4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (c) 2012, 2020 by Delphix. All rights reserved.
25 * Copyright (c) 2016 Gvozden Nešković. All rights reserved.
28 #include <sys/zfs_context.h>
30 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/metaslab_impl.h>
35 #include <sys/zio_checksum.h>
36 #include <sys/dmu_tx.h>
38 #include <sys/zfs_rlock.h>
39 #include <sys/fs/zfs.h>
40 #include <sys/fm/fs/zfs.h>
41 #include <sys/vdev_raidz.h>
42 #include <sys/vdev_raidz_impl.h>
43 #include <sys/vdev_draid.h>
44 #include <sys/uberblock_impl.h>
45 #include <sys/dsl_scan.h>
48 #include <sys/vdev.h> /* For vdev_xlate() in vdev_raidz_io_verify() */
52 * Virtual device vector for RAID-Z.
54 * This vdev supports single, double, and triple parity. For single parity,
55 * we use a simple XOR of all the data columns. For double or triple parity,
56 * we use a special case of Reed-Solomon coding. This extends the
57 * technique described in "The mathematics of RAID-6" by H. Peter Anvin by
58 * drawing on the system described in "A Tutorial on Reed-Solomon Coding for
59 * Fault-Tolerance in RAID-like Systems" by James S. Plank on which the
60 * former is also based. The latter is designed to provide higher performance
63 * Note that the Plank paper claimed to support arbitrary N+M, but was then
64 * amended six years later identifying a critical flaw that invalidates its
65 * claims. Nevertheless, the technique can be adapted to work for up to
66 * triple parity. For additional parity, the amendment "Note: Correction to
67 * the 1997 Tutorial on Reed-Solomon Coding" by James S. Plank and Ying Ding
68 * is viable, but the additional complexity means that write performance will
71 * All of the methods above operate on a Galois field, defined over the
72 * integers mod 2^N. In our case we choose N=8 for GF(8) so that all elements
73 * can be expressed with a single byte. Briefly, the operations on the
74 * field are defined as follows:
76 * o addition (+) is represented by a bitwise XOR
77 * o subtraction (-) is therefore identical to addition: A + B = A - B
78 * o multiplication of A by 2 is defined by the following bitwise expression:
83 * (A * 2)_4 = A_3 + A_7
84 * (A * 2)_3 = A_2 + A_7
85 * (A * 2)_2 = A_1 + A_7
89 * In C, multiplying by 2 is therefore ((a << 1) ^ ((a & 0x80) ? 0x1d : 0)).
90 * As an aside, this multiplication is derived from the error correcting
91 * primitive polynomial x^8 + x^4 + x^3 + x^2 + 1.
93 * Observe that any number in the field (except for 0) can be expressed as a
94 * power of 2 -- a generator for the field. We store a table of the powers of
95 * 2 and logs base 2 for quick look ups, and exploit the fact that A * B can
96 * be rewritten as 2^(log_2(A) + log_2(B)) (where '+' is normal addition rather
97 * than field addition). The inverse of a field element A (A^-1) is therefore
98 * A ^ (255 - 1) = A^254.
100 * The up-to-three parity columns, P, Q, R over several data columns,
101 * D_0, ... D_n-1, can be expressed by field operations:
103 * P = D_0 + D_1 + ... + D_n-2 + D_n-1
104 * Q = 2^n-1 * D_0 + 2^n-2 * D_1 + ... + 2^1 * D_n-2 + 2^0 * D_n-1
105 * = ((...((D_0) * 2 + D_1) * 2 + ...) * 2 + D_n-2) * 2 + D_n-1
106 * R = 4^n-1 * D_0 + 4^n-2 * D_1 + ... + 4^1 * D_n-2 + 4^0 * D_n-1
107 * = ((...((D_0) * 4 + D_1) * 4 + ...) * 4 + D_n-2) * 4 + D_n-1
109 * We chose 1, 2, and 4 as our generators because 1 corresponds to the trivial
110 * XOR operation, and 2 and 4 can be computed quickly and generate linearly-
111 * independent coefficients. (There are no additional coefficients that have
112 * this property which is why the uncorrected Plank method breaks down.)
114 * See the reconstruction code below for how P, Q and R can used individually
115 * or in concert to recover missing data columns.
118 #define VDEV_RAIDZ_P 0
119 #define VDEV_RAIDZ_Q 1
120 #define VDEV_RAIDZ_R 2
122 #define VDEV_RAIDZ_MUL_2(x) (((x) << 1) ^ (((x) & 0x80) ? 0x1d : 0))
123 #define VDEV_RAIDZ_MUL_4(x) (VDEV_RAIDZ_MUL_2(VDEV_RAIDZ_MUL_2(x)))
126 * We provide a mechanism to perform the field multiplication operation on a
127 * 64-bit value all at once rather than a byte at a time. This works by
128 * creating a mask from the top bit in each byte and using that to
129 * conditionally apply the XOR of 0x1d.
131 #define VDEV_RAIDZ_64MUL_2(x, mask) \
133 (mask) = (x) & 0x8080808080808080ULL; \
134 (mask) = ((mask) << 1) - ((mask) >> 7); \
135 (x) = (((x) << 1) & 0xfefefefefefefefeULL) ^ \
136 ((mask) & 0x1d1d1d1d1d1d1d1dULL); \
139 #define VDEV_RAIDZ_64MUL_4(x, mask) \
141 VDEV_RAIDZ_64MUL_2((x), mask); \
142 VDEV_RAIDZ_64MUL_2((x), mask); \
147 * Big Theory Statement for how a RAIDZ VDEV is expanded
149 * An existing RAIDZ VDEV can be expanded by attaching a new disk. Expansion
150 * works with all three RAIDZ parity choices, including RAIDZ1, 2, or 3. VDEVs
151 * that have been previously expanded can be expanded again.
153 * The RAIDZ VDEV must be healthy (must be able to write to all the drives in
154 * the VDEV) when an expansion starts. And the expansion will pause if any
155 * disk in the VDEV fails, and resume once the VDEV is healthy again. All other
156 * operations on the pool can continue while an expansion is in progress (e.g.
157 * read/write, snapshot, zpool add, etc). Except zpool checkpoint, zpool trim,
158 * and zpool initialize which can't be run during an expansion. Following a
159 * reboot or export/import, the expansion resumes where it left off.
161 * == Reflowing the Data ==
163 * The expansion involves reflowing (copying) the data from the current set
164 * of disks to spread it across the new set which now has one more disk. This
165 * reflow operation is similar to reflowing text when the column width of a
166 * text editor window is expanded. The text doesn’t change but the location of
167 * the text changes to accommodate the new width. An example reflow result for
168 * a 4-wide RAIDZ1 to a 5-wide is shown below.
171 * Each letter indicates a parity group (logical stripe)
173 * Before expansion After Expansion
174 * D1 D2 D3 D4 D1 D2 D3 D4 D5
175 * +------+------+------+------+ +------+------+------+------+------+
176 * | | | | | | | | | | |
177 * | A | A | A | A | | A | A | A | A | B |
178 * | 1| 2| 3| 4| | 1| 2| 3| 4| 5|
179 * +------+------+------+------+ +------+------+------+------+------+
180 * | | | | | | | | | | |
181 * | B | B | C | C | | B | C | C | C | C |
182 * | 5| 6| 7| 8| | 6| 7| 8| 9| 10|
183 * +------+------+------+------+ +------+------+------+------+------+
184 * | | | | | | | | | | |
185 * | C | C | D | D | | D | D | E | E | E |
186 * | 9| 10| 11| 12| | 11| 12| 13| 14| 15|
187 * +------+------+------+------+ +------+------+------+------+------+
188 * | | | | | | | | | | |
189 * | E | E | E | E | --> | E | F | F | G | G |
190 * | 13| 14| 15| 16| | 16| 17| 18|p 19| 20|
191 * +------+------+------+------+ +------+------+------+------+------+
192 * | | | | | | | | | | |
193 * | F | F | G | G | | G | G | H | H | H |
194 * | 17| 18| 19| 20| | 21| 22| 23| 24| 25|
195 * +------+------+------+------+ +------+------+------+------+------+
196 * | | | | | | | | | | |
197 * | G | G | H | H | | H | I | I | J | J |
198 * | 21| 22| 23| 24| | 26| 27| 28| 29| 30|
199 * +------+------+------+------+ +------+------+------+------+------+
200 * | | | | | | | | | | |
201 * | H | H | I | I | | J | J | | | K |
202 * | 25| 26| 27| 28| | 31| 32| 33| 34| 35|
203 * +------+------+------+------+ +------+------+------+------+------+
205 * This reflow approach has several advantages. There is no need to read or
206 * modify the block pointers or recompute any block checksums. The reflow
207 * doesn’t need to know where the parity sectors reside. We can read and write
208 * data sequentially and the copy can occur in a background thread in open
209 * context. The design also allows for fast discovery of what data to copy.
211 * The VDEV metaslabs are processed, one at a time, to copy the block data to
212 * have it flow across all the disks. The metaslab is disabled for allocations
213 * during the copy. As an optimization, we only copy the allocated data which
214 * can be determined by looking at the metaslab range tree. During the copy we
215 * must maintain the redundancy guarantees of the RAIDZ VDEV (i.e., we still
216 * need to be able to survive losing parity count disks). This means we
217 * cannot overwrite data during the reflow that would be needed if a disk is
220 * After the reflow completes, all newly-written blocks will have the new
221 * layout, i.e., they will have the parity to data ratio implied by the new
222 * number of disks in the RAIDZ group. Even though the reflow copies all of
223 * the allocated space (data and parity), it is only rearranged, not changed.
225 * This act of reflowing the data has a few implications about blocks
226 * that were written before the reflow completes:
228 * - Old blocks will still use the same amount of space (i.e., they will have
229 * the parity to data ratio implied by the old number of disks in the RAIDZ
231 * - Reading old blocks will be slightly slower than before the reflow, for
232 * two reasons. First, we will have to read from all disks in the RAIDZ
233 * VDEV, rather than being able to skip the children that contain only
234 * parity of this block (because the data of a single block is now spread
235 * out across all the disks). Second, in most cases there will be an extra
236 * bcopy, needed to rearrange the data back to its original layout in memory.
240 * As we copy the block data, we can only progress to the point that writes
241 * will not overlap with blocks whose progress has not yet been recorded on
242 * disk. Since partially-copied rows are always read from the old location,
243 * we need to stop one row before the sector-wise overlap, to prevent any
244 * row-wise overlap. For example, in the diagram above, when we reflow sector
245 * B6 it will overwite the original location for B5.
247 * To get around this, a scratch space is used so that we can start copying
248 * without risking data loss by overlapping the row. As an added benefit, it
249 * improves performance at the beginning of the reflow, but that small perf
250 * boost wouldn't be worth the complexity on its own.
252 * Ideally we want to copy at least 2 * (new_width)^2 so that we have a
253 * separation of 2*(new_width+1) and a chunk size of new_width+2. With the max
254 * RAIDZ width of 255 and 4K sectors this would be 2MB per disk. In practice
255 * the widths will likely be single digits so we can get a substantial chuck
256 * size using only a few MB of scratch per disk.
258 * The scratch area is persisted to disk which holds a large amount of reflowed
259 * state. We can always read the partially written stripes when a disk fails or
260 * the copy is interrupted (crash) during the initial copying phase and also
261 * get past a small chunk size restriction. At a minimum, the scratch space
262 * must be large enough to get us to the point that one row does not overlap
263 * itself when moved (i.e new_width^2). But going larger is even better. We
264 * use the 3.5 MiB reserved "boot" space that resides after the ZFS disk labels
265 * as our scratch space to handle overwriting the initial part of the VDEV.
268 * +------+------+-----------------------+-----------------------------
269 * | VDEV | VDEV | Boot Block (3.5M) | Allocatable space ...
270 * | L0 | L1 | Reserved | (Metaslabs)
271 * +------+------+-----------------------+-------------------------------
274 * == Reflow Progress Updates ==
275 * After the initial scratch-based reflow, the expansion process works
276 * similarly to device removal. We create a new open context thread which
277 * reflows the data, and periodically kicks off sync tasks to update logical
278 * state. In this case, state is the committed progress (offset of next data
279 * to copy). We need to persist the completed offset on disk, so that if we
280 * crash we know which format each VDEV offset is in.
282 * == Time Dependent Geometry ==
284 * In non-expanded RAIDZ, blocks are read from disk in a column by column
285 * fashion. For a multi-row block, the second sector is in the first column
286 * not in the second column. This allows us to issue full reads for each
287 * column directly into the request buffer. The block data is thus laid out
288 * sequentially in a column-by-column fashion.
290 * For example, in the before expansion diagram above, one logical block might
291 * be sectors G19-H26. The parity is in G19,H23; and the data is in
292 * G20,H24,G21,H25,G22,H26.
294 * After a block is reflowed, the sectors that were all in the original column
295 * data can now reside in different columns. When reading from an expanded
296 * VDEV, we need to know the logical stripe width for each block so we can
297 * reconstitute the block’s data after the reads are completed. Likewise,
298 * when we perform the combinatorial reconstruction we need to know the
299 * original width so we can retry combinations from the past layouts.
301 * Time dependent geometry is what we call having blocks with different layouts
302 * (stripe widths) in the same VDEV. This time-dependent geometry uses the
303 * block’s birth time (+ the time expansion ended) to establish the correct
304 * width for a given block. After an expansion completes, we record the time
305 * for blocks written with a particular width (geometry).
307 * == On Disk Format Changes ==
309 * New pool feature flag, 'raidz_expansion' whose reference count is the number
310 * of RAIDZ VDEVs that have been expanded.
312 * The blocks on expanded RAIDZ VDEV can have different logical stripe widths.
314 * Since the uberblock can point to arbitrary blocks, which might be on the
315 * expanding RAIDZ, and might or might not have been expanded. We need to know
316 * which way a block is laid out before reading it. This info is the next
317 * offset that needs to be reflowed and we persist that in the uberblock, in
318 * the new ub_raidz_reflow_info field, as opposed to the MOS or the vdev label.
319 * After the expansion is complete, we then use the raidz_expand_txgs array
320 * (see below) to determine how to read a block and the ub_raidz_reflow_info
321 * field no longer required.
323 * The uberblock's ub_raidz_reflow_info field also holds the scratch space
324 * state (i.e., active or not) which is also required before reading a block
325 * during the initial phase of reflowing the data.
327 * The top-level RAIDZ VDEV has two new entries in the nvlist:
329 * 'raidz_expand_txgs' array: logical stripe widths by txg are recorded here
330 * and used after the expansion is complete to
331 * determine how to read a raidz block
332 * 'raidz_expanding' boolean: present during reflow and removed after completion
333 * used during a spa import to resume an unfinished
336 * And finally the VDEVs top zap adds the following informational entries:
337 * VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE
338 * VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME
339 * VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME
340 * VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED
344 * For testing only: pause the raidz expansion after reflowing this amount.
345 * (accessed by ZTS and ztest)
350 unsigned long raidz_expand_max_reflow_bytes
= 0;
353 * For testing only: pause the raidz expansion at a certain point.
355 uint_t raidz_expand_pause_point
= 0;
358 * Maximum amount of copy io's outstanding at once.
361 static unsigned long raidz_expand_max_copy_bytes
= SPA_MAXBLOCKSIZE
;
363 static unsigned long raidz_expand_max_copy_bytes
= 10 * SPA_MAXBLOCKSIZE
;
367 * Apply raidz map abds aggregation if the number of rows in the map is equal
368 * or greater than the value below.
370 static unsigned long raidz_io_aggregate_rows
= 4;
373 * Automatically start a pool scrub when a RAIDZ expansion completes in
374 * order to verify the checksums of all blocks which have been copied
375 * during the expansion. Automatic scrubbing is enabled by default and
376 * is strongly recommended.
378 static int zfs_scrub_after_expand
= 1;
381 vdev_raidz_row_free(raidz_row_t
*rr
)
383 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
384 raidz_col_t
*rc
= &rr
->rr_col
[c
];
386 if (rc
->rc_size
!= 0)
387 abd_free(rc
->rc_abd
);
388 if (rc
->rc_orig_data
!= NULL
)
389 abd_free(rc
->rc_orig_data
);
392 if (rr
->rr_abd_empty
!= NULL
)
393 abd_free(rr
->rr_abd_empty
);
395 kmem_free(rr
, offsetof(raidz_row_t
, rr_col
[rr
->rr_scols
]));
399 vdev_raidz_map_free(raidz_map_t
*rm
)
401 for (int i
= 0; i
< rm
->rm_nrows
; i
++)
402 vdev_raidz_row_free(rm
->rm_row
[i
]);
404 if (rm
->rm_nphys_cols
) {
405 for (int i
= 0; i
< rm
->rm_nphys_cols
; i
++) {
406 if (rm
->rm_phys_col
[i
].rc_abd
!= NULL
)
407 abd_free(rm
->rm_phys_col
[i
].rc_abd
);
410 kmem_free(rm
->rm_phys_col
, sizeof (raidz_col_t
) *
414 ASSERT3P(rm
->rm_lr
, ==, NULL
);
415 kmem_free(rm
, offsetof(raidz_map_t
, rm_row
[rm
->rm_nrows
]));
419 vdev_raidz_map_free_vsd(zio_t
*zio
)
421 raidz_map_t
*rm
= zio
->io_vsd
;
423 vdev_raidz_map_free(rm
);
427 vdev_raidz_reflow_compare(const void *x1
, const void *x2
)
429 const reflow_node_t
*l
= x1
;
430 const reflow_node_t
*r
= x2
;
432 return (TREE_CMP(l
->re_txg
, r
->re_txg
));
435 const zio_vsd_ops_t vdev_raidz_vsd_ops
= {
436 .vsd_free
= vdev_raidz_map_free_vsd
,
440 vdev_raidz_row_alloc(int cols
, zio_t
*zio
)
443 kmem_zalloc(offsetof(raidz_row_t
, rr_col
[cols
]), KM_SLEEP
);
448 for (int c
= 0; c
< cols
; c
++) {
449 raidz_col_t
*rc
= &rr
->rr_col
[c
];
450 rc
->rc_shadow_devidx
= INT_MAX
;
451 rc
->rc_shadow_offset
= UINT64_MAX
;
453 * We can not allow self healing to take place for Direct I/O
454 * reads. There is nothing that stops the buffer contents from
455 * being manipulated while the I/O is in flight. It is possible
456 * that the checksum could be verified on the buffer and then
457 * the contents of that buffer are manipulated afterwards. This
458 * could lead to bad data being written out during self
461 if (!(zio
->io_flags
& ZIO_FLAG_DIO_READ
))
462 rc
->rc_allow_repair
= 1;
468 vdev_raidz_map_alloc_write(zio_t
*zio
, raidz_map_t
*rm
, uint64_t ashift
)
473 raidz_row_t
*rr
= rm
->rm_row
[0];
475 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
476 ASSERT3U(rm
->rm_nrows
, ==, 1);
479 * Pad any parity columns with additional space to account for skip
482 if (rm
->rm_skipstart
< rr
->rr_firstdatacol
) {
483 ASSERT0(rm
->rm_skipstart
);
484 nwrapped
= rm
->rm_nskip
;
485 } else if (rr
->rr_scols
< (rm
->rm_skipstart
+ rm
->rm_nskip
)) {
487 (rm
->rm_skipstart
+ rm
->rm_nskip
) % rr
->rr_scols
;
491 * Optional single skip sectors (rc_size == 0) will be handled in
492 * vdev_raidz_io_start_write().
494 int skipped
= rr
->rr_scols
- rr
->rr_cols
;
496 /* Allocate buffers for the parity columns */
497 for (c
= 0; c
< rr
->rr_firstdatacol
; c
++) {
498 raidz_col_t
*rc
= &rr
->rr_col
[c
];
501 * Parity columns will pad out a linear ABD to account for
502 * the skip sector. A linear ABD is used here because
503 * parity calculations use the ABD buffer directly to calculate
504 * parity. This avoids doing a memcpy back to the ABD after the
505 * parity has been calculated. By issuing the parity column
506 * with the skip sector we can reduce contention on the child
507 * VDEV queue locks (vq_lock).
510 rc
->rc_abd
= abd_alloc_linear(
511 rc
->rc_size
+ (1ULL << ashift
), B_FALSE
);
512 abd_zero_off(rc
->rc_abd
, rc
->rc_size
, 1ULL << ashift
);
515 rc
->rc_abd
= abd_alloc_linear(rc
->rc_size
, B_FALSE
);
519 for (off
= 0; c
< rr
->rr_cols
; c
++) {
520 raidz_col_t
*rc
= &rr
->rr_col
[c
];
521 abd_t
*abd
= abd_get_offset_struct(&rc
->rc_abdstruct
,
522 zio
->io_abd
, off
, rc
->rc_size
);
525 * Generate I/O for skip sectors to improve aggregation
526 * continuity. We will use gang ABD's to reduce contention
527 * on the child VDEV queue locks (vq_lock) by issuing
528 * a single I/O that contains the data and skip sector.
530 * It is important to make sure that rc_size is not updated
531 * even though we are adding a skip sector to the ABD. When
532 * calculating the parity in vdev_raidz_generate_parity_row()
533 * the rc_size is used to iterate through the ABD's. We can
534 * not have zero'd out skip sectors used for calculating
535 * parity for raidz, because those same sectors are not used
536 * during reconstruction.
538 if (c
>= rm
->rm_skipstart
&& skipped
< rm
->rm_nskip
) {
539 rc
->rc_abd
= abd_alloc_gang();
540 abd_gang_add(rc
->rc_abd
, abd
, B_TRUE
);
541 abd_gang_add(rc
->rc_abd
,
542 abd_get_zeros(1ULL << ashift
), B_TRUE
);
550 ASSERT3U(off
, ==, zio
->io_size
);
551 ASSERT3S(skipped
, ==, rm
->rm_nskip
);
555 vdev_raidz_map_alloc_read(zio_t
*zio
, raidz_map_t
*rm
)
558 raidz_row_t
*rr
= rm
->rm_row
[0];
560 ASSERT3U(rm
->rm_nrows
, ==, 1);
562 /* Allocate buffers for the parity columns */
563 for (c
= 0; c
< rr
->rr_firstdatacol
; c
++)
564 rr
->rr_col
[c
].rc_abd
=
565 abd_alloc_linear(rr
->rr_col
[c
].rc_size
, B_FALSE
);
567 for (uint64_t off
= 0; c
< rr
->rr_cols
; c
++) {
568 raidz_col_t
*rc
= &rr
->rr_col
[c
];
569 rc
->rc_abd
= abd_get_offset_struct(&rc
->rc_abdstruct
,
570 zio
->io_abd
, off
, rc
->rc_size
);
576 * Divides the IO evenly across all child vdevs; usually, dcols is
577 * the number of children in the target vdev.
579 * Avoid inlining the function to keep vdev_raidz_io_start(), which
580 * is this functions only caller, as small as possible on the stack.
582 noinline raidz_map_t
*
583 vdev_raidz_map_alloc(zio_t
*zio
, uint64_t ashift
, uint64_t dcols
,
587 /* The starting RAIDZ (parent) vdev sector of the block. */
588 uint64_t b
= zio
->io_offset
>> ashift
;
589 /* The zio's size in units of the vdev's minimum sector size. */
590 uint64_t s
= zio
->io_size
>> ashift
;
591 /* The first column for this stripe. */
592 uint64_t f
= b
% dcols
;
593 /* The starting byte offset on each child vdev. */
594 uint64_t o
= (b
/ dcols
) << ashift
;
595 uint64_t acols
, scols
;
598 kmem_zalloc(offsetof(raidz_map_t
, rm_row
[1]), KM_SLEEP
);
602 * "Quotient": The number of data sectors for this stripe on all but
603 * the "big column" child vdevs that also contain "remainder" data.
605 uint64_t q
= s
/ (dcols
- nparity
);
608 * "Remainder": The number of partial stripe data sectors in this I/O.
609 * This will add a sector to some, but not all, child vdevs.
611 uint64_t r
= s
- q
* (dcols
- nparity
);
613 /* The number of "big columns" - those which contain remainder data. */
614 uint64_t bc
= (r
== 0 ? 0 : r
+ nparity
);
617 * The total number of data and parity sectors associated with
620 uint64_t tot
= s
+ nparity
* (q
+ (r
== 0 ? 0 : 1));
623 * acols: The columns that will be accessed.
624 * scols: The columns that will be accessed or skipped.
627 /* Our I/O request doesn't span all child vdevs. */
629 scols
= MIN(dcols
, roundup(bc
, nparity
+ 1));
635 ASSERT3U(acols
, <=, scols
);
636 rr
= vdev_raidz_row_alloc(scols
, zio
);
640 rr
->rr_firstdatacol
= nparity
;
642 rr
->rr_offset
= zio
->io_offset
;
643 rr
->rr_size
= zio
->io_size
;
648 for (uint64_t c
= 0; c
< scols
; c
++) {
649 raidz_col_t
*rc
= &rr
->rr_col
[c
];
650 uint64_t col
= f
+ c
;
654 coff
+= 1ULL << ashift
;
657 rc
->rc_offset
= coff
;
662 rc
->rc_size
= (q
+ 1) << ashift
;
664 rc
->rc_size
= q
<< ashift
;
666 asize
+= rc
->rc_size
;
669 ASSERT3U(asize
, ==, tot
<< ashift
);
670 rm
->rm_nskip
= roundup(tot
, nparity
+ 1) - tot
;
671 rm
->rm_skipstart
= bc
;
674 * If all data stored spans all columns, there's a danger that parity
675 * will always be on the same device and, since parity isn't read
676 * during normal operation, that device's I/O bandwidth won't be
677 * used effectively. We therefore switch the parity every 1MB.
679 * ... at least that was, ostensibly, the theory. As a practical
680 * matter unless we juggle the parity between all devices evenly, we
681 * won't see any benefit. Further, occasional writes that aren't a
682 * multiple of the LCM of the number of children and the minimum
683 * stripe width are sufficient to avoid pessimal behavior.
684 * Unfortunately, this decision created an implicit on-disk format
685 * requirement that we need to support for all eternity, but only
686 * for single-parity RAID-Z.
688 * If we intend to skip a sector in the zeroth column for padding
689 * we must make sure to note this swap. We will never intend to
690 * skip the first column since at least one data and one parity
691 * column must appear in each row.
693 ASSERT(rr
->rr_cols
>= 2);
694 ASSERT(rr
->rr_col
[0].rc_size
== rr
->rr_col
[1].rc_size
);
696 if (rr
->rr_firstdatacol
== 1 && (zio
->io_offset
& (1ULL << 20))) {
697 uint64_t devidx
= rr
->rr_col
[0].rc_devidx
;
698 o
= rr
->rr_col
[0].rc_offset
;
699 rr
->rr_col
[0].rc_devidx
= rr
->rr_col
[1].rc_devidx
;
700 rr
->rr_col
[0].rc_offset
= rr
->rr_col
[1].rc_offset
;
701 rr
->rr_col
[1].rc_devidx
= devidx
;
702 rr
->rr_col
[1].rc_offset
= o
;
703 if (rm
->rm_skipstart
== 0)
704 rm
->rm_skipstart
= 1;
707 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
708 vdev_raidz_map_alloc_write(zio
, rm
, ashift
);
710 vdev_raidz_map_alloc_read(zio
, rm
);
712 /* init RAIDZ parity ops */
713 rm
->rm_ops
= vdev_raidz_math_get_ops();
719 * Everything before reflow_offset_synced should have been moved to the new
720 * location (read and write completed). However, this may not yet be reflected
721 * in the on-disk format (e.g. raidz_reflow_sync() has been called but the
722 * uberblock has not yet been written). If reflow is not in progress,
723 * reflow_offset_synced should be UINT64_MAX. For each row, if the row is
724 * entirely before reflow_offset_synced, it will come from the new location.
725 * Otherwise this row will come from the old location. Therefore, rows that
726 * straddle the reflow_offset_synced will come from the old location.
728 * For writes, reflow_offset_next is the next offset to copy. If a sector has
729 * been copied, but not yet reflected in the on-disk progress
730 * (reflow_offset_synced), it will also be written to the new (already copied)
733 noinline raidz_map_t
*
734 vdev_raidz_map_alloc_expanded(zio_t
*zio
,
735 uint64_t ashift
, uint64_t physical_cols
, uint64_t logical_cols
,
736 uint64_t nparity
, uint64_t reflow_offset_synced
,
737 uint64_t reflow_offset_next
, boolean_t use_scratch
)
739 abd_t
*abd
= zio
->io_abd
;
740 uint64_t offset
= zio
->io_offset
;
741 uint64_t size
= zio
->io_size
;
743 /* The zio's size in units of the vdev's minimum sector size. */
744 uint64_t s
= size
>> ashift
;
747 * "Quotient": The number of data sectors for this stripe on all but
748 * the "big column" child vdevs that also contain "remainder" data.
751 uint64_t q
= s
/ (logical_cols
- nparity
);
754 * "Remainder": The number of partial stripe data sectors in this I/O.
755 * This will add a sector to some, but not all, child vdevs.
757 uint64_t r
= s
- q
* (logical_cols
- nparity
);
759 /* The number of "big columns" - those which contain remainder data. */
760 uint64_t bc
= (r
== 0 ? 0 : r
+ nparity
);
763 * The total number of data and parity sectors associated with
766 uint64_t tot
= s
+ nparity
* (q
+ (r
== 0 ? 0 : 1));
768 /* How many rows contain data (not skip) */
769 uint64_t rows
= howmany(tot
, logical_cols
);
770 int cols
= MIN(tot
, logical_cols
);
773 kmem_zalloc(offsetof(raidz_map_t
, rm_row
[rows
]),
776 rm
->rm_nskip
= roundup(tot
, nparity
+ 1) - tot
;
777 rm
->rm_skipstart
= bc
;
780 for (uint64_t row
= 0; row
< rows
; row
++) {
781 boolean_t row_use_scratch
= B_FALSE
;
782 raidz_row_t
*rr
= vdev_raidz_row_alloc(cols
, zio
);
783 rm
->rm_row
[row
] = rr
;
785 /* The starting RAIDZ (parent) vdev sector of the row. */
786 uint64_t b
= (offset
>> ashift
) + row
* logical_cols
;
789 * If we are in the middle of a reflow, and the copying has
790 * not yet completed for any part of this row, then use the
791 * old location of this row. Note that reflow_offset_synced
792 * reflects the i/o that's been completed, because it's
793 * updated by a synctask, after zio_wait(spa_txg_zio[]).
794 * This is sufficient for our check, even if that progress
795 * has not yet been recorded to disk (reflected in
796 * spa_ubsync). Also note that we consider the last row to
797 * be "full width" (`cols`-wide rather than `bc`-wide) for
798 * this calculation. This causes a tiny bit of unnecessary
799 * double-writes but is safe and simpler to calculate.
801 int row_phys_cols
= physical_cols
;
802 if (b
+ cols
> reflow_offset_synced
>> ashift
)
804 else if (use_scratch
)
805 row_use_scratch
= B_TRUE
;
807 /* starting child of this row */
808 uint64_t child_id
= b
% row_phys_cols
;
809 /* The starting byte offset on each child vdev. */
810 uint64_t child_offset
= (b
/ row_phys_cols
) << ashift
;
813 * Note, rr_cols is the entire width of the block, even
814 * if this row is shorter. This is needed because parity
815 * generation (for Q and R) needs to know the entire width,
816 * because it treats the short row as though it was
817 * full-width (and the "phantom" sectors were zero-filled).
819 * Another approach to this would be to set cols shorter
820 * (to just the number of columns that we might do i/o to)
821 * and have another mechanism to tell the parity generation
822 * about the "entire width". Reconstruction (at least
823 * vdev_raidz_reconstruct_general()) would also need to
824 * know about the "entire width".
826 rr
->rr_firstdatacol
= nparity
;
829 * note: rr_size is PSIZE, not ASIZE
831 rr
->rr_offset
= b
<< ashift
;
832 rr
->rr_size
= (rr
->rr_cols
- rr
->rr_firstdatacol
) << ashift
;
835 for (int c
= 0; c
< rr
->rr_cols
; c
++, child_id
++) {
836 if (child_id
>= row_phys_cols
) {
837 child_id
-= row_phys_cols
;
838 child_offset
+= 1ULL << ashift
;
840 raidz_col_t
*rc
= &rr
->rr_col
[c
];
841 rc
->rc_devidx
= child_id
;
842 rc
->rc_offset
= child_offset
;
845 * Get this from the scratch space if appropriate.
846 * This only happens if we crashed in the middle of
847 * raidz_reflow_scratch_sync() (while it's running,
848 * the rangelock prevents us from doing concurrent
849 * io), and even then only during zpool import or
850 * when the pool is imported readonly.
853 rc
->rc_offset
-= VDEV_BOOT_SIZE
;
855 uint64_t dc
= c
- rr
->rr_firstdatacol
;
856 if (c
< rr
->rr_firstdatacol
) {
857 rc
->rc_size
= 1ULL << ashift
;
860 * Parity sectors' rc_abd's are set below
861 * after determining if this is an aggregation.
863 } else if (row
== rows
- 1 && bc
!= 0 && c
>= bc
) {
865 * Past the end of the block (even including
866 * skip sectors). This sector is part of the
867 * map so that we have full rows for p/q parity
873 /* "data column" (col excluding parity) */
876 if (c
< bc
|| r
== 0) {
877 off
= dc
* rows
+ row
;
880 (dc
- r
) * (rows
- 1) + row
;
882 rc
->rc_size
= 1ULL << ashift
;
883 rc
->rc_abd
= abd_get_offset_struct(
884 &rc
->rc_abdstruct
, abd
, off
<< ashift
,
888 if (rc
->rc_size
== 0)
892 * If any part of this row is in both old and new
893 * locations, the primary location is the old
894 * location. If this sector was already copied to the
895 * new location, we need to also write to the new,
898 * Note, `row_phys_cols != physical_cols` indicates
899 * that the primary location is the old location.
900 * `b+c < reflow_offset_next` indicates that the copy
901 * to the new location has been initiated. We know
902 * that the copy has completed because we have the
903 * rangelock, which is held exclusively while the
904 * copy is in progress.
906 if (row_use_scratch
||
907 (row_phys_cols
!= physical_cols
&&
908 b
+ c
< reflow_offset_next
>> ashift
)) {
909 rc
->rc_shadow_devidx
= (b
+ c
) % physical_cols
;
910 rc
->rc_shadow_offset
=
911 ((b
+ c
) / physical_cols
) << ashift
;
913 rc
->rc_shadow_offset
-= VDEV_BOOT_SIZE
;
916 asize
+= rc
->rc_size
;
920 * See comment in vdev_raidz_map_alloc()
922 if (rr
->rr_firstdatacol
== 1 && rr
->rr_cols
> 1 &&
923 (offset
& (1ULL << 20))) {
924 ASSERT(rr
->rr_cols
>= 2);
925 ASSERT(rr
->rr_col
[0].rc_size
== rr
->rr_col
[1].rc_size
);
927 int devidx0
= rr
->rr_col
[0].rc_devidx
;
928 uint64_t offset0
= rr
->rr_col
[0].rc_offset
;
929 int shadow_devidx0
= rr
->rr_col
[0].rc_shadow_devidx
;
930 uint64_t shadow_offset0
=
931 rr
->rr_col
[0].rc_shadow_offset
;
933 rr
->rr_col
[0].rc_devidx
= rr
->rr_col
[1].rc_devidx
;
934 rr
->rr_col
[0].rc_offset
= rr
->rr_col
[1].rc_offset
;
935 rr
->rr_col
[0].rc_shadow_devidx
=
936 rr
->rr_col
[1].rc_shadow_devidx
;
937 rr
->rr_col
[0].rc_shadow_offset
=
938 rr
->rr_col
[1].rc_shadow_offset
;
940 rr
->rr_col
[1].rc_devidx
= devidx0
;
941 rr
->rr_col
[1].rc_offset
= offset0
;
942 rr
->rr_col
[1].rc_shadow_devidx
= shadow_devidx0
;
943 rr
->rr_col
[1].rc_shadow_offset
= shadow_offset0
;
946 ASSERT3U(asize
, ==, tot
<< ashift
);
949 * Determine if the block is contiguous, in which case we can use
952 if (rows
>= raidz_io_aggregate_rows
) {
953 rm
->rm_nphys_cols
= physical_cols
;
955 kmem_zalloc(sizeof (raidz_col_t
) * rm
->rm_nphys_cols
,
959 * Determine the aggregate io's offset and size, and check
960 * that the io is contiguous.
963 i
< rm
->rm_nrows
&& rm
->rm_phys_col
!= NULL
; i
++) {
964 raidz_row_t
*rr
= rm
->rm_row
[i
];
965 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
966 raidz_col_t
*rc
= &rr
->rr_col
[c
];
968 &rm
->rm_phys_col
[rc
->rc_devidx
];
970 if (rc
->rc_size
== 0)
973 if (prc
->rc_size
== 0) {
974 ASSERT0(prc
->rc_offset
);
975 prc
->rc_offset
= rc
->rc_offset
;
976 } else if (prc
->rc_offset
+ prc
->rc_size
!=
979 * This block is not contiguous and
980 * therefore can't be aggregated.
981 * This is expected to be rare, so
982 * the cost of allocating and then
983 * freeing rm_phys_col is not
986 kmem_free(rm
->rm_phys_col
,
987 sizeof (raidz_col_t
) *
989 rm
->rm_phys_col
= NULL
;
990 rm
->rm_nphys_cols
= 0;
993 prc
->rc_size
+= rc
->rc_size
;
997 if (rm
->rm_phys_col
!= NULL
) {
999 * Allocate aggregate ABD's.
1001 for (int i
= 0; i
< rm
->rm_nphys_cols
; i
++) {
1002 raidz_col_t
*prc
= &rm
->rm_phys_col
[i
];
1006 if (prc
->rc_size
== 0)
1010 abd_alloc_linear(rm
->rm_phys_col
[i
].rc_size
,
1015 * Point the parity abd's into the aggregate abd's.
1017 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
1018 raidz_row_t
*rr
= rm
->rm_row
[i
];
1019 for (int c
= 0; c
< rr
->rr_firstdatacol
; c
++) {
1020 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1022 &rm
->rm_phys_col
[rc
->rc_devidx
];
1024 abd_get_offset_struct(&rc
->rc_abdstruct
,
1026 rc
->rc_offset
- prc
->rc_offset
,
1032 * Allocate new abd's for the parity sectors.
1034 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
1035 raidz_row_t
*rr
= rm
->rm_row
[i
];
1036 for (int c
= 0; c
< rr
->rr_firstdatacol
; c
++) {
1037 raidz_col_t
*rc
= &rr
->rr_col
[c
];
1039 abd_alloc_linear(rc
->rc_size
,
1044 /* init RAIDZ parity ops */
1045 rm
->rm_ops
= vdev_raidz_math_get_ops();
1057 vdev_raidz_p_func(void *buf
, size_t size
, void *private)
1059 struct pqr_struct
*pqr
= private;
1060 const uint64_t *src
= buf
;
1061 int cnt
= size
/ sizeof (src
[0]);
1063 ASSERT(pqr
->p
&& !pqr
->q
&& !pqr
->r
);
1065 for (int i
= 0; i
< cnt
; i
++, src
++, pqr
->p
++)
1072 vdev_raidz_pq_func(void *buf
, size_t size
, void *private)
1074 struct pqr_struct
*pqr
= private;
1075 const uint64_t *src
= buf
;
1077 int cnt
= size
/ sizeof (src
[0]);
1079 ASSERT(pqr
->p
&& pqr
->q
&& !pqr
->r
);
1081 for (int i
= 0; i
< cnt
; i
++, src
++, pqr
->p
++, pqr
->q
++) {
1083 VDEV_RAIDZ_64MUL_2(*pqr
->q
, mask
);
1091 vdev_raidz_pqr_func(void *buf
, size_t size
, void *private)
1093 struct pqr_struct
*pqr
= private;
1094 const uint64_t *src
= buf
;
1096 int cnt
= size
/ sizeof (src
[0]);
1098 ASSERT(pqr
->p
&& pqr
->q
&& pqr
->r
);
1100 for (int i
= 0; i
< cnt
; i
++, src
++, pqr
->p
++, pqr
->q
++, pqr
->r
++) {
1102 VDEV_RAIDZ_64MUL_2(*pqr
->q
, mask
);
1104 VDEV_RAIDZ_64MUL_4(*pqr
->r
, mask
);
1112 vdev_raidz_generate_parity_p(raidz_row_t
*rr
)
1114 uint64_t *p
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
);
1116 for (int c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
1117 abd_t
*src
= rr
->rr_col
[c
].rc_abd
;
1119 if (c
== rr
->rr_firstdatacol
) {
1120 abd_copy_to_buf(p
, src
, rr
->rr_col
[c
].rc_size
);
1122 struct pqr_struct pqr
= { p
, NULL
, NULL
};
1123 (void) abd_iterate_func(src
, 0, rr
->rr_col
[c
].rc_size
,
1124 vdev_raidz_p_func
, &pqr
);
1130 vdev_raidz_generate_parity_pq(raidz_row_t
*rr
)
1132 uint64_t *p
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
);
1133 uint64_t *q
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
);
1134 uint64_t pcnt
= rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
/ sizeof (p
[0]);
1135 ASSERT(rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
==
1136 rr
->rr_col
[VDEV_RAIDZ_Q
].rc_size
);
1138 for (int c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
1139 abd_t
*src
= rr
->rr_col
[c
].rc_abd
;
1141 uint64_t ccnt
= rr
->rr_col
[c
].rc_size
/ sizeof (p
[0]);
1143 if (c
== rr
->rr_firstdatacol
) {
1144 ASSERT(ccnt
== pcnt
|| ccnt
== 0);
1145 abd_copy_to_buf(p
, src
, rr
->rr_col
[c
].rc_size
);
1146 (void) memcpy(q
, p
, rr
->rr_col
[c
].rc_size
);
1148 for (uint64_t i
= ccnt
; i
< pcnt
; i
++) {
1153 struct pqr_struct pqr
= { p
, q
, NULL
};
1155 ASSERT(ccnt
<= pcnt
);
1156 (void) abd_iterate_func(src
, 0, rr
->rr_col
[c
].rc_size
,
1157 vdev_raidz_pq_func
, &pqr
);
1160 * Treat short columns as though they are full of 0s.
1161 * Note that there's therefore nothing needed for P.
1164 for (uint64_t i
= ccnt
; i
< pcnt
; i
++) {
1165 VDEV_RAIDZ_64MUL_2(q
[i
], mask
);
1172 vdev_raidz_generate_parity_pqr(raidz_row_t
*rr
)
1174 uint64_t *p
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
);
1175 uint64_t *q
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
);
1176 uint64_t *r
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_R
].rc_abd
);
1177 uint64_t pcnt
= rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
/ sizeof (p
[0]);
1178 ASSERT(rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
==
1179 rr
->rr_col
[VDEV_RAIDZ_Q
].rc_size
);
1180 ASSERT(rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
==
1181 rr
->rr_col
[VDEV_RAIDZ_R
].rc_size
);
1183 for (int c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
1184 abd_t
*src
= rr
->rr_col
[c
].rc_abd
;
1186 uint64_t ccnt
= rr
->rr_col
[c
].rc_size
/ sizeof (p
[0]);
1188 if (c
== rr
->rr_firstdatacol
) {
1189 ASSERT(ccnt
== pcnt
|| ccnt
== 0);
1190 abd_copy_to_buf(p
, src
, rr
->rr_col
[c
].rc_size
);
1191 (void) memcpy(q
, p
, rr
->rr_col
[c
].rc_size
);
1192 (void) memcpy(r
, p
, rr
->rr_col
[c
].rc_size
);
1194 for (uint64_t i
= ccnt
; i
< pcnt
; i
++) {
1200 struct pqr_struct pqr
= { p
, q
, r
};
1202 ASSERT(ccnt
<= pcnt
);
1203 (void) abd_iterate_func(src
, 0, rr
->rr_col
[c
].rc_size
,
1204 vdev_raidz_pqr_func
, &pqr
);
1207 * Treat short columns as though they are full of 0s.
1208 * Note that there's therefore nothing needed for P.
1211 for (uint64_t i
= ccnt
; i
< pcnt
; i
++) {
1212 VDEV_RAIDZ_64MUL_2(q
[i
], mask
);
1213 VDEV_RAIDZ_64MUL_4(r
[i
], mask
);
1220 * Generate RAID parity in the first virtual columns according to the number of
1221 * parity columns available.
1224 vdev_raidz_generate_parity_row(raidz_map_t
*rm
, raidz_row_t
*rr
)
1226 if (rr
->rr_cols
== 0) {
1228 * We are handling this block one row at a time (because
1229 * this block has a different logical vs physical width,
1230 * due to RAIDZ expansion), and this is a pad-only row,
1231 * which has no parity.
1236 /* Generate using the new math implementation */
1237 if (vdev_raidz_math_generate(rm
, rr
) != RAIDZ_ORIGINAL_IMPL
)
1240 switch (rr
->rr_firstdatacol
) {
1242 vdev_raidz_generate_parity_p(rr
);
1245 vdev_raidz_generate_parity_pq(rr
);
1248 vdev_raidz_generate_parity_pqr(rr
);
1251 cmn_err(CE_PANIC
, "invalid RAID-Z configuration");
1256 vdev_raidz_generate_parity(raidz_map_t
*rm
)
1258 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
1259 raidz_row_t
*rr
= rm
->rm_row
[i
];
1260 vdev_raidz_generate_parity_row(rm
, rr
);
1265 vdev_raidz_reconst_p_func(void *dbuf
, void *sbuf
, size_t size
, void *private)
1268 uint64_t *dst
= dbuf
;
1269 uint64_t *src
= sbuf
;
1270 int cnt
= size
/ sizeof (src
[0]);
1272 for (int i
= 0; i
< cnt
; i
++) {
1280 vdev_raidz_reconst_q_pre_func(void *dbuf
, void *sbuf
, size_t size
,
1284 uint64_t *dst
= dbuf
;
1285 uint64_t *src
= sbuf
;
1287 int cnt
= size
/ sizeof (dst
[0]);
1289 for (int i
= 0; i
< cnt
; i
++, dst
++, src
++) {
1290 VDEV_RAIDZ_64MUL_2(*dst
, mask
);
1298 vdev_raidz_reconst_q_pre_tail_func(void *buf
, size_t size
, void *private)
1301 uint64_t *dst
= buf
;
1303 int cnt
= size
/ sizeof (dst
[0]);
1305 for (int i
= 0; i
< cnt
; i
++, dst
++) {
1306 /* same operation as vdev_raidz_reconst_q_pre_func() on dst */
1307 VDEV_RAIDZ_64MUL_2(*dst
, mask
);
1313 struct reconst_q_struct
{
1319 vdev_raidz_reconst_q_post_func(void *buf
, size_t size
, void *private)
1321 struct reconst_q_struct
*rq
= private;
1322 uint64_t *dst
= buf
;
1323 int cnt
= size
/ sizeof (dst
[0]);
1325 for (int i
= 0; i
< cnt
; i
++, dst
++, rq
->q
++) {
1330 for (j
= 0, b
= (uint8_t *)dst
; j
< 8; j
++, b
++) {
1331 *b
= vdev_raidz_exp2(*b
, rq
->exp
);
1338 struct reconst_pq_struct
{
1348 vdev_raidz_reconst_pq_func(void *xbuf
, void *ybuf
, size_t size
, void *private)
1350 struct reconst_pq_struct
*rpq
= private;
1354 for (int i
= 0; i
< size
;
1355 i
++, rpq
->p
++, rpq
->q
++, rpq
->pxy
++, rpq
->qxy
++, xd
++, yd
++) {
1356 *xd
= vdev_raidz_exp2(*rpq
->p
^ *rpq
->pxy
, rpq
->aexp
) ^
1357 vdev_raidz_exp2(*rpq
->q
^ *rpq
->qxy
, rpq
->bexp
);
1358 *yd
= *rpq
->p
^ *rpq
->pxy
^ *xd
;
1365 vdev_raidz_reconst_pq_tail_func(void *xbuf
, size_t size
, void *private)
1367 struct reconst_pq_struct
*rpq
= private;
1370 for (int i
= 0; i
< size
;
1371 i
++, rpq
->p
++, rpq
->q
++, rpq
->pxy
++, rpq
->qxy
++, xd
++) {
1372 /* same operation as vdev_raidz_reconst_pq_func() on xd */
1373 *xd
= vdev_raidz_exp2(*rpq
->p
^ *rpq
->pxy
, rpq
->aexp
) ^
1374 vdev_raidz_exp2(*rpq
->q
^ *rpq
->qxy
, rpq
->bexp
);
1381 vdev_raidz_reconstruct_p(raidz_row_t
*rr
, int *tgts
, int ntgts
)
1386 if (zfs_flags
& ZFS_DEBUG_RAIDZ_RECONSTRUCT
)
1387 zfs_dbgmsg("reconstruct_p(rm=%px x=%u)", rr
, x
);
1389 ASSERT3U(ntgts
, ==, 1);
1390 ASSERT3U(x
, >=, rr
->rr_firstdatacol
);
1391 ASSERT3U(x
, <, rr
->rr_cols
);
1393 ASSERT3U(rr
->rr_col
[x
].rc_size
, <=, rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
);
1395 src
= rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
;
1396 dst
= rr
->rr_col
[x
].rc_abd
;
1398 abd_copy_from_buf(dst
, abd_to_buf(src
), rr
->rr_col
[x
].rc_size
);
1400 for (int c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
1401 uint64_t size
= MIN(rr
->rr_col
[x
].rc_size
,
1402 rr
->rr_col
[c
].rc_size
);
1404 src
= rr
->rr_col
[c
].rc_abd
;
1409 (void) abd_iterate_func2(dst
, src
, 0, 0, size
,
1410 vdev_raidz_reconst_p_func
, NULL
);
1415 vdev_raidz_reconstruct_q(raidz_row_t
*rr
, int *tgts
, int ntgts
)
1421 if (zfs_flags
& ZFS_DEBUG_RAIDZ_RECONSTRUCT
)
1422 zfs_dbgmsg("reconstruct_q(rm=%px x=%u)", rr
, x
);
1426 ASSERT(rr
->rr_col
[x
].rc_size
<= rr
->rr_col
[VDEV_RAIDZ_Q
].rc_size
);
1428 for (c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
1429 uint64_t size
= (c
== x
) ? 0 : MIN(rr
->rr_col
[x
].rc_size
,
1430 rr
->rr_col
[c
].rc_size
);
1432 src
= rr
->rr_col
[c
].rc_abd
;
1433 dst
= rr
->rr_col
[x
].rc_abd
;
1435 if (c
== rr
->rr_firstdatacol
) {
1436 abd_copy(dst
, src
, size
);
1437 if (rr
->rr_col
[x
].rc_size
> size
) {
1438 abd_zero_off(dst
, size
,
1439 rr
->rr_col
[x
].rc_size
- size
);
1442 ASSERT3U(size
, <=, rr
->rr_col
[x
].rc_size
);
1443 (void) abd_iterate_func2(dst
, src
, 0, 0, size
,
1444 vdev_raidz_reconst_q_pre_func
, NULL
);
1445 (void) abd_iterate_func(dst
,
1446 size
, rr
->rr_col
[x
].rc_size
- size
,
1447 vdev_raidz_reconst_q_pre_tail_func
, NULL
);
1451 src
= rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
;
1452 dst
= rr
->rr_col
[x
].rc_abd
;
1453 exp
= 255 - (rr
->rr_cols
- 1 - x
);
1455 struct reconst_q_struct rq
= { abd_to_buf(src
), exp
};
1456 (void) abd_iterate_func(dst
, 0, rr
->rr_col
[x
].rc_size
,
1457 vdev_raidz_reconst_q_post_func
, &rq
);
1461 vdev_raidz_reconstruct_pq(raidz_row_t
*rr
, int *tgts
, int ntgts
)
1463 uint8_t *p
, *q
, *pxy
, *qxy
, tmp
, a
, b
, aexp
, bexp
;
1464 abd_t
*pdata
, *qdata
;
1465 uint64_t xsize
, ysize
;
1470 if (zfs_flags
& ZFS_DEBUG_RAIDZ_RECONSTRUCT
)
1471 zfs_dbgmsg("reconstruct_pq(rm=%px x=%u y=%u)", rr
, x
, y
);
1475 ASSERT(x
>= rr
->rr_firstdatacol
);
1476 ASSERT(y
< rr
->rr_cols
);
1478 ASSERT(rr
->rr_col
[x
].rc_size
>= rr
->rr_col
[y
].rc_size
);
1481 * Move the parity data aside -- we're going to compute parity as
1482 * though columns x and y were full of zeros -- Pxy and Qxy. We want to
1483 * reuse the parity generation mechanism without trashing the actual
1484 * parity so we make those columns appear to be full of zeros by
1485 * setting their lengths to zero.
1487 pdata
= rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
;
1488 qdata
= rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
;
1489 xsize
= rr
->rr_col
[x
].rc_size
;
1490 ysize
= rr
->rr_col
[y
].rc_size
;
1492 rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
=
1493 abd_alloc_linear(rr
->rr_col
[VDEV_RAIDZ_P
].rc_size
, B_TRUE
);
1494 rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
=
1495 abd_alloc_linear(rr
->rr_col
[VDEV_RAIDZ_Q
].rc_size
, B_TRUE
);
1496 rr
->rr_col
[x
].rc_size
= 0;
1497 rr
->rr_col
[y
].rc_size
= 0;
1499 vdev_raidz_generate_parity_pq(rr
);
1501 rr
->rr_col
[x
].rc_size
= xsize
;
1502 rr
->rr_col
[y
].rc_size
= ysize
;
1504 p
= abd_to_buf(pdata
);
1505 q
= abd_to_buf(qdata
);
1506 pxy
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
);
1507 qxy
= abd_to_buf(rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
);
1508 xd
= rr
->rr_col
[x
].rc_abd
;
1509 yd
= rr
->rr_col
[y
].rc_abd
;
1513 * Pxy = P + D_x + D_y
1514 * Qxy = Q + 2^(ndevs - 1 - x) * D_x + 2^(ndevs - 1 - y) * D_y
1516 * We can then solve for D_x:
1517 * D_x = A * (P + Pxy) + B * (Q + Qxy)
1519 * A = 2^(x - y) * (2^(x - y) + 1)^-1
1520 * B = 2^(ndevs - 1 - x) * (2^(x - y) + 1)^-1
1522 * With D_x in hand, we can easily solve for D_y:
1523 * D_y = P + Pxy + D_x
1526 a
= vdev_raidz_pow2
[255 + x
- y
];
1527 b
= vdev_raidz_pow2
[255 - (rr
->rr_cols
- 1 - x
)];
1528 tmp
= 255 - vdev_raidz_log2
[a
^ 1];
1530 aexp
= vdev_raidz_log2
[vdev_raidz_exp2(a
, tmp
)];
1531 bexp
= vdev_raidz_log2
[vdev_raidz_exp2(b
, tmp
)];
1533 ASSERT3U(xsize
, >=, ysize
);
1534 struct reconst_pq_struct rpq
= { p
, q
, pxy
, qxy
, aexp
, bexp
};
1536 (void) abd_iterate_func2(xd
, yd
, 0, 0, ysize
,
1537 vdev_raidz_reconst_pq_func
, &rpq
);
1538 (void) abd_iterate_func(xd
, ysize
, xsize
- ysize
,
1539 vdev_raidz_reconst_pq_tail_func
, &rpq
);
1541 abd_free(rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
);
1542 abd_free(rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
);
1545 * Restore the saved parity data.
1547 rr
->rr_col
[VDEV_RAIDZ_P
].rc_abd
= pdata
;
1548 rr
->rr_col
[VDEV_RAIDZ_Q
].rc_abd
= qdata
;
1552 * In the general case of reconstruction, we must solve the system of linear
1553 * equations defined by the coefficients used to generate parity as well as
1554 * the contents of the data and parity disks. This can be expressed with
1555 * vectors for the original data (D) and the actual data (d) and parity (p)
1556 * and a matrix composed of the identity matrix (I) and a dispersal matrix (V):
1560 * | V | | D_0 | | p_m-1 |
1561 * | | x | : | = | d_0 |
1562 * | I | | D_n-1 | | : |
1563 * | | ~~ ~~ | d_n-1 |
1566 * I is simply a square identity matrix of size n, and V is a vandermonde
1567 * matrix defined by the coefficients we chose for the various parity columns
1568 * (1, 2, 4). Note that these values were chosen both for simplicity, speedy
1569 * computation as well as linear separability.
1572 * | 1 .. 1 1 1 | | p_0 |
1573 * | 2^n-1 .. 4 2 1 | __ __ | : |
1574 * | 4^n-1 .. 16 4 1 | | D_0 | | p_m-1 |
1575 * | 1 .. 0 0 0 | | D_1 | | d_0 |
1576 * | 0 .. 0 0 0 | x | D_2 | = | d_1 |
1577 * | : : : : | | : | | d_2 |
1578 * | 0 .. 1 0 0 | | D_n-1 | | : |
1579 * | 0 .. 0 1 0 | ~~ ~~ | : |
1580 * | 0 .. 0 0 1 | | d_n-1 |
1583 * Note that I, V, d, and p are known. To compute D, we must invert the
1584 * matrix and use the known data and parity values to reconstruct the unknown
1585 * data values. We begin by removing the rows in V|I and d|p that correspond
1586 * to failed or missing columns; we then make V|I square (n x n) and d|p
1587 * sized n by removing rows corresponding to unused parity from the bottom up
1588 * to generate (V|I)' and (d|p)'. We can then generate the inverse of (V|I)'
1589 * using Gauss-Jordan elimination. In the example below we use m=3 parity
1590 * columns, n=8 data columns, with errors in d_1, d_2, and p_1:
1592 * | 1 1 1 1 1 1 1 1 |
1593 * | 128 64 32 16 8 4 2 1 | <-----+-+-- missing disks
1594 * | 19 205 116 29 64 16 4 1 | / /
1595 * | 1 0 0 0 0 0 0 0 | / /
1596 * | 0 1 0 0 0 0 0 0 | <--' /
1597 * (V|I) = | 0 0 1 0 0 0 0 0 | <---'
1598 * | 0 0 0 1 0 0 0 0 |
1599 * | 0 0 0 0 1 0 0 0 |
1600 * | 0 0 0 0 0 1 0 0 |
1601 * | 0 0 0 0 0 0 1 0 |
1602 * | 0 0 0 0 0 0 0 1 |
1605 * | 1 1 1 1 1 1 1 1 |
1606 * | 128 64 32 16 8 4 2 1 |
1607 * | 19 205 116 29 64 16 4 1 |
1608 * | 1 0 0 0 0 0 0 0 |
1609 * | 0 1 0 0 0 0 0 0 |
1610 * (V|I)' = | 0 0 1 0 0 0 0 0 |
1611 * | 0 0 0 1 0 0 0 0 |
1612 * | 0 0 0 0 1 0 0 0 |
1613 * | 0 0 0 0 0 1 0 0 |
1614 * | 0 0 0 0 0 0 1 0 |
1615 * | 0 0 0 0 0 0 0 1 |
1618 * Here we employ Gauss-Jordan elimination to find the inverse of (V|I)'. We
1619 * have carefully chosen the seed values 1, 2, and 4 to ensure that this
1620 * matrix is not singular.
1622 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1623 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1624 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1625 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1626 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1627 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1628 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1629 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1632 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1633 * | 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 |
1634 * | 19 205 116 29 64 16 4 1 0 1 0 0 0 0 0 0 |
1635 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1636 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1637 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1638 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1639 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1642 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1643 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1644 * | 0 205 116 0 0 0 0 0 0 1 19 29 64 16 4 1 |
1645 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1646 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1647 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1648 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1649 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1652 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1653 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1654 * | 0 0 185 0 0 0 0 0 205 1 222 208 141 221 201 204 |
1655 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1656 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1657 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1658 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1659 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1662 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1663 * | 0 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 |
1664 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1665 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1666 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1667 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1668 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1669 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1672 * | 1 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 |
1673 * | 0 1 0 0 0 0 0 0 167 100 5 41 159 169 217 208 |
1674 * | 0 0 1 0 0 0 0 0 166 100 4 40 158 168 216 209 |
1675 * | 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 |
1676 * | 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 |
1677 * | 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 0 |
1678 * | 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 |
1679 * | 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 |
1682 * | 0 0 1 0 0 0 0 0 |
1683 * | 167 100 5 41 159 169 217 208 |
1684 * | 166 100 4 40 158 168 216 209 |
1685 * (V|I)'^-1 = | 0 0 0 1 0 0 0 0 |
1686 * | 0 0 0 0 1 0 0 0 |
1687 * | 0 0 0 0 0 1 0 0 |
1688 * | 0 0 0 0 0 0 1 0 |
1689 * | 0 0 0 0 0 0 0 1 |
1692 * We can then simply compute D = (V|I)'^-1 x (d|p)' to discover the values
1693 * of the missing data.
1695 * As is apparent from the example above, the only non-trivial rows in the
1696 * inverse matrix correspond to the data disks that we're trying to
1697 * reconstruct. Indeed, those are the only rows we need as the others would
1698 * only be useful for reconstructing data known or assumed to be valid. For
1699 * that reason, we only build the coefficients in the rows that correspond to
1704 vdev_raidz_matrix_init(raidz_row_t
*rr
, int n
, int nmap
, int *map
,
1710 ASSERT(n
== rr
->rr_cols
- rr
->rr_firstdatacol
);
1713 * Fill in the missing rows of interest.
1715 for (i
= 0; i
< nmap
; i
++) {
1716 ASSERT3S(0, <=, map
[i
]);
1717 ASSERT3S(map
[i
], <=, 2);
1724 for (j
= 0; j
< n
; j
++) {
1728 rows
[i
][j
] = vdev_raidz_pow2
[pow
];
1734 vdev_raidz_matrix_invert(raidz_row_t
*rr
, int n
, int nmissing
, int *missing
,
1735 uint8_t **rows
, uint8_t **invrows
, const uint8_t *used
)
1741 * Assert that the first nmissing entries from the array of used
1742 * columns correspond to parity columns and that subsequent entries
1743 * correspond to data columns.
1745 for (i
= 0; i
< nmissing
; i
++) {
1746 ASSERT3S(used
[i
], <, rr
->rr_firstdatacol
);
1748 for (; i
< n
; i
++) {
1749 ASSERT3S(used
[i
], >=, rr
->rr_firstdatacol
);
1753 * First initialize the storage where we'll compute the inverse rows.
1755 for (i
= 0; i
< nmissing
; i
++) {
1756 for (j
= 0; j
< n
; j
++) {
1757 invrows
[i
][j
] = (i
== j
) ? 1 : 0;
1762 * Subtract all trivial rows from the rows of consequence.
1764 for (i
= 0; i
< nmissing
; i
++) {
1765 for (j
= nmissing
; j
< n
; j
++) {
1766 ASSERT3U(used
[j
], >=, rr
->rr_firstdatacol
);
1767 jj
= used
[j
] - rr
->rr_firstdatacol
;
1769 invrows
[i
][j
] = rows
[i
][jj
];
1775 * For each of the rows of interest, we must normalize it and subtract
1776 * a multiple of it from the other rows.
1778 for (i
= 0; i
< nmissing
; i
++) {
1779 for (j
= 0; j
< missing
[i
]; j
++) {
1780 ASSERT0(rows
[i
][j
]);
1782 ASSERT3U(rows
[i
][missing
[i
]], !=, 0);
1785 * Compute the inverse of the first element and multiply each
1786 * element in the row by that value.
1788 log
= 255 - vdev_raidz_log2
[rows
[i
][missing
[i
]]];
1790 for (j
= 0; j
< n
; j
++) {
1791 rows
[i
][j
] = vdev_raidz_exp2(rows
[i
][j
], log
);
1792 invrows
[i
][j
] = vdev_raidz_exp2(invrows
[i
][j
], log
);
1795 for (ii
= 0; ii
< nmissing
; ii
++) {
1799 ASSERT3U(rows
[ii
][missing
[i
]], !=, 0);
1801 log
= vdev_raidz_log2
[rows
[ii
][missing
[i
]]];
1803 for (j
= 0; j
< n
; j
++) {
1805 vdev_raidz_exp2(rows
[i
][j
], log
);
1807 vdev_raidz_exp2(invrows
[i
][j
], log
);
1813 * Verify that the data that is left in the rows are properly part of
1814 * an identity matrix.
1816 for (i
= 0; i
< nmissing
; i
++) {
1817 for (j
= 0; j
< n
; j
++) {
1818 if (j
== missing
[i
]) {
1819 ASSERT3U(rows
[i
][j
], ==, 1);
1821 ASSERT0(rows
[i
][j
]);
1828 vdev_raidz_matrix_reconstruct(raidz_row_t
*rr
, int n
, int nmissing
,
1829 int *missing
, uint8_t **invrows
, const uint8_t *used
)
1834 uint8_t *dst
[VDEV_RAIDZ_MAXPARITY
] = { NULL
};
1835 uint64_t dcount
[VDEV_RAIDZ_MAXPARITY
] = { 0 };
1839 uint8_t *invlog
[VDEV_RAIDZ_MAXPARITY
];
1843 psize
= sizeof (invlog
[0][0]) * n
* nmissing
;
1844 p
= kmem_alloc(psize
, KM_SLEEP
);
1846 for (pp
= p
, i
= 0; i
< nmissing
; i
++) {
1851 for (i
= 0; i
< nmissing
; i
++) {
1852 for (j
= 0; j
< n
; j
++) {
1853 ASSERT3U(invrows
[i
][j
], !=, 0);
1854 invlog
[i
][j
] = vdev_raidz_log2
[invrows
[i
][j
]];
1858 for (i
= 0; i
< n
; i
++) {
1860 ASSERT3U(c
, <, rr
->rr_cols
);
1862 ccount
= rr
->rr_col
[c
].rc_size
;
1863 ASSERT(ccount
>= rr
->rr_col
[missing
[0]].rc_size
|| i
> 0);
1866 src
= abd_to_buf(rr
->rr_col
[c
].rc_abd
);
1867 for (j
= 0; j
< nmissing
; j
++) {
1868 cc
= missing
[j
] + rr
->rr_firstdatacol
;
1869 ASSERT3U(cc
, >=, rr
->rr_firstdatacol
);
1870 ASSERT3U(cc
, <, rr
->rr_cols
);
1871 ASSERT3U(cc
, !=, c
);
1873 dcount
[j
] = rr
->rr_col
[cc
].rc_size
;
1875 dst
[j
] = abd_to_buf(rr
->rr_col
[cc
].rc_abd
);
1878 for (x
= 0; x
< ccount
; x
++, src
++) {
1880 log
= vdev_raidz_log2
[*src
];
1882 for (cc
= 0; cc
< nmissing
; cc
++) {
1883 if (x
>= dcount
[cc
])
1889 if ((ll
= log
+ invlog
[cc
][i
]) >= 255)
1891 val
= vdev_raidz_pow2
[ll
];
1902 kmem_free(p
, psize
);
1906 vdev_raidz_reconstruct_general(raidz_row_t
*rr
, int *tgts
, int ntgts
)
1910 unsigned int nmissing_rows
;
1911 int missing_rows
[VDEV_RAIDZ_MAXPARITY
];
1912 int parity_map
[VDEV_RAIDZ_MAXPARITY
];
1915 uint8_t *rows
[VDEV_RAIDZ_MAXPARITY
];
1916 uint8_t *invrows
[VDEV_RAIDZ_MAXPARITY
];
1919 abd_t
**bufs
= NULL
;
1921 if (zfs_flags
& ZFS_DEBUG_RAIDZ_RECONSTRUCT
)
1922 zfs_dbgmsg("reconstruct_general(rm=%px ntgts=%u)", rr
, ntgts
);
1924 * Matrix reconstruction can't use scatter ABDs yet, so we allocate
1925 * temporary linear ABDs if any non-linear ABDs are found.
1927 for (i
= rr
->rr_firstdatacol
; i
< rr
->rr_cols
; i
++) {
1928 ASSERT(rr
->rr_col
[i
].rc_abd
!= NULL
);
1929 if (!abd_is_linear(rr
->rr_col
[i
].rc_abd
)) {
1930 bufs
= kmem_alloc(rr
->rr_cols
* sizeof (abd_t
*),
1933 for (c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
1934 raidz_col_t
*col
= &rr
->rr_col
[c
];
1936 bufs
[c
] = col
->rc_abd
;
1937 if (bufs
[c
] != NULL
) {
1938 col
->rc_abd
= abd_alloc_linear(
1939 col
->rc_size
, B_TRUE
);
1940 abd_copy(col
->rc_abd
, bufs
[c
],
1949 n
= rr
->rr_cols
- rr
->rr_firstdatacol
;
1952 * Figure out which data columns are missing.
1955 for (t
= 0; t
< ntgts
; t
++) {
1956 if (tgts
[t
] >= rr
->rr_firstdatacol
) {
1957 missing_rows
[nmissing_rows
++] =
1958 tgts
[t
] - rr
->rr_firstdatacol
;
1963 * Figure out which parity columns to use to help generate the missing
1966 for (tt
= 0, c
= 0, i
= 0; i
< nmissing_rows
; c
++) {
1968 ASSERT(c
< rr
->rr_firstdatacol
);
1971 * Skip any targeted parity columns.
1973 if (c
== tgts
[tt
]) {
1982 psize
= (sizeof (rows
[0][0]) + sizeof (invrows
[0][0])) *
1983 nmissing_rows
* n
+ sizeof (used
[0]) * n
;
1984 p
= kmem_alloc(psize
, KM_SLEEP
);
1986 for (pp
= p
, i
= 0; i
< nmissing_rows
; i
++) {
1994 for (i
= 0; i
< nmissing_rows
; i
++) {
1995 used
[i
] = parity_map
[i
];
1998 for (tt
= 0, c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
1999 if (tt
< nmissing_rows
&&
2000 c
== missing_rows
[tt
] + rr
->rr_firstdatacol
) {
2011 * Initialize the interesting rows of the matrix.
2013 vdev_raidz_matrix_init(rr
, n
, nmissing_rows
, parity_map
, rows
);
2016 * Invert the matrix.
2018 vdev_raidz_matrix_invert(rr
, n
, nmissing_rows
, missing_rows
, rows
,
2022 * Reconstruct the missing data using the generated matrix.
2024 vdev_raidz_matrix_reconstruct(rr
, n
, nmissing_rows
, missing_rows
,
2027 kmem_free(p
, psize
);
2030 * copy back from temporary linear abds and free them
2033 for (c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
2034 raidz_col_t
*col
= &rr
->rr_col
[c
];
2036 if (bufs
[c
] != NULL
) {
2037 abd_copy(bufs
[c
], col
->rc_abd
, col
->rc_size
);
2038 abd_free(col
->rc_abd
);
2040 col
->rc_abd
= bufs
[c
];
2042 kmem_free(bufs
, rr
->rr_cols
* sizeof (abd_t
*));
2047 vdev_raidz_reconstruct_row(raidz_map_t
*rm
, raidz_row_t
*rr
,
2048 const int *t
, int nt
)
2050 int tgts
[VDEV_RAIDZ_MAXPARITY
], *dt
;
2053 int nbadparity
, nbaddata
;
2054 int parity_valid
[VDEV_RAIDZ_MAXPARITY
];
2056 if (zfs_flags
& ZFS_DEBUG_RAIDZ_RECONSTRUCT
) {
2057 zfs_dbgmsg("reconstruct(rm=%px nt=%u cols=%u md=%u mp=%u)",
2058 rr
, nt
, (int)rr
->rr_cols
, (int)rr
->rr_missingdata
,
2059 (int)rr
->rr_missingparity
);
2062 nbadparity
= rr
->rr_firstdatacol
;
2063 nbaddata
= rr
->rr_cols
- nbadparity
;
2065 for (i
= 0, c
= 0; c
< rr
->rr_cols
; c
++) {
2066 if (zfs_flags
& ZFS_DEBUG_RAIDZ_RECONSTRUCT
) {
2067 zfs_dbgmsg("reconstruct(rm=%px col=%u devid=%u "
2068 "offset=%llx error=%u)",
2069 rr
, c
, (int)rr
->rr_col
[c
].rc_devidx
,
2070 (long long)rr
->rr_col
[c
].rc_offset
,
2071 (int)rr
->rr_col
[c
].rc_error
);
2073 if (c
< rr
->rr_firstdatacol
)
2074 parity_valid
[c
] = B_FALSE
;
2076 if (i
< nt
&& c
== t
[i
]) {
2079 } else if (rr
->rr_col
[c
].rc_error
!= 0) {
2081 } else if (c
>= rr
->rr_firstdatacol
) {
2084 parity_valid
[c
] = B_TRUE
;
2089 ASSERT(ntgts
>= nt
);
2090 ASSERT(nbaddata
>= 0);
2091 ASSERT(nbaddata
+ nbadparity
== ntgts
);
2093 dt
= &tgts
[nbadparity
];
2095 /* Reconstruct using the new math implementation */
2096 ret
= vdev_raidz_math_reconstruct(rm
, rr
, parity_valid
, dt
, nbaddata
);
2097 if (ret
!= RAIDZ_ORIGINAL_IMPL
)
2101 * See if we can use any of our optimized reconstruction routines.
2105 if (parity_valid
[VDEV_RAIDZ_P
]) {
2106 vdev_raidz_reconstruct_p(rr
, dt
, 1);
2110 ASSERT(rr
->rr_firstdatacol
> 1);
2112 if (parity_valid
[VDEV_RAIDZ_Q
]) {
2113 vdev_raidz_reconstruct_q(rr
, dt
, 1);
2117 ASSERT(rr
->rr_firstdatacol
> 2);
2121 ASSERT(rr
->rr_firstdatacol
> 1);
2123 if (parity_valid
[VDEV_RAIDZ_P
] &&
2124 parity_valid
[VDEV_RAIDZ_Q
]) {
2125 vdev_raidz_reconstruct_pq(rr
, dt
, 2);
2129 ASSERT(rr
->rr_firstdatacol
> 2);
2134 vdev_raidz_reconstruct_general(rr
, tgts
, ntgts
);
2138 vdev_raidz_open(vdev_t
*vd
, uint64_t *asize
, uint64_t *max_asize
,
2139 uint64_t *logical_ashift
, uint64_t *physical_ashift
)
2141 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
2142 uint64_t nparity
= vdrz
->vd_nparity
;
2147 ASSERT(nparity
> 0);
2149 if (nparity
> VDEV_RAIDZ_MAXPARITY
||
2150 vd
->vdev_children
< nparity
+ 1) {
2151 vd
->vdev_stat
.vs_aux
= VDEV_AUX_BAD_LABEL
;
2152 return (SET_ERROR(EINVAL
));
2155 vdev_open_children(vd
);
2157 for (c
= 0; c
< vd
->vdev_children
; c
++) {
2158 vdev_t
*cvd
= vd
->vdev_child
[c
];
2160 if (cvd
->vdev_open_error
!= 0) {
2161 lasterror
= cvd
->vdev_open_error
;
2166 *asize
= MIN(*asize
- 1, cvd
->vdev_asize
- 1) + 1;
2167 *max_asize
= MIN(*max_asize
- 1, cvd
->vdev_max_asize
- 1) + 1;
2168 *logical_ashift
= MAX(*logical_ashift
, cvd
->vdev_ashift
);
2170 for (c
= 0; c
< vd
->vdev_children
; c
++) {
2171 vdev_t
*cvd
= vd
->vdev_child
[c
];
2173 if (cvd
->vdev_open_error
!= 0)
2175 *physical_ashift
= vdev_best_ashift(*logical_ashift
,
2176 *physical_ashift
, cvd
->vdev_physical_ashift
);
2179 if (vd
->vdev_rz_expanding
) {
2180 *asize
*= vd
->vdev_children
- 1;
2181 *max_asize
*= vd
->vdev_children
- 1;
2183 vd
->vdev_min_asize
= *asize
;
2185 *asize
*= vd
->vdev_children
;
2186 *max_asize
*= vd
->vdev_children
;
2189 if (numerrors
> nparity
) {
2190 vd
->vdev_stat
.vs_aux
= VDEV_AUX_NO_REPLICAS
;
2198 vdev_raidz_close(vdev_t
*vd
)
2200 for (int c
= 0; c
< vd
->vdev_children
; c
++) {
2201 if (vd
->vdev_child
[c
] != NULL
)
2202 vdev_close(vd
->vdev_child
[c
]);
2207 * Return the logical width to use, given the txg in which the allocation
2208 * happened. Note that BP_GET_BIRTH() is usually the txg in which the
2209 * BP was allocated. Remapped BP's (that were relocated due to device
2210 * removal, see remap_blkptr_cb()), will have a more recent physical birth
2211 * which reflects when the BP was relocated, but we can ignore these because
2212 * they can't be on RAIDZ (device removal doesn't support RAIDZ).
2215 vdev_raidz_get_logical_width(vdev_raidz_t
*vdrz
, uint64_t txg
)
2217 reflow_node_t lookup
= {
2223 mutex_enter(&vdrz
->vd_expand_lock
);
2224 reflow_node_t
*re
= avl_find(&vdrz
->vd_expand_txgs
, &lookup
, &where
);
2226 width
= re
->re_logical_width
;
2228 re
= avl_nearest(&vdrz
->vd_expand_txgs
, where
, AVL_BEFORE
);
2230 width
= re
->re_logical_width
;
2232 width
= vdrz
->vd_original_width
;
2234 mutex_exit(&vdrz
->vd_expand_lock
);
2239 * Note: If the RAIDZ vdev has been expanded, older BP's may have allocated
2240 * more space due to the lower data-to-parity ratio. In this case it's
2241 * important to pass in the correct txg. Note that vdev_gang_header_asize()
2242 * relies on a constant asize for psize=SPA_GANGBLOCKSIZE=SPA_MINBLOCKSIZE,
2243 * regardless of txg. This is assured because for a single data sector, we
2244 * allocate P+1 sectors regardless of width ("cols", which is at least P+1).
2247 vdev_raidz_asize(vdev_t
*vd
, uint64_t psize
, uint64_t txg
)
2249 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
2251 uint64_t ashift
= vd
->vdev_top
->vdev_ashift
;
2252 uint64_t cols
= vdrz
->vd_original_width
;
2253 uint64_t nparity
= vdrz
->vd_nparity
;
2255 cols
= vdev_raidz_get_logical_width(vdrz
, txg
);
2257 asize
= ((psize
- 1) >> ashift
) + 1;
2258 asize
+= nparity
* ((asize
+ cols
- nparity
- 1) / (cols
- nparity
));
2259 asize
= roundup(asize
, nparity
+ 1) << ashift
;
2262 uint64_t asize_new
= ((psize
- 1) >> ashift
) + 1;
2263 uint64_t ncols_new
= vdrz
->vd_physical_width
;
2264 asize_new
+= nparity
* ((asize_new
+ ncols_new
- nparity
- 1) /
2265 (ncols_new
- nparity
));
2266 asize_new
= roundup(asize_new
, nparity
+ 1) << ashift
;
2267 VERIFY3U(asize_new
, <=, asize
);
2274 * The allocatable space for a raidz vdev is N * sizeof(smallest child)
2275 * so each child must provide at least 1/Nth of its asize.
2278 vdev_raidz_min_asize(vdev_t
*vd
)
2280 return ((vd
->vdev_min_asize
+ vd
->vdev_children
- 1) /
2285 vdev_raidz_child_done(zio_t
*zio
)
2287 raidz_col_t
*rc
= zio
->io_private
;
2289 ASSERT3P(rc
->rc_abd
, !=, NULL
);
2290 rc
->rc_error
= zio
->io_error
;
2296 vdev_raidz_shadow_child_done(zio_t
*zio
)
2298 raidz_col_t
*rc
= zio
->io_private
;
2300 rc
->rc_shadow_error
= zio
->io_error
;
2304 vdev_raidz_io_verify(zio_t
*zio
, raidz_map_t
*rm
, raidz_row_t
*rr
, int col
)
2308 range_seg64_t logical_rs
, physical_rs
, remain_rs
;
2309 logical_rs
.rs_start
= rr
->rr_offset
;
2310 logical_rs
.rs_end
= logical_rs
.rs_start
+
2311 vdev_raidz_asize(zio
->io_vd
, rr
->rr_size
,
2312 BP_GET_BIRTH(zio
->io_bp
));
2314 raidz_col_t
*rc
= &rr
->rr_col
[col
];
2315 vdev_t
*cvd
= zio
->io_vd
->vdev_child
[rc
->rc_devidx
];
2317 vdev_xlate(cvd
, &logical_rs
, &physical_rs
, &remain_rs
);
2318 ASSERT(vdev_xlate_is_empty(&remain_rs
));
2319 if (vdev_xlate_is_empty(&physical_rs
)) {
2321 * If we are in the middle of expansion, the
2322 * physical->logical mapping is changing so vdev_xlate()
2323 * can't give us a reliable answer.
2327 ASSERT3U(rc
->rc_offset
, ==, physical_rs
.rs_start
);
2328 ASSERT3U(rc
->rc_offset
, <, physical_rs
.rs_end
);
2330 * It would be nice to assert that rs_end is equal
2331 * to rc_offset + rc_size but there might be an
2332 * optional I/O at the end that is not accounted in
2335 if (physical_rs
.rs_end
> rc
->rc_offset
+ rc
->rc_size
) {
2336 ASSERT3U(physical_rs
.rs_end
, ==, rc
->rc_offset
+
2337 rc
->rc_size
+ (1 << zio
->io_vd
->vdev_top
->vdev_ashift
));
2339 ASSERT3U(physical_rs
.rs_end
, ==, rc
->rc_offset
+ rc
->rc_size
);
2345 vdev_raidz_io_start_write(zio_t
*zio
, raidz_row_t
*rr
)
2347 vdev_t
*vd
= zio
->io_vd
;
2348 raidz_map_t
*rm
= zio
->io_vsd
;
2350 vdev_raidz_generate_parity_row(rm
, rr
);
2352 for (int c
= 0; c
< rr
->rr_scols
; c
++) {
2353 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2354 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
2356 /* Verify physical to logical translation */
2357 vdev_raidz_io_verify(zio
, rm
, rr
, c
);
2359 if (rc
->rc_size
== 0)
2362 ASSERT3U(rc
->rc_offset
+ rc
->rc_size
, <,
2363 cvd
->vdev_psize
- VDEV_LABEL_END_SIZE
);
2365 ASSERT3P(rc
->rc_abd
, !=, NULL
);
2366 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
2367 rc
->rc_offset
, rc
->rc_abd
,
2368 abd_get_size(rc
->rc_abd
), zio
->io_type
,
2369 zio
->io_priority
, 0, vdev_raidz_child_done
, rc
));
2371 if (rc
->rc_shadow_devidx
!= INT_MAX
) {
2372 vdev_t
*cvd2
= vd
->vdev_child
[rc
->rc_shadow_devidx
];
2375 rc
->rc_shadow_offset
+ abd_get_size(rc
->rc_abd
), <,
2376 cvd2
->vdev_psize
- VDEV_LABEL_END_SIZE
);
2378 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd2
,
2379 rc
->rc_shadow_offset
, rc
->rc_abd
,
2380 abd_get_size(rc
->rc_abd
),
2381 zio
->io_type
, zio
->io_priority
, 0,
2382 vdev_raidz_shadow_child_done
, rc
));
2388 * Generate optional I/Os for skip sectors to improve aggregation contiguity.
2389 * This only works for vdev_raidz_map_alloc() (not _expanded()).
2392 raidz_start_skip_writes(zio_t
*zio
)
2394 vdev_t
*vd
= zio
->io_vd
;
2395 uint64_t ashift
= vd
->vdev_top
->vdev_ashift
;
2396 raidz_map_t
*rm
= zio
->io_vsd
;
2397 ASSERT3U(rm
->rm_nrows
, ==, 1);
2398 raidz_row_t
*rr
= rm
->rm_row
[0];
2399 for (int c
= 0; c
< rr
->rr_scols
; c
++) {
2400 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2401 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
2402 if (rc
->rc_size
!= 0)
2404 ASSERT3P(rc
->rc_abd
, ==, NULL
);
2406 ASSERT3U(rc
->rc_offset
, <,
2407 cvd
->vdev_psize
- VDEV_LABEL_END_SIZE
);
2409 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
, rc
->rc_offset
,
2410 NULL
, 1ULL << ashift
, zio
->io_type
, zio
->io_priority
,
2411 ZIO_FLAG_NODATA
| ZIO_FLAG_OPTIONAL
, NULL
, NULL
));
2416 vdev_raidz_io_start_read_row(zio_t
*zio
, raidz_row_t
*rr
, boolean_t forceparity
)
2418 vdev_t
*vd
= zio
->io_vd
;
2421 * Iterate over the columns in reverse order so that we hit the parity
2422 * last -- any errors along the way will force us to read the parity.
2424 for (int c
= rr
->rr_cols
- 1; c
>= 0; c
--) {
2425 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2426 if (rc
->rc_size
== 0)
2428 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
2429 if (!vdev_readable(cvd
)) {
2430 if (c
>= rr
->rr_firstdatacol
)
2431 rr
->rr_missingdata
++;
2433 rr
->rr_missingparity
++;
2434 rc
->rc_error
= SET_ERROR(ENXIO
);
2435 rc
->rc_tried
= 1; /* don't even try */
2439 if (vdev_dtl_contains(cvd
, DTL_MISSING
, zio
->io_txg
, 1)) {
2440 if (c
>= rr
->rr_firstdatacol
)
2441 rr
->rr_missingdata
++;
2443 rr
->rr_missingparity
++;
2444 rc
->rc_error
= SET_ERROR(ESTALE
);
2449 c
>= rr
->rr_firstdatacol
|| rr
->rr_missingdata
> 0 ||
2450 (zio
->io_flags
& (ZIO_FLAG_SCRUB
| ZIO_FLAG_RESILVER
))) {
2451 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
2452 rc
->rc_offset
, rc
->rc_abd
, rc
->rc_size
,
2453 zio
->io_type
, zio
->io_priority
, 0,
2454 vdev_raidz_child_done
, rc
));
2460 vdev_raidz_io_start_read_phys_cols(zio_t
*zio
, raidz_map_t
*rm
)
2462 vdev_t
*vd
= zio
->io_vd
;
2464 for (int i
= 0; i
< rm
->rm_nphys_cols
; i
++) {
2465 raidz_col_t
*prc
= &rm
->rm_phys_col
[i
];
2466 if (prc
->rc_size
== 0)
2469 ASSERT3U(prc
->rc_devidx
, ==, i
);
2470 vdev_t
*cvd
= vd
->vdev_child
[i
];
2471 if (!vdev_readable(cvd
)) {
2472 prc
->rc_error
= SET_ERROR(ENXIO
);
2473 prc
->rc_tried
= 1; /* don't even try */
2474 prc
->rc_skipped
= 1;
2477 if (vdev_dtl_contains(cvd
, DTL_MISSING
, zio
->io_txg
, 1)) {
2478 prc
->rc_error
= SET_ERROR(ESTALE
);
2479 prc
->rc_skipped
= 1;
2482 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
2483 prc
->rc_offset
, prc
->rc_abd
, prc
->rc_size
,
2484 zio
->io_type
, zio
->io_priority
, 0,
2485 vdev_raidz_child_done
, prc
));
2490 vdev_raidz_io_start_read(zio_t
*zio
, raidz_map_t
*rm
)
2493 * If there are multiple rows, we will be hitting
2494 * all disks, so go ahead and read the parity so
2495 * that we are reading in decent size chunks.
2497 boolean_t forceparity
= rm
->rm_nrows
> 1;
2499 if (rm
->rm_phys_col
) {
2500 vdev_raidz_io_start_read_phys_cols(zio
, rm
);
2502 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2503 raidz_row_t
*rr
= rm
->rm_row
[i
];
2504 vdev_raidz_io_start_read_row(zio
, rr
, forceparity
);
2510 * Start an IO operation on a RAIDZ VDev
2513 * - For write operations:
2514 * 1. Generate the parity data
2515 * 2. Create child zio write operations to each column's vdev, for both
2517 * 3. If the column skips any sectors for padding, create optional dummy
2518 * write zio children for those areas to improve aggregation continuity.
2519 * - For read operations:
2520 * 1. Create child zio read operations to each data column's vdev to read
2521 * the range of data required for zio.
2522 * 2. If this is a scrub or resilver operation, or if any of the data
2523 * vdevs have had errors, then create zio read operations to the parity
2524 * columns' VDevs as well.
2527 vdev_raidz_io_start(zio_t
*zio
)
2529 vdev_t
*vd
= zio
->io_vd
;
2530 vdev_t
*tvd
= vd
->vdev_top
;
2531 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
2534 uint64_t logical_width
= vdev_raidz_get_logical_width(vdrz
,
2535 BP_GET_BIRTH(zio
->io_bp
));
2536 if (logical_width
!= vdrz
->vd_physical_width
) {
2537 zfs_locked_range_t
*lr
= NULL
;
2538 uint64_t synced_offset
= UINT64_MAX
;
2539 uint64_t next_offset
= UINT64_MAX
;
2540 boolean_t use_scratch
= B_FALSE
;
2542 * Note: when the expansion is completing, we set
2543 * vre_state=DSS_FINISHED (in raidz_reflow_complete_sync())
2544 * in a later txg than when we last update spa_ubsync's state
2545 * (see the end of spa_raidz_expand_thread()). Therefore we
2546 * may see vre_state!=SCANNING before
2547 * VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE=DSS_FINISHED is reflected
2548 * on disk, but the copying progress has been synced to disk
2549 * (and reflected in spa_ubsync). In this case it's fine to
2550 * treat the expansion as completed, since if we crash there's
2551 * no additional copying to do.
2553 if (vdrz
->vn_vre
.vre_state
== DSS_SCANNING
) {
2554 ASSERT3P(vd
->vdev_spa
->spa_raidz_expand
, ==,
2556 lr
= zfs_rangelock_enter(&vdrz
->vn_vre
.vre_rangelock
,
2557 zio
->io_offset
, zio
->io_size
, RL_READER
);
2559 (RRSS_GET_STATE(&vd
->vdev_spa
->spa_ubsync
) ==
2560 RRSS_SCRATCH_VALID
);
2562 RRSS_GET_OFFSET(&vd
->vdev_spa
->spa_ubsync
);
2563 next_offset
= vdrz
->vn_vre
.vre_offset
;
2565 * If we haven't resumed expanding since importing the
2566 * pool, vre_offset won't have been set yet. In
2567 * this case the next offset to be copied is the same
2568 * as what was synced.
2570 if (next_offset
== UINT64_MAX
) {
2571 next_offset
= synced_offset
;
2575 zfs_dbgmsg("zio=%px %s io_offset=%llu offset_synced="
2576 "%lld next_offset=%lld use_scratch=%u",
2578 zio
->io_type
== ZIO_TYPE_WRITE
? "WRITE" : "READ",
2579 (long long)zio
->io_offset
,
2580 (long long)synced_offset
,
2581 (long long)next_offset
,
2585 rm
= vdev_raidz_map_alloc_expanded(zio
,
2586 tvd
->vdev_ashift
, vdrz
->vd_physical_width
,
2587 logical_width
, vdrz
->vd_nparity
,
2588 synced_offset
, next_offset
, use_scratch
);
2591 rm
= vdev_raidz_map_alloc(zio
,
2592 tvd
->vdev_ashift
, logical_width
, vdrz
->vd_nparity
);
2594 rm
->rm_original_width
= vdrz
->vd_original_width
;
2597 zio
->io_vsd_ops
= &vdev_raidz_vsd_ops
;
2598 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
2599 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2600 vdev_raidz_io_start_write(zio
, rm
->rm_row
[i
]);
2603 if (logical_width
== vdrz
->vd_physical_width
) {
2604 raidz_start_skip_writes(zio
);
2607 ASSERT(zio
->io_type
== ZIO_TYPE_READ
);
2608 vdev_raidz_io_start_read(zio
, rm
);
2615 * Report a checksum error for a child of a RAID-Z device.
2618 vdev_raidz_checksum_error(zio_t
*zio
, raidz_col_t
*rc
, abd_t
*bad_data
)
2620 vdev_t
*vd
= zio
->io_vd
->vdev_child
[rc
->rc_devidx
];
2622 if (!(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
) &&
2623 zio
->io_priority
!= ZIO_PRIORITY_REBUILD
) {
2624 zio_bad_cksum_t zbc
;
2625 raidz_map_t
*rm
= zio
->io_vsd
;
2627 zbc
.zbc_has_cksum
= 0;
2628 zbc
.zbc_injected
= rm
->rm_ecksuminjected
;
2630 mutex_enter(&vd
->vdev_stat_lock
);
2631 vd
->vdev_stat
.vs_checksum_errors
++;
2632 mutex_exit(&vd
->vdev_stat_lock
);
2633 (void) zfs_ereport_post_checksum(zio
->io_spa
, vd
,
2634 &zio
->io_bookmark
, zio
, rc
->rc_offset
, rc
->rc_size
,
2635 rc
->rc_abd
, bad_data
, &zbc
);
2640 * We keep track of whether or not there were any injected errors, so that
2641 * any ereports we generate can note it.
2644 raidz_checksum_verify(zio_t
*zio
)
2646 zio_bad_cksum_t zbc
= {0};
2647 raidz_map_t
*rm
= zio
->io_vsd
;
2649 int ret
= zio_checksum_error(zio
, &zbc
);
2651 * Any Direct I/O read that has a checksum error must be treated as
2652 * suspicious as the contents of the buffer could be getting
2653 * manipulated while the I/O is taking place. The checksum verify error
2654 * will be reported to the top-level RAIDZ VDEV.
2656 if (zio
->io_flags
& ZIO_FLAG_DIO_READ
&& ret
== ECKSUM
) {
2657 zio
->io_error
= ret
;
2658 zio
->io_flags
|= ZIO_FLAG_DIO_CHKSUM_ERR
;
2659 zio_dio_chksum_verify_error_report(zio
);
2660 zio_checksum_verified(zio
);
2664 if (ret
!= 0 && zbc
.zbc_injected
!= 0)
2665 rm
->rm_ecksuminjected
= 1;
2671 * Generate the parity from the data columns. If we tried and were able to
2672 * read the parity without error, verify that the generated parity matches the
2673 * data we read. If it doesn't, we fire off a checksum error. Return the
2674 * number of such failures.
2677 raidz_parity_verify(zio_t
*zio
, raidz_row_t
*rr
)
2679 abd_t
*orig
[VDEV_RAIDZ_MAXPARITY
];
2681 raidz_map_t
*rm
= zio
->io_vsd
;
2684 blkptr_t
*bp
= zio
->io_bp
;
2685 enum zio_checksum checksum
= (bp
== NULL
? zio
->io_prop
.zp_checksum
:
2686 (BP_IS_GANG(bp
) ? ZIO_CHECKSUM_GANG_HEADER
: BP_GET_CHECKSUM(bp
)));
2688 if (checksum
== ZIO_CHECKSUM_NOPARITY
)
2691 for (c
= 0; c
< rr
->rr_firstdatacol
; c
++) {
2692 rc
= &rr
->rr_col
[c
];
2693 if (!rc
->rc_tried
|| rc
->rc_error
!= 0)
2696 orig
[c
] = rc
->rc_abd
;
2697 ASSERT3U(abd_get_size(rc
->rc_abd
), ==, rc
->rc_size
);
2698 rc
->rc_abd
= abd_alloc_linear(rc
->rc_size
, B_FALSE
);
2702 * Verify any empty sectors are zero filled to ensure the parity
2703 * is calculated correctly even if these non-data sectors are damaged.
2705 if (rr
->rr_nempty
&& rr
->rr_abd_empty
!= NULL
)
2706 ret
+= vdev_draid_map_verify_empty(zio
, rr
);
2709 * Regenerates parity even for !tried||rc_error!=0 columns. This
2710 * isn't harmful but it does have the side effect of fixing stuff
2711 * we didn't realize was necessary (i.e. even if we return 0).
2713 vdev_raidz_generate_parity_row(rm
, rr
);
2715 for (c
= 0; c
< rr
->rr_firstdatacol
; c
++) {
2716 rc
= &rr
->rr_col
[c
];
2718 if (!rc
->rc_tried
|| rc
->rc_error
!= 0)
2721 if (abd_cmp(orig
[c
], rc
->rc_abd
) != 0) {
2722 zfs_dbgmsg("found error on col=%u devidx=%u off %llx",
2723 c
, (int)rc
->rc_devidx
, (u_longlong_t
)rc
->rc_offset
);
2724 vdev_raidz_checksum_error(zio
, rc
, orig
[c
]);
2725 rc
->rc_error
= SET_ERROR(ECKSUM
);
2735 vdev_raidz_worst_error(raidz_row_t
*rr
)
2739 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2740 error
= zio_worst_error(error
, rr
->rr_col
[c
].rc_error
);
2741 error
= zio_worst_error(error
, rr
->rr_col
[c
].rc_shadow_error
);
2748 vdev_raidz_io_done_verified(zio_t
*zio
, raidz_row_t
*rr
)
2750 int unexpected_errors
= 0;
2751 int parity_errors
= 0;
2752 int parity_untried
= 0;
2753 int data_errors
= 0;
2755 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_READ
);
2757 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2758 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2761 if (c
< rr
->rr_firstdatacol
)
2766 if (!rc
->rc_skipped
)
2767 unexpected_errors
++;
2768 } else if (c
< rr
->rr_firstdatacol
&& !rc
->rc_tried
) {
2772 if (rc
->rc_force_repair
)
2773 unexpected_errors
++;
2777 * If we read more parity disks than were used for
2778 * reconstruction, confirm that the other parity disks produced
2781 * Note that we also regenerate parity when resilvering so we
2782 * can write it out to failed devices later.
2784 if (parity_errors
+ parity_untried
<
2785 rr
->rr_firstdatacol
- data_errors
||
2786 (zio
->io_flags
& ZIO_FLAG_RESILVER
)) {
2787 int n
= raidz_parity_verify(zio
, rr
);
2788 unexpected_errors
+= n
;
2791 if (zio
->io_error
== 0 && spa_writeable(zio
->io_spa
) &&
2792 (unexpected_errors
> 0 || (zio
->io_flags
& ZIO_FLAG_RESILVER
))) {
2794 * Use the good data we have in hand to repair damaged children.
2796 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2797 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2798 vdev_t
*vd
= zio
->io_vd
;
2799 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_devidx
];
2801 if (!rc
->rc_allow_repair
) {
2803 } else if (!rc
->rc_force_repair
&&
2804 (rc
->rc_error
== 0 || rc
->rc_size
== 0)) {
2808 * We do not allow self healing for Direct I/O reads.
2809 * See comment in vdev_raid_row_alloc().
2811 ASSERT0(zio
->io_flags
& ZIO_FLAG_DIO_READ
);
2813 zfs_dbgmsg("zio=%px repairing c=%u devidx=%u "
2815 zio
, c
, rc
->rc_devidx
, (long long)rc
->rc_offset
);
2817 zio_nowait(zio_vdev_child_io(zio
, NULL
, cvd
,
2818 rc
->rc_offset
, rc
->rc_abd
, rc
->rc_size
,
2820 zio
->io_priority
== ZIO_PRIORITY_REBUILD
?
2821 ZIO_PRIORITY_REBUILD
: ZIO_PRIORITY_ASYNC_WRITE
,
2822 ZIO_FLAG_IO_REPAIR
| (unexpected_errors
?
2823 ZIO_FLAG_SELF_HEAL
: 0), NULL
, NULL
));
2828 * Scrub or resilver i/o's: overwrite any shadow locations with the
2829 * good data. This ensures that if we've already copied this sector,
2830 * it will be corrected if it was damaged. This writes more than is
2831 * necessary, but since expansion is paused during scrub/resilver, at
2832 * most a single row will have a shadow location.
2834 if (zio
->io_error
== 0 && spa_writeable(zio
->io_spa
) &&
2835 (zio
->io_flags
& (ZIO_FLAG_RESILVER
| ZIO_FLAG_SCRUB
))) {
2836 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2837 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2838 vdev_t
*vd
= zio
->io_vd
;
2840 if (rc
->rc_shadow_devidx
== INT_MAX
|| rc
->rc_size
== 0)
2842 vdev_t
*cvd
= vd
->vdev_child
[rc
->rc_shadow_devidx
];
2845 * Note: We don't want to update the repair stats
2846 * because that would incorrectly indicate that there
2847 * was bad data to repair, which we aren't sure about.
2848 * By clearing the SCAN_THREAD flag, we prevent this
2849 * from happening, despite having the REPAIR flag set.
2850 * We need to set SELF_HEAL so that this i/o can't be
2851 * bypassed by zio_vdev_io_start().
2853 zio_t
*cio
= zio_vdev_child_io(zio
, NULL
, cvd
,
2854 rc
->rc_shadow_offset
, rc
->rc_abd
, rc
->rc_size
,
2855 ZIO_TYPE_WRITE
, ZIO_PRIORITY_ASYNC_WRITE
,
2856 ZIO_FLAG_IO_REPAIR
| ZIO_FLAG_SELF_HEAL
,
2858 cio
->io_flags
&= ~ZIO_FLAG_SCAN_THREAD
;
2865 raidz_restore_orig_data(raidz_map_t
*rm
)
2867 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
2868 raidz_row_t
*rr
= rm
->rm_row
[i
];
2869 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2870 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2871 if (rc
->rc_need_orig_restore
) {
2872 abd_copy(rc
->rc_abd
,
2873 rc
->rc_orig_data
, rc
->rc_size
);
2874 rc
->rc_need_orig_restore
= B_FALSE
;
2881 * During raidz_reconstruct() for expanded VDEV, we need special consideration
2882 * failure simulations. See note in raidz_reconstruct() on simulating failure
2883 * of a pre-expansion device.
2885 * Treating logical child i as failed, return TRUE if the given column should
2886 * be treated as failed. The idea of logical children allows us to imagine
2887 * that a disk silently failed before a RAIDZ expansion (reads from this disk
2888 * succeed but return the wrong data). Since the expansion doesn't verify
2889 * checksums, the incorrect data will be moved to new locations spread among
2890 * the children (going diagonally across them).
2892 * Higher "logical child failures" (values of `i`) indicate these
2893 * "pre-expansion failures". The first physical_width values imagine that a
2894 * current child failed; the next physical_width-1 values imagine that a
2895 * child failed before the most recent expansion; the next physical_width-2
2896 * values imagine a child failed in the expansion before that, etc.
2899 raidz_simulate_failure(int physical_width
, int original_width
, int ashift
,
2900 int i
, raidz_col_t
*rc
)
2902 uint64_t sector_id
=
2903 physical_width
* (rc
->rc_offset
>> ashift
) +
2906 for (int w
= physical_width
; w
>= original_width
; w
--) {
2908 return (sector_id
% w
== i
);
2913 ASSERT(!"invalid logical child id");
2918 * returns EINVAL if reconstruction of the block will not be possible
2919 * returns ECKSUM if this specific reconstruction failed
2920 * returns 0 on successful reconstruction
2923 raidz_reconstruct(zio_t
*zio
, int *ltgts
, int ntgts
, int nparity
)
2925 raidz_map_t
*rm
= zio
->io_vsd
;
2926 int physical_width
= zio
->io_vd
->vdev_children
;
2927 int original_width
= (rm
->rm_original_width
!= 0) ?
2928 rm
->rm_original_width
: physical_width
;
2929 int dbgmsg
= zfs_flags
& ZFS_DEBUG_RAIDZ_RECONSTRUCT
;
2932 zfs_dbgmsg("raidz_reconstruct_expanded(zio=%px ltgts=%u,%u,%u "
2933 "ntgts=%u", zio
, ltgts
[0], ltgts
[1], ltgts
[2], ntgts
);
2936 /* Reconstruct each row */
2937 for (int r
= 0; r
< rm
->rm_nrows
; r
++) {
2938 raidz_row_t
*rr
= rm
->rm_row
[r
];
2939 int my_tgts
[VDEV_RAIDZ_MAXPARITY
]; /* value is child id */
2945 zfs_dbgmsg("raidz_reconstruct_expanded(row=%u)", r
);
2947 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
2948 raidz_col_t
*rc
= &rr
->rr_col
[c
];
2949 ASSERT0(rc
->rc_need_orig_restore
);
2950 if (rc
->rc_error
!= 0) {
2956 if (rc
->rc_size
== 0)
2958 for (int lt
= 0; lt
< ntgts
; lt
++) {
2959 if (raidz_simulate_failure(physical_width
,
2961 zio
->io_vd
->vdev_top
->vdev_ashift
,
2963 if (rc
->rc_orig_data
== NULL
) {
2966 rc
->rc_size
, B_TRUE
);
2967 abd_copy(rc
->rc_orig_data
,
2968 rc
->rc_abd
, rc
->rc_size
);
2970 rc
->rc_need_orig_restore
= B_TRUE
;
2976 * Note: simulating failure of a
2977 * pre-expansion device can hit more
2978 * than one column, in which case we
2979 * might try to simulate more failures
2980 * than can be reconstructed, which is
2981 * also more than the size of my_tgts.
2982 * This check prevents accessing past
2983 * the end of my_tgts. The "dead >
2984 * nparity" check below will fail this
2985 * reconstruction attempt.
2987 if (t
< VDEV_RAIDZ_MAXPARITY
) {
2990 zfs_dbgmsg("simulating "
2991 "failure of col %u "
2993 (int)rc
->rc_devidx
);
3000 if (dead
> nparity
) {
3001 /* reconstruction not possible */
3003 zfs_dbgmsg("reconstruction not possible; "
3004 "too many failures");
3006 raidz_restore_orig_data(rm
);
3010 vdev_raidz_reconstruct_row(rm
, rr
, my_tgts
, t
);
3013 /* Check for success */
3014 if (raidz_checksum_verify(zio
) == 0) {
3015 if (zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
)
3018 /* Reconstruction succeeded - report errors */
3019 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
3020 raidz_row_t
*rr
= rm
->rm_row
[i
];
3022 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
3023 raidz_col_t
*rc
= &rr
->rr_col
[c
];
3024 if (rc
->rc_need_orig_restore
) {
3026 * Note: if this is a parity column,
3027 * we don't really know if it's wrong.
3029 * vdev_raidz_io_done_verified() check
3030 * it, and if we set rc_error, it will
3031 * think that it is a "known" error
3032 * that doesn't need to be checked
3035 if (rc
->rc_error
== 0 &&
3036 c
>= rr
->rr_firstdatacol
) {
3037 vdev_raidz_checksum_error(zio
,
3038 rc
, rc
->rc_orig_data
);
3042 rc
->rc_need_orig_restore
= B_FALSE
;
3046 vdev_raidz_io_done_verified(zio
, rr
);
3049 zio_checksum_verified(zio
);
3052 zfs_dbgmsg("reconstruction successful "
3053 "(checksum verified)");
3058 /* Reconstruction failed - restore original data */
3059 raidz_restore_orig_data(rm
);
3061 zfs_dbgmsg("raidz_reconstruct_expanded(zio=%px) checksum "
3068 * Iterate over all combinations of N bad vdevs and attempt a reconstruction.
3069 * Note that the algorithm below is non-optimal because it doesn't take into
3070 * account how reconstruction is actually performed. For example, with
3071 * triple-parity RAID-Z the reconstruction procedure is the same if column 4
3072 * is targeted as invalid as if columns 1 and 4 are targeted since in both
3073 * cases we'd only use parity information in column 0.
3075 * The order that we find the various possible combinations of failed
3076 * disks is dictated by these rules:
3077 * - Examine each "slot" (the "i" in tgts[i])
3078 * - Try to increment this slot (tgts[i] += 1)
3079 * - if we can't increment because it runs into the next slot,
3080 * reset our slot to the minimum, and examine the next slot
3082 * For example, with a 6-wide RAIDZ3, and no known errors (so we have to choose
3083 * 3 columns to reconstruct), we will generate the following sequence:
3086 * 0 1 2 special case: skip since these are all parity
3087 * 0 1 3 first slot: reset to 0; middle slot: increment to 2
3088 * 0 2 3 first slot: increment to 1
3089 * 1 2 3 first: reset to 0; middle: reset to 1; last: increment to 4
3090 * 0 1 4 first: reset to 0; middle: increment to 2
3091 * 0 2 4 first: increment to 1
3092 * 1 2 4 first: reset to 0; middle: increment to 3
3093 * 0 3 4 first: increment to 1
3094 * 1 3 4 first: increment to 2
3095 * 2 3 4 first: reset to 0; middle: reset to 1; last: increment to 5
3096 * 0 1 5 first: reset to 0; middle: increment to 2
3097 * 0 2 5 first: increment to 1
3098 * 1 2 5 first: reset to 0; middle: increment to 3
3099 * 0 3 5 first: increment to 1
3100 * 1 3 5 first: increment to 2
3101 * 2 3 5 first: reset to 0; middle: increment to 4
3102 * 0 4 5 first: increment to 1
3103 * 1 4 5 first: increment to 2
3104 * 2 4 5 first: increment to 3
3107 * This strategy works for dRAID but is less efficient when there are a large
3108 * number of child vdevs and therefore permutations to check. Furthermore,
3109 * since the raidz_map_t rows likely do not overlap, reconstruction would be
3110 * possible as long as there are no more than nparity data errors per row.
3111 * These additional permutations are not currently checked but could be as
3112 * a future improvement.
3114 * Returns 0 on success, ECKSUM on failure.
3117 vdev_raidz_combrec(zio_t
*zio
)
3119 int nparity
= vdev_get_nparity(zio
->io_vd
);
3120 raidz_map_t
*rm
= zio
->io_vsd
;
3121 int physical_width
= zio
->io_vd
->vdev_children
;
3122 int original_width
= (rm
->rm_original_width
!= 0) ?
3123 rm
->rm_original_width
: physical_width
;
3125 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
3126 raidz_row_t
*rr
= rm
->rm_row
[i
];
3127 int total_errors
= 0;
3129 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
3130 if (rr
->rr_col
[c
].rc_error
)
3134 if (total_errors
> nparity
)
3135 return (vdev_raidz_worst_error(rr
));
3138 for (int num_failures
= 1; num_failures
<= nparity
; num_failures
++) {
3139 int tstore
[VDEV_RAIDZ_MAXPARITY
+ 2];
3140 int *ltgts
= &tstore
[1]; /* value is logical child ID */
3144 * Determine number of logical children, n. See comment
3145 * above raidz_simulate_failure().
3148 for (int w
= physical_width
;
3149 w
>= original_width
; w
--) {
3153 ASSERT3U(num_failures
, <=, nparity
);
3154 ASSERT3U(num_failures
, <=, VDEV_RAIDZ_MAXPARITY
);
3156 /* Handle corner cases in combrec logic */
3158 for (int i
= 0; i
< num_failures
; i
++) {
3161 ltgts
[num_failures
] = n
;
3164 int err
= raidz_reconstruct(zio
, ltgts
, num_failures
,
3166 if (err
== EINVAL
) {
3168 * Reconstruction not possible with this #
3169 * failures; try more failures.
3172 } else if (err
== 0)
3175 /* Compute next targets to try */
3176 for (int t
= 0; ; t
++) {
3177 ASSERT3U(t
, <, num_failures
);
3179 if (ltgts
[t
] == n
) {
3180 /* try more failures */
3181 ASSERT3U(t
, ==, num_failures
- 1);
3183 ZFS_DEBUG_RAIDZ_RECONSTRUCT
) {
3184 zfs_dbgmsg("reconstruction "
3185 "failed for num_failures="
3193 ASSERT3U(ltgts
[t
], <, n
);
3194 ASSERT3U(ltgts
[t
], <=, ltgts
[t
+ 1]);
3197 * If that spot is available, we're done here.
3198 * Try the next combination.
3200 if (ltgts
[t
] != ltgts
[t
+ 1])
3201 break; // found next combination
3204 * Otherwise, reset this tgt to the minimum,
3205 * and move on to the next tgt.
3207 ltgts
[t
] = ltgts
[t
- 1] + 1;
3208 ASSERT3U(ltgts
[t
], ==, t
);
3211 /* Increase the number of failures and keep trying. */
3212 if (ltgts
[num_failures
- 1] == n
)
3216 if (zfs_flags
& ZFS_DEBUG_RAIDZ_RECONSTRUCT
)
3217 zfs_dbgmsg("reconstruction failed for all num_failures");
3222 vdev_raidz_reconstruct(raidz_map_t
*rm
, const int *t
, int nt
)
3224 for (uint64_t row
= 0; row
< rm
->rm_nrows
; row
++) {
3225 raidz_row_t
*rr
= rm
->rm_row
[row
];
3226 vdev_raidz_reconstruct_row(rm
, rr
, t
, nt
);
3231 * Complete a write IO operation on a RAIDZ VDev
3234 * 1. Check for errors on the child IOs.
3235 * 2. Return, setting an error code if too few child VDevs were written
3236 * to reconstruct the data later. Note that partial writes are
3237 * considered successful if they can be reconstructed at all.
3240 vdev_raidz_io_done_write_impl(zio_t
*zio
, raidz_row_t
*rr
)
3242 int normal_errors
= 0;
3243 int shadow_errors
= 0;
3245 ASSERT3U(rr
->rr_missingparity
, <=, rr
->rr_firstdatacol
);
3246 ASSERT3U(rr
->rr_missingdata
, <=, rr
->rr_cols
- rr
->rr_firstdatacol
);
3247 ASSERT3U(zio
->io_type
, ==, ZIO_TYPE_WRITE
);
3249 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
3250 raidz_col_t
*rc
= &rr
->rr_col
[c
];
3252 if (rc
->rc_error
!= 0) {
3253 ASSERT(rc
->rc_error
!= ECKSUM
); /* child has no bp */
3256 if (rc
->rc_shadow_error
!= 0) {
3257 ASSERT(rc
->rc_shadow_error
!= ECKSUM
);
3263 * Treat partial writes as a success. If we couldn't write enough
3264 * columns to reconstruct the data, the I/O failed. Otherwise, good
3265 * enough. Note that in the case of a shadow write (during raidz
3266 * expansion), depending on if we crash, either the normal (old) or
3267 * shadow (new) location may become the "real" version of the block,
3268 * so both locations must have sufficient redundancy.
3270 * Now that we support write reallocation, it would be better
3271 * to treat partial failure as real failure unless there are
3272 * no non-degraded top-level vdevs left, and not update DTLs
3273 * if we intend to reallocate.
3275 if (normal_errors
> rr
->rr_firstdatacol
||
3276 shadow_errors
> rr
->rr_firstdatacol
) {
3277 zio
->io_error
= zio_worst_error(zio
->io_error
,
3278 vdev_raidz_worst_error(rr
));
3283 vdev_raidz_io_done_reconstruct_known_missing(zio_t
*zio
, raidz_map_t
*rm
,
3286 int parity_errors
= 0;
3287 int parity_untried
= 0;
3288 int data_errors
= 0;
3289 int total_errors
= 0;
3291 ASSERT3U(rr
->rr_missingparity
, <=, rr
->rr_firstdatacol
);
3292 ASSERT3U(rr
->rr_missingdata
, <=, rr
->rr_cols
- rr
->rr_firstdatacol
);
3294 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
3295 raidz_col_t
*rc
= &rr
->rr_col
[c
];
3298 * If scrubbing and a replacing/sparing child vdev determined
3299 * that not all of its children have an identical copy of the
3300 * data, then clear the error so the column is treated like
3301 * any other read and force a repair to correct the damage.
3303 if (rc
->rc_error
== ECKSUM
) {
3304 ASSERT(zio
->io_flags
& ZIO_FLAG_SCRUB
);
3305 vdev_raidz_checksum_error(zio
, rc
, rc
->rc_abd
);
3306 rc
->rc_force_repair
= 1;
3311 if (c
< rr
->rr_firstdatacol
)
3317 } else if (c
< rr
->rr_firstdatacol
&& !rc
->rc_tried
) {
3323 * If there were data errors and the number of errors we saw was
3324 * correctable -- less than or equal to the number of parity disks read
3325 * -- reconstruct based on the missing data.
3327 if (data_errors
!= 0 &&
3328 total_errors
<= rr
->rr_firstdatacol
- parity_untried
) {
3330 * We either attempt to read all the parity columns or
3331 * none of them. If we didn't try to read parity, we
3332 * wouldn't be here in the correctable case. There must
3333 * also have been fewer parity errors than parity
3334 * columns or, again, we wouldn't be in this code path.
3336 ASSERT(parity_untried
== 0);
3337 ASSERT(parity_errors
< rr
->rr_firstdatacol
);
3340 * Identify the data columns that reported an error.
3343 int tgts
[VDEV_RAIDZ_MAXPARITY
];
3344 for (int c
= rr
->rr_firstdatacol
; c
< rr
->rr_cols
; c
++) {
3345 raidz_col_t
*rc
= &rr
->rr_col
[c
];
3346 if (rc
->rc_error
!= 0) {
3347 ASSERT(n
< VDEV_RAIDZ_MAXPARITY
);
3352 ASSERT(rr
->rr_firstdatacol
>= n
);
3354 vdev_raidz_reconstruct_row(rm
, rr
, tgts
, n
);
3359 * Return the number of reads issued.
3362 vdev_raidz_read_all(zio_t
*zio
, raidz_row_t
*rr
)
3364 vdev_t
*vd
= zio
->io_vd
;
3367 rr
->rr_missingdata
= 0;
3368 rr
->rr_missingparity
= 0;
3371 * If this rows contains empty sectors which are not required
3372 * for a normal read then allocate an ABD for them now so they
3373 * may be read, verified, and any needed repairs performed.
3375 if (rr
->rr_nempty
!= 0 && rr
->rr_abd_empty
== NULL
)
3376 vdev_draid_map_alloc_empty(zio
, rr
);
3378 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
3379 raidz_col_t
*rc
= &rr
->rr_col
[c
];
3380 if (rc
->rc_tried
|| rc
->rc_size
== 0)
3383 zio_nowait(zio_vdev_child_io(zio
, NULL
,
3384 vd
->vdev_child
[rc
->rc_devidx
],
3385 rc
->rc_offset
, rc
->rc_abd
, rc
->rc_size
,
3386 zio
->io_type
, zio
->io_priority
, 0,
3387 vdev_raidz_child_done
, rc
));
3394 * We're here because either there were too many errors to even attempt
3395 * reconstruction (total_errors == rm_first_datacol), or vdev_*_combrec()
3396 * failed. In either case, there is enough bad data to prevent reconstruction.
3397 * Start checksum ereports for all children which haven't failed.
3400 vdev_raidz_io_done_unrecoverable(zio_t
*zio
)
3402 raidz_map_t
*rm
= zio
->io_vsd
;
3404 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
3405 raidz_row_t
*rr
= rm
->rm_row
[i
];
3407 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
3408 raidz_col_t
*rc
= &rr
->rr_col
[c
];
3409 vdev_t
*cvd
= zio
->io_vd
->vdev_child
[rc
->rc_devidx
];
3411 if (rc
->rc_error
!= 0)
3414 zio_bad_cksum_t zbc
;
3415 zbc
.zbc_has_cksum
= 0;
3416 zbc
.zbc_injected
= rm
->rm_ecksuminjected
;
3417 mutex_enter(&cvd
->vdev_stat_lock
);
3418 cvd
->vdev_stat
.vs_checksum_errors
++;
3419 mutex_exit(&cvd
->vdev_stat_lock
);
3420 (void) zfs_ereport_start_checksum(zio
->io_spa
,
3421 cvd
, &zio
->io_bookmark
, zio
, rc
->rc_offset
,
3428 vdev_raidz_io_done(zio_t
*zio
)
3430 raidz_map_t
*rm
= zio
->io_vsd
;
3432 ASSERT(zio
->io_bp
!= NULL
);
3433 if (zio
->io_type
== ZIO_TYPE_WRITE
) {
3434 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
3435 vdev_raidz_io_done_write_impl(zio
, rm
->rm_row
[i
]);
3438 if (rm
->rm_phys_col
) {
3440 * This is an aggregated read. Copy the data and status
3441 * from the aggregate abd's to the individual rows.
3443 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
3444 raidz_row_t
*rr
= rm
->rm_row
[i
];
3446 for (int c
= 0; c
< rr
->rr_cols
; c
++) {
3447 raidz_col_t
*rc
= &rr
->rr_col
[c
];
3448 if (rc
->rc_tried
|| rc
->rc_size
== 0)
3452 &rm
->rm_phys_col
[rc
->rc_devidx
];
3453 rc
->rc_error
= prc
->rc_error
;
3454 rc
->rc_tried
= prc
->rc_tried
;
3455 rc
->rc_skipped
= prc
->rc_skipped
;
3456 if (c
>= rr
->rr_firstdatacol
) {
3458 * Note: this is slightly faster
3459 * than using abd_copy_off().
3461 char *physbuf
= abd_to_buf(
3463 void *physloc
= physbuf
+
3467 abd_copy_from_buf(rc
->rc_abd
,
3468 physloc
, rc
->rc_size
);
3474 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
3475 raidz_row_t
*rr
= rm
->rm_row
[i
];
3476 vdev_raidz_io_done_reconstruct_known_missing(zio
,
3480 if (raidz_checksum_verify(zio
) == 0) {
3481 if (zio
->io_flags
& ZIO_FLAG_DIO_CHKSUM_ERR
)
3484 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
3485 raidz_row_t
*rr
= rm
->rm_row
[i
];
3486 vdev_raidz_io_done_verified(zio
, rr
);
3488 zio_checksum_verified(zio
);
3491 * A sequential resilver has no checksum which makes
3492 * combinatoral reconstruction impossible. This code
3493 * path is unreachable since raidz_checksum_verify()
3494 * has no checksum to verify and must succeed.
3496 ASSERT3U(zio
->io_priority
, !=, ZIO_PRIORITY_REBUILD
);
3499 * This isn't a typical situation -- either we got a
3500 * read error or a child silently returned bad data.
3501 * Read every block so we can try again with as much
3502 * data and parity as we can track down. If we've
3503 * already been through once before, all children will
3504 * be marked as tried so we'll proceed to combinatorial
3508 for (int i
= 0; i
< rm
->rm_nrows
; i
++) {
3509 nread
+= vdev_raidz_read_all(zio
,
3514 * Normally our stage is VDEV_IO_DONE, but if
3515 * we've already called redone(), it will have
3516 * changed to VDEV_IO_START, in which case we
3517 * don't want to call redone() again.
3519 if (zio
->io_stage
!= ZIO_STAGE_VDEV_IO_START
)
3520 zio_vdev_io_redone(zio
);
3524 * It would be too expensive to try every possible
3525 * combination of failed sectors in every row, so
3526 * instead we try every combination of failed current or
3527 * past physical disk. This means that if the incorrect
3528 * sectors were all on Nparity disks at any point in the
3529 * past, we will find the correct data. The only known
3530 * case where this is less durable than a non-expanded
3531 * RAIDZ, is if we have a silent failure during
3532 * expansion. In that case, one block could be
3533 * partially in the old format and partially in the
3534 * new format, so we'd lost some sectors from the old
3535 * format and some from the new format.
3537 * e.g. logical_width=4 physical_width=6
3538 * the 15 (6+5+4) possible failed disks are:
3554 * And we will try every combination of Nparity of these
3557 * As a first pass, we can generate every combo,
3558 * and try reconstructing, ignoring any known
3559 * failures. If any row has too many known + simulated
3560 * failures, then we bail on reconstructing with this
3561 * number of simulated failures. As an improvement,
3562 * we could detect the number of whole known failures
3563 * (i.e. we have known failures on these disks for
3564 * every row; the disks never succeeded), and
3565 * subtract that from the max # failures to simulate.
3566 * We could go even further like the current
3567 * combrec code, but that doesn't seem like it
3568 * gains us very much. If we simulate a failure
3569 * that is also a known failure, that's fine.
3571 zio
->io_error
= vdev_raidz_combrec(zio
);
3572 if (zio
->io_error
== ECKSUM
&&
3573 !(zio
->io_flags
& ZIO_FLAG_SPECULATIVE
)) {
3574 vdev_raidz_io_done_unrecoverable(zio
);
3579 if (rm
->rm_lr
!= NULL
) {
3580 zfs_rangelock_exit(rm
->rm_lr
);
3586 vdev_raidz_state_change(vdev_t
*vd
, int faulted
, int degraded
)
3588 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
3589 if (faulted
> vdrz
->vd_nparity
)
3590 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_CANT_OPEN
,
3591 VDEV_AUX_NO_REPLICAS
);
3592 else if (degraded
+ faulted
!= 0)
3593 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_DEGRADED
, VDEV_AUX_NONE
);
3595 vdev_set_state(vd
, B_FALSE
, VDEV_STATE_HEALTHY
, VDEV_AUX_NONE
);
3599 * Determine if any portion of the provided block resides on a child vdev
3600 * with a dirty DTL and therefore needs to be resilvered. The function
3601 * assumes that at least one DTL is dirty which implies that full stripe
3602 * width blocks must be resilvered.
3605 vdev_raidz_need_resilver(vdev_t
*vd
, const dva_t
*dva
, size_t psize
,
3606 uint64_t phys_birth
)
3608 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
3611 * If we're in the middle of a RAIDZ expansion, this block may be in
3612 * the old and/or new location. For simplicity, always resilver it.
3614 if (vdrz
->vn_vre
.vre_state
== DSS_SCANNING
)
3617 uint64_t dcols
= vd
->vdev_children
;
3618 uint64_t nparity
= vdrz
->vd_nparity
;
3619 uint64_t ashift
= vd
->vdev_top
->vdev_ashift
;
3620 /* The starting RAIDZ (parent) vdev sector of the block. */
3621 uint64_t b
= DVA_GET_OFFSET(dva
) >> ashift
;
3622 /* The zio's size in units of the vdev's minimum sector size. */
3623 uint64_t s
= ((psize
- 1) >> ashift
) + 1;
3624 /* The first column for this stripe. */
3625 uint64_t f
= b
% dcols
;
3627 /* Unreachable by sequential resilver. */
3628 ASSERT3U(phys_birth
, !=, TXG_UNKNOWN
);
3630 if (!vdev_dtl_contains(vd
, DTL_PARTIAL
, phys_birth
, 1))
3633 if (s
+ nparity
>= dcols
)
3636 for (uint64_t c
= 0; c
< s
+ nparity
; c
++) {
3637 uint64_t devidx
= (f
+ c
) % dcols
;
3638 vdev_t
*cvd
= vd
->vdev_child
[devidx
];
3641 * dsl_scan_need_resilver() already checked vd with
3642 * vdev_dtl_contains(). So here just check cvd with
3643 * vdev_dtl_empty(), cheaper and a good approximation.
3645 if (!vdev_dtl_empty(cvd
, DTL_PARTIAL
))
3653 vdev_raidz_xlate(vdev_t
*cvd
, const range_seg64_t
*logical_rs
,
3654 range_seg64_t
*physical_rs
, range_seg64_t
*remain_rs
)
3658 vdev_t
*raidvd
= cvd
->vdev_parent
;
3659 ASSERT(raidvd
->vdev_ops
== &vdev_raidz_ops
);
3661 vdev_raidz_t
*vdrz
= raidvd
->vdev_tsd
;
3663 if (vdrz
->vn_vre
.vre_state
== DSS_SCANNING
) {
3665 * We're in the middle of expansion, in which case the
3666 * translation is in flux. Any answer we give may be wrong
3667 * by the time we return, so it isn't safe for the caller to
3668 * act on it. Therefore we say that this range isn't present
3669 * on any children. The only consumers of this are "zpool
3670 * initialize" and trimming, both of which are "best effort"
3673 physical_rs
->rs_start
= physical_rs
->rs_end
= 0;
3674 remain_rs
->rs_start
= remain_rs
->rs_end
= 0;
3678 uint64_t width
= vdrz
->vd_physical_width
;
3679 uint64_t tgt_col
= cvd
->vdev_id
;
3680 uint64_t ashift
= raidvd
->vdev_top
->vdev_ashift
;
3682 /* make sure the offsets are block-aligned */
3683 ASSERT0(logical_rs
->rs_start
% (1 << ashift
));
3684 ASSERT0(logical_rs
->rs_end
% (1 << ashift
));
3685 uint64_t b_start
= logical_rs
->rs_start
>> ashift
;
3686 uint64_t b_end
= logical_rs
->rs_end
>> ashift
;
3688 uint64_t start_row
= 0;
3689 if (b_start
> tgt_col
) /* avoid underflow */
3690 start_row
= ((b_start
- tgt_col
- 1) / width
) + 1;
3692 uint64_t end_row
= 0;
3693 if (b_end
> tgt_col
)
3694 end_row
= ((b_end
- tgt_col
- 1) / width
) + 1;
3696 physical_rs
->rs_start
= start_row
<< ashift
;
3697 physical_rs
->rs_end
= end_row
<< ashift
;
3699 ASSERT3U(physical_rs
->rs_start
, <=, logical_rs
->rs_start
);
3700 ASSERT3U(physical_rs
->rs_end
- physical_rs
->rs_start
, <=,
3701 logical_rs
->rs_end
- logical_rs
->rs_start
);
3705 raidz_reflow_sync(void *arg
, dmu_tx_t
*tx
)
3708 int txgoff
= dmu_tx_get_txg(tx
) & TXG_MASK
;
3709 vdev_raidz_expand_t
*vre
= spa
->spa_raidz_expand
;
3712 * Ensure there are no i/os to the range that is being committed.
3714 uint64_t old_offset
= RRSS_GET_OFFSET(&spa
->spa_uberblock
);
3715 ASSERT3U(vre
->vre_offset_pertxg
[txgoff
], >=, old_offset
);
3717 mutex_enter(&vre
->vre_lock
);
3718 uint64_t new_offset
=
3719 MIN(vre
->vre_offset_pertxg
[txgoff
], vre
->vre_failed_offset
);
3721 * We should not have committed anything that failed.
3723 VERIFY3U(vre
->vre_failed_offset
, >=, old_offset
);
3724 mutex_exit(&vre
->vre_lock
);
3726 zfs_locked_range_t
*lr
= zfs_rangelock_enter(&vre
->vre_rangelock
,
3727 old_offset
, new_offset
- old_offset
,
3731 * Update the uberblock that will be written when this txg completes.
3733 RAIDZ_REFLOW_SET(&spa
->spa_uberblock
,
3734 RRSS_SCRATCH_INVALID_SYNCED_REFLOW
, new_offset
);
3735 vre
->vre_offset_pertxg
[txgoff
] = 0;
3736 zfs_rangelock_exit(lr
);
3738 mutex_enter(&vre
->vre_lock
);
3739 vre
->vre_bytes_copied
+= vre
->vre_bytes_copied_pertxg
[txgoff
];
3740 vre
->vre_bytes_copied_pertxg
[txgoff
] = 0;
3741 mutex_exit(&vre
->vre_lock
);
3743 vdev_t
*vd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
3744 VERIFY0(zap_update(spa
->spa_meta_objset
,
3745 vd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED
,
3746 sizeof (vre
->vre_bytes_copied
), 1, &vre
->vre_bytes_copied
, tx
));
3750 raidz_reflow_complete_sync(void *arg
, dmu_tx_t
*tx
)
3753 vdev_raidz_expand_t
*vre
= spa
->spa_raidz_expand
;
3754 vdev_t
*raidvd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
3755 vdev_raidz_t
*vdrz
= raidvd
->vdev_tsd
;
3757 for (int i
= 0; i
< TXG_SIZE
; i
++)
3758 VERIFY0(vre
->vre_offset_pertxg
[i
]);
3760 reflow_node_t
*re
= kmem_zalloc(sizeof (*re
), KM_SLEEP
);
3761 re
->re_txg
= tx
->tx_txg
+ TXG_CONCURRENT_STATES
;
3762 re
->re_logical_width
= vdrz
->vd_physical_width
;
3763 mutex_enter(&vdrz
->vd_expand_lock
);
3764 avl_add(&vdrz
->vd_expand_txgs
, re
);
3765 mutex_exit(&vdrz
->vd_expand_lock
);
3767 vdev_t
*vd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
3770 * Dirty the config so that the updated ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS
3771 * will get written (based on vd_expand_txgs).
3773 vdev_config_dirty(vd
);
3776 * Before we change vre_state, the on-disk state must reflect that we
3777 * have completed all copying, so that vdev_raidz_io_start() can use
3778 * vre_state to determine if the reflow is in progress. See also the
3779 * end of spa_raidz_expand_thread().
3781 VERIFY3U(RRSS_GET_OFFSET(&spa
->spa_ubsync
), ==,
3782 raidvd
->vdev_ms_count
<< raidvd
->vdev_ms_shift
);
3784 vre
->vre_end_time
= gethrestime_sec();
3785 vre
->vre_state
= DSS_FINISHED
;
3787 uint64_t state
= vre
->vre_state
;
3788 VERIFY0(zap_update(spa
->spa_meta_objset
,
3789 vd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE
,
3790 sizeof (state
), 1, &state
, tx
));
3792 uint64_t end_time
= vre
->vre_end_time
;
3793 VERIFY0(zap_update(spa
->spa_meta_objset
,
3794 vd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME
,
3795 sizeof (end_time
), 1, &end_time
, tx
));
3797 spa
->spa_uberblock
.ub_raidz_reflow_info
= 0;
3799 spa_history_log_internal(spa
, "raidz vdev expansion completed", tx
,
3800 "%s vdev %llu new width %llu", spa_name(spa
),
3801 (unsigned long long)vd
->vdev_id
,
3802 (unsigned long long)vd
->vdev_children
);
3804 spa
->spa_raidz_expand
= NULL
;
3805 raidvd
->vdev_rz_expanding
= B_FALSE
;
3807 spa_async_request(spa
, SPA_ASYNC_INITIALIZE_RESTART
);
3808 spa_async_request(spa
, SPA_ASYNC_TRIM_RESTART
);
3809 spa_async_request(spa
, SPA_ASYNC_AUTOTRIM_RESTART
);
3811 spa_notify_waiters(spa
);
3814 * While we're in syncing context take the opportunity to
3815 * setup a scrub. All the data has been sucessfully copied
3816 * but we have not validated any checksums.
3818 setup_sync_arg_t setup_sync_arg
= {
3819 .func
= POOL_SCAN_SCRUB
,
3823 if (zfs_scrub_after_expand
&&
3824 dsl_scan_setup_check(&setup_sync_arg
.func
, tx
) == 0) {
3825 dsl_scan_setup_sync(&setup_sync_arg
, tx
);
3830 * State of one copy batch.
3832 typedef struct raidz_reflow_arg
{
3833 vdev_raidz_expand_t
*rra_vre
; /* Global expantion state. */
3834 zfs_locked_range_t
*rra_lr
; /* Range lock of this batch. */
3835 uint64_t rra_txg
; /* TXG of this batch. */
3836 uint_t rra_ashift
; /* Ashift of the vdev. */
3837 uint32_t rra_tbd
; /* Number of in-flight ZIOs. */
3838 uint32_t rra_writes
; /* Number of write ZIOs. */
3839 zio_t
*rra_zio
[]; /* Write ZIO pointers. */
3840 } raidz_reflow_arg_t
;
3843 * Write of the new location on one child is done. Once all of them are done
3844 * we can unlock and free everything.
3847 raidz_reflow_write_done(zio_t
*zio
)
3849 raidz_reflow_arg_t
*rra
= zio
->io_private
;
3850 vdev_raidz_expand_t
*vre
= rra
->rra_vre
;
3852 abd_free(zio
->io_abd
);
3854 mutex_enter(&vre
->vre_lock
);
3855 if (zio
->io_error
!= 0) {
3856 /* Force a reflow pause on errors */
3857 vre
->vre_failed_offset
=
3858 MIN(vre
->vre_failed_offset
, rra
->rra_lr
->lr_offset
);
3860 ASSERT3U(vre
->vre_outstanding_bytes
, >=, zio
->io_size
);
3861 vre
->vre_outstanding_bytes
-= zio
->io_size
;
3862 if (rra
->rra_lr
->lr_offset
+ rra
->rra_lr
->lr_length
<
3863 vre
->vre_failed_offset
) {
3864 vre
->vre_bytes_copied_pertxg
[rra
->rra_txg
& TXG_MASK
] +=
3867 cv_signal(&vre
->vre_cv
);
3868 boolean_t done
= (--rra
->rra_tbd
== 0);
3869 mutex_exit(&vre
->vre_lock
);
3873 spa_config_exit(zio
->io_spa
, SCL_STATE
, zio
->io_spa
);
3874 zfs_rangelock_exit(rra
->rra_lr
);
3875 kmem_free(rra
, sizeof (*rra
) + sizeof (zio_t
*) * rra
->rra_writes
);
3879 * Read of the old location on one child is done. Once all of them are done
3880 * writes should have all the data and we can issue them.
3883 raidz_reflow_read_done(zio_t
*zio
)
3885 raidz_reflow_arg_t
*rra
= zio
->io_private
;
3886 vdev_raidz_expand_t
*vre
= rra
->rra_vre
;
3888 /* Reads of only one block use write ABDs. For bigger free gangs. */
3889 if (zio
->io_size
> (1 << rra
->rra_ashift
))
3890 abd_free(zio
->io_abd
);
3893 * If the read failed, or if it was done on a vdev that is not fully
3894 * healthy (e.g. a child that has a resilver in progress), we may not
3895 * have the correct data. Note that it's OK if the write proceeds.
3896 * It may write garbage but the location is otherwise unused and we
3897 * will retry later due to vre_failed_offset.
3899 if (zio
->io_error
!= 0 || !vdev_dtl_empty(zio
->io_vd
, DTL_MISSING
)) {
3900 zfs_dbgmsg("reflow read failed off=%llu size=%llu txg=%llu "
3901 "err=%u partial_dtl_empty=%u missing_dtl_empty=%u",
3902 (long long)rra
->rra_lr
->lr_offset
,
3903 (long long)rra
->rra_lr
->lr_length
,
3904 (long long)rra
->rra_txg
,
3906 vdev_dtl_empty(zio
->io_vd
, DTL_PARTIAL
),
3907 vdev_dtl_empty(zio
->io_vd
, DTL_MISSING
));
3908 mutex_enter(&vre
->vre_lock
);
3909 /* Force a reflow pause on errors */
3910 vre
->vre_failed_offset
=
3911 MIN(vre
->vre_failed_offset
, rra
->rra_lr
->lr_offset
);
3912 mutex_exit(&vre
->vre_lock
);
3915 if (atomic_dec_32_nv(&rra
->rra_tbd
) > 0)
3917 rra
->rra_tbd
= rra
->rra_writes
;
3918 for (uint64_t i
= 0; i
< rra
->rra_writes
; i
++)
3919 zio_nowait(rra
->rra_zio
[i
]);
3923 raidz_reflow_record_progress(vdev_raidz_expand_t
*vre
, uint64_t offset
,
3926 int txgoff
= dmu_tx_get_txg(tx
) & TXG_MASK
;
3927 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
3932 mutex_enter(&vre
->vre_lock
);
3933 ASSERT3U(vre
->vre_offset
, <=, offset
);
3934 vre
->vre_offset
= offset
;
3935 mutex_exit(&vre
->vre_lock
);
3937 if (vre
->vre_offset_pertxg
[txgoff
] == 0) {
3938 dsl_sync_task_nowait(dmu_tx_pool(tx
), raidz_reflow_sync
,
3941 vre
->vre_offset_pertxg
[txgoff
] = offset
;
3945 vdev_raidz_expand_child_replacing(vdev_t
*raidz_vd
)
3947 for (int i
= 0; i
< raidz_vd
->vdev_children
; i
++) {
3948 /* Quick check if a child is being replaced */
3949 if (!raidz_vd
->vdev_child
[i
]->vdev_ops
->vdev_op_leaf
)
3956 raidz_reflow_impl(vdev_t
*vd
, vdev_raidz_expand_t
*vre
, range_tree_t
*rt
,
3959 spa_t
*spa
= vd
->vdev_spa
;
3960 uint_t ashift
= vd
->vdev_top
->vdev_ashift
;
3962 range_seg_t
*rs
= range_tree_first(rt
);
3965 uint64_t offset
= rs_get_start(rs
, rt
);
3966 ASSERT(IS_P2ALIGNED(offset
, 1 << ashift
));
3967 uint64_t size
= rs_get_end(rs
, rt
) - offset
;
3968 ASSERT3U(size
, >=, 1 << ashift
);
3969 ASSERT(IS_P2ALIGNED(size
, 1 << ashift
));
3971 uint64_t blkid
= offset
>> ashift
;
3972 uint_t old_children
= vd
->vdev_children
- 1;
3975 * We can only progress to the point that writes will not overlap
3976 * with blocks whose progress has not yet been recorded on disk.
3977 * Since partially-copied rows are still read from the old location,
3978 * we need to stop one row before the sector-wise overlap, to prevent
3981 * Note that even if we are skipping over a large unallocated region,
3982 * we can't move the on-disk progress to `offset`, because concurrent
3983 * writes/allocations could still use the currently-unallocated
3986 uint64_t ubsync_blkid
=
3987 RRSS_GET_OFFSET(&spa
->spa_ubsync
) >> ashift
;
3988 uint64_t next_overwrite_blkid
= ubsync_blkid
+
3989 ubsync_blkid
/ old_children
- old_children
;
3990 VERIFY3U(next_overwrite_blkid
, >, ubsync_blkid
);
3991 if (blkid
>= next_overwrite_blkid
) {
3992 raidz_reflow_record_progress(vre
,
3993 next_overwrite_blkid
<< ashift
, tx
);
3997 size
= MIN(size
, raidz_expand_max_copy_bytes
);
3998 size
= MIN(size
, (uint64_t)old_children
*
3999 MIN(zfs_max_recordsize
, SPA_MAXBLOCKSIZE
));
4000 size
= MAX(size
, 1 << ashift
);
4001 uint_t blocks
= MIN(size
>> ashift
, next_overwrite_blkid
- blkid
);
4002 size
= (uint64_t)blocks
<< ashift
;
4004 range_tree_remove(rt
, offset
, size
);
4006 uint_t reads
= MIN(blocks
, old_children
);
4007 uint_t writes
= MIN(blocks
, vd
->vdev_children
);
4008 raidz_reflow_arg_t
*rra
= kmem_zalloc(sizeof (*rra
) +
4009 sizeof (zio_t
*) * writes
, KM_SLEEP
);
4011 rra
->rra_lr
= zfs_rangelock_enter(&vre
->vre_rangelock
,
4012 offset
, size
, RL_WRITER
);
4013 rra
->rra_txg
= dmu_tx_get_txg(tx
);
4014 rra
->rra_ashift
= ashift
;
4015 rra
->rra_tbd
= reads
;
4016 rra
->rra_writes
= writes
;
4018 raidz_reflow_record_progress(vre
, offset
+ size
, tx
);
4021 * SCL_STATE will be released when the read and write are done,
4022 * by raidz_reflow_write_done().
4024 spa_config_enter(spa
, SCL_STATE
, spa
, RW_READER
);
4026 /* check if a replacing vdev was added, if so treat it as an error */
4027 if (vdev_raidz_expand_child_replacing(vd
)) {
4028 zfs_dbgmsg("replacing vdev encountered, reflow paused at "
4029 "offset=%llu txg=%llu",
4030 (long long)rra
->rra_lr
->lr_offset
,
4031 (long long)rra
->rra_txg
);
4033 mutex_enter(&vre
->vre_lock
);
4034 vre
->vre_failed_offset
=
4035 MIN(vre
->vre_failed_offset
, rra
->rra_lr
->lr_offset
);
4036 cv_signal(&vre
->vre_cv
);
4037 mutex_exit(&vre
->vre_lock
);
4039 /* drop everything we acquired */
4040 spa_config_exit(spa
, SCL_STATE
, spa
);
4041 zfs_rangelock_exit(rra
->rra_lr
);
4042 kmem_free(rra
, sizeof (*rra
) + sizeof (zio_t
*) * writes
);
4046 mutex_enter(&vre
->vre_lock
);
4047 vre
->vre_outstanding_bytes
+= size
;
4048 mutex_exit(&vre
->vre_lock
);
4050 /* Allocate ABD and ZIO for each child we write. */
4051 int txgoff
= dmu_tx_get_txg(tx
) & TXG_MASK
;
4052 zio_t
*pio
= spa
->spa_txg_zio
[txgoff
];
4053 uint_t b
= blocks
/ vd
->vdev_children
;
4054 uint_t bb
= blocks
% vd
->vdev_children
;
4055 for (uint_t i
= 0; i
< writes
; i
++) {
4056 uint_t n
= b
+ (i
< bb
);
4057 abd_t
*abd
= abd_alloc_for_io(n
<< ashift
, B_FALSE
);
4058 rra
->rra_zio
[i
] = zio_vdev_child_io(pio
, NULL
,
4059 vd
->vdev_child
[(blkid
+ i
) % vd
->vdev_children
],
4060 ((blkid
+ i
) / vd
->vdev_children
) << ashift
,
4061 abd
, n
<< ashift
, ZIO_TYPE_WRITE
, ZIO_PRIORITY_REMOVAL
,
4062 ZIO_FLAG_CANFAIL
, raidz_reflow_write_done
, rra
);
4066 * Allocate and issue ZIO for each child we read. For reads of only
4067 * one block we can use respective writer ABDs, since they will also
4068 * have only one block. For bigger reads create gang ABDs and fill
4069 * them with respective blocks from writer ABDs.
4071 b
= blocks
/ old_children
;
4072 bb
= blocks
% old_children
;
4073 for (uint_t i
= 0; i
< reads
; i
++) {
4074 uint_t n
= b
+ (i
< bb
);
4077 abd
= abd_alloc_gang();
4078 for (uint_t j
= 0; j
< n
; j
++) {
4079 uint_t b
= j
* old_children
+ i
;
4080 abd_t
*cabd
= abd_get_offset_size(
4081 rra
->rra_zio
[b
% vd
->vdev_children
]->io_abd
,
4082 (b
/ vd
->vdev_children
) << ashift
,
4084 abd_gang_add(abd
, cabd
, B_TRUE
);
4087 abd
= rra
->rra_zio
[i
]->io_abd
;
4089 zio_nowait(zio_vdev_child_io(pio
, NULL
,
4090 vd
->vdev_child
[(blkid
+ i
) % old_children
],
4091 ((blkid
+ i
) / old_children
) << ashift
, abd
,
4092 n
<< ashift
, ZIO_TYPE_READ
, ZIO_PRIORITY_REMOVAL
,
4093 ZIO_FLAG_CANFAIL
, raidz_reflow_read_done
, rra
));
4100 * For testing (ztest specific)
4103 raidz_expand_pause(uint_t pause_point
)
4105 while (raidz_expand_pause_point
!= 0 &&
4106 raidz_expand_pause_point
<= pause_point
)
4111 raidz_scratch_child_done(zio_t
*zio
)
4113 zio_t
*pio
= zio
->io_private
;
4115 mutex_enter(&pio
->io_lock
);
4116 pio
->io_error
= zio_worst_error(pio
->io_error
, zio
->io_error
);
4117 mutex_exit(&pio
->io_lock
);
4121 * Reflow the beginning portion of the vdev into an intermediate scratch area
4122 * in memory and on disk. This operation must be persisted on disk before we
4123 * proceed to overwrite the beginning portion with the reflowed data.
4125 * This multi-step task can fail to complete if disk errors are encountered
4126 * and we can return here after a pause (waiting for disk to become healthy).
4129 raidz_reflow_scratch_sync(void *arg
, dmu_tx_t
*tx
)
4131 vdev_raidz_expand_t
*vre
= arg
;
4132 spa_t
*spa
= dmu_tx_pool(tx
)->dp_spa
;
4136 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
4137 vdev_t
*raidvd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
4138 int ashift
= raidvd
->vdev_ashift
;
4139 uint64_t write_size
= P2ALIGN_TYPED(VDEV_BOOT_SIZE
, 1 << ashift
,
4141 uint64_t logical_size
= write_size
* raidvd
->vdev_children
;
4142 uint64_t read_size
=
4143 P2ROUNDUP(DIV_ROUND_UP(logical_size
, (raidvd
->vdev_children
- 1)),
4147 * The scratch space must be large enough to get us to the point
4148 * that one row does not overlap itself when moved. This is checked
4149 * by vdev_raidz_attach_check().
4151 VERIFY3U(write_size
, >=, raidvd
->vdev_children
<< ashift
);
4152 VERIFY3U(write_size
, <=, VDEV_BOOT_SIZE
);
4153 VERIFY3U(write_size
, <=, read_size
);
4155 zfs_locked_range_t
*lr
= zfs_rangelock_enter(&vre
->vre_rangelock
,
4156 0, logical_size
, RL_WRITER
);
4158 abd_t
**abds
= kmem_alloc(raidvd
->vdev_children
* sizeof (abd_t
*),
4160 for (int i
= 0; i
< raidvd
->vdev_children
; i
++) {
4161 abds
[i
] = abd_alloc_linear(read_size
, B_FALSE
);
4164 raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_1
);
4167 * If we have already written the scratch area then we must read from
4168 * there, since new writes were redirected there while we were paused
4169 * or the original location may have been partially overwritten with
4172 if (RRSS_GET_STATE(&spa
->spa_ubsync
) == RRSS_SCRATCH_VALID
) {
4173 VERIFY3U(RRSS_GET_OFFSET(&spa
->spa_ubsync
), ==, logical_size
);
4175 * Read from scratch space.
4177 pio
= zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
4178 for (int i
= 0; i
< raidvd
->vdev_children
; i
++) {
4180 * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE
4181 * to the offset to calculate the physical offset to
4182 * write to. Passing in a negative offset makes us
4183 * access the scratch area.
4185 zio_nowait(zio_vdev_child_io(pio
, NULL
,
4186 raidvd
->vdev_child
[i
],
4187 VDEV_BOOT_OFFSET
- VDEV_LABEL_START_SIZE
, abds
[i
],
4188 write_size
, ZIO_TYPE_READ
, ZIO_PRIORITY_REMOVAL
,
4189 ZIO_FLAG_CANFAIL
, raidz_scratch_child_done
, pio
));
4191 error
= zio_wait(pio
);
4193 zfs_dbgmsg("reflow: error %d reading scratch location",
4201 * Read from original location.
4203 pio
= zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
4204 for (int i
= 0; i
< raidvd
->vdev_children
- 1; i
++) {
4205 ASSERT0(vdev_is_dead(raidvd
->vdev_child
[i
]));
4206 zio_nowait(zio_vdev_child_io(pio
, NULL
, raidvd
->vdev_child
[i
],
4207 0, abds
[i
], read_size
, ZIO_TYPE_READ
,
4208 ZIO_PRIORITY_REMOVAL
, ZIO_FLAG_CANFAIL
,
4209 raidz_scratch_child_done
, pio
));
4211 error
= zio_wait(pio
);
4213 zfs_dbgmsg("reflow: error %d reading original location", error
);
4215 for (int i
= 0; i
< raidvd
->vdev_children
; i
++)
4217 kmem_free(abds
, raidvd
->vdev_children
* sizeof (abd_t
*));
4218 zfs_rangelock_exit(lr
);
4219 spa_config_exit(spa
, SCL_STATE
, FTAG
);
4223 raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_2
);
4228 uint64_t logical_sectors
= logical_size
>> ashift
;
4229 for (int i
= raidvd
->vdev_children
- 1; i
< logical_sectors
; i
++) {
4230 int oldchild
= i
% (raidvd
->vdev_children
- 1);
4231 uint64_t oldoff
= (i
/ (raidvd
->vdev_children
- 1)) << ashift
;
4233 int newchild
= i
% raidvd
->vdev_children
;
4234 uint64_t newoff
= (i
/ raidvd
->vdev_children
) << ashift
;
4236 /* a single sector should not be copying over itself */
4237 ASSERT(!(newchild
== oldchild
&& newoff
== oldoff
));
4239 abd_copy_off(abds
[newchild
], abds
[oldchild
],
4240 newoff
, oldoff
, 1 << ashift
);
4244 * Verify that we filled in everything we intended to (write_size on
4247 VERIFY0(logical_sectors
% raidvd
->vdev_children
);
4248 VERIFY3U((logical_sectors
/ raidvd
->vdev_children
) << ashift
, ==,
4252 * Write to scratch location (boot area).
4254 pio
= zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
4255 for (int i
= 0; i
< raidvd
->vdev_children
; i
++) {
4257 * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE to
4258 * the offset to calculate the physical offset to write to.
4259 * Passing in a negative offset lets us access the boot area.
4261 zio_nowait(zio_vdev_child_io(pio
, NULL
, raidvd
->vdev_child
[i
],
4262 VDEV_BOOT_OFFSET
- VDEV_LABEL_START_SIZE
, abds
[i
],
4263 write_size
, ZIO_TYPE_WRITE
, ZIO_PRIORITY_REMOVAL
,
4264 ZIO_FLAG_CANFAIL
, raidz_scratch_child_done
, pio
));
4266 error
= zio_wait(pio
);
4268 zfs_dbgmsg("reflow: error %d writing scratch location", error
);
4271 pio
= zio_root(spa
, NULL
, NULL
, 0);
4272 zio_flush(pio
, raidvd
);
4275 zfs_dbgmsg("reflow: wrote %llu bytes (logical) to scratch area",
4276 (long long)logical_size
);
4278 raidz_expand_pause(RAIDZ_EXPAND_PAUSE_PRE_SCRATCH_3
);
4281 * Update uberblock to indicate that scratch space is valid. This is
4282 * needed because after this point, the real location may be
4283 * overwritten. If we crash, we need to get the data from the
4284 * scratch space, rather than the real location.
4286 * Note: ub_timestamp is bumped so that vdev_uberblock_compare()
4287 * will prefer this uberblock.
4289 RAIDZ_REFLOW_SET(&spa
->spa_ubsync
, RRSS_SCRATCH_VALID
, logical_size
);
4290 spa
->spa_ubsync
.ub_timestamp
++;
4291 ASSERT0(vdev_uberblock_sync_list(&spa
->spa_root_vdev
, 1,
4292 &spa
->spa_ubsync
, ZIO_FLAG_CONFIG_WRITER
));
4293 if (spa_multihost(spa
))
4294 mmp_update_uberblock(spa
, &spa
->spa_ubsync
);
4296 zfs_dbgmsg("reflow: uberblock updated "
4297 "(txg %llu, SCRATCH_VALID, size %llu, ts %llu)",
4298 (long long)spa
->spa_ubsync
.ub_txg
,
4299 (long long)logical_size
,
4300 (long long)spa
->spa_ubsync
.ub_timestamp
);
4302 raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_VALID
);
4305 * Overwrite with reflow'ed data.
4308 pio
= zio_root(spa
, NULL
, NULL
, ZIO_FLAG_CANFAIL
);
4309 for (int i
= 0; i
< raidvd
->vdev_children
; i
++) {
4310 zio_nowait(zio_vdev_child_io(pio
, NULL
, raidvd
->vdev_child
[i
],
4311 0, abds
[i
], write_size
, ZIO_TYPE_WRITE
,
4312 ZIO_PRIORITY_REMOVAL
, ZIO_FLAG_CANFAIL
,
4313 raidz_scratch_child_done
, pio
));
4315 error
= zio_wait(pio
);
4318 * When we exit early here and drop the range lock, new
4319 * writes will go into the scratch area so we'll need to
4320 * read from there when we return after pausing.
4322 zfs_dbgmsg("reflow: error %d writing real location", error
);
4324 * Update the uberblock that is written when this txg completes.
4326 RAIDZ_REFLOW_SET(&spa
->spa_uberblock
, RRSS_SCRATCH_VALID
,
4330 pio
= zio_root(spa
, NULL
, NULL
, 0);
4331 zio_flush(pio
, raidvd
);
4334 zfs_dbgmsg("reflow: overwrote %llu bytes (logical) to real location",
4335 (long long)logical_size
);
4336 for (int i
= 0; i
< raidvd
->vdev_children
; i
++)
4338 kmem_free(abds
, raidvd
->vdev_children
* sizeof (abd_t
*));
4340 raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_REFLOWED
);
4343 * Update uberblock to indicate that the initial part has been
4344 * reflow'ed. This is needed because after this point (when we exit
4345 * the rangelock), we allow regular writes to this region, which will
4346 * be written to the new location only (because reflow_offset_next ==
4347 * reflow_offset_synced). If we crashed and re-copied from the
4348 * scratch space, we would lose the regular writes.
4350 RAIDZ_REFLOW_SET(&spa
->spa_ubsync
, RRSS_SCRATCH_INVALID_SYNCED
,
4352 spa
->spa_ubsync
.ub_timestamp
++;
4353 ASSERT0(vdev_uberblock_sync_list(&spa
->spa_root_vdev
, 1,
4354 &spa
->spa_ubsync
, ZIO_FLAG_CONFIG_WRITER
));
4355 if (spa_multihost(spa
))
4356 mmp_update_uberblock(spa
, &spa
->spa_ubsync
);
4358 zfs_dbgmsg("reflow: uberblock updated "
4359 "(txg %llu, SCRATCH_NOT_IN_USE, size %llu, ts %llu)",
4360 (long long)spa
->spa_ubsync
.ub_txg
,
4361 (long long)logical_size
,
4362 (long long)spa
->spa_ubsync
.ub_timestamp
);
4364 raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_1
);
4369 vre
->vre_offset
= logical_size
;
4370 zfs_rangelock_exit(lr
);
4371 spa_config_exit(spa
, SCL_STATE
, FTAG
);
4373 int txgoff
= dmu_tx_get_txg(tx
) & TXG_MASK
;
4374 vre
->vre_offset_pertxg
[txgoff
] = vre
->vre_offset
;
4375 vre
->vre_bytes_copied_pertxg
[txgoff
] = vre
->vre_bytes_copied
;
4377 * Note - raidz_reflow_sync() will update the uberblock state to
4378 * RRSS_SCRATCH_INVALID_SYNCED_REFLOW
4380 raidz_reflow_sync(spa
, tx
);
4382 raidz_expand_pause(RAIDZ_EXPAND_PAUSE_SCRATCH_POST_REFLOW_2
);
4386 * We crashed in the middle of raidz_reflow_scratch_sync(); complete its work
4387 * here. No other i/o can be in progress, so we don't need the vre_rangelock.
4390 vdev_raidz_reflow_copy_scratch(spa_t
*spa
)
4392 vdev_raidz_expand_t
*vre
= spa
->spa_raidz_expand
;
4393 uint64_t logical_size
= RRSS_GET_OFFSET(&spa
->spa_uberblock
);
4394 ASSERT3U(RRSS_GET_STATE(&spa
->spa_uberblock
), ==, RRSS_SCRATCH_VALID
);
4396 spa_config_enter(spa
, SCL_STATE
, FTAG
, RW_READER
);
4397 vdev_t
*raidvd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
4398 ASSERT0(logical_size
% raidvd
->vdev_children
);
4399 uint64_t write_size
= logical_size
/ raidvd
->vdev_children
;
4404 * Read from scratch space.
4406 abd_t
**abds
= kmem_alloc(raidvd
->vdev_children
* sizeof (abd_t
*),
4408 for (int i
= 0; i
< raidvd
->vdev_children
; i
++) {
4409 abds
[i
] = abd_alloc_linear(write_size
, B_FALSE
);
4412 pio
= zio_root(spa
, NULL
, NULL
, 0);
4413 for (int i
= 0; i
< raidvd
->vdev_children
; i
++) {
4415 * Note: zio_vdev_child_io() adds VDEV_LABEL_START_SIZE to
4416 * the offset to calculate the physical offset to write to.
4417 * Passing in a negative offset lets us access the boot area.
4419 zio_nowait(zio_vdev_child_io(pio
, NULL
, raidvd
->vdev_child
[i
],
4420 VDEV_BOOT_OFFSET
- VDEV_LABEL_START_SIZE
, abds
[i
],
4421 write_size
, ZIO_TYPE_READ
, ZIO_PRIORITY_REMOVAL
, 0,
4422 raidz_scratch_child_done
, pio
));
4427 * Overwrite real location with reflow'ed data.
4429 pio
= zio_root(spa
, NULL
, NULL
, 0);
4430 for (int i
= 0; i
< raidvd
->vdev_children
; i
++) {
4431 zio_nowait(zio_vdev_child_io(pio
, NULL
, raidvd
->vdev_child
[i
],
4432 0, abds
[i
], write_size
, ZIO_TYPE_WRITE
,
4433 ZIO_PRIORITY_REMOVAL
, 0,
4434 raidz_scratch_child_done
, pio
));
4437 pio
= zio_root(spa
, NULL
, NULL
, 0);
4438 zio_flush(pio
, raidvd
);
4441 zfs_dbgmsg("reflow recovery: overwrote %llu bytes (logical) "
4442 "to real location", (long long)logical_size
);
4444 for (int i
= 0; i
< raidvd
->vdev_children
; i
++)
4446 kmem_free(abds
, raidvd
->vdev_children
* sizeof (abd_t
*));
4451 RAIDZ_REFLOW_SET(&spa
->spa_ubsync
,
4452 RRSS_SCRATCH_INVALID_SYNCED_ON_IMPORT
, logical_size
);
4453 spa
->spa_ubsync
.ub_timestamp
++;
4454 VERIFY0(vdev_uberblock_sync_list(&spa
->spa_root_vdev
, 1,
4455 &spa
->spa_ubsync
, ZIO_FLAG_CONFIG_WRITER
));
4456 if (spa_multihost(spa
))
4457 mmp_update_uberblock(spa
, &spa
->spa_ubsync
);
4459 zfs_dbgmsg("reflow recovery: uberblock updated "
4460 "(txg %llu, SCRATCH_NOT_IN_USE, size %llu, ts %llu)",
4461 (long long)spa
->spa_ubsync
.ub_txg
,
4462 (long long)logical_size
,
4463 (long long)spa
->spa_ubsync
.ub_timestamp
);
4465 dmu_tx_t
*tx
= dmu_tx_create_assigned(spa
->spa_dsl_pool
,
4466 spa_first_txg(spa
));
4467 int txgoff
= dmu_tx_get_txg(tx
) & TXG_MASK
;
4468 vre
->vre_offset
= logical_size
;
4469 vre
->vre_offset_pertxg
[txgoff
] = vre
->vre_offset
;
4470 vre
->vre_bytes_copied_pertxg
[txgoff
] = vre
->vre_bytes_copied
;
4472 * Note that raidz_reflow_sync() will update the uberblock once more
4474 raidz_reflow_sync(spa
, tx
);
4478 spa_config_exit(spa
, SCL_STATE
, FTAG
);
4482 spa_raidz_expand_thread_check(void *arg
, zthr_t
*zthr
)
4487 return (spa
->spa_raidz_expand
!= NULL
&&
4488 !spa
->spa_raidz_expand
->vre_waiting_for_resilver
);
4492 * RAIDZ expansion background thread
4494 * Can be called multiple times if the reflow is paused
4497 spa_raidz_expand_thread(void *arg
, zthr_t
*zthr
)
4500 vdev_raidz_expand_t
*vre
= spa
->spa_raidz_expand
;
4502 if (RRSS_GET_STATE(&spa
->spa_ubsync
) == RRSS_SCRATCH_VALID
)
4503 vre
->vre_offset
= 0;
4505 vre
->vre_offset
= RRSS_GET_OFFSET(&spa
->spa_ubsync
);
4507 /* Reflow the begining portion using the scratch area */
4508 if (vre
->vre_offset
== 0) {
4509 VERIFY0(dsl_sync_task(spa_name(spa
),
4510 NULL
, raidz_reflow_scratch_sync
,
4511 vre
, 0, ZFS_SPACE_CHECK_NONE
));
4513 /* if we encountered errors then pause */
4514 if (vre
->vre_offset
== 0) {
4515 mutex_enter(&vre
->vre_lock
);
4516 vre
->vre_waiting_for_resilver
= B_TRUE
;
4517 mutex_exit(&vre
->vre_lock
);
4522 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
4523 vdev_t
*raidvd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
4525 uint64_t guid
= raidvd
->vdev_guid
;
4527 /* Iterate over all the remaining metaslabs */
4528 for (uint64_t i
= vre
->vre_offset
>> raidvd
->vdev_ms_shift
;
4529 i
< raidvd
->vdev_ms_count
&&
4530 !zthr_iscancelled(zthr
) &&
4531 vre
->vre_failed_offset
== UINT64_MAX
; i
++) {
4532 metaslab_t
*msp
= raidvd
->vdev_ms
[i
];
4534 metaslab_disable(msp
);
4535 mutex_enter(&msp
->ms_lock
);
4538 * The metaslab may be newly created (for the expanded
4539 * space), in which case its trees won't exist yet,
4540 * so we need to bail out early.
4543 mutex_exit(&msp
->ms_lock
);
4544 metaslab_enable(msp
, B_FALSE
, B_FALSE
);
4548 VERIFY0(metaslab_load(msp
));
4551 * We want to copy everything except the free (allocatable)
4552 * space. Note that there may be a little bit more free
4553 * space (e.g. in ms_defer), and it's fine to copy that too.
4555 uint64_t shift
, start
;
4556 range_seg_type_t type
= metaslab_calculate_range_tree_type(
4557 raidvd
, msp
, &start
, &shift
);
4558 range_tree_t
*rt
= range_tree_create(NULL
, type
, NULL
,
4560 range_tree_add(rt
, msp
->ms_start
, msp
->ms_size
);
4561 range_tree_walk(msp
->ms_allocatable
, range_tree_remove
, rt
);
4562 mutex_exit(&msp
->ms_lock
);
4565 * Force the last sector of each metaslab to be copied. This
4566 * ensures that we advance the on-disk progress to the end of
4567 * this metaslab while the metaslab is disabled. Otherwise, we
4568 * could move past this metaslab without advancing the on-disk
4569 * progress, and then an allocation to this metaslab would not
4572 int sectorsz
= 1 << raidvd
->vdev_ashift
;
4573 uint64_t ms_last_offset
= msp
->ms_start
+
4574 msp
->ms_size
- sectorsz
;
4575 if (!range_tree_contains(rt
, ms_last_offset
, sectorsz
)) {
4576 range_tree_add(rt
, ms_last_offset
, sectorsz
);
4580 * When we are resuming from a paused expansion (i.e.
4581 * when importing a pool with a expansion in progress),
4582 * discard any state that we have already processed.
4584 if (vre
->vre_offset
> msp
->ms_start
) {
4585 range_tree_clear(rt
, msp
->ms_start
,
4586 vre
->vre_offset
- msp
->ms_start
);
4589 while (!zthr_iscancelled(zthr
) &&
4590 !range_tree_is_empty(rt
) &&
4591 vre
->vre_failed_offset
== UINT64_MAX
) {
4594 * We need to periodically drop the config lock so that
4595 * writers can get in. Additionally, we can't wait
4596 * for a txg to sync while holding a config lock
4597 * (since a waiting writer could cause a 3-way deadlock
4598 * with the sync thread, which also gets a config
4599 * lock for reader). So we can't hold the config lock
4600 * while calling dmu_tx_assign().
4602 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
4605 * If requested, pause the reflow when the amount
4606 * specified by raidz_expand_max_reflow_bytes is reached
4608 * This pause is only used during testing or debugging.
4610 while (raidz_expand_max_reflow_bytes
!= 0 &&
4611 raidz_expand_max_reflow_bytes
<=
4612 vre
->vre_bytes_copied
&& !zthr_iscancelled(zthr
)) {
4616 mutex_enter(&vre
->vre_lock
);
4617 while (vre
->vre_outstanding_bytes
>
4618 raidz_expand_max_copy_bytes
) {
4619 cv_wait(&vre
->vre_cv
, &vre
->vre_lock
);
4621 mutex_exit(&vre
->vre_lock
);
4624 dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
4626 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
4627 uint64_t txg
= dmu_tx_get_txg(tx
);
4630 * Reacquire the vdev_config lock. Theoretically, the
4631 * vdev_t that we're expanding may have changed.
4633 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
4634 raidvd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
4636 boolean_t needsync
=
4637 raidz_reflow_impl(raidvd
, vre
, rt
, tx
);
4642 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
4643 txg_wait_synced(spa
->spa_dsl_pool
, txg
);
4644 spa_config_enter(spa
, SCL_CONFIG
, FTAG
,
4649 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
4651 metaslab_enable(msp
, B_FALSE
, B_FALSE
);
4652 range_tree_vacate(rt
, NULL
, NULL
);
4653 range_tree_destroy(rt
);
4655 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
4656 raidvd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
4659 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
4662 * The txg_wait_synced() here ensures that all reflow zio's have
4663 * completed, and vre_failed_offset has been set if necessary. It
4664 * also ensures that the progress of the last raidz_reflow_sync() is
4665 * written to disk before raidz_reflow_complete_sync() changes the
4666 * in-memory vre_state. vdev_raidz_io_start() uses vre_state to
4667 * determine if a reflow is in progress, in which case we may need to
4668 * write to both old and new locations. Therefore we can only change
4669 * vre_state once this is not necessary, which is once the on-disk
4670 * progress (in spa_ubsync) has been set past any possible writes (to
4671 * the end of the last metaslab).
4673 txg_wait_synced(spa
->spa_dsl_pool
, 0);
4675 if (!zthr_iscancelled(zthr
) &&
4676 vre
->vre_offset
== raidvd
->vdev_ms_count
<< raidvd
->vdev_ms_shift
) {
4678 * We are not being canceled or paused, so the reflow must be
4679 * complete. In that case also mark it as completed on disk.
4681 ASSERT3U(vre
->vre_failed_offset
, ==, UINT64_MAX
);
4682 VERIFY0(dsl_sync_task(spa_name(spa
), NULL
,
4683 raidz_reflow_complete_sync
, spa
,
4684 0, ZFS_SPACE_CHECK_NONE
));
4685 (void) vdev_online(spa
, guid
, ZFS_ONLINE_EXPAND
, NULL
);
4688 * Wait for all copy zio's to complete and for all the
4689 * raidz_reflow_sync() synctasks to be run.
4691 spa_history_log_internal(spa
, "reflow pause",
4692 NULL
, "offset=%llu failed_offset=%lld",
4693 (long long)vre
->vre_offset
,
4694 (long long)vre
->vre_failed_offset
);
4695 mutex_enter(&vre
->vre_lock
);
4696 if (vre
->vre_failed_offset
!= UINT64_MAX
) {
4698 * Reset progress so that we will retry everything
4699 * after the point that something failed.
4701 vre
->vre_offset
= vre
->vre_failed_offset
;
4702 vre
->vre_failed_offset
= UINT64_MAX
;
4703 vre
->vre_waiting_for_resilver
= B_TRUE
;
4705 mutex_exit(&vre
->vre_lock
);
4710 spa_start_raidz_expansion_thread(spa_t
*spa
)
4712 ASSERT3P(spa
->spa_raidz_expand_zthr
, ==, NULL
);
4713 spa
->spa_raidz_expand_zthr
= zthr_create("raidz_expand",
4714 spa_raidz_expand_thread_check
, spa_raidz_expand_thread
,
4719 raidz_dtl_reassessed(vdev_t
*vd
)
4721 spa_t
*spa
= vd
->vdev_spa
;
4722 if (spa
->spa_raidz_expand
!= NULL
) {
4723 vdev_raidz_expand_t
*vre
= spa
->spa_raidz_expand
;
4725 * we get called often from vdev_dtl_reassess() so make
4726 * sure it's our vdev and any replacing is complete
4728 if (vd
->vdev_top
->vdev_id
== vre
->vre_vdev_id
&&
4729 !vdev_raidz_expand_child_replacing(vd
->vdev_top
)) {
4730 mutex_enter(&vre
->vre_lock
);
4731 if (vre
->vre_waiting_for_resilver
) {
4732 vdev_dbgmsg(vd
, "DTL reassessed, "
4733 "continuing raidz expansion");
4734 vre
->vre_waiting_for_resilver
= B_FALSE
;
4735 zthr_wakeup(spa
->spa_raidz_expand_zthr
);
4737 mutex_exit(&vre
->vre_lock
);
4743 vdev_raidz_attach_check(vdev_t
*new_child
)
4745 vdev_t
*raidvd
= new_child
->vdev_parent
;
4746 uint64_t new_children
= raidvd
->vdev_children
;
4749 * We use the "boot" space as scratch space to handle overwriting the
4750 * initial part of the vdev. If it is too small, then this expansion
4751 * is not allowed. This would be very unusual (e.g. ashift > 13 and
4754 if (new_children
<< raidvd
->vdev_ashift
> VDEV_BOOT_SIZE
) {
4761 vdev_raidz_attach_sync(void *arg
, dmu_tx_t
*tx
)
4763 vdev_t
*new_child
= arg
;
4764 spa_t
*spa
= new_child
->vdev_spa
;
4765 vdev_t
*raidvd
= new_child
->vdev_parent
;
4766 vdev_raidz_t
*vdrz
= raidvd
->vdev_tsd
;
4767 ASSERT3P(raidvd
->vdev_ops
, ==, &vdev_raidz_ops
);
4768 ASSERT3P(raidvd
->vdev_top
, ==, raidvd
);
4769 ASSERT3U(raidvd
->vdev_children
, >, vdrz
->vd_original_width
);
4770 ASSERT3U(raidvd
->vdev_children
, ==, vdrz
->vd_physical_width
+ 1);
4771 ASSERT3P(raidvd
->vdev_child
[raidvd
->vdev_children
- 1], ==,
4774 spa_feature_incr(spa
, SPA_FEATURE_RAIDZ_EXPANSION
, tx
);
4776 vdrz
->vd_physical_width
++;
4778 VERIFY0(spa
->spa_uberblock
.ub_raidz_reflow_info
);
4779 vdrz
->vn_vre
.vre_vdev_id
= raidvd
->vdev_id
;
4780 vdrz
->vn_vre
.vre_offset
= 0;
4781 vdrz
->vn_vre
.vre_failed_offset
= UINT64_MAX
;
4782 spa
->spa_raidz_expand
= &vdrz
->vn_vre
;
4783 zthr_wakeup(spa
->spa_raidz_expand_zthr
);
4786 * Dirty the config so that ZPOOL_CONFIG_RAIDZ_EXPANDING will get
4787 * written to the config.
4789 vdev_config_dirty(raidvd
);
4791 vdrz
->vn_vre
.vre_start_time
= gethrestime_sec();
4792 vdrz
->vn_vre
.vre_end_time
= 0;
4793 vdrz
->vn_vre
.vre_state
= DSS_SCANNING
;
4794 vdrz
->vn_vre
.vre_bytes_copied
= 0;
4796 uint64_t state
= vdrz
->vn_vre
.vre_state
;
4797 VERIFY0(zap_update(spa
->spa_meta_objset
,
4798 raidvd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE
,
4799 sizeof (state
), 1, &state
, tx
));
4801 uint64_t start_time
= vdrz
->vn_vre
.vre_start_time
;
4802 VERIFY0(zap_update(spa
->spa_meta_objset
,
4803 raidvd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME
,
4804 sizeof (start_time
), 1, &start_time
, tx
));
4806 (void) zap_remove(spa
->spa_meta_objset
,
4807 raidvd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME
, tx
);
4808 (void) zap_remove(spa
->spa_meta_objset
,
4809 raidvd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED
, tx
);
4811 spa_history_log_internal(spa
, "raidz vdev expansion started", tx
,
4812 "%s vdev %llu new width %llu", spa_name(spa
),
4813 (unsigned long long)raidvd
->vdev_id
,
4814 (unsigned long long)raidvd
->vdev_children
);
4818 vdev_raidz_load(vdev_t
*vd
)
4820 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
4823 uint64_t state
= DSS_NONE
;
4824 uint64_t start_time
= 0;
4825 uint64_t end_time
= 0;
4826 uint64_t bytes_copied
= 0;
4828 if (vd
->vdev_top_zap
!= 0) {
4829 err
= zap_lookup(vd
->vdev_spa
->spa_meta_objset
,
4830 vd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_STATE
,
4831 sizeof (state
), 1, &state
);
4832 if (err
!= 0 && err
!= ENOENT
)
4835 err
= zap_lookup(vd
->vdev_spa
->spa_meta_objset
,
4836 vd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_START_TIME
,
4837 sizeof (start_time
), 1, &start_time
);
4838 if (err
!= 0 && err
!= ENOENT
)
4841 err
= zap_lookup(vd
->vdev_spa
->spa_meta_objset
,
4842 vd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_END_TIME
,
4843 sizeof (end_time
), 1, &end_time
);
4844 if (err
!= 0 && err
!= ENOENT
)
4847 err
= zap_lookup(vd
->vdev_spa
->spa_meta_objset
,
4848 vd
->vdev_top_zap
, VDEV_TOP_ZAP_RAIDZ_EXPAND_BYTES_COPIED
,
4849 sizeof (bytes_copied
), 1, &bytes_copied
);
4850 if (err
!= 0 && err
!= ENOENT
)
4855 * If we are in the middle of expansion, vre_state should have
4856 * already been set by vdev_raidz_init().
4858 EQUIV(vdrz
->vn_vre
.vre_state
== DSS_SCANNING
, state
== DSS_SCANNING
);
4859 vdrz
->vn_vre
.vre_state
= (dsl_scan_state_t
)state
;
4860 vdrz
->vn_vre
.vre_start_time
= start_time
;
4861 vdrz
->vn_vre
.vre_end_time
= end_time
;
4862 vdrz
->vn_vre
.vre_bytes_copied
= bytes_copied
;
4868 spa_raidz_expand_get_stats(spa_t
*spa
, pool_raidz_expand_stat_t
*pres
)
4870 vdev_raidz_expand_t
*vre
= spa
->spa_raidz_expand
;
4873 /* no removal in progress; find most recent completed */
4874 for (int c
= 0; c
< spa
->spa_root_vdev
->vdev_children
; c
++) {
4875 vdev_t
*vd
= spa
->spa_root_vdev
->vdev_child
[c
];
4876 if (vd
->vdev_ops
== &vdev_raidz_ops
) {
4877 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
4879 if (vdrz
->vn_vre
.vre_end_time
!= 0 &&
4881 vdrz
->vn_vre
.vre_end_time
>
4882 vre
->vre_end_time
)) {
4883 vre
= &vdrz
->vn_vre
;
4890 return (SET_ERROR(ENOENT
));
4893 pres
->pres_state
= vre
->vre_state
;
4894 pres
->pres_expanding_vdev
= vre
->vre_vdev_id
;
4896 vdev_t
*vd
= vdev_lookup_top(spa
, vre
->vre_vdev_id
);
4897 pres
->pres_to_reflow
= vd
->vdev_stat
.vs_alloc
;
4899 mutex_enter(&vre
->vre_lock
);
4900 pres
->pres_reflowed
= vre
->vre_bytes_copied
;
4901 for (int i
= 0; i
< TXG_SIZE
; i
++)
4902 pres
->pres_reflowed
+= vre
->vre_bytes_copied_pertxg
[i
];
4903 mutex_exit(&vre
->vre_lock
);
4905 pres
->pres_start_time
= vre
->vre_start_time
;
4906 pres
->pres_end_time
= vre
->vre_end_time
;
4907 pres
->pres_waiting_for_resilver
= vre
->vre_waiting_for_resilver
;
4913 * Initialize private RAIDZ specific fields from the nvlist.
4916 vdev_raidz_init(spa_t
*spa
, nvlist_t
*nv
, void **tsd
)
4920 int error
= nvlist_lookup_nvlist_array(nv
,
4921 ZPOOL_CONFIG_CHILDREN
, &child
, &children
);
4923 return (SET_ERROR(EINVAL
));
4926 if (nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_NPARITY
, &nparity
) == 0) {
4927 if (nparity
== 0 || nparity
> VDEV_RAIDZ_MAXPARITY
)
4928 return (SET_ERROR(EINVAL
));
4931 * Previous versions could only support 1 or 2 parity
4934 if (nparity
> 1 && spa_version(spa
) < SPA_VERSION_RAIDZ2
)
4935 return (SET_ERROR(EINVAL
));
4936 else if (nparity
> 2 && spa_version(spa
) < SPA_VERSION_RAIDZ3
)
4937 return (SET_ERROR(EINVAL
));
4940 * We require the parity to be specified for SPAs that
4941 * support multiple parity levels.
4943 if (spa_version(spa
) >= SPA_VERSION_RAIDZ2
)
4944 return (SET_ERROR(EINVAL
));
4947 * Otherwise, we default to 1 parity device for RAID-Z.
4952 vdev_raidz_t
*vdrz
= kmem_zalloc(sizeof (*vdrz
), KM_SLEEP
);
4953 vdrz
->vn_vre
.vre_vdev_id
= -1;
4954 vdrz
->vn_vre
.vre_offset
= UINT64_MAX
;
4955 vdrz
->vn_vre
.vre_failed_offset
= UINT64_MAX
;
4956 mutex_init(&vdrz
->vn_vre
.vre_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
4957 cv_init(&vdrz
->vn_vre
.vre_cv
, NULL
, CV_DEFAULT
, NULL
);
4958 zfs_rangelock_init(&vdrz
->vn_vre
.vre_rangelock
, NULL
, NULL
);
4959 mutex_init(&vdrz
->vd_expand_lock
, NULL
, MUTEX_DEFAULT
, NULL
);
4960 avl_create(&vdrz
->vd_expand_txgs
, vdev_raidz_reflow_compare
,
4961 sizeof (reflow_node_t
), offsetof(reflow_node_t
, re_link
));
4963 vdrz
->vd_physical_width
= children
;
4964 vdrz
->vd_nparity
= nparity
;
4966 /* note, the ID does not exist when creating a pool */
4967 (void) nvlist_lookup_uint64(nv
, ZPOOL_CONFIG_ID
,
4968 &vdrz
->vn_vre
.vre_vdev_id
);
4970 boolean_t reflow_in_progress
=
4971 nvlist_exists(nv
, ZPOOL_CONFIG_RAIDZ_EXPANDING
);
4972 if (reflow_in_progress
) {
4973 spa
->spa_raidz_expand
= &vdrz
->vn_vre
;
4974 vdrz
->vn_vre
.vre_state
= DSS_SCANNING
;
4977 vdrz
->vd_original_width
= children
;
4979 unsigned int txgs_size
= 0;
4980 error
= nvlist_lookup_uint64_array(nv
, ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS
,
4983 for (int i
= 0; i
< txgs_size
; i
++) {
4984 reflow_node_t
*re
= kmem_zalloc(sizeof (*re
), KM_SLEEP
);
4985 re
->re_txg
= txgs
[txgs_size
- i
- 1];
4986 re
->re_logical_width
= vdrz
->vd_physical_width
- i
;
4988 if (reflow_in_progress
)
4989 re
->re_logical_width
--;
4991 avl_add(&vdrz
->vd_expand_txgs
, re
);
4994 vdrz
->vd_original_width
= vdrz
->vd_physical_width
- txgs_size
;
4996 if (reflow_in_progress
) {
4997 vdrz
->vd_original_width
--;
4998 zfs_dbgmsg("reflow_in_progress, %u wide, %d prior expansions",
4999 children
, txgs_size
);
5008 vdev_raidz_fini(vdev_t
*vd
)
5010 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
5011 if (vd
->vdev_spa
->spa_raidz_expand
== &vdrz
->vn_vre
)
5012 vd
->vdev_spa
->spa_raidz_expand
= NULL
;
5014 void *cookie
= NULL
;
5015 avl_tree_t
*tree
= &vdrz
->vd_expand_txgs
;
5016 while ((re
= avl_destroy_nodes(tree
, &cookie
)) != NULL
)
5017 kmem_free(re
, sizeof (*re
));
5018 avl_destroy(&vdrz
->vd_expand_txgs
);
5019 mutex_destroy(&vdrz
->vd_expand_lock
);
5020 mutex_destroy(&vdrz
->vn_vre
.vre_lock
);
5021 cv_destroy(&vdrz
->vn_vre
.vre_cv
);
5022 zfs_rangelock_fini(&vdrz
->vn_vre
.vre_rangelock
);
5023 kmem_free(vdrz
, sizeof (*vdrz
));
5027 * Add RAIDZ specific fields to the config nvlist.
5030 vdev_raidz_config_generate(vdev_t
*vd
, nvlist_t
*nv
)
5032 ASSERT3P(vd
->vdev_ops
, ==, &vdev_raidz_ops
);
5033 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
5036 * Make sure someone hasn't managed to sneak a fancy new vdev
5037 * into a crufty old storage pool.
5039 ASSERT(vdrz
->vd_nparity
== 1 ||
5040 (vdrz
->vd_nparity
<= 2 &&
5041 spa_version(vd
->vdev_spa
) >= SPA_VERSION_RAIDZ2
) ||
5042 (vdrz
->vd_nparity
<= 3 &&
5043 spa_version(vd
->vdev_spa
) >= SPA_VERSION_RAIDZ3
));
5046 * Note that we'll add these even on storage pools where they
5047 * aren't strictly required -- older software will just ignore
5050 fnvlist_add_uint64(nv
, ZPOOL_CONFIG_NPARITY
, vdrz
->vd_nparity
);
5052 if (vdrz
->vn_vre
.vre_state
== DSS_SCANNING
) {
5053 fnvlist_add_boolean(nv
, ZPOOL_CONFIG_RAIDZ_EXPANDING
);
5056 mutex_enter(&vdrz
->vd_expand_lock
);
5057 if (!avl_is_empty(&vdrz
->vd_expand_txgs
)) {
5058 uint64_t count
= avl_numnodes(&vdrz
->vd_expand_txgs
);
5059 uint64_t *txgs
= kmem_alloc(sizeof (uint64_t) * count
,
5063 for (reflow_node_t
*re
= avl_first(&vdrz
->vd_expand_txgs
);
5064 re
!= NULL
; re
= AVL_NEXT(&vdrz
->vd_expand_txgs
, re
)) {
5065 txgs
[i
++] = re
->re_txg
;
5068 fnvlist_add_uint64_array(nv
, ZPOOL_CONFIG_RAIDZ_EXPAND_TXGS
,
5071 kmem_free(txgs
, sizeof (uint64_t) * count
);
5073 mutex_exit(&vdrz
->vd_expand_lock
);
5077 vdev_raidz_nparity(vdev_t
*vd
)
5079 vdev_raidz_t
*vdrz
= vd
->vdev_tsd
;
5080 return (vdrz
->vd_nparity
);
5084 vdev_raidz_ndisks(vdev_t
*vd
)
5086 return (vd
->vdev_children
);
5089 vdev_ops_t vdev_raidz_ops
= {
5090 .vdev_op_init
= vdev_raidz_init
,
5091 .vdev_op_fini
= vdev_raidz_fini
,
5092 .vdev_op_open
= vdev_raidz_open
,
5093 .vdev_op_close
= vdev_raidz_close
,
5094 .vdev_op_asize
= vdev_raidz_asize
,
5095 .vdev_op_min_asize
= vdev_raidz_min_asize
,
5096 .vdev_op_min_alloc
= NULL
,
5097 .vdev_op_io_start
= vdev_raidz_io_start
,
5098 .vdev_op_io_done
= vdev_raidz_io_done
,
5099 .vdev_op_state_change
= vdev_raidz_state_change
,
5100 .vdev_op_need_resilver
= vdev_raidz_need_resilver
,
5101 .vdev_op_hold
= NULL
,
5102 .vdev_op_rele
= NULL
,
5103 .vdev_op_remap
= NULL
,
5104 .vdev_op_xlate
= vdev_raidz_xlate
,
5105 .vdev_op_rebuild_asize
= NULL
,
5106 .vdev_op_metaslab_init
= NULL
,
5107 .vdev_op_config_generate
= vdev_raidz_config_generate
,
5108 .vdev_op_nparity
= vdev_raidz_nparity
,
5109 .vdev_op_ndisks
= vdev_raidz_ndisks
,
5110 .vdev_op_type
= VDEV_TYPE_RAIDZ
, /* name of this vdev type */
5111 .vdev_op_leaf
= B_FALSE
/* not a leaf vdev */
5115 ZFS_MODULE_PARAM(zfs_vdev
, raidz_
, expand_max_reflow_bytes
, ULONG
, ZMOD_RW
,
5116 "For testing, pause RAIDZ expansion after reflowing this many bytes");
5117 ZFS_MODULE_PARAM(zfs_vdev
, raidz_
, expand_max_copy_bytes
, ULONG
, ZMOD_RW
,
5118 "Max amount of concurrent i/o for RAIDZ expansion");
5119 ZFS_MODULE_PARAM(zfs_vdev
, raidz_
, io_aggregate_rows
, ULONG
, ZMOD_RW
,
5120 "For expanded RAIDZ, aggregate reads that have more rows than this");
5121 ZFS_MODULE_PARAM(zfs
, zfs_
, scrub_after_expand
, INT
, ZMOD_RW
,
5122 "For expanded RAIDZ, automatically start a pool scrub when expansion "