ISSUE ISSUE_HIGH INTR INTR_HIGH */
180 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* NULL */
181 { ZTI_N(8), ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* READ */
182 #ifdef illumos
183 { ZTI_SYNC, ZTI_N(5), ZTI_SCALE, ZTI_N(5) }, /* WRITE */
184 #else
185 { ZTI_SYNC, ZTI_NULL, ZTI_SCALE, ZTI_NULL }, /* WRITE */
186 #endif
187 { ZTI_SCALE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FREE */
188 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* CLAIM */
189 { ZTI_ONE, ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* FLUSH */
190 { ZTI_N(4), ZTI_NULL, ZTI_ONE, ZTI_NULL }, /* TRIM */
193 static void spa_sync_version(void *arg, dmu_tx_t *tx);
194 static void spa_sync_props(void *arg, dmu_tx_t *tx);
195 static boolean_t spa_has_active_shared_spare(spa_t *spa);
196 static int spa_load_impl(spa_t *spa, spa_import_type_t type,
197 const char **ereport);
198 static void spa_vdev_resilver_done(spa_t *spa);
201 * Percentage of all CPUs that can be used by the metaslab preload taskq.
203 static uint_t metaslab_preload_pct = 50;
205 static uint_t zio_taskq_batch_pct = 80; /* 1 thread per cpu in pset */
206 static uint_t zio_taskq_batch_tpq; /* threads per taskq */
208 #ifdef HAVE_SYSDC
209 static const boolean_t zio_taskq_sysdc = B_TRUE; /* use SDC scheduling class */
210 static const uint_t zio_taskq_basedc = 80; /* base duty cycle */
211 #endif
213 #ifdef HAVE_SPA_THREAD
214 static const boolean_t spa_create_process = B_TRUE; /* no process => no sysdc */
215 #endif
217 static uint_t zio_taskq_write_tpq = 16;
220 * Report any spa_load_verify errors found, but do not fail spa_load.
221 * This is used by zdb to analyze non-idle pools.
223 boolean_t spa_load_verify_dryrun = B_FALSE;
226 * Allow read spacemaps in case of readonly import (spa_mode == SPA_MODE_READ).
227 * This is used by zdb for spacemaps verification.
229 boolean_t spa_mode_readable_spacemaps = B_FALSE;
232 * This (illegal) pool name is used when temporarily importing a spa_t in order
233 * to get the vdev stats associated with the imported devices.
235 #define TRYIMPORT_NAME "$import"
238 * For debugging purposes: print out vdev tree during pool import.
240 static int spa_load_print_vdev_tree = B_FALSE;
243 * A non-zero value for zfs_max_missing_tvds means that we allow importing
244 * pools with missing top-level vdevs. This is strictly intended for advanced
245 * pool recovery cases since missing data is almost inevitable. Pools with
246 * missing devices can only be imported read-only for safety reasons, and their
247 * fail-mode will be automatically set to "continue".
249 * With 1 missing vdev we should be able to import the pool and mount all
250 * datasets. User data that was not modified after the missing device has been
251 * added should be recoverable. This means that snapshots created prior to the
252 * addition of that device should be completely intact.
254 * With 2 missing vdevs, some datasets may fail to mount since there are
255 * dataset statistics that are stored as regular metadata. Some data might be
256 * recoverable if those vdevs were added recently.
258 * With 3 or more missing vdevs, the pool is severely damaged and MOS entries
259 * may be missing entirely. Chances of data recovery are very low. Note that
260 * there are also risks of performing an inadvertent rewind as we might be
261 * missing all the vdevs with the latest uberblocks.
263 uint64_t zfs_max_missing_tvds = 0;
266 * The parameters below are similar to zfs_max_missing_tvds but are only
267 * intended for a preliminary open of the pool with an untrusted config which
268 * might be incomplete or out-dated.
270 * We are more tolerant for pools opened from a cachefile since we could have
271 * an out-dated cachefile where a device removal was not registered.
272 * We could have set the limit arbitrarily high but in the case where devices
273 * are really missing we would want to return the proper error codes; we chose
274 * SPA_DVAS_PER_BP - 1 so that some copies of the MOS would still be available
275 * and we get a chance to retrieve the trusted config.
277 uint64_t zfs_max_missing_tvds_cachefile = SPA_DVAS_PER_BP - 1;
280 * In the case where config was assembled by scanning device paths (/dev/dsks
281 * by default) we are less tolerant since all the existing devices should have
282 * been detected and we want spa_load to return the right error codes.
284 uint64_t zfs_max_missing_tvds_scan = 0;
287 * Debugging aid that pauses spa_sync() towards the end.
289 static const boolean_t zfs_pause_spa_sync = B_FALSE;
292 * Variables to indicate the livelist condense zthr func should wait at certain
293 * points for the livelist to be removed - used to test condense/destroy races
295 static int zfs_livelist_condense_zthr_pause = 0;
296 static int zfs_livelist_condense_sync_pause = 0;
299 * Variables to track whether or not condense cancellation has been
300 * triggered in testing.
302 static int zfs_livelist_condense_sync_cancel = 0;
303 static int zfs_livelist_condense_zthr_cancel = 0;
306 * Variable to track whether or not extra ALLOC blkptrs were added to a
307 * livelist entry while it was being condensed (caused by the way we track
308 * remapped blkptrs in dbuf_remap_impl)
310 static int zfs_livelist_condense_new_alloc = 0;
313 * ==========================================================================
314 * SPA properties routines
315 * ==========================================================================
319 * Add a (source=src, propname=propval) list to an nvlist.
321 static void
322 spa_prop_add_list(nvlist_t *nvl, zpool_prop_t prop, const char *strval,
323 uint64_t intval, zprop_source_t src)
325 const char *propname = zpool_prop_to_name(prop);
326 nvlist_t *propval;
328 propval = fnvlist_alloc();
329 fnvlist_add_uint64(propval, ZPROP_SOURCE, src);
331 if (strval != NULL)
332 fnvlist_add_string(propval, ZPROP_VALUE, strval);
333 else
334 fnvlist_add_uint64(propval, ZPROP_VALUE, intval);
336 fnvlist_add_nvlist(nvl, propname, propval);
337 nvlist_free(propval);
340 static int
341 spa_prop_add(spa_t *spa, const char *propname, nvlist_t *outnvl)
343 zpool_prop_t prop = zpool_name_to_prop(propname);
344 zprop_source_t src = ZPROP_SRC_NONE;
345 uint64_t intval;
346 int err;
349 * NB: Not all properties lookups via this API require
350 * the spa props lock, so they must explicitly grab it here.
352 switch (prop) {
353 case ZPOOL_PROP_DEDUPCACHED:
354 err = ddt_get_pool_dedup_cached(spa, &intval);
355 if (err != 0)
356 return (SET_ERROR(err));
357 break;
358 default:
359 return (SET_ERROR(EINVAL));
362 spa_prop_add_list(outnvl, prop, NULL, intval, src);
364 return (0);
368 spa_prop_get_nvlist(spa_t *spa, char **props, unsigned int n_props,
369 nvlist_t *outnvl)
371 int err = 0;
373 if (props == NULL)
374 return (0);
376 for (unsigned int i = 0; i < n_props && err == 0; i++) {
377 err = spa_prop_add(spa, props[i], outnvl);
380 return (err);
384 * Add a user property (source=src, propname=propval) to an nvlist.
386 static void
387 spa_prop_add_user(nvlist_t *nvl, const char *propname, char *strval,
388 zprop_source_t src)
390 nvlist_t *propval;
392 VERIFY(nvlist_alloc(&propval, NV_UNIQUE_NAME, KM_SLEEP) == 0);
393 VERIFY(nvlist_add_uint64(propval, ZPROP_SOURCE, src) == 0);
394 VERIFY(nvlist_add_string(propval, ZPROP_VALUE, strval) == 0);
395 VERIFY(nvlist_add_nvlist(nvl, propname, propval) == 0);
396 nvlist_free(propval);
400 * Get property values from the spa configuration.
402 static void
403 spa_prop_get_config(spa_t *spa, nvlist_t *nv)
405 vdev_t *rvd = spa->spa_root_vdev;
406 dsl_pool_t *pool = spa->spa_dsl_pool;
407 uint64_t size, alloc, cap, version;
408 const zprop_source_t src = ZPROP_SRC_NONE;
409 spa_config_dirent_t *dp;
410 metaslab_class_t *mc = spa_normal_class(spa);
412 ASSERT(MUTEX_HELD(&spa->spa_props_lock));
414 if (rvd != NULL) {
415 alloc = metaslab_class_get_alloc(mc);
416 alloc += metaslab_class_get_alloc(spa_special_class(spa));
417 alloc += metaslab_class_get_alloc(spa_dedup_class(spa));
418 alloc += metaslab_class_get_alloc(spa_embedded_log_class(spa));
420 size = metaslab_class_get_space(mc);
421 size += metaslab_class_get_space(spa_special_class(spa));
422 size += metaslab_class_get_space(spa_dedup_class(spa));
423 size += metaslab_class_get_space(spa_embedded_log_class(spa));
425 spa_prop_add_list(nv, ZPOOL_PROP_NAME, spa_name(spa), 0, src);
426 spa_prop_add_list(nv, ZPOOL_PROP_SIZE, NULL, size, src);
427 spa_prop_add_list(nv, ZPOOL_PROP_ALLOCATED, NULL, alloc, src);
428 spa_prop_add_list(nv, ZPOOL_PROP_FREE, NULL,
429 size - alloc, src);
430 spa_prop_add_list(nv, ZPOOL_PROP_CHECKPOINT, NULL,
431 spa->spa_checkpoint_info.sci_dspace, src);
433 spa_prop_add_list(nv, ZPOOL_PROP_FRAGMENTATION, NULL,
434 metaslab_class_fragmentation(mc), src);
435 spa_prop_add_list(nv, ZPOOL_PROP_EXPANDSZ, NULL,
436 metaslab_class_expandable_space(mc), src);
437 spa_prop_add_list(nv, ZPOOL_PROP_READONLY, NULL,
438 (spa_mode(spa) == SPA_MODE_READ), src);
440 cap = (size == 0) ? 0 : (alloc * 100 / size);
441 spa_prop_add_list(nv, ZPOOL_PROP_CAPACITY, NULL, cap, src);
443 spa_prop_add_list(nv, ZPOOL_PROP_DEDUPRATIO, NULL,
444 ddt_get_pool_dedup_ratio(spa), src);
445 spa_prop_add_list(nv, ZPOOL_PROP_BCLONEUSED, NULL,
446 brt_get_used(spa), src);
447 spa_prop_add_list(nv, ZPOOL_PROP_BCLONESAVED, NULL,
448 brt_get_saved(spa), src);
449 spa_prop_add_list(nv, ZPOOL_PROP_BCLONERATIO, NULL,
450 brt_get_ratio(spa), src);
452 spa_prop_add_list(nv, ZPOOL_PROP_DEDUP_TABLE_SIZE, NULL,
453 ddt_get_ddt_dsize(spa), src);
454 spa_prop_add_list(nv, ZPOOL_PROP_HEALTH, NULL,
455 rvd->vdev_state, src);
456 spa_prop_add_list(nv, ZPOOL_PROP_LAST_SCRUBBED_TXG, NULL,
457 spa_get_last_scrubbed_txg(spa), src);
459 version = spa_version(spa);
460 if (version == zpool_prop_default_numeric(ZPOOL_PROP_VERSION)) {
461 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
462 version, ZPROP_SRC_DEFAULT);
463 } else {
464 spa_prop_add_list(nv, ZPOOL_PROP_VERSION, NULL,
465 version, ZPROP_SRC_LOCAL);
467 spa_prop_add_list(nv, ZPOOL_PROP_LOAD_GUID,
468 NULL, spa_load_guid(spa), src);
471 if (pool != NULL) {
473 * The $FREE directory was introduced in SPA_VERSION_DEADLISTS,
474 * when opening pools before this version freedir will be NULL.
476 if (pool->dp_free_dir != NULL) {
477 spa_prop_add_list(nv, ZPOOL_PROP_FREEING, NULL,
478 dsl_dir_phys(pool->dp_free_dir)->dd_used_bytes,
479 src);
480 } else {
481 spa_prop_add_list(nv, ZPOOL_PROP_FREEING,
482 NULL, 0, src);
485 if (pool->dp_leak_dir != NULL) {
486 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED, NULL,
487 dsl_dir_phys(pool->dp_leak_dir)->dd_used_bytes,
488 src);
489 } else {
490 spa_prop_add_list(nv, ZPOOL_PROP_LEAKED,
491 NULL, 0, src);
495 spa_prop_add_list(nv, ZPOOL_PROP_GUID, NULL, spa_guid(spa), src);
497 if (spa->spa_comment != NULL) {
498 spa_prop_add_list(nv, ZPOOL_PROP_COMMENT, spa->spa_comment,
499 0, ZPROP_SRC_LOCAL);
502 if (spa->spa_compatibility != NULL) {
503 spa_prop_add_list(nv, ZPOOL_PROP_COMPATIBILITY,
504 spa->spa_compatibility, 0, ZPROP_SRC_LOCAL);
507 if (spa->spa_root != NULL)
508 spa_prop_add_list(nv, ZPOOL_PROP_ALTROOT, spa->spa_root,
509 0, ZPROP_SRC_LOCAL);
511 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_BLOCKS)) {
512 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
513 MIN(zfs_max_recordsize, SPA_MAXBLOCKSIZE), ZPROP_SRC_NONE);
514 } else {
515 spa_prop_add_list(nv, ZPOOL_PROP_MAXBLOCKSIZE, NULL,
516 SPA_OLD_MAXBLOCKSIZE, ZPROP_SRC_NONE);
519 if (spa_feature_is_enabled(spa, SPA_FEATURE_LARGE_DNODE)) {
520 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
521 DNODE_MAX_SIZE, ZPROP_SRC_NONE);
522 } else {
523 spa_prop_add_list(nv, ZPOOL_PROP_MAXDNODESIZE, NULL,
524 DNODE_MIN_SIZE, ZPROP_SRC_NONE);
527 if ((dp = list_head(&spa->spa_config_list)) != NULL) {
528 if (dp->scd_path == NULL) {
529 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
530 "none", 0, ZPROP_SRC_LOCAL);
531 } else if (strcmp(dp->scd_path, spa_config_path) != 0) {
532 spa_prop_add_list(nv, ZPOOL_PROP_CACHEFILE,
533 dp->scd_path, 0, ZPROP_SRC_LOCAL);
539 * Get zpool property values.
542 spa_prop_get(spa_t *spa, nvlist_t *nv)
544 objset_t *mos = spa->spa_meta_objset;
545 zap_cursor_t zc;
546 zap_attribute_t *za;
547 dsl_pool_t *dp;
548 int err = 0;
550 dp = spa_get_dsl(spa);
551 dsl_pool_config_enter(dp, FTAG);
552 za = zap_attribute_alloc();
553 mutex_enter(&spa->spa_props_lock);
556 * Get properties from the spa config.
558 spa_prop_get_config(spa, nv);
560 /* If no pool property object, no more prop to get. */
561 if (mos == NULL || spa->spa_pool_props_object == 0)
562 goto out;
565 * Get properties from the MOS pool property object.
567 for (zap_cursor_init(&zc, mos, spa->spa_pool_props_object);
568 (err = zap_cursor_retrieve(&zc, za)) == 0;
569 zap_cursor_advance(&zc)) {
570 uint64_t intval = 0;
571 char *strval = NULL;
572 zprop_source_t src = ZPROP_SRC_DEFAULT;
573 zpool_prop_t prop;
575 if ((prop = zpool_name_to_prop(za->za_name)) ==
576 ZPOOL_PROP_INVAL && !zfs_prop_user(za->za_name))
577 continue;
579 switch (za->za_integer_length) {
580 case 8:
581 /* integer property */
582 if (za->za_first_integer !=
583 zpool_prop_default_numeric(prop))
584 src = ZPROP_SRC_LOCAL;
586 if (prop == ZPOOL_PROP_BOOTFS) {
587 dsl_dataset_t *ds = NULL;
589 err = dsl_dataset_hold_obj(dp,
590 za->za_first_integer, FTAG, &ds);
591 if (err != 0)
592 break;
594 strval = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN,
595 KM_SLEEP);
596 dsl_dataset_name(ds, strval);
597 dsl_dataset_rele(ds, FTAG);
598 } else {
599 strval = NULL;
600 intval = za->za_first_integer;
603 spa_prop_add_list(nv, prop, strval, intval, src);
605 if (strval != NULL)
606 kmem_free(strval, ZFS_MAX_DATASET_NAME_LEN);
608 break;
610 case 1:
611 /* string property */
612 strval = kmem_alloc(za->za_num_integers, KM_SLEEP);
613 err = zap_lookup(mos, spa->spa_pool_props_object,
614 za->za_name, 1, za->za_num_integers, strval);
615 if (err) {
616 kmem_free(strval, za->za_num_integers);
617 break;
619 if (prop != ZPOOL_PROP_INVAL) {
620 spa_prop_add_list(nv, prop, strval, 0, src);
621 } else {
622 src = ZPROP_SRC_LOCAL;
623 spa_prop_add_user(nv, za->za_name, strval,
624 src);
626 kmem_free(strval, za->za_num_integers);
627 break;
629 default:
630 break;
633 zap_cursor_fini(&zc);
634 out:
635 mutex_exit(&spa->spa_props_lock);
636 dsl_pool_config_exit(dp, FTAG);
637 zap_attribute_free(za);
639 if (err && err != ENOENT)
640 return (err);
642 return (0);
646 * Validate the given pool properties nvlist and modify the list
647 * for the property values to be set.
649 static int
650 spa_prop_validate(spa_t *spa, nvlist_t *props)
652 nvpair_t *elem;
653 int error = 0, reset_bootfs = 0;
654 uint64_t objnum = 0;
655 boolean_t has_feature = B_FALSE;
657 elem = NULL;
658 while ((elem = nvlist_next_nvpair(props, elem)) != NULL) {
659 uint64_t intval;
660 const char *strval, *slash, *check, *fname;
661 const char *propname = nvpair_name(elem);
662 zpool_prop_t prop = zpool_name_to_prop(propname);
664 switch (prop) {
665 case ZPOOL_PROP_INVAL:
667 * Sanitize the input.
669 if (zfs_prop_user(propname)) {
670 if (strlen(propname) >= ZAP_MAXNAMELEN) {
671 error = SET_ERROR(ENAMETOOLONG);
672 break;
675 if (strlen(fnvpair_value_string(elem)) >=
676 ZAP_MAXVALUELEN) {
677 error = SET_ERROR(E2BIG);
678 break;
680 } else if (zpool_prop_feature(propname)) {
681 if (nvpair_type(elem) != DATA_TYPE_UINT64) {
682 error = SET_ERROR(EINVAL);
683 break;
686 if (nvpair_value_uint64(elem, &intval) != 0) {
687 error = SET_ERROR(EINVAL);
688 break;
691 if (intval != 0) {
692 error = SET_ERROR(EINVAL);
693 break;
696 fname = strchr(propname, '@') + 1;
697 if (zfeature_lookup_name(fname, NULL) != 0) {
698 error = SET_ERROR(EINVAL);
699 break;
702 has_feature = B_TRUE;
703 } else {
704 error = SET_ERROR(EINVAL);
705 break;
707 break;
709 case ZPOOL_PROP_VERSION:
710 error = nvpair_value_uint64(elem, &intval);
711 if (!error &&
712 (intval < spa_version(spa) ||
713 intval > SPA_VERSION_BEFORE_FEATURES ||
714 has_feature))
715 error = SET_ERROR(EINVAL);
716 break;
718 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
719 error = nvpair_value_uint64(elem, &intval);
720 break;
722 case ZPOOL_PROP_DELEGATION:
723 case ZPOOL_PROP_AUTOREPLACE:
724 case ZPOOL_PROP_LISTSNAPS:
725 case ZPOOL_PROP_AUTOEXPAND:
726 case ZPOOL_PROP_AUTOTRIM:
727 error = nvpair_value_uint64(elem, &intval);
728 if (!error && intval > 1)
729 error = SET_ERROR(EINVAL);
730 break;
732 case ZPOOL_PROP_MULTIHOST:
733 error = nvpair_value_uint64(elem, &intval);
734 if (!error && intval > 1)
735 error = SET_ERROR(EINVAL);
737 if (!error) {
738 uint32_t hostid = zone_get_hostid(NULL);
739 if (hostid)
740 spa->spa_hostid = hostid;
741 else
742 error = SET_ERROR(ENOTSUP);
745 break;
747 case ZPOOL_PROP_BOOTFS:
749 * If the pool version is less than SPA_VERSION_BOOTFS,
750 * or the pool is still being created (version == 0),
751 * the bootfs property cannot be set.
753 if (spa_version(spa) < SPA_VERSION_BOOTFS) {
754 error = SET_ERROR(ENOTSUP);
755 break;
759 * Make sure the vdev config is bootable
761 if (!vdev_is_bootable(spa->spa_root_vdev)) {
762 error = SET_ERROR(ENOTSUP);
763 break;
766 reset_bootfs = 1;
768 error = nvpair_value_string(elem, &strval);
770 if (!error) {
771 objset_t *os;
773 if (strval == NULL || strval[0] == '\0') {
774 objnum = zpool_prop_default_numeric(
775 ZPOOL_PROP_BOOTFS);
776 break;
779 error = dmu_objset_hold(strval, FTAG, &os);
780 if (error != 0)
781 break;
783 /* Must be ZPL. */
784 if (dmu_objset_type(os) != DMU_OST_ZFS) {
785 error = SET_ERROR(ENOTSUP);
786 } else {
787 objnum = dmu_objset_id(os);
789 dmu_objset_rele(os, FTAG);
791 break;
793 case ZPOOL_PROP_FAILUREMODE:
794 error = nvpair_value_uint64(elem, &intval);
795 if (!error && intval > ZIO_FAILURE_MODE_PANIC)
796 error = SET_ERROR(EINVAL);
799 * This is a special case which only occurs when
800 * the pool has completely failed. This allows
801 * the user to change the in-core failmode property
802 * without syncing it out to disk (I/Os might
803 * currently be blocked). We do this by returning
804 * EIO to the caller (spa_prop_set) to trick it
805 * into thinking we encountered a property validation
806 * error.
808 if (!error && spa_suspended(spa)) {
809 spa->spa_failmode = intval;
810 error = SET_ERROR(EIO);
812 break;
814 case ZPOOL_PROP_CACHEFILE:
815 if ((error = nvpair_value_string(elem, &strval)) != 0)
816 break;
818 if (strval[0] == '\0')
819 break;
821 if (strcmp(strval, "none") == 0)
822 break;
824 if (strval[0] != '/') {
825 error = SET_ERROR(EINVAL);
826 break;
829 slash = strrchr(strval, '/');
830 ASSERT(slash != NULL);
832 if (slash[1] == '\0' || strcmp(slash, "/.") == 0 ||
833 strcmp(slash, "/..") == 0)
834 error = SET_ERROR(EINVAL);
835 break;
837 case ZPOOL_PROP_COMMENT:
838 if ((error = nvpair_value_string(elem, &strval)) != 0)
839 break;
840 for (check = strval; *check != '\0'; check++) {
841 if (!isprint(*check)) {
842 error = SET_ERROR(EINVAL);
843 break;
846 if (strlen(strval) > ZPROP_MAX_COMMENT)
847 error = SET_ERROR(E2BIG);
848 break;
850 default:
851 break;
854 if (error)
855 break;
858 (void) nvlist_remove_all(props,
859 zpool_prop_to_name(ZPOOL_PROP_DEDUPDITTO));
861 if (!error && reset_bootfs) {
862 error = nvlist_remove(props,
863 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), DATA_TYPE_STRING);
865 if (!error) {
866 error = nvlist_add_uint64(props,
867 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), objnum);
871 return (error);
874 void
875 spa_configfile_set(spa_t *spa, nvlist_t *nvp, boolean_t need_sync)
877 const char *cachefile;
878 spa_config_dirent_t *dp;
880 if (nvlist_lookup_string(nvp, zpool_prop_to_name(ZPOOL_PROP_CACHEFILE),
881 &cachefile) != 0)
882 return;
884 dp = kmem_alloc(sizeof (spa_config_dirent_t),
885 KM_SLEEP);
887 if (cachefile[0] == '\0')
888 dp->scd_path = spa_strdup(spa_config_path);
889 else if (strcmp(cachefile, "none") == 0)
890 dp->scd_path = NULL;
891 else
892 dp->scd_path = spa_strdup(cachefile);
894 list_insert_head(&spa->spa_config_list, dp);
895 if (need_sync)
896 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
900 spa_prop_set(spa_t *spa, nvlist_t *nvp)
902 int error;
903 nvpair_t *elem = NULL;
904 boolean_t need_sync = B_FALSE;
906 if ((error = spa_prop_validate(spa, nvp)) != 0)
907 return (error);
909 while ((elem = nvlist_next_nvpair(nvp, elem)) != NULL) {
910 zpool_prop_t prop = zpool_name_to_prop(nvpair_name(elem));
912 if (prop == ZPOOL_PROP_CACHEFILE ||
913 prop == ZPOOL_PROP_ALTROOT ||
914 prop == ZPOOL_PROP_READONLY)
915 continue;
917 if (prop == ZPOOL_PROP_INVAL &&
918 zfs_prop_user(nvpair_name(elem))) {
919 need_sync = B_TRUE;
920 break;
923 if (prop == ZPOOL_PROP_VERSION || prop == ZPOOL_PROP_INVAL) {
924 uint64_t ver = 0;
926 if (prop == ZPOOL_PROP_VERSION) {
927 VERIFY(nvpair_value_uint64(elem, &ver) == 0);
928 } else {
929 ASSERT(zpool_prop_feature(nvpair_name(elem)));
930 ver = SPA_VERSION_FEATURES;
931 need_sync = B_TRUE;
934 /* Save time if the version is already set. */
935 if (ver == spa_version(spa))
936 continue;
939 * In addition to the pool directory object, we might
940 * create the pool properties object, the features for
941 * read object, the features for write object, or the
942 * feature descriptions object.
944 error = dsl_sync_task(spa->spa_name, NULL,
945 spa_sync_version, &ver,
946 6, ZFS_SPACE_CHECK_RESERVED);
947 if (error)
948 return (error);
949 continue;
952 need_sync = B_TRUE;
953 break;
956 if (need_sync) {
957 return (dsl_sync_task(spa->spa_name, NULL, spa_sync_props,
958 nvp, 6, ZFS_SPACE_CHECK_RESERVED));
961 return (0);
965 * If the bootfs property value is dsobj, clear it.
967 void
968 spa_prop_clear_bootfs(spa_t *spa, uint64_t dsobj, dmu_tx_t *tx)
970 if (spa->spa_bootfs == dsobj && spa->spa_pool_props_object != 0) {
971 VERIFY(zap_remove(spa->spa_meta_objset,
972 spa->spa_pool_props_object,
973 zpool_prop_to_name(ZPOOL_PROP_BOOTFS), tx) == 0);
974 spa->spa_bootfs = 0;
978 static int
979 spa_change_guid_check(void *arg, dmu_tx_t *tx)
981 uint64_t *newguid __maybe_unused = arg;
982 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
983 vdev_t *rvd = spa->spa_root_vdev;
984 uint64_t vdev_state;
986 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
987 int error = (spa_has_checkpoint(spa)) ?
988 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
989 return (SET_ERROR(error));
992 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
993 vdev_state = rvd->vdev_state;
994 spa_config_exit(spa, SCL_STATE, FTAG);
996 if (vdev_state != VDEV_STATE_HEALTHY)
997 return (SET_ERROR(ENXIO));
999 ASSERT3U(spa_guid(spa), !=, *newguid);
1001 return (0);
1004 static void
1005 spa_change_guid_sync(void *arg, dmu_tx_t *tx)
1007 uint64_t *newguid = arg;
1008 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
1009 uint64_t oldguid;
1010 vdev_t *rvd = spa->spa_root_vdev;
1012 oldguid = spa_guid(spa);
1014 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
1015 rvd->vdev_guid = *newguid;
1016 rvd->vdev_guid_sum += (*newguid - oldguid);
1017 vdev_config_dirty(rvd);
1018 spa_config_exit(spa, SCL_STATE, FTAG);
1020 spa_history_log_internal(spa, "guid change", tx, "old=%llu new=%llu",
1021 (u_longlong_t)oldguid, (u_longlong_t)*newguid);
1025 * Change the GUID for the pool. This is done so that we can later
1026 * re-import a pool built from a clone of our own vdevs. We will modify
1027 * the root vdev's guid, our own pool guid, and then mark all of our
1028 * vdevs dirty. Note that we must make sure that all our vdevs are
1029 * online when we do this, or else any vdevs that weren't present
1030 * would be orphaned from our pool. We are also going to issue a
1031 * sysevent to update any watchers.
1033 * The GUID of the pool will be changed to the value pointed to by guidp.
1034 * The GUID may not be set to the reserverd value of 0.
1035 * The new GUID will be generated if guidp is NULL.
1038 spa_change_guid(spa_t *spa, const uint64_t *guidp)
1040 uint64_t guid;
1041 int error;
1043 mutex_enter(&spa->spa_vdev_top_lock);
1044 mutex_enter(&spa_namespace_lock);
1046 if (guidp != NULL) {
1047 guid = *guidp;
1048 if (guid == 0) {
1049 error = SET_ERROR(EINVAL);
1050 goto out;
1053 if (spa_guid_exists(guid, 0)) {
1054 error = SET_ERROR(EEXIST);
1055 goto out;
1057 } else {
1058 guid = spa_generate_guid(NULL);
1061 error = dsl_sync_task(spa->spa_name, spa_change_guid_check,
1062 spa_change_guid_sync, &guid, 5, ZFS_SPACE_CHECK_RESERVED);
1064 if (error == 0) {
1066 * Clear the kobj flag from all the vdevs to allow
1067 * vdev_cache_process_kobj_evt() to post events to all the
1068 * vdevs since GUID is updated.
1070 vdev_clear_kobj_evt(spa->spa_root_vdev);
1071 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
1072 vdev_clear_kobj_evt(spa->spa_l2cache.sav_vdevs[i]);
1074 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
1075 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_REGUID);
1078 out:
1079 mutex_exit(&spa_namespace_lock);
1080 mutex_exit(&spa->spa_vdev_top_lock);
1082 return (error);
1086 * ==========================================================================
1087 * SPA state manipulation (open/create/destroy/import/export)
1088 * ==========================================================================
1091 static int
1092 spa_error_entry_compare(const void *a, const void *b)
1094 const spa_error_entry_t *sa = (const spa_error_entry_t *)a;
1095 const spa_error_entry_t *sb = (const spa_error_entry_t *)b;
1096 int ret;
1098 ret = memcmp(&sa->se_bookmark, &sb->se_bookmark,
1099 sizeof (zbookmark_phys_t));
1101 return (TREE_ISIGN(ret));
1105 * Utility function which retrieves copies of the current logs and
1106 * re-initializes them in the process.
1108 void
1109 spa_get_errlists(spa_t *spa, avl_tree_t *last, avl_tree_t *scrub)
1111 ASSERT(MUTEX_HELD(&spa->spa_errlist_lock));
1113 memcpy(last, &spa->spa_errlist_last, sizeof (avl_tree_t));
1114 memcpy(scrub, &spa->spa_errlist_scrub, sizeof (avl_tree_t));
1116 avl_create(&spa->spa_errlist_scrub,
1117 spa_error_entry_compare, sizeof (spa_error_entry_t),
1118 offsetof(spa_error_entry_t, se_avl));
1119 avl_create(&spa->spa_errlist_last,
1120 spa_error_entry_compare, sizeof (spa_error_entry_t),
1121 offsetof(spa_error_entry_t, se_avl));
1124 static void
1125 spa_taskqs_init(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1127 const zio_taskq_info_t *ztip = &zio_taskqs[t][q];
1128 enum zti_modes mode = ztip->zti_mode;
1129 uint_t value = ztip->zti_value;
1130 uint_t count = ztip->zti_count;
1131 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1132 uint_t cpus, flags = TASKQ_DYNAMIC;
1134 switch (mode) {
1135 case ZTI_MODE_FIXED:
1136 ASSERT3U(value, >, 0);
1137 break;
1139 case ZTI_MODE_SYNC:
1142 * Create one wr_iss taskq for every 'zio_taskq_write_tpq' CPUs,
1143 * not to exceed the number of spa allocators, and align to it.
1145 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1146 count = MAX(1, cpus / MAX(1, zio_taskq_write_tpq));
1147 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1148 count = MIN(count, spa->spa_alloc_count);
1149 while (spa->spa_alloc_count % count != 0 &&
1150 spa->spa_alloc_count < count * 2)
1151 count--;
1154 * zio_taskq_batch_pct is unbounded and may exceed 100%, but no
1155 * single taskq may have more threads than 100% of online cpus.
1157 value = (zio_taskq_batch_pct + count / 2) / count;
1158 value = MIN(value, 100);
1159 flags |= TASKQ_THREADS_CPU_PCT;
1160 break;
1162 case ZTI_MODE_SCALE:
1163 flags |= TASKQ_THREADS_CPU_PCT;
1165 * We want more taskqs to reduce lock contention, but we want
1166 * less for better request ordering and CPU utilization.
1168 cpus = MAX(1, boot_ncpus * zio_taskq_batch_pct / 100);
1169 if (zio_taskq_batch_tpq > 0) {
1170 count = MAX(1, (cpus + zio_taskq_batch_tpq / 2) /
1171 zio_taskq_batch_tpq);
1172 } else {
1174 * Prefer 6 threads per taskq, but no more taskqs
1175 * than threads in them on large systems. For 80%:
1177 * taskq taskq total
1178 * cpus taskqs percent threads threads
1179 * ------- ------- ------- ------- -------
1180 * 1 1 80% 1 1
1181 * 2 1 80% 1 1
1182 * 4 1 80% 3 3
1183 * 8 2 40% 3 6
1184 * 16 3 27% 4 12
1185 * 32 5 16% 5 25
1186 * 64 7 11% 7 49
1187 * 128 10 8% 10 100
1188 * 256 14 6% 15 210
1190 count = 1 + cpus / 6;
1191 while (count * count > cpus)
1192 count--;
1194 /* Limit each taskq within 100% to not trigger assertion. */
1195 count = MAX(count, (zio_taskq_batch_pct + 99) / 100);
1196 value = (zio_taskq_batch_pct + count / 2) / count;
1197 break;
1199 case ZTI_MODE_NULL:
1200 tqs->stqs_count = 0;
1201 tqs->stqs_taskq = NULL;
1202 return;
1204 default:
1205 panic("unrecognized mode for %s_%s taskq (%u:%u) in "
1206 "spa_taskqs_init()",
1207 zio_type_name[t], zio_taskq_types[q], mode, value);
1208 break;
1211 ASSERT3U(count, >, 0);
1212 tqs->stqs_count = count;
1213 tqs->stqs_taskq = kmem_alloc(count * sizeof (taskq_t *), KM_SLEEP);
1215 for (uint_t i = 0; i < count; i++) {
1216 taskq_t *tq;
1217 char name[32];
1219 if (count > 1)
1220 (void) snprintf(name, sizeof (name), "%s_%s_%u",
1221 zio_type_name[t], zio_taskq_types[q], i);
1222 else
1223 (void) snprintf(name, sizeof (name), "%s_%s",
1224 zio_type_name[t], zio_taskq_types[q]);
1226 #ifdef HAVE_SYSDC
1227 if (zio_taskq_sysdc && spa->spa_proc != &p0) {
1228 (void) zio_taskq_basedc;
1229 tq = taskq_create_sysdc(name, value, 50, INT_MAX,
1230 spa->spa_proc, zio_taskq_basedc, flags);
1231 } else {
1232 #endif
1233 pri_t pri = maxclsyspri;
1235 * The write issue taskq can be extremely CPU
1236 * intensive. Run it at slightly less important
1237 * priority than the other taskqs.
1239 * Under Linux and FreeBSD this means incrementing
1240 * the priority value as opposed to platforms like
1241 * illumos where it should be decremented.
1243 * On FreeBSD, if priorities divided by four (RQ_PPQ)
1244 * are equal then a difference between them is
1245 * insignificant.
1247 if (t == ZIO_TYPE_WRITE && q == ZIO_TASKQ_ISSUE) {
1248 #if defined(__linux__)
1249 pri++;
1250 #elif defined(__FreeBSD__)
1251 pri += 4;
1252 #else
1253 #error "unknown OS"
1254 #endif
1256 tq = taskq_create_proc(name, value, pri, 50,
1257 INT_MAX, spa->spa_proc, flags);
1258 #ifdef HAVE_SYSDC
1260 #endif
1262 tqs->stqs_taskq[i] = tq;
1266 static void
1267 spa_taskqs_fini(spa_t *spa, zio_type_t t, zio_taskq_type_t q)
1269 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1271 if (tqs->stqs_taskq == NULL) {
1272 ASSERT3U(tqs->stqs_count, ==, 0);
1273 return;
1276 for (uint_t i = 0; i < tqs->stqs_count; i++) {
1277 ASSERT3P(tqs->stqs_taskq[i], !=, NULL);
1278 taskq_destroy(tqs->stqs_taskq[i]);
1281 kmem_free(tqs->stqs_taskq, tqs->stqs_count * sizeof (taskq_t *));
1282 tqs->stqs_taskq = NULL;
1285 #ifdef _KERNEL
1287 * The READ and WRITE rows of zio_taskqs are configurable at module load time
1288 * by setting zio_taskq_read or zio_taskq_write.
1290 * Example (the defaults for READ and WRITE)
1291 * zio_taskq_read='fixed,1,8 null scale null'
1292 * zio_taskq_write='sync null scale null'
1294 * Each sets the entire row at a time.
1296 * 'fixed' is parameterised: fixed,Q,T where Q is number of taskqs, T is number
1297 * of threads per taskq.
1299 * 'null' can only be set on the high-priority queues (queue selection for
1300 * high-priority queues will fall back to the regular queue if the high-pri
1301 * is NULL.
1303 static const char *const modes[ZTI_NMODES] = {
1304 "fixed", "scale", "sync", "null"
1307 /* Parse the incoming config string. Modifies cfg */
1308 static int
1309 spa_taskq_param_set(zio_type_t t, char *cfg)
1311 int err = 0;
1313 zio_taskq_info_t row[ZIO_TASKQ_TYPES] = {{0}};
1315 char *next = cfg, *tok, *c;
1318 * Parse out each element from the string and fill `row`. The entire
1319 * row has to be set at once, so any errors are flagged by just
1320 * breaking out of this loop early.
1322 uint_t q;
1323 for (q = 0; q < ZIO_TASKQ_TYPES; q++) {
1324 /* `next` is the start of the config */
1325 if (next == NULL)
1326 break;
1328 /* Eat up leading space */
1329 while (isspace(*next))
1330 next++;
1331 if (*next == '\0')
1332 break;
1334 /* Mode ends at space or end of string */
1335 tok = next;
1336 next = strchr(tok, ' ');
1337 if (next != NULL) *next++ = '\0';
1339 /* Parameters start after a comma */
1340 c = strchr(tok, ',');
1341 if (c != NULL) *c++ = '\0';
1343 /* Match mode string */
1344 uint_t mode;
1345 for (mode = 0; mode < ZTI_NMODES; mode++)
1346 if (strcmp(tok, modes[mode]) == 0)
1347 break;
1348 if (mode == ZTI_NMODES)
1349 break;
1351 /* Invalid canary */
1352 row[q].zti_mode = ZTI_NMODES;
1354 /* Per-mode setup */
1355 switch (mode) {
1358 * FIXED is parameterised: number of queues, and number of
1359 * threads per queue.
1361 case ZTI_MODE_FIXED: {
1362 /* No parameters? */
1363 if (c == NULL || *c == '\0')
1364 break;
1366 /* Find next parameter */
1367 tok = c;
1368 c = strchr(tok, ',');
1369 if (c == NULL)
1370 break;
1372 /* Take digits and convert */
1373 unsigned long long nq;
1374 if (!(isdigit(*tok)))
1375 break;
1376 err = ddi_strtoull(tok, &tok, 10, &nq);
1377 /* Must succeed and also end at the next param sep */
1378 if (err != 0 || tok != c)
1379 break;
1381 /* Move past the comma */
1382 tok++;
1383 /* Need another number */
1384 if (!(isdigit(*tok)))
1385 break;
1386 /* Remember start to make sure we moved */
1387 c = tok;
1389 /* Take digits */
1390 unsigned long long ntpq;
1391 err = ddi_strtoull(tok, &tok, 10, &ntpq);
1392 /* Must succeed, and moved forward */
1393 if (err != 0 || tok == c || *tok != '\0')
1394 break;
1397 * sanity; zero queues/threads make no sense, and
1398 * 16K is almost certainly more than anyone will ever
1399 * need and avoids silly numbers like UINT32_MAX
1401 if (nq == 0 || nq >= 16384 ||
1402 ntpq == 0 || ntpq >= 16384)
1403 break;
1405 const zio_taskq_info_t zti = ZTI_P(ntpq, nq);
1406 row[q] = zti;
1407 break;
1410 case ZTI_MODE_SCALE: {
1411 const zio_taskq_info_t zti = ZTI_SCALE;
1412 row[q] = zti;
1413 break;
1416 case ZTI_MODE_SYNC: {
1417 const zio_taskq_info_t zti = ZTI_SYNC;
1418 row[q] = zti;
1419 break;
1422 case ZTI_MODE_NULL: {
1424 * Can only null the high-priority queues; the general-
1425 * purpose ones have to exist.
1427 if (q != ZIO_TASKQ_ISSUE_HIGH &&
1428 q != ZIO_TASKQ_INTERRUPT_HIGH)
1429 break;
1431 const zio_taskq_info_t zti = ZTI_NULL;
1432 row[q] = zti;
1433 break;
1436 default:
1437 break;
1440 /* Ensure we set a mode */
1441 if (row[q].zti_mode == ZTI_NMODES)
1442 break;
1445 /* Didn't get a full row, fail */
1446 if (q < ZIO_TASKQ_TYPES)
1447 return (SET_ERROR(EINVAL));
1449 /* Eat trailing space */
1450 if (next != NULL)
1451 while (isspace(*next))
1452 next++;
1454 /* If there's anything left over then fail */
1455 if (next != NULL && *next != '\0')
1456 return (SET_ERROR(EINVAL));
1458 /* Success! Copy it into the real config */
1459 for (q = 0; q < ZIO_TASKQ_TYPES; q++)
1460 zio_taskqs[t][q] = row[q];
1462 return (0);
1465 static int
1466 spa_taskq_param_get(zio_type_t t, char *buf, boolean_t add_newline)
1468 int pos = 0;
1470 /* Build paramater string from live config */
1471 const char *sep = "";
1472 for (uint_t q = 0; q < ZIO_TASKQ_TYPES; q++) {
1473 const zio_taskq_info_t *zti = &zio_taskqs[t][q];
1474 if (zti->zti_mode == ZTI_MODE_FIXED)
1475 pos += sprintf(&buf[pos], "%s%s,%u,%u", sep,
1476 modes[zti->zti_mode], zti->zti_count,
1477 zti->zti_value);
1478 else
1479 pos += sprintf(&buf[pos], "%s%s", sep,
1480 modes[zti->zti_mode]);
1481 sep = " ";
1484 if (add_newline)
1485 buf[pos++] = '\n';
1486 buf[pos] = '\0';
1488 return (pos);
1491 #ifdef __linux__
1492 static int
1493 spa_taskq_read_param_set(const char *val, zfs_kernel_param_t *kp)
1495 char *cfg = kmem_strdup(val);
1496 int err = spa_taskq_param_set(ZIO_TYPE_READ, cfg);
1497 kmem_free(cfg, strlen(val)+1);
1498 return (-err);
1500 static int
1501 spa_taskq_read_param_get(char *buf, zfs_kernel_param_t *kp)
1503 return (spa_taskq_param_get(ZIO_TYPE_READ, buf, TRUE));
1506 static int
1507 spa_taskq_write_param_set(const char *val, zfs_kernel_param_t *kp)
1509 char *cfg = kmem_strdup(val);
1510 int err = spa_taskq_param_set(ZIO_TYPE_WRITE, cfg);
1511 kmem_free(cfg, strlen(val)+1);
1512 return (-err);
1514 static int
1515 spa_taskq_write_param_get(char *buf, zfs_kernel_param_t *kp)
1517 return (spa_taskq_param_get(ZIO_TYPE_WRITE, buf, TRUE));
1519 #else
1521 * On FreeBSD load-time parameters can be set up before malloc() is available,
1522 * so we have to do all the parsing work on the stack.
1524 #define SPA_TASKQ_PARAM_MAX (128)
1526 static int
1527 spa_taskq_read_param(ZFS_MODULE_PARAM_ARGS)
1529 char buf[SPA_TASKQ_PARAM_MAX];
1530 int err;
1532 (void) spa_taskq_param_get(ZIO_TYPE_READ, buf, FALSE);
1533 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1534 if (err || req->newptr == NULL)
1535 return (err);
1536 return (spa_taskq_param_set(ZIO_TYPE_READ, buf));
1539 static int
1540 spa_taskq_write_param(ZFS_MODULE_PARAM_ARGS)
1542 char buf[SPA_TASKQ_PARAM_MAX];
1543 int err;
1545 (void) spa_taskq_param_get(ZIO_TYPE_WRITE, buf, FALSE);
1546 err = sysctl_handle_string(oidp, buf, sizeof (buf), req);
1547 if (err || req->newptr == NULL)
1548 return (err);
1549 return (spa_taskq_param_set(ZIO_TYPE_WRITE, buf));
1551 #endif
1552 #endif /* _KERNEL */
1555 * Dispatch a task to the appropriate taskq for the ZFS I/O type and priority.
1556 * Note that a type may have multiple discrete taskqs to avoid lock contention
1557 * on the taskq itself.
1559 void
1560 spa_taskq_dispatch(spa_t *spa, zio_type_t t, zio_taskq_type_t q,
1561 task_func_t *func, zio_t *zio, boolean_t cutinline)
1563 spa_taskqs_t *tqs = &spa->spa_zio_taskq[t][q];
1564 taskq_t *tq;
1566 ASSERT3P(tqs->stqs_taskq, !=, NULL);
1567 ASSERT3U(tqs->stqs_count, !=, 0);
1570 * NB: We are assuming that the zio can only be dispatched
1571 * to a single taskq at a time. It would be a grievous error
1572 * to dispatch the zio to another taskq at the same time.
1574 ASSERT(zio);
1575 ASSERT(taskq_empty_ent(&zio->io_tqent));
1577 if (tqs->stqs_count == 1) {
1578 tq = tqs->stqs_taskq[0];
1579 } else if ((t == ZIO_TYPE_WRITE) && (q == ZIO_TASKQ_ISSUE) &&
1580 ZIO_HAS_ALLOCATOR(zio)) {
1581 tq = tqs->stqs_taskq[zio->io_allocator % tqs->stqs_count];
1582 } else {
1583 tq = tqs->stqs_taskq[((uint64_t)gethrtime()) % tqs->stqs_count];
1586 taskq_dispatch_ent(tq, func, zio, cutinline ? TQ_FRONT : 0,
1587 &zio->io_tqent);
1590 static void
1591 spa_create_zio_taskqs(spa_t *spa)
1593 for (int t = 0; t < ZIO_TYPES; t++) {
1594 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1595 spa_taskqs_init(spa, t, q);
1600 #if defined(_KERNEL) && defined(HAVE_SPA_THREAD)
1601 static void
1602 spa_thread(void *arg)
1604 psetid_t zio_taskq_psrset_bind = PS_NONE;
1605 callb_cpr_t cprinfo;
1607 spa_t *spa = arg;
1608 user_t *pu = PTOU(curproc);
1610 CALLB_CPR_INIT(&cprinfo, &spa->spa_proc_lock, callb_generic_cpr,
1611 spa->spa_name);
1613 ASSERT(curproc != &p0);
1614 (void) snprintf(pu->u_psargs, sizeof (pu->u_psargs),
1615 "zpool-%s", spa->spa_name);
1616 (void) strlcpy(pu->u_comm, pu->u_psargs, sizeof (pu->u_comm));
1618 /* bind this thread to the requested psrset */
1619 if (zio_taskq_psrset_bind != PS_NONE) {
1620 pool_lock();
1621 mutex_enter(&cpu_lock);
1622 mutex_enter(&pidlock);
1623 mutex_enter(&curproc->p_lock);
1625 if (cpupart_bind_thread(curthread, zio_taskq_psrset_bind,
1626 0, NULL, NULL) == 0) {
1627 curthread->t_bind_pset = zio_taskq_psrset_bind;
1628 } else {
1629 cmn_err(CE_WARN,
1630 "Couldn't bind process for zfs pool \"%s\" to "
1631 "pset %d\n", spa->spa_name, zio_taskq_psrset_bind);
1634 mutex_exit(&curproc->p_lock);
1635 mutex_exit(&pidlock);
1636 mutex_exit(&cpu_lock);
1637 pool_unlock();
1640 #ifdef HAVE_SYSDC
1641 if (zio_taskq_sysdc) {
1642 sysdc_thread_enter(curthread, 100, 0);
1644 #endif
1646 spa->spa_proc = curproc;
1647 spa->spa_did = curthread->t_did;
1649 spa_create_zio_taskqs(spa);
1651 mutex_enter(&spa->spa_proc_lock);
1652 ASSERT(spa->spa_proc_state == SPA_PROC_CREATED);
1654 spa->spa_proc_state = SPA_PROC_ACTIVE;
1655 cv_broadcast(&spa->spa_proc_cv);
1657 CALLB_CPR_SAFE_BEGIN(&cprinfo);
1658 while (spa->spa_proc_state == SPA_PROC_ACTIVE)
1659 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1660 CALLB_CPR_SAFE_END(&cprinfo, &spa->spa_proc_lock);
1662 ASSERT(spa->spa_proc_state == SPA_PROC_DEACTIVATE);
1663 spa->spa_proc_state = SPA_PROC_GONE;
1664 spa->spa_proc = &p0;
1665 cv_broadcast(&spa->spa_proc_cv);
1666 CALLB_CPR_EXIT(&cprinfo); /* drops spa_proc_lock */
1668 mutex_enter(&curproc->p_lock);
1669 lwp_exit();
1671 #endif
1673 extern metaslab_ops_t *metaslab_allocator(spa_t *spa);
1676 * Activate an uninitialized pool.
1678 static void
1679 spa_activate(spa_t *spa, spa_mode_t mode)
1681 metaslab_ops_t *msp = metaslab_allocator(spa);
1682 ASSERT(spa->spa_state == POOL_STATE_UNINITIALIZED);
1684 spa->spa_state = POOL_STATE_ACTIVE;
1685 spa->spa_mode = mode;
1686 spa->spa_read_spacemaps = spa_mode_readable_spacemaps;
1688 spa->spa_normal_class = metaslab_class_create(spa, msp);
1689 spa->spa_log_class = metaslab_class_create(spa, msp);
1690 spa->spa_embedded_log_class = metaslab_class_create(spa, msp);
1691 spa->spa_special_class = metaslab_class_create(spa, msp);
1692 spa->spa_dedup_class = metaslab_class_create(spa, msp);
1694 /* Try to create a covering process */
1695 mutex_enter(&spa->spa_proc_lock);
1696 ASSERT(spa->spa_proc_state == SPA_PROC_NONE);
1697 ASSERT(spa->spa_proc == &p0);
1698 spa->spa_did = 0;
1700 #ifdef HAVE_SPA_THREAD
1701 /* Only create a process if we're going to be around a while. */
1702 if (spa_create_process && strcmp(spa->spa_name, TRYIMPORT_NAME) != 0) {
1703 if (newproc(spa_thread, (caddr_t)spa, syscid, maxclsyspri,
1704 NULL, 0) == 0) {
1705 spa->spa_proc_state = SPA_PROC_CREATED;
1706 while (spa->spa_proc_state == SPA_PROC_CREATED) {
1707 cv_wait(&spa->spa_proc_cv,
1708 &spa->spa_proc_lock);
1710 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1711 ASSERT(spa->spa_proc != &p0);
1712 ASSERT(spa->spa_did != 0);
1713 } else {
1714 #ifdef _KERNEL
1715 cmn_err(CE_WARN,
1716 "Couldn't create process for zfs pool \"%s\"\n",
1717 spa->spa_name);
1718 #endif
1721 #endif /* HAVE_SPA_THREAD */
1722 mutex_exit(&spa->spa_proc_lock);
1724 /* If we didn't create a process, we need to create our taskqs. */
1725 if (spa->spa_proc == &p0) {
1726 spa_create_zio_taskqs(spa);
1729 for (size_t i = 0; i < TXG_SIZE; i++) {
1730 spa->spa_txg_zio[i] = zio_root(spa, NULL, NULL,
1731 ZIO_FLAG_CANFAIL);
1734 list_create(&spa->spa_config_dirty_list, sizeof (vdev_t),
1735 offsetof(vdev_t, vdev_config_dirty_node));
1736 list_create(&spa->spa_evicting_os_list, sizeof (objset_t),
1737 offsetof(objset_t, os_evicting_node));
1738 list_create(&spa->spa_state_dirty_list, sizeof (vdev_t),
1739 offsetof(vdev_t, vdev_state_dirty_node));
1741 txg_list_create(&spa->spa_vdev_txg_list, spa,
1742 offsetof(struct vdev, vdev_txg_node));
1744 avl_create(&spa->spa_errlist_scrub,
1745 spa_error_entry_compare, sizeof (spa_error_entry_t),
1746 offsetof(spa_error_entry_t, se_avl));
1747 avl_create(&spa->spa_errlist_last,
1748 spa_error_entry_compare, sizeof (spa_error_entry_t),
1749 offsetof(spa_error_entry_t, se_avl));
1750 avl_create(&spa->spa_errlist_healed,
1751 spa_error_entry_compare, sizeof (spa_error_entry_t),
1752 offsetof(spa_error_entry_t, se_avl));
1754 spa_activate_os(spa);
1756 spa_keystore_init(&spa->spa_keystore);
1759 * This taskq is used to perform zvol-minor-related tasks
1760 * asynchronously. This has several advantages, including easy
1761 * resolution of various deadlocks.
1763 * The taskq must be single threaded to ensure tasks are always
1764 * processed in the order in which they were dispatched.
1766 * A taskq per pool allows one to keep the pools independent.
1767 * This way if one pool is suspended, it will not impact another.
1769 * The preferred location to dispatch a zvol minor task is a sync
1770 * task. In this context, there is easy access to the spa_t and minimal
1771 * error handling is required because the sync task must succeed.
1773 spa->spa_zvol_taskq = taskq_create("z_zvol", 1, defclsyspri,
1774 1, INT_MAX, 0);
1777 * The taskq to preload metaslabs.
1779 spa->spa_metaslab_taskq = taskq_create("z_metaslab",
1780 metaslab_preload_pct, maxclsyspri, 1, INT_MAX,
1781 TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1784 * Taskq dedicated to prefetcher threads: this is used to prevent the
1785 * pool traverse code from monopolizing the global (and limited)
1786 * system_taskq by inappropriately scheduling long running tasks on it.
1788 spa->spa_prefetch_taskq = taskq_create("z_prefetch", 100,
1789 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1792 * The taskq to upgrade datasets in this pool. Currently used by
1793 * feature SPA_FEATURE_USEROBJ_ACCOUNTING/SPA_FEATURE_PROJECT_QUOTA.
1795 spa->spa_upgrade_taskq = taskq_create("z_upgrade", 100,
1796 defclsyspri, 1, INT_MAX, TASKQ_DYNAMIC | TASKQ_THREADS_CPU_PCT);
1800 * Opposite of spa_activate().
1802 static void
1803 spa_deactivate(spa_t *spa)
1805 ASSERT(spa->spa_sync_on == B_FALSE);
1806 ASSERT(spa->spa_dsl_pool == NULL);
1807 ASSERT(spa->spa_root_vdev == NULL);
1808 ASSERT(spa->spa_async_zio_root == NULL);
1809 ASSERT(spa->spa_state != POOL_STATE_UNINITIALIZED);
1811 spa_evicting_os_wait(spa);
1813 if (spa->spa_zvol_taskq) {
1814 taskq_destroy(spa->spa_zvol_taskq);
1815 spa->spa_zvol_taskq = NULL;
1818 if (spa->spa_metaslab_taskq) {
1819 taskq_destroy(spa->spa_metaslab_taskq);
1820 spa->spa_metaslab_taskq = NULL;
1823 if (spa->spa_prefetch_taskq) {
1824 taskq_destroy(spa->spa_prefetch_taskq);
1825 spa->spa_prefetch_taskq = NULL;
1828 if (spa->spa_upgrade_taskq) {
1829 taskq_destroy(spa->spa_upgrade_taskq);
1830 spa->spa_upgrade_taskq = NULL;
1833 txg_list_destroy(&spa->spa_vdev_txg_list);
1835 list_destroy(&spa->spa_config_dirty_list);
1836 list_destroy(&spa->spa_evicting_os_list);
1837 list_destroy(&spa->spa_state_dirty_list);
1839 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
1841 for (int t = 0; t < ZIO_TYPES; t++) {
1842 for (int q = 0; q < ZIO_TASKQ_TYPES; q++) {
1843 spa_taskqs_fini(spa, t, q);
1847 for (size_t i = 0; i < TXG_SIZE; i++) {
1848 ASSERT3P(spa->spa_txg_zio[i], !=, NULL);
1849 VERIFY0(zio_wait(spa->spa_txg_zio[i]));
1850 spa->spa_txg_zio[i] = NULL;
1853 metaslab_class_destroy(spa->spa_normal_class);
1854 spa->spa_normal_class = NULL;
1856 metaslab_class_destroy(spa->spa_log_class);
1857 spa->spa_log_class = NULL;
1859 metaslab_class_destroy(spa->spa_embedded_log_class);
1860 spa->spa_embedded_log_class = NULL;
1862 metaslab_class_destroy(spa->spa_special_class);
1863 spa->spa_special_class = NULL;
1865 metaslab_class_destroy(spa->spa_dedup_class);
1866 spa->spa_dedup_class = NULL;
1869 * If this was part of an import or the open otherwise failed, we may
1870 * still have errors left in the queues. Empty them just in case.
1872 spa_errlog_drain(spa);
1873 avl_destroy(&spa->spa_errlist_scrub);
1874 avl_destroy(&spa->spa_errlist_last);
1875 avl_destroy(&spa->spa_errlist_healed);
1877 spa_keystore_fini(&spa->spa_keystore);
1879 spa->spa_state = POOL_STATE_UNINITIALIZED;
1881 mutex_enter(&spa->spa_proc_lock);
1882 if (spa->spa_proc_state != SPA_PROC_NONE) {
1883 ASSERT(spa->spa_proc_state == SPA_PROC_ACTIVE);
1884 spa->spa_proc_state = SPA_PROC_DEACTIVATE;
1885 cv_broadcast(&spa->spa_proc_cv);
1886 while (spa->spa_proc_state == SPA_PROC_DEACTIVATE) {
1887 ASSERT(spa->spa_proc != &p0);
1888 cv_wait(&spa->spa_proc_cv, &spa->spa_proc_lock);
1890 ASSERT(spa->spa_proc_state == SPA_PROC_GONE);
1891 spa->spa_proc_state = SPA_PROC_NONE;
1893 ASSERT(spa->spa_proc == &p0);
1894 mutex_exit(&spa->spa_proc_lock);
1897 * We want to make sure spa_thread() has actually exited the ZFS
1898 * module, so that the module can't be unloaded out from underneath
1899 * it.
1901 if (spa->spa_did != 0) {
1902 thread_join(spa->spa_did);
1903 spa->spa_did = 0;
1906 spa_deactivate_os(spa);
1911 * Verify a pool configuration, and construct the vdev tree appropriately. This
1912 * will create all the necessary vdevs in the appropriate layout, with each vdev
1913 * in the CLOSED state. This will prep the pool before open/creation/import.
1914 * All vdev validation is done by the vdev_alloc() routine.
1917 spa_config_parse(spa_t *spa, vdev_t **vdp, nvlist_t *nv, vdev_t *parent,
1918 uint_t id, int atype)
1920 nvlist_t **child;
1921 uint_t children;
1922 int error;
1924 if ((error = vdev_alloc(spa, vdp, nv, parent, id, atype)) != 0)
1925 return (error);
1927 if ((*vdp)->vdev_ops->vdev_op_leaf)
1928 return (0);
1930 error = nvlist_lookup_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
1931 &child, &children);
1933 if (error == ENOENT)
1934 return (0);
1936 if (error) {
1937 vdev_free(*vdp);
1938 *vdp = NULL;
1939 return (SET_ERROR(EINVAL));
1942 for (int c = 0; c < children; c++) {
1943 vdev_t *vd;
1944 if ((error = spa_config_parse(spa, &vd, child[c], *vdp, c,
1945 atype)) != 0) {
1946 vdev_free(*vdp);
1947 *vdp = NULL;
1948 return (error);
1952 ASSERT(*vdp != NULL);
1954 return (0);
1957 static boolean_t
1958 spa_should_flush_logs_on_unload(spa_t *spa)
1960 if (!spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP))
1961 return (B_FALSE);
1963 if (!spa_writeable(spa))
1964 return (B_FALSE);
1966 if (!spa->spa_sync_on)
1967 return (B_FALSE);
1969 if (spa_state(spa) != POOL_STATE_EXPORTED)
1970 return (B_FALSE);
1972 if (zfs_keep_log_spacemaps_at_export)
1973 return (B_FALSE);
1975 return (B_TRUE);
1979 * Opens a transaction that will set the flag that will instruct
1980 * spa_sync to attempt to flush all the metaslabs for that txg.
1982 static void
1983 spa_unload_log_sm_flush_all(spa_t *spa)
1985 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
1986 VERIFY0(dmu_tx_assign(tx, TXG_WAIT));
1988 ASSERT3U(spa->spa_log_flushall_txg, ==, 0);
1989 spa->spa_log_flushall_txg = dmu_tx_get_txg(tx);
1991 dmu_tx_commit(tx);
1992 txg_wait_synced(spa_get_dsl(spa), spa->spa_log_flushall_txg);
1995 static void
1996 spa_unload_log_sm_metadata(spa_t *spa)
1998 void *cookie = NULL;
1999 spa_log_sm_t *sls;
2000 log_summary_entry_t *e;
2002 while ((sls = avl_destroy_nodes(&spa->spa_sm_logs_by_txg,
2003 &cookie)) != NULL) {
2004 VERIFY0(sls->sls_mscount);
2005 kmem_free(sls, sizeof (spa_log_sm_t));
2008 while ((e = list_remove_head(&spa->spa_log_summary)) != NULL) {
2009 VERIFY0(e->lse_mscount);
2010 kmem_free(e, sizeof (log_summary_entry_t));
2013 spa->spa_unflushed_stats.sus_nblocks = 0;
2014 spa->spa_unflushed_stats.sus_memused = 0;
2015 spa->spa_unflushed_stats.sus_blocklimit = 0;
2018 static void
2019 spa_destroy_aux_threads(spa_t *spa)
2021 if (spa->spa_condense_zthr != NULL) {
2022 zthr_destroy(spa->spa_condense_zthr);
2023 spa->spa_condense_zthr = NULL;
2025 if (spa->spa_checkpoint_discard_zthr != NULL) {
2026 zthr_destroy(spa->spa_checkpoint_discard_zthr);
2027 spa->spa_checkpoint_discard_zthr = NULL;
2029 if (spa->spa_livelist_delete_zthr != NULL) {
2030 zthr_destroy(spa->spa_livelist_delete_zthr);
2031 spa->spa_livelist_delete_zthr = NULL;
2033 if (spa->spa_livelist_condense_zthr != NULL) {
2034 zthr_destroy(spa->spa_livelist_condense_zthr);
2035 spa->spa_livelist_condense_zthr = NULL;
2037 if (spa->spa_raidz_expand_zthr != NULL) {
2038 zthr_destroy(spa->spa_raidz_expand_zthr);
2039 spa->spa_raidz_expand_zthr = NULL;
2044 * Opposite of spa_load().
2046 static void
2047 spa_unload(spa_t *spa)
2049 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
2050 spa->spa_export_thread == curthread);
2051 ASSERT(spa_state(spa) != POOL_STATE_UNINITIALIZED);
2053 spa_import_progress_remove(spa_guid(spa));
2054 spa_load_note(spa, "UNLOADING");
2056 spa_wake_waiters(spa);
2059 * If we have set the spa_final_txg, we have already performed the
2060 * tasks below in spa_export_common(). We should not redo it here since
2061 * we delay the final TXGs beyond what spa_final_txg is set at.
2063 if (spa->spa_final_txg == UINT64_MAX) {
2065 * If the log space map feature is enabled and the pool is
2066 * getting exported (but not destroyed), we want to spend some
2067 * time flushing as many metaslabs as we can in an attempt to
2068 * destroy log space maps and save import time.
2070 if (spa_should_flush_logs_on_unload(spa))
2071 spa_unload_log_sm_flush_all(spa);
2074 * Stop async tasks.
2076 spa_async_suspend(spa);
2078 if (spa->spa_root_vdev) {
2079 vdev_t *root_vdev = spa->spa_root_vdev;
2080 vdev_initialize_stop_all(root_vdev,
2081 VDEV_INITIALIZE_ACTIVE);
2082 vdev_trim_stop_all(root_vdev, VDEV_TRIM_ACTIVE);
2083 vdev_autotrim_stop_all(spa);
2084 vdev_rebuild_stop_all(spa);
2085 l2arc_spa_rebuild_stop(spa);
2090 * Stop syncing.
2092 if (spa->spa_sync_on) {
2093 txg_sync_stop(spa->spa_dsl_pool);
2094 spa->spa_sync_on = B_FALSE;
2098 * This ensures that there is no async metaslab prefetching
2099 * while we attempt to unload the spa.
2101 taskq_wait(spa->spa_metaslab_taskq);
2103 if (spa->spa_mmp.mmp_thread)
2104 mmp_thread_stop(spa);
2107 * Wait for any outstanding async I/O to complete.
2109 if (spa->spa_async_zio_root != NULL) {
2110 for (int i = 0; i < max_ncpus; i++)
2111 (void) zio_wait(spa->spa_async_zio_root[i]);
2112 kmem_free(spa->spa_async_zio_root, max_ncpus * sizeof (void *));
2113 spa->spa_async_zio_root = NULL;
2116 if (spa->spa_vdev_removal != NULL) {
2117 spa_vdev_removal_destroy(spa->spa_vdev_removal);
2118 spa->spa_vdev_removal = NULL;
2121 spa_destroy_aux_threads(spa);
2123 spa_condense_fini(spa);
2125 bpobj_close(&spa->spa_deferred_bpobj);
2127 spa_config_enter(spa, SCL_ALL, spa, RW_WRITER);
2130 * Close all vdevs.
2132 if (spa->spa_root_vdev)
2133 vdev_free(spa->spa_root_vdev);
2134 ASSERT(spa->spa_root_vdev == NULL);
2137 * Close the dsl pool.
2139 if (spa->spa_dsl_pool) {
2140 dsl_pool_close(spa->spa_dsl_pool);
2141 spa->spa_dsl_pool = NULL;
2142 spa->spa_meta_objset = NULL;
2145 ddt_unload(spa);
2146 brt_unload(spa);
2147 spa_unload_log_sm_metadata(spa);
2150 * Drop and purge level 2 cache
2152 spa_l2cache_drop(spa);
2154 if (spa->spa_spares.sav_vdevs) {
2155 for (int i = 0; i < spa->spa_spares.sav_count; i++)
2156 vdev_free(spa->spa_spares.sav_vdevs[i]);
2157 kmem_free(spa->spa_spares.sav_vdevs,
2158 spa->spa_spares.sav_count * sizeof (void *));
2159 spa->spa_spares.sav_vdevs = NULL;
2161 if (spa->spa_spares.sav_config) {
2162 nvlist_free(spa->spa_spares.sav_config);
2163 spa->spa_spares.sav_config = NULL;
2165 spa->spa_spares.sav_count = 0;
2167 if (spa->spa_l2cache.sav_vdevs) {
2168 for (int i = 0; i < spa->spa_l2cache.sav_count; i++) {
2169 vdev_clear_stats(spa->spa_l2cache.sav_vdevs[i]);
2170 vdev_free(spa->spa_l2cache.sav_vdevs[i]);
2172 kmem_free(spa->spa_l2cache.sav_vdevs,
2173 spa->spa_l2cache.sav_count * sizeof (void *));
2174 spa->spa_l2cache.sav_vdevs = NULL;
2176 if (spa->spa_l2cache.sav_config) {
2177 nvlist_free(spa->spa_l2cache.sav_config);
2178 spa->spa_l2cache.sav_config = NULL;
2180 spa->spa_l2cache.sav_count = 0;
2182 spa->spa_async_suspended = 0;
2184 spa->spa_indirect_vdevs_loaded = B_FALSE;
2186 if (spa->spa_comment != NULL) {
2187 spa_strfree(spa->spa_comment);
2188 spa->spa_comment = NULL;
2190 if (spa->spa_compatibility != NULL) {
2191 spa_strfree(spa->spa_compatibility);
2192 spa->spa_compatibility = NULL;
2195 spa->spa_raidz_expand = NULL;
2197 spa_config_exit(spa, SCL_ALL, spa);
2201 * Load (or re-load) the current list of vdevs describing the active spares for
2202 * this pool. When this is called, we have some form of basic information in
2203 * 'spa_spares.sav_config'. We parse this into vdevs, try to open them, and
2204 * then re-generate a more complete list including status information.
2206 void
2207 spa_load_spares(spa_t *spa)
2209 nvlist_t **spares;
2210 uint_t nspares;
2211 int i;
2212 vdev_t *vd, *tvd;
2214 #ifndef _KERNEL
2216 * zdb opens both the current state of the pool and the
2217 * checkpointed state (if present), with a different spa_t.
2219 * As spare vdevs are shared among open pools, we skip loading
2220 * them when we load the checkpointed state of the pool.
2222 if (!spa_writeable(spa))
2223 return;
2224 #endif
2226 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2229 * First, close and free any existing spare vdevs.
2231 if (spa->spa_spares.sav_vdevs) {
2232 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2233 vd = spa->spa_spares.sav_vdevs[i];
2235 /* Undo the call to spa_activate() below */
2236 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2237 B_FALSE)) != NULL && tvd->vdev_isspare)
2238 spa_spare_remove(tvd);
2239 vdev_close(vd);
2240 vdev_free(vd);
2243 kmem_free(spa->spa_spares.sav_vdevs,
2244 spa->spa_spares.sav_count * sizeof (void *));
2247 if (spa->spa_spares.sav_config == NULL)
2248 nspares = 0;
2249 else
2250 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
2251 ZPOOL_CONFIG_SPARES, &spares, &nspares));
2253 spa->spa_spares.sav_count = (int)nspares;
2254 spa->spa_spares.sav_vdevs = NULL;
2256 if (nspares == 0)
2257 return;
2260 * Construct the array of vdevs, opening them to get status in the
2261 * process. For each spare, there is potentially two different vdev_t
2262 * structures associated with it: one in the list of spares (used only
2263 * for basic validation purposes) and one in the active vdev
2264 * configuration (if it's spared in). During this phase we open and
2265 * validate each vdev on the spare list. If the vdev also exists in the
2266 * active configuration, then we also mark this vdev as an active spare.
2268 spa->spa_spares.sav_vdevs = kmem_zalloc(nspares * sizeof (void *),
2269 KM_SLEEP);
2270 for (i = 0; i < spa->spa_spares.sav_count; i++) {
2271 VERIFY(spa_config_parse(spa, &vd, spares[i], NULL, 0,
2272 VDEV_ALLOC_SPARE) == 0);
2273 ASSERT(vd != NULL);
2275 spa->spa_spares.sav_vdevs[i] = vd;
2277 if ((tvd = spa_lookup_by_guid(spa, vd->vdev_guid,
2278 B_FALSE)) != NULL) {
2279 if (!tvd->vdev_isspare)
2280 spa_spare_add(tvd);
2283 * We only mark the spare active if we were successfully
2284 * able to load the vdev. Otherwise, importing a pool
2285 * with a bad active spare would result in strange
2286 * behavior, because multiple pool would think the spare
2287 * is actively in use.
2289 * There is a vulnerability here to an equally bizarre
2290 * circumstance, where a dead active spare is later
2291 * brought back to life (onlined or otherwise). Given
2292 * the rarity of this scenario, and the extra complexity
2293 * it adds, we ignore the possibility.
2295 if (!vdev_is_dead(tvd))
2296 spa_spare_activate(tvd);
2299 vd->vdev_top = vd;
2300 vd->vdev_aux = &spa->spa_spares;
2302 if (vdev_open(vd) != 0)
2303 continue;
2305 if (vdev_validate_aux(vd) == 0)
2306 spa_spare_add(vd);
2310 * Recompute the stashed list of spares, with status information
2311 * this time.
2313 fnvlist_remove(spa->spa_spares.sav_config, ZPOOL_CONFIG_SPARES);
2315 spares = kmem_alloc(spa->spa_spares.sav_count * sizeof (void *),
2316 KM_SLEEP);
2317 for (i = 0; i < spa->spa_spares.sav_count; i++)
2318 spares[i] = vdev_config_generate(spa,
2319 spa->spa_spares.sav_vdevs[i], B_TRUE, VDEV_CONFIG_SPARE);
2320 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
2321 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
2322 spa->spa_spares.sav_count);
2323 for (i = 0; i < spa->spa_spares.sav_count; i++)
2324 nvlist_free(spares[i]);
2325 kmem_free(spares, spa->spa_spares.sav_count * sizeof (void *));
2329 * Load (or re-load) the current list of vdevs describing the active l2cache for
2330 * this pool. When this is called, we have some form of basic information in
2331 * 'spa_l2cache.sav_config'. We parse this into vdevs, try to open them, and
2332 * then re-generate a more complete list including status information.
2333 * Devices which are already active have their details maintained, and are
2334 * not re-opened.
2336 void
2337 spa_load_l2cache(spa_t *spa)
2339 nvlist_t **l2cache = NULL;
2340 uint_t nl2cache;
2341 int i, j, oldnvdevs;
2342 uint64_t guid;
2343 vdev_t *vd, **oldvdevs, **newvdevs;
2344 spa_aux_vdev_t *sav = &spa->spa_l2cache;
2346 #ifndef _KERNEL
2348 * zdb opens both the current state of the pool and the
2349 * checkpointed state (if present), with a different spa_t.
2351 * As L2 caches are part of the ARC which is shared among open
2352 * pools, we skip loading them when we load the checkpointed
2353 * state of the pool.
2355 if (!spa_writeable(spa))
2356 return;
2357 #endif
2359 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
2361 oldvdevs = sav->sav_vdevs;
2362 oldnvdevs = sav->sav_count;
2363 sav->sav_vdevs = NULL;
2364 sav->sav_count = 0;
2366 if (sav->sav_config == NULL) {
2367 nl2cache = 0;
2368 newvdevs = NULL;
2369 goto out;
2372 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config,
2373 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
2374 newvdevs = kmem_alloc(nl2cache * sizeof (void *), KM_SLEEP);
2377 * Process new nvlist of vdevs.
2379 for (i = 0; i < nl2cache; i++) {
2380 guid = fnvlist_lookup_uint64(l2cache[i], ZPOOL_CONFIG_GUID);
2382 newvdevs[i] = NULL;
2383 for (j = 0; j < oldnvdevs; j++) {
2384 vd = oldvdevs[j];
2385 if (vd != NULL && guid == vd->vdev_guid) {
2387 * Retain previous vdev for add/remove ops.
2389 newvdevs[i] = vd;
2390 oldvdevs[j] = NULL;
2391 break;
2395 if (newvdevs[i] == NULL) {
2397 * Create new vdev
2399 VERIFY(spa_config_parse(spa, &vd, l2cache[i], NULL, 0,
2400 VDEV_ALLOC_L2CACHE) == 0);
2401 ASSERT(vd != NULL);
2402 newvdevs[i] = vd;
2405 * Commit this vdev as an l2cache device,
2406 * even if it fails to open.
2408 spa_l2cache_add(vd);
2410 vd->vdev_top = vd;
2411 vd->vdev_aux = sav;
2413 spa_l2cache_activate(vd);
2415 if (vdev_open(vd) != 0)
2416 continue;
2418 (void) vdev_validate_aux(vd);
2420 if (!vdev_is_dead(vd))
2421 l2arc_add_vdev(spa, vd);
2424 * Upon cache device addition to a pool or pool
2425 * creation with a cache device or if the header
2426 * of the device is invalid we issue an async
2427 * TRIM command for the whole device which will
2428 * execute if l2arc_trim_ahead > 0.
2430 spa_async_request(spa, SPA_ASYNC_L2CACHE_TRIM);
2434 sav->sav_vdevs = newvdevs;
2435 sav->sav_count = (int)nl2cache;
2438 * Recompute the stashed list of l2cache devices, with status
2439 * information this time.
2441 fnvlist_remove(sav->sav_config, ZPOOL_CONFIG_L2CACHE);
2443 if (sav->sav_count > 0)
2444 l2cache = kmem_alloc(sav->sav_count * sizeof (void *),
2445 KM_SLEEP);
2446 for (i = 0; i < sav->sav_count; i++)
2447 l2cache[i] = vdev_config_generate(spa,
2448 sav->sav_vdevs[i], B_TRUE, VDEV_CONFIG_L2CACHE);
2449 fnvlist_add_nvlist_array(sav->sav_config, ZPOOL_CONFIG_L2CACHE,
2450 (const nvlist_t * const *)l2cache, sav->sav_count);
2452 out:
2454 * Purge vdevs that were dropped
2456 if (oldvdevs) {
2457 for (i = 0; i < oldnvdevs; i++) {
2458 uint64_t pool;
2460 vd = oldvdevs[i];
2461 if (vd != NULL) {
2462 ASSERT(vd->vdev_isl2cache);
2464 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
2465 pool != 0ULL && l2arc_vdev_present(vd))
2466 l2arc_remove_vdev(vd);
2467 vdev_clear_stats(vd);
2468 vdev_free(vd);
2472 kmem_free(oldvdevs, oldnvdevs * sizeof (void *));
2475 for (i = 0; i < sav->sav_count; i++)
2476 nvlist_free(l2cache[i]);
2477 if (sav->sav_count)
2478 kmem_free(l2cache, sav->sav_count * sizeof (void *));
2481 static int
2482 load_nvlist(spa_t *spa, uint64_t obj, nvlist_t **value)
2484 dmu_buf_t *db;
2485 char *packed = NULL;
2486 size_t nvsize = 0;
2487 int error;
2488 *value = NULL;
2490 error = dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db);
2491 if (error)
2492 return (error);
2494 nvsize = *(uint64_t *)db->db_data;
2495 dmu_buf_rele(db, FTAG);
2497 packed = vmem_alloc(nvsize, KM_SLEEP);
2498 error = dmu_read(spa->spa_meta_objset, obj, 0, nvsize, packed,
2499 DMU_READ_PREFETCH);
2500 if (error == 0)
2501 error = nvlist_unpack(packed, nvsize, value, 0);
2502 vmem_free(packed, nvsize);
2504 return (error);
2508 * Concrete top-level vdevs that are not missing and are not logs. At every
2509 * spa_sync we write new uberblocks to at least SPA_SYNC_MIN_VDEVS core tvds.
2511 static uint64_t
2512 spa_healthy_core_tvds(spa_t *spa)
2514 vdev_t *rvd = spa->spa_root_vdev;
2515 uint64_t tvds = 0;
2517 for (uint64_t i = 0; i < rvd->vdev_children; i++) {
2518 vdev_t *vd = rvd->vdev_child[i];
2519 if (vd->vdev_islog)
2520 continue;
2521 if (vdev_is_concrete(vd) && !vdev_is_dead(vd))
2522 tvds++;
2525 return (tvds);
2529 * Checks to see if the given vdev could not be opened, in which case we post a
2530 * sysevent to notify the autoreplace code that the device has been removed.
2532 static void
2533 spa_check_removed(vdev_t *vd)
2535 for (uint64_t c = 0; c < vd->vdev_children; c++)
2536 spa_check_removed(vd->vdev_child[c]);
2538 if (vd->vdev_ops->vdev_op_leaf && vdev_is_dead(vd) &&
2539 vdev_is_concrete(vd)) {
2540 zfs_post_autoreplace(vd->vdev_spa, vd);
2541 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_CHECK);
2545 static int
2546 spa_check_for_missing_logs(spa_t *spa)
2548 vdev_t *rvd = spa->spa_root_vdev;
2551 * If we're doing a normal import, then build up any additional
2552 * diagnostic information about missing log devices.
2553 * We'll pass this up to the user for further processing.
2555 if (!(spa->spa_import_flags & ZFS_IMPORT_MISSING_LOG)) {
2556 nvlist_t **child, *nv;
2557 uint64_t idx = 0;
2559 child = kmem_alloc(rvd->vdev_children * sizeof (nvlist_t *),
2560 KM_SLEEP);
2561 nv = fnvlist_alloc();
2563 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2564 vdev_t *tvd = rvd->vdev_child[c];
2567 * We consider a device as missing only if it failed
2568 * to open (i.e. offline or faulted is not considered
2569 * as missing).
2571 if (tvd->vdev_islog &&
2572 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2573 child[idx++] = vdev_config_generate(spa, tvd,
2574 B_FALSE, VDEV_CONFIG_MISSING);
2578 if (idx > 0) {
2579 fnvlist_add_nvlist_array(nv, ZPOOL_CONFIG_CHILDREN,
2580 (const nvlist_t * const *)child, idx);
2581 fnvlist_add_nvlist(spa->spa_load_info,
2582 ZPOOL_CONFIG_MISSING_DEVICES, nv);
2584 for (uint64_t i = 0; i < idx; i++)
2585 nvlist_free(child[i]);
2587 nvlist_free(nv);
2588 kmem_free(child, rvd->vdev_children * sizeof (char **));
2590 if (idx > 0) {
2591 spa_load_failed(spa, "some log devices are missing");
2592 vdev_dbgmsg_print_tree(rvd, 2);
2593 return (SET_ERROR(ENXIO));
2595 } else {
2596 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
2597 vdev_t *tvd = rvd->vdev_child[c];
2599 if (tvd->vdev_islog &&
2600 tvd->vdev_state == VDEV_STATE_CANT_OPEN) {
2601 spa_set_log_state(spa, SPA_LOG_CLEAR);
2602 spa_load_note(spa, "some log devices are "
2603 "missing, ZIL is dropped.");
2604 vdev_dbgmsg_print_tree(rvd, 2);
2605 break;
2610 return (0);
2614 * Check for missing log devices
2616 static boolean_t
2617 spa_check_logs(spa_t *spa)
2619 boolean_t rv = B_FALSE;
2620 dsl_pool_t *dp = spa_get_dsl(spa);
2622 switch (spa->spa_log_state) {
2623 default:
2624 break;
2625 case SPA_LOG_MISSING:
2626 /* need to recheck in case slog has been restored */
2627 case SPA_LOG_UNKNOWN:
2628 rv = (dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
2629 zil_check_log_chain, NULL, DS_FIND_CHILDREN) != 0);
2630 if (rv)
2631 spa_set_log_state(spa, SPA_LOG_MISSING);
2632 break;
2634 return (rv);
2638 * Passivate any log vdevs (note, does not apply to embedded log metaslabs).
2640 static boolean_t
2641 spa_passivate_log(spa_t *spa)
2643 vdev_t *rvd = spa->spa_root_vdev;
2644 boolean_t slog_found = B_FALSE;
2646 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2648 for (int c = 0; c < rvd->vdev_children; c++) {
2649 vdev_t *tvd = rvd->vdev_child[c];
2651 if (tvd->vdev_islog) {
2652 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2653 metaslab_group_passivate(tvd->vdev_mg);
2654 slog_found = B_TRUE;
2658 return (slog_found);
2662 * Activate any log vdevs (note, does not apply to embedded log metaslabs).
2664 static void
2665 spa_activate_log(spa_t *spa)
2667 vdev_t *rvd = spa->spa_root_vdev;
2669 ASSERT(spa_config_held(spa, SCL_ALLOC, RW_WRITER));
2671 for (int c = 0; c < rvd->vdev_children; c++) {
2672 vdev_t *tvd = rvd->vdev_child[c];
2674 if (tvd->vdev_islog) {
2675 ASSERT3P(tvd->vdev_log_mg, ==, NULL);
2676 metaslab_group_activate(tvd->vdev_mg);
2682 spa_reset_logs(spa_t *spa)
2684 int error;
2686 error = dmu_objset_find(spa_name(spa), zil_reset,
2687 NULL, DS_FIND_CHILDREN);
2688 if (error == 0) {
2690 * We successfully offlined the log device, sync out the
2691 * current txg so that the "stubby" block can be removed
2692 * by zil_sync().
2694 txg_wait_synced(spa->spa_dsl_pool, 0);
2696 return (error);
2699 static void
2700 spa_aux_check_removed(spa_aux_vdev_t *sav)
2702 for (int i = 0; i < sav->sav_count; i++)
2703 spa_check_removed(sav->sav_vdevs[i]);
2706 void
2707 spa_claim_notify(zio_t *zio)
2709 spa_t *spa = zio->io_spa;
2711 if (zio->io_error)
2712 return;
2714 mutex_enter(&spa->spa_props_lock); /* any mutex will do */
2715 if (spa->spa_claim_max_txg < BP_GET_LOGICAL_BIRTH(zio->io_bp))
2716 spa->spa_claim_max_txg = BP_GET_LOGICAL_BIRTH(zio->io_bp);
2717 mutex_exit(&spa->spa_props_lock);
2720 typedef struct spa_load_error {
2721 boolean_t sle_verify_data;
2722 uint64_t sle_meta_count;
2723 uint64_t sle_data_count;
2724 } spa_load_error_t;
2726 static void
2727 spa_load_verify_done(zio_t *zio)
2729 blkptr_t *bp = zio->io_bp;
2730 spa_load_error_t *sle = zio->io_private;
2731 dmu_object_type_t type = BP_GET_TYPE(bp);
2732 int error = zio->io_error;
2733 spa_t *spa = zio->io_spa;
2735 abd_free(zio->io_abd);
2736 if (error) {
2737 if ((BP_GET_LEVEL(bp) != 0 || DMU_OT_IS_METADATA(type)) &&
2738 type != DMU_OT_INTENT_LOG)
2739 atomic_inc_64(&sle->sle_meta_count);
2740 else
2741 atomic_inc_64(&sle->sle_data_count);
2744 mutex_enter(&spa->spa_scrub_lock);
2745 spa->spa_load_verify_bytes -= BP_GET_PSIZE(bp);
2746 cv_broadcast(&spa->spa_scrub_io_cv);
2747 mutex_exit(&spa->spa_scrub_lock);
2751 * Maximum number of inflight bytes is the log2 fraction of the arc size.
2752 * By default, we set it to 1/16th of the arc.
2754 static uint_t spa_load_verify_shift = 4;
2755 static int spa_load_verify_metadata = B_TRUE;
2756 static int spa_load_verify_data = B_TRUE;
2758 static int
2759 spa_load_verify_cb(spa_t *spa, zilog_t *zilog, const blkptr_t *bp,
2760 const zbookmark_phys_t *zb, const dnode_phys_t *dnp, void *arg)
2762 zio_t *rio = arg;
2763 spa_load_error_t *sle = rio->io_private;
2765 (void) zilog, (void) dnp;
2768 * Note: normally this routine will not be called if
2769 * spa_load_verify_metadata is not set. However, it may be useful
2770 * to manually set the flag after the traversal has begun.
2772 if (!spa_load_verify_metadata)
2773 return (0);
2776 * Sanity check the block pointer in order to detect obvious damage
2777 * before using the contents in subsequent checks or in zio_read().
2778 * When damaged consider it to be a metadata error since we cannot
2779 * trust the BP_GET_TYPE and BP_GET_LEVEL values.
2781 if (!zfs_blkptr_verify(spa, bp, BLK_CONFIG_NEEDED, BLK_VERIFY_LOG)) {
2782 atomic_inc_64(&sle->sle_meta_count);
2783 return (0);
2786 if (zb->zb_level == ZB_DNODE_LEVEL || BP_IS_HOLE(bp) ||
2787 BP_IS_EMBEDDED(bp) || BP_IS_REDACTED(bp))
2788 return (0);
2790 if (!BP_IS_METADATA(bp) &&
2791 (!spa_load_verify_data || !sle->sle_verify_data))
2792 return (0);
2794 uint64_t maxinflight_bytes =
2795 arc_target_bytes() >> spa_load_verify_shift;
2796 size_t size = BP_GET_PSIZE(bp);
2798 mutex_enter(&spa->spa_scrub_lock);
2799 while (spa->spa_load_verify_bytes >= maxinflight_bytes)
2800 cv_wait(&spa->spa_scrub_io_cv, &spa->spa_scrub_lock);
2801 spa->spa_load_verify_bytes += size;
2802 mutex_exit(&spa->spa_scrub_lock);
2804 zio_nowait(zio_read(rio, spa, bp, abd_alloc_for_io(size, B_FALSE), size,
2805 spa_load_verify_done, rio->io_private, ZIO_PRIORITY_SCRUB,
2806 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_CANFAIL |
2807 ZIO_FLAG_SCRUB | ZIO_FLAG_RAW, zb));
2808 return (0);
2811 static int
2812 verify_dataset_name_len(dsl_pool_t *dp, dsl_dataset_t *ds, void *arg)
2814 (void) dp, (void) arg;
2816 if (dsl_dataset_namelen(ds) >= ZFS_MAX_DATASET_NAME_LEN)
2817 return (SET_ERROR(ENAMETOOLONG));
2819 return (0);
2822 static int
2823 spa_load_verify(spa_t *spa)
2825 zio_t *rio;
2826 spa_load_error_t sle = { 0 };
2827 zpool_load_policy_t policy;
2828 boolean_t verify_ok = B_FALSE;
2829 int error = 0;
2831 zpool_get_load_policy(spa->spa_config, &policy);
2833 if (policy.zlp_rewind & ZPOOL_NEVER_REWIND ||
2834 policy.zlp_maxmeta == UINT64_MAX)
2835 return (0);
2837 dsl_pool_config_enter(spa->spa_dsl_pool, FTAG);
2838 error = dmu_objset_find_dp(spa->spa_dsl_pool,
2839 spa->spa_dsl_pool->dp_root_dir_obj, verify_dataset_name_len, NULL,
2840 DS_FIND_CHILDREN);
2841 dsl_pool_config_exit(spa->spa_dsl_pool, FTAG);
2842 if (error != 0)
2843 return (error);
2846 * Verify data only if we are rewinding or error limit was set.
2847 * Otherwise nothing except dbgmsg care about it to waste time.
2849 sle.sle_verify_data = (policy.zlp_rewind & ZPOOL_REWIND_MASK) ||
2850 (policy.zlp_maxdata < UINT64_MAX);
2852 rio = zio_root(spa, NULL, &sle,
2853 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE);
2855 if (spa_load_verify_metadata) {
2856 if (spa->spa_extreme_rewind) {
2857 spa_load_note(spa, "performing a complete scan of the "
2858 "pool since extreme rewind is on. This may take "
2859 "a very long time.\n (spa_load_verify_data=%u, "
2860 "spa_load_verify_metadata=%u)",
2861 spa_load_verify_data, spa_load_verify_metadata);
2864 error = traverse_pool(spa, spa->spa_verify_min_txg,
2865 TRAVERSE_PRE | TRAVERSE_PREFETCH_METADATA |
2866 TRAVERSE_NO_DECRYPT, spa_load_verify_cb, rio);
2869 (void) zio_wait(rio);
2870 ASSERT0(spa->spa_load_verify_bytes);
2872 spa->spa_load_meta_errors = sle.sle_meta_count;
2873 spa->spa_load_data_errors = sle.sle_data_count;
2875 if (sle.sle_meta_count != 0 || sle.sle_data_count != 0) {
2876 spa_load_note(spa, "spa_load_verify found %llu metadata errors "
2877 "and %llu data errors", (u_longlong_t)sle.sle_meta_count,
2878 (u_longlong_t)sle.sle_data_count);
2881 if (spa_load_verify_dryrun ||
2882 (!error && sle.sle_meta_count <= policy.zlp_maxmeta &&
2883 sle.sle_data_count <= policy.zlp_maxdata)) {
2884 int64_t loss = 0;
2886 verify_ok = B_TRUE;
2887 spa->spa_load_txg = spa->spa_uberblock.ub_txg;
2888 spa->spa_load_txg_ts = spa->spa_uberblock.ub_timestamp;
2890 loss = spa->spa_last_ubsync_txg_ts - spa->spa_load_txg_ts;
2891 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_LOAD_TIME,
2892 spa->spa_load_txg_ts);
2893 fnvlist_add_int64(spa->spa_load_info, ZPOOL_CONFIG_REWIND_TIME,
2894 loss);
2895 fnvlist_add_uint64(spa->spa_load_info,
2896 ZPOOL_CONFIG_LOAD_META_ERRORS, sle.sle_meta_count);
2897 fnvlist_add_uint64(spa->spa_load_info,
2898 ZPOOL_CONFIG_LOAD_DATA_ERRORS, sle.sle_data_count);
2899 } else {
2900 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg;
2903 if (spa_load_verify_dryrun)
2904 return (0);
2906 if (error) {
2907 if (error != ENXIO && error != EIO)
2908 error = SET_ERROR(EIO);
2909 return (error);
2912 return (verify_ok ? 0 : EIO);
2916 * Find a value in the pool props object.
2918 static void
2919 spa_prop_find(spa_t *spa, zpool_prop_t prop, uint64_t *val)
2921 (void) zap_lookup(spa->spa_meta_objset, spa->spa_pool_props_object,
2922 zpool_prop_to_name(prop), sizeof (uint64_t), 1, val);
2926 * Find a value in the pool directory object.
2928 static int
2929 spa_dir_prop(spa_t *spa, const char *name, uint64_t *val, boolean_t log_enoent)
2931 int error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
2932 name, sizeof (uint64_t), 1, val);
2934 if (error != 0 && (error != ENOENT || log_enoent)) {
2935 spa_load_failed(spa, "couldn't get '%s' value in MOS directory "
2936 "[error=%d]", name, error);
2939 return (error);
2942 static int
2943 spa_vdev_err(vdev_t *vdev, vdev_aux_t aux, int err)
2945 vdev_set_state(vdev, B_TRUE, VDEV_STATE_CANT_OPEN, aux);
2946 return (SET_ERROR(err));
2949 boolean_t
2950 spa_livelist_delete_check(spa_t *spa)
2952 return (spa->spa_livelists_to_delete != 0);
2955 static boolean_t
2956 spa_livelist_delete_cb_check(void *arg, zthr_t *z)
2958 (void) z;
2959 spa_t *spa = arg;
2960 return (spa_livelist_delete_check(spa));
2963 static int
2964 delete_blkptr_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
2966 spa_t *spa = arg;
2967 zio_free(spa, tx->tx_txg, bp);
2968 dsl_dir_diduse_space(tx->tx_pool->dp_free_dir, DD_USED_HEAD,
2969 -bp_get_dsize_sync(spa, bp),
2970 -BP_GET_PSIZE(bp), -BP_GET_UCSIZE(bp), tx);
2971 return (0);
2974 static int
2975 dsl_get_next_livelist_obj(objset_t *os, uint64_t zap_obj, uint64_t *llp)
2977 int err;
2978 zap_cursor_t zc;
2979 zap_attribute_t *za = zap_attribute_alloc();
2980 zap_cursor_init(&zc, os, zap_obj);
2981 err = zap_cursor_retrieve(&zc, za);
2982 zap_cursor_fini(&zc);
2983 if (err == 0)
2984 *llp = za->za_first_integer;
2985 zap_attribute_free(za);
2986 return (err);
2990 * Components of livelist deletion that must be performed in syncing
2991 * context: freeing block pointers and updating the pool-wide data
2992 * structures to indicate how much work is left to do
2994 typedef struct sublist_delete_arg {
2995 spa_t *spa;
2996 dsl_deadlist_t *ll;
2997 uint64_t key;
2998 bplist_t *to_free;
2999 } sublist_delete_arg_t;
3001 static void
3002 sublist_delete_sync(void *arg, dmu_tx_t *tx)
3004 sublist_delete_arg_t *sda = arg;
3005 spa_t *spa = sda->spa;
3006 dsl_deadlist_t *ll = sda->ll;
3007 uint64_t key = sda->key;
3008 bplist_t *to_free = sda->to_free;
3010 bplist_iterate(to_free, delete_blkptr_cb, spa, tx);
3011 dsl_deadlist_remove_entry(ll, key, tx);
3014 typedef struct livelist_delete_arg {
3015 spa_t *spa;
3016 uint64_t ll_obj;
3017 uint64_t zap_obj;
3018 } livelist_delete_arg_t;
3020 static void
3021 livelist_delete_sync(void *arg, dmu_tx_t *tx)
3023 livelist_delete_arg_t *lda = arg;
3024 spa_t *spa = lda->spa;
3025 uint64_t ll_obj = lda->ll_obj;
3026 uint64_t zap_obj = lda->zap_obj;
3027 objset_t *mos = spa->spa_meta_objset;
3028 uint64_t count;
3030 /* free the livelist and decrement the feature count */
3031 VERIFY0(zap_remove_int(mos, zap_obj, ll_obj, tx));
3032 dsl_deadlist_free(mos, ll_obj, tx);
3033 spa_feature_decr(spa, SPA_FEATURE_LIVELIST, tx);
3034 VERIFY0(zap_count(mos, zap_obj, &count));
3035 if (count == 0) {
3036 /* no more livelists to delete */
3037 VERIFY0(zap_remove(mos, DMU_POOL_DIRECTORY_OBJECT,
3038 DMU_POOL_DELETED_CLONES, tx));
3039 VERIFY0(zap_destroy(mos, zap_obj, tx));
3040 spa->spa_livelists_to_delete = 0;
3041 spa_notify_waiters(spa);
3046 * Load in the value for the livelist to be removed and open it. Then,
3047 * load its first sublist and determine which block pointers should actually
3048 * be freed. Then, call a synctask which performs the actual frees and updates
3049 * the pool-wide livelist data.
3051 static void
3052 spa_livelist_delete_cb(void *arg, zthr_t *z)
3054 spa_t *spa = arg;
3055 uint64_t ll_obj = 0, count;
3056 objset_t *mos = spa->spa_meta_objset;
3057 uint64_t zap_obj = spa->spa_livelists_to_delete;
3059 * Determine the next livelist to delete. This function should only
3060 * be called if there is at least one deleted clone.
3062 VERIFY0(dsl_get_next_livelist_obj(mos, zap_obj, &ll_obj));
3063 VERIFY0(zap_count(mos, ll_obj, &count));
3064 if (count > 0) {
3065 dsl_deadlist_t *ll;
3066 dsl_deadlist_entry_t *dle;
3067 bplist_t to_free;
3068 ll = kmem_zalloc(sizeof (dsl_deadlist_t), KM_SLEEP);
3069 VERIFY0(dsl_deadlist_open(ll, mos, ll_obj));
3070 dle = dsl_deadlist_first(ll);
3071 ASSERT3P(dle, !=, NULL);
3072 bplist_create(&to_free);
3073 int err = dsl_process_sub_livelist(&dle->dle_bpobj, &to_free,
3074 z, NULL);
3075 if (err == 0) {
3076 sublist_delete_arg_t sync_arg = {
3077 .spa = spa,
3078 .ll = ll,
3079 .key = dle->dle_mintxg,
3080 .to_free = &to_free
3082 zfs_dbgmsg("deleting sublist (id %llu) from"
3083 " livelist %llu, %lld remaining",
3084 (u_longlong_t)dle->dle_bpobj.bpo_object,
3085 (u_longlong_t)ll_obj, (longlong_t)count - 1);
3086 VERIFY0(dsl_sync_task(spa_name(spa), NULL,
3087 sublist_delete_sync, &sync_arg, 0,
3088 ZFS_SPACE_CHECK_DESTROY));
3089 } else {
3090 VERIFY3U(err, ==, EINTR);
3092 bplist_clear(&to_free);
3093 bplist_destroy(&to_free);
3094 dsl_deadlist_close(ll);
3095 kmem_free(ll, sizeof (dsl_deadlist_t));
3096 } else {
3097 livelist_delete_arg_t sync_arg = {
3098 .spa = spa,
3099 .ll_obj = ll_obj,
3100 .zap_obj = zap_obj
3102 zfs_dbgmsg("deletion of livelist %llu completed",
3103 (u_longlong_t)ll_obj);
3104 VERIFY0(dsl_sync_task(spa_name(spa), NULL, livelist_delete_sync,
3105 &sync_arg, 0, ZFS_SPACE_CHECK_DESTROY));
3109 static void
3110 spa_start_livelist_destroy_thread(spa_t *spa)
3112 ASSERT3P(spa->spa_livelist_delete_zthr, ==, NULL);
3113 spa->spa_livelist_delete_zthr =
3114 zthr_create("z_livelist_destroy",
3115 spa_livelist_delete_cb_check, spa_livelist_delete_cb, spa,
3116 minclsyspri);
3119 typedef struct livelist_new_arg {
3120 bplist_t *allocs;
3121 bplist_t *frees;
3122 } livelist_new_arg_t;
3124 static int
3125 livelist_track_new_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
3126 dmu_tx_t *tx)
3128 ASSERT(tx == NULL);
3129 livelist_new_arg_t *lna = arg;
3130 if (bp_freed) {
3131 bplist_append(lna->frees, bp);
3132 } else {
3133 bplist_append(lna->allocs, bp);
3134 zfs_livelist_condense_new_alloc++;
3136 return (0);
3139 typedef struct livelist_condense_arg {
3140 spa_t *spa;
3141 bplist_t to_keep;
3142 uint64_t first_size;
3143 uint64_t next_size;
3144 } livelist_condense_arg_t;
3146 static void
3147 spa_livelist_condense_sync(void *arg, dmu_tx_t *tx)
3149 livelist_condense_arg_t *lca = arg;
3150 spa_t *spa = lca->spa;
3151 bplist_t new_frees;
3152 dsl_dataset_t *ds = spa->spa_to_condense.ds;
3154 /* Have we been cancelled? */
3155 if (spa->spa_to_condense.cancelled) {
3156 zfs_livelist_condense_sync_cancel++;
3157 goto out;
3160 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3161 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3162 dsl_deadlist_t *ll = &ds->ds_dir->dd_livelist;
3165 * It's possible that the livelist was changed while the zthr was
3166 * running. Therefore, we need to check for new blkptrs in the two
3167 * entries being condensed and continue to track them in the livelist.
3168 * Because of the way we handle remapped blkptrs (see dbuf_remap_impl),
3169 * it's possible that the newly added blkptrs are FREEs or ALLOCs so
3170 * we need to sort them into two different bplists.
3172 uint64_t first_obj = first->dle_bpobj.bpo_object;
3173 uint64_t next_obj = next->dle_bpobj.bpo_object;
3174 uint64_t cur_first_size = first->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3175 uint64_t cur_next_size = next->dle_bpobj.bpo_phys->bpo_num_blkptrs;
3177 bplist_create(&new_frees);
3178 livelist_new_arg_t new_bps = {
3179 .allocs = &lca->to_keep,
3180 .frees = &new_frees,
3183 if (cur_first_size > lca->first_size) {
3184 VERIFY0(livelist_bpobj_iterate_from_nofree(&first->dle_bpobj,
3185 livelist_track_new_cb, &new_bps, lca->first_size));
3187 if (cur_next_size > lca->next_size) {
3188 VERIFY0(livelist_bpobj_iterate_from_nofree(&next->dle_bpobj,
3189 livelist_track_new_cb, &new_bps, lca->next_size));
3192 dsl_deadlist_clear_entry(first, ll, tx);
3193 ASSERT(bpobj_is_empty(&first->dle_bpobj));
3194 dsl_deadlist_remove_entry(ll, next->dle_mintxg, tx);
3196 bplist_iterate(&lca->to_keep, dsl_deadlist_insert_alloc_cb, ll, tx);
3197 bplist_iterate(&new_frees, dsl_deadlist_insert_free_cb, ll, tx);
3198 bplist_destroy(&new_frees);
3200 char dsname[ZFS_MAX_DATASET_NAME_LEN];
3201 dsl_dataset_name(ds, dsname);
3202 zfs_dbgmsg("txg %llu condensing livelist of %s (id %llu), bpobj %llu "
3203 "(%llu blkptrs) and bpobj %llu (%llu blkptrs) -> bpobj %llu "
3204 "(%llu blkptrs)", (u_longlong_t)tx->tx_txg, dsname,
3205 (u_longlong_t)ds->ds_object, (u_longlong_t)first_obj,
3206 (u_longlong_t)cur_first_size, (u_longlong_t)next_obj,
3207 (u_longlong_t)cur_next_size,
3208 (u_longlong_t)first->dle_bpobj.bpo_object,
3209 (u_longlong_t)first->dle_bpobj.bpo_phys->bpo_num_blkptrs);
3210 out:
3211 dmu_buf_rele(ds->ds_dbuf, spa);
3212 spa->spa_to_condense.ds = NULL;
3213 bplist_clear(&lca->to_keep);
3214 bplist_destroy(&lca->to_keep);
3215 kmem_free(lca, sizeof (livelist_condense_arg_t));
3216 spa->spa_to_condense.syncing = B_FALSE;
3219 static void
3220 spa_livelist_condense_cb(void *arg, zthr_t *t)
3222 while (zfs_livelist_condense_zthr_pause &&
3223 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3224 delay(1);
3226 spa_t *spa = arg;
3227 dsl_deadlist_entry_t *first = spa->spa_to_condense.first;
3228 dsl_deadlist_entry_t *next = spa->spa_to_condense.next;
3229 uint64_t first_size, next_size;
3231 livelist_condense_arg_t *lca =
3232 kmem_alloc(sizeof (livelist_condense_arg_t), KM_SLEEP);
3233 bplist_create(&lca->to_keep);
3236 * Process the livelists (matching FREEs and ALLOCs) in open context
3237 * so we have minimal work in syncing context to condense.
3239 * We save bpobj sizes (first_size and next_size) to use later in
3240 * syncing context to determine if entries were added to these sublists
3241 * while in open context. This is possible because the clone is still
3242 * active and open for normal writes and we want to make sure the new,
3243 * unprocessed blockpointers are inserted into the livelist normally.
3245 * Note that dsl_process_sub_livelist() both stores the size number of
3246 * blockpointers and iterates over them while the bpobj's lock held, so
3247 * the sizes returned to us are consistent which what was actually
3248 * processed.
3250 int err = dsl_process_sub_livelist(&first->dle_bpobj, &lca->to_keep, t,
3251 &first_size);
3252 if (err == 0)
3253 err = dsl_process_sub_livelist(&next->dle_bpobj, &lca->to_keep,
3254 t, &next_size);
3256 if (err == 0) {
3257 while (zfs_livelist_condense_sync_pause &&
3258 !(zthr_has_waiters(t) || zthr_iscancelled(t)))
3259 delay(1);
3261 dmu_tx_t *tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
3262 dmu_tx_mark_netfree(tx);
3263 dmu_tx_hold_space(tx, 1);
3264 err = dmu_tx_assign(tx, TXG_NOWAIT | TXG_NOTHROTTLE);
3265 if (err == 0) {
3267 * Prevent the condense zthr restarting before
3268 * the synctask completes.
3270 spa->spa_to_condense.syncing = B_TRUE;
3271 lca->spa = spa;
3272 lca->first_size = first_size;
3273 lca->next_size = next_size;
3274 dsl_sync_task_nowait(spa_get_dsl(spa),
3275 spa_livelist_condense_sync, lca, tx);
3276 dmu_tx_commit(tx);
3277 return;
3281 * Condensing can not continue: either it was externally stopped or
3282 * we were unable to assign to a tx because the pool has run out of
3283 * space. In the second case, we'll just end up trying to condense
3284 * again in a later txg.
3286 ASSERT(err != 0);
3287 bplist_clear(&lca->to_keep);
3288 bplist_destroy(&lca->to_keep);
3289 kmem_free(lca, sizeof (livelist_condense_arg_t));
3290 dmu_buf_rele(spa->spa_to_condense.ds->ds_dbuf, spa);
3291 spa->spa_to_condense.ds = NULL;
3292 if (err == EINTR)
3293 zfs_livelist_condense_zthr_cancel++;
3297 * Check that there is something to condense but that a condense is not
3298 * already in progress and that condensing has not been cancelled.
3300 static boolean_t
3301 spa_livelist_condense_cb_check(void *arg, zthr_t *z)
3303 (void) z;
3304 spa_t *spa = arg;
3305 if ((spa->spa_to_condense.ds != NULL) &&
3306 (spa->spa_to_condense.syncing == B_FALSE) &&
3307 (spa->spa_to_condense.cancelled == B_FALSE)) {
3308 return (B_TRUE);
3310 return (B_FALSE);
3313 static void
3314 spa_start_livelist_condensing_thread(spa_t *spa)
3316 spa->spa_to_condense.ds = NULL;
3317 spa->spa_to_condense.first = NULL;
3318 spa->spa_to_condense.next = NULL;
3319 spa->spa_to_condense.syncing = B_FALSE;
3320 spa->spa_to_condense.cancelled = B_FALSE;
3322 ASSERT3P(spa->spa_livelist_condense_zthr, ==, NULL);
3323 spa->spa_livelist_condense_zthr =
3324 zthr_create("z_livelist_condense",
3325 spa_livelist_condense_cb_check,
3326 spa_livelist_condense_cb, spa, minclsyspri);
3329 static void
3330 spa_spawn_aux_threads(spa_t *spa)
3332 ASSERT(spa_writeable(spa));
3334 spa_start_raidz_expansion_thread(spa);
3335 spa_start_indirect_condensing_thread(spa);
3336 spa_start_livelist_destroy_thread(spa);
3337 spa_start_livelist_condensing_thread(spa);
3339 ASSERT3P(spa->spa_checkpoint_discard_zthr, ==, NULL);
3340 spa->spa_checkpoint_discard_zthr =
3341 zthr_create("z_checkpoint_discard",
3342 spa_checkpoint_discard_thread_check,
3343 spa_checkpoint_discard_thread, spa, minclsyspri);
3347 * Fix up config after a partly-completed split. This is done with the
3348 * ZPOOL_CONFIG_SPLIT nvlist. Both the splitting pool and the split-off
3349 * pool have that entry in their config, but only the splitting one contains
3350 * a list of all the guids of the vdevs that are being split off.
3352 * This function determines what to do with that list: either rejoin
3353 * all the disks to the pool, or complete the splitting process. To attempt
3354 * the rejoin, each disk that is offlined is marked online again, and
3355 * we do a reopen() call. If the vdev label for every disk that was
3356 * marked online indicates it was successfully split off (VDEV_AUX_SPLIT_POOL)
3357 * then we call vdev_split() on each disk, and complete the split.
3359 * Otherwise we leave the config alone, with all the vdevs in place in
3360 * the original pool.
3362 static void
3363 spa_try_repair(spa_t *spa, nvlist_t *config)
3365 uint_t extracted;
3366 uint64_t *glist;
3367 uint_t i, gcount;
3368 nvlist_t *nvl;
3369 vdev_t **vd;
3370 boolean_t attempt_reopen;
3372 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) != 0)
3373 return;
3375 /* check that the config is complete */
3376 if (nvlist_lookup_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST,
3377 &glist, &gcount) != 0)
3378 return;
3380 vd = kmem_zalloc(gcount * sizeof (vdev_t *), KM_SLEEP);
3382 /* attempt to online all the vdevs & validate */
3383 attempt_reopen = B_TRUE;
3384 for (i = 0; i < gcount; i++) {
3385 if (glist[i] == 0) /* vdev is hole */
3386 continue;
3388 vd[i] = spa_lookup_by_guid(spa, glist[i], B_FALSE);
3389 if (vd[i] == NULL) {
3391 * Don't bother attempting to reopen the disks;
3392 * just do the split.
3394 attempt_reopen = B_FALSE;
3395 } else {
3396 /* attempt to re-online it */
3397 vd[i]->vdev_offline = B_FALSE;
3401 if (attempt_reopen) {
3402 vdev_reopen(spa->spa_root_vdev);
3404 /* check each device to see what state it's in */
3405 for (extracted = 0, i = 0; i < gcount; i++) {
3406 if (vd[i] != NULL &&
3407 vd[i]->vdev_stat.vs_aux != VDEV_AUX_SPLIT_POOL)
3408 break;
3409 ++extracted;
3414 * If every disk has been moved to the new pool, or if we never
3415 * even attempted to look at them, then we split them off for
3416 * good.
3418 if (!attempt_reopen || gcount == extracted) {
3419 for (i = 0; i < gcount; i++)
3420 if (vd[i] != NULL)
3421 vdev_split(vd[i]);
3422 vdev_reopen(spa->spa_root_vdev);
3425 kmem_free(vd, gcount * sizeof (vdev_t *));
3428 static int
3429 spa_load(spa_t *spa, spa_load_state_t state, spa_import_type_t type)
3431 const char *ereport = FM_EREPORT_ZFS_POOL;
3432 int error;
3434 spa->spa_load_state = state;
3435 (void) spa_import_progress_set_state(spa_guid(spa),
3436 spa_load_state(spa));
3437 spa_import_progress_set_notes(spa, "spa_load()");
3439 gethrestime(&spa->spa_loaded_ts);
3440 error = spa_load_impl(spa, type, &ereport);
3443 * Don't count references from objsets that are already closed
3444 * and are making their way through the eviction process.
3446 spa_evicting_os_wait(spa);
3447 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
3448 if (error) {
3449 if (error != EEXIST) {
3450 spa->spa_loaded_ts.tv_sec = 0;
3451 spa->spa_loaded_ts.tv_nsec = 0;
3453 if (error != EBADF) {
3454 (void) zfs_ereport_post(ereport, spa,
3455 NULL, NULL, NULL, 0);
3458 spa->spa_load_state = error ? SPA_LOAD_ERROR : SPA_LOAD_NONE;
3459 spa->spa_ena = 0;
3461 (void) spa_import_progress_set_state(spa_guid(spa),
3462 spa_load_state(spa));
3464 return (error);
3467 #ifdef ZFS_DEBUG
3469 * Count the number of per-vdev ZAPs associated with all of the vdevs in the
3470 * vdev tree rooted in the given vd, and ensure that each ZAP is present in the
3471 * spa's per-vdev ZAP list.
3473 static uint64_t
3474 vdev_count_verify_zaps(vdev_t *vd)
3476 spa_t *spa = vd->vdev_spa;
3477 uint64_t total = 0;
3479 if (spa_feature_is_active(vd->vdev_spa, SPA_FEATURE_AVZ_V2) &&
3480 vd->vdev_root_zap != 0) {
3481 total++;
3482 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3483 spa->spa_all_vdev_zaps, vd->vdev_root_zap));
3485 if (vd->vdev_top_zap != 0) {
3486 total++;
3487 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3488 spa->spa_all_vdev_zaps, vd->vdev_top_zap));
3490 if (vd->vdev_leaf_zap != 0) {
3491 total++;
3492 ASSERT0(zap_lookup_int(spa->spa_meta_objset,
3493 spa->spa_all_vdev_zaps, vd->vdev_leaf_zap));
3496 for (uint64_t i = 0; i < vd->vdev_children; i++) {
3497 total += vdev_count_verify_zaps(vd->vdev_child[i]);
3500 return (total);
3502 #else
3503 #define vdev_count_verify_zaps(vd) ((void) sizeof (vd), 0)
3504 #endif
3507 * Determine whether the activity check is required.
3509 static boolean_t
3510 spa_activity_check_required(spa_t *spa, uberblock_t *ub, nvlist_t *label,
3511 nvlist_t *config)
3513 uint64_t state = 0;
3514 uint64_t hostid = 0;
3515 uint64_t tryconfig_txg = 0;
3516 uint64_t tryconfig_timestamp = 0;
3517 uint16_t tryconfig_mmp_seq = 0;
3518 nvlist_t *nvinfo;
3520 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3521 nvinfo = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_LOAD_INFO);
3522 (void) nvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG,
3523 &tryconfig_txg);
3524 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
3525 &tryconfig_timestamp);
3526 (void) nvlist_lookup_uint16(nvinfo, ZPOOL_CONFIG_MMP_SEQ,
3527 &tryconfig_mmp_seq);
3530 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_STATE, &state);
3533 * Disable the MMP activity check - This is used by zdb which
3534 * is intended to be used on potentially active pools.
3536 if (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP)
3537 return (B_FALSE);
3540 * Skip the activity check when the MMP feature is disabled.
3542 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay == 0)
3543 return (B_FALSE);
3546 * If the tryconfig_ values are nonzero, they are the results of an
3547 * earlier tryimport. If they all match the uberblock we just found,
3548 * then the pool has not changed and we return false so we do not test
3549 * a second time.
3551 if (tryconfig_txg && tryconfig_txg == ub->ub_txg &&
3552 tryconfig_timestamp && tryconfig_timestamp == ub->ub_timestamp &&
3553 tryconfig_mmp_seq && tryconfig_mmp_seq ==
3554 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0))
3555 return (B_FALSE);
3558 * Allow the activity check to be skipped when importing the pool
3559 * on the same host which last imported it. Since the hostid from
3560 * configuration may be stale use the one read from the label.
3562 if (nvlist_exists(label, ZPOOL_CONFIG_HOSTID))
3563 hostid = fnvlist_lookup_uint64(label, ZPOOL_CONFIG_HOSTID);
3565 if (hostid == spa_get_hostid(spa))
3566 return (B_FALSE);
3569 * Skip the activity test when the pool was cleanly exported.
3571 if (state != POOL_STATE_ACTIVE)
3572 return (B_FALSE);
3574 return (B_TRUE);
3578 * Nanoseconds the activity check must watch for changes on-disk.
3580 static uint64_t
3581 spa_activity_check_duration(spa_t *spa, uberblock_t *ub)
3583 uint64_t import_intervals = MAX(zfs_multihost_import_intervals, 1);
3584 uint64_t multihost_interval = MSEC2NSEC(
3585 MMP_INTERVAL_OK(zfs_multihost_interval));
3586 uint64_t import_delay = MAX(NANOSEC, import_intervals *
3587 multihost_interval);
3590 * Local tunables determine a minimum duration except for the case
3591 * where we know when the remote host will suspend the pool if MMP
3592 * writes do not land.
3594 * See Big Theory comment at the top of mmp.c for the reasoning behind
3595 * these cases and times.
3598 ASSERT(MMP_IMPORT_SAFETY_FACTOR >= 100);
3600 if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3601 MMP_FAIL_INT(ub) > 0) {
3603 /* MMP on remote host will suspend pool after failed writes */
3604 import_delay = MMP_FAIL_INT(ub) * MSEC2NSEC(MMP_INTERVAL(ub)) *
3605 MMP_IMPORT_SAFETY_FACTOR / 100;
3607 zfs_dbgmsg("fail_intvals>0 import_delay=%llu ub_mmp "
3608 "mmp_fails=%llu ub_mmp mmp_interval=%llu "
3609 "import_intervals=%llu", (u_longlong_t)import_delay,
3610 (u_longlong_t)MMP_FAIL_INT(ub),
3611 (u_longlong_t)MMP_INTERVAL(ub),
3612 (u_longlong_t)import_intervals);
3614 } else if (MMP_INTERVAL_VALID(ub) && MMP_FAIL_INT_VALID(ub) &&
3615 MMP_FAIL_INT(ub) == 0) {
3617 /* MMP on remote host will never suspend pool */
3618 import_delay = MAX(import_delay, (MSEC2NSEC(MMP_INTERVAL(ub)) +
3619 ub->ub_mmp_delay) * import_intervals);
3621 zfs_dbgmsg("fail_intvals=0 import_delay=%llu ub_mmp "
3622 "mmp_interval=%llu ub_mmp_delay=%llu "
3623 "import_intervals=%llu", (u_longlong_t)import_delay,
3624 (u_longlong_t)MMP_INTERVAL(ub),
3625 (u_longlong_t)ub->ub_mmp_delay,
3626 (u_longlong_t)import_intervals);
3628 } else if (MMP_VALID(ub)) {
3630 * zfs-0.7 compatibility case
3633 import_delay = MAX(import_delay, (multihost_interval +
3634 ub->ub_mmp_delay) * import_intervals);
3636 zfs_dbgmsg("import_delay=%llu ub_mmp_delay=%llu "
3637 "import_intervals=%llu leaves=%u",
3638 (u_longlong_t)import_delay,
3639 (u_longlong_t)ub->ub_mmp_delay,
3640 (u_longlong_t)import_intervals,
3641 vdev_count_leaves(spa));
3642 } else {
3643 /* Using local tunings is the only reasonable option */
3644 zfs_dbgmsg("pool last imported on non-MMP aware "
3645 "host using import_delay=%llu multihost_interval=%llu "
3646 "import_intervals=%llu", (u_longlong_t)import_delay,
3647 (u_longlong_t)multihost_interval,
3648 (u_longlong_t)import_intervals);
3651 return (import_delay);
3655 * Remote host activity check.
3657 * error results:
3658 * 0 - no activity detected
3659 * EREMOTEIO - remote activity detected
3660 * EINTR - user canceled the operation
3662 static int
3663 spa_activity_check(spa_t *spa, uberblock_t *ub, nvlist_t *config,
3664 boolean_t importing)
3666 uint64_t txg = ub->ub_txg;
3667 uint64_t timestamp = ub->ub_timestamp;
3668 uint64_t mmp_config = ub->ub_mmp_config;
3669 uint16_t mmp_seq = MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0;
3670 uint64_t import_delay;
3671 hrtime_t import_expire, now;
3672 nvlist_t *mmp_label = NULL;
3673 vdev_t *rvd = spa->spa_root_vdev;
3674 kcondvar_t cv;
3675 kmutex_t mtx;
3676 int error = 0;
3678 cv_init(&cv, NULL, CV_DEFAULT, NULL);
3679 mutex_init(&mtx, NULL, MUTEX_DEFAULT, NULL);
3680 mutex_enter(&mtx);
3683 * If ZPOOL_CONFIG_MMP_TXG is present an activity check was performed
3684 * during the earlier tryimport. If the txg recorded there is 0 then
3685 * the pool is known to be active on another host.
3687 * Otherwise, the pool might be in use on another host. Check for
3688 * changes in the uberblocks on disk if necessary.
3690 if (nvlist_exists(config, ZPOOL_CONFIG_LOAD_INFO)) {
3691 nvlist_t *nvinfo = fnvlist_lookup_nvlist(config,
3692 ZPOOL_CONFIG_LOAD_INFO);
3694 if (nvlist_exists(nvinfo, ZPOOL_CONFIG_MMP_TXG) &&
3695 fnvlist_lookup_uint64(nvinfo, ZPOOL_CONFIG_MMP_TXG) == 0) {
3696 vdev_uberblock_load(rvd, ub, &mmp_label);
3697 error = SET_ERROR(EREMOTEIO);
3698 goto out;
3702 import_delay = spa_activity_check_duration(spa, ub);
3704 /* Add a small random factor in case of simultaneous imports (0-25%) */
3705 import_delay += import_delay * random_in_range(250) / 1000;
3707 import_expire = gethrtime() + import_delay;
3709 if (importing) {
3710 spa_import_progress_set_notes(spa, "Checking MMP activity, "
3711 "waiting %llu ms", (u_longlong_t)NSEC2MSEC(import_delay));
3714 int iterations = 0;
3715 while ((now = gethrtime()) < import_expire) {
3716 if (importing && iterations++ % 30 == 0) {
3717 spa_import_progress_set_notes(spa, "Checking MMP "
3718 "activity, %llu ms remaining",
3719 (u_longlong_t)NSEC2MSEC(import_expire - now));
3722 if (importing) {
3723 (void) spa_import_progress_set_mmp_check(spa_guid(spa),
3724 NSEC2SEC(import_expire - gethrtime()));
3727 vdev_uberblock_load(rvd, ub, &mmp_label);
3729 if (txg != ub->ub_txg || timestamp != ub->ub_timestamp ||
3730 mmp_seq != (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0)) {
3731 zfs_dbgmsg("multihost activity detected "
3732 "txg %llu ub_txg %llu "
3733 "timestamp %llu ub_timestamp %llu "
3734 "mmp_config %#llx ub_mmp_config %#llx",
3735 (u_longlong_t)txg, (u_longlong_t)ub->ub_txg,
3736 (u_longlong_t)timestamp,
3737 (u_longlong_t)ub->ub_timestamp,
3738 (u_longlong_t)mmp_config,
3739 (u_longlong_t)ub->ub_mmp_config);
3741 error = SET_ERROR(EREMOTEIO);
3742 break;
3745 if (mmp_label) {
3746 nvlist_free(mmp_label);
3747 mmp_label = NULL;
3750 error = cv_timedwait_sig(&cv, &mtx, ddi_get_lbolt() + hz);
3751 if (error != -1) {
3752 error = SET_ERROR(EINTR);
3753 break;
3755 error = 0;
3758 out:
3759 mutex_exit(&mtx);
3760 mutex_destroy(&mtx);
3761 cv_destroy(&cv);
3764 * If the pool is determined to be active store the status in the
3765 * spa->spa_load_info nvlist. If the remote hostname or hostid are
3766 * available from configuration read from disk store them as well.
3767 * This allows 'zpool import' to generate a more useful message.
3769 * ZPOOL_CONFIG_MMP_STATE - observed pool status (mandatory)
3770 * ZPOOL_CONFIG_MMP_HOSTNAME - hostname from the active pool
3771 * ZPOOL_CONFIG_MMP_HOSTID - hostid from the active pool
3773 if (error == EREMOTEIO) {
3774 const char *hostname = "<unknown>";
3775 uint64_t hostid = 0;
3777 if (mmp_label) {
3778 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTNAME)) {
3779 hostname = fnvlist_lookup_string(mmp_label,
3780 ZPOOL_CONFIG_HOSTNAME);
3781 fnvlist_add_string(spa->spa_load_info,
3782 ZPOOL_CONFIG_MMP_HOSTNAME, hostname);
3785 if (nvlist_exists(mmp_label, ZPOOL_CONFIG_HOSTID)) {
3786 hostid = fnvlist_lookup_uint64(mmp_label,
3787 ZPOOL_CONFIG_HOSTID);
3788 fnvlist_add_uint64(spa->spa_load_info,
3789 ZPOOL_CONFIG_MMP_HOSTID, hostid);
3793 fnvlist_add_uint64(spa->spa_load_info,
3794 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_ACTIVE);
3795 fnvlist_add_uint64(spa->spa_load_info,
3796 ZPOOL_CONFIG_MMP_TXG, 0);
3798 error = spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO);
3801 if (mmp_label)
3802 nvlist_free(mmp_label);
3804 return (error);
3808 * Called from zfs_ioc_clear for a pool that was suspended
3809 * after failing mmp write checks.
3811 boolean_t
3812 spa_mmp_remote_host_activity(spa_t *spa)
3814 ASSERT(spa_multihost(spa) && spa_suspended(spa));
3816 nvlist_t *best_label;
3817 uberblock_t best_ub;
3820 * Locate the best uberblock on disk
3822 vdev_uberblock_load(spa->spa_root_vdev, &best_ub, &best_label);
3823 if (best_label) {
3825 * confirm that the best hostid matches our hostid
3827 if (nvlist_exists(best_label, ZPOOL_CONFIG_HOSTID) &&
3828 spa_get_hostid(spa) !=
3829 fnvlist_lookup_uint64(best_label, ZPOOL_CONFIG_HOSTID)) {
3830 nvlist_free(best_label);
3831 return (B_TRUE);
3833 nvlist_free(best_label);
3834 } else {
3835 return (B_TRUE);
3838 if (!MMP_VALID(&best_ub) ||
3839 !MMP_FAIL_INT_VALID(&best_ub) ||
3840 MMP_FAIL_INT(&best_ub) == 0) {
3841 return (B_TRUE);
3844 if (best_ub.ub_txg != spa->spa_uberblock.ub_txg ||
3845 best_ub.ub_timestamp != spa->spa_uberblock.ub_timestamp) {
3846 zfs_dbgmsg("txg mismatch detected during pool clear "
3847 "txg %llu ub_txg %llu timestamp %llu ub_timestamp %llu",
3848 (u_longlong_t)spa->spa_uberblock.ub_txg,
3849 (u_longlong_t)best_ub.ub_txg,
3850 (u_longlong_t)spa->spa_uberblock.ub_timestamp,
3851 (u_longlong_t)best_ub.ub_timestamp);
3852 return (B_TRUE);
3856 * Perform an activity check looking for any remote writer
3858 return (spa_activity_check(spa, &spa->spa_uberblock, spa->spa_config,
3859 B_FALSE) != 0);
3862 static int
3863 spa_verify_host(spa_t *spa, nvlist_t *mos_config)
3865 uint64_t hostid;
3866 const char *hostname;
3867 uint64_t myhostid = 0;
3869 if (!spa_is_root(spa) && nvlist_lookup_uint64(mos_config,
3870 ZPOOL_CONFIG_HOSTID, &hostid) == 0) {
3871 hostname = fnvlist_lookup_string(mos_config,
3872 ZPOOL_CONFIG_HOSTNAME);
3874 myhostid = zone_get_hostid(NULL);
3876 if (hostid != 0 && myhostid != 0 && hostid != myhostid) {
3877 cmn_err(CE_WARN, "pool '%s' could not be "
3878 "loaded as it was last accessed by "
3879 "another system (host: %s hostid: 0x%llx). "
3880 "See: https://openzfs.github.io/openzfs-docs/msg/"
3881 "ZFS-8000-EY",
3882 spa_name(spa), hostname, (u_longlong_t)hostid);
3883 spa_load_failed(spa, "hostid verification failed: pool "
3884 "last accessed by host: %s (hostid: 0x%llx)",
3885 hostname, (u_longlong_t)hostid);
3886 return (SET_ERROR(EBADF));
3890 return (0);
3893 static int
3894 spa_ld_parse_config(spa_t *spa, spa_import_type_t type)
3896 int error = 0;
3897 nvlist_t *nvtree, *nvl, *config = spa->spa_config;
3898 int parse;
3899 vdev_t *rvd;
3900 uint64_t pool_guid;
3901 const char *comment;
3902 const char *compatibility;
3905 * Versioning wasn't explicitly added to the label until later, so if
3906 * it's not present treat it as the initial version.
3908 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_VERSION,
3909 &spa->spa_ubsync.ub_version) != 0)
3910 spa->spa_ubsync.ub_version = SPA_VERSION_INITIAL;
3912 if (nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_GUID, &pool_guid)) {
3913 spa_load_failed(spa, "invalid config provided: '%s' missing",
3914 ZPOOL_CONFIG_POOL_GUID);
3915 return (SET_ERROR(EINVAL));
3919 * If we are doing an import, ensure that the pool is not already
3920 * imported by checking if its pool guid already exists in the
3921 * spa namespace.
3923 * The only case that we allow an already imported pool to be
3924 * imported again, is when the pool is checkpointed and we want to
3925 * look at its checkpointed state from userland tools like zdb.
3927 #ifdef _KERNEL
3928 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3929 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3930 spa_guid_exists(pool_guid, 0)) {
3931 #else
3932 if ((spa->spa_load_state == SPA_LOAD_IMPORT ||
3933 spa->spa_load_state == SPA_LOAD_TRYIMPORT) &&
3934 spa_guid_exists(pool_guid, 0) &&
3935 !spa_importing_readonly_checkpoint(spa)) {
3936 #endif
3937 spa_load_failed(spa, "a pool with guid %llu is already open",
3938 (u_longlong_t)pool_guid);
3939 return (SET_ERROR(EEXIST));
3942 spa->spa_config_guid = pool_guid;
3944 nvlist_free(spa->spa_load_info);
3945 spa->spa_load_info = fnvlist_alloc();
3947 ASSERT(spa->spa_comment == NULL);
3948 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMMENT, &comment) == 0)
3949 spa->spa_comment = spa_strdup(comment);
3951 ASSERT(spa->spa_compatibility == NULL);
3952 if (nvlist_lookup_string(config, ZPOOL_CONFIG_COMPATIBILITY,
3953 &compatibility) == 0)
3954 spa->spa_compatibility = spa_strdup(compatibility);
3956 (void) nvlist_lookup_uint64(config, ZPOOL_CONFIG_POOL_TXG,
3957 &spa->spa_config_txg);
3959 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_SPLIT, &nvl) == 0)
3960 spa->spa_config_splitting = fnvlist_dup(nvl);
3962 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvtree)) {
3963 spa_load_failed(spa, "invalid config provided: '%s' missing",
3964 ZPOOL_CONFIG_VDEV_TREE);
3965 return (SET_ERROR(EINVAL));
3969 * Create "The Godfather" zio to hold all async IOs
3971 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
3972 KM_SLEEP);
3973 for (int i = 0; i < max_ncpus; i++) {
3974 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
3975 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
3976 ZIO_FLAG_GODFATHER);
3980 * Parse the configuration into a vdev tree. We explicitly set the
3981 * value that will be returned by spa_version() since parsing the
3982 * configuration requires knowing the version number.
3984 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
3985 parse = (type == SPA_IMPORT_EXISTING ?
3986 VDEV_ALLOC_LOAD : VDEV_ALLOC_SPLIT);
3987 error = spa_config_parse(spa, &rvd, nvtree, NULL, 0, parse);
3988 spa_config_exit(spa, SCL_ALL, FTAG);
3990 if (error != 0) {
3991 spa_load_failed(spa, "unable to parse config [error=%d]",
3992 error);
3993 return (error);
3996 ASSERT(spa->spa_root_vdev == rvd);
3997 ASSERT3U(spa->spa_min_ashift, >=, SPA_MINBLOCKSHIFT);
3998 ASSERT3U(spa->spa_max_ashift, <=, SPA_MAXBLOCKSHIFT);
4000 if (type != SPA_IMPORT_ASSEMBLE) {
4001 ASSERT(spa_guid(spa) == pool_guid);
4004 return (0);
4008 * Recursively open all vdevs in the vdev tree. This function is called twice:
4009 * first with the untrusted config, then with the trusted config.
4011 static int
4012 spa_ld_open_vdevs(spa_t *spa)
4014 int error = 0;
4017 * spa_missing_tvds_allowed defines how many top-level vdevs can be
4018 * missing/unopenable for the root vdev to be still considered openable.
4020 if (spa->spa_trust_config) {
4021 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds;
4022 } else if (spa->spa_config_source == SPA_CONFIG_SRC_CACHEFILE) {
4023 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_cachefile;
4024 } else if (spa->spa_config_source == SPA_CONFIG_SRC_SCAN) {
4025 spa->spa_missing_tvds_allowed = zfs_max_missing_tvds_scan;
4026 } else {
4027 spa->spa_missing_tvds_allowed = 0;
4030 spa->spa_missing_tvds_allowed =
4031 MAX(zfs_max_missing_tvds, spa->spa_missing_tvds_allowed);
4033 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4034 error = vdev_open(spa->spa_root_vdev);
4035 spa_config_exit(spa, SCL_ALL, FTAG);
4037 if (spa->spa_missing_tvds != 0) {
4038 spa_load_note(spa, "vdev tree has %lld missing top-level "
4039 "vdevs.", (u_longlong_t)spa->spa_missing_tvds);
4040 if (spa->spa_trust_config && (spa->spa_mode & SPA_MODE_WRITE)) {
4042 * Although theoretically we could allow users to open
4043 * incomplete pools in RW mode, we'd need to add a lot
4044 * of extra logic (e.g. adjust pool space to account
4045 * for missing vdevs).
4046 * This limitation also prevents users from accidentally
4047 * opening the pool in RW mode during data recovery and
4048 * damaging it further.
4050 spa_load_note(spa, "pools with missing top-level "
4051 "vdevs can only be opened in read-only mode.");
4052 error = SET_ERROR(ENXIO);
4053 } else {
4054 spa_load_note(spa, "current settings allow for maximum "
4055 "%lld missing top-level vdevs at this stage.",
4056 (u_longlong_t)spa->spa_missing_tvds_allowed);
4059 if (error != 0) {
4060 spa_load_failed(spa, "unable to open vdev tree [error=%d]",
4061 error);
4063 if (spa->spa_missing_tvds != 0 || error != 0)
4064 vdev_dbgmsg_print_tree(spa->spa_root_vdev, 2);
4066 return (error);
4070 * We need to validate the vdev labels against the configuration that
4071 * we have in hand. This function is called twice: first with an untrusted
4072 * config, then with a trusted config. The validation is more strict when the
4073 * config is trusted.
4075 static int
4076 spa_ld_validate_vdevs(spa_t *spa)
4078 int error = 0;
4079 vdev_t *rvd = spa->spa_root_vdev;
4081 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4082 error = vdev_validate(rvd);
4083 spa_config_exit(spa, SCL_ALL, FTAG);
4085 if (error != 0) {
4086 spa_load_failed(spa, "vdev_validate failed [error=%d]", error);
4087 return (error);
4090 if (rvd->vdev_state <= VDEV_STATE_CANT_OPEN) {
4091 spa_load_failed(spa, "cannot open vdev tree after invalidating "
4092 "some vdevs");
4093 vdev_dbgmsg_print_tree(rvd, 2);
4094 return (SET_ERROR(ENXIO));
4097 return (0);
4100 static void
4101 spa_ld_select_uberblock_done(spa_t *spa, uberblock_t *ub)
4103 spa->spa_state = POOL_STATE_ACTIVE;
4104 spa->spa_ubsync = spa->spa_uberblock;
4105 spa->spa_verify_min_txg = spa->spa_extreme_rewind ?
4106 TXG_INITIAL - 1 : spa_last_synced_txg(spa) - TXG_DEFER_SIZE - 1;
4107 spa->spa_first_txg = spa->spa_last_ubsync_txg ?
4108 spa->spa_last_ubsync_txg : spa_last_synced_txg(spa) + 1;
4109 spa->spa_claim_max_txg = spa->spa_first_txg;
4110 spa->spa_prev_software_version = ub->ub_software_version;
4113 static int
4114 spa_ld_select_uberblock(spa_t *spa, spa_import_type_t type)
4116 vdev_t *rvd = spa->spa_root_vdev;
4117 nvlist_t *label;
4118 uberblock_t *ub = &spa->spa_uberblock;
4119 boolean_t activity_check = B_FALSE;
4122 * If we are opening the checkpointed state of the pool by
4123 * rewinding to it, at this point we will have written the
4124 * checkpointed uberblock to the vdev labels, so searching
4125 * the labels will find the right uberblock. However, if
4126 * we are opening the checkpointed state read-only, we have
4127 * not modified the labels. Therefore, we must ignore the
4128 * labels and continue using the spa_uberblock that was set
4129 * by spa_ld_checkpoint_rewind.
4131 * Note that it would be fine to ignore the labels when
4132 * rewinding (opening writeable) as well. However, if we
4133 * crash just after writing the labels, we will end up
4134 * searching the labels. Doing so in the common case means
4135 * that this code path gets exercised normally, rather than
4136 * just in the edge case.
4138 if (ub->ub_checkpoint_txg != 0 &&
4139 spa_importing_readonly_checkpoint(spa)) {
4140 spa_ld_select_uberblock_done(spa, ub);
4141 return (0);
4145 * Find the best uberblock.
4147 vdev_uberblock_load(rvd, ub, &label);
4150 * If we weren't able to find a single valid uberblock, return failure.
4152 if (ub->ub_txg == 0) {
4153 nvlist_free(label);
4154 spa_load_failed(spa, "no valid uberblock found");
4155 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, ENXIO));
4158 if (spa->spa_load_max_txg != UINT64_MAX) {
4159 (void) spa_import_progress_set_max_txg(spa_guid(spa),
4160 (u_longlong_t)spa->spa_load_max_txg);
4162 spa_load_note(spa, "using uberblock with txg=%llu",
4163 (u_longlong_t)ub->ub_txg);
4164 if (ub->ub_raidz_reflow_info != 0) {
4165 spa_load_note(spa, "uberblock raidz_reflow_info: "
4166 "state=%u offset=%llu",
4167 (int)RRSS_GET_STATE(ub),
4168 (u_longlong_t)RRSS_GET_OFFSET(ub));
4173 * For pools which have the multihost property on determine if the
4174 * pool is truly inactive and can be safely imported. Prevent
4175 * hosts which don't have a hostid set from importing the pool.
4177 activity_check = spa_activity_check_required(spa, ub, label,
4178 spa->spa_config);
4179 if (activity_check) {
4180 if (ub->ub_mmp_magic == MMP_MAGIC && ub->ub_mmp_delay &&
4181 spa_get_hostid(spa) == 0) {
4182 nvlist_free(label);
4183 fnvlist_add_uint64(spa->spa_load_info,
4184 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4185 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4188 int error =
4189 spa_activity_check(spa, ub, spa->spa_config, B_TRUE);
4190 if (error) {
4191 nvlist_free(label);
4192 return (error);
4195 fnvlist_add_uint64(spa->spa_load_info,
4196 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_INACTIVE);
4197 fnvlist_add_uint64(spa->spa_load_info,
4198 ZPOOL_CONFIG_MMP_TXG, ub->ub_txg);
4199 fnvlist_add_uint16(spa->spa_load_info,
4200 ZPOOL_CONFIG_MMP_SEQ,
4201 (MMP_SEQ_VALID(ub) ? MMP_SEQ(ub) : 0));
4205 * If the pool has an unsupported version we can't open it.
4207 if (!SPA_VERSION_IS_SUPPORTED(ub->ub_version)) {
4208 nvlist_free(label);
4209 spa_load_failed(spa, "version %llu is not supported",
4210 (u_longlong_t)ub->ub_version);
4211 return (spa_vdev_err(rvd, VDEV_AUX_VERSION_NEWER, ENOTSUP));
4214 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4215 nvlist_t *features;
4218 * If we weren't able to find what's necessary for reading the
4219 * MOS in the label, return failure.
4221 if (label == NULL) {
4222 spa_load_failed(spa, "label config unavailable");
4223 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4224 ENXIO));
4227 if (nvlist_lookup_nvlist(label, ZPOOL_CONFIG_FEATURES_FOR_READ,
4228 &features) != 0) {
4229 nvlist_free(label);
4230 spa_load_failed(spa, "invalid label: '%s' missing",
4231 ZPOOL_CONFIG_FEATURES_FOR_READ);
4232 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
4233 ENXIO));
4237 * Update our in-core representation with the definitive values
4238 * from the label.
4240 nvlist_free(spa->spa_label_features);
4241 spa->spa_label_features = fnvlist_dup(features);
4244 nvlist_free(label);
4247 * Look through entries in the label nvlist's features_for_read. If
4248 * there is a feature listed there which we don't understand then we
4249 * cannot open a pool.
4251 if (ub->ub_version >= SPA_VERSION_FEATURES) {
4252 nvlist_t *unsup_feat;
4254 unsup_feat = fnvlist_alloc();
4256 for (nvpair_t *nvp = nvlist_next_nvpair(spa->spa_label_features,
4257 NULL); nvp != NULL;
4258 nvp = nvlist_next_nvpair(spa->spa_label_features, nvp)) {
4259 if (!zfeature_is_supported(nvpair_name(nvp))) {
4260 fnvlist_add_string(unsup_feat,
4261 nvpair_name(nvp), "");
4265 if (!nvlist_empty(unsup_feat)) {
4266 fnvlist_add_nvlist(spa->spa_load_info,
4267 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4268 nvlist_free(unsup_feat);
4269 spa_load_failed(spa, "some features are unsupported");
4270 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4271 ENOTSUP));
4274 nvlist_free(unsup_feat);
4277 if (type != SPA_IMPORT_ASSEMBLE && spa->spa_config_splitting) {
4278 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4279 spa_try_repair(spa, spa->spa_config);
4280 spa_config_exit(spa, SCL_ALL, FTAG);
4281 nvlist_free(spa->spa_config_splitting);
4282 spa->spa_config_splitting = NULL;
4286 * Initialize internal SPA structures.
4288 spa_ld_select_uberblock_done(spa, ub);
4290 return (0);
4293 static int
4294 spa_ld_open_rootbp(spa_t *spa)
4296 int error = 0;
4297 vdev_t *rvd = spa->spa_root_vdev;
4299 error = dsl_pool_init(spa, spa->spa_first_txg, &spa->spa_dsl_pool);
4300 if (error != 0) {
4301 spa_load_failed(spa, "unable to open rootbp in dsl_pool_init "
4302 "[error=%d]", error);
4303 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4305 spa->spa_meta_objset = spa->spa_dsl_pool->dp_meta_objset;
4307 return (0);
4310 static int
4311 spa_ld_trusted_config(spa_t *spa, spa_import_type_t type,
4312 boolean_t reloading)
4314 vdev_t *mrvd, *rvd = spa->spa_root_vdev;
4315 nvlist_t *nv, *mos_config, *policy;
4316 int error = 0, copy_error;
4317 uint64_t healthy_tvds, healthy_tvds_mos;
4318 uint64_t mos_config_txg;
4320 if (spa_dir_prop(spa, DMU_POOL_CONFIG, &spa->spa_config_object, B_TRUE)
4321 != 0)
4322 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4325 * If we're assembling a pool from a split, the config provided is
4326 * already trusted so there is nothing to do.
4328 if (type == SPA_IMPORT_ASSEMBLE)
4329 return (0);
4331 healthy_tvds = spa_healthy_core_tvds(spa);
4333 if (load_nvlist(spa, spa->spa_config_object, &mos_config)
4334 != 0) {
4335 spa_load_failed(spa, "unable to retrieve MOS config");
4336 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4340 * If we are doing an open, pool owner wasn't verified yet, thus do
4341 * the verification here.
4343 if (spa->spa_load_state == SPA_LOAD_OPEN) {
4344 error = spa_verify_host(spa, mos_config);
4345 if (error != 0) {
4346 nvlist_free(mos_config);
4347 return (error);
4351 nv = fnvlist_lookup_nvlist(mos_config, ZPOOL_CONFIG_VDEV_TREE);
4353 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4356 * Build a new vdev tree from the trusted config
4358 error = spa_config_parse(spa, &mrvd, nv, NULL, 0, VDEV_ALLOC_LOAD);
4359 if (error != 0) {
4360 nvlist_free(mos_config);
4361 spa_config_exit(spa, SCL_ALL, FTAG);
4362 spa_load_failed(spa, "spa_config_parse failed [error=%d]",
4363 error);
4364 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4368 * Vdev paths in the MOS may be obsolete. If the untrusted config was
4369 * obtained by scanning /dev/dsk, then it will have the right vdev
4370 * paths. We update the trusted MOS config with this information.
4371 * We first try to copy the paths with vdev_copy_path_strict, which
4372 * succeeds only when both configs have exactly the same vdev tree.
4373 * If that fails, we fall back to a more flexible method that has a
4374 * best effort policy.
4376 copy_error = vdev_copy_path_strict(rvd, mrvd);
4377 if (copy_error != 0 || spa_load_print_vdev_tree) {
4378 spa_load_note(spa, "provided vdev tree:");
4379 vdev_dbgmsg_print_tree(rvd, 2);
4380 spa_load_note(spa, "MOS vdev tree:");
4381 vdev_dbgmsg_print_tree(mrvd, 2);
4383 if (copy_error != 0) {
4384 spa_load_note(spa, "vdev_copy_path_strict failed, falling "
4385 "back to vdev_copy_path_relaxed");
4386 vdev_copy_path_relaxed(rvd, mrvd);
4389 vdev_close(rvd);
4390 vdev_free(rvd);
4391 spa->spa_root_vdev = mrvd;
4392 rvd = mrvd;
4393 spa_config_exit(spa, SCL_ALL, FTAG);
4396 * If 'zpool import' used a cached config, then the on-disk hostid and
4397 * hostname may be different to the cached config in ways that should
4398 * prevent import. Userspace can't discover this without a scan, but
4399 * we know, so we add these values to LOAD_INFO so the caller can know
4400 * the difference.
4402 * Note that we have to do this before the config is regenerated,
4403 * because the new config will have the hostid and hostname for this
4404 * host, in readiness for import.
4406 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTID))
4407 fnvlist_add_uint64(spa->spa_load_info, ZPOOL_CONFIG_HOSTID,
4408 fnvlist_lookup_uint64(mos_config, ZPOOL_CONFIG_HOSTID));
4409 if (nvlist_exists(mos_config, ZPOOL_CONFIG_HOSTNAME))
4410 fnvlist_add_string(spa->spa_load_info, ZPOOL_CONFIG_HOSTNAME,
4411 fnvlist_lookup_string(mos_config, ZPOOL_CONFIG_HOSTNAME));
4414 * We will use spa_config if we decide to reload the spa or if spa_load
4415 * fails and we rewind. We must thus regenerate the config using the
4416 * MOS information with the updated paths. ZPOOL_LOAD_POLICY is used to
4417 * pass settings on how to load the pool and is not stored in the MOS.
4418 * We copy it over to our new, trusted config.
4420 mos_config_txg = fnvlist_lookup_uint64(mos_config,
4421 ZPOOL_CONFIG_POOL_TXG);
4422 nvlist_free(mos_config);
4423 mos_config = spa_config_generate(spa, NULL, mos_config_txg, B_FALSE);
4424 if (nvlist_lookup_nvlist(spa->spa_config, ZPOOL_LOAD_POLICY,
4425 &policy) == 0)
4426 fnvlist_add_nvlist(mos_config, ZPOOL_LOAD_POLICY, policy);
4427 spa_config_set(spa, mos_config);
4428 spa->spa_config_source = SPA_CONFIG_SRC_MOS;
4431 * Now that we got the config from the MOS, we should be more strict
4432 * in checking blkptrs and can make assumptions about the consistency
4433 * of the vdev tree. spa_trust_config must be set to true before opening
4434 * vdevs in order for them to be writeable.
4436 spa->spa_trust_config = B_TRUE;
4439 * Open and validate the new vdev tree
4441 error = spa_ld_open_vdevs(spa);
4442 if (error != 0)
4443 return (error);
4445 error = spa_ld_validate_vdevs(spa);
4446 if (error != 0)
4447 return (error);
4449 if (copy_error != 0 || spa_load_print_vdev_tree) {
4450 spa_load_note(spa, "final vdev tree:");
4451 vdev_dbgmsg_print_tree(rvd, 2);
4454 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT &&
4455 !spa->spa_extreme_rewind && zfs_max_missing_tvds == 0) {
4457 * Sanity check to make sure that we are indeed loading the
4458 * latest uberblock. If we missed SPA_SYNC_MIN_VDEVS tvds
4459 * in the config provided and they happened to be the only ones
4460 * to have the latest uberblock, we could involuntarily perform
4461 * an extreme rewind.
4463 healthy_tvds_mos = spa_healthy_core_tvds(spa);
4464 if (healthy_tvds_mos - healthy_tvds >=
4465 SPA_SYNC_MIN_VDEVS) {
4466 spa_load_note(spa, "config provided misses too many "
4467 "top-level vdevs compared to MOS (%lld vs %lld). ",
4468 (u_longlong_t)healthy_tvds,
4469 (u_longlong_t)healthy_tvds_mos);
4470 spa_load_note(spa, "vdev tree:");
4471 vdev_dbgmsg_print_tree(rvd, 2);
4472 if (reloading) {
4473 spa_load_failed(spa, "config was already "
4474 "provided from MOS. Aborting.");
4475 return (spa_vdev_err(rvd,
4476 VDEV_AUX_CORRUPT_DATA, EIO));
4478 spa_load_note(spa, "spa must be reloaded using MOS "
4479 "config");
4480 return (SET_ERROR(EAGAIN));
4484 error = spa_check_for_missing_logs(spa);
4485 if (error != 0)
4486 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM, ENXIO));
4488 if (rvd->vdev_guid_sum != spa->spa_uberblock.ub_guid_sum) {
4489 spa_load_failed(spa, "uberblock guid sum doesn't match MOS "
4490 "guid sum (%llu != %llu)",
4491 (u_longlong_t)spa->spa_uberblock.ub_guid_sum,
4492 (u_longlong_t)rvd->vdev_guid_sum);
4493 return (spa_vdev_err(rvd, VDEV_AUX_BAD_GUID_SUM,
4494 ENXIO));
4497 return (0);
4500 static int
4501 spa_ld_open_indirect_vdev_metadata(spa_t *spa)
4503 int error = 0;
4504 vdev_t *rvd = spa->spa_root_vdev;
4507 * Everything that we read before spa_remove_init() must be stored
4508 * on concreted vdevs. Therefore we do this as early as possible.
4510 error = spa_remove_init(spa);
4511 if (error != 0) {
4512 spa_load_failed(spa, "spa_remove_init failed [error=%d]",
4513 error);
4514 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4518 * Retrieve information needed to condense indirect vdev mappings.
4520 error = spa_condense_init(spa);
4521 if (error != 0) {
4522 spa_load_failed(spa, "spa_condense_init failed [error=%d]",
4523 error);
4524 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4527 return (0);
4530 static int
4531 spa_ld_check_features(spa_t *spa, boolean_t *missing_feat_writep)
4533 int error = 0;
4534 vdev_t *rvd = spa->spa_root_vdev;
4536 if (spa_version(spa) >= SPA_VERSION_FEATURES) {
4537 boolean_t missing_feat_read = B_FALSE;
4538 nvlist_t *unsup_feat, *enabled_feat;
4540 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_READ,
4541 &spa->spa_feat_for_read_obj, B_TRUE) != 0) {
4542 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4545 if (spa_dir_prop(spa, DMU_POOL_FEATURES_FOR_WRITE,
4546 &spa->spa_feat_for_write_obj, B_TRUE) != 0) {
4547 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4550 if (spa_dir_prop(spa, DMU_POOL_FEATURE_DESCRIPTIONS,
4551 &spa->spa_feat_desc_obj, B_TRUE) != 0) {
4552 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4555 enabled_feat = fnvlist_alloc();
4556 unsup_feat = fnvlist_alloc();
4558 if (!spa_features_check(spa, B_FALSE,
4559 unsup_feat, enabled_feat))
4560 missing_feat_read = B_TRUE;
4562 if (spa_writeable(spa) ||
4563 spa->spa_load_state == SPA_LOAD_TRYIMPORT) {
4564 if (!spa_features_check(spa, B_TRUE,
4565 unsup_feat, enabled_feat)) {
4566 *missing_feat_writep = B_TRUE;
4570 fnvlist_add_nvlist(spa->spa_load_info,
4571 ZPOOL_CONFIG_ENABLED_FEAT, enabled_feat);
4573 if (!nvlist_empty(unsup_feat)) {
4574 fnvlist_add_nvlist(spa->spa_load_info,
4575 ZPOOL_CONFIG_UNSUP_FEAT, unsup_feat);
4578 fnvlist_free(enabled_feat);
4579 fnvlist_free(unsup_feat);
4581 if (!missing_feat_read) {
4582 fnvlist_add_boolean(spa->spa_load_info,
4583 ZPOOL_CONFIG_CAN_RDONLY);
4587 * If the state is SPA_LOAD_TRYIMPORT, our objective is
4588 * twofold: to determine whether the pool is available for
4589 * import in read-write mode and (if it is not) whether the
4590 * pool is available for import in read-only mode. If the pool
4591 * is available for import in read-write mode, it is displayed
4592 * as available in userland; if it is not available for import
4593 * in read-only mode, it is displayed as unavailable in
4594 * userland. If the pool is available for import in read-only
4595 * mode but not read-write mode, it is displayed as unavailable
4596 * in userland with a special note that the pool is actually
4597 * available for open in read-only mode.
4599 * As a result, if the state is SPA_LOAD_TRYIMPORT and we are
4600 * missing a feature for write, we must first determine whether
4601 * the pool can be opened read-only before returning to
4602 * userland in order to know whether to display the
4603 * abovementioned note.
4605 if (missing_feat_read || (*missing_feat_writep &&
4606 spa_writeable(spa))) {
4607 spa_load_failed(spa, "pool uses unsupported features");
4608 return (spa_vdev_err(rvd, VDEV_AUX_UNSUP_FEAT,
4609 ENOTSUP));
4613 * Load refcounts for ZFS features from disk into an in-memory
4614 * cache during SPA initialization.
4616 for (spa_feature_t i = 0; i < SPA_FEATURES; i++) {
4617 uint64_t refcount;
4619 error = feature_get_refcount_from_disk(spa,
4620 &spa_feature_table[i], &refcount);
4621 if (error == 0) {
4622 spa->spa_feat_refcount_cache[i] = refcount;
4623 } else if (error == ENOTSUP) {
4624 spa->spa_feat_refcount_cache[i] =
4625 SPA_FEATURE_DISABLED;
4626 } else {
4627 spa_load_failed(spa, "error getting refcount "
4628 "for feature %s [error=%d]",
4629 spa_feature_table[i].fi_guid, error);
4630 return (spa_vdev_err(rvd,
4631 VDEV_AUX_CORRUPT_DATA, EIO));
4636 if (spa_feature_is_active(spa, SPA_FEATURE_ENABLED_TXG)) {
4637 if (spa_dir_prop(spa, DMU_POOL_FEATURE_ENABLED_TXG,
4638 &spa->spa_feat_enabled_txg_obj, B_TRUE) != 0)
4639 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4643 * Encryption was added before bookmark_v2, even though bookmark_v2
4644 * is now a dependency. If this pool has encryption enabled without
4645 * bookmark_v2, trigger an errata message.
4647 if (spa_feature_is_enabled(spa, SPA_FEATURE_ENCRYPTION) &&
4648 !spa_feature_is_enabled(spa, SPA_FEATURE_BOOKMARK_V2)) {
4649 spa->spa_errata = ZPOOL_ERRATA_ZOL_8308_ENCRYPTION;
4652 return (0);
4655 static int
4656 spa_ld_load_special_directories(spa_t *spa)
4658 int error = 0;
4659 vdev_t *rvd = spa->spa_root_vdev;
4661 spa->spa_is_initializing = B_TRUE;
4662 error = dsl_pool_open(spa->spa_dsl_pool);
4663 spa->spa_is_initializing = B_FALSE;
4664 if (error != 0) {
4665 spa_load_failed(spa, "dsl_pool_open failed [error=%d]", error);
4666 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4669 return (0);
4672 static int
4673 spa_ld_get_props(spa_t *spa)
4675 int error = 0;
4676 uint64_t obj;
4677 vdev_t *rvd = spa->spa_root_vdev;
4679 /* Grab the checksum salt from the MOS. */
4680 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
4681 DMU_POOL_CHECKSUM_SALT, 1,
4682 sizeof (spa->spa_cksum_salt.zcs_bytes),
4683 spa->spa_cksum_salt.zcs_bytes);
4684 if (error == ENOENT) {
4685 /* Generate a new salt for subsequent use */
4686 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
4687 sizeof (spa->spa_cksum_salt.zcs_bytes));
4688 } else if (error != 0) {
4689 spa_load_failed(spa, "unable to retrieve checksum salt from "
4690 "MOS [error=%d]", error);
4691 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4694 if (spa_dir_prop(spa, DMU_POOL_SYNC_BPOBJ, &obj, B_TRUE) != 0)
4695 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4696 error = bpobj_open(&spa->spa_deferred_bpobj, spa->spa_meta_objset, obj);
4697 if (error != 0) {
4698 spa_load_failed(spa, "error opening deferred-frees bpobj "
4699 "[error=%d]", error);
4700 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4704 * Load the bit that tells us to use the new accounting function
4705 * (raid-z deflation). If we have an older pool, this will not
4706 * be present.
4708 error = spa_dir_prop(spa, DMU_POOL_DEFLATE, &spa->spa_deflate, B_FALSE);
4709 if (error != 0 && error != ENOENT)
4710 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4712 error = spa_dir_prop(spa, DMU_POOL_CREATION_VERSION,
4713 &spa->spa_creation_version, B_FALSE);
4714 if (error != 0 && error != ENOENT)
4715 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4718 * Load the persistent error log. If we have an older pool, this will
4719 * not be present.
4721 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_LAST, &spa->spa_errlog_last,
4722 B_FALSE);
4723 if (error != 0 && error != ENOENT)
4724 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4726 error = spa_dir_prop(spa, DMU_POOL_ERRLOG_SCRUB,
4727 &spa->spa_errlog_scrub, B_FALSE);
4728 if (error != 0 && error != ENOENT)
4729 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4731 /* Load the last scrubbed txg. */
4732 error = spa_dir_prop(spa, DMU_POOL_LAST_SCRUBBED_TXG,
4733 &spa->spa_scrubbed_last_txg, B_FALSE);
4734 if (error != 0 && error != ENOENT)
4735 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4738 * Load the livelist deletion field. If a livelist is queued for
4739 * deletion, indicate that in the spa
4741 error = spa_dir_prop(spa, DMU_POOL_DELETED_CLONES,
4742 &spa->spa_livelists_to_delete, B_FALSE);
4743 if (error != 0 && error != ENOENT)
4744 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4747 * Load the history object. If we have an older pool, this
4748 * will not be present.
4750 error = spa_dir_prop(spa, DMU_POOL_HISTORY, &spa->spa_history, B_FALSE);
4751 if (error != 0 && error != ENOENT)
4752 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4755 * Load the per-vdev ZAP map. If we have an older pool, this will not
4756 * be present; in this case, defer its creation to a later time to
4757 * avoid dirtying the MOS this early / out of sync context. See
4758 * spa_sync_config_object.
4761 /* The sentinel is only available in the MOS config. */
4762 nvlist_t *mos_config;
4763 if (load_nvlist(spa, spa->spa_config_object, &mos_config) != 0) {
4764 spa_load_failed(spa, "unable to retrieve MOS config");
4765 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4768 error = spa_dir_prop(spa, DMU_POOL_VDEV_ZAP_MAP,
4769 &spa->spa_all_vdev_zaps, B_FALSE);
4771 if (error == ENOENT) {
4772 VERIFY(!nvlist_exists(mos_config,
4773 ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
4774 spa->spa_avz_action = AVZ_ACTION_INITIALIZE;
4775 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4776 } else if (error != 0) {
4777 nvlist_free(mos_config);
4778 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4779 } else if (!nvlist_exists(mos_config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS)) {
4781 * An older version of ZFS overwrote the sentinel value, so
4782 * we have orphaned per-vdev ZAPs in the MOS. Defer their
4783 * destruction to later; see spa_sync_config_object.
4785 spa->spa_avz_action = AVZ_ACTION_DESTROY;
4787 * We're assuming that no vdevs have had their ZAPs created
4788 * before this. Better be sure of it.
4790 ASSERT0(vdev_count_verify_zaps(spa->spa_root_vdev));
4792 nvlist_free(mos_config);
4794 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
4796 error = spa_dir_prop(spa, DMU_POOL_PROPS, &spa->spa_pool_props_object,
4797 B_FALSE);
4798 if (error && error != ENOENT)
4799 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4801 if (error == 0) {
4802 uint64_t autoreplace = 0;
4804 spa_prop_find(spa, ZPOOL_PROP_BOOTFS, &spa->spa_bootfs);
4805 spa_prop_find(spa, ZPOOL_PROP_AUTOREPLACE, &autoreplace);
4806 spa_prop_find(spa, ZPOOL_PROP_DELEGATION, &spa->spa_delegation);
4807 spa_prop_find(spa, ZPOOL_PROP_FAILUREMODE, &spa->spa_failmode);
4808 spa_prop_find(spa, ZPOOL_PROP_AUTOEXPAND, &spa->spa_autoexpand);
4809 spa_prop_find(spa, ZPOOL_PROP_DEDUP_TABLE_QUOTA,
4810 &spa->spa_dedup_table_quota);
4811 spa_prop_find(spa, ZPOOL_PROP_MULTIHOST, &spa->spa_multihost);
4812 spa_prop_find(spa, ZPOOL_PROP_AUTOTRIM, &spa->spa_autotrim);
4813 spa->spa_autoreplace = (autoreplace != 0);
4817 * If we are importing a pool with missing top-level vdevs,
4818 * we enforce that the pool doesn't panic or get suspended on
4819 * error since the likelihood of missing data is extremely high.
4821 if (spa->spa_missing_tvds > 0 &&
4822 spa->spa_failmode != ZIO_FAILURE_MODE_CONTINUE &&
4823 spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4824 spa_load_note(spa, "forcing failmode to 'continue' "
4825 "as some top level vdevs are missing");
4826 spa->spa_failmode = ZIO_FAILURE_MODE_CONTINUE;
4829 return (0);
4832 static int
4833 spa_ld_open_aux_vdevs(spa_t *spa, spa_import_type_t type)
4835 int error = 0;
4836 vdev_t *rvd = spa->spa_root_vdev;
4839 * If we're assembling the pool from the split-off vdevs of
4840 * an existing pool, we don't want to attach the spares & cache
4841 * devices.
4845 * Load any hot spares for this pool.
4847 error = spa_dir_prop(spa, DMU_POOL_SPARES, &spa->spa_spares.sav_object,
4848 B_FALSE);
4849 if (error != 0 && error != ENOENT)
4850 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4851 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4852 ASSERT(spa_version(spa) >= SPA_VERSION_SPARES);
4853 if (load_nvlist(spa, spa->spa_spares.sav_object,
4854 &spa->spa_spares.sav_config) != 0) {
4855 spa_load_failed(spa, "error loading spares nvlist");
4856 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4859 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4860 spa_load_spares(spa);
4861 spa_config_exit(spa, SCL_ALL, FTAG);
4862 } else if (error == 0) {
4863 spa->spa_spares.sav_sync = B_TRUE;
4867 * Load any level 2 ARC devices for this pool.
4869 error = spa_dir_prop(spa, DMU_POOL_L2CACHE,
4870 &spa->spa_l2cache.sav_object, B_FALSE);
4871 if (error != 0 && error != ENOENT)
4872 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4873 if (error == 0 && type != SPA_IMPORT_ASSEMBLE) {
4874 ASSERT(spa_version(spa) >= SPA_VERSION_L2CACHE);
4875 if (load_nvlist(spa, spa->spa_l2cache.sav_object,
4876 &spa->spa_l2cache.sav_config) != 0) {
4877 spa_load_failed(spa, "error loading l2cache nvlist");
4878 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4881 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4882 spa_load_l2cache(spa);
4883 spa_config_exit(spa, SCL_ALL, FTAG);
4884 } else if (error == 0) {
4885 spa->spa_l2cache.sav_sync = B_TRUE;
4888 return (0);
4891 static int
4892 spa_ld_load_vdev_metadata(spa_t *spa)
4894 int error = 0;
4895 vdev_t *rvd = spa->spa_root_vdev;
4898 * If the 'multihost' property is set, then never allow a pool to
4899 * be imported when the system hostid is zero. The exception to
4900 * this rule is zdb which is always allowed to access pools.
4902 if (spa_multihost(spa) && spa_get_hostid(spa) == 0 &&
4903 (spa->spa_import_flags & ZFS_IMPORT_SKIP_MMP) == 0) {
4904 fnvlist_add_uint64(spa->spa_load_info,
4905 ZPOOL_CONFIG_MMP_STATE, MMP_STATE_NO_HOSTID);
4906 return (spa_vdev_err(rvd, VDEV_AUX_ACTIVE, EREMOTEIO));
4910 * If the 'autoreplace' property is set, then post a resource notifying
4911 * the ZFS DE that it should not issue any faults for unopenable
4912 * devices. We also iterate over the vdevs, and post a sysevent for any
4913 * unopenable vdevs so that the normal autoreplace handler can take
4914 * over.
4916 if (spa->spa_autoreplace && spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
4917 spa_check_removed(spa->spa_root_vdev);
4919 * For the import case, this is done in spa_import(), because
4920 * at this point we're using the spare definitions from
4921 * the MOS config, not necessarily from the userland config.
4923 if (spa->spa_load_state != SPA_LOAD_IMPORT) {
4924 spa_aux_check_removed(&spa->spa_spares);
4925 spa_aux_check_removed(&spa->spa_l2cache);
4930 * Load the vdev metadata such as metaslabs, DTLs, spacemap object, etc.
4932 error = vdev_load(rvd);
4933 if (error != 0) {
4934 spa_load_failed(spa, "vdev_load failed [error=%d]", error);
4935 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4938 error = spa_ld_log_spacemaps(spa);
4939 if (error != 0) {
4940 spa_load_failed(spa, "spa_ld_log_spacemaps failed [error=%d]",
4941 error);
4942 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, error));
4946 * Propagate the leaf DTLs we just loaded all the way up the vdev tree.
4948 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
4949 vdev_dtl_reassess(rvd, 0, 0, B_FALSE, B_FALSE);
4950 spa_config_exit(spa, SCL_ALL, FTAG);
4952 return (0);
4955 static int
4956 spa_ld_load_dedup_tables(spa_t *spa)
4958 int error = 0;
4959 vdev_t *rvd = spa->spa_root_vdev;
4961 error = ddt_load(spa);
4962 if (error != 0) {
4963 spa_load_failed(spa, "ddt_load failed [error=%d]", error);
4964 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4967 return (0);
4970 static int
4971 spa_ld_load_brt(spa_t *spa)
4973 int error = 0;
4974 vdev_t *rvd = spa->spa_root_vdev;
4976 error = brt_load(spa);
4977 if (error != 0) {
4978 spa_load_failed(spa, "brt_load failed [error=%d]", error);
4979 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA, EIO));
4982 return (0);
4985 static int
4986 spa_ld_verify_logs(spa_t *spa, spa_import_type_t type, const char **ereport)
4988 vdev_t *rvd = spa->spa_root_vdev;
4990 if (type != SPA_IMPORT_ASSEMBLE && spa_writeable(spa)) {
4991 boolean_t missing = spa_check_logs(spa);
4992 if (missing) {
4993 if (spa->spa_missing_tvds != 0) {
4994 spa_load_note(spa, "spa_check_logs failed "
4995 "so dropping the logs");
4996 } else {
4997 *ereport = FM_EREPORT_ZFS_LOG_REPLAY;
4998 spa_load_failed(spa, "spa_check_logs failed");
4999 return (spa_vdev_err(rvd, VDEV_AUX_BAD_LOG,
5000 ENXIO));
5005 return (0);
5008 static int
5009 spa_ld_verify_pool_data(spa_t *spa)
5011 int error = 0;
5012 vdev_t *rvd = spa->spa_root_vdev;
5015 * We've successfully opened the pool, verify that we're ready
5016 * to start pushing transactions.
5018 if (spa->spa_load_state != SPA_LOAD_TRYIMPORT) {
5019 error = spa_load_verify(spa);
5020 if (error != 0) {
5021 spa_load_failed(spa, "spa_load_verify failed "
5022 "[error=%d]", error);
5023 return (spa_vdev_err(rvd, VDEV_AUX_CORRUPT_DATA,
5024 error));
5028 return (0);
5031 static void
5032 spa_ld_claim_log_blocks(spa_t *spa)
5034 dmu_tx_t *tx;
5035 dsl_pool_t *dp = spa_get_dsl(spa);
5038 * Claim log blocks that haven't been committed yet.
5039 * This must all happen in a single txg.
5040 * Note: spa_claim_max_txg is updated by spa_claim_notify(),
5041 * invoked from zil_claim_log_block()'s i/o done callback.
5042 * Price of rollback is that we abandon the log.
5044 spa->spa_claiming = B_TRUE;
5046 tx = dmu_tx_create_assigned(dp, spa_first_txg(spa));
5047 (void) dmu_objset_find_dp(dp, dp->dp_root_dir_obj,
5048 zil_claim, tx, DS_FIND_CHILDREN);
5049 dmu_tx_commit(tx);
5051 spa->spa_claiming = B_FALSE;
5053 spa_set_log_state(spa, SPA_LOG_GOOD);
5056 static void
5057 spa_ld_check_for_config_update(spa_t *spa, uint64_t config_cache_txg,
5058 boolean_t update_config_cache)
5060 vdev_t *rvd = spa->spa_root_vdev;
5061 int need_update = B_FALSE;
5064 * If the config cache is stale, or we have uninitialized
5065 * metaslabs (see spa_vdev_add()), then update the config.
5067 * If this is a verbatim import, trust the current
5068 * in-core spa_config and update the disk labels.
5070 if (update_config_cache || config_cache_txg != spa->spa_config_txg ||
5071 spa->spa_load_state == SPA_LOAD_IMPORT ||
5072 spa->spa_load_state == SPA_LOAD_RECOVER ||
5073 (spa->spa_import_flags & ZFS_IMPORT_VERBATIM))
5074 need_update = B_TRUE;
5076 for (int c = 0; c < rvd->vdev_children; c++)
5077 if (rvd->vdev_child[c]->vdev_ms_array == 0)
5078 need_update = B_TRUE;
5081 * Update the config cache asynchronously in case we're the
5082 * root pool, in which case the config cache isn't writable yet.
5084 if (need_update)
5085 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
5088 static void
5089 spa_ld_prepare_for_reload(spa_t *spa)
5091 spa_mode_t mode = spa->spa_mode;
5092 int async_suspended = spa->spa_async_suspended;
5094 spa_unload(spa);
5095 spa_deactivate(spa);
5096 spa_activate(spa, mode);
5099 * We save the value of spa_async_suspended as it gets reset to 0 by
5100 * spa_unload(). We want to restore it back to the original value before
5101 * returning as we might be calling spa_async_resume() later.
5103 spa->spa_async_suspended = async_suspended;
5106 static int
5107 spa_ld_read_checkpoint_txg(spa_t *spa)
5109 uberblock_t checkpoint;
5110 int error = 0;
5112 ASSERT0(spa->spa_checkpoint_txg);
5113 ASSERT(MUTEX_HELD(&spa_namespace_lock) ||
5114 spa->spa_load_thread == curthread);
5116 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5117 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5118 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5120 if (error == ENOENT)
5121 return (0);
5123 if (error != 0)
5124 return (error);
5126 ASSERT3U(checkpoint.ub_txg, !=, 0);
5127 ASSERT3U(checkpoint.ub_checkpoint_txg, !=, 0);
5128 ASSERT3U(checkpoint.ub_timestamp, !=, 0);
5129 spa->spa_checkpoint_txg = checkpoint.ub_txg;
5130 spa->spa_checkpoint_info.sci_timestamp = checkpoint.ub_timestamp;
5132 return (0);
5135 static int
5136 spa_ld_mos_init(spa_t *spa, spa_import_type_t type)
5138 int error = 0;
5140 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5141 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5144 * Never trust the config that is provided unless we are assembling
5145 * a pool following a split.
5146 * This means don't trust blkptrs and the vdev tree in general. This
5147 * also effectively puts the spa in read-only mode since
5148 * spa_writeable() checks for spa_trust_config to be true.
5149 * We will later load a trusted config from the MOS.
5151 if (type != SPA_IMPORT_ASSEMBLE)
5152 spa->spa_trust_config = B_FALSE;
5155 * Parse the config provided to create a vdev tree.
5157 error = spa_ld_parse_config(spa, type);
5158 if (error != 0)
5159 return (error);
5161 spa_import_progress_add(spa);
5164 * Now that we have the vdev tree, try to open each vdev. This involves
5165 * opening the underlying physical device, retrieving its geometry and
5166 * probing the vdev with a dummy I/O. The state of each vdev will be set
5167 * based on the success of those operations. After this we'll be ready
5168 * to read from the vdevs.
5170 error = spa_ld_open_vdevs(spa);
5171 if (error != 0)
5172 return (error);
5175 * Read the label of each vdev and make sure that the GUIDs stored
5176 * there match the GUIDs in the config provided.
5177 * If we're assembling a new pool that's been split off from an
5178 * existing pool, the labels haven't yet been updated so we skip
5179 * validation for now.
5181 if (type != SPA_IMPORT_ASSEMBLE) {
5182 error = spa_ld_validate_vdevs(spa);
5183 if (error != 0)
5184 return (error);
5188 * Read all vdev labels to find the best uberblock (i.e. latest,
5189 * unless spa_load_max_txg is set) and store it in spa_uberblock. We
5190 * get the list of features required to read blkptrs in the MOS from
5191 * the vdev label with the best uberblock and verify that our version
5192 * of zfs supports them all.
5194 error = spa_ld_select_uberblock(spa, type);
5195 if (error != 0)
5196 return (error);
5199 * Pass that uberblock to the dsl_pool layer which will open the root
5200 * blkptr. This blkptr points to the latest version of the MOS and will
5201 * allow us to read its contents.
5203 error = spa_ld_open_rootbp(spa);
5204 if (error != 0)
5205 return (error);
5207 return (0);
5210 static int
5211 spa_ld_checkpoint_rewind(spa_t *spa)
5213 uberblock_t checkpoint;
5214 int error = 0;
5216 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5217 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5219 error = zap_lookup(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
5220 DMU_POOL_ZPOOL_CHECKPOINT, sizeof (uint64_t),
5221 sizeof (uberblock_t) / sizeof (uint64_t), &checkpoint);
5223 if (error != 0) {
5224 spa_load_failed(spa, "unable to retrieve checkpointed "
5225 "uberblock from the MOS config [error=%d]", error);
5227 if (error == ENOENT)
5228 error = ZFS_ERR_NO_CHECKPOINT;
5230 return (error);
5233 ASSERT3U(checkpoint.ub_txg, <, spa->spa_uberblock.ub_txg);
5234 ASSERT3U(checkpoint.ub_txg, ==, checkpoint.ub_checkpoint_txg);
5237 * We need to update the txg and timestamp of the checkpointed
5238 * uberblock to be higher than the latest one. This ensures that
5239 * the checkpointed uberblock is selected if we were to close and
5240 * reopen the pool right after we've written it in the vdev labels.
5241 * (also see block comment in vdev_uberblock_compare)
5243 checkpoint.ub_txg = spa->spa_uberblock.ub_txg + 1;
5244 checkpoint.ub_timestamp = gethrestime_sec();
5247 * Set current uberblock to be the checkpointed uberblock.
5249 spa->spa_uberblock = checkpoint;
5252 * If we are doing a normal rewind, then the pool is open for
5253 * writing and we sync the "updated" checkpointed uberblock to
5254 * disk. Once this is done, we've basically rewound the whole
5255 * pool and there is no way back.
5257 * There are cases when we don't want to attempt and sync the
5258 * checkpointed uberblock to disk because we are opening a
5259 * pool as read-only. Specifically, verifying the checkpointed
5260 * state with zdb, and importing the checkpointed state to get
5261 * a "preview" of its content.
5263 if (spa_writeable(spa)) {
5264 vdev_t *rvd = spa->spa_root_vdev;
5266 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
5267 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
5268 int svdcount = 0;
5269 int children = rvd->vdev_children;
5270 int c0 = random_in_range(children);
5272 for (int c = 0; c < children; c++) {
5273 vdev_t *vd = rvd->vdev_child[(c0 + c) % children];
5275 /* Stop when revisiting the first vdev */
5276 if (c > 0 && svd[0] == vd)
5277 break;
5279 if (vd->vdev_ms_array == 0 || vd->vdev_islog ||
5280 !vdev_is_concrete(vd))
5281 continue;
5283 svd[svdcount++] = vd;
5284 if (svdcount == SPA_SYNC_MIN_VDEVS)
5285 break;
5287 error = vdev_config_sync(svd, svdcount, spa->spa_first_txg);
5288 if (error == 0)
5289 spa->spa_last_synced_guid = rvd->vdev_guid;
5290 spa_config_exit(spa, SCL_ALL, FTAG);
5292 if (error != 0) {
5293 spa_load_failed(spa, "failed to write checkpointed "
5294 "uberblock to the vdev labels [error=%d]", error);
5295 return (error);
5299 return (0);
5302 static int
5303 spa_ld_mos_with_trusted_config(spa_t *spa, spa_import_type_t type,
5304 boolean_t *update_config_cache)
5306 int error;
5309 * Parse the config for pool, open and validate vdevs,
5310 * select an uberblock, and use that uberblock to open
5311 * the MOS.
5313 error = spa_ld_mos_init(spa, type);
5314 if (error != 0)
5315 return (error);
5318 * Retrieve the trusted config stored in the MOS and use it to create
5319 * a new, exact version of the vdev tree, then reopen all vdevs.
5321 error = spa_ld_trusted_config(spa, type, B_FALSE);
5322 if (error == EAGAIN) {
5323 if (update_config_cache != NULL)
5324 *update_config_cache = B_TRUE;
5327 * Redo the loading process with the trusted config if it is
5328 * too different from the untrusted config.
5330 spa_ld_prepare_for_reload(spa);
5331 spa_load_note(spa, "RELOADING");
5332 error = spa_ld_mos_init(spa, type);
5333 if (error != 0)
5334 return (error);
5336 error = spa_ld_trusted_config(spa, type, B_TRUE);
5337 if (error != 0)
5338 return (error);
5340 } else if (error != 0) {
5341 return (error);
5344 return (0);
5348 * Load an existing storage pool, using the config provided. This config
5349 * describes which vdevs are part of the pool and is later validated against
5350 * partial configs present in each vdev's label and an entire copy of the
5351 * config stored in the MOS.
5353 static int
5354 spa_load_impl(spa_t *spa, spa_import_type_t type, const char **ereport)
5356 int error = 0;
5357 boolean_t missing_feat_write = B_FALSE;
5358 boolean_t checkpoint_rewind =
5359 (spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5360 boolean_t update_config_cache = B_FALSE;
5361 hrtime_t load_start = gethrtime();
5363 ASSERT(MUTEX_HELD(&spa_namespace_lock));
5364 ASSERT(spa->spa_config_source != SPA_CONFIG_SRC_NONE);
5366 spa_load_note(spa, "LOADING");
5368 error = spa_ld_mos_with_trusted_config(spa, type, &update_config_cache);
5369 if (error != 0)
5370 return (error);
5373 * If we are rewinding to the checkpoint then we need to repeat
5374 * everything we've done so far in this function but this time
5375 * selecting the checkpointed uberblock and using that to open
5376 * the MOS.
5378 if (checkpoint_rewind) {
5380 * If we are rewinding to the checkpoint update config cache
5381 * anyway.
5383 update_config_cache = B_TRUE;
5386 * Extract the checkpointed uberblock from the current MOS
5387 * and use this as the pool's uberblock from now on. If the
5388 * pool is imported as writeable we also write the checkpoint
5389 * uberblock to the labels, making the rewind permanent.
5391 error = spa_ld_checkpoint_rewind(spa);
5392 if (error != 0)
5393 return (error);
5396 * Redo the loading process again with the
5397 * checkpointed uberblock.
5399 spa_ld_prepare_for_reload(spa);
5400 spa_load_note(spa, "LOADING checkpointed uberblock");
5401 error = spa_ld_mos_with_trusted_config(spa, type, NULL);
5402 if (error != 0)
5403 return (error);
5407 * Drop the namespace lock for the rest of the function.
5409 spa->spa_load_thread = curthread;
5410 mutex_exit(&spa_namespace_lock);
5413 * Retrieve the checkpoint txg if the pool has a checkpoint.
5415 spa_import_progress_set_notes(spa, "Loading checkpoint txg");
5416 error = spa_ld_read_checkpoint_txg(spa);
5417 if (error != 0)
5418 goto fail;
5421 * Retrieve the mapping of indirect vdevs. Those vdevs were removed
5422 * from the pool and their contents were re-mapped to other vdevs. Note
5423 * that everything that we read before this step must have been
5424 * rewritten on concrete vdevs after the last device removal was
5425 * initiated. Otherwise we could be reading from indirect vdevs before
5426 * we have loaded their mappings.
5428 spa_import_progress_set_notes(spa, "Loading indirect vdev metadata");
5429 error = spa_ld_open_indirect_vdev_metadata(spa);
5430 if (error != 0)
5431 goto fail;
5434 * Retrieve the full list of active features from the MOS and check if
5435 * they are all supported.
5437 spa_import_progress_set_notes(spa, "Checking feature flags");
5438 error = spa_ld_check_features(spa, &missing_feat_write);
5439 if (error != 0)
5440 goto fail;
5443 * Load several special directories from the MOS needed by the dsl_pool
5444 * layer.
5446 spa_import_progress_set_notes(spa, "Loading special MOS directories");
5447 error = spa_ld_load_special_directories(spa);
5448 if (error != 0)
5449 goto fail;
5452 * Retrieve pool properties from the MOS.
5454 spa_import_progress_set_notes(spa, "Loading properties");
5455 error = spa_ld_get_props(spa);
5456 if (error != 0)
5457 goto fail;
5460 * Retrieve the list of auxiliary devices - cache devices and spares -
5461 * and open them.
5463 spa_import_progress_set_notes(spa, "Loading AUX vdevs");
5464 error = spa_ld_open_aux_vdevs(spa, type);
5465 if (error != 0)
5466 goto fail;
5469 * Load the metadata for all vdevs. Also check if unopenable devices
5470 * should be autoreplaced.
5472 spa_import_progress_set_notes(spa, "Loading vdev metadata");
5473 error = spa_ld_load_vdev_metadata(spa);
5474 if (error != 0)
5475 goto fail;
5477 spa_import_progress_set_notes(spa, "Loading dedup tables");
5478 error = spa_ld_load_dedup_tables(spa);
5479 if (error != 0)
5480 goto fail;
5482 spa_import_progress_set_notes(spa, "Loading BRT");
5483 error = spa_ld_load_brt(spa);
5484 if (error != 0)
5485 goto fail;
5488 * Verify the logs now to make sure we don't have any unexpected errors
5489 * when we claim log blocks later.
5491 spa_import_progress_set_notes(spa, "Verifying Log Devices");
5492 error = spa_ld_verify_logs(spa, type, ereport);
5493 if (error != 0)
5494 goto fail;
5496 if (missing_feat_write) {
5497 ASSERT(spa->spa_load_state == SPA_LOAD_TRYIMPORT);
5500 * At this point, we know that we can open the pool in
5501 * read-only mode but not read-write mode. We now have enough
5502 * information and can return to userland.
5504 error = spa_vdev_err(spa->spa_root_vdev, VDEV_AUX_UNSUP_FEAT,
5505 ENOTSUP);
5506 goto fail;
5510 * Traverse the last txgs to make sure the pool was left off in a safe
5511 * state. When performing an extreme rewind, we verify the whole pool,
5512 * which can take a very long time.
5514 spa_import_progress_set_notes(spa, "Verifying pool data");
5515 error = spa_ld_verify_pool_data(spa);
5516 if (error != 0)
5517 goto fail;
5520 * Calculate the deflated space for the pool. This must be done before
5521 * we write anything to the pool because we'd need to update the space
5522 * accounting using the deflated sizes.
5524 spa_import_progress_set_notes(spa, "Calculating deflated space");
5525 spa_update_dspace(spa);
5528 * We have now retrieved all the information we needed to open the
5529 * pool. If we are importing the pool in read-write mode, a few
5530 * additional steps must be performed to finish the import.
5532 spa_import_progress_set_notes(spa, "Starting import");
5533 if (spa_writeable(spa) && (spa->spa_load_state == SPA_LOAD_RECOVER ||
5534 spa->spa_load_max_txg == UINT64_MAX)) {
5535 uint64_t config_cache_txg = spa->spa_config_txg;
5537 ASSERT(spa->spa_load_state != SPA_LOAD_TRYIMPORT);
5540 * Before we do any zio_write's, complete the raidz expansion
5541 * scratch space copying, if necessary.
5543 if (RRSS_GET_STATE(&spa->spa_uberblock) == RRSS_SCRATCH_VALID)
5544 vdev_raidz_reflow_copy_scratch(spa);
5547 * In case of a checkpoint rewind, log the original txg
5548 * of the checkpointed uberblock.
5550 if (checkpoint_rewind) {
5551 spa_history_log_internal(spa, "checkpoint rewind",
5552 NULL, "rewound state to txg=%llu",
5553 (u_longlong_t)spa->spa_uberblock.ub_checkpoint_txg);
5556 spa_import_progress_set_notes(spa, "Claiming ZIL blocks");
5558 * Traverse the ZIL and claim all blocks.
5560 spa_ld_claim_log_blocks(spa);
5563 * Kick-off the syncing thread.
5565 spa->spa_sync_on = B_TRUE;
5566 txg_sync_start(spa->spa_dsl_pool);
5567 mmp_thread_start(spa);
5570 * Wait for all claims to sync. We sync up to the highest
5571 * claimed log block birth time so that claimed log blocks
5572 * don't appear to be from the future. spa_claim_max_txg
5573 * will have been set for us by ZIL traversal operations
5574 * performed above.
5576 spa_import_progress_set_notes(spa, "Syncing ZIL claims");
5577 txg_wait_synced(spa->spa_dsl_pool, spa->spa_claim_max_txg);
5580 * Check if we need to request an update of the config. On the
5581 * next sync, we would update the config stored in vdev labels
5582 * and the cachefile (by default /etc/zfs/zpool.cache).
5584 spa_import_progress_set_notes(spa, "Updating configs");
5585 spa_ld_check_for_config_update(spa, config_cache_txg,
5586 update_config_cache);
5589 * Check if a rebuild was in progress and if so resume it.
5590 * Then check all DTLs to see if anything needs resilvering.
5591 * The resilver will be deferred if a rebuild was started.
5593 spa_import_progress_set_notes(spa, "Starting resilvers");
5594 if (vdev_rebuild_active(spa->spa_root_vdev)) {
5595 vdev_rebuild_restart(spa);
5596 } else if (!dsl_scan_resilvering(spa->spa_dsl_pool) &&
5597 vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
5598 spa_async_request(spa, SPA_ASYNC_RESILVER);
5602 * Log the fact that we booted up (so that we can detect if
5603 * we rebooted in the middle of an operation).
5605 spa_history_log_version(spa, "open", NULL);
5607 spa_import_progress_set_notes(spa,
5608 "Restarting device removals");
5609 spa_restart_removal(spa);
5610 spa_spawn_aux_threads(spa);
5613 * Delete any inconsistent datasets.
5615 * Note:
5616 * Since we may be issuing deletes for clones here,
5617 * we make sure to do so after we've spawned all the
5618 * auxiliary threads above (from which the livelist
5619 * deletion zthr is part of).
5621 spa_import_progress_set_notes(spa,
5622 "Cleaning up inconsistent objsets");
5623 (void) dmu_objset_find(spa_name(spa),
5624 dsl_destroy_inconsistent, NULL, DS_FIND_CHILDREN);
5627 * Clean up any stale temporary dataset userrefs.
5629 spa_import_progress_set_notes(spa,
5630 "Cleaning up temporary userrefs");
5631 dsl_pool_clean_tmp_userrefs(spa->spa_dsl_pool);
5633 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
5634 spa_import_progress_set_notes(spa, "Restarting initialize");
5635 vdev_initialize_restart(spa->spa_root_vdev);
5636 spa_import_progress_set_notes(spa, "Restarting TRIM");
5637 vdev_trim_restart(spa->spa_root_vdev);
5638 vdev_autotrim_restart(spa);
5639 spa_config_exit(spa, SCL_CONFIG, FTAG);
5640 spa_import_progress_set_notes(spa, "Finished importing");
5642 zio_handle_import_delay(spa, gethrtime() - load_start);
5644 spa_import_progress_remove(spa_guid(spa));
5645 spa_async_request(spa, SPA_ASYNC_L2CACHE_REBUILD);
5647 spa_load_note(spa, "LOADED");
5648 fail:
5649 mutex_enter(&spa_namespace_lock);
5650 spa->spa_load_thread = NULL;
5651 cv_broadcast(&spa_namespace_cv);
5653 return (error);
5657 static int
5658 spa_load_retry(spa_t *spa, spa_load_state_t state)
5660 spa_mode_t mode = spa->spa_mode;
5662 spa_unload(spa);
5663 spa_deactivate(spa);
5665 spa->spa_load_max_txg = spa->spa_uberblock.ub_txg - 1;
5667 spa_activate(spa, mode);
5668 spa_async_suspend(spa);
5670 spa_load_note(spa, "spa_load_retry: rewind, max txg: %llu",
5671 (u_longlong_t)spa->spa_load_max_txg);
5673 return (spa_load(spa, state, SPA_IMPORT_EXISTING));
5677 * If spa_load() fails this function will try loading prior txg's. If
5678 * 'state' is SPA_LOAD_RECOVER and one of these loads succeeds the pool
5679 * will be rewound to that txg. If 'state' is not SPA_LOAD_RECOVER this
5680 * function will not rewind the pool and will return the same error as
5681 * spa_load().
5683 static int
5684 spa_load_best(spa_t *spa, spa_load_state_t state, uint64_t max_request,
5685 int rewind_flags)
5687 nvlist_t *loadinfo = NULL;
5688 nvlist_t *config = NULL;
5689 int load_error, rewind_error;
5690 uint64_t safe_rewind_txg;
5691 uint64_t min_txg;
5693 if (spa->spa_load_txg && state == SPA_LOAD_RECOVER) {
5694 spa->spa_load_max_txg = spa->spa_load_txg;
5695 spa_set_log_state(spa, SPA_LOG_CLEAR);
5696 } else {
5697 spa->spa_load_max_txg = max_request;
5698 if (max_request != UINT64_MAX)
5699 spa->spa_extreme_rewind = B_TRUE;
5702 load_error = rewind_error = spa_load(spa, state, SPA_IMPORT_EXISTING);
5703 if (load_error == 0)
5704 return (0);
5705 if (load_error == ZFS_ERR_NO_CHECKPOINT) {
5707 * When attempting checkpoint-rewind on a pool with no
5708 * checkpoint, we should not attempt to load uberblocks
5709 * from previous txgs when spa_load fails.
5711 ASSERT(spa->spa_import_flags & ZFS_IMPORT_CHECKPOINT);
5712 spa_import_progress_remove(spa_guid(spa));
5713 return (load_error);
5716 if (spa->spa_root_vdev != NULL)
5717 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5719 spa->spa_last_ubsync_txg = spa->spa_uberblock.ub_txg;
5720 spa->spa_last_ubsync_txg_ts = spa->spa_uberblock.ub_timestamp;
5722 if (rewind_flags & ZPOOL_NEVER_REWIND) {
5723 nvlist_free(config);
5724 spa_import_progress_remove(spa_guid(spa));
5725 return (load_error);
5728 if (state == SPA_LOAD_RECOVER) {
5729 /* Price of rolling back is discarding txgs, including log */
5730 spa_set_log_state(spa, SPA_LOG_CLEAR);
5731 } else {
5733 * If we aren't rolling back save the load info from our first
5734 * import attempt so that we can restore it after attempting
5735 * to rewind.
5737 loadinfo = spa->spa_load_info;
5738 spa->spa_load_info = fnvlist_alloc();
5741 spa->spa_load_max_txg = spa->spa_last_ubsync_txg;
5742 safe_rewind_txg = spa->spa_last_ubsync_txg - TXG_DEFER_SIZE;
5743 min_txg = (rewind_flags & ZPOOL_EXTREME_REWIND) ?
5744 TXG_INITIAL : safe_rewind_txg;
5747 * Continue as long as we're finding errors, we're still within
5748 * the acceptable rewind range, and we're still finding uberblocks
5750 while (rewind_error && spa->spa_uberblock.ub_txg >= min_txg &&
5751 spa->spa_uberblock.ub_txg <= spa->spa_load_max_txg) {
5752 if (spa->spa_load_max_txg < safe_rewind_txg)
5753 spa->spa_extreme_rewind = B_TRUE;
5754 rewind_error = spa_load_retry(spa, state);
5757 spa->spa_extreme_rewind = B_FALSE;
5758 spa->spa_load_max_txg = UINT64_MAX;
5760 if (config && (rewind_error || state != SPA_LOAD_RECOVER))
5761 spa_config_set(spa, config);
5762 else
5763 nvlist_free(config);
5765 if (state == SPA_LOAD_RECOVER) {
5766 ASSERT3P(loadinfo, ==, NULL);
5767 spa_import_progress_remove(spa_guid(spa));
5768 return (rewind_error);
5769 } else {
5770 /* Store the rewind info as part of the initial load info */
5771 fnvlist_add_nvlist(loadinfo, ZPOOL_CONFIG_REWIND_INFO,
5772 spa->spa_load_info);
5774 /* Restore the initial load info */
5775 fnvlist_free(spa->spa_load_info);
5776 spa->spa_load_info = loadinfo;
5778 spa_import_progress_remove(spa_guid(spa));
5779 return (load_error);
5784 * Pool Open/Import
5786 * The import case is identical to an open except that the configuration is sent
5787 * down from userland, instead of grabbed from the configuration cache. For the
5788 * case of an open, the pool configuration will exist in the
5789 * POOL_STATE_UNINITIALIZED state.
5791 * The stats information (gen/count/ustats) is used to gather vdev statistics at
5792 * the same time open the pool, without having to keep around the spa_t in some
5793 * ambiguous state.
5795 static int
5796 spa_open_common(const char *pool, spa_t **spapp, const void *tag,
5797 nvlist_t *nvpolicy, nvlist_t **config)
5799 spa_t *spa;
5800 spa_load_state_t state = SPA_LOAD_OPEN;
5801 int error;
5802 int locked = B_FALSE;
5803 int firstopen = B_FALSE;
5805 *spapp = NULL;
5808 * As disgusting as this is, we need to support recursive calls to this
5809 * function because dsl_dir_open() is called during spa_load(), and ends
5810 * up calling spa_open() again. The real fix is to figure out how to
5811 * avoid dsl_dir_open() calling this in the first place.
5813 if (MUTEX_NOT_HELD(&spa_namespace_lock)) {
5814 mutex_enter(&spa_namespace_lock);
5815 locked = B_TRUE;
5818 if ((spa = spa_lookup(pool)) == NULL) {
5819 if (locked)
5820 mutex_exit(&spa_namespace_lock);
5821 return (SET_ERROR(ENOENT));
5824 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
5825 zpool_load_policy_t policy;
5827 firstopen = B_TRUE;
5829 zpool_get_load_policy(nvpolicy ? nvpolicy : spa->spa_config,
5830 &policy);
5831 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
5832 state = SPA_LOAD_RECOVER;
5834 spa_activate(spa, spa_mode_global);
5836 if (state != SPA_LOAD_RECOVER)
5837 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
5838 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
5840 zfs_dbgmsg("spa_open_common: opening %s", pool);
5841 error = spa_load_best(spa, state, policy.zlp_txg,
5842 policy.zlp_rewind);
5844 if (error == EBADF) {
5846 * If vdev_validate() returns failure (indicated by
5847 * EBADF), it indicates that one of the vdevs indicates
5848 * that the pool has been exported or destroyed. If
5849 * this is the case, the config cache is out of sync and
5850 * we should remove the pool from the namespace.
5852 spa_unload(spa);
5853 spa_deactivate(spa);
5854 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
5855 spa_remove(spa);
5856 if (locked)
5857 mutex_exit(&spa_namespace_lock);
5858 return (SET_ERROR(ENOENT));
5861 if (error) {
5863 * We can't open the pool, but we still have useful
5864 * information: the state of each vdev after the
5865 * attempted vdev_open(). Return this to the user.
5867 if (config != NULL && spa->spa_config) {
5868 *config = fnvlist_dup(spa->spa_config);
5869 fnvlist_add_nvlist(*config,
5870 ZPOOL_CONFIG_LOAD_INFO,
5871 spa->spa_load_info);
5873 spa_unload(spa);
5874 spa_deactivate(spa);
5875 spa->spa_last_open_failed = error;
5876 if (locked)
5877 mutex_exit(&spa_namespace_lock);
5878 *spapp = NULL;
5879 return (error);
5883 spa_open_ref(spa, tag);
5885 if (config != NULL)
5886 *config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
5889 * If we've recovered the pool, pass back any information we
5890 * gathered while doing the load.
5892 if (state == SPA_LOAD_RECOVER && config != NULL) {
5893 fnvlist_add_nvlist(*config, ZPOOL_CONFIG_LOAD_INFO,
5894 spa->spa_load_info);
5897 if (locked) {
5898 spa->spa_last_open_failed = 0;
5899 spa->spa_last_ubsync_txg = 0;
5900 spa->spa_load_txg = 0;
5901 mutex_exit(&spa_namespace_lock);
5904 if (firstopen)
5905 zvol_create_minors_recursive(spa_name(spa));
5907 *spapp = spa;
5909 return (0);
5913 spa_open_rewind(const char *name, spa_t **spapp, const void *tag,
5914 nvlist_t *policy, nvlist_t **config)
5916 return (spa_open_common(name, spapp, tag, policy, config));
5920 spa_open(const char *name, spa_t **spapp, const void *tag)
5922 return (spa_open_common(name, spapp, tag, NULL, NULL));
5926 * Lookup the given spa_t, incrementing the inject count in the process,
5927 * preventing it from being exported or destroyed.
5929 spa_t *
5930 spa_inject_addref(char *name)
5932 spa_t *spa;
5934 mutex_enter(&spa_namespace_lock);
5935 if ((spa = spa_lookup(name)) == NULL) {
5936 mutex_exit(&spa_namespace_lock);
5937 return (NULL);
5939 spa->spa_inject_ref++;
5940 mutex_exit(&spa_namespace_lock);
5942 return (spa);
5945 void
5946 spa_inject_delref(spa_t *spa)
5948 mutex_enter(&spa_namespace_lock);
5949 spa->spa_inject_ref--;
5950 mutex_exit(&spa_namespace_lock);
5954 * Add spares device information to the nvlist.
5956 static void
5957 spa_add_spares(spa_t *spa, nvlist_t *config)
5959 nvlist_t **spares;
5960 uint_t i, nspares;
5961 nvlist_t *nvroot;
5962 uint64_t guid;
5963 vdev_stat_t *vs;
5964 uint_t vsc;
5965 uint64_t pool;
5967 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
5969 if (spa->spa_spares.sav_count == 0)
5970 return;
5972 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
5973 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_spares.sav_config,
5974 ZPOOL_CONFIG_SPARES, &spares, &nspares));
5975 if (nspares != 0) {
5976 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5977 (const nvlist_t * const *)spares, nspares);
5978 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
5979 &spares, &nspares));
5982 * Go through and find any spares which have since been
5983 * repurposed as an active spare. If this is the case, update
5984 * their status appropriately.
5986 for (i = 0; i < nspares; i++) {
5987 guid = fnvlist_lookup_uint64(spares[i],
5988 ZPOOL_CONFIG_GUID);
5989 VERIFY0(nvlist_lookup_uint64_array(spares[i],
5990 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
5991 if (spa_spare_exists(guid, &pool, NULL) &&
5992 pool != 0ULL) {
5993 vs->vs_state = VDEV_STATE_CANT_OPEN;
5994 vs->vs_aux = VDEV_AUX_SPARED;
5995 } else {
5996 vs->vs_state =
5997 spa->spa_spares.sav_vdevs[i]->vdev_state;
6004 * Add l2cache device information to the nvlist, including vdev stats.
6006 static void
6007 spa_add_l2cache(spa_t *spa, nvlist_t *config)
6009 nvlist_t **l2cache;
6010 uint_t i, j, nl2cache;
6011 nvlist_t *nvroot;
6012 uint64_t guid;
6013 vdev_t *vd;
6014 vdev_stat_t *vs;
6015 uint_t vsc;
6017 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6019 if (spa->spa_l2cache.sav_count == 0)
6020 return;
6022 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6023 VERIFY0(nvlist_lookup_nvlist_array(spa->spa_l2cache.sav_config,
6024 ZPOOL_CONFIG_L2CACHE, &l2cache, &nl2cache));
6025 if (nl2cache != 0) {
6026 fnvlist_add_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6027 (const nvlist_t * const *)l2cache, nl2cache);
6028 VERIFY0(nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6029 &l2cache, &nl2cache));
6032 * Update level 2 cache device stats.
6035 for (i = 0; i < nl2cache; i++) {
6036 guid = fnvlist_lookup_uint64(l2cache[i],
6037 ZPOOL_CONFIG_GUID);
6039 vd = NULL;
6040 for (j = 0; j < spa->spa_l2cache.sav_count; j++) {
6041 if (guid ==
6042 spa->spa_l2cache.sav_vdevs[j]->vdev_guid) {
6043 vd = spa->spa_l2cache.sav_vdevs[j];
6044 break;
6047 ASSERT(vd != NULL);
6049 VERIFY0(nvlist_lookup_uint64_array(l2cache[i],
6050 ZPOOL_CONFIG_VDEV_STATS, (uint64_t **)&vs, &vsc));
6051 vdev_get_stats(vd, vs);
6052 vdev_config_generate_stats(vd, l2cache[i]);
6058 static void
6059 spa_feature_stats_from_disk(spa_t *spa, nvlist_t *features)
6061 zap_cursor_t zc;
6062 zap_attribute_t *za = zap_attribute_alloc();
6064 if (spa->spa_feat_for_read_obj != 0) {
6065 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6066 spa->spa_feat_for_read_obj);
6067 zap_cursor_retrieve(&zc, za) == 0;
6068 zap_cursor_advance(&zc)) {
6069 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6070 za->za_num_integers == 1);
6071 VERIFY0(nvlist_add_uint64(features, za->za_name,
6072 za->za_first_integer));
6074 zap_cursor_fini(&zc);
6077 if (spa->spa_feat_for_write_obj != 0) {
6078 for (zap_cursor_init(&zc, spa->spa_meta_objset,
6079 spa->spa_feat_for_write_obj);
6080 zap_cursor_retrieve(&zc, za) == 0;
6081 zap_cursor_advance(&zc)) {
6082 ASSERT(za->za_integer_length == sizeof (uint64_t) &&
6083 za->za_num_integers == 1);
6084 VERIFY0(nvlist_add_uint64(features, za->za_name,
6085 za->za_first_integer));
6087 zap_cursor_fini(&zc);
6089 zap_attribute_free(za);
6092 static void
6093 spa_feature_stats_from_cache(spa_t *spa, nvlist_t *features)
6095 int i;
6097 for (i = 0; i < SPA_FEATURES; i++) {
6098 zfeature_info_t feature = spa_feature_table[i];
6099 uint64_t refcount;
6101 if (feature_get_refcount(spa, &feature, &refcount) != 0)
6102 continue;
6104 VERIFY0(nvlist_add_uint64(features, feature.fi_guid, refcount));
6109 * Store a list of pool features and their reference counts in the
6110 * config.
6112 * The first time this is called on a spa, allocate a new nvlist, fetch
6113 * the pool features and reference counts from disk, then save the list
6114 * in the spa. In subsequent calls on the same spa use the saved nvlist
6115 * and refresh its values from the cached reference counts. This
6116 * ensures we don't block here on I/O on a suspended pool so 'zpool
6117 * clear' can resume the pool.
6119 static void
6120 spa_add_feature_stats(spa_t *spa, nvlist_t *config)
6122 nvlist_t *features;
6124 ASSERT(spa_config_held(spa, SCL_CONFIG, RW_READER));
6126 mutex_enter(&spa->spa_feat_stats_lock);
6127 features = spa->spa_feat_stats;
6129 if (features != NULL) {
6130 spa_feature_stats_from_cache(spa, features);
6131 } else {
6132 VERIFY0(nvlist_alloc(&features, NV_UNIQUE_NAME, KM_SLEEP));
6133 spa->spa_feat_stats = features;
6134 spa_feature_stats_from_disk(spa, features);
6137 VERIFY0(nvlist_add_nvlist(config, ZPOOL_CONFIG_FEATURE_STATS,
6138 features));
6140 mutex_exit(&spa->spa_feat_stats_lock);
6144 spa_get_stats(const char *name, nvlist_t **config,
6145 char *altroot, size_t buflen)
6147 int error;
6148 spa_t *spa;
6150 *config = NULL;
6151 error = spa_open_common(name, &spa, FTAG, NULL, config);
6153 if (spa != NULL) {
6155 * This still leaves a window of inconsistency where the spares
6156 * or l2cache devices could change and the config would be
6157 * self-inconsistent.
6159 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
6161 if (*config != NULL) {
6162 uint64_t loadtimes[2];
6164 loadtimes[0] = spa->spa_loaded_ts.tv_sec;
6165 loadtimes[1] = spa->spa_loaded_ts.tv_nsec;
6166 fnvlist_add_uint64_array(*config,
6167 ZPOOL_CONFIG_LOADED_TIME, loadtimes, 2);
6169 fnvlist_add_uint64(*config,
6170 ZPOOL_CONFIG_ERRCOUNT,
6171 spa_approx_errlog_size(spa));
6173 if (spa_suspended(spa)) {
6174 fnvlist_add_uint64(*config,
6175 ZPOOL_CONFIG_SUSPENDED,
6176 spa->spa_failmode);
6177 fnvlist_add_uint64(*config,
6178 ZPOOL_CONFIG_SUSPENDED_REASON,
6179 spa->spa_suspended);
6182 spa_add_spares(spa, *config);
6183 spa_add_l2cache(spa, *config);
6184 spa_add_feature_stats(spa, *config);
6189 * We want to get the alternate root even for faulted pools, so we cheat
6190 * and call spa_lookup() directly.
6192 if (altroot) {
6193 if (spa == NULL) {
6194 mutex_enter(&spa_namespace_lock);
6195 spa = spa_lookup(name);
6196 if (spa)
6197 spa_altroot(spa, altroot, buflen);
6198 else
6199 altroot[0] = '\0';
6200 spa = NULL;
6201 mutex_exit(&spa_namespace_lock);
6202 } else {
6203 spa_altroot(spa, altroot, buflen);
6207 if (spa != NULL) {
6208 spa_config_exit(spa, SCL_CONFIG, FTAG);
6209 spa_close(spa, FTAG);
6212 return (error);
6216 * Validate that the auxiliary device array is well formed. We must have an
6217 * array of nvlists, each which describes a valid leaf vdev. If this is an
6218 * import (mode is VDEV_ALLOC_SPARE), then we allow corrupted spares to be
6219 * specified, as long as they are well-formed.
6221 static int
6222 spa_validate_aux_devs(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode,
6223 spa_aux_vdev_t *sav, const char *config, uint64_t version,
6224 vdev_labeltype_t label)
6226 nvlist_t **dev;
6227 uint_t i, ndev;
6228 vdev_t *vd;
6229 int error;
6231 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6234 * It's acceptable to have no devs specified.
6236 if (nvlist_lookup_nvlist_array(nvroot, config, &dev, &ndev) != 0)
6237 return (0);
6239 if (ndev == 0)
6240 return (SET_ERROR(EINVAL));
6243 * Make sure the pool is formatted with a version that supports this
6244 * device type.
6246 if (spa_version(spa) < version)
6247 return (SET_ERROR(ENOTSUP));
6250 * Set the pending device list so we correctly handle device in-use
6251 * checking.
6253 sav->sav_pending = dev;
6254 sav->sav_npending = ndev;
6256 for (i = 0; i < ndev; i++) {
6257 if ((error = spa_config_parse(spa, &vd, dev[i], NULL, 0,
6258 mode)) != 0)
6259 goto out;
6261 if (!vd->vdev_ops->vdev_op_leaf) {
6262 vdev_free(vd);
6263 error = SET_ERROR(EINVAL);
6264 goto out;
6267 vd->vdev_top = vd;
6269 if ((error = vdev_open(vd)) == 0 &&
6270 (error = vdev_label_init(vd, crtxg, label)) == 0) {
6271 fnvlist_add_uint64(dev[i], ZPOOL_CONFIG_GUID,
6272 vd->vdev_guid);
6275 vdev_free(vd);
6277 if (error &&
6278 (mode != VDEV_ALLOC_SPARE && mode != VDEV_ALLOC_L2CACHE))
6279 goto out;
6280 else
6281 error = 0;
6284 out:
6285 sav->sav_pending = NULL;
6286 sav->sav_npending = 0;
6287 return (error);
6290 static int
6291 spa_validate_aux(spa_t *spa, nvlist_t *nvroot, uint64_t crtxg, int mode)
6293 int error;
6295 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL);
6297 if ((error = spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6298 &spa->spa_spares, ZPOOL_CONFIG_SPARES, SPA_VERSION_SPARES,
6299 VDEV_LABEL_SPARE)) != 0) {
6300 return (error);
6303 return (spa_validate_aux_devs(spa, nvroot, crtxg, mode,
6304 &spa->spa_l2cache, ZPOOL_CONFIG_L2CACHE, SPA_VERSION_L2CACHE,
6305 VDEV_LABEL_L2CACHE));
6308 static void
6309 spa_set_aux_vdevs(spa_aux_vdev_t *sav, nvlist_t **devs, int ndevs,
6310 const char *config)
6312 int i;
6314 if (sav->sav_config != NULL) {
6315 nvlist_t **olddevs;
6316 uint_t oldndevs;
6317 nvlist_t **newdevs;
6320 * Generate new dev list by concatenating with the
6321 * current dev list.
6323 VERIFY0(nvlist_lookup_nvlist_array(sav->sav_config, config,
6324 &olddevs, &oldndevs));
6326 newdevs = kmem_alloc(sizeof (void *) *
6327 (ndevs + oldndevs), KM_SLEEP);
6328 for (i = 0; i < oldndevs; i++)
6329 newdevs[i] = fnvlist_dup(olddevs[i]);
6330 for (i = 0; i < ndevs; i++)
6331 newdevs[i + oldndevs] = fnvlist_dup(devs[i]);
6333 fnvlist_remove(sav->sav_config, config);
6335 fnvlist_add_nvlist_array(sav->sav_config, config,
6336 (const nvlist_t * const *)newdevs, ndevs + oldndevs);
6337 for (i = 0; i < oldndevs + ndevs; i++)
6338 nvlist_free(newdevs[i]);
6339 kmem_free(newdevs, (oldndevs + ndevs) * sizeof (void *));
6340 } else {
6342 * Generate a new dev list.
6344 sav->sav_config = fnvlist_alloc();
6345 fnvlist_add_nvlist_array(sav->sav_config, config,
6346 (const nvlist_t * const *)devs, ndevs);
6351 * Stop and drop level 2 ARC devices
6353 void
6354 spa_l2cache_drop(spa_t *spa)
6356 vdev_t *vd;
6357 int i;
6358 spa_aux_vdev_t *sav = &spa->spa_l2cache;
6360 for (i = 0; i < sav->sav_count; i++) {
6361 uint64_t pool;
6363 vd = sav->sav_vdevs[i];
6364 ASSERT(vd != NULL);
6366 if (spa_l2cache_exists(vd->vdev_guid, &pool) &&
6367 pool != 0ULL && l2arc_vdev_present(vd))
6368 l2arc_remove_vdev(vd);
6373 * Verify encryption parameters for spa creation. If we are encrypting, we must
6374 * have the encryption feature flag enabled.
6376 static int
6377 spa_create_check_encryption_params(dsl_crypto_params_t *dcp,
6378 boolean_t has_encryption)
6380 if (dcp->cp_crypt != ZIO_CRYPT_OFF &&
6381 dcp->cp_crypt != ZIO_CRYPT_INHERIT &&
6382 !has_encryption)
6383 return (SET_ERROR(ENOTSUP));
6385 return (dmu_objset_create_crypt_check(NULL, dcp, NULL));
6389 * Pool Creation
6392 spa_create(const char *pool, nvlist_t *nvroot, nvlist_t *props,
6393 nvlist_t *zplprops, dsl_crypto_params_t *dcp)
6395 spa_t *spa;
6396 const char *altroot = NULL;
6397 vdev_t *rvd;
6398 dsl_pool_t *dp;
6399 dmu_tx_t *tx;
6400 int error = 0;
6401 uint64_t txg = TXG_INITIAL;
6402 nvlist_t **spares, **l2cache;
6403 uint_t nspares, nl2cache;
6404 uint64_t version, obj, ndraid = 0;
6405 boolean_t has_features;
6406 boolean_t has_encryption;
6407 boolean_t has_allocclass;
6408 spa_feature_t feat;
6409 const char *feat_name;
6410 const char *poolname;
6411 nvlist_t *nvl;
6413 if (props == NULL ||
6414 nvlist_lookup_string(props,
6415 zpool_prop_to_name(ZPOOL_PROP_TNAME), &poolname) != 0)
6416 poolname = (char *)pool;
6419 * If this pool already exists, return failure.
6421 mutex_enter(&spa_namespace_lock);
6422 if (spa_lookup(poolname) != NULL) {
6423 mutex_exit(&spa_namespace_lock);
6424 return (SET_ERROR(EEXIST));
6428 * Allocate a new spa_t structure.
6430 nvl = fnvlist_alloc();
6431 fnvlist_add_string(nvl, ZPOOL_CONFIG_POOL_NAME, pool);
6432 (void) nvlist_lookup_string(props,
6433 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6434 spa = spa_add(poolname, nvl, altroot);
6435 fnvlist_free(nvl);
6436 spa_activate(spa, spa_mode_global);
6438 if (props && (error = spa_prop_validate(spa, props))) {
6439 spa_deactivate(spa);
6440 spa_remove(spa);
6441 mutex_exit(&spa_namespace_lock);
6442 return (error);
6446 * Temporary pool names should never be written to disk.
6448 if (poolname != pool)
6449 spa->spa_import_flags |= ZFS_IMPORT_TEMP_NAME;
6451 has_features = B_FALSE;
6452 has_encryption = B_FALSE;
6453 has_allocclass = B_FALSE;
6454 for (nvpair_t *elem = nvlist_next_nvpair(props, NULL);
6455 elem != NULL; elem = nvlist_next_nvpair(props, elem)) {
6456 if (zpool_prop_feature(nvpair_name(elem))) {
6457 has_features = B_TRUE;
6459 feat_name = strchr(nvpair_name(elem), '@') + 1;
6460 VERIFY0(zfeature_lookup_name(feat_name, &feat));
6461 if (feat == SPA_FEATURE_ENCRYPTION)
6462 has_encryption = B_TRUE;
6463 if (feat == SPA_FEATURE_ALLOCATION_CLASSES)
6464 has_allocclass = B_TRUE;
6468 /* verify encryption params, if they were provided */
6469 if (dcp != NULL) {
6470 error = spa_create_check_encryption_params(dcp, has_encryption);
6471 if (error != 0) {
6472 spa_deactivate(spa);
6473 spa_remove(spa);
6474 mutex_exit(&spa_namespace_lock);
6475 return (error);
6478 if (!has_allocclass && zfs_special_devs(nvroot, NULL)) {
6479 spa_deactivate(spa);
6480 spa_remove(spa);
6481 mutex_exit(&spa_namespace_lock);
6482 return (ENOTSUP);
6485 if (has_features || nvlist_lookup_uint64(props,
6486 zpool_prop_to_name(ZPOOL_PROP_VERSION), &version) != 0) {
6487 version = SPA_VERSION;
6489 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
6491 spa->spa_first_txg = txg;
6492 spa->spa_uberblock.ub_txg = txg - 1;
6493 spa->spa_uberblock.ub_version = version;
6494 spa->spa_ubsync = spa->spa_uberblock;
6495 spa->spa_load_state = SPA_LOAD_CREATE;
6496 spa->spa_removing_phys.sr_state = DSS_NONE;
6497 spa->spa_removing_phys.sr_removing_vdev = -1;
6498 spa->spa_removing_phys.sr_prev_indirect_vdev = -1;
6499 spa->spa_indirect_vdevs_loaded = B_TRUE;
6502 * Create "The Godfather" zio to hold all async IOs
6504 spa->spa_async_zio_root = kmem_alloc(max_ncpus * sizeof (void *),
6505 KM_SLEEP);
6506 for (int i = 0; i < max_ncpus; i++) {
6507 spa->spa_async_zio_root[i] = zio_root(spa, NULL, NULL,
6508 ZIO_FLAG_CANFAIL | ZIO_FLAG_SPECULATIVE |
6509 ZIO_FLAG_GODFATHER);
6513 * Create the root vdev.
6515 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6517 error = spa_config_parse(spa, &rvd, nvroot, NULL, 0, VDEV_ALLOC_ADD);
6519 ASSERT(error != 0 || rvd != NULL);
6520 ASSERT(error != 0 || spa->spa_root_vdev == rvd);
6522 if (error == 0 && !zfs_allocatable_devs(nvroot))
6523 error = SET_ERROR(EINVAL);
6525 if (error == 0 &&
6526 (error = vdev_create(rvd, txg, B_FALSE)) == 0 &&
6527 (error = vdev_draid_spare_create(nvroot, rvd, &ndraid, 0)) == 0 &&
6528 (error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) == 0) {
6530 * instantiate the metaslab groups (this will dirty the vdevs)
6531 * we can no longer error exit past this point
6533 for (int c = 0; error == 0 && c < rvd->vdev_children; c++) {
6534 vdev_t *vd = rvd->vdev_child[c];
6536 vdev_metaslab_set_size(vd);
6537 vdev_expand(vd, txg);
6541 spa_config_exit(spa, SCL_ALL, FTAG);
6543 if (error != 0) {
6544 spa_unload(spa);
6545 spa_deactivate(spa);
6546 spa_remove(spa);
6547 mutex_exit(&spa_namespace_lock);
6548 return (error);
6552 * Get the list of spares, if specified.
6554 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6555 &spares, &nspares) == 0) {
6556 spa->spa_spares.sav_config = fnvlist_alloc();
6557 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6558 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6559 nspares);
6560 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6561 spa_load_spares(spa);
6562 spa_config_exit(spa, SCL_ALL, FTAG);
6563 spa->spa_spares.sav_sync = B_TRUE;
6567 * Get the list of level 2 cache devices, if specified.
6569 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6570 &l2cache, &nl2cache) == 0) {
6571 VERIFY0(nvlist_alloc(&spa->spa_l2cache.sav_config,
6572 NV_UNIQUE_NAME, KM_SLEEP));
6573 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6574 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6575 nl2cache);
6576 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6577 spa_load_l2cache(spa);
6578 spa_config_exit(spa, SCL_ALL, FTAG);
6579 spa->spa_l2cache.sav_sync = B_TRUE;
6582 spa->spa_is_initializing = B_TRUE;
6583 spa->spa_dsl_pool = dp = dsl_pool_create(spa, zplprops, dcp, txg);
6584 spa->spa_is_initializing = B_FALSE;
6587 * Create DDTs (dedup tables).
6589 ddt_create(spa);
6591 * Create BRT table and BRT table object.
6593 brt_create(spa);
6595 spa_update_dspace(spa);
6597 tx = dmu_tx_create_assigned(dp, txg);
6600 * Create the pool's history object.
6602 if (version >= SPA_VERSION_ZPOOL_HISTORY && !spa->spa_history)
6603 spa_history_create_obj(spa, tx);
6605 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_CREATE);
6606 spa_history_log_version(spa, "create", tx);
6609 * Create the pool config object.
6611 spa->spa_config_object = dmu_object_alloc(spa->spa_meta_objset,
6612 DMU_OT_PACKED_NVLIST, SPA_CONFIG_BLOCKSIZE,
6613 DMU_OT_PACKED_NVLIST_SIZE, sizeof (uint64_t), tx);
6615 if (zap_add(spa->spa_meta_objset,
6616 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CONFIG,
6617 sizeof (uint64_t), 1, &spa->spa_config_object, tx) != 0) {
6618 cmn_err(CE_PANIC, "failed to add pool config");
6621 if (zap_add(spa->spa_meta_objset,
6622 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CREATION_VERSION,
6623 sizeof (uint64_t), 1, &version, tx) != 0) {
6624 cmn_err(CE_PANIC, "failed to add pool version");
6627 /* Newly created pools with the right version are always deflated. */
6628 if (version >= SPA_VERSION_RAIDZ_DEFLATE) {
6629 spa->spa_deflate = TRUE;
6630 if (zap_add(spa->spa_meta_objset,
6631 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
6632 sizeof (uint64_t), 1, &spa->spa_deflate, tx) != 0) {
6633 cmn_err(CE_PANIC, "failed to add deflate");
6638 * Create the deferred-free bpobj. Turn off compression
6639 * because sync-to-convergence takes longer if the blocksize
6640 * keeps changing.
6642 obj = bpobj_alloc(spa->spa_meta_objset, 1 << 14, tx);
6643 dmu_object_set_compress(spa->spa_meta_objset, obj,
6644 ZIO_COMPRESS_OFF, tx);
6645 if (zap_add(spa->spa_meta_objset,
6646 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_SYNC_BPOBJ,
6647 sizeof (uint64_t), 1, &obj, tx) != 0) {
6648 cmn_err(CE_PANIC, "failed to add bpobj");
6650 VERIFY3U(0, ==, bpobj_open(&spa->spa_deferred_bpobj,
6651 spa->spa_meta_objset, obj));
6654 * Generate some random noise for salted checksums to operate on.
6656 (void) random_get_pseudo_bytes(spa->spa_cksum_salt.zcs_bytes,
6657 sizeof (spa->spa_cksum_salt.zcs_bytes));
6660 * Set pool properties.
6662 spa->spa_bootfs = zpool_prop_default_numeric(ZPOOL_PROP_BOOTFS);
6663 spa->spa_delegation = zpool_prop_default_numeric(ZPOOL_PROP_DELEGATION);
6664 spa->spa_failmode = zpool_prop_default_numeric(ZPOOL_PROP_FAILUREMODE);
6665 spa->spa_autoexpand = zpool_prop_default_numeric(ZPOOL_PROP_AUTOEXPAND);
6666 spa->spa_multihost = zpool_prop_default_numeric(ZPOOL_PROP_MULTIHOST);
6667 spa->spa_autotrim = zpool_prop_default_numeric(ZPOOL_PROP_AUTOTRIM);
6668 spa->spa_dedup_table_quota =
6669 zpool_prop_default_numeric(ZPOOL_PROP_DEDUP_TABLE_QUOTA);
6671 if (props != NULL) {
6672 spa_configfile_set(spa, props, B_FALSE);
6673 spa_sync_props(props, tx);
6676 for (int i = 0; i < ndraid; i++)
6677 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
6679 dmu_tx_commit(tx);
6681 spa->spa_sync_on = B_TRUE;
6682 txg_sync_start(dp);
6683 mmp_thread_start(spa);
6684 txg_wait_synced(dp, txg);
6686 spa_spawn_aux_threads(spa);
6688 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_TRUE);
6691 * Don't count references from objsets that are already closed
6692 * and are making their way through the eviction process.
6694 spa_evicting_os_wait(spa);
6695 spa->spa_minref = zfs_refcount_count(&spa->spa_refcount);
6696 spa->spa_load_state = SPA_LOAD_NONE;
6698 spa_import_os(spa);
6700 mutex_exit(&spa_namespace_lock);
6702 return (0);
6706 * Import a non-root pool into the system.
6709 spa_import(char *pool, nvlist_t *config, nvlist_t *props, uint64_t flags)
6711 spa_t *spa;
6712 const char *altroot = NULL;
6713 spa_load_state_t state = SPA_LOAD_IMPORT;
6714 zpool_load_policy_t policy;
6715 spa_mode_t mode = spa_mode_global;
6716 uint64_t readonly = B_FALSE;
6717 int error;
6718 nvlist_t *nvroot;
6719 nvlist_t **spares, **l2cache;
6720 uint_t nspares, nl2cache;
6723 * If a pool with this name exists, return failure.
6725 mutex_enter(&spa_namespace_lock);
6726 if (spa_lookup(pool) != NULL) {
6727 mutex_exit(&spa_namespace_lock);
6728 return (SET_ERROR(EEXIST));
6732 * Create and initialize the spa structure.
6734 (void) nvlist_lookup_string(props,
6735 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
6736 (void) nvlist_lookup_uint64(props,
6737 zpool_prop_to_name(ZPOOL_PROP_READONLY), &readonly);
6738 if (readonly)
6739 mode = SPA_MODE_READ;
6740 spa = spa_add(pool, config, altroot);
6741 spa->spa_import_flags = flags;
6744 * Verbatim import - Take a pool and insert it into the namespace
6745 * as if it had been loaded at boot.
6747 if (spa->spa_import_flags & ZFS_IMPORT_VERBATIM) {
6748 if (props != NULL)
6749 spa_configfile_set(spa, props, B_FALSE);
6751 spa_write_cachefile(spa, B_FALSE, B_TRUE, B_FALSE);
6752 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6753 zfs_dbgmsg("spa_import: verbatim import of %s", pool);
6754 mutex_exit(&spa_namespace_lock);
6755 return (0);
6758 spa_activate(spa, mode);
6761 * Don't start async tasks until we know everything is healthy.
6763 spa_async_suspend(spa);
6765 zpool_get_load_policy(config, &policy);
6766 if (policy.zlp_rewind & ZPOOL_DO_REWIND)
6767 state = SPA_LOAD_RECOVER;
6769 spa->spa_config_source = SPA_CONFIG_SRC_TRYIMPORT;
6771 if (state != SPA_LOAD_RECOVER) {
6772 spa->spa_last_ubsync_txg = spa->spa_load_txg = 0;
6773 zfs_dbgmsg("spa_import: importing %s", pool);
6774 } else {
6775 zfs_dbgmsg("spa_import: importing %s, max_txg=%lld "
6776 "(RECOVERY MODE)", pool, (longlong_t)policy.zlp_txg);
6778 error = spa_load_best(spa, state, policy.zlp_txg, policy.zlp_rewind);
6781 * Propagate anything learned while loading the pool and pass it
6782 * back to caller (i.e. rewind info, missing devices, etc).
6784 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO, spa->spa_load_info);
6786 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6788 * Toss any existing sparelist, as it doesn't have any validity
6789 * anymore, and conflicts with spa_has_spare().
6791 if (spa->spa_spares.sav_config) {
6792 nvlist_free(spa->spa_spares.sav_config);
6793 spa->spa_spares.sav_config = NULL;
6794 spa_load_spares(spa);
6796 if (spa->spa_l2cache.sav_config) {
6797 nvlist_free(spa->spa_l2cache.sav_config);
6798 spa->spa_l2cache.sav_config = NULL;
6799 spa_load_l2cache(spa);
6802 nvroot = fnvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE);
6803 spa_config_exit(spa, SCL_ALL, FTAG);
6805 if (props != NULL)
6806 spa_configfile_set(spa, props, B_FALSE);
6808 if (error != 0 || (props && spa_writeable(spa) &&
6809 (error = spa_prop_set(spa, props)))) {
6810 spa_unload(spa);
6811 spa_deactivate(spa);
6812 spa_remove(spa);
6813 mutex_exit(&spa_namespace_lock);
6814 return (error);
6817 spa_async_resume(spa);
6820 * Override any spares and level 2 cache devices as specified by
6821 * the user, as these may have correct device names/devids, etc.
6823 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES,
6824 &spares, &nspares) == 0) {
6825 if (spa->spa_spares.sav_config)
6826 fnvlist_remove(spa->spa_spares.sav_config,
6827 ZPOOL_CONFIG_SPARES);
6828 else
6829 spa->spa_spares.sav_config = fnvlist_alloc();
6830 fnvlist_add_nvlist_array(spa->spa_spares.sav_config,
6831 ZPOOL_CONFIG_SPARES, (const nvlist_t * const *)spares,
6832 nspares);
6833 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6834 spa_load_spares(spa);
6835 spa_config_exit(spa, SCL_ALL, FTAG);
6836 spa->spa_spares.sav_sync = B_TRUE;
6837 spa->spa_spares.sav_label_sync = B_TRUE;
6839 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE,
6840 &l2cache, &nl2cache) == 0) {
6841 if (spa->spa_l2cache.sav_config)
6842 fnvlist_remove(spa->spa_l2cache.sav_config,
6843 ZPOOL_CONFIG_L2CACHE);
6844 else
6845 spa->spa_l2cache.sav_config = fnvlist_alloc();
6846 fnvlist_add_nvlist_array(spa->spa_l2cache.sav_config,
6847 ZPOOL_CONFIG_L2CACHE, (const nvlist_t * const *)l2cache,
6848 nl2cache);
6849 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
6850 spa_load_l2cache(spa);
6851 spa_config_exit(spa, SCL_ALL, FTAG);
6852 spa->spa_l2cache.sav_sync = B_TRUE;
6853 spa->spa_l2cache.sav_label_sync = B_TRUE;
6857 * Check for any removed devices.
6859 if (spa->spa_autoreplace) {
6860 spa_aux_check_removed(&spa->spa_spares);
6861 spa_aux_check_removed(&spa->spa_l2cache);
6864 if (spa_writeable(spa)) {
6866 * Update the config cache to include the newly-imported pool.
6868 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
6872 * It's possible that the pool was expanded while it was exported.
6873 * We kick off an async task to handle this for us.
6875 spa_async_request(spa, SPA_ASYNC_AUTOEXPAND);
6877 spa_history_log_version(spa, "import", NULL);
6879 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_IMPORT);
6881 mutex_exit(&spa_namespace_lock);
6883 zvol_create_minors_recursive(pool);
6885 spa_import_os(spa);
6887 return (0);
6890 nvlist_t *
6891 spa_tryimport(nvlist_t *tryconfig)
6893 nvlist_t *config = NULL;
6894 const char *poolname, *cachefile;
6895 spa_t *spa;
6896 uint64_t state;
6897 int error;
6898 zpool_load_policy_t policy;
6900 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_POOL_NAME, &poolname))
6901 return (NULL);
6903 if (nvlist_lookup_uint64(tryconfig, ZPOOL_CONFIG_POOL_STATE, &state))
6904 return (NULL);
6907 * Create and initialize the spa structure.
6909 char *name = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6910 (void) snprintf(name, MAXPATHLEN, "%s-%llx-%s",
6911 TRYIMPORT_NAME, (u_longlong_t)(uintptr_t)curthread, poolname);
6913 mutex_enter(&spa_namespace_lock);
6914 spa = spa_add(name, tryconfig, NULL);
6915 spa_activate(spa, SPA_MODE_READ);
6916 kmem_free(name, MAXPATHLEN);
6919 * Rewind pool if a max txg was provided.
6921 zpool_get_load_policy(spa->spa_config, &policy);
6922 if (policy.zlp_txg != UINT64_MAX) {
6923 spa->spa_load_max_txg = policy.zlp_txg;
6924 spa->spa_extreme_rewind = B_TRUE;
6925 zfs_dbgmsg("spa_tryimport: importing %s, max_txg=%lld",
6926 poolname, (longlong_t)policy.zlp_txg);
6927 } else {
6928 zfs_dbgmsg("spa_tryimport: importing %s", poolname);
6931 if (nvlist_lookup_string(tryconfig, ZPOOL_CONFIG_CACHEFILE, &cachefile)
6932 == 0) {
6933 zfs_dbgmsg("spa_tryimport: using cachefile '%s'", cachefile);
6934 spa->spa_config_source = SPA_CONFIG_SRC_CACHEFILE;
6935 } else {
6936 spa->spa_config_source = SPA_CONFIG_SRC_SCAN;
6940 * spa_import() relies on a pool config fetched by spa_try_import()
6941 * for spare/cache devices. Import flags are not passed to
6942 * spa_tryimport(), which makes it return early due to a missing log
6943 * device and missing retrieving the cache device and spare eventually.
6944 * Passing ZFS_IMPORT_MISSING_LOG to spa_tryimport() makes it fetch
6945 * the correct configuration regardless of the missing log device.
6947 spa->spa_import_flags |= ZFS_IMPORT_MISSING_LOG;
6949 error = spa_load(spa, SPA_LOAD_TRYIMPORT, SPA_IMPORT_EXISTING);
6952 * If 'tryconfig' was at least parsable, return the current config.
6954 if (spa->spa_root_vdev != NULL) {
6955 config = spa_config_generate(spa, NULL, -1ULL, B_TRUE);
6956 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, poolname);
6957 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE, state);
6958 fnvlist_add_uint64(config, ZPOOL_CONFIG_TIMESTAMP,
6959 spa->spa_uberblock.ub_timestamp);
6960 fnvlist_add_nvlist(config, ZPOOL_CONFIG_LOAD_INFO,
6961 spa->spa_load_info);
6962 fnvlist_add_uint64(config, ZPOOL_CONFIG_ERRATA,
6963 spa->spa_errata);
6966 * If the bootfs property exists on this pool then we
6967 * copy it out so that external consumers can tell which
6968 * pools are bootable.
6970 if ((!error || error == EEXIST) && spa->spa_bootfs) {
6971 char *tmpname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6974 * We have to play games with the name since the
6975 * pool was opened as TRYIMPORT_NAME.
6977 if (dsl_dsobj_to_dsname(spa_name(spa),
6978 spa->spa_bootfs, tmpname) == 0) {
6979 char *cp;
6980 char *dsname;
6982 dsname = kmem_alloc(MAXPATHLEN, KM_SLEEP);
6984 cp = strchr(tmpname, '/');
6985 if (cp == NULL) {
6986 (void) strlcpy(dsname, tmpname,
6987 MAXPATHLEN);
6988 } else {
6989 (void) snprintf(dsname, MAXPATHLEN,
6990 "%s/%s", poolname, ++cp);
6992 fnvlist_add_string(config, ZPOOL_CONFIG_BOOTFS,
6993 dsname);
6994 kmem_free(dsname, MAXPATHLEN);
6996 kmem_free(tmpname, MAXPATHLEN);
7000 * Add the list of hot spares and level 2 cache devices.
7002 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
7003 spa_add_spares(spa, config);
7004 spa_add_l2cache(spa, config);
7005 spa_config_exit(spa, SCL_CONFIG, FTAG);
7008 spa_unload(spa);
7009 spa_deactivate(spa);
7010 spa_remove(spa);
7011 mutex_exit(&spa_namespace_lock);
7013 return (config);
7017 * Pool export/destroy
7019 * The act of destroying or exporting a pool is very simple. We make sure there
7020 * is no more pending I/O and any references to the pool are gone. Then, we
7021 * update the pool state and sync all the labels to disk, removing the
7022 * configuration from the cache afterwards. If the 'hardforce' flag is set, then
7023 * we don't sync the labels or remove the configuration cache.
7025 static int
7026 spa_export_common(const char *pool, int new_state, nvlist_t **oldconfig,
7027 boolean_t force, boolean_t hardforce)
7029 int error = 0;
7030 spa_t *spa;
7031 hrtime_t export_start = gethrtime();
7033 if (oldconfig)
7034 *oldconfig = NULL;
7036 if (!(spa_mode_global & SPA_MODE_WRITE))
7037 return (SET_ERROR(EROFS));
7039 mutex_enter(&spa_namespace_lock);
7040 if ((spa = spa_lookup(pool)) == NULL) {
7041 mutex_exit(&spa_namespace_lock);
7042 return (SET_ERROR(ENOENT));
7045 if (spa->spa_is_exporting) {
7046 /* the pool is being exported by another thread */
7047 mutex_exit(&spa_namespace_lock);
7048 return (SET_ERROR(ZFS_ERR_EXPORT_IN_PROGRESS));
7050 spa->spa_is_exporting = B_TRUE;
7053 * Put a hold on the pool, drop the namespace lock, stop async tasks
7054 * and see if we can export.
7056 spa_open_ref(spa, FTAG);
7057 mutex_exit(&spa_namespace_lock);
7058 spa_async_suspend(spa);
7059 if (spa->spa_zvol_taskq) {
7060 zvol_remove_minors(spa, spa_name(spa), B_TRUE);
7061 taskq_wait(spa->spa_zvol_taskq);
7063 mutex_enter(&spa_namespace_lock);
7064 spa->spa_export_thread = curthread;
7065 spa_close(spa, FTAG);
7067 if (spa->spa_state == POOL_STATE_UNINITIALIZED) {
7068 mutex_exit(&spa_namespace_lock);
7069 goto export_spa;
7073 * The pool will be in core if it's openable, in which case we can
7074 * modify its state. Objsets may be open only because they're dirty,
7075 * so we have to force it to sync before checking spa_refcnt.
7077 if (spa->spa_sync_on) {
7078 txg_wait_synced(spa->spa_dsl_pool, 0);
7079 spa_evicting_os_wait(spa);
7083 * A pool cannot be exported or destroyed if there are active
7084 * references. If we are resetting a pool, allow references by
7085 * fault injection handlers.
7087 if (!spa_refcount_zero(spa) || (spa->spa_inject_ref != 0)) {
7088 error = SET_ERROR(EBUSY);
7089 goto fail;
7092 mutex_exit(&spa_namespace_lock);
7094 * At this point we no longer hold the spa_namespace_lock and
7095 * there were no references on the spa. Future spa_lookups will
7096 * notice the spa->spa_export_thread and wait until we signal
7097 * that we are finshed.
7100 if (spa->spa_sync_on) {
7101 vdev_t *rvd = spa->spa_root_vdev;
7103 * A pool cannot be exported if it has an active shared spare.
7104 * This is to prevent other pools stealing the active spare
7105 * from an exported pool. At user's own will, such pool can
7106 * be forcedly exported.
7108 if (!force && new_state == POOL_STATE_EXPORTED &&
7109 spa_has_active_shared_spare(spa)) {
7110 error = SET_ERROR(EXDEV);
7111 mutex_enter(&spa_namespace_lock);
7112 goto fail;
7116 * We're about to export or destroy this pool. Make sure
7117 * we stop all initialization and trim activity here before
7118 * we set the spa_final_txg. This will ensure that all
7119 * dirty data resulting from the initialization is
7120 * committed to disk before we unload the pool.
7122 vdev_initialize_stop_all(rvd, VDEV_INITIALIZE_ACTIVE);
7123 vdev_trim_stop_all(rvd, VDEV_TRIM_ACTIVE);
7124 vdev_autotrim_stop_all(spa);
7125 vdev_rebuild_stop_all(spa);
7126 l2arc_spa_rebuild_stop(spa);
7129 * We want this to be reflected on every label,
7130 * so mark them all dirty. spa_unload() will do the
7131 * final sync that pushes these changes out.
7133 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7134 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7135 spa->spa_state = new_state;
7136 vdev_config_dirty(rvd);
7137 spa_config_exit(spa, SCL_ALL, FTAG);
7141 * If the log space map feature is enabled and the pool is
7142 * getting exported (but not destroyed), we want to spend some
7143 * time flushing as many metaslabs as we can in an attempt to
7144 * destroy log space maps and save import time. This has to be
7145 * done before we set the spa_final_txg, otherwise
7146 * spa_sync() -> spa_flush_metaslabs() may dirty the final TXGs.
7147 * spa_should_flush_logs_on_unload() should be called after
7148 * spa_state has been set to the new_state.
7150 if (spa_should_flush_logs_on_unload(spa))
7151 spa_unload_log_sm_flush_all(spa);
7153 if (new_state != POOL_STATE_UNINITIALIZED && !hardforce) {
7154 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
7155 spa->spa_final_txg = spa_last_synced_txg(spa) +
7156 TXG_DEFER_SIZE + 1;
7157 spa_config_exit(spa, SCL_ALL, FTAG);
7161 export_spa:
7162 spa_export_os(spa);
7164 if (new_state == POOL_STATE_DESTROYED)
7165 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_DESTROY);
7166 else if (new_state == POOL_STATE_EXPORTED)
7167 spa_event_notify(spa, NULL, NULL, ESC_ZFS_POOL_EXPORT);
7169 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
7170 spa_unload(spa);
7171 spa_deactivate(spa);
7174 if (oldconfig && spa->spa_config)
7175 *oldconfig = fnvlist_dup(spa->spa_config);
7177 if (new_state == POOL_STATE_EXPORTED)
7178 zio_handle_export_delay(spa, gethrtime() - export_start);
7181 * Take the namespace lock for the actual spa_t removal
7183 mutex_enter(&spa_namespace_lock);
7184 if (new_state != POOL_STATE_UNINITIALIZED) {
7185 if (!hardforce)
7186 spa_write_cachefile(spa, B_TRUE, B_TRUE, B_FALSE);
7187 spa_remove(spa);
7188 } else {
7190 * If spa_remove() is not called for this spa_t and
7191 * there is any possibility that it can be reused,
7192 * we make sure to reset the exporting flag.
7194 spa->spa_is_exporting = B_FALSE;
7195 spa->spa_export_thread = NULL;
7199 * Wake up any waiters in spa_lookup()
7201 cv_broadcast(&spa_namespace_cv);
7202 mutex_exit(&spa_namespace_lock);
7203 return (0);
7205 fail:
7206 spa->spa_is_exporting = B_FALSE;
7207 spa->spa_export_thread = NULL;
7209 spa_async_resume(spa);
7211 * Wake up any waiters in spa_lookup()
7213 cv_broadcast(&spa_namespace_cv);
7214 mutex_exit(&spa_namespace_lock);
7215 return (error);
7219 * Destroy a storage pool.
7222 spa_destroy(const char *pool)
7224 return (spa_export_common(pool, POOL_STATE_DESTROYED, NULL,
7225 B_FALSE, B_FALSE));
7229 * Export a storage pool.
7232 spa_export(const char *pool, nvlist_t **oldconfig, boolean_t force,
7233 boolean_t hardforce)
7235 return (spa_export_common(pool, POOL_STATE_EXPORTED, oldconfig,
7236 force, hardforce));
7240 * Similar to spa_export(), this unloads the spa_t without actually removing it
7241 * from the namespace in any way.
7244 spa_reset(const char *pool)
7246 return (spa_export_common(pool, POOL_STATE_UNINITIALIZED, NULL,
7247 B_FALSE, B_FALSE));
7251 * ==========================================================================
7252 * Device manipulation
7253 * ==========================================================================
7257 * This is called as a synctask to increment the draid feature flag
7259 static void
7260 spa_draid_feature_incr(void *arg, dmu_tx_t *tx)
7262 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
7263 int draid = (int)(uintptr_t)arg;
7265 for (int c = 0; c < draid; c++)
7266 spa_feature_incr(spa, SPA_FEATURE_DRAID, tx);
7270 * Add a device to a storage pool.
7273 spa_vdev_add(spa_t *spa, nvlist_t *nvroot, boolean_t check_ashift)
7275 uint64_t txg, ndraid = 0;
7276 int error;
7277 vdev_t *rvd = spa->spa_root_vdev;
7278 vdev_t *vd, *tvd;
7279 nvlist_t **spares, **l2cache;
7280 uint_t nspares, nl2cache;
7282 ASSERT(spa_writeable(spa));
7284 txg = spa_vdev_enter(spa);
7286 if ((error = spa_config_parse(spa, &vd, nvroot, NULL, 0,
7287 VDEV_ALLOC_ADD)) != 0)
7288 return (spa_vdev_exit(spa, NULL, txg, error));
7290 spa->spa_pending_vdev = vd; /* spa_vdev_exit() will clear this */
7292 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_SPARES, &spares,
7293 &nspares) != 0)
7294 nspares = 0;
7296 if (nvlist_lookup_nvlist_array(nvroot, ZPOOL_CONFIG_L2CACHE, &l2cache,
7297 &nl2cache) != 0)
7298 nl2cache = 0;
7300 if (vd->vdev_children == 0 && nspares == 0 && nl2cache == 0)
7301 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7303 if (vd->vdev_children != 0 &&
7304 (error = vdev_create(vd, txg, B_FALSE)) != 0) {
7305 return (spa_vdev_exit(spa, vd, txg, error));
7309 * The virtual dRAID spares must be added after vdev tree is created
7310 * and the vdev guids are generated. The guid of their associated
7311 * dRAID is stored in the config and used when opening the spare.
7313 if ((error = vdev_draid_spare_create(nvroot, vd, &ndraid,
7314 rvd->vdev_children)) == 0) {
7315 if (ndraid > 0 && nvlist_lookup_nvlist_array(nvroot,
7316 ZPOOL_CONFIG_SPARES, &spares, &nspares) != 0)
7317 nspares = 0;
7318 } else {
7319 return (spa_vdev_exit(spa, vd, txg, error));
7323 * We must validate the spares and l2cache devices after checking the
7324 * children. Otherwise, vdev_inuse() will blindly overwrite the spare.
7326 if ((error = spa_validate_aux(spa, nvroot, txg, VDEV_ALLOC_ADD)) != 0)
7327 return (spa_vdev_exit(spa, vd, txg, error));
7330 * If we are in the middle of a device removal, we can only add
7331 * devices which match the existing devices in the pool.
7332 * If we are in the middle of a removal, or have some indirect
7333 * vdevs, we can not add raidz or dRAID top levels.
7335 if (spa->spa_vdev_removal != NULL ||
7336 spa->spa_removing_phys.sr_prev_indirect_vdev != -1) {
7337 for (int c = 0; c < vd->vdev_children; c++) {
7338 tvd = vd->vdev_child[c];
7339 if (spa->spa_vdev_removal != NULL &&
7340 tvd->vdev_ashift != spa->spa_max_ashift) {
7341 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7343 /* Fail if top level vdev is raidz or a dRAID */
7344 if (vdev_get_nparity(tvd) != 0)
7345 return (spa_vdev_exit(spa, vd, txg, EINVAL));
7348 * Need the top level mirror to be
7349 * a mirror of leaf vdevs only
7351 if (tvd->vdev_ops == &vdev_mirror_ops) {
7352 for (uint64_t cid = 0;
7353 cid < tvd->vdev_children; cid++) {
7354 vdev_t *cvd = tvd->vdev_child[cid];
7355 if (!cvd->vdev_ops->vdev_op_leaf) {
7356 return (spa_vdev_exit(spa, vd,
7357 txg, EINVAL));
7364 if (check_ashift && spa->spa_max_ashift == spa->spa_min_ashift) {
7365 for (int c = 0; c < vd->vdev_children; c++) {
7366 tvd = vd->vdev_child[c];
7367 if (tvd->vdev_ashift != spa->spa_max_ashift) {
7368 return (spa_vdev_exit(spa, vd, txg,
7369 ZFS_ERR_ASHIFT_MISMATCH));
7374 for (int c = 0; c < vd->vdev_children; c++) {
7375 tvd = vd->vdev_child[c];
7376 vdev_remove_child(vd, tvd);
7377 tvd->vdev_id = rvd->vdev_children;
7378 vdev_add_child(rvd, tvd);
7379 vdev_config_dirty(tvd);
7382 if (nspares != 0) {
7383 spa_set_aux_vdevs(&spa->spa_spares, spares, nspares,
7384 ZPOOL_CONFIG_SPARES);
7385 spa_load_spares(spa);
7386 spa->spa_spares.sav_sync = B_TRUE;
7389 if (nl2cache != 0) {
7390 spa_set_aux_vdevs(&spa->spa_l2cache, l2cache, nl2cache,
7391 ZPOOL_CONFIG_L2CACHE);
7392 spa_load_l2cache(spa);
7393 spa->spa_l2cache.sav_sync = B_TRUE;
7397 * We can't increment a feature while holding spa_vdev so we
7398 * have to do it in a synctask.
7400 if (ndraid != 0) {
7401 dmu_tx_t *tx;
7403 tx = dmu_tx_create_assigned(spa->spa_dsl_pool, txg);
7404 dsl_sync_task_nowait(spa->spa_dsl_pool, spa_draid_feature_incr,
7405 (void *)(uintptr_t)ndraid, tx);
7406 dmu_tx_commit(tx);
7410 * We have to be careful when adding new vdevs to an existing pool.
7411 * If other threads start allocating from these vdevs before we
7412 * sync the config cache, and we lose power, then upon reboot we may
7413 * fail to open the pool because there are DVAs that the config cache
7414 * can't translate. Therefore, we first add the vdevs without
7415 * initializing metaslabs; sync the config cache (via spa_vdev_exit());
7416 * and then let spa_config_update() initialize the new metaslabs.
7418 * spa_load() checks for added-but-not-initialized vdevs, so that
7419 * if we lose power at any point in this sequence, the remaining
7420 * steps will be completed the next time we load the pool.
7422 (void) spa_vdev_exit(spa, vd, txg, 0);
7424 mutex_enter(&spa_namespace_lock);
7425 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
7426 spa_event_notify(spa, NULL, NULL, ESC_ZFS_VDEV_ADD);
7427 mutex_exit(&spa_namespace_lock);
7429 return (0);
7433 * Attach a device to a vdev specified by its guid. The vdev type can be
7434 * a mirror, a raidz, or a leaf device that is also a top-level (e.g. a
7435 * single device). When the vdev is a single device, a mirror vdev will be
7436 * automatically inserted.
7438 * If 'replacing' is specified, the new device is intended to replace the
7439 * existing device; in this case the two devices are made into their own
7440 * mirror using the 'replacing' vdev, which is functionally identical to
7441 * the mirror vdev (it actually reuses all the same ops) but has a few
7442 * extra rules: you can't attach to it after it's been created, and upon
7443 * completion of resilvering, the first disk (the one being replaced)
7444 * is automatically detached.
7446 * If 'rebuild' is specified, then sequential reconstruction (a.ka. rebuild)
7447 * should be performed instead of traditional healing reconstruction. From
7448 * an administrators perspective these are both resilver operations.
7451 spa_vdev_attach(spa_t *spa, uint64_t guid, nvlist_t *nvroot, int replacing,
7452 int rebuild)
7454 uint64_t txg, dtl_max_txg;
7455 vdev_t *rvd = spa->spa_root_vdev;
7456 vdev_t *oldvd, *newvd, *newrootvd, *pvd, *tvd;
7457 vdev_ops_t *pvops;
7458 char *oldvdpath, *newvdpath;
7459 int newvd_isspare = B_FALSE;
7460 int error;
7462 ASSERT(spa_writeable(spa));
7464 txg = spa_vdev_enter(spa);
7466 oldvd = spa_lookup_by_guid(spa, guid, B_FALSE);
7468 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7469 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7470 error = (spa_has_checkpoint(spa)) ?
7471 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7472 return (spa_vdev_exit(spa, NULL, txg, error));
7475 if (rebuild) {
7476 if (!spa_feature_is_enabled(spa, SPA_FEATURE_DEVICE_REBUILD))
7477 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7479 if (dsl_scan_resilvering(spa_get_dsl(spa)) ||
7480 dsl_scan_resilver_scheduled(spa_get_dsl(spa))) {
7481 return (spa_vdev_exit(spa, NULL, txg,
7482 ZFS_ERR_RESILVER_IN_PROGRESS));
7484 } else {
7485 if (vdev_rebuild_active(rvd))
7486 return (spa_vdev_exit(spa, NULL, txg,
7487 ZFS_ERR_REBUILD_IN_PROGRESS));
7490 if (spa->spa_vdev_removal != NULL) {
7491 return (spa_vdev_exit(spa, NULL, txg,
7492 ZFS_ERR_DEVRM_IN_PROGRESS));
7495 if (oldvd == NULL)
7496 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7498 boolean_t raidz = oldvd->vdev_ops == &vdev_raidz_ops;
7500 if (raidz) {
7501 if (!spa_feature_is_enabled(spa, SPA_FEATURE_RAIDZ_EXPANSION))
7502 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7505 * Can't expand a raidz while prior expand is in progress.
7507 if (spa->spa_raidz_expand != NULL) {
7508 return (spa_vdev_exit(spa, NULL, txg,
7509 ZFS_ERR_RAIDZ_EXPAND_IN_PROGRESS));
7511 } else if (!oldvd->vdev_ops->vdev_op_leaf) {
7512 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7515 if (raidz)
7516 pvd = oldvd;
7517 else
7518 pvd = oldvd->vdev_parent;
7520 if (spa_config_parse(spa, &newrootvd, nvroot, NULL, 0,
7521 VDEV_ALLOC_ATTACH) != 0)
7522 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
7524 if (newrootvd->vdev_children != 1)
7525 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7527 newvd = newrootvd->vdev_child[0];
7529 if (!newvd->vdev_ops->vdev_op_leaf)
7530 return (spa_vdev_exit(spa, newrootvd, txg, EINVAL));
7532 if ((error = vdev_create(newrootvd, txg, replacing)) != 0)
7533 return (spa_vdev_exit(spa, newrootvd, txg, error));
7536 * log, dedup and special vdevs should not be replaced by spares.
7538 if ((oldvd->vdev_top->vdev_alloc_bias != VDEV_BIAS_NONE ||
7539 oldvd->vdev_top->vdev_islog) && newvd->vdev_isspare) {
7540 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7544 * A dRAID spare can only replace a child of its parent dRAID vdev.
7546 if (newvd->vdev_ops == &vdev_draid_spare_ops &&
7547 oldvd->vdev_top != vdev_draid_spare_get_parent(newvd)) {
7548 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7551 if (rebuild) {
7553 * For rebuilds, the top vdev must support reconstruction
7554 * using only space maps. This means the only allowable
7555 * vdevs types are the root vdev, a mirror, or dRAID.
7557 tvd = pvd;
7558 if (pvd->vdev_top != NULL)
7559 tvd = pvd->vdev_top;
7561 if (tvd->vdev_ops != &vdev_mirror_ops &&
7562 tvd->vdev_ops != &vdev_root_ops &&
7563 tvd->vdev_ops != &vdev_draid_ops) {
7564 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7568 if (!replacing) {
7570 * For attach, the only allowable parent is a mirror or
7571 * the root vdev. A raidz vdev can be attached to, but
7572 * you cannot attach to a raidz child.
7574 if (pvd->vdev_ops != &vdev_mirror_ops &&
7575 pvd->vdev_ops != &vdev_root_ops &&
7576 !raidz)
7577 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7579 pvops = &vdev_mirror_ops;
7580 } else {
7582 * Active hot spares can only be replaced by inactive hot
7583 * spares.
7585 if (pvd->vdev_ops == &vdev_spare_ops &&
7586 oldvd->vdev_isspare &&
7587 !spa_has_spare(spa, newvd->vdev_guid))
7588 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7591 * If the source is a hot spare, and the parent isn't already a
7592 * spare, then we want to create a new hot spare. Otherwise, we
7593 * want to create a replacing vdev. The user is not allowed to
7594 * attach to a spared vdev child unless the 'isspare' state is
7595 * the same (spare replaces spare, non-spare replaces
7596 * non-spare).
7598 if (pvd->vdev_ops == &vdev_replacing_ops &&
7599 spa_version(spa) < SPA_VERSION_MULTI_REPLACE) {
7600 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7601 } else if (pvd->vdev_ops == &vdev_spare_ops &&
7602 newvd->vdev_isspare != oldvd->vdev_isspare) {
7603 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7606 if (newvd->vdev_isspare)
7607 pvops = &vdev_spare_ops;
7608 else
7609 pvops = &vdev_replacing_ops;
7613 * Make sure the new device is big enough.
7615 vdev_t *min_vdev = raidz ? oldvd->vdev_child[0] : oldvd;
7616 if (newvd->vdev_asize < vdev_get_min_asize(min_vdev))
7617 return (spa_vdev_exit(spa, newrootvd, txg, EOVERFLOW));
7620 * The new device cannot have a higher alignment requirement
7621 * than the top-level vdev.
7623 if (newvd->vdev_ashift > oldvd->vdev_top->vdev_ashift) {
7624 return (spa_vdev_exit(spa, newrootvd, txg,
7625 ZFS_ERR_ASHIFT_MISMATCH));
7629 * RAIDZ-expansion-specific checks.
7631 if (raidz) {
7632 if (vdev_raidz_attach_check(newvd) != 0)
7633 return (spa_vdev_exit(spa, newrootvd, txg, ENOTSUP));
7636 * Fail early if a child is not healthy or being replaced
7638 for (int i = 0; i < oldvd->vdev_children; i++) {
7639 if (vdev_is_dead(oldvd->vdev_child[i]) ||
7640 !oldvd->vdev_child[i]->vdev_ops->vdev_op_leaf) {
7641 return (spa_vdev_exit(spa, newrootvd, txg,
7642 ENXIO));
7644 /* Also fail if reserved boot area is in-use */
7645 if (vdev_check_boot_reserve(spa, oldvd->vdev_child[i])
7646 != 0) {
7647 return (spa_vdev_exit(spa, newrootvd, txg,
7648 EADDRINUSE));
7653 if (raidz) {
7655 * Note: oldvdpath is freed by spa_strfree(), but
7656 * kmem_asprintf() is freed by kmem_strfree(), so we have to
7657 * move it to a spa_strdup-ed string.
7659 char *tmp = kmem_asprintf("raidz%u-%u",
7660 (uint_t)vdev_get_nparity(oldvd), (uint_t)oldvd->vdev_id);
7661 oldvdpath = spa_strdup(tmp);
7662 kmem_strfree(tmp);
7663 } else {
7664 oldvdpath = spa_strdup(oldvd->vdev_path);
7666 newvdpath = spa_strdup(newvd->vdev_path);
7669 * If this is an in-place replacement, update oldvd's path and devid
7670 * to make it distinguishable from newvd, and unopenable from now on.
7672 if (strcmp(oldvdpath, newvdpath) == 0) {
7673 spa_strfree(oldvd->vdev_path);
7674 oldvd->vdev_path = kmem_alloc(strlen(newvdpath) + 5,
7675 KM_SLEEP);
7676 (void) sprintf(oldvd->vdev_path, "%s/old",
7677 newvdpath);
7678 if (oldvd->vdev_devid != NULL) {
7679 spa_strfree(oldvd->vdev_devid);
7680 oldvd->vdev_devid = NULL;
7682 spa_strfree(oldvdpath);
7683 oldvdpath = spa_strdup(oldvd->vdev_path);
7687 * If the parent is not a mirror, or if we're replacing, insert the new
7688 * mirror/replacing/spare vdev above oldvd.
7690 if (!raidz && pvd->vdev_ops != pvops) {
7691 pvd = vdev_add_parent(oldvd, pvops);
7692 ASSERT(pvd->vdev_ops == pvops);
7693 ASSERT(oldvd->vdev_parent == pvd);
7696 ASSERT(pvd->vdev_top->vdev_parent == rvd);
7699 * Extract the new device from its root and add it to pvd.
7701 vdev_remove_child(newrootvd, newvd);
7702 newvd->vdev_id = pvd->vdev_children;
7703 newvd->vdev_crtxg = oldvd->vdev_crtxg;
7704 vdev_add_child(pvd, newvd);
7707 * Reevaluate the parent vdev state.
7709 vdev_propagate_state(pvd);
7711 tvd = newvd->vdev_top;
7712 ASSERT(pvd->vdev_top == tvd);
7713 ASSERT(tvd->vdev_parent == rvd);
7715 vdev_config_dirty(tvd);
7718 * Set newvd's DTL to [TXG_INITIAL, dtl_max_txg) so that we account
7719 * for any dmu_sync-ed blocks. It will propagate upward when
7720 * spa_vdev_exit() calls vdev_dtl_reassess().
7722 dtl_max_txg = txg + TXG_CONCURRENT_STATES;
7724 if (raidz) {
7726 * Wait for the youngest allocations and frees to sync,
7727 * and then wait for the deferral of those frees to finish.
7729 spa_vdev_config_exit(spa, NULL,
7730 txg + TXG_CONCURRENT_STATES + TXG_DEFER_SIZE, 0, FTAG);
7732 vdev_initialize_stop_all(tvd, VDEV_INITIALIZE_ACTIVE);
7733 vdev_trim_stop_all(tvd, VDEV_TRIM_ACTIVE);
7734 vdev_autotrim_stop_wait(tvd);
7736 dtl_max_txg = spa_vdev_config_enter(spa);
7738 tvd->vdev_rz_expanding = B_TRUE;
7740 vdev_dirty_leaves(tvd, VDD_DTL, dtl_max_txg);
7741 vdev_config_dirty(tvd);
7743 dmu_tx_t *tx = dmu_tx_create_assigned(spa->spa_dsl_pool,
7744 dtl_max_txg);
7745 dsl_sync_task_nowait(spa->spa_dsl_pool, vdev_raidz_attach_sync,
7746 newvd, tx);
7747 dmu_tx_commit(tx);
7748 } else {
7749 vdev_dtl_dirty(newvd, DTL_MISSING, TXG_INITIAL,
7750 dtl_max_txg - TXG_INITIAL);
7752 if (newvd->vdev_isspare) {
7753 spa_spare_activate(newvd);
7754 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_SPARE);
7757 newvd_isspare = newvd->vdev_isspare;
7760 * Mark newvd's DTL dirty in this txg.
7762 vdev_dirty(tvd, VDD_DTL, newvd, txg);
7765 * Schedule the resilver or rebuild to restart in the future.
7766 * We do this to ensure that dmu_sync-ed blocks have been
7767 * stitched into the respective datasets.
7769 if (rebuild) {
7770 newvd->vdev_rebuild_txg = txg;
7772 vdev_rebuild(tvd);
7773 } else {
7774 newvd->vdev_resilver_txg = txg;
7776 if (dsl_scan_resilvering(spa_get_dsl(spa)) &&
7777 spa_feature_is_enabled(spa,
7778 SPA_FEATURE_RESILVER_DEFER)) {
7779 vdev_defer_resilver(newvd);
7780 } else {
7781 dsl_scan_restart_resilver(spa->spa_dsl_pool,
7782 dtl_max_txg);
7787 if (spa->spa_bootfs)
7788 spa_event_notify(spa, newvd, NULL, ESC_ZFS_BOOTFS_VDEV_ATTACH);
7790 spa_event_notify(spa, newvd, NULL, ESC_ZFS_VDEV_ATTACH);
7793 * Commit the config
7795 (void) spa_vdev_exit(spa, newrootvd, dtl_max_txg, 0);
7797 spa_history_log_internal(spa, "vdev attach", NULL,
7798 "%s vdev=%s %s vdev=%s",
7799 replacing && newvd_isspare ? "spare in" :
7800 replacing ? "replace" : "attach", newvdpath,
7801 replacing ? "for" : "to", oldvdpath);
7803 spa_strfree(oldvdpath);
7804 spa_strfree(newvdpath);
7806 return (0);
7810 * Detach a device from a mirror or replacing vdev.
7812 * If 'replace_done' is specified, only detach if the parent
7813 * is a replacing or a spare vdev.
7816 spa_vdev_detach(spa_t *spa, uint64_t guid, uint64_t pguid, int replace_done)
7818 uint64_t txg;
7819 int error;
7820 vdev_t *rvd __maybe_unused = spa->spa_root_vdev;
7821 vdev_t *vd, *pvd, *cvd, *tvd;
7822 boolean_t unspare = B_FALSE;
7823 uint64_t unspare_guid = 0;
7824 char *vdpath;
7826 ASSERT(spa_writeable(spa));
7828 txg = spa_vdev_detach_enter(spa, guid);
7830 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
7833 * Besides being called directly from the userland through the
7834 * ioctl interface, spa_vdev_detach() can be potentially called
7835 * at the end of spa_vdev_resilver_done().
7837 * In the regular case, when we have a checkpoint this shouldn't
7838 * happen as we never empty the DTLs of a vdev during the scrub
7839 * [see comment in dsl_scan_done()]. Thus spa_vdev_resilvering_done()
7840 * should never get here when we have a checkpoint.
7842 * That said, even in a case when we checkpoint the pool exactly
7843 * as spa_vdev_resilver_done() calls this function everything
7844 * should be fine as the resilver will return right away.
7846 ASSERT(MUTEX_HELD(&spa_namespace_lock));
7847 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
7848 error = (spa_has_checkpoint(spa)) ?
7849 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
7850 return (spa_vdev_exit(spa, NULL, txg, error));
7853 if (vd == NULL)
7854 return (spa_vdev_exit(spa, NULL, txg, ENODEV));
7856 if (!vd->vdev_ops->vdev_op_leaf)
7857 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7859 pvd = vd->vdev_parent;
7862 * If the parent/child relationship is not as expected, don't do it.
7863 * Consider M(A,R(B,C)) -- that is, a mirror of A with a replacing
7864 * vdev that's replacing B with C. The user's intent in replacing
7865 * is to go from M(A,B) to M(A,C). If the user decides to cancel
7866 * the replace by detaching C, the expected behavior is to end up
7867 * M(A,B). But suppose that right after deciding to detach C,
7868 * the replacement of B completes. We would have M(A,C), and then
7869 * ask to detach C, which would leave us with just A -- not what
7870 * the user wanted. To prevent this, we make sure that the
7871 * parent/child relationship hasn't changed -- in this example,
7872 * that C's parent is still the replacing vdev R.
7874 if (pvd->vdev_guid != pguid && pguid != 0)
7875 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7878 * Only 'replacing' or 'spare' vdevs can be replaced.
7880 if (replace_done && pvd->vdev_ops != &vdev_replacing_ops &&
7881 pvd->vdev_ops != &vdev_spare_ops)
7882 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7884 ASSERT(pvd->vdev_ops != &vdev_spare_ops ||
7885 spa_version(spa) >= SPA_VERSION_SPARES);
7888 * Only mirror, replacing, and spare vdevs support detach.
7890 if (pvd->vdev_ops != &vdev_replacing_ops &&
7891 pvd->vdev_ops != &vdev_mirror_ops &&
7892 pvd->vdev_ops != &vdev_spare_ops)
7893 return (spa_vdev_exit(spa, NULL, txg, ENOTSUP));
7896 * If this device has the only valid copy of some data,
7897 * we cannot safely detach it.
7899 if (vdev_dtl_required(vd))
7900 return (spa_vdev_exit(spa, NULL, txg, EBUSY));
7902 ASSERT(pvd->vdev_children >= 2);
7905 * If we are detaching the second disk from a replacing vdev, then
7906 * check to see if we changed the original vdev's path to have "/old"
7907 * at the end in spa_vdev_attach(). If so, undo that change now.
7909 if (pvd->vdev_ops == &vdev_replacing_ops && vd->vdev_id > 0 &&
7910 vd->vdev_path != NULL) {
7911 size_t len = strlen(vd->vdev_path);
7913 for (int c = 0; c < pvd->vdev_children; c++) {
7914 cvd = pvd->vdev_child[c];
7916 if (cvd == vd || cvd->vdev_path == NULL)
7917 continue;
7919 if (strncmp(cvd->vdev_path, vd->vdev_path, len) == 0 &&
7920 strcmp(cvd->vdev_path + len, "/old") == 0) {
7921 spa_strfree(cvd->vdev_path);
7922 cvd->vdev_path = spa_strdup(vd->vdev_path);
7923 break;
7929 * If we are detaching the original disk from a normal spare, then it
7930 * implies that the spare should become a real disk, and be removed
7931 * from the active spare list for the pool. dRAID spares on the
7932 * other hand are coupled to the pool and thus should never be removed
7933 * from the spares list.
7935 if (pvd->vdev_ops == &vdev_spare_ops && vd->vdev_id == 0) {
7936 vdev_t *last_cvd = pvd->vdev_child[pvd->vdev_children - 1];
7938 if (last_cvd->vdev_isspare &&
7939 last_cvd->vdev_ops != &vdev_draid_spare_ops) {
7940 unspare = B_TRUE;
7945 * Erase the disk labels so the disk can be used for other things.
7946 * This must be done after all other error cases are handled,
7947 * but before we disembowel vd (so we can still do I/O to it).
7948 * But if we can't do it, don't treat the error as fatal --
7949 * it may be that the unwritability of the disk is the reason
7950 * it's being detached!
7952 (void) vdev_label_init(vd, 0, VDEV_LABEL_REMOVE);
7955 * Remove vd from its parent and compact the parent's children.
7957 vdev_remove_child(pvd, vd);
7958 vdev_compact_children(pvd);
7961 * Remember one of the remaining children so we can get tvd below.
7963 cvd = pvd->vdev_child[pvd->vdev_children - 1];
7966 * If we need to remove the remaining child from the list of hot spares,
7967 * do it now, marking the vdev as no longer a spare in the process.
7968 * We must do this before vdev_remove_parent(), because that can
7969 * change the GUID if it creates a new toplevel GUID. For a similar
7970 * reason, we must remove the spare now, in the same txg as the detach;
7971 * otherwise someone could attach a new sibling, change the GUID, and
7972 * the subsequent attempt to spa_vdev_remove(unspare_guid) would fail.
7974 if (unspare) {
7975 ASSERT(cvd->vdev_isspare);
7976 spa_spare_remove(cvd);
7977 unspare_guid = cvd->vdev_guid;
7978 (void) spa_vdev_remove(spa, unspare_guid, B_TRUE);
7979 cvd->vdev_unspare = B_TRUE;
7983 * If the parent mirror/replacing vdev only has one child,
7984 * the parent is no longer needed. Remove it from the tree.
7986 if (pvd->vdev_children == 1) {
7987 if (pvd->vdev_ops == &vdev_spare_ops)
7988 cvd->vdev_unspare = B_FALSE;
7989 vdev_remove_parent(cvd);
7993 * We don't set tvd until now because the parent we just removed
7994 * may have been the previous top-level vdev.
7996 tvd = cvd->vdev_top;
7997 ASSERT(tvd->vdev_parent == rvd);
8000 * Reevaluate the parent vdev state.
8002 vdev_propagate_state(cvd);
8005 * If the 'autoexpand' property is set on the pool then automatically
8006 * try to expand the size of the pool. For example if the device we
8007 * just detached was smaller than the others, it may be possible to
8008 * add metaslabs (i.e. grow the pool). We need to reopen the vdev
8009 * first so that we can obtain the updated sizes of the leaf vdevs.
8011 if (spa->spa_autoexpand) {
8012 vdev_reopen(tvd);
8013 vdev_expand(tvd, txg);
8016 vdev_config_dirty(tvd);
8019 * Mark vd's DTL as dirty in this txg. vdev_dtl_sync() will see that
8020 * vd->vdev_detached is set and free vd's DTL object in syncing context.
8021 * But first make sure we're not on any *other* txg's DTL list, to
8022 * prevent vd from being accessed after it's freed.
8024 vdpath = spa_strdup(vd->vdev_path ? vd->vdev_path : "none");
8025 for (int t = 0; t < TXG_SIZE; t++)
8026 (void) txg_list_remove_this(&tvd->vdev_dtl_list, vd, t);
8027 vd->vdev_detached = B_TRUE;
8028 vdev_dirty(tvd, VDD_DTL, vd, txg);
8030 spa_event_notify(spa, vd, NULL, ESC_ZFS_VDEV_REMOVE);
8031 spa_notify_waiters(spa);
8033 /* hang on to the spa before we release the lock */
8034 spa_open_ref(spa, FTAG);
8036 error = spa_vdev_exit(spa, vd, txg, 0);
8038 spa_history_log_internal(spa, "detach", NULL,
8039 "vdev=%s", vdpath);
8040 spa_strfree(vdpath);
8043 * If this was the removal of the original device in a hot spare vdev,
8044 * then we want to go through and remove the device from the hot spare
8045 * list of every other pool.
8047 if (unspare) {
8048 spa_t *altspa = NULL;
8050 mutex_enter(&spa_namespace_lock);
8051 while ((altspa = spa_next(altspa)) != NULL) {
8052 if (altspa->spa_state != POOL_STATE_ACTIVE ||
8053 altspa == spa)
8054 continue;
8056 spa_open_ref(altspa, FTAG);
8057 mutex_exit(&spa_namespace_lock);
8058 (void) spa_vdev_remove(altspa, unspare_guid, B_TRUE);
8059 mutex_enter(&spa_namespace_lock);
8060 spa_close(altspa, FTAG);
8062 mutex_exit(&spa_namespace_lock);
8064 /* search the rest of the vdevs for spares to remove */
8065 spa_vdev_resilver_done(spa);
8068 /* all done with the spa; OK to release */
8069 mutex_enter(&spa_namespace_lock);
8070 spa_close(spa, FTAG);
8071 mutex_exit(&spa_namespace_lock);
8073 return (error);
8076 static int
8077 spa_vdev_initialize_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8078 list_t *vd_list)
8080 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8082 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8084 /* Look up vdev and ensure it's a leaf. */
8085 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8086 if (vd == NULL || vd->vdev_detached) {
8087 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8088 return (SET_ERROR(ENODEV));
8089 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8090 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8091 return (SET_ERROR(EINVAL));
8092 } else if (!vdev_writeable(vd)) {
8093 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8094 return (SET_ERROR(EROFS));
8096 mutex_enter(&vd->vdev_initialize_lock);
8097 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8100 * When we activate an initialize action we check to see
8101 * if the vdev_initialize_thread is NULL. We do this instead
8102 * of using the vdev_initialize_state since there might be
8103 * a previous initialization process which has completed but
8104 * the thread is not exited.
8106 if (cmd_type == POOL_INITIALIZE_START &&
8107 (vd->vdev_initialize_thread != NULL ||
8108 vd->vdev_top->vdev_removing || vd->vdev_top->vdev_rz_expanding)) {
8109 mutex_exit(&vd->vdev_initialize_lock);
8110 return (SET_ERROR(EBUSY));
8111 } else if (cmd_type == POOL_INITIALIZE_CANCEL &&
8112 (vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE &&
8113 vd->vdev_initialize_state != VDEV_INITIALIZE_SUSPENDED)) {
8114 mutex_exit(&vd->vdev_initialize_lock);
8115 return (SET_ERROR(ESRCH));
8116 } else if (cmd_type == POOL_INITIALIZE_SUSPEND &&
8117 vd->vdev_initialize_state != VDEV_INITIALIZE_ACTIVE) {
8118 mutex_exit(&vd->vdev_initialize_lock);
8119 return (SET_ERROR(ESRCH));
8120 } else if (cmd_type == POOL_INITIALIZE_UNINIT &&
8121 vd->vdev_initialize_thread != NULL) {
8122 mutex_exit(&vd->vdev_initialize_lock);
8123 return (SET_ERROR(EBUSY));
8126 switch (cmd_type) {
8127 case POOL_INITIALIZE_START:
8128 vdev_initialize(vd);
8129 break;
8130 case POOL_INITIALIZE_CANCEL:
8131 vdev_initialize_stop(vd, VDEV_INITIALIZE_CANCELED, vd_list);
8132 break;
8133 case POOL_INITIALIZE_SUSPEND:
8134 vdev_initialize_stop(vd, VDEV_INITIALIZE_SUSPENDED, vd_list);
8135 break;
8136 case POOL_INITIALIZE_UNINIT:
8137 vdev_uninitialize(vd);
8138 break;
8139 default:
8140 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8142 mutex_exit(&vd->vdev_initialize_lock);
8144 return (0);
8148 spa_vdev_initialize(spa_t *spa, nvlist_t *nv, uint64_t cmd_type,
8149 nvlist_t *vdev_errlist)
8151 int total_errors = 0;
8152 list_t vd_list;
8154 list_create(&vd_list, sizeof (vdev_t),
8155 offsetof(vdev_t, vdev_initialize_node));
8158 * We hold the namespace lock through the whole function
8159 * to prevent any changes to the pool while we're starting or
8160 * stopping initialization. The config and state locks are held so that
8161 * we can properly assess the vdev state before we commit to
8162 * the initializing operation.
8164 mutex_enter(&spa_namespace_lock);
8166 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8167 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8168 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8170 int error = spa_vdev_initialize_impl(spa, vdev_guid, cmd_type,
8171 &vd_list);
8172 if (error != 0) {
8173 char guid_as_str[MAXNAMELEN];
8175 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8176 "%llu", (unsigned long long)vdev_guid);
8177 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8178 total_errors++;
8182 /* Wait for all initialize threads to stop. */
8183 vdev_initialize_stop_wait(spa, &vd_list);
8185 /* Sync out the initializing state */
8186 txg_wait_synced(spa->spa_dsl_pool, 0);
8187 mutex_exit(&spa_namespace_lock);
8189 list_destroy(&vd_list);
8191 return (total_errors);
8194 static int
8195 spa_vdev_trim_impl(spa_t *spa, uint64_t guid, uint64_t cmd_type,
8196 uint64_t rate, boolean_t partial, boolean_t secure, list_t *vd_list)
8198 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8200 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
8202 /* Look up vdev and ensure it's a leaf. */
8203 vdev_t *vd = spa_lookup_by_guid(spa, guid, B_FALSE);
8204 if (vd == NULL || vd->vdev_detached) {
8205 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8206 return (SET_ERROR(ENODEV));
8207 } else if (!vd->vdev_ops->vdev_op_leaf || !vdev_is_concrete(vd)) {
8208 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8209 return (SET_ERROR(EINVAL));
8210 } else if (!vdev_writeable(vd)) {
8211 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8212 return (SET_ERROR(EROFS));
8213 } else if (!vd->vdev_has_trim) {
8214 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8215 return (SET_ERROR(EOPNOTSUPP));
8216 } else if (secure && !vd->vdev_has_securetrim) {
8217 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8218 return (SET_ERROR(EOPNOTSUPP));
8220 mutex_enter(&vd->vdev_trim_lock);
8221 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
8224 * When we activate a TRIM action we check to see if the
8225 * vdev_trim_thread is NULL. We do this instead of using the
8226 * vdev_trim_state since there might be a previous TRIM process
8227 * which has completed but the thread is not exited.
8229 if (cmd_type == POOL_TRIM_START &&
8230 (vd->vdev_trim_thread != NULL || vd->vdev_top->vdev_removing ||
8231 vd->vdev_top->vdev_rz_expanding)) {
8232 mutex_exit(&vd->vdev_trim_lock);
8233 return (SET_ERROR(EBUSY));
8234 } else if (cmd_type == POOL_TRIM_CANCEL &&
8235 (vd->vdev_trim_state != VDEV_TRIM_ACTIVE &&
8236 vd->vdev_trim_state != VDEV_TRIM_SUSPENDED)) {
8237 mutex_exit(&vd->vdev_trim_lock);
8238 return (SET_ERROR(ESRCH));
8239 } else if (cmd_type == POOL_TRIM_SUSPEND &&
8240 vd->vdev_trim_state != VDEV_TRIM_ACTIVE) {
8241 mutex_exit(&vd->vdev_trim_lock);
8242 return (SET_ERROR(ESRCH));
8245 switch (cmd_type) {
8246 case POOL_TRIM_START:
8247 vdev_trim(vd, rate, partial, secure);
8248 break;
8249 case POOL_TRIM_CANCEL:
8250 vdev_trim_stop(vd, VDEV_TRIM_CANCELED, vd_list);
8251 break;
8252 case POOL_TRIM_SUSPEND:
8253 vdev_trim_stop(vd, VDEV_TRIM_SUSPENDED, vd_list);
8254 break;
8255 default:
8256 panic("invalid cmd_type %llu", (unsigned long long)cmd_type);
8258 mutex_exit(&vd->vdev_trim_lock);
8260 return (0);
8264 * Initiates a manual TRIM for the requested vdevs. This kicks off individual
8265 * TRIM threads for each child vdev. These threads pass over all of the free
8266 * space in the vdev's metaslabs and issues TRIM commands for that space.
8269 spa_vdev_trim(spa_t *spa, nvlist_t *nv, uint64_t cmd_type, uint64_t rate,
8270 boolean_t partial, boolean_t secure, nvlist_t *vdev_errlist)
8272 int total_errors = 0;
8273 list_t vd_list;
8275 list_create(&vd_list, sizeof (vdev_t),
8276 offsetof(vdev_t, vdev_trim_node));
8279 * We hold the namespace lock through the whole function
8280 * to prevent any changes to the pool while we're starting or
8281 * stopping TRIM. The config and state locks are held so that
8282 * we can properly assess the vdev state before we commit to
8283 * the TRIM operation.
8285 mutex_enter(&spa_namespace_lock);
8287 for (nvpair_t *pair = nvlist_next_nvpair(nv, NULL);
8288 pair != NULL; pair = nvlist_next_nvpair(nv, pair)) {
8289 uint64_t vdev_guid = fnvpair_value_uint64(pair);
8291 int error = spa_vdev_trim_impl(spa, vdev_guid, cmd_type,
8292 rate, partial, secure, &vd_list);
8293 if (error != 0) {
8294 char guid_as_str[MAXNAMELEN];
8296 (void) snprintf(guid_as_str, sizeof (guid_as_str),
8297 "%llu", (unsigned long long)vdev_guid);
8298 fnvlist_add_int64(vdev_errlist, guid_as_str, error);
8299 total_errors++;
8303 /* Wait for all TRIM threads to stop. */
8304 vdev_trim_stop_wait(spa, &vd_list);
8306 /* Sync out the TRIM state */
8307 txg_wait_synced(spa->spa_dsl_pool, 0);
8308 mutex_exit(&spa_namespace_lock);
8310 list_destroy(&vd_list);
8312 return (total_errors);
8316 * Split a set of devices from their mirrors, and create a new pool from them.
8319 spa_vdev_split_mirror(spa_t *spa, const char *newname, nvlist_t *config,
8320 nvlist_t *props, boolean_t exp)
8322 int error = 0;
8323 uint64_t txg, *glist;
8324 spa_t *newspa;
8325 uint_t c, children, lastlog;
8326 nvlist_t **child, *nvl, *tmp;
8327 dmu_tx_t *tx;
8328 const char *altroot = NULL;
8329 vdev_t *rvd, **vml = NULL; /* vdev modify list */
8330 boolean_t activate_slog;
8332 ASSERT(spa_writeable(spa));
8334 txg = spa_vdev_enter(spa);
8336 ASSERT(MUTEX_HELD(&spa_namespace_lock));
8337 if (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT)) {
8338 error = (spa_has_checkpoint(spa)) ?
8339 ZFS_ERR_CHECKPOINT_EXISTS : ZFS_ERR_DISCARDING_CHECKPOINT;
8340 return (spa_vdev_exit(spa, NULL, txg, error));
8343 /* clear the log and flush everything up to now */
8344 activate_slog = spa_passivate_log(spa);
8345 (void) spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8346 error = spa_reset_logs(spa);
8347 txg = spa_vdev_config_enter(spa);
8349 if (activate_slog)
8350 spa_activate_log(spa);
8352 if (error != 0)
8353 return (spa_vdev_exit(spa, NULL, txg, error));
8355 /* check new spa name before going any further */
8356 if (spa_lookup(newname) != NULL)
8357 return (spa_vdev_exit(spa, NULL, txg, EEXIST));
8360 * scan through all the children to ensure they're all mirrors
8362 if (nvlist_lookup_nvlist(config, ZPOOL_CONFIG_VDEV_TREE, &nvl) != 0 ||
8363 nvlist_lookup_nvlist_array(nvl, ZPOOL_CONFIG_CHILDREN, &child,
8364 &children) != 0)
8365 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8367 /* first, check to ensure we've got the right child count */
8368 rvd = spa->spa_root_vdev;
8369 lastlog = 0;
8370 for (c = 0; c < rvd->vdev_children; c++) {
8371 vdev_t *vd = rvd->vdev_child[c];
8373 /* don't count the holes & logs as children */
8374 if (vd->vdev_islog || (vd->vdev_ops != &vdev_indirect_ops &&
8375 !vdev_is_concrete(vd))) {
8376 if (lastlog == 0)
8377 lastlog = c;
8378 continue;
8381 lastlog = 0;
8383 if (children != (lastlog != 0 ? lastlog : rvd->vdev_children))
8384 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8386 /* next, ensure no spare or cache devices are part of the split */
8387 if (nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_SPARES, &tmp) == 0 ||
8388 nvlist_lookup_nvlist(nvl, ZPOOL_CONFIG_L2CACHE, &tmp) == 0)
8389 return (spa_vdev_exit(spa, NULL, txg, EINVAL));
8391 vml = kmem_zalloc(children * sizeof (vdev_t *), KM_SLEEP);
8392 glist = kmem_zalloc(children * sizeof (uint64_t), KM_SLEEP);
8394 /* then, loop over each vdev and validate it */
8395 for (c = 0; c < children; c++) {
8396 uint64_t is_hole = 0;
8398 (void) nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_IS_HOLE,
8399 &is_hole);
8401 if (is_hole != 0) {
8402 if (spa->spa_root_vdev->vdev_child[c]->vdev_ishole ||
8403 spa->spa_root_vdev->vdev_child[c]->vdev_islog) {
8404 continue;
8405 } else {
8406 error = SET_ERROR(EINVAL);
8407 break;
8411 /* deal with indirect vdevs */
8412 if (spa->spa_root_vdev->vdev_child[c]->vdev_ops ==
8413 &vdev_indirect_ops)
8414 continue;
8416 /* which disk is going to be split? */
8417 if (nvlist_lookup_uint64(child[c], ZPOOL_CONFIG_GUID,
8418 &glist[c]) != 0) {
8419 error = SET_ERROR(EINVAL);
8420 break;
8423 /* look it up in the spa */
8424 vml[c] = spa_lookup_by_guid(spa, glist[c], B_FALSE);
8425 if (vml[c] == NULL) {
8426 error = SET_ERROR(ENODEV);
8427 break;
8430 /* make sure there's nothing stopping the split */
8431 if (vml[c]->vdev_parent->vdev_ops != &vdev_mirror_ops ||
8432 vml[c]->vdev_islog ||
8433 !vdev_is_concrete(vml[c]) ||
8434 vml[c]->vdev_isspare ||
8435 vml[c]->vdev_isl2cache ||
8436 !vdev_writeable(vml[c]) ||
8437 vml[c]->vdev_children != 0 ||
8438 vml[c]->vdev_state != VDEV_STATE_HEALTHY ||
8439 c != spa->spa_root_vdev->vdev_child[c]->vdev_id) {
8440 error = SET_ERROR(EINVAL);
8441 break;
8444 if (vdev_dtl_required(vml[c]) ||
8445 vdev_resilver_needed(vml[c], NULL, NULL)) {
8446 error = SET_ERROR(EBUSY);
8447 break;
8450 /* we need certain info from the top level */
8451 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_ARRAY,
8452 vml[c]->vdev_top->vdev_ms_array);
8453 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_METASLAB_SHIFT,
8454 vml[c]->vdev_top->vdev_ms_shift);
8455 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASIZE,
8456 vml[c]->vdev_top->vdev_asize);
8457 fnvlist_add_uint64(child[c], ZPOOL_CONFIG_ASHIFT,
8458 vml[c]->vdev_top->vdev_ashift);
8460 /* transfer per-vdev ZAPs */
8461 ASSERT3U(vml[c]->vdev_leaf_zap, !=, 0);
8462 VERIFY0(nvlist_add_uint64(child[c],
8463 ZPOOL_CONFIG_VDEV_LEAF_ZAP, vml[c]->vdev_leaf_zap));
8465 ASSERT3U(vml[c]->vdev_top->vdev_top_zap, !=, 0);
8466 VERIFY0(nvlist_add_uint64(child[c],
8467 ZPOOL_CONFIG_VDEV_TOP_ZAP,
8468 vml[c]->vdev_parent->vdev_top_zap));
8471 if (error != 0) {
8472 kmem_free(vml, children * sizeof (vdev_t *));
8473 kmem_free(glist, children * sizeof (uint64_t));
8474 return (spa_vdev_exit(spa, NULL, txg, error));
8477 /* stop writers from using the disks */
8478 for (c = 0; c < children; c++) {
8479 if (vml[c] != NULL)
8480 vml[c]->vdev_offline = B_TRUE;
8482 vdev_reopen(spa->spa_root_vdev);
8485 * Temporarily record the splitting vdevs in the spa config. This
8486 * will disappear once the config is regenerated.
8488 nvl = fnvlist_alloc();
8489 fnvlist_add_uint64_array(nvl, ZPOOL_CONFIG_SPLIT_LIST, glist, children);
8490 kmem_free(glist, children * sizeof (uint64_t));
8492 mutex_enter(&spa->spa_props_lock);
8493 fnvlist_add_nvlist(spa->spa_config, ZPOOL_CONFIG_SPLIT, nvl);
8494 mutex_exit(&spa->spa_props_lock);
8495 spa->spa_config_splitting = nvl;
8496 vdev_config_dirty(spa->spa_root_vdev);
8498 /* configure and create the new pool */
8499 fnvlist_add_string(config, ZPOOL_CONFIG_POOL_NAME, newname);
8500 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_STATE,
8501 exp ? POOL_STATE_EXPORTED : POOL_STATE_ACTIVE);
8502 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION, spa_version(spa));
8503 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_TXG, spa->spa_config_txg);
8504 fnvlist_add_uint64(config, ZPOOL_CONFIG_POOL_GUID,
8505 spa_generate_guid(NULL));
8506 VERIFY0(nvlist_add_boolean(config, ZPOOL_CONFIG_HAS_PER_VDEV_ZAPS));
8507 (void) nvlist_lookup_string(props,
8508 zpool_prop_to_name(ZPOOL_PROP_ALTROOT), &altroot);
8510 /* add the new pool to the namespace */
8511 newspa = spa_add(newname, config, altroot);
8512 newspa->spa_avz_action = AVZ_ACTION_REBUILD;
8513 newspa->spa_config_txg = spa->spa_config_txg;
8514 spa_set_log_state(newspa, SPA_LOG_CLEAR);
8516 /* release the spa config lock, retaining the namespace lock */
8517 spa_vdev_config_exit(spa, NULL, txg, 0, FTAG);
8519 if (zio_injection_enabled)
8520 zio_handle_panic_injection(spa, FTAG, 1);
8522 spa_activate(newspa, spa_mode_global);
8523 spa_async_suspend(newspa);
8526 * Temporarily stop the initializing and TRIM activity. We set the
8527 * state to ACTIVE so that we know to resume initializing or TRIM
8528 * once the split has completed.
8530 list_t vd_initialize_list;
8531 list_create(&vd_initialize_list, sizeof (vdev_t),
8532 offsetof(vdev_t, vdev_initialize_node));
8534 list_t vd_trim_list;
8535 list_create(&vd_trim_list, sizeof (vdev_t),
8536 offsetof(vdev_t, vdev_trim_node));
8538 for (c = 0; c < children; c++) {
8539 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8540 mutex_enter(&vml[c]->vdev_initialize_lock);
8541 vdev_initialize_stop(vml[c],
8542 VDEV_INITIALIZE_ACTIVE, &vd_initialize_list);
8543 mutex_exit(&vml[c]->vdev_initialize_lock);
8545 mutex_enter(&vml[c]->vdev_trim_lock);
8546 vdev_trim_stop(vml[c], VDEV_TRIM_ACTIVE, &vd_trim_list);
8547 mutex_exit(&vml[c]->vdev_trim_lock);
8551 vdev_initialize_stop_wait(spa, &vd_initialize_list);
8552 vdev_trim_stop_wait(spa, &vd_trim_list);
8554 list_destroy(&vd_initialize_list);
8555 list_destroy(&vd_trim_list);
8557 newspa->spa_config_source = SPA_CONFIG_SRC_SPLIT;
8558 newspa->spa_is_splitting = B_TRUE;
8560 /* create the new pool from the disks of the original pool */
8561 error = spa_load(newspa, SPA_LOAD_IMPORT, SPA_IMPORT_ASSEMBLE);
8562 if (error)
8563 goto out;
8565 /* if that worked, generate a real config for the new pool */
8566 if (newspa->spa_root_vdev != NULL) {
8567 newspa->spa_config_splitting = fnvlist_alloc();
8568 fnvlist_add_uint64(newspa->spa_config_splitting,
8569 ZPOOL_CONFIG_SPLIT_GUID, spa_guid(spa));
8570 spa_config_set(newspa, spa_config_generate(newspa, NULL, -1ULL,
8571 B_TRUE));
8574 /* set the props */
8575 if (props != NULL) {
8576 spa_configfile_set(newspa, props, B_FALSE);
8577 error = spa_prop_set(newspa, props);
8578 if (error)
8579 goto out;
8582 /* flush everything */
8583 txg = spa_vdev_config_enter(newspa);
8584 vdev_config_dirty(newspa->spa_root_vdev);
8585 (void) spa_vdev_config_exit(newspa, NULL, txg, 0, FTAG);
8587 if (zio_injection_enabled)
8588 zio_handle_panic_injection(spa, FTAG, 2);
8590 spa_async_resume(newspa);
8592 /* finally, update the original pool's config */
8593 txg = spa_vdev_config_enter(spa);
8594 tx = dmu_tx_create_dd(spa_get_dsl(spa)->dp_mos_dir);
8595 error = dmu_tx_assign(tx, TXG_WAIT);
8596 if (error != 0)
8597 dmu_tx_abort(tx);
8598 for (c = 0; c < children; c++) {
8599 if (vml[c] != NULL && vml[c]->vdev_ops != &vdev_indirect_ops) {
8600 vdev_t *tvd = vml[c]->vdev_top;
8603 * Need to be sure the detachable VDEV is not
8604 * on any *other* txg's DTL list to prevent it
8605 * from being accessed after it's freed.
8607 for (int t = 0; t < TXG_SIZE; t++) {
8608 (void) txg_list_remove_this(
8609 &tvd->vdev_dtl_list, vml[c], t);
8612 vdev_split(vml[c]);
8613 if (error == 0)
8614 spa_history_log_internal(spa, "detach", tx,
8615 "vdev=%s", vml[c]->vdev_path);
8617 vdev_free(vml[c]);
8620 spa->spa_avz_action = AVZ_ACTION_REBUILD;
8621 vdev_config_dirty(spa->spa_root_vdev);
8622 spa->spa_config_splitting = NULL;
8623 nvlist_free(nvl);
8624 if (error == 0)
8625 dmu_tx_commit(tx);
8626 (void) spa_vdev_exit(spa, NULL, txg, 0);
8628 if (zio_injection_enabled)
8629 zio_handle_panic_injection(spa, FTAG, 3);
8631 /* split is complete; log a history record */
8632 spa_history_log_internal(newspa, "split", NULL,
8633 "from pool %s", spa_name(spa));
8635 newspa->spa_is_splitting = B_FALSE;
8636 kmem_free(vml, children * sizeof (vdev_t *));
8638 /* if we're not going to mount the filesystems in userland, export */
8639 if (exp)
8640 error = spa_export_common(newname, POOL_STATE_EXPORTED, NULL,
8641 B_FALSE, B_FALSE);
8643 return (error);
8645 out:
8646 spa_unload(newspa);
8647 spa_deactivate(newspa);
8648 spa_remove(newspa);
8650 txg = spa_vdev_config_enter(spa);
8652 /* re-online all offlined disks */
8653 for (c = 0; c < children; c++) {
8654 if (vml[c] != NULL)
8655 vml[c]->vdev_offline = B_FALSE;
8658 /* restart initializing or trimming disks as necessary */
8659 spa_async_request(spa, SPA_ASYNC_INITIALIZE_RESTART);
8660 spa_async_request(spa, SPA_ASYNC_TRIM_RESTART);
8661 spa_async_request(spa, SPA_ASYNC_AUTOTRIM_RESTART);
8663 vdev_reopen(spa->spa_root_vdev);
8665 nvlist_free(spa->spa_config_splitting);
8666 spa->spa_config_splitting = NULL;
8667 (void) spa_vdev_exit(spa, NULL, txg, error);
8669 kmem_free(vml, children * sizeof (vdev_t *));
8670 return (error);
8674 * Find any device that's done replacing, or a vdev marked 'unspare' that's
8675 * currently spared, so we can detach it.
8677 static vdev_t *
8678 spa_vdev_resilver_done_hunt(vdev_t *vd)
8680 vdev_t *newvd, *oldvd;
8682 for (int c = 0; c < vd->vdev_children; c++) {
8683 oldvd = spa_vdev_resilver_done_hunt(vd->vdev_child[c]);
8684 if (oldvd != NULL)
8685 return (oldvd);
8689 * Check for a completed replacement. We always consider the first
8690 * vdev in the list to be the oldest vdev, and the last one to be
8691 * the newest (see spa_vdev_attach() for how that works). In
8692 * the case where the newest vdev is faulted, we will not automatically
8693 * remove it after a resilver completes. This is OK as it will require
8694 * user intervention to determine which disk the admin wishes to keep.
8696 if (vd->vdev_ops == &vdev_replacing_ops) {
8697 ASSERT(vd->vdev_children > 1);
8699 newvd = vd->vdev_child[vd->vdev_children - 1];
8700 oldvd = vd->vdev_child[0];
8702 if (vdev_dtl_empty(newvd, DTL_MISSING) &&
8703 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8704 !vdev_dtl_required(oldvd))
8705 return (oldvd);
8709 * Check for a completed resilver with the 'unspare' flag set.
8710 * Also potentially update faulted state.
8712 if (vd->vdev_ops == &vdev_spare_ops) {
8713 vdev_t *first = vd->vdev_child[0];
8714 vdev_t *last = vd->vdev_child[vd->vdev_children - 1];
8716 if (last->vdev_unspare) {
8717 oldvd = first;
8718 newvd = last;
8719 } else if (first->vdev_unspare) {
8720 oldvd = last;
8721 newvd = first;
8722 } else {
8723 oldvd = NULL;
8726 if (oldvd != NULL &&
8727 vdev_dtl_empty(newvd, DTL_MISSING) &&
8728 vdev_dtl_empty(newvd, DTL_OUTAGE) &&
8729 !vdev_dtl_required(oldvd))
8730 return (oldvd);
8732 vdev_propagate_state(vd);
8735 * If there are more than two spares attached to a disk,
8736 * and those spares are not required, then we want to
8737 * attempt to free them up now so that they can be used
8738 * by other pools. Once we're back down to a single
8739 * disk+spare, we stop removing them.
8741 if (vd->vdev_children > 2) {
8742 newvd = vd->vdev_child[1];
8744 if (newvd->vdev_isspare && last->vdev_isspare &&
8745 vdev_dtl_empty(last, DTL_MISSING) &&
8746 vdev_dtl_empty(last, DTL_OUTAGE) &&
8747 !vdev_dtl_required(newvd))
8748 return (newvd);
8752 return (NULL);
8755 static void
8756 spa_vdev_resilver_done(spa_t *spa)
8758 vdev_t *vd, *pvd, *ppvd;
8759 uint64_t guid, sguid, pguid, ppguid;
8761 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8763 while ((vd = spa_vdev_resilver_done_hunt(spa->spa_root_vdev)) != NULL) {
8764 pvd = vd->vdev_parent;
8765 ppvd = pvd->vdev_parent;
8766 guid = vd->vdev_guid;
8767 pguid = pvd->vdev_guid;
8768 ppguid = ppvd->vdev_guid;
8769 sguid = 0;
8771 * If we have just finished replacing a hot spared device, then
8772 * we need to detach the parent's first child (the original hot
8773 * spare) as well.
8775 if (ppvd->vdev_ops == &vdev_spare_ops && pvd->vdev_id == 0 &&
8776 ppvd->vdev_children == 2) {
8777 ASSERT(pvd->vdev_ops == &vdev_replacing_ops);
8778 sguid = ppvd->vdev_child[1]->vdev_guid;
8780 ASSERT(vd->vdev_resilver_txg == 0 || !vdev_dtl_required(vd));
8782 spa_config_exit(spa, SCL_ALL, FTAG);
8783 if (spa_vdev_detach(spa, guid, pguid, B_TRUE) != 0)
8784 return;
8785 if (sguid && spa_vdev_detach(spa, sguid, ppguid, B_TRUE) != 0)
8786 return;
8787 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
8790 spa_config_exit(spa, SCL_ALL, FTAG);
8793 * If a detach was not performed above replace waiters will not have
8794 * been notified. In which case we must do so now.
8796 spa_notify_waiters(spa);
8800 * Update the stored path or FRU for this vdev.
8802 static int
8803 spa_vdev_set_common(spa_t *spa, uint64_t guid, const char *value,
8804 boolean_t ispath)
8806 vdev_t *vd;
8807 boolean_t sync = B_FALSE;
8809 ASSERT(spa_writeable(spa));
8811 spa_vdev_state_enter(spa, SCL_ALL);
8813 if ((vd = spa_lookup_by_guid(spa, guid, B_TRUE)) == NULL)
8814 return (spa_vdev_state_exit(spa, NULL, ENOENT));
8816 if (!vd->vdev_ops->vdev_op_leaf)
8817 return (spa_vdev_state_exit(spa, NULL, ENOTSUP));
8819 if (ispath) {
8820 if (strcmp(value, vd->vdev_path) != 0) {
8821 spa_strfree(vd->vdev_path);
8822 vd->vdev_path = spa_strdup(value);
8823 sync = B_TRUE;
8825 } else {
8826 if (vd->vdev_fru == NULL) {
8827 vd->vdev_fru = spa_strdup(value);
8828 sync = B_TRUE;
8829 } else if (strcmp(value, vd->vdev_fru) != 0) {
8830 spa_strfree(vd->vdev_fru);
8831 vd->vdev_fru = spa_strdup(value);
8832 sync = B_TRUE;
8836 return (spa_vdev_state_exit(spa, sync ? vd : NULL, 0));
8840 spa_vdev_setpath(spa_t *spa, uint64_t guid, const char *newpath)
8842 return (spa_vdev_set_common(spa, guid, newpath, B_TRUE));
8846 spa_vdev_setfru(spa_t *spa, uint64_t guid, const char *newfru)
8848 return (spa_vdev_set_common(spa, guid, newfru, B_FALSE));
8852 * ==========================================================================
8853 * SPA Scanning
8854 * ==========================================================================
8857 spa_scrub_pause_resume(spa_t *spa, pool_scrub_cmd_t cmd)
8859 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8861 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8862 return (SET_ERROR(EBUSY));
8864 return (dsl_scrub_set_pause_resume(spa->spa_dsl_pool, cmd));
8868 spa_scan_stop(spa_t *spa)
8870 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8871 if (dsl_scan_resilvering(spa->spa_dsl_pool))
8872 return (SET_ERROR(EBUSY));
8874 return (dsl_scan_cancel(spa->spa_dsl_pool));
8878 spa_scan(spa_t *spa, pool_scan_func_t func)
8880 return (spa_scan_range(spa, func, 0, 0));
8884 spa_scan_range(spa_t *spa, pool_scan_func_t func, uint64_t txgstart,
8885 uint64_t txgend)
8887 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == 0);
8889 if (func >= POOL_SCAN_FUNCS || func == POOL_SCAN_NONE)
8890 return (SET_ERROR(ENOTSUP));
8892 if (func == POOL_SCAN_RESILVER &&
8893 !spa_feature_is_enabled(spa, SPA_FEATURE_RESILVER_DEFER))
8894 return (SET_ERROR(ENOTSUP));
8896 if (func != POOL_SCAN_SCRUB && (txgstart != 0 || txgend != 0))
8897 return (SET_ERROR(ENOTSUP));
8900 * If a resilver was requested, but there is no DTL on a
8901 * writeable leaf device, we have nothing to do.
8903 if (func == POOL_SCAN_RESILVER &&
8904 !vdev_resilver_needed(spa->spa_root_vdev, NULL, NULL)) {
8905 spa_async_request(spa, SPA_ASYNC_RESILVER_DONE);
8906 return (0);
8909 if (func == POOL_SCAN_ERRORSCRUB &&
8910 !spa_feature_is_enabled(spa, SPA_FEATURE_HEAD_ERRLOG))
8911 return (SET_ERROR(ENOTSUP));
8913 return (dsl_scan(spa->spa_dsl_pool, func, txgstart, txgend));
8917 * ==========================================================================
8918 * SPA async task processing
8919 * ==========================================================================
8922 static void
8923 spa_async_remove(spa_t *spa, vdev_t *vd)
8925 if (vd->vdev_remove_wanted) {
8926 vd->vdev_remove_wanted = B_FALSE;
8927 vd->vdev_delayed_close = B_FALSE;
8928 vdev_set_state(vd, B_FALSE, VDEV_STATE_REMOVED, VDEV_AUX_NONE);
8931 * We want to clear the stats, but we don't want to do a full
8932 * vdev_clear() as that will cause us to throw away
8933 * degraded/faulted state as well as attempt to reopen the
8934 * device, all of which is a waste.
8936 vd->vdev_stat.vs_read_errors = 0;
8937 vd->vdev_stat.vs_write_errors = 0;
8938 vd->vdev_stat.vs_checksum_errors = 0;
8940 vdev_state_dirty(vd->vdev_top);
8942 /* Tell userspace that the vdev is gone. */
8943 zfs_post_remove(spa, vd);
8946 for (int c = 0; c < vd->vdev_children; c++)
8947 spa_async_remove(spa, vd->vdev_child[c]);
8950 static void
8951 spa_async_fault_vdev(spa_t *spa, vdev_t *vd)
8953 if (vd->vdev_fault_wanted) {
8954 vd->vdev_fault_wanted = B_FALSE;
8955 vdev_set_state(vd, B_TRUE, VDEV_STATE_FAULTED,
8956 VDEV_AUX_ERR_EXCEEDED);
8959 for (int c = 0; c < vd->vdev_children; c++)
8960 spa_async_fault_vdev(spa, vd->vdev_child[c]);
8963 static void
8964 spa_async_autoexpand(spa_t *spa, vdev_t *vd)
8966 if (!spa->spa_autoexpand)
8967 return;
8969 for (int c = 0; c < vd->vdev_children; c++) {
8970 vdev_t *cvd = vd->vdev_child[c];
8971 spa_async_autoexpand(spa, cvd);
8974 if (!vd->vdev_ops->vdev_op_leaf || vd->vdev_physpath == NULL)
8975 return;
8977 spa_event_notify(vd->vdev_spa, vd, NULL, ESC_ZFS_VDEV_AUTOEXPAND);
8980 static __attribute__((noreturn)) void
8981 spa_async_thread(void *arg)
8983 spa_t *spa = (spa_t *)arg;
8984 dsl_pool_t *dp = spa->spa_dsl_pool;
8985 int tasks;
8987 ASSERT(spa->spa_sync_on);
8989 mutex_enter(&spa->spa_async_lock);
8990 tasks = spa->spa_async_tasks;
8991 spa->spa_async_tasks = 0;
8992 mutex_exit(&spa->spa_async_lock);
8995 * See if the config needs to be updated.
8997 if (tasks & SPA_ASYNC_CONFIG_UPDATE) {
8998 uint64_t old_space, new_space;
9000 mutex_enter(&spa_namespace_lock);
9001 old_space = metaslab_class_get_space(spa_normal_class(spa));
9002 old_space += metaslab_class_get_space(spa_special_class(spa));
9003 old_space += metaslab_class_get_space(spa_dedup_class(spa));
9004 old_space += metaslab_class_get_space(
9005 spa_embedded_log_class(spa));
9007 spa_config_update(spa, SPA_CONFIG_UPDATE_POOL);
9009 new_space = metaslab_class_get_space(spa_normal_class(spa));
9010 new_space += metaslab_class_get_space(spa_special_class(spa));
9011 new_space += metaslab_class_get_space(spa_dedup_class(spa));
9012 new_space += metaslab_class_get_space(
9013 spa_embedded_log_class(spa));
9014 mutex_exit(&spa_namespace_lock);
9017 * If the pool grew as a result of the config update,
9018 * then log an internal history event.
9020 if (new_space != old_space) {
9021 spa_history_log_internal(spa, "vdev online", NULL,
9022 "pool '%s' size: %llu(+%llu)",
9023 spa_name(spa), (u_longlong_t)new_space,
9024 (u_longlong_t)(new_space - old_space));
9029 * See if any devices need to be marked REMOVED.
9031 if (tasks & SPA_ASYNC_REMOVE) {
9032 spa_vdev_state_enter(spa, SCL_NONE);
9033 spa_async_remove(spa, spa->spa_root_vdev);
9034 for (int i = 0; i < spa->spa_l2cache.sav_count; i++)
9035 spa_async_remove(spa, spa->spa_l2cache.sav_vdevs[i]);
9036 for (int i = 0; i < spa->spa_spares.sav_count; i++)
9037 spa_async_remove(spa, spa->spa_spares.sav_vdevs[i]);
9038 (void) spa_vdev_state_exit(spa, NULL, 0);
9041 if ((tasks & SPA_ASYNC_AUTOEXPAND) && !spa_suspended(spa)) {
9042 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9043 spa_async_autoexpand(spa, spa->spa_root_vdev);
9044 spa_config_exit(spa, SCL_CONFIG, FTAG);
9048 * See if any devices need to be marked faulted.
9050 if (tasks & SPA_ASYNC_FAULT_VDEV) {
9051 spa_vdev_state_enter(spa, SCL_NONE);
9052 spa_async_fault_vdev(spa, spa->spa_root_vdev);
9053 (void) spa_vdev_state_exit(spa, NULL, 0);
9057 * If any devices are done replacing, detach them.
9059 if (tasks & SPA_ASYNC_RESILVER_DONE ||
9060 tasks & SPA_ASYNC_REBUILD_DONE ||
9061 tasks & SPA_ASYNC_DETACH_SPARE) {
9062 spa_vdev_resilver_done(spa);
9066 * Kick off a resilver.
9068 if (tasks & SPA_ASYNC_RESILVER &&
9069 !vdev_rebuild_active(spa->spa_root_vdev) &&
9070 (!dsl_scan_resilvering(dp) ||
9071 !spa_feature_is_enabled(dp->dp_spa, SPA_FEATURE_RESILVER_DEFER)))
9072 dsl_scan_restart_resilver(dp, 0);
9074 if (tasks & SPA_ASYNC_INITIALIZE_RESTART) {
9075 mutex_enter(&spa_namespace_lock);
9076 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9077 vdev_initialize_restart(spa->spa_root_vdev);
9078 spa_config_exit(spa, SCL_CONFIG, FTAG);
9079 mutex_exit(&spa_namespace_lock);
9082 if (tasks & SPA_ASYNC_TRIM_RESTART) {
9083 mutex_enter(&spa_namespace_lock);
9084 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9085 vdev_trim_restart(spa->spa_root_vdev);
9086 spa_config_exit(spa, SCL_CONFIG, FTAG);
9087 mutex_exit(&spa_namespace_lock);
9090 if (tasks & SPA_ASYNC_AUTOTRIM_RESTART) {
9091 mutex_enter(&spa_namespace_lock);
9092 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9093 vdev_autotrim_restart(spa);
9094 spa_config_exit(spa, SCL_CONFIG, FTAG);
9095 mutex_exit(&spa_namespace_lock);
9099 * Kick off L2 cache whole device TRIM.
9101 if (tasks & SPA_ASYNC_L2CACHE_TRIM) {
9102 mutex_enter(&spa_namespace_lock);
9103 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
9104 vdev_trim_l2arc(spa);
9105 spa_config_exit(spa, SCL_CONFIG, FTAG);
9106 mutex_exit(&spa_namespace_lock);
9110 * Kick off L2 cache rebuilding.
9112 if (tasks & SPA_ASYNC_L2CACHE_REBUILD) {
9113 mutex_enter(&spa_namespace_lock);
9114 spa_config_enter(spa, SCL_L2ARC, FTAG, RW_READER);
9115 l2arc_spa_rebuild_start(spa);
9116 spa_config_exit(spa, SCL_L2ARC, FTAG);
9117 mutex_exit(&spa_namespace_lock);
9121 * Let the world know that we're done.
9123 mutex_enter(&spa->spa_async_lock);
9124 spa->spa_async_thread = NULL;
9125 cv_broadcast(&spa->spa_async_cv);
9126 mutex_exit(&spa->spa_async_lock);
9127 thread_exit();
9130 void
9131 spa_async_suspend(spa_t *spa)
9133 mutex_enter(&spa->spa_async_lock);
9134 spa->spa_async_suspended++;
9135 while (spa->spa_async_thread != NULL)
9136 cv_wait(&spa->spa_async_cv, &spa->spa_async_lock);
9137 mutex_exit(&spa->spa_async_lock);
9139 spa_vdev_remove_suspend(spa);
9141 zthr_t *condense_thread = spa->spa_condense_zthr;
9142 if (condense_thread != NULL)
9143 zthr_cancel(condense_thread);
9145 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9146 if (raidz_expand_thread != NULL)
9147 zthr_cancel(raidz_expand_thread);
9149 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9150 if (discard_thread != NULL)
9151 zthr_cancel(discard_thread);
9153 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9154 if (ll_delete_thread != NULL)
9155 zthr_cancel(ll_delete_thread);
9157 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9158 if (ll_condense_thread != NULL)
9159 zthr_cancel(ll_condense_thread);
9162 void
9163 spa_async_resume(spa_t *spa)
9165 mutex_enter(&spa->spa_async_lock);
9166 ASSERT(spa->spa_async_suspended != 0);
9167 spa->spa_async_suspended--;
9168 mutex_exit(&spa->spa_async_lock);
9169 spa_restart_removal(spa);
9171 zthr_t *condense_thread = spa->spa_condense_zthr;
9172 if (condense_thread != NULL)
9173 zthr_resume(condense_thread);
9175 zthr_t *raidz_expand_thread = spa->spa_raidz_expand_zthr;
9176 if (raidz_expand_thread != NULL)
9177 zthr_resume(raidz_expand_thread);
9179 zthr_t *discard_thread = spa->spa_checkpoint_discard_zthr;
9180 if (discard_thread != NULL)
9181 zthr_resume(discard_thread);
9183 zthr_t *ll_delete_thread = spa->spa_livelist_delete_zthr;
9184 if (ll_delete_thread != NULL)
9185 zthr_resume(ll_delete_thread);
9187 zthr_t *ll_condense_thread = spa->spa_livelist_condense_zthr;
9188 if (ll_condense_thread != NULL)
9189 zthr_resume(ll_condense_thread);
9192 static boolean_t
9193 spa_async_tasks_pending(spa_t *spa)
9195 uint_t non_config_tasks;
9196 uint_t config_task;
9197 boolean_t config_task_suspended;
9199 non_config_tasks = spa->spa_async_tasks & ~SPA_ASYNC_CONFIG_UPDATE;
9200 config_task = spa->spa_async_tasks & SPA_ASYNC_CONFIG_UPDATE;
9201 if (spa->spa_ccw_fail_time == 0) {
9202 config_task_suspended = B_FALSE;
9203 } else {
9204 config_task_suspended =
9205 (gethrtime() - spa->spa_ccw_fail_time) <
9206 ((hrtime_t)zfs_ccw_retry_interval * NANOSEC);
9209 return (non_config_tasks || (config_task && !config_task_suspended));
9212 static void
9213 spa_async_dispatch(spa_t *spa)
9215 mutex_enter(&spa->spa_async_lock);
9216 if (spa_async_tasks_pending(spa) &&
9217 !spa->spa_async_suspended &&
9218 spa->spa_async_thread == NULL)
9219 spa->spa_async_thread = thread_create(NULL, 0,
9220 spa_async_thread, spa, 0, &p0, TS_RUN, maxclsyspri);
9221 mutex_exit(&spa->spa_async_lock);
9224 void
9225 spa_async_request(spa_t *spa, int task)
9227 zfs_dbgmsg("spa=%s async request task=%u", spa->spa_name, task);
9228 mutex_enter(&spa->spa_async_lock);
9229 spa->spa_async_tasks |= task;
9230 mutex_exit(&spa->spa_async_lock);
9234 spa_async_tasks(spa_t *spa)
9236 return (spa->spa_async_tasks);
9240 * ==========================================================================
9241 * SPA syncing routines
9242 * ==========================================================================
9246 static int
9247 bpobj_enqueue_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9248 dmu_tx_t *tx)
9250 bpobj_t *bpo = arg;
9251 bpobj_enqueue(bpo, bp, bp_freed, tx);
9252 return (0);
9256 bpobj_enqueue_alloc_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9258 return (bpobj_enqueue_cb(arg, bp, B_FALSE, tx));
9262 bpobj_enqueue_free_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9264 return (bpobj_enqueue_cb(arg, bp, B_TRUE, tx));
9267 static int
9268 spa_free_sync_cb(void *arg, const blkptr_t *bp, dmu_tx_t *tx)
9270 zio_t *pio = arg;
9272 zio_nowait(zio_free_sync(pio, pio->io_spa, dmu_tx_get_txg(tx), bp,
9273 pio->io_flags));
9274 return (0);
9277 static int
9278 bpobj_spa_free_sync_cb(void *arg, const blkptr_t *bp, boolean_t bp_freed,
9279 dmu_tx_t *tx)
9281 ASSERT(!bp_freed);
9282 return (spa_free_sync_cb(arg, bp, tx));
9286 * Note: this simple function is not inlined to make it easier to dtrace the
9287 * amount of time spent syncing frees.
9289 static void
9290 spa_sync_frees(spa_t *spa, bplist_t *bpl, dmu_tx_t *tx)
9292 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9293 bplist_iterate(bpl, spa_free_sync_cb, zio, tx);
9294 VERIFY(zio_wait(zio) == 0);
9298 * Note: this simple function is not inlined to make it easier to dtrace the
9299 * amount of time spent syncing deferred frees.
9301 static void
9302 spa_sync_deferred_frees(spa_t *spa, dmu_tx_t *tx)
9304 if (spa_sync_pass(spa) != 1)
9305 return;
9308 * Note:
9309 * If the log space map feature is active, we stop deferring
9310 * frees to the next TXG and therefore running this function
9311 * would be considered a no-op as spa_deferred_bpobj should
9312 * not have any entries.
9314 * That said we run this function anyway (instead of returning
9315 * immediately) for the edge-case scenario where we just
9316 * activated the log space map feature in this TXG but we have
9317 * deferred frees from the previous TXG.
9319 zio_t *zio = zio_root(spa, NULL, NULL, 0);
9320 VERIFY3U(bpobj_iterate(&spa->spa_deferred_bpobj,
9321 bpobj_spa_free_sync_cb, zio, tx), ==, 0);
9322 VERIFY0(zio_wait(zio));
9325 static void
9326 spa_sync_nvlist(spa_t *spa, uint64_t obj, nvlist_t *nv, dmu_tx_t *tx)
9328 char *packed = NULL;
9329 size_t bufsize;
9330 size_t nvsize = 0;
9331 dmu_buf_t *db;
9333 VERIFY(nvlist_size(nv, &nvsize, NV_ENCODE_XDR) == 0);
9336 * Write full (SPA_CONFIG_BLOCKSIZE) blocks of configuration
9337 * information. This avoids the dmu_buf_will_dirty() path and
9338 * saves us a pre-read to get data we don't actually care about.
9340 bufsize = P2ROUNDUP((uint64_t)nvsize, SPA_CONFIG_BLOCKSIZE);
9341 packed = vmem_alloc(bufsize, KM_SLEEP);
9343 VERIFY(nvlist_pack(nv, &packed, &nvsize, NV_ENCODE_XDR,
9344 KM_SLEEP) == 0);
9345 memset(packed + nvsize, 0, bufsize - nvsize);
9347 dmu_write(spa->spa_meta_objset, obj, 0, bufsize, packed, tx);
9349 vmem_free(packed, bufsize);
9351 VERIFY(0 == dmu_bonus_hold(spa->spa_meta_objset, obj, FTAG, &db));
9352 dmu_buf_will_dirty(db, tx);
9353 *(uint64_t *)db->db_data = nvsize;
9354 dmu_buf_rele(db, FTAG);
9357 static void
9358 spa_sync_aux_dev(spa_t *spa, spa_aux_vdev_t *sav, dmu_tx_t *tx,
9359 const char *config, const char *entry)
9361 nvlist_t *nvroot;
9362 nvlist_t **list;
9363 int i;
9365 if (!sav->sav_sync)
9366 return;
9369 * Update the MOS nvlist describing the list of available devices.
9370 * spa_validate_aux() will have already made sure this nvlist is
9371 * valid and the vdevs are labeled appropriately.
9373 if (sav->sav_object == 0) {
9374 sav->sav_object = dmu_object_alloc(spa->spa_meta_objset,
9375 DMU_OT_PACKED_NVLIST, 1 << 14, DMU_OT_PACKED_NVLIST_SIZE,
9376 sizeof (uint64_t), tx);
9377 VERIFY(zap_update(spa->spa_meta_objset,
9378 DMU_POOL_DIRECTORY_OBJECT, entry, sizeof (uint64_t), 1,
9379 &sav->sav_object, tx) == 0);
9382 nvroot = fnvlist_alloc();
9383 if (sav->sav_count == 0) {
9384 fnvlist_add_nvlist_array(nvroot, config,
9385 (const nvlist_t * const *)NULL, 0);
9386 } else {
9387 list = kmem_alloc(sav->sav_count*sizeof (void *), KM_SLEEP);
9388 for (i = 0; i < sav->sav_count; i++)
9389 list[i] = vdev_config_generate(spa, sav->sav_vdevs[i],
9390 B_FALSE, VDEV_CONFIG_L2CACHE);
9391 fnvlist_add_nvlist_array(nvroot, config,
9392 (const nvlist_t * const *)list, sav->sav_count);
9393 for (i = 0; i < sav->sav_count; i++)
9394 nvlist_free(list[i]);
9395 kmem_free(list, sav->sav_count * sizeof (void *));
9398 spa_sync_nvlist(spa, sav->sav_object, nvroot, tx);
9399 nvlist_free(nvroot);
9401 sav->sav_sync = B_FALSE;
9405 * Rebuild spa's all-vdev ZAP from the vdev ZAPs indicated in each vdev_t.
9406 * The all-vdev ZAP must be empty.
9408 static void
9409 spa_avz_build(vdev_t *vd, uint64_t avz, dmu_tx_t *tx)
9411 spa_t *spa = vd->vdev_spa;
9413 if (vd->vdev_root_zap != 0 &&
9414 spa_feature_is_active(spa, SPA_FEATURE_AVZ_V2)) {
9415 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9416 vd->vdev_root_zap, tx));
9418 if (vd->vdev_top_zap != 0) {
9419 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9420 vd->vdev_top_zap, tx));
9422 if (vd->vdev_leaf_zap != 0) {
9423 VERIFY0(zap_add_int(spa->spa_meta_objset, avz,
9424 vd->vdev_leaf_zap, tx));
9426 for (uint64_t i = 0; i < vd->vdev_children; i++) {
9427 spa_avz_build(vd->vdev_child[i], avz, tx);
9431 static void
9432 spa_sync_config_object(spa_t *spa, dmu_tx_t *tx)
9434 nvlist_t *config;
9437 * If the pool is being imported from a pre-per-vdev-ZAP version of ZFS,
9438 * its config may not be dirty but we still need to build per-vdev ZAPs.
9439 * Similarly, if the pool is being assembled (e.g. after a split), we
9440 * need to rebuild the AVZ although the config may not be dirty.
9442 if (list_is_empty(&spa->spa_config_dirty_list) &&
9443 spa->spa_avz_action == AVZ_ACTION_NONE)
9444 return;
9446 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
9448 ASSERT(spa->spa_avz_action == AVZ_ACTION_NONE ||
9449 spa->spa_avz_action == AVZ_ACTION_INITIALIZE ||
9450 spa->spa_all_vdev_zaps != 0);
9452 if (spa->spa_avz_action == AVZ_ACTION_REBUILD) {
9453 /* Make and build the new AVZ */
9454 uint64_t new_avz = zap_create(spa->spa_meta_objset,
9455 DMU_OTN_ZAP_METADATA, DMU_OT_NONE, 0, tx);
9456 spa_avz_build(spa->spa_root_vdev, new_avz, tx);
9458 /* Diff old AVZ with new one */
9459 zap_cursor_t zc;
9460 zap_attribute_t *za = zap_attribute_alloc();
9462 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9463 spa->spa_all_vdev_zaps);
9464 zap_cursor_retrieve(&zc, za) == 0;
9465 zap_cursor_advance(&zc)) {
9466 uint64_t vdzap = za->za_first_integer;
9467 if (zap_lookup_int(spa->spa_meta_objset, new_avz,
9468 vdzap) == ENOENT) {
9470 * ZAP is listed in old AVZ but not in new one;
9471 * destroy it
9473 VERIFY0(zap_destroy(spa->spa_meta_objset, vdzap,
9474 tx));
9478 zap_cursor_fini(&zc);
9479 zap_attribute_free(za);
9481 /* Destroy the old AVZ */
9482 VERIFY0(zap_destroy(spa->spa_meta_objset,
9483 spa->spa_all_vdev_zaps, tx));
9485 /* Replace the old AVZ in the dir obj with the new one */
9486 VERIFY0(zap_update(spa->spa_meta_objset,
9487 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP,
9488 sizeof (new_avz), 1, &new_avz, tx));
9490 spa->spa_all_vdev_zaps = new_avz;
9491 } else if (spa->spa_avz_action == AVZ_ACTION_DESTROY) {
9492 zap_cursor_t zc;
9493 zap_attribute_t *za = zap_attribute_alloc();
9495 /* Walk through the AVZ and destroy all listed ZAPs */
9496 for (zap_cursor_init(&zc, spa->spa_meta_objset,
9497 spa->spa_all_vdev_zaps);
9498 zap_cursor_retrieve(&zc, za) == 0;
9499 zap_cursor_advance(&zc)) {
9500 uint64_t zap = za->za_first_integer;
9501 VERIFY0(zap_destroy(spa->spa_meta_objset, zap, tx));
9504 zap_cursor_fini(&zc);
9505 zap_attribute_free(za);
9507 /* Destroy and unlink the AVZ itself */
9508 VERIFY0(zap_destroy(spa->spa_meta_objset,
9509 spa->spa_all_vdev_zaps, tx));
9510 VERIFY0(zap_remove(spa->spa_meta_objset,
9511 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_VDEV_ZAP_MAP, tx));
9512 spa->spa_all_vdev_zaps = 0;
9515 if (spa->spa_all_vdev_zaps == 0) {
9516 spa->spa_all_vdev_zaps = zap_create_link(spa->spa_meta_objset,
9517 DMU_OTN_ZAP_METADATA, DMU_POOL_DIRECTORY_OBJECT,
9518 DMU_POOL_VDEV_ZAP_MAP, tx);
9520 spa->spa_avz_action = AVZ_ACTION_NONE;
9522 /* Create ZAPs for vdevs that don't have them. */
9523 vdev_construct_zaps(spa->spa_root_vdev, tx);
9525 config = spa_config_generate(spa, spa->spa_root_vdev,
9526 dmu_tx_get_txg(tx), B_FALSE);
9529 * If we're upgrading the spa version then make sure that
9530 * the config object gets updated with the correct version.
9532 if (spa->spa_ubsync.ub_version < spa->spa_uberblock.ub_version)
9533 fnvlist_add_uint64(config, ZPOOL_CONFIG_VERSION,
9534 spa->spa_uberblock.ub_version);
9536 spa_config_exit(spa, SCL_STATE, FTAG);
9538 nvlist_free(spa->spa_config_syncing);
9539 spa->spa_config_syncing = config;
9541 spa_sync_nvlist(spa, spa->spa_config_object, config, tx);
9544 static void
9545 spa_sync_version(void *arg, dmu_tx_t *tx)
9547 uint64_t *versionp = arg;
9548 uint64_t version = *versionp;
9549 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9552 * Setting the version is special cased when first creating the pool.
9554 ASSERT(tx->tx_txg != TXG_INITIAL);
9556 ASSERT(SPA_VERSION_IS_SUPPORTED(version));
9557 ASSERT(version >= spa_version(spa));
9559 spa->spa_uberblock.ub_version = version;
9560 vdev_config_dirty(spa->spa_root_vdev);
9561 spa_history_log_internal(spa, "set", tx, "version=%lld",
9562 (longlong_t)version);
9566 * Set zpool properties.
9568 static void
9569 spa_sync_props(void *arg, dmu_tx_t *tx)
9571 nvlist_t *nvp = arg;
9572 spa_t *spa = dmu_tx_pool(tx)->dp_spa;
9573 objset_t *mos = spa->spa_meta_objset;
9574 nvpair_t *elem = NULL;
9576 mutex_enter(&spa->spa_props_lock);
9578 while ((elem = nvlist_next_nvpair(nvp, elem))) {
9579 uint64_t intval;
9580 const char *strval, *fname;
9581 zpool_prop_t prop;
9582 const char *propname;
9583 const char *elemname = nvpair_name(elem);
9584 zprop_type_t proptype;
9585 spa_feature_t fid;
9587 switch (prop = zpool_name_to_prop(elemname)) {
9588 case ZPOOL_PROP_VERSION:
9589 intval = fnvpair_value_uint64(elem);
9591 * The version is synced separately before other
9592 * properties and should be correct by now.
9594 ASSERT3U(spa_version(spa), >=, intval);
9595 break;
9597 case ZPOOL_PROP_ALTROOT:
9599 * 'altroot' is a non-persistent property. It should
9600 * have been set temporarily at creation or import time.
9602 ASSERT(spa->spa_root != NULL);
9603 break;
9605 case ZPOOL_PROP_READONLY:
9606 case ZPOOL_PROP_CACHEFILE:
9608 * 'readonly' and 'cachefile' are also non-persistent
9609 * properties.
9611 break;
9612 case ZPOOL_PROP_COMMENT:
9613 strval = fnvpair_value_string(elem);
9614 if (spa->spa_comment != NULL)
9615 spa_strfree(spa->spa_comment);
9616 spa->spa_comment = spa_strdup(strval);
9618 * We need to dirty the configuration on all the vdevs
9619 * so that their labels get updated. We also need to
9620 * update the cache file to keep it in sync with the
9621 * MOS version. It's unnecessary to do this for pool
9622 * creation since the vdev's configuration has already
9623 * been dirtied.
9625 if (tx->tx_txg != TXG_INITIAL) {
9626 vdev_config_dirty(spa->spa_root_vdev);
9627 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9629 spa_history_log_internal(spa, "set", tx,
9630 "%s=%s", elemname, strval);
9631 break;
9632 case ZPOOL_PROP_COMPATIBILITY:
9633 strval = fnvpair_value_string(elem);
9634 if (spa->spa_compatibility != NULL)
9635 spa_strfree(spa->spa_compatibility);
9636 spa->spa_compatibility = spa_strdup(strval);
9638 * Dirty the configuration on vdevs as above.
9640 if (tx->tx_txg != TXG_INITIAL) {
9641 vdev_config_dirty(spa->spa_root_vdev);
9642 spa_async_request(spa, SPA_ASYNC_CONFIG_UPDATE);
9645 spa_history_log_internal(spa, "set", tx,
9646 "%s=%s", nvpair_name(elem), strval);
9647 break;
9649 case ZPOOL_PROP_INVAL:
9650 if (zpool_prop_feature(elemname)) {
9651 fname = strchr(elemname, '@') + 1;
9652 VERIFY0(zfeature_lookup_name(fname, &fid));
9654 spa_feature_enable(spa, fid, tx);
9655 spa_history_log_internal(spa, "set", tx,
9656 "%s=enabled", elemname);
9657 break;
9658 } else if (!zfs_prop_user(elemname)) {
9659 ASSERT(zpool_prop_feature(elemname));
9660 break;
9662 zfs_fallthrough;
9663 default:
9665 * Set pool property values in the poolprops mos object.
9667 if (spa->spa_pool_props_object == 0) {
9668 spa->spa_pool_props_object =
9669 zap_create_link(mos, DMU_OT_POOL_PROPS,
9670 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_PROPS,
9671 tx);
9674 /* normalize the property name */
9675 if (prop == ZPOOL_PROP_INVAL) {
9676 propname = elemname;
9677 proptype = PROP_TYPE_STRING;
9678 } else {
9679 propname = zpool_prop_to_name(prop);
9680 proptype = zpool_prop_get_type(prop);
9683 if (nvpair_type(elem) == DATA_TYPE_STRING) {
9684 ASSERT(proptype == PROP_TYPE_STRING);
9685 strval = fnvpair_value_string(elem);
9686 VERIFY0(zap_update(mos,
9687 spa->spa_pool_props_object, propname,
9688 1, strlen(strval) + 1, strval, tx));
9689 spa_history_log_internal(spa, "set", tx,
9690 "%s=%s", elemname, strval);
9691 } else if (nvpair_type(elem) == DATA_TYPE_UINT64) {
9692 intval = fnvpair_value_uint64(elem);
9694 if (proptype == PROP_TYPE_INDEX) {
9695 const char *unused;
9696 VERIFY0(zpool_prop_index_to_string(
9697 prop, intval, &unused));
9699 VERIFY0(zap_update(mos,
9700 spa->spa_pool_props_object, propname,
9701 8, 1, &intval, tx));
9702 spa_history_log_internal(spa, "set", tx,
9703 "%s=%lld", elemname,
9704 (longlong_t)intval);
9706 switch (prop) {
9707 case ZPOOL_PROP_DELEGATION:
9708 spa->spa_delegation = intval;
9709 break;
9710 case ZPOOL_PROP_BOOTFS:
9711 spa->spa_bootfs = intval;
9712 break;
9713 case ZPOOL_PROP_FAILUREMODE:
9714 spa->spa_failmode = intval;
9715 break;
9716 case ZPOOL_PROP_AUTOTRIM:
9717 spa->spa_autotrim = intval;
9718 spa_async_request(spa,
9719 SPA_ASYNC_AUTOTRIM_RESTART);
9720 break;
9721 case ZPOOL_PROP_AUTOEXPAND:
9722 spa->spa_autoexpand = intval;
9723 if (tx->tx_txg != TXG_INITIAL)
9724 spa_async_request(spa,
9725 SPA_ASYNC_AUTOEXPAND);
9726 break;
9727 case ZPOOL_PROP_MULTIHOST:
9728 spa->spa_multihost = intval;
9729 break;
9730 case ZPOOL_PROP_DEDUP_TABLE_QUOTA:
9731 spa->spa_dedup_table_quota = intval;
9732 break;
9733 default:
9734 break;
9736 } else {
9737 ASSERT(0); /* not allowed */
9743 mutex_exit(&spa->spa_props_lock);
9747 * Perform one-time upgrade on-disk changes. spa_version() does not
9748 * reflect the new version this txg, so there must be no changes this
9749 * txg to anything that the upgrade code depends on after it executes.
9750 * Therefore this must be called after dsl_pool_sync() does the sync
9751 * tasks.
9753 static void
9754 spa_sync_upgrades(spa_t *spa, dmu_tx_t *tx)
9756 if (spa_sync_pass(spa) != 1)
9757 return;
9759 dsl_pool_t *dp = spa->spa_dsl_pool;
9760 rrw_enter(&dp->dp_config_rwlock, RW_WRITER, FTAG);
9762 if (spa->spa_ubsync.ub_version < SPA_VERSION_ORIGIN &&
9763 spa->spa_uberblock.ub_version >= SPA_VERSION_ORIGIN) {
9764 dsl_pool_create_origin(dp, tx);
9766 /* Keeping the origin open increases spa_minref */
9767 spa->spa_minref += 3;
9770 if (spa->spa_ubsync.ub_version < SPA_VERSION_NEXT_CLONES &&
9771 spa->spa_uberblock.ub_version >= SPA_VERSION_NEXT_CLONES) {
9772 dsl_pool_upgrade_clones(dp, tx);
9775 if (spa->spa_ubsync.ub_version < SPA_VERSION_DIR_CLONES &&
9776 spa->spa_uberblock.ub_version >= SPA_VERSION_DIR_CLONES) {
9777 dsl_pool_upgrade_dir_clones(dp, tx);
9779 /* Keeping the freedir open increases spa_minref */
9780 spa->spa_minref += 3;
9783 if (spa->spa_ubsync.ub_version < SPA_VERSION_FEATURES &&
9784 spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9785 spa_feature_create_zap_objects(spa, tx);
9789 * LZ4_COMPRESS feature's behaviour was changed to activate_on_enable
9790 * when possibility to use lz4 compression for metadata was added
9791 * Old pools that have this feature enabled must be upgraded to have
9792 * this feature active
9794 if (spa->spa_uberblock.ub_version >= SPA_VERSION_FEATURES) {
9795 boolean_t lz4_en = spa_feature_is_enabled(spa,
9796 SPA_FEATURE_LZ4_COMPRESS);
9797 boolean_t lz4_ac = spa_feature_is_active(spa,
9798 SPA_FEATURE_LZ4_COMPRESS);
9800 if (lz4_en && !lz4_ac)
9801 spa_feature_incr(spa, SPA_FEATURE_LZ4_COMPRESS, tx);
9805 * If we haven't written the salt, do so now. Note that the
9806 * feature may not be activated yet, but that's fine since
9807 * the presence of this ZAP entry is backwards compatible.
9809 if (zap_contains(spa->spa_meta_objset, DMU_POOL_DIRECTORY_OBJECT,
9810 DMU_POOL_CHECKSUM_SALT) == ENOENT) {
9811 VERIFY0(zap_add(spa->spa_meta_objset,
9812 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_CHECKSUM_SALT, 1,
9813 sizeof (spa->spa_cksum_salt.zcs_bytes),
9814 spa->spa_cksum_salt.zcs_bytes, tx));
9817 rrw_exit(&dp->dp_config_rwlock, FTAG);
9820 static void
9821 vdev_indirect_state_sync_verify(vdev_t *vd)
9823 vdev_indirect_mapping_t *vim __maybe_unused = vd->vdev_indirect_mapping;
9824 vdev_indirect_births_t *vib __maybe_unused = vd->vdev_indirect_births;
9826 if (vd->vdev_ops == &vdev_indirect_ops) {
9827 ASSERT(vim != NULL);
9828 ASSERT(vib != NULL);
9831 uint64_t obsolete_sm_object = 0;
9832 ASSERT0(vdev_obsolete_sm_object(vd, &obsolete_sm_object));
9833 if (obsolete_sm_object != 0) {
9834 ASSERT(vd->vdev_obsolete_sm != NULL);
9835 ASSERT(vd->vdev_removing ||
9836 vd->vdev_ops == &vdev_indirect_ops);
9837 ASSERT(vdev_indirect_mapping_num_entries(vim) > 0);
9838 ASSERT(vdev_indirect_mapping_bytes_mapped(vim) > 0);
9839 ASSERT3U(obsolete_sm_object, ==,
9840 space_map_object(vd->vdev_obsolete_sm));
9841 ASSERT3U(vdev_indirect_mapping_bytes_mapped(vim), >=,
9842 space_map_allocated(vd->vdev_obsolete_sm));
9844 ASSERT(vd->vdev_obsolete_segments != NULL);
9847 * Since frees / remaps to an indirect vdev can only
9848 * happen in syncing context, the obsolete segments
9849 * tree must be empty when we start syncing.
9851 ASSERT0(range_tree_space(vd->vdev_obsolete_segments));
9855 * Set the top-level vdev's max queue depth. Evaluate each top-level's
9856 * async write queue depth in case it changed. The max queue depth will
9857 * not change in the middle of syncing out this txg.
9859 static void
9860 spa_sync_adjust_vdev_max_queue_depth(spa_t *spa)
9862 ASSERT(spa_writeable(spa));
9864 vdev_t *rvd = spa->spa_root_vdev;
9865 uint32_t max_queue_depth = zfs_vdev_async_write_max_active *
9866 zfs_vdev_queue_depth_pct / 100;
9867 metaslab_class_t *normal = spa_normal_class(spa);
9868 metaslab_class_t *special = spa_special_class(spa);
9869 metaslab_class_t *dedup = spa_dedup_class(spa);
9871 uint64_t slots_per_allocator = 0;
9872 for (int c = 0; c < rvd->vdev_children; c++) {
9873 vdev_t *tvd = rvd->vdev_child[c];
9875 metaslab_group_t *mg = tvd->vdev_mg;
9876 if (mg == NULL || !metaslab_group_initialized(mg))
9877 continue;
9879 metaslab_class_t *mc = mg->mg_class;
9880 if (mc != normal && mc != special && mc != dedup)
9881 continue;
9884 * It is safe to do a lock-free check here because only async
9885 * allocations look at mg_max_alloc_queue_depth, and async
9886 * allocations all happen from spa_sync().
9888 for (int i = 0; i < mg->mg_allocators; i++) {
9889 ASSERT0(zfs_refcount_count(
9890 &(mg->mg_allocator[i].mga_alloc_queue_depth)));
9892 mg->mg_max_alloc_queue_depth = max_queue_depth;
9894 for (int i = 0; i < mg->mg_allocators; i++) {
9895 mg->mg_allocator[i].mga_cur_max_alloc_queue_depth =
9896 zfs_vdev_def_queue_depth;
9898 slots_per_allocator += zfs_vdev_def_queue_depth;
9901 for (int i = 0; i < spa->spa_alloc_count; i++) {
9902 ASSERT0(zfs_refcount_count(&normal->mc_allocator[i].
9903 mca_alloc_slots));
9904 ASSERT0(zfs_refcount_count(&special->mc_allocator[i].
9905 mca_alloc_slots));
9906 ASSERT0(zfs_refcount_count(&dedup->mc_allocator[i].
9907 mca_alloc_slots));
9908 normal->mc_allocator[i].mca_alloc_max_slots =
9909 slots_per_allocator;
9910 special->mc_allocator[i].mca_alloc_max_slots =
9911 slots_per_allocator;
9912 dedup->mc_allocator[i].mca_alloc_max_slots =
9913 slots_per_allocator;
9915 normal->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9916 special->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9917 dedup->mc_alloc_throttle_enabled = zio_dva_throttle_enabled;
9920 static void
9921 spa_sync_condense_indirect(spa_t *spa, dmu_tx_t *tx)
9923 ASSERT(spa_writeable(spa));
9925 vdev_t *rvd = spa->spa_root_vdev;
9926 for (int c = 0; c < rvd->vdev_children; c++) {
9927 vdev_t *vd = rvd->vdev_child[c];
9928 vdev_indirect_state_sync_verify(vd);
9930 if (vdev_indirect_should_condense(vd)) {
9931 spa_condense_indirect_start_sync(vd, tx);
9932 break;
9937 static void
9938 spa_sync_iterate_to_convergence(spa_t *spa, dmu_tx_t *tx)
9940 objset_t *mos = spa->spa_meta_objset;
9941 dsl_pool_t *dp = spa->spa_dsl_pool;
9942 uint64_t txg = tx->tx_txg;
9943 bplist_t *free_bpl = &spa->spa_free_bplist[txg & TXG_MASK];
9945 do {
9946 int pass = ++spa->spa_sync_pass;
9948 spa_sync_config_object(spa, tx);
9949 spa_sync_aux_dev(spa, &spa->spa_spares, tx,
9950 ZPOOL_CONFIG_SPARES, DMU_POOL_SPARES);
9951 spa_sync_aux_dev(spa, &spa->spa_l2cache, tx,
9952 ZPOOL_CONFIG_L2CACHE, DMU_POOL_L2CACHE);
9953 spa_errlog_sync(spa, txg);
9954 dsl_pool_sync(dp, txg);
9956 if (pass < zfs_sync_pass_deferred_free ||
9957 spa_feature_is_active(spa, SPA_FEATURE_LOG_SPACEMAP)) {
9959 * If the log space map feature is active we don't
9960 * care about deferred frees and the deferred bpobj
9961 * as the log space map should effectively have the
9962 * same results (i.e. appending only to one object).
9964 spa_sync_frees(spa, free_bpl, tx);
9965 } else {
9967 * We can not defer frees in pass 1, because
9968 * we sync the deferred frees later in pass 1.
9970 ASSERT3U(pass, >, 1);
9971 bplist_iterate(free_bpl, bpobj_enqueue_alloc_cb,
9972 &spa->spa_deferred_bpobj, tx);
9975 brt_sync(spa, txg);
9976 ddt_sync(spa, txg);
9977 dsl_scan_sync(dp, tx);
9978 dsl_errorscrub_sync(dp, tx);
9979 svr_sync(spa, tx);
9980 spa_sync_upgrades(spa, tx);
9982 spa_flush_metaslabs(spa, tx);
9984 vdev_t *vd = NULL;
9985 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, txg))
9986 != NULL)
9987 vdev_sync(vd, txg);
9989 if (pass == 1) {
9991 * dsl_pool_sync() -> dp_sync_tasks may have dirtied
9992 * the config. If that happens, this txg should not
9993 * be a no-op. So we must sync the config to the MOS
9994 * before checking for no-op.
9996 * Note that when the config is dirty, it will
9997 * be written to the MOS (i.e. the MOS will be
9998 * dirtied) every time we call spa_sync_config_object()
9999 * in this txg. Therefore we can't call this after
10000 * dsl_pool_sync() every pass, because it would
10001 * prevent us from converging, since we'd dirty
10002 * the MOS every pass.
10004 * Sync tasks can only be processed in pass 1, so
10005 * there's no need to do this in later passes.
10007 spa_sync_config_object(spa, tx);
10011 * Note: We need to check if the MOS is dirty because we could
10012 * have marked the MOS dirty without updating the uberblock
10013 * (e.g. if we have sync tasks but no dirty user data). We need
10014 * to check the uberblock's rootbp because it is updated if we
10015 * have synced out dirty data (though in this case the MOS will
10016 * most likely also be dirty due to second order effects, we
10017 * don't want to rely on that here).
10019 if (pass == 1 &&
10020 BP_GET_LOGICAL_BIRTH(&spa->spa_uberblock.ub_rootbp) < txg &&
10021 !dmu_objset_is_dirty(mos, txg)) {
10023 * Nothing changed on the first pass, therefore this
10024 * TXG is a no-op. Avoid syncing deferred frees, so
10025 * that we can keep this TXG as a no-op.
10027 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10028 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10029 ASSERT(txg_list_empty(&dp->dp_sync_tasks, txg));
10030 ASSERT(txg_list_empty(&dp->dp_early_sync_tasks, txg));
10031 break;
10034 spa_sync_deferred_frees(spa, tx);
10035 } while (dmu_objset_is_dirty(mos, txg));
10039 * Rewrite the vdev configuration (which includes the uberblock) to
10040 * commit the transaction group.
10042 * If there are no dirty vdevs, we sync the uberblock to a few random
10043 * top-level vdevs that are known to be visible in the config cache
10044 * (see spa_vdev_add() for a complete description). If there *are* dirty
10045 * vdevs, sync the uberblock to all vdevs.
10047 static void
10048 spa_sync_rewrite_vdev_config(spa_t *spa, dmu_tx_t *tx)
10050 vdev_t *rvd = spa->spa_root_vdev;
10051 uint64_t txg = tx->tx_txg;
10053 for (;;) {
10054 int error = 0;
10057 * We hold SCL_STATE to prevent vdev open/close/etc.
10058 * while we're attempting to write the vdev labels.
10060 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10062 if (list_is_empty(&spa->spa_config_dirty_list)) {
10063 vdev_t *svd[SPA_SYNC_MIN_VDEVS] = { NULL };
10064 int svdcount = 0;
10065 int children = rvd->vdev_children;
10066 int c0 = random_in_range(children);
10068 for (int c = 0; c < children; c++) {
10069 vdev_t *vd =
10070 rvd->vdev_child[(c0 + c) % children];
10072 /* Stop when revisiting the first vdev */
10073 if (c > 0 && svd[0] == vd)
10074 break;
10076 if (vd->vdev_ms_array == 0 ||
10077 vd->vdev_islog ||
10078 !vdev_is_concrete(vd))
10079 continue;
10081 svd[svdcount++] = vd;
10082 if (svdcount == SPA_SYNC_MIN_VDEVS)
10083 break;
10085 error = vdev_config_sync(svd, svdcount, txg);
10086 } else {
10087 error = vdev_config_sync(rvd->vdev_child,
10088 rvd->vdev_children, txg);
10091 if (error == 0)
10092 spa->spa_last_synced_guid = rvd->vdev_guid;
10094 spa_config_exit(spa, SCL_STATE, FTAG);
10096 if (error == 0)
10097 break;
10098 zio_suspend(spa, NULL, ZIO_SUSPEND_IOERR);
10099 zio_resume_wait(spa);
10104 * Sync the specified transaction group. New blocks may be dirtied as
10105 * part of the process, so we iterate until it converges.
10107 void
10108 spa_sync(spa_t *spa, uint64_t txg)
10110 vdev_t *vd = NULL;
10112 VERIFY(spa_writeable(spa));
10115 * Wait for i/os issued in open context that need to complete
10116 * before this txg syncs.
10118 (void) zio_wait(spa->spa_txg_zio[txg & TXG_MASK]);
10119 spa->spa_txg_zio[txg & TXG_MASK] = zio_root(spa, NULL, NULL,
10120 ZIO_FLAG_CANFAIL);
10123 * Now that there can be no more cloning in this transaction group,
10124 * but we are still before issuing frees, we can process pending BRT
10125 * updates.
10127 brt_pending_apply(spa, txg);
10130 * Lock out configuration changes.
10132 spa_config_enter(spa, SCL_CONFIG, FTAG, RW_READER);
10134 spa->spa_syncing_txg = txg;
10135 spa->spa_sync_pass = 0;
10137 for (int i = 0; i < spa->spa_alloc_count; i++) {
10138 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10139 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10140 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10144 * If there are any pending vdev state changes, convert them
10145 * into config changes that go out with this transaction group.
10147 spa_config_enter(spa, SCL_STATE, FTAG, RW_READER);
10148 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10149 /* Avoid holding the write lock unless actually necessary */
10150 if (vd->vdev_aux == NULL) {
10151 vdev_state_clean(vd);
10152 vdev_config_dirty(vd);
10153 continue;
10156 * We need the write lock here because, for aux vdevs,
10157 * calling vdev_config_dirty() modifies sav_config.
10158 * This is ugly and will become unnecessary when we
10159 * eliminate the aux vdev wart by integrating all vdevs
10160 * into the root vdev tree.
10162 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10163 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_WRITER);
10164 while ((vd = list_head(&spa->spa_state_dirty_list)) != NULL) {
10165 vdev_state_clean(vd);
10166 vdev_config_dirty(vd);
10168 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10169 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10171 spa_config_exit(spa, SCL_STATE, FTAG);
10173 dsl_pool_t *dp = spa->spa_dsl_pool;
10174 dmu_tx_t *tx = dmu_tx_create_assigned(dp, txg);
10176 spa->spa_sync_starttime = gethrtime();
10177 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10178 spa->spa_deadman_tqid = taskq_dispatch_delay(system_delay_taskq,
10179 spa_deadman, spa, TQ_SLEEP, ddi_get_lbolt() +
10180 NSEC_TO_TICK(spa->spa_deadman_synctime));
10183 * If we are upgrading to SPA_VERSION_RAIDZ_DEFLATE this txg,
10184 * set spa_deflate if we have no raid-z vdevs.
10186 if (spa->spa_ubsync.ub_version < SPA_VERSION_RAIDZ_DEFLATE &&
10187 spa->spa_uberblock.ub_version >= SPA_VERSION_RAIDZ_DEFLATE) {
10188 vdev_t *rvd = spa->spa_root_vdev;
10190 int i;
10191 for (i = 0; i < rvd->vdev_children; i++) {
10192 vd = rvd->vdev_child[i];
10193 if (vd->vdev_deflate_ratio != SPA_MINBLOCKSIZE)
10194 break;
10196 if (i == rvd->vdev_children) {
10197 spa->spa_deflate = TRUE;
10198 VERIFY0(zap_add(spa->spa_meta_objset,
10199 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_DEFLATE,
10200 sizeof (uint64_t), 1, &spa->spa_deflate, tx));
10204 spa_sync_adjust_vdev_max_queue_depth(spa);
10206 spa_sync_condense_indirect(spa, tx);
10208 spa_sync_iterate_to_convergence(spa, tx);
10210 #ifdef ZFS_DEBUG
10211 if (!list_is_empty(&spa->spa_config_dirty_list)) {
10213 * Make sure that the number of ZAPs for all the vdevs matches
10214 * the number of ZAPs in the per-vdev ZAP list. This only gets
10215 * called if the config is dirty; otherwise there may be
10216 * outstanding AVZ operations that weren't completed in
10217 * spa_sync_config_object.
10219 uint64_t all_vdev_zap_entry_count;
10220 ASSERT0(zap_count(spa->spa_meta_objset,
10221 spa->spa_all_vdev_zaps, &all_vdev_zap_entry_count));
10222 ASSERT3U(vdev_count_verify_zaps(spa->spa_root_vdev), ==,
10223 all_vdev_zap_entry_count);
10225 #endif
10227 if (spa->spa_vdev_removal != NULL) {
10228 ASSERT0(spa->spa_vdev_removal->svr_bytes_done[txg & TXG_MASK]);
10231 spa_sync_rewrite_vdev_config(spa, tx);
10232 dmu_tx_commit(tx);
10234 taskq_cancel_id(system_delay_taskq, spa->spa_deadman_tqid);
10235 spa->spa_deadman_tqid = 0;
10238 * Clear the dirty config list.
10240 while ((vd = list_head(&spa->spa_config_dirty_list)) != NULL)
10241 vdev_config_clean(vd);
10244 * Now that the new config has synced transactionally,
10245 * let it become visible to the config cache.
10247 if (spa->spa_config_syncing != NULL) {
10248 spa_config_set(spa, spa->spa_config_syncing);
10249 spa->spa_config_txg = txg;
10250 spa->spa_config_syncing = NULL;
10253 dsl_pool_sync_done(dp, txg);
10255 for (int i = 0; i < spa->spa_alloc_count; i++) {
10256 mutex_enter(&spa->spa_allocs[i].spaa_lock);
10257 VERIFY0(avl_numnodes(&spa->spa_allocs[i].spaa_tree));
10258 mutex_exit(&spa->spa_allocs[i].spaa_lock);
10262 * Update usable space statistics.
10264 while ((vd = txg_list_remove(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)))
10265 != NULL)
10266 vdev_sync_done(vd, txg);
10268 metaslab_class_evict_old(spa->spa_normal_class, txg);
10269 metaslab_class_evict_old(spa->spa_log_class, txg);
10270 /* spa_embedded_log_class has only one metaslab per vdev. */
10271 metaslab_class_evict_old(spa->spa_special_class, txg);
10272 metaslab_class_evict_old(spa->spa_dedup_class, txg);
10274 spa_sync_close_syncing_log_sm(spa);
10276 spa_update_dspace(spa);
10278 if (spa_get_autotrim(spa) == SPA_AUTOTRIM_ON)
10279 vdev_autotrim_kick(spa);
10282 * It had better be the case that we didn't dirty anything
10283 * since vdev_config_sync().
10285 ASSERT(txg_list_empty(&dp->dp_dirty_datasets, txg));
10286 ASSERT(txg_list_empty(&dp->dp_dirty_dirs, txg));
10287 ASSERT(txg_list_empty(&spa->spa_vdev_txg_list, txg));
10289 while (zfs_pause_spa_sync)
10290 delay(1);
10292 spa->spa_sync_pass = 0;
10295 * Update the last synced uberblock here. We want to do this at
10296 * the end of spa_sync() so that consumers of spa_last_synced_txg()
10297 * will be guaranteed that all the processing associated with
10298 * that txg has been completed.
10300 spa->spa_ubsync = spa->spa_uberblock;
10301 spa_config_exit(spa, SCL_CONFIG, FTAG);
10303 spa_handle_ignored_writes(spa);
10306 * If any async tasks have been requested, kick them off.
10308 spa_async_dispatch(spa);
10312 * Sync all pools. We don't want to hold the namespace lock across these
10313 * operations, so we take a reference on the spa_t and drop the lock during the
10314 * sync.
10316 void
10317 spa_sync_allpools(void)
10319 spa_t *spa = NULL;
10320 mutex_enter(&spa_namespace_lock);
10321 while ((spa = spa_next(spa)) != NULL) {
10322 if (spa_state(spa) != POOL_STATE_ACTIVE ||
10323 !spa_writeable(spa) || spa_suspended(spa))
10324 continue;
10325 spa_open_ref(spa, FTAG);
10326 mutex_exit(&spa_namespace_lock);
10327 txg_wait_synced(spa_get_dsl(spa), 0);
10328 mutex_enter(&spa_namespace_lock);
10329 spa_close(spa, FTAG);
10331 mutex_exit(&spa_namespace_lock);
10334 taskq_t *
10335 spa_sync_tq_create(spa_t *spa, const char *name)
10337 kthread_t **kthreads;
10339 ASSERT(spa->spa_sync_tq == NULL);
10340 ASSERT3S(spa->spa_alloc_count, <=, boot_ncpus);
10343 * - do not allow more allocators than cpus.
10344 * - there may be more cpus than allocators.
10345 * - do not allow more sync taskq threads than allocators or cpus.
10347 int nthreads = spa->spa_alloc_count;
10348 spa->spa_syncthreads = kmem_zalloc(sizeof (spa_syncthread_info_t) *
10349 nthreads, KM_SLEEP);
10351 spa->spa_sync_tq = taskq_create_synced(name, nthreads, minclsyspri,
10352 nthreads, INT_MAX, TASKQ_PREPOPULATE, &kthreads);
10353 VERIFY(spa->spa_sync_tq != NULL);
10354 VERIFY(kthreads != NULL);
10356 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10357 for (int i = 0; i < nthreads; i++, ti++) {
10358 ti->sti_thread = kthreads[i];
10359 ti->sti_allocator = i;
10362 kmem_free(kthreads, sizeof (*kthreads) * nthreads);
10363 return (spa->spa_sync_tq);
10366 void
10367 spa_sync_tq_destroy(spa_t *spa)
10369 ASSERT(spa->spa_sync_tq != NULL);
10371 taskq_wait(spa->spa_sync_tq);
10372 taskq_destroy(spa->spa_sync_tq);
10373 kmem_free(spa->spa_syncthreads,
10374 sizeof (spa_syncthread_info_t) * spa->spa_alloc_count);
10375 spa->spa_sync_tq = NULL;
10378 uint_t
10379 spa_acq_allocator(spa_t *spa)
10381 int i;
10383 if (spa->spa_alloc_count == 1)
10384 return (0);
10386 mutex_enter(&spa->spa_allocs_use->sau_lock);
10387 uint_t r = spa->spa_allocs_use->sau_rotor;
10388 do {
10389 if (++r == spa->spa_alloc_count)
10390 r = 0;
10391 } while (spa->spa_allocs_use->sau_inuse[r]);
10392 spa->spa_allocs_use->sau_inuse[r] = B_TRUE;
10393 spa->spa_allocs_use->sau_rotor = r;
10394 mutex_exit(&spa->spa_allocs_use->sau_lock);
10396 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10397 for (i = 0; i < spa->spa_alloc_count; i++, ti++) {
10398 if (ti->sti_thread == curthread) {
10399 ti->sti_allocator = r;
10400 break;
10403 ASSERT3S(i, <, spa->spa_alloc_count);
10404 return (r);
10407 void
10408 spa_rel_allocator(spa_t *spa, uint_t allocator)
10410 if (spa->spa_alloc_count > 1)
10411 spa->spa_allocs_use->sau_inuse[allocator] = B_FALSE;
10414 void
10415 spa_select_allocator(zio_t *zio)
10417 zbookmark_phys_t *bm = &zio->io_bookmark;
10418 spa_t *spa = zio->io_spa;
10420 ASSERT(zio->io_type == ZIO_TYPE_WRITE);
10423 * A gang block (for example) may have inherited its parent's
10424 * allocator, in which case there is nothing further to do here.
10426 if (ZIO_HAS_ALLOCATOR(zio))
10427 return;
10429 ASSERT(spa != NULL);
10430 ASSERT(bm != NULL);
10433 * First try to use an allocator assigned to the syncthread, and set
10434 * the corresponding write issue taskq for the allocator.
10435 * Note, we must have an open pool to do this.
10437 if (spa->spa_sync_tq != NULL) {
10438 spa_syncthread_info_t *ti = spa->spa_syncthreads;
10439 for (int i = 0; i < spa->spa_alloc_count; i++, ti++) {
10440 if (ti->sti_thread == curthread) {
10441 zio->io_allocator = ti->sti_allocator;
10442 return;
10448 * We want to try to use as many allocators as possible to help improve
10449 * performance, but we also want logically adjacent IOs to be physically
10450 * adjacent to improve sequential read performance. We chunk each object
10451 * into 2^20 block regions, and then hash based on the objset, object,
10452 * level, and region to accomplish both of these goals.
10454 uint64_t hv = cityhash4(bm->zb_objset, bm->zb_object, bm->zb_level,
10455 bm->zb_blkid >> 20);
10457 zio->io_allocator = (uint_t)hv % spa->spa_alloc_count;
10461 * ==========================================================================
10462 * Miscellaneous routines
10463 * ==========================================================================
10467 * Remove all pools in the system.
10469 void
10470 spa_evict_all(void)
10472 spa_t *spa;
10475 * Remove all cached state. All pools should be closed now,
10476 * so every spa in the AVL tree should be unreferenced.
10478 mutex_enter(&spa_namespace_lock);
10479 while ((spa = spa_next(NULL)) != NULL) {
10481 * Stop async tasks. The async thread may need to detach
10482 * a device that's been replaced, which requires grabbing
10483 * spa_namespace_lock, so we must drop it here.
10485 spa_open_ref(spa, FTAG);
10486 mutex_exit(&spa_namespace_lock);
10487 spa_async_suspend(spa);
10488 mutex_enter(&spa_namespace_lock);
10489 spa_close(spa, FTAG);
10491 if (spa->spa_state != POOL_STATE_UNINITIALIZED) {
10492 spa_unload(spa);
10493 spa_deactivate(spa);
10495 spa_remove(spa);
10497 mutex_exit(&spa_namespace_lock);
10500 vdev_t *
10501 spa_lookup_by_guid(spa_t *spa, uint64_t guid, boolean_t aux)
10503 vdev_t *vd;
10504 int i;
10506 if ((vd = vdev_lookup_by_guid(spa->spa_root_vdev, guid)) != NULL)
10507 return (vd);
10509 if (aux) {
10510 for (i = 0; i < spa->spa_l2cache.sav_count; i++) {
10511 vd = spa->spa_l2cache.sav_vdevs[i];
10512 if (vd->vdev_guid == guid)
10513 return (vd);
10516 for (i = 0; i < spa->spa_spares.sav_count; i++) {
10517 vd = spa->spa_spares.sav_vdevs[i];
10518 if (vd->vdev_guid == guid)
10519 return (vd);
10523 return (NULL);
10526 void
10527 spa_upgrade(spa_t *spa, uint64_t version)
10529 ASSERT(spa_writeable(spa));
10531 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER);
10534 * This should only be called for a non-faulted pool, and since a
10535 * future version would result in an unopenable pool, this shouldn't be
10536 * possible.
10538 ASSERT(SPA_VERSION_IS_SUPPORTED(spa->spa_uberblock.ub_version));
10539 ASSERT3U(version, >=, spa->spa_uberblock.ub_version);
10541 spa->spa_uberblock.ub_version = version;
10542 vdev_config_dirty(spa->spa_root_vdev);
10544 spa_config_exit(spa, SCL_ALL, FTAG);
10546 txg_wait_synced(spa_get_dsl(spa), 0);
10549 static boolean_t
10550 spa_has_aux_vdev(spa_t *spa, uint64_t guid, spa_aux_vdev_t *sav)
10552 (void) spa;
10553 int i;
10554 uint64_t vdev_guid;
10556 for (i = 0; i < sav->sav_count; i++)
10557 if (sav->sav_vdevs[i]->vdev_guid == guid)
10558 return (B_TRUE);
10560 for (i = 0; i < sav->sav_npending; i++) {
10561 if (nvlist_lookup_uint64(sav->sav_pending[i], ZPOOL_CONFIG_GUID,
10562 &vdev_guid) == 0 && vdev_guid == guid)
10563 return (B_TRUE);
10566 return (B_FALSE);
10569 boolean_t
10570 spa_has_l2cache(spa_t *spa, uint64_t guid)
10572 return (spa_has_aux_vdev(spa, guid, &spa->spa_l2cache));
10575 boolean_t
10576 spa_has_spare(spa_t *spa, uint64_t guid)
10578 return (spa_has_aux_vdev(spa, guid, &spa->spa_spares));
10582 * Check if a pool has an active shared spare device.
10583 * Note: reference count of an active spare is 2, as a spare and as a replace
10585 static boolean_t
10586 spa_has_active_shared_spare(spa_t *spa)
10588 int i, refcnt;
10589 uint64_t pool;
10590 spa_aux_vdev_t *sav = &spa->spa_spares;
10592 for (i = 0; i < sav->sav_count; i++) {
10593 if (spa_spare_exists(sav->sav_vdevs[i]->vdev_guid, &pool,
10594 &refcnt) && pool != 0ULL && pool == spa_guid(spa) &&
10595 refcnt > 2)
10596 return (B_TRUE);
10599 return (B_FALSE);
10602 uint64_t
10603 spa_total_metaslabs(spa_t *spa)
10605 vdev_t *rvd = spa->spa_root_vdev;
10607 uint64_t m = 0;
10608 for (uint64_t c = 0; c < rvd->vdev_children; c++) {
10609 vdev_t *vd = rvd->vdev_child[c];
10610 if (!vdev_is_concrete(vd))
10611 continue;
10612 m += vd->vdev_ms_count;
10614 return (m);
10618 * Notify any waiting threads that some activity has switched from being in-
10619 * progress to not-in-progress so that the thread can wake up and determine
10620 * whether it is finished waiting.
10622 void
10623 spa_notify_waiters(spa_t *spa)
10626 * Acquiring spa_activities_lock here prevents the cv_broadcast from
10627 * happening between the waiting thread's check and cv_wait.
10629 mutex_enter(&spa->spa_activities_lock);
10630 cv_broadcast(&spa->spa_activities_cv);
10631 mutex_exit(&spa->spa_activities_lock);
10635 * Notify any waiting threads that the pool is exporting, and then block until
10636 * they are finished using the spa_t.
10638 void
10639 spa_wake_waiters(spa_t *spa)
10641 mutex_enter(&spa->spa_activities_lock);
10642 spa->spa_waiters_cancel = B_TRUE;
10643 cv_broadcast(&spa->spa_activities_cv);
10644 while (spa->spa_waiters != 0)
10645 cv_wait(&spa->spa_waiters_cv, &spa->spa_activities_lock);
10646 spa->spa_waiters_cancel = B_FALSE;
10647 mutex_exit(&spa->spa_activities_lock);
10650 /* Whether the vdev or any of its descendants are being initialized/trimmed. */
10651 static boolean_t
10652 spa_vdev_activity_in_progress_impl(vdev_t *vd, zpool_wait_activity_t activity)
10654 spa_t *spa = vd->vdev_spa;
10656 ASSERT(spa_config_held(spa, SCL_CONFIG | SCL_STATE, RW_READER));
10657 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10658 ASSERT(activity == ZPOOL_WAIT_INITIALIZE ||
10659 activity == ZPOOL_WAIT_TRIM);
10661 kmutex_t *lock = activity == ZPOOL_WAIT_INITIALIZE ?
10662 &vd->vdev_initialize_lock : &vd->vdev_trim_lock;
10664 mutex_exit(&spa->spa_activities_lock);
10665 mutex_enter(lock);
10666 mutex_enter(&spa->spa_activities_lock);
10668 boolean_t in_progress = (activity == ZPOOL_WAIT_INITIALIZE) ?
10669 (vd->vdev_initialize_state == VDEV_INITIALIZE_ACTIVE) :
10670 (vd->vdev_trim_state == VDEV_TRIM_ACTIVE);
10671 mutex_exit(lock);
10673 if (in_progress)
10674 return (B_TRUE);
10676 for (int i = 0; i < vd->vdev_children; i++) {
10677 if (spa_vdev_activity_in_progress_impl(vd->vdev_child[i],
10678 activity))
10679 return (B_TRUE);
10682 return (B_FALSE);
10686 * If use_guid is true, this checks whether the vdev specified by guid is
10687 * being initialized/trimmed. Otherwise, it checks whether any vdev in the pool
10688 * is being initialized/trimmed. The caller must hold the config lock and
10689 * spa_activities_lock.
10691 static int
10692 spa_vdev_activity_in_progress(spa_t *spa, boolean_t use_guid, uint64_t guid,
10693 zpool_wait_activity_t activity, boolean_t *in_progress)
10695 mutex_exit(&spa->spa_activities_lock);
10696 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10697 mutex_enter(&spa->spa_activities_lock);
10699 vdev_t *vd;
10700 if (use_guid) {
10701 vd = spa_lookup_by_guid(spa, guid, B_FALSE);
10702 if (vd == NULL || !vd->vdev_ops->vdev_op_leaf) {
10703 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10704 return (EINVAL);
10706 } else {
10707 vd = spa->spa_root_vdev;
10710 *in_progress = spa_vdev_activity_in_progress_impl(vd, activity);
10712 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10713 return (0);
10717 * Locking for waiting threads
10718 * ---------------------------
10720 * Waiting threads need a way to check whether a given activity is in progress,
10721 * and then, if it is, wait for it to complete. Each activity will have some
10722 * in-memory representation of the relevant on-disk state which can be used to
10723 * determine whether or not the activity is in progress. The in-memory state and
10724 * the locking used to protect it will be different for each activity, and may
10725 * not be suitable for use with a cvar (e.g., some state is protected by the
10726 * config lock). To allow waiting threads to wait without any races, another
10727 * lock, spa_activities_lock, is used.
10729 * When the state is checked, both the activity-specific lock (if there is one)
10730 * and spa_activities_lock are held. In some cases, the activity-specific lock
10731 * is acquired explicitly (e.g. the config lock). In others, the locking is
10732 * internal to some check (e.g. bpobj_is_empty). After checking, the waiting
10733 * thread releases the activity-specific lock and, if the activity is in
10734 * progress, then cv_waits using spa_activities_lock.
10736 * The waiting thread is woken when another thread, one completing some
10737 * activity, updates the state of the activity and then calls
10738 * spa_notify_waiters, which will cv_broadcast. This 'completing' thread only
10739 * needs to hold its activity-specific lock when updating the state, and this
10740 * lock can (but doesn't have to) be dropped before calling spa_notify_waiters.
10742 * Because spa_notify_waiters acquires spa_activities_lock before broadcasting,
10743 * and because it is held when the waiting thread checks the state of the
10744 * activity, it can never be the case that the completing thread both updates
10745 * the activity state and cv_broadcasts in between the waiting thread's check
10746 * and cv_wait. Thus, a waiting thread can never miss a wakeup.
10748 * In order to prevent deadlock, when the waiting thread does its check, in some
10749 * cases it will temporarily drop spa_activities_lock in order to acquire the
10750 * activity-specific lock. The order in which spa_activities_lock and the
10751 * activity specific lock are acquired in the waiting thread is determined by
10752 * the order in which they are acquired in the completing thread; if the
10753 * completing thread calls spa_notify_waiters with the activity-specific lock
10754 * held, then the waiting thread must also acquire the activity-specific lock
10755 * first.
10758 static int
10759 spa_activity_in_progress(spa_t *spa, zpool_wait_activity_t activity,
10760 boolean_t use_tag, uint64_t tag, boolean_t *in_progress)
10762 int error = 0;
10764 ASSERT(MUTEX_HELD(&spa->spa_activities_lock));
10766 switch (activity) {
10767 case ZPOOL_WAIT_CKPT_DISCARD:
10768 *in_progress =
10769 (spa_feature_is_active(spa, SPA_FEATURE_POOL_CHECKPOINT) &&
10770 zap_contains(spa_meta_objset(spa),
10771 DMU_POOL_DIRECTORY_OBJECT, DMU_POOL_ZPOOL_CHECKPOINT) ==
10772 ENOENT);
10773 break;
10774 case ZPOOL_WAIT_FREE:
10775 *in_progress = ((spa_version(spa) >= SPA_VERSION_DEADLISTS &&
10776 !bpobj_is_empty(&spa->spa_dsl_pool->dp_free_bpobj)) ||
10777 spa_feature_is_active(spa, SPA_FEATURE_ASYNC_DESTROY) ||
10778 spa_livelist_delete_check(spa));
10779 break;
10780 case ZPOOL_WAIT_INITIALIZE:
10781 case ZPOOL_WAIT_TRIM:
10782 error = spa_vdev_activity_in_progress(spa, use_tag, tag,
10783 activity, in_progress);
10784 break;
10785 case ZPOOL_WAIT_REPLACE:
10786 mutex_exit(&spa->spa_activities_lock);
10787 spa_config_enter(spa, SCL_CONFIG | SCL_STATE, FTAG, RW_READER);
10788 mutex_enter(&spa->spa_activities_lock);
10790 *in_progress = vdev_replace_in_progress(spa->spa_root_vdev);
10791 spa_config_exit(spa, SCL_CONFIG | SCL_STATE, FTAG);
10792 break;
10793 case ZPOOL_WAIT_REMOVE:
10794 *in_progress = (spa->spa_removing_phys.sr_state ==
10795 DSS_SCANNING);
10796 break;
10797 case ZPOOL_WAIT_RESILVER:
10798 *in_progress = vdev_rebuild_active(spa->spa_root_vdev);
10799 if (*in_progress)
10800 break;
10801 zfs_fallthrough;
10802 case ZPOOL_WAIT_SCRUB:
10804 boolean_t scanning, paused, is_scrub;
10805 dsl_scan_t *scn = spa->spa_dsl_pool->dp_scan;
10807 is_scrub = (scn->scn_phys.scn_func == POOL_SCAN_SCRUB);
10808 scanning = (scn->scn_phys.scn_state == DSS_SCANNING);
10809 paused = dsl_scan_is_paused_scrub(scn);
10810 *in_progress = (scanning && !paused &&
10811 is_scrub == (activity == ZPOOL_WAIT_SCRUB));
10812 break;
10814 case ZPOOL_WAIT_RAIDZ_EXPAND:
10816 vdev_raidz_expand_t *vre = spa->spa_raidz_expand;
10817 *in_progress = (vre != NULL && vre->vre_state == DSS_SCANNING);
10818 break;
10820 default:
10821 panic("unrecognized value for activity %d", activity);
10824 return (error);
10827 static int
10828 spa_wait_common(const char *pool, zpool_wait_activity_t activity,
10829 boolean_t use_tag, uint64_t tag, boolean_t *waited)
10832 * The tag is used to distinguish between instances of an activity.
10833 * 'initialize' and 'trim' are the only activities that we use this for.
10834 * The other activities can only have a single instance in progress in a
10835 * pool at one time, making the tag unnecessary.
10837 * There can be multiple devices being replaced at once, but since they
10838 * all finish once resilvering finishes, we don't bother keeping track
10839 * of them individually, we just wait for them all to finish.
10841 if (use_tag && activity != ZPOOL_WAIT_INITIALIZE &&
10842 activity != ZPOOL_WAIT_TRIM)
10843 return (EINVAL);
10845 if (activity < 0 || activity >= ZPOOL_WAIT_NUM_ACTIVITIES)
10846 return (EINVAL);
10848 spa_t *spa;
10849 int error = spa_open(pool, &spa, FTAG);
10850 if (error != 0)
10851 return (error);
10854 * Increment the spa's waiter count so that we can call spa_close and
10855 * still ensure that the spa_t doesn't get freed before this thread is
10856 * finished with it when the pool is exported. We want to call spa_close
10857 * before we start waiting because otherwise the additional ref would
10858 * prevent the pool from being exported or destroyed throughout the
10859 * potentially long wait.
10861 mutex_enter(&spa->spa_activities_lock);
10862 spa->spa_waiters++;
10863 spa_close(spa, FTAG);
10865 *waited = B_FALSE;
10866 for (;;) {
10867 boolean_t in_progress;
10868 error = spa_activity_in_progress(spa, activity, use_tag, tag,
10869 &in_progress);
10871 if (error || !in_progress || spa->spa_waiters_cancel)
10872 break;
10874 *waited = B_TRUE;
10876 if (cv_wait_sig(&spa->spa_activities_cv,
10877 &spa->spa_activities_lock) == 0) {
10878 error = EINTR;
10879 break;
10883 spa->spa_waiters--;
10884 cv_signal(&spa->spa_waiters_cv);
10885 mutex_exit(&spa->spa_activities_lock);
10887 return (error);
10891 * Wait for a particular instance of the specified activity to complete, where
10892 * the instance is identified by 'tag'
10895 spa_wait_tag(const char *pool, zpool_wait_activity_t activity, uint64_t tag,
10896 boolean_t *waited)
10898 return (spa_wait_common(pool, activity, B_TRUE, tag, waited));
10902 * Wait for all instances of the specified activity complete
10905 spa_wait(const char *pool, zpool_wait_activity_t activity, boolean_t *waited)
10908 return (spa_wait_common(pool, activity, B_FALSE, 0, waited));
10911 sysevent_t *
10912 spa_event_create(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10914 sysevent_t *ev = NULL;
10915 #ifdef _KERNEL
10916 nvlist_t *resource;
10918 resource = zfs_event_create(spa, vd, FM_SYSEVENT_CLASS, name, hist_nvl);
10919 if (resource) {
10920 ev = kmem_alloc(sizeof (sysevent_t), KM_SLEEP);
10921 ev->resource = resource;
10923 #else
10924 (void) spa, (void) vd, (void) hist_nvl, (void) name;
10925 #endif
10926 return (ev);
10929 void
10930 spa_event_post(sysevent_t *ev)
10932 #ifdef _KERNEL
10933 if (ev) {
10934 zfs_zevent_post(ev->resource, NULL, zfs_zevent_post_cb);
10935 kmem_free(ev, sizeof (*ev));
10937 #else
10938 (void) ev;
10939 #endif
10943 * Post a zevent corresponding to the given sysevent. The 'name' must be one
10944 * of the event definitions in sys/sysevent/eventdefs.h. The payload will be
10945 * filled in from the spa and (optionally) the vdev. This doesn't do anything
10946 * in the userland libzpool, as we don't want consumers to misinterpret ztest
10947 * or zdb as real changes.
10949 void
10950 spa_event_notify(spa_t *spa, vdev_t *vd, nvlist_t *hist_nvl, const char *name)
10952 spa_event_post(spa_event_create(spa, vd, hist_nvl, name));
10955 /* state manipulation functions */
10956 EXPORT_SYMBOL(spa_open);
10957 EXPORT_SYMBOL(spa_open_rewind);
10958 EXPORT_SYMBOL(spa_get_stats);
10959 EXPORT_SYMBOL(spa_create);
10960 EXPORT_SYMBOL(spa_import);
10961 EXPORT_SYMBOL(spa_tryimport);
10962 EXPORT_SYMBOL(spa_destroy);
10963 EXPORT_SYMBOL(spa_export);
10964 EXPORT_SYMBOL(spa_reset);
10965 EXPORT_SYMBOL(spa_async_request);
10966 EXPORT_SYMBOL(spa_async_suspend);
10967 EXPORT_SYMBOL(spa_async_resume);
10968 EXPORT_SYMBOL(spa_inject_addref);
10969 EXPORT_SYMBOL(spa_inject_delref);
10970 EXPORT_SYMBOL(spa_scan_stat_init);
10971 EXPORT_SYMBOL(spa_scan_get_stats);
10973 /* device manipulation */
10974 EXPORT_SYMBOL(spa_vdev_add);
10975 EXPORT_SYMBOL(spa_vdev_attach);
10976 EXPORT_SYMBOL(spa_vdev_detach);
10977 EXPORT_SYMBOL(spa_vdev_setpath);
10978 EXPORT_SYMBOL(spa_vdev_setfru);
10979 EXPORT_SYMBOL(spa_vdev_split_mirror);
10981 /* spare statech is global across all pools) */
10982 EXPORT_SYMBOL(spa_spare_add);
10983 EXPORT_SYMBOL(spa_spare_remove);
10984 EXPORT_SYMBOL(spa_spare_exists);
10985 EXPORT_SYMBOL(spa_spare_activate);
10987 /* L2ARC statech is global across all pools) */
10988 EXPORT_SYMBOL(spa_l2cache_add);
10989 EXPORT_SYMBOL(spa_l2cache_remove);
10990 EXPORT_SYMBOL(spa_l2cache_exists);
10991 EXPORT_SYMBOL(spa_l2cache_activate);
10992 EXPORT_SYMBOL(spa_l2cache_drop);
10994 /* scanning */
10995 EXPORT_SYMBOL(spa_scan);
10996 EXPORT_SYMBOL(spa_scan_range);
10997 EXPORT_SYMBOL(spa_scan_stop);
10999 /* spa syncing */
11000 EXPORT_SYMBOL(spa_sync); /* only for DMU use */
11001 EXPORT_SYMBOL(spa_sync_allpools);
11003 /* properties */
11004 EXPORT_SYMBOL(spa_prop_set);
11005 EXPORT_SYMBOL(spa_prop_get);
11006 EXPORT_SYMBOL(spa_prop_clear_bootfs);
11008 /* asynchronous event notification */
11009 EXPORT_SYMBOL(spa_event_notify);
11011 ZFS_MODULE_PARAM(zfs_metaslab, metaslab_, preload_pct, UINT, ZMOD_RW,
11012 "Percentage of CPUs to run a metaslab preload taskq");
11014 /* BEGIN CSTYLED */
11015 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_shift, UINT, ZMOD_RW,
11016 "log2 fraction of arc that can be used by inflight I/Os when "
11017 "verifying pool during import");
11018 /* END CSTYLED */
11020 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_metadata, INT, ZMOD_RW,
11021 "Set to traverse metadata on pool import");
11023 ZFS_MODULE_PARAM(zfs_spa, spa_, load_verify_data, INT, ZMOD_RW,
11024 "Set to traverse data on pool import");
11026 ZFS_MODULE_PARAM(zfs_spa, spa_, load_print_vdev_tree, INT, ZMOD_RW,
11027 "Print vdev tree to zfs_dbgmsg during pool import");
11029 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_pct, UINT, ZMOD_RW,
11030 "Percentage of CPUs to run an IO worker thread");
11032 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_batch_tpq, UINT, ZMOD_RW,
11033 "Number of threads per IO worker taskqueue");
11035 /* BEGIN CSTYLED */
11036 ZFS_MODULE_PARAM(zfs, zfs_, max_missing_tvds, U64, ZMOD_RW,
11037 "Allow importing pool with up to this number of missing top-level "
11038 "vdevs (in read-only mode)");
11039 /* END CSTYLED */
11041 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_pause, INT,
11042 ZMOD_RW, "Set the livelist condense zthr to pause");
11044 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_pause, INT,
11045 ZMOD_RW, "Set the livelist condense synctask to pause");
11047 /* BEGIN CSTYLED */
11048 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, sync_cancel,
11049 INT, ZMOD_RW,
11050 "Whether livelist condensing was canceled in the synctask");
11052 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, zthr_cancel,
11053 INT, ZMOD_RW,
11054 "Whether livelist condensing was canceled in the zthr function");
11056 ZFS_MODULE_PARAM(zfs_livelist_condense, zfs_livelist_condense_, new_alloc, INT,
11057 ZMOD_RW,
11058 "Whether extra ALLOC blkptrs were added to a livelist entry while it "
11059 "was being condensed");
11061 #ifdef _KERNEL
11062 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_read,
11063 spa_taskq_read_param_set, spa_taskq_read_param_get, ZMOD_RW,
11064 "Configure IO queues for read IO");
11065 ZFS_MODULE_VIRTUAL_PARAM_CALL(zfs_zio, zio_, taskq_write,
11066 spa_taskq_write_param_set, spa_taskq_write_param_get, ZMOD_RW,
11067 "Configure IO queues for write IO");
11068 #endif
11069 /* END CSTYLED */
11071 ZFS_MODULE_PARAM(zfs_zio, zio_, taskq_write_tpq, UINT, ZMOD_RW,
11072 "Number of CPUs per write issue taskq");