4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
23 * Copyright (c) 2016, 2024 by Delphix. All rights reserved.
24 * Copyright (c) 2019 by Lawrence Livermore National Security, LLC.
25 * Copyright (c) 2021 Hewlett Packard Enterprise Development LP
26 * Copyright 2023 RackTop Systems, Inc.
30 #include <sys/spa_impl.h>
32 #include <sys/vdev_impl.h>
33 #include <sys/vdev_trim.h>
34 #include <sys/metaslab_impl.h>
35 #include <sys/dsl_synctask.h>
37 #include <sys/dmu_tx.h>
38 #include <sys/arc_impl.h>
41 * TRIM is a feature which is used to notify a SSD that some previously
42 * written space is no longer allocated by the pool. This is useful because
43 * writes to a SSD must be performed to blocks which have first been erased.
44 * Ensuring the SSD always has a supply of erased blocks for new writes
45 * helps prevent the performance from deteriorating.
47 * There are two supported TRIM methods; manual and automatic.
51 * A manual TRIM is initiated by running the 'zpool trim' command. A single
52 * 'vdev_trim' thread is created for each leaf vdev, and it is responsible for
53 * managing that vdev TRIM process. This involves iterating over all the
54 * metaslabs, calculating the unallocated space ranges, and then issuing the
57 * While a metaslab is being actively trimmed it is not eligible to perform
58 * new allocations. After traversing all of the metaslabs the thread is
59 * terminated. Finally, both the requested options and current progress of
60 * the TRIM are regularly written to the pool. This allows the TRIM to be
61 * suspended and resumed as needed.
65 * An automatic TRIM is enabled by setting the 'autotrim' pool property
66 * to 'on'. When enabled, a `vdev_autotrim' thread is created for each
67 * top-level (not leaf) vdev in the pool. These threads perform the same
68 * core TRIM process as a manual TRIM, but with a few key differences.
70 * 1) Automatic TRIM happens continuously in the background and operates
71 * solely on recently freed blocks (ms_trim not ms_allocatable).
73 * 2) Each thread is associated with a top-level (not leaf) vdev. This has
74 * the benefit of simplifying the threading model, it makes it easier
75 * to coordinate administrative commands, and it ensures only a single
76 * metaslab is disabled at a time. Unlike manual TRIM, this means each
77 * 'vdev_autotrim' thread is responsible for issuing TRIM I/Os for its
80 * 3) There is no automatic TRIM progress information stored on disk, nor
81 * is it reported by 'zpool status'.
83 * While the automatic TRIM process is highly effective it is more likely
84 * than a manual TRIM to encounter tiny ranges. Ranges less than or equal to
85 * 'zfs_trim_extent_bytes_min' (32k) are considered too small to efficiently
86 * TRIM and are skipped. This means small amounts of freed space may not
87 * be automatically trimmed.
89 * Furthermore, devices with attached hot spares and devices being actively
90 * replaced are skipped. This is done to avoid adding additional stress to
91 * a potentially unhealthy device and to minimize the required rebuild time.
93 * For this reason it may be beneficial to occasionally manually TRIM a pool
94 * even when automatic TRIM is enabled.
98 * Maximum size of TRIM I/O, ranges will be chunked in to 128MiB lengths.
100 static unsigned int zfs_trim_extent_bytes_max
= 128 * 1024 * 1024;
103 * Minimum size of TRIM I/O, extents smaller than 32Kib will be skipped.
105 static unsigned int zfs_trim_extent_bytes_min
= 32 * 1024;
108 * Skip uninitialized metaslabs during the TRIM process. This option is
109 * useful for pools constructed from large thinly-provisioned devices where
110 * TRIM operations are slow. As a pool ages an increasing fraction of
111 * the pools metaslabs will be initialized progressively degrading the
112 * usefulness of this option. This setting is stored when starting a
113 * manual TRIM and will persist for the duration of the requested TRIM.
115 unsigned int zfs_trim_metaslab_skip
= 0;
118 * Maximum number of queued TRIM I/Os per leaf vdev. The number of
119 * concurrent TRIM I/Os issued to the device is controlled by the
120 * zfs_vdev_trim_min_active and zfs_vdev_trim_max_active module options.
122 static unsigned int zfs_trim_queue_limit
= 10;
125 * The minimum number of transaction groups between automatic trims of a
126 * metaslab. This setting represents a trade-off between issuing more
127 * efficient TRIM operations, by allowing them to be aggregated longer,
128 * and issuing them promptly so the trimmed space is available. Note
129 * that this value is a minimum; metaslabs can be trimmed less frequently
130 * when there are a large number of ranges which need to be trimmed.
132 * Increasing this value will allow frees to be aggregated for a longer
133 * time. This can result is larger TRIM operations, and increased memory
134 * usage in order to track the ranges to be trimmed. Decreasing this value
135 * has the opposite effect. The default value of 32 was determined though
136 * testing to be a reasonable compromise.
138 static unsigned int zfs_trim_txg_batch
= 32;
141 * The trim_args are a control structure which describe how a leaf vdev
142 * should be trimmed. The core elements are the vdev, the metaslab being
143 * trimmed and a range tree containing the extents to TRIM. All provided
144 * ranges must be within the metaslab.
146 typedef struct trim_args
{
148 * These fields are set by the caller of vdev_trim_ranges().
150 vdev_t
*trim_vdev
; /* Leaf vdev to TRIM */
151 metaslab_t
*trim_msp
; /* Disabled metaslab */
152 range_tree_t
*trim_tree
; /* TRIM ranges (in metaslab) */
153 trim_type_t trim_type
; /* Manual or auto TRIM */
154 uint64_t trim_extent_bytes_max
; /* Maximum TRIM I/O size */
155 uint64_t trim_extent_bytes_min
; /* Minimum TRIM I/O size */
156 enum trim_flag trim_flags
; /* TRIM flags (secure) */
159 * These fields are updated by vdev_trim_ranges().
161 hrtime_t trim_start_time
; /* Start time */
162 uint64_t trim_bytes_done
; /* Bytes trimmed */
166 * Determines whether a vdev_trim_thread() should be stopped.
169 vdev_trim_should_stop(vdev_t
*vd
)
171 return (vd
->vdev_trim_exit_wanted
|| !vdev_writeable(vd
) ||
172 vd
->vdev_detached
|| vd
->vdev_top
->vdev_removing
||
173 vd
->vdev_top
->vdev_rz_expanding
);
177 * Determines whether a vdev_autotrim_thread() should be stopped.
180 vdev_autotrim_should_stop(vdev_t
*tvd
)
182 return (tvd
->vdev_autotrim_exit_wanted
||
183 !vdev_writeable(tvd
) || tvd
->vdev_removing
||
184 tvd
->vdev_rz_expanding
||
185 spa_get_autotrim(tvd
->vdev_spa
) == SPA_AUTOTRIM_OFF
);
189 * Wait for given number of kicks, return true if the wait is aborted due to
190 * vdev_autotrim_exit_wanted.
193 vdev_autotrim_wait_kick(vdev_t
*vd
, int num_of_kick
)
195 mutex_enter(&vd
->vdev_autotrim_lock
);
196 for (int i
= 0; i
< num_of_kick
; i
++) {
197 if (vd
->vdev_autotrim_exit_wanted
)
199 cv_wait_idle(&vd
->vdev_autotrim_kick_cv
,
200 &vd
->vdev_autotrim_lock
);
202 boolean_t exit_wanted
= vd
->vdev_autotrim_exit_wanted
;
203 mutex_exit(&vd
->vdev_autotrim_lock
);
205 return (exit_wanted
);
209 * The sync task for updating the on-disk state of a manual TRIM. This
210 * is scheduled by vdev_trim_change_state().
213 vdev_trim_zap_update_sync(void *arg
, dmu_tx_t
*tx
)
216 * We pass in the guid instead of the vdev_t since the vdev may
217 * have been freed prior to the sync task being processed. This
218 * happens when a vdev is detached as we call spa_config_vdev_exit(),
219 * stop the trimming thread, schedule the sync task, and free
220 * the vdev. Later when the scheduled sync task is invoked, it would
221 * find that the vdev has been freed.
223 uint64_t guid
= *(uint64_t *)arg
;
224 uint64_t txg
= dmu_tx_get_txg(tx
);
225 kmem_free(arg
, sizeof (uint64_t));
227 vdev_t
*vd
= spa_lookup_by_guid(tx
->tx_pool
->dp_spa
, guid
, B_FALSE
);
228 if (vd
== NULL
|| vd
->vdev_top
->vdev_removing
||
229 !vdev_is_concrete(vd
) || vd
->vdev_top
->vdev_rz_expanding
)
232 uint64_t last_offset
= vd
->vdev_trim_offset
[txg
& TXG_MASK
];
233 vd
->vdev_trim_offset
[txg
& TXG_MASK
] = 0;
235 VERIFY3U(vd
->vdev_leaf_zap
, !=, 0);
237 objset_t
*mos
= vd
->vdev_spa
->spa_meta_objset
;
239 if (last_offset
> 0 || vd
->vdev_trim_last_offset
== UINT64_MAX
) {
241 if (vd
->vdev_trim_last_offset
== UINT64_MAX
)
244 vd
->vdev_trim_last_offset
= last_offset
;
245 VERIFY0(zap_update(mos
, vd
->vdev_leaf_zap
,
246 VDEV_LEAF_ZAP_TRIM_LAST_OFFSET
,
247 sizeof (last_offset
), 1, &last_offset
, tx
));
250 if (vd
->vdev_trim_action_time
> 0) {
251 uint64_t val
= (uint64_t)vd
->vdev_trim_action_time
;
252 VERIFY0(zap_update(mos
, vd
->vdev_leaf_zap
,
253 VDEV_LEAF_ZAP_TRIM_ACTION_TIME
, sizeof (val
),
257 if (vd
->vdev_trim_rate
> 0) {
258 uint64_t rate
= (uint64_t)vd
->vdev_trim_rate
;
260 if (rate
== UINT64_MAX
)
263 VERIFY0(zap_update(mos
, vd
->vdev_leaf_zap
,
264 VDEV_LEAF_ZAP_TRIM_RATE
, sizeof (rate
), 1, &rate
, tx
));
267 uint64_t partial
= vd
->vdev_trim_partial
;
268 if (partial
== UINT64_MAX
)
271 VERIFY0(zap_update(mos
, vd
->vdev_leaf_zap
, VDEV_LEAF_ZAP_TRIM_PARTIAL
,
272 sizeof (partial
), 1, &partial
, tx
));
274 uint64_t secure
= vd
->vdev_trim_secure
;
275 if (secure
== UINT64_MAX
)
278 VERIFY0(zap_update(mos
, vd
->vdev_leaf_zap
, VDEV_LEAF_ZAP_TRIM_SECURE
,
279 sizeof (secure
), 1, &secure
, tx
));
282 uint64_t trim_state
= vd
->vdev_trim_state
;
283 VERIFY0(zap_update(mos
, vd
->vdev_leaf_zap
, VDEV_LEAF_ZAP_TRIM_STATE
,
284 sizeof (trim_state
), 1, &trim_state
, tx
));
288 * Update the on-disk state of a manual TRIM. This is called to request
289 * that a TRIM be started/suspended/canceled, or to change one of the
290 * TRIM options (partial, secure, rate).
293 vdev_trim_change_state(vdev_t
*vd
, vdev_trim_state_t new_state
,
294 uint64_t rate
, boolean_t partial
, boolean_t secure
)
296 ASSERT(MUTEX_HELD(&vd
->vdev_trim_lock
));
297 spa_t
*spa
= vd
->vdev_spa
;
299 if (new_state
== vd
->vdev_trim_state
)
303 * Copy the vd's guid, this will be freed by the sync task.
305 uint64_t *guid
= kmem_zalloc(sizeof (uint64_t), KM_SLEEP
);
306 *guid
= vd
->vdev_guid
;
309 * If we're suspending, then preserve the original start time.
311 if (vd
->vdev_trim_state
!= VDEV_TRIM_SUSPENDED
) {
312 vd
->vdev_trim_action_time
= gethrestime_sec();
316 * If we're activating, then preserve the requested rate and trim
317 * method. Setting the last offset and rate to UINT64_MAX is used
318 * as a sentinel to indicate they should be reset to default values.
320 if (new_state
== VDEV_TRIM_ACTIVE
) {
321 if (vd
->vdev_trim_state
== VDEV_TRIM_COMPLETE
||
322 vd
->vdev_trim_state
== VDEV_TRIM_CANCELED
) {
323 vd
->vdev_trim_last_offset
= UINT64_MAX
;
324 vd
->vdev_trim_rate
= UINT64_MAX
;
325 vd
->vdev_trim_partial
= UINT64_MAX
;
326 vd
->vdev_trim_secure
= UINT64_MAX
;
330 vd
->vdev_trim_rate
= rate
;
333 vd
->vdev_trim_partial
= partial
;
336 vd
->vdev_trim_secure
= secure
;
339 vdev_trim_state_t old_state
= vd
->vdev_trim_state
;
340 boolean_t resumed
= (old_state
== VDEV_TRIM_SUSPENDED
);
341 vd
->vdev_trim_state
= new_state
;
343 dmu_tx_t
*tx
= dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
344 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
345 dsl_sync_task_nowait(spa_get_dsl(spa
), vdev_trim_zap_update_sync
,
349 case VDEV_TRIM_ACTIVE
:
350 spa_event_notify(spa
, vd
, NULL
,
351 resumed
? ESC_ZFS_TRIM_RESUME
: ESC_ZFS_TRIM_START
);
352 spa_history_log_internal(spa
, "trim", tx
,
353 "vdev=%s activated", vd
->vdev_path
);
355 case VDEV_TRIM_SUSPENDED
:
356 spa_event_notify(spa
, vd
, NULL
, ESC_ZFS_TRIM_SUSPEND
);
357 spa_history_log_internal(spa
, "trim", tx
,
358 "vdev=%s suspended", vd
->vdev_path
);
360 case VDEV_TRIM_CANCELED
:
361 if (old_state
== VDEV_TRIM_ACTIVE
||
362 old_state
== VDEV_TRIM_SUSPENDED
) {
363 spa_event_notify(spa
, vd
, NULL
, ESC_ZFS_TRIM_CANCEL
);
364 spa_history_log_internal(spa
, "trim", tx
,
365 "vdev=%s canceled", vd
->vdev_path
);
368 case VDEV_TRIM_COMPLETE
:
369 spa_event_notify(spa
, vd
, NULL
, ESC_ZFS_TRIM_FINISH
);
370 spa_history_log_internal(spa
, "trim", tx
,
371 "vdev=%s complete", vd
->vdev_path
);
374 panic("invalid state %llu", (unsigned long long)new_state
);
379 if (new_state
!= VDEV_TRIM_ACTIVE
)
380 spa_notify_waiters(spa
);
384 * The zio_done_func_t done callback for each manual TRIM issued. It is
385 * responsible for updating the TRIM stats, reissuing failed TRIM I/Os,
386 * and limiting the number of in flight TRIM I/Os.
389 vdev_trim_cb(zio_t
*zio
)
391 vdev_t
*vd
= zio
->io_vd
;
393 mutex_enter(&vd
->vdev_trim_io_lock
);
394 if (zio
->io_error
== ENXIO
&& !vdev_writeable(vd
)) {
396 * The I/O failed because the vdev was unavailable; roll the
397 * last offset back. (This works because spa_sync waits on
398 * spa_txg_zio before it runs sync tasks.)
401 &vd
->vdev_trim_offset
[zio
->io_txg
& TXG_MASK
];
402 *offset
= MIN(*offset
, zio
->io_offset
);
404 if (zio
->io_error
!= 0) {
405 vd
->vdev_stat
.vs_trim_errors
++;
406 spa_iostats_trim_add(vd
->vdev_spa
, TRIM_TYPE_MANUAL
,
407 0, 0, 0, 0, 1, zio
->io_orig_size
);
409 spa_iostats_trim_add(vd
->vdev_spa
, TRIM_TYPE_MANUAL
,
410 1, zio
->io_orig_size
, 0, 0, 0, 0);
413 vd
->vdev_trim_bytes_done
+= zio
->io_orig_size
;
416 ASSERT3U(vd
->vdev_trim_inflight
[TRIM_TYPE_MANUAL
], >, 0);
417 vd
->vdev_trim_inflight
[TRIM_TYPE_MANUAL
]--;
418 cv_broadcast(&vd
->vdev_trim_io_cv
);
419 mutex_exit(&vd
->vdev_trim_io_lock
);
421 spa_config_exit(vd
->vdev_spa
, SCL_STATE_ALL
, vd
);
425 * The zio_done_func_t done callback for each automatic TRIM issued. It
426 * is responsible for updating the TRIM stats and limiting the number of
427 * in flight TRIM I/Os. Automatic TRIM I/Os are best effort and are
428 * never reissued on failure.
431 vdev_autotrim_cb(zio_t
*zio
)
433 vdev_t
*vd
= zio
->io_vd
;
435 mutex_enter(&vd
->vdev_trim_io_lock
);
437 if (zio
->io_error
!= 0) {
438 vd
->vdev_stat
.vs_trim_errors
++;
439 spa_iostats_trim_add(vd
->vdev_spa
, TRIM_TYPE_AUTO
,
440 0, 0, 0, 0, 1, zio
->io_orig_size
);
442 spa_iostats_trim_add(vd
->vdev_spa
, TRIM_TYPE_AUTO
,
443 1, zio
->io_orig_size
, 0, 0, 0, 0);
446 ASSERT3U(vd
->vdev_trim_inflight
[TRIM_TYPE_AUTO
], >, 0);
447 vd
->vdev_trim_inflight
[TRIM_TYPE_AUTO
]--;
448 cv_broadcast(&vd
->vdev_trim_io_cv
);
449 mutex_exit(&vd
->vdev_trim_io_lock
);
451 spa_config_exit(vd
->vdev_spa
, SCL_STATE_ALL
, vd
);
455 * The zio_done_func_t done callback for each TRIM issued via
456 * vdev_trim_simple(). It is responsible for updating the TRIM stats and
457 * limiting the number of in flight TRIM I/Os. Simple TRIM I/Os are best
458 * effort and are never reissued on failure.
461 vdev_trim_simple_cb(zio_t
*zio
)
463 vdev_t
*vd
= zio
->io_vd
;
465 mutex_enter(&vd
->vdev_trim_io_lock
);
467 if (zio
->io_error
!= 0) {
468 vd
->vdev_stat
.vs_trim_errors
++;
469 spa_iostats_trim_add(vd
->vdev_spa
, TRIM_TYPE_SIMPLE
,
470 0, 0, 0, 0, 1, zio
->io_orig_size
);
472 spa_iostats_trim_add(vd
->vdev_spa
, TRIM_TYPE_SIMPLE
,
473 1, zio
->io_orig_size
, 0, 0, 0, 0);
476 ASSERT3U(vd
->vdev_trim_inflight
[TRIM_TYPE_SIMPLE
], >, 0);
477 vd
->vdev_trim_inflight
[TRIM_TYPE_SIMPLE
]--;
478 cv_broadcast(&vd
->vdev_trim_io_cv
);
479 mutex_exit(&vd
->vdev_trim_io_lock
);
481 spa_config_exit(vd
->vdev_spa
, SCL_STATE_ALL
, vd
);
484 * Returns the average trim rate in bytes/sec for the ta->trim_vdev.
487 vdev_trim_calculate_rate(trim_args_t
*ta
)
489 return (ta
->trim_bytes_done
* 1000 /
490 (NSEC2MSEC(gethrtime() - ta
->trim_start_time
) + 1));
494 * Issues a physical TRIM and takes care of rate limiting (bytes/sec)
495 * and number of concurrent TRIM I/Os.
498 vdev_trim_range(trim_args_t
*ta
, uint64_t start
, uint64_t size
)
500 vdev_t
*vd
= ta
->trim_vdev
;
501 spa_t
*spa
= vd
->vdev_spa
;
504 mutex_enter(&vd
->vdev_trim_io_lock
);
507 * Limit manual TRIM I/Os to the requested rate. This does not
508 * apply to automatic TRIM since no per vdev rate can be specified.
510 if (ta
->trim_type
== TRIM_TYPE_MANUAL
) {
511 while (vd
->vdev_trim_rate
!= 0 && !vdev_trim_should_stop(vd
) &&
512 vdev_trim_calculate_rate(ta
) > vd
->vdev_trim_rate
) {
513 cv_timedwait_idle(&vd
->vdev_trim_io_cv
,
514 &vd
->vdev_trim_io_lock
, ddi_get_lbolt() +
518 ta
->trim_bytes_done
+= size
;
520 /* Limit in flight trimming I/Os */
521 while (vd
->vdev_trim_inflight
[0] + vd
->vdev_trim_inflight
[1] +
522 vd
->vdev_trim_inflight
[2] >= zfs_trim_queue_limit
) {
523 cv_wait(&vd
->vdev_trim_io_cv
, &vd
->vdev_trim_io_lock
);
525 vd
->vdev_trim_inflight
[ta
->trim_type
]++;
526 mutex_exit(&vd
->vdev_trim_io_lock
);
528 dmu_tx_t
*tx
= dmu_tx_create_dd(spa_get_dsl(spa
)->dp_mos_dir
);
529 VERIFY0(dmu_tx_assign(tx
, TXG_WAIT
));
530 uint64_t txg
= dmu_tx_get_txg(tx
);
532 spa_config_enter(spa
, SCL_STATE_ALL
, vd
, RW_READER
);
533 mutex_enter(&vd
->vdev_trim_lock
);
535 if (ta
->trim_type
== TRIM_TYPE_MANUAL
&&
536 vd
->vdev_trim_offset
[txg
& TXG_MASK
] == 0) {
537 uint64_t *guid
= kmem_zalloc(sizeof (uint64_t), KM_SLEEP
);
538 *guid
= vd
->vdev_guid
;
540 /* This is the first write of this txg. */
541 dsl_sync_task_nowait(spa_get_dsl(spa
),
542 vdev_trim_zap_update_sync
, guid
, tx
);
546 * We know the vdev_t will still be around since all consumers of
547 * vdev_free must stop the trimming first.
549 if ((ta
->trim_type
== TRIM_TYPE_MANUAL
&&
550 vdev_trim_should_stop(vd
)) ||
551 (ta
->trim_type
== TRIM_TYPE_AUTO
&&
552 vdev_autotrim_should_stop(vd
->vdev_top
))) {
553 mutex_enter(&vd
->vdev_trim_io_lock
);
554 vd
->vdev_trim_inflight
[ta
->trim_type
]--;
555 mutex_exit(&vd
->vdev_trim_io_lock
);
556 spa_config_exit(vd
->vdev_spa
, SCL_STATE_ALL
, vd
);
557 mutex_exit(&vd
->vdev_trim_lock
);
559 return (SET_ERROR(EINTR
));
561 mutex_exit(&vd
->vdev_trim_lock
);
563 if (ta
->trim_type
== TRIM_TYPE_MANUAL
)
564 vd
->vdev_trim_offset
[txg
& TXG_MASK
] = start
+ size
;
566 if (ta
->trim_type
== TRIM_TYPE_MANUAL
) {
568 } else if (ta
->trim_type
== TRIM_TYPE_AUTO
) {
569 cb
= vdev_autotrim_cb
;
571 cb
= vdev_trim_simple_cb
;
574 zio_nowait(zio_trim(spa
->spa_txg_zio
[txg
& TXG_MASK
], vd
,
575 start
, size
, cb
, NULL
, ZIO_PRIORITY_TRIM
, ZIO_FLAG_CANFAIL
,
577 /* vdev_trim_cb and vdev_autotrim_cb release SCL_STATE_ALL */
585 * Issues TRIM I/Os for all ranges in the provided ta->trim_tree range tree.
586 * Additional parameters describing how the TRIM should be performed must
587 * be set in the trim_args structure. See the trim_args definition for
588 * additional information.
591 vdev_trim_ranges(trim_args_t
*ta
)
593 vdev_t
*vd
= ta
->trim_vdev
;
594 zfs_btree_t
*t
= &ta
->trim_tree
->rt_root
;
595 zfs_btree_index_t idx
;
596 uint64_t extent_bytes_max
= ta
->trim_extent_bytes_max
;
597 uint64_t extent_bytes_min
= ta
->trim_extent_bytes_min
;
598 spa_t
*spa
= vd
->vdev_spa
;
601 ta
->trim_start_time
= gethrtime();
602 ta
->trim_bytes_done
= 0;
604 for (range_seg_t
*rs
= zfs_btree_first(t
, &idx
); rs
!= NULL
;
605 rs
= zfs_btree_next(t
, &idx
, &idx
)) {
606 uint64_t size
= rs_get_end(rs
, ta
->trim_tree
) - rs_get_start(rs
,
609 if (extent_bytes_min
&& size
< extent_bytes_min
) {
610 spa_iostats_trim_add(spa
, ta
->trim_type
,
611 0, 0, 1, size
, 0, 0);
615 /* Split range into legally-sized physical chunks */
616 uint64_t writes_required
= ((size
- 1) / extent_bytes_max
) + 1;
618 for (uint64_t w
= 0; w
< writes_required
; w
++) {
619 error
= vdev_trim_range(ta
, VDEV_LABEL_START_SIZE
+
620 rs_get_start(rs
, ta
->trim_tree
) +
621 (w
*extent_bytes_max
), MIN(size
-
622 (w
* extent_bytes_max
), extent_bytes_max
));
631 * Make sure all TRIMs for this metaslab have completed before
632 * returning. TRIM zios have lower priority over regular or syncing
633 * zios, so all TRIM zios for this metaslab must complete before the
634 * metaslab is re-enabled. Otherwise it's possible write zios to
635 * this metaslab could cut ahead of still queued TRIM zios for this
636 * metaslab causing corruption if the ranges overlap.
638 mutex_enter(&vd
->vdev_trim_io_lock
);
639 while (vd
->vdev_trim_inflight
[0] > 0) {
640 cv_wait(&vd
->vdev_trim_io_cv
, &vd
->vdev_trim_io_lock
);
642 mutex_exit(&vd
->vdev_trim_io_lock
);
648 vdev_trim_xlate_last_rs_end(void *arg
, range_seg64_t
*physical_rs
)
650 uint64_t *last_rs_end
= (uint64_t *)arg
;
652 if (physical_rs
->rs_end
> *last_rs_end
)
653 *last_rs_end
= physical_rs
->rs_end
;
657 vdev_trim_xlate_progress(void *arg
, range_seg64_t
*physical_rs
)
659 vdev_t
*vd
= (vdev_t
*)arg
;
661 uint64_t size
= physical_rs
->rs_end
- physical_rs
->rs_start
;
662 vd
->vdev_trim_bytes_est
+= size
;
664 if (vd
->vdev_trim_last_offset
>= physical_rs
->rs_end
) {
665 vd
->vdev_trim_bytes_done
+= size
;
666 } else if (vd
->vdev_trim_last_offset
> physical_rs
->rs_start
&&
667 vd
->vdev_trim_last_offset
<= physical_rs
->rs_end
) {
668 vd
->vdev_trim_bytes_done
+=
669 vd
->vdev_trim_last_offset
- physical_rs
->rs_start
;
674 * Calculates the completion percentage of a manual TRIM.
677 vdev_trim_calculate_progress(vdev_t
*vd
)
679 ASSERT(spa_config_held(vd
->vdev_spa
, SCL_CONFIG
, RW_READER
) ||
680 spa_config_held(vd
->vdev_spa
, SCL_CONFIG
, RW_WRITER
));
681 ASSERT(vd
->vdev_leaf_zap
!= 0);
683 vd
->vdev_trim_bytes_est
= 0;
684 vd
->vdev_trim_bytes_done
= 0;
686 for (uint64_t i
= 0; i
< vd
->vdev_top
->vdev_ms_count
; i
++) {
687 metaslab_t
*msp
= vd
->vdev_top
->vdev_ms
[i
];
688 mutex_enter(&msp
->ms_lock
);
690 uint64_t ms_free
= (msp
->ms_size
-
691 metaslab_allocated_space(msp
)) /
692 vdev_get_ndisks(vd
->vdev_top
);
695 * Convert the metaslab range to a physical range
696 * on our vdev. We use this to determine if we are
697 * in the middle of this metaslab range.
699 range_seg64_t logical_rs
, physical_rs
, remain_rs
;
700 logical_rs
.rs_start
= msp
->ms_start
;
701 logical_rs
.rs_end
= msp
->ms_start
+ msp
->ms_size
;
703 /* Metaslab space after this offset has not been trimmed. */
704 vdev_xlate(vd
, &logical_rs
, &physical_rs
, &remain_rs
);
705 if (vd
->vdev_trim_last_offset
<= physical_rs
.rs_start
) {
706 vd
->vdev_trim_bytes_est
+= ms_free
;
707 mutex_exit(&msp
->ms_lock
);
711 /* Metaslab space before this offset has been trimmed */
712 uint64_t last_rs_end
= physical_rs
.rs_end
;
713 if (!vdev_xlate_is_empty(&remain_rs
)) {
714 vdev_xlate_walk(vd
, &remain_rs
,
715 vdev_trim_xlate_last_rs_end
, &last_rs_end
);
718 if (vd
->vdev_trim_last_offset
> last_rs_end
) {
719 vd
->vdev_trim_bytes_done
+= ms_free
;
720 vd
->vdev_trim_bytes_est
+= ms_free
;
721 mutex_exit(&msp
->ms_lock
);
726 * If we get here, we're in the middle of trimming this
727 * metaslab. Load it and walk the free tree for more
728 * accurate progress estimation.
730 VERIFY0(metaslab_load(msp
));
732 range_tree_t
*rt
= msp
->ms_allocatable
;
733 zfs_btree_t
*bt
= &rt
->rt_root
;
734 zfs_btree_index_t idx
;
735 for (range_seg_t
*rs
= zfs_btree_first(bt
, &idx
);
736 rs
!= NULL
; rs
= zfs_btree_next(bt
, &idx
, &idx
)) {
737 logical_rs
.rs_start
= rs_get_start(rs
, rt
);
738 logical_rs
.rs_end
= rs_get_end(rs
, rt
);
740 vdev_xlate_walk(vd
, &logical_rs
,
741 vdev_trim_xlate_progress
, vd
);
743 mutex_exit(&msp
->ms_lock
);
748 * Load from disk the vdev's manual TRIM information. This includes the
749 * state, progress, and options provided when initiating the manual TRIM.
752 vdev_trim_load(vdev_t
*vd
)
755 ASSERT(spa_config_held(vd
->vdev_spa
, SCL_CONFIG
, RW_READER
) ||
756 spa_config_held(vd
->vdev_spa
, SCL_CONFIG
, RW_WRITER
));
757 ASSERT(vd
->vdev_leaf_zap
!= 0);
759 if (vd
->vdev_trim_state
== VDEV_TRIM_ACTIVE
||
760 vd
->vdev_trim_state
== VDEV_TRIM_SUSPENDED
) {
761 err
= zap_lookup(vd
->vdev_spa
->spa_meta_objset
,
762 vd
->vdev_leaf_zap
, VDEV_LEAF_ZAP_TRIM_LAST_OFFSET
,
763 sizeof (vd
->vdev_trim_last_offset
), 1,
764 &vd
->vdev_trim_last_offset
);
766 vd
->vdev_trim_last_offset
= 0;
771 err
= zap_lookup(vd
->vdev_spa
->spa_meta_objset
,
772 vd
->vdev_leaf_zap
, VDEV_LEAF_ZAP_TRIM_RATE
,
773 sizeof (vd
->vdev_trim_rate
), 1,
774 &vd
->vdev_trim_rate
);
776 vd
->vdev_trim_rate
= 0;
782 err
= zap_lookup(vd
->vdev_spa
->spa_meta_objset
,
783 vd
->vdev_leaf_zap
, VDEV_LEAF_ZAP_TRIM_PARTIAL
,
784 sizeof (vd
->vdev_trim_partial
), 1,
785 &vd
->vdev_trim_partial
);
787 vd
->vdev_trim_partial
= 0;
793 err
= zap_lookup(vd
->vdev_spa
->spa_meta_objset
,
794 vd
->vdev_leaf_zap
, VDEV_LEAF_ZAP_TRIM_SECURE
,
795 sizeof (vd
->vdev_trim_secure
), 1,
796 &vd
->vdev_trim_secure
);
798 vd
->vdev_trim_secure
= 0;
804 vdev_trim_calculate_progress(vd
);
810 vdev_trim_xlate_range_add(void *arg
, range_seg64_t
*physical_rs
)
812 trim_args_t
*ta
= arg
;
813 vdev_t
*vd
= ta
->trim_vdev
;
816 * Only a manual trim will be traversing the vdev sequentially.
817 * For an auto trim all valid ranges should be added.
819 if (ta
->trim_type
== TRIM_TYPE_MANUAL
) {
821 /* Only add segments that we have not visited yet */
822 if (physical_rs
->rs_end
<= vd
->vdev_trim_last_offset
)
825 /* Pick up where we left off mid-range. */
826 if (vd
->vdev_trim_last_offset
> physical_rs
->rs_start
) {
827 ASSERT3U(physical_rs
->rs_end
, >,
828 vd
->vdev_trim_last_offset
);
829 physical_rs
->rs_start
= vd
->vdev_trim_last_offset
;
833 ASSERT3U(physical_rs
->rs_end
, >, physical_rs
->rs_start
);
835 range_tree_add(ta
->trim_tree
, physical_rs
->rs_start
,
836 physical_rs
->rs_end
- physical_rs
->rs_start
);
840 * Convert the logical range into physical ranges and add them to the
841 * range tree passed in the trim_args_t.
844 vdev_trim_range_add(void *arg
, uint64_t start
, uint64_t size
)
846 trim_args_t
*ta
= arg
;
847 vdev_t
*vd
= ta
->trim_vdev
;
848 range_seg64_t logical_rs
;
849 logical_rs
.rs_start
= start
;
850 logical_rs
.rs_end
= start
+ size
;
853 * Every range to be trimmed must be part of ms_allocatable.
854 * When ZFS_DEBUG_TRIM is set load the metaslab to verify this
855 * is always the case.
857 if (zfs_flags
& ZFS_DEBUG_TRIM
) {
858 metaslab_t
*msp
= ta
->trim_msp
;
859 VERIFY0(metaslab_load(msp
));
860 VERIFY3B(msp
->ms_loaded
, ==, B_TRUE
);
861 VERIFY(range_tree_contains(msp
->ms_allocatable
, start
, size
));
864 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
865 vdev_xlate_walk(vd
, &logical_rs
, vdev_trim_xlate_range_add
, arg
);
869 * Each manual TRIM thread is responsible for trimming the unallocated
870 * space for each leaf vdev. This is accomplished by sequentially iterating
871 * over its top-level metaslabs and issuing TRIM I/O for the space described
872 * by its ms_allocatable. While a metaslab is undergoing trimming it is
873 * not eligible for new allocations.
875 static __attribute__((noreturn
)) void
876 vdev_trim_thread(void *arg
)
879 spa_t
*spa
= vd
->vdev_spa
;
884 * The VDEV_LEAF_ZAP_TRIM_* entries may have been updated by
885 * vdev_trim(). Wait for the updated values to be reflected
886 * in the zap in order to start with the requested settings.
888 txg_wait_synced(spa_get_dsl(vd
->vdev_spa
), 0);
890 ASSERT(vdev_is_concrete(vd
));
891 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
893 vd
->vdev_trim_last_offset
= 0;
894 vd
->vdev_trim_rate
= 0;
895 vd
->vdev_trim_partial
= 0;
896 vd
->vdev_trim_secure
= 0;
898 VERIFY0(vdev_trim_load(vd
));
901 ta
.trim_extent_bytes_max
= zfs_trim_extent_bytes_max
;
902 ta
.trim_extent_bytes_min
= zfs_trim_extent_bytes_min
;
903 ta
.trim_tree
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
904 ta
.trim_type
= TRIM_TYPE_MANUAL
;
908 * When a secure TRIM has been requested infer that the intent
909 * is that everything must be trimmed. Override the default
910 * minimum TRIM size to prevent ranges from being skipped.
912 if (vd
->vdev_trim_secure
) {
913 ta
.trim_flags
|= ZIO_TRIM_SECURE
;
914 ta
.trim_extent_bytes_min
= SPA_MINBLOCKSIZE
;
917 uint64_t ms_count
= 0;
918 for (uint64_t i
= 0; !vd
->vdev_detached
&&
919 i
< vd
->vdev_top
->vdev_ms_count
; i
++) {
920 metaslab_t
*msp
= vd
->vdev_top
->vdev_ms
[i
];
923 * If we've expanded the top-level vdev or it's our
924 * first pass, calculate our progress.
926 if (vd
->vdev_top
->vdev_ms_count
!= ms_count
) {
927 vdev_trim_calculate_progress(vd
);
928 ms_count
= vd
->vdev_top
->vdev_ms_count
;
931 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
932 metaslab_disable(msp
);
933 mutex_enter(&msp
->ms_lock
);
934 VERIFY0(metaslab_load(msp
));
937 * If a partial TRIM was requested skip metaslabs which have
938 * never been initialized and thus have never been written.
940 if (msp
->ms_sm
== NULL
&& vd
->vdev_trim_partial
) {
941 mutex_exit(&msp
->ms_lock
);
942 metaslab_enable(msp
, B_FALSE
, B_FALSE
);
943 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
944 vdev_trim_calculate_progress(vd
);
949 range_tree_walk(msp
->ms_allocatable
, vdev_trim_range_add
, &ta
);
950 range_tree_vacate(msp
->ms_trim
, NULL
, NULL
);
951 mutex_exit(&msp
->ms_lock
);
953 error
= vdev_trim_ranges(&ta
);
954 metaslab_enable(msp
, B_TRUE
, B_FALSE
);
955 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
957 range_tree_vacate(ta
.trim_tree
, NULL
, NULL
);
962 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
964 range_tree_destroy(ta
.trim_tree
);
966 mutex_enter(&vd
->vdev_trim_lock
);
967 if (!vd
->vdev_trim_exit_wanted
) {
968 if (vdev_writeable(vd
)) {
969 vdev_trim_change_state(vd
, VDEV_TRIM_COMPLETE
,
970 vd
->vdev_trim_rate
, vd
->vdev_trim_partial
,
971 vd
->vdev_trim_secure
);
972 } else if (vd
->vdev_faulted
) {
973 vdev_trim_change_state(vd
, VDEV_TRIM_CANCELED
,
974 vd
->vdev_trim_rate
, vd
->vdev_trim_partial
,
975 vd
->vdev_trim_secure
);
978 ASSERT(vd
->vdev_trim_thread
!= NULL
|| vd
->vdev_trim_inflight
[0] == 0);
981 * Drop the vdev_trim_lock while we sync out the txg since it's
982 * possible that a device might be trying to come online and must
983 * check to see if it needs to restart a trim. That thread will be
984 * holding the spa_config_lock which would prevent the txg_wait_synced
987 mutex_exit(&vd
->vdev_trim_lock
);
988 txg_wait_synced(spa_get_dsl(spa
), 0);
989 mutex_enter(&vd
->vdev_trim_lock
);
991 vd
->vdev_trim_thread
= NULL
;
992 cv_broadcast(&vd
->vdev_trim_cv
);
993 mutex_exit(&vd
->vdev_trim_lock
);
999 * Initiates a manual TRIM for the vdev_t. Callers must hold vdev_trim_lock,
1000 * the vdev_t must be a leaf and cannot already be manually trimming.
1003 vdev_trim(vdev_t
*vd
, uint64_t rate
, boolean_t partial
, boolean_t secure
)
1005 ASSERT(MUTEX_HELD(&vd
->vdev_trim_lock
));
1006 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1007 ASSERT(vdev_is_concrete(vd
));
1008 ASSERT3P(vd
->vdev_trim_thread
, ==, NULL
);
1009 ASSERT(!vd
->vdev_detached
);
1010 ASSERT(!vd
->vdev_trim_exit_wanted
);
1011 ASSERT(!vd
->vdev_top
->vdev_removing
);
1012 ASSERT(!vd
->vdev_rz_expanding
);
1014 vdev_trim_change_state(vd
, VDEV_TRIM_ACTIVE
, rate
, partial
, secure
);
1015 vd
->vdev_trim_thread
= thread_create(NULL
, 0,
1016 vdev_trim_thread
, vd
, 0, &p0
, TS_RUN
, maxclsyspri
);
1020 * Wait for the trimming thread to be terminated (canceled or stopped).
1023 vdev_trim_stop_wait_impl(vdev_t
*vd
)
1025 ASSERT(MUTEX_HELD(&vd
->vdev_trim_lock
));
1027 while (vd
->vdev_trim_thread
!= NULL
)
1028 cv_wait(&vd
->vdev_trim_cv
, &vd
->vdev_trim_lock
);
1030 ASSERT3P(vd
->vdev_trim_thread
, ==, NULL
);
1031 vd
->vdev_trim_exit_wanted
= B_FALSE
;
1035 * Wait for vdev trim threads which were listed to cleanly exit.
1038 vdev_trim_stop_wait(spa_t
*spa
, list_t
*vd_list
)
1043 ASSERT(MUTEX_HELD(&spa_namespace_lock
) ||
1044 spa
->spa_export_thread
== curthread
);
1046 while ((vd
= list_remove_head(vd_list
)) != NULL
) {
1047 mutex_enter(&vd
->vdev_trim_lock
);
1048 vdev_trim_stop_wait_impl(vd
);
1049 mutex_exit(&vd
->vdev_trim_lock
);
1054 * Stop trimming a device, with the resultant trimming state being tgt_state.
1055 * For blocking behavior pass NULL for vd_list. Otherwise, when a list_t is
1056 * provided the stopping vdev is inserted in to the list. Callers are then
1057 * required to call vdev_trim_stop_wait() to block for all the trim threads
1058 * to exit. The caller must hold vdev_trim_lock and must not be writing to
1059 * the spa config, as the trimming thread may try to enter the config as a
1060 * reader before exiting.
1063 vdev_trim_stop(vdev_t
*vd
, vdev_trim_state_t tgt_state
, list_t
*vd_list
)
1065 ASSERT(!spa_config_held(vd
->vdev_spa
, SCL_CONFIG
|SCL_STATE
, RW_WRITER
));
1066 ASSERT(MUTEX_HELD(&vd
->vdev_trim_lock
));
1067 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1068 ASSERT(vdev_is_concrete(vd
));
1071 * Allow cancel requests to proceed even if the trim thread has
1074 if (vd
->vdev_trim_thread
== NULL
&& tgt_state
!= VDEV_TRIM_CANCELED
)
1077 vdev_trim_change_state(vd
, tgt_state
, 0, 0, 0);
1078 vd
->vdev_trim_exit_wanted
= B_TRUE
;
1080 if (vd_list
== NULL
) {
1081 vdev_trim_stop_wait_impl(vd
);
1083 ASSERT(MUTEX_HELD(&spa_namespace_lock
) ||
1084 vd
->vdev_spa
->spa_export_thread
== curthread
);
1085 list_insert_tail(vd_list
, vd
);
1090 * Requests that all listed vdevs stop trimming.
1093 vdev_trim_stop_all_impl(vdev_t
*vd
, vdev_trim_state_t tgt_state
,
1096 if (vd
->vdev_ops
->vdev_op_leaf
&& vdev_is_concrete(vd
)) {
1097 mutex_enter(&vd
->vdev_trim_lock
);
1098 vdev_trim_stop(vd
, tgt_state
, vd_list
);
1099 mutex_exit(&vd
->vdev_trim_lock
);
1103 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++) {
1104 vdev_trim_stop_all_impl(vd
->vdev_child
[i
], tgt_state
,
1110 * Convenience function to stop trimming of a vdev tree and set all trim
1111 * thread pointers to NULL.
1114 vdev_trim_stop_all(vdev_t
*vd
, vdev_trim_state_t tgt_state
)
1116 spa_t
*spa
= vd
->vdev_spa
;
1120 ASSERT(MUTEX_HELD(&spa_namespace_lock
) ||
1121 spa
->spa_export_thread
== curthread
);
1123 list_create(&vd_list
, sizeof (vdev_t
),
1124 offsetof(vdev_t
, vdev_trim_node
));
1126 vdev_trim_stop_all_impl(vd
, tgt_state
, &vd_list
);
1129 * Iterate over cache devices and request stop trimming the
1130 * whole device in case we export the pool or remove the cache
1131 * device prematurely.
1133 for (int i
= 0; i
< spa
->spa_l2cache
.sav_count
; i
++) {
1134 vd_l2cache
= spa
->spa_l2cache
.sav_vdevs
[i
];
1135 vdev_trim_stop_all_impl(vd_l2cache
, tgt_state
, &vd_list
);
1138 vdev_trim_stop_wait(spa
, &vd_list
);
1140 if (vd
->vdev_spa
->spa_sync_on
) {
1141 /* Make sure that our state has been synced to disk */
1142 txg_wait_synced(spa_get_dsl(vd
->vdev_spa
), 0);
1145 list_destroy(&vd_list
);
1149 * Conditionally restarts a manual TRIM given its on-disk state.
1152 vdev_trim_restart(vdev_t
*vd
)
1154 ASSERT(MUTEX_HELD(&spa_namespace_lock
) ||
1155 vd
->vdev_spa
->spa_load_thread
== curthread
);
1156 ASSERT(!spa_config_held(vd
->vdev_spa
, SCL_ALL
, RW_WRITER
));
1158 if (vd
->vdev_leaf_zap
!= 0) {
1159 mutex_enter(&vd
->vdev_trim_lock
);
1160 uint64_t trim_state
= VDEV_TRIM_NONE
;
1161 int err
= zap_lookup(vd
->vdev_spa
->spa_meta_objset
,
1162 vd
->vdev_leaf_zap
, VDEV_LEAF_ZAP_TRIM_STATE
,
1163 sizeof (trim_state
), 1, &trim_state
);
1164 ASSERT(err
== 0 || err
== ENOENT
);
1165 vd
->vdev_trim_state
= trim_state
;
1167 uint64_t timestamp
= 0;
1168 err
= zap_lookup(vd
->vdev_spa
->spa_meta_objset
,
1169 vd
->vdev_leaf_zap
, VDEV_LEAF_ZAP_TRIM_ACTION_TIME
,
1170 sizeof (timestamp
), 1, ×tamp
);
1171 ASSERT(err
== 0 || err
== ENOENT
);
1172 vd
->vdev_trim_action_time
= timestamp
;
1174 if ((vd
->vdev_trim_state
== VDEV_TRIM_SUSPENDED
||
1175 vd
->vdev_offline
) && !vd
->vdev_top
->vdev_rz_expanding
) {
1176 /* load progress for reporting, but don't resume */
1177 VERIFY0(vdev_trim_load(vd
));
1178 } else if (vd
->vdev_trim_state
== VDEV_TRIM_ACTIVE
&&
1179 vdev_writeable(vd
) && !vd
->vdev_top
->vdev_removing
&&
1180 !vd
->vdev_top
->vdev_rz_expanding
&&
1181 vd
->vdev_trim_thread
== NULL
) {
1182 VERIFY0(vdev_trim_load(vd
));
1183 vdev_trim(vd
, vd
->vdev_trim_rate
,
1184 vd
->vdev_trim_partial
, vd
->vdev_trim_secure
);
1187 mutex_exit(&vd
->vdev_trim_lock
);
1190 for (uint64_t i
= 0; i
< vd
->vdev_children
; i
++) {
1191 vdev_trim_restart(vd
->vdev_child
[i
]);
1196 * Used by the automatic TRIM when ZFS_DEBUG_TRIM is set to verify that
1197 * every TRIM range is contained within ms_allocatable.
1200 vdev_trim_range_verify(void *arg
, uint64_t start
, uint64_t size
)
1202 trim_args_t
*ta
= arg
;
1203 metaslab_t
*msp
= ta
->trim_msp
;
1205 VERIFY3B(msp
->ms_loaded
, ==, B_TRUE
);
1206 VERIFY3U(msp
->ms_disabled
, >, 0);
1207 VERIFY(range_tree_contains(msp
->ms_allocatable
, start
, size
));
1211 * Each automatic TRIM thread is responsible for managing the trimming of a
1212 * top-level vdev in the pool. No automatic TRIM state is maintained on-disk.
1214 * N.B. This behavior is different from a manual TRIM where a thread
1215 * is created for each leaf vdev, instead of each top-level vdev.
1217 static __attribute__((noreturn
)) void
1218 vdev_autotrim_thread(void *arg
)
1221 spa_t
*spa
= vd
->vdev_spa
;
1224 mutex_enter(&vd
->vdev_autotrim_lock
);
1225 ASSERT3P(vd
->vdev_top
, ==, vd
);
1226 ASSERT3P(vd
->vdev_autotrim_thread
, !=, NULL
);
1227 mutex_exit(&vd
->vdev_autotrim_lock
);
1228 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
1230 while (!vdev_autotrim_should_stop(vd
)) {
1231 int txgs_per_trim
= MAX(zfs_trim_txg_batch
, 1);
1232 uint64_t extent_bytes_max
= zfs_trim_extent_bytes_max
;
1233 uint64_t extent_bytes_min
= zfs_trim_extent_bytes_min
;
1236 * All of the metaslabs are divided in to groups of size
1237 * num_metaslabs / zfs_trim_txg_batch. Each of these groups
1238 * is composed of metaslabs which are spread evenly over the
1241 * For example, when zfs_trim_txg_batch = 32 (default) then
1242 * group 0 will contain metaslabs 0, 32, 64, ...;
1243 * group 1 will contain metaslabs 1, 33, 65, ...;
1244 * group 2 will contain metaslabs 2, 34, 66, ...; and so on.
1246 * On each pass through the while() loop one of these groups
1247 * is selected. This is accomplished by using a shift value
1248 * to select the starting metaslab, then striding over the
1249 * metaslabs using the zfs_trim_txg_batch size. This is
1250 * done to accomplish two things.
1252 * 1) By dividing the metaslabs in to groups, and making sure
1253 * that each group takes a minimum of one txg to process.
1254 * Then zfs_trim_txg_batch controls the minimum number of
1255 * txgs which must occur before a metaslab is revisited.
1257 * 2) Selecting non-consecutive metaslabs distributes the
1258 * TRIM commands for a group evenly over the entire device.
1259 * This can be advantageous for certain types of devices.
1261 for (uint64_t i
= shift
% txgs_per_trim
; i
< vd
->vdev_ms_count
;
1262 i
+= txgs_per_trim
) {
1263 metaslab_t
*msp
= vd
->vdev_ms
[i
];
1264 range_tree_t
*trim_tree
;
1265 boolean_t issued_trim
= B_FALSE
;
1266 boolean_t wait_aborted
= B_FALSE
;
1268 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
1269 metaslab_disable(msp
);
1270 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
1272 mutex_enter(&msp
->ms_lock
);
1275 * Skip the metaslab when it has never been allocated
1276 * or when there are no recent frees to trim.
1278 if (msp
->ms_sm
== NULL
||
1279 range_tree_is_empty(msp
->ms_trim
)) {
1280 mutex_exit(&msp
->ms_lock
);
1281 metaslab_enable(msp
, B_FALSE
, B_FALSE
);
1286 * Skip the metaslab when it has already been disabled.
1287 * This may happen when a manual TRIM or initialize
1288 * operation is running concurrently. In the case
1289 * of a manual TRIM, the ms_trim tree will have been
1290 * vacated. Only ranges added after the manual TRIM
1291 * disabled the metaslab will be included in the tree.
1292 * These will be processed when the automatic TRIM
1293 * next revisits this metaslab.
1295 if (msp
->ms_disabled
> 1) {
1296 mutex_exit(&msp
->ms_lock
);
1297 metaslab_enable(msp
, B_FALSE
, B_FALSE
);
1302 * Allocate an empty range tree which is swapped in
1303 * for the existing ms_trim tree while it is processed.
1305 trim_tree
= range_tree_create(NULL
, RANGE_SEG64
, NULL
,
1307 range_tree_swap(&msp
->ms_trim
, &trim_tree
);
1308 ASSERT(range_tree_is_empty(msp
->ms_trim
));
1311 * There are two cases when constructing the per-vdev
1312 * trim trees for a metaslab. If the top-level vdev
1313 * has no children then it is also a leaf and should
1314 * be trimmed. Otherwise our children are the leaves
1315 * and a trim tree should be constructed for each.
1318 uint64_t children
= vd
->vdev_children
;
1319 if (children
== 0) {
1321 tap
= kmem_zalloc(sizeof (trim_args_t
) *
1322 children
, KM_SLEEP
);
1323 tap
[0].trim_vdev
= vd
;
1325 tap
= kmem_zalloc(sizeof (trim_args_t
) *
1326 children
, KM_SLEEP
);
1328 for (uint64_t c
= 0; c
< children
; c
++) {
1329 tap
[c
].trim_vdev
= vd
->vdev_child
[c
];
1333 for (uint64_t c
= 0; c
< children
; c
++) {
1334 trim_args_t
*ta
= &tap
[c
];
1335 vdev_t
*cvd
= ta
->trim_vdev
;
1338 ta
->trim_extent_bytes_max
= extent_bytes_max
;
1339 ta
->trim_extent_bytes_min
= extent_bytes_min
;
1340 ta
->trim_type
= TRIM_TYPE_AUTO
;
1343 if (cvd
->vdev_detached
||
1344 !vdev_writeable(cvd
) ||
1345 !cvd
->vdev_has_trim
||
1346 cvd
->vdev_trim_thread
!= NULL
) {
1351 * When a device has an attached hot spare, or
1352 * is being replaced it will not be trimmed.
1353 * This is done to avoid adding additional
1354 * stress to a potentially unhealthy device,
1355 * and to minimize the required rebuild time.
1357 if (!cvd
->vdev_ops
->vdev_op_leaf
)
1360 ta
->trim_tree
= range_tree_create(NULL
,
1361 RANGE_SEG64
, NULL
, 0, 0);
1362 range_tree_walk(trim_tree
,
1363 vdev_trim_range_add
, ta
);
1366 mutex_exit(&msp
->ms_lock
);
1367 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
1370 * Issue the TRIM I/Os for all ranges covered by the
1371 * TRIM trees. These ranges are safe to TRIM because
1372 * no new allocations will be performed until the call
1373 * to metaslab_enabled() below.
1375 for (uint64_t c
= 0; c
< children
; c
++) {
1376 trim_args_t
*ta
= &tap
[c
];
1379 * Always yield to a manual TRIM if one has
1380 * been started for the child vdev.
1382 if (ta
->trim_tree
== NULL
||
1383 ta
->trim_vdev
->vdev_trim_thread
!= NULL
) {
1388 * After this point metaslab_enable() must be
1389 * called with the sync flag set. This is done
1390 * here because vdev_trim_ranges() is allowed
1391 * to be interrupted (EINTR) before issuing all
1392 * of the required TRIM I/Os.
1394 issued_trim
= B_TRUE
;
1396 int error
= vdev_trim_ranges(ta
);
1402 * Verify every range which was trimmed is still
1403 * contained within the ms_allocatable tree.
1405 if (zfs_flags
& ZFS_DEBUG_TRIM
) {
1406 mutex_enter(&msp
->ms_lock
);
1407 VERIFY0(metaslab_load(msp
));
1408 VERIFY3P(tap
[0].trim_msp
, ==, msp
);
1409 range_tree_walk(trim_tree
,
1410 vdev_trim_range_verify
, &tap
[0]);
1411 mutex_exit(&msp
->ms_lock
);
1414 range_tree_vacate(trim_tree
, NULL
, NULL
);
1415 range_tree_destroy(trim_tree
);
1418 * Wait for couples of kicks, to ensure the trim io is
1419 * synced. If the wait is aborted due to
1420 * vdev_autotrim_exit_wanted, we need to signal
1421 * metaslab_enable() to wait for sync.
1424 wait_aborted
= vdev_autotrim_wait_kick(vd
,
1425 TXG_CONCURRENT_STATES
+ TXG_DEFER_SIZE
);
1428 metaslab_enable(msp
, wait_aborted
, B_FALSE
);
1429 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
1431 for (uint64_t c
= 0; c
< children
; c
++) {
1432 trim_args_t
*ta
= &tap
[c
];
1434 if (ta
->trim_tree
== NULL
)
1437 range_tree_vacate(ta
->trim_tree
, NULL
, NULL
);
1438 range_tree_destroy(ta
->trim_tree
);
1441 kmem_free(tap
, sizeof (trim_args_t
) * children
);
1443 if (vdev_autotrim_should_stop(vd
))
1447 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
1449 vdev_autotrim_wait_kick(vd
, 1);
1452 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
1455 for (uint64_t c
= 0; c
< vd
->vdev_children
; c
++) {
1456 vdev_t
*cvd
= vd
->vdev_child
[c
];
1457 mutex_enter(&cvd
->vdev_trim_io_lock
);
1459 while (cvd
->vdev_trim_inflight
[1] > 0) {
1460 cv_wait(&cvd
->vdev_trim_io_cv
,
1461 &cvd
->vdev_trim_io_lock
);
1463 mutex_exit(&cvd
->vdev_trim_io_lock
);
1466 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
1469 * When exiting because the autotrim property was set to off, then
1470 * abandon any unprocessed ms_trim ranges to reclaim the memory.
1472 if (spa_get_autotrim(spa
) == SPA_AUTOTRIM_OFF
) {
1473 for (uint64_t i
= 0; i
< vd
->vdev_ms_count
; i
++) {
1474 metaslab_t
*msp
= vd
->vdev_ms
[i
];
1476 mutex_enter(&msp
->ms_lock
);
1477 range_tree_vacate(msp
->ms_trim
, NULL
, NULL
);
1478 mutex_exit(&msp
->ms_lock
);
1482 mutex_enter(&vd
->vdev_autotrim_lock
);
1483 ASSERT(vd
->vdev_autotrim_thread
!= NULL
);
1484 vd
->vdev_autotrim_thread
= NULL
;
1485 cv_broadcast(&vd
->vdev_autotrim_cv
);
1486 mutex_exit(&vd
->vdev_autotrim_lock
);
1492 * Starts an autotrim thread, if needed, for each top-level vdev which can be
1493 * trimmed. A top-level vdev which has been evacuated will never be trimmed.
1496 vdev_autotrim(spa_t
*spa
)
1498 vdev_t
*root_vd
= spa
->spa_root_vdev
;
1500 for (uint64_t i
= 0; i
< root_vd
->vdev_children
; i
++) {
1501 vdev_t
*tvd
= root_vd
->vdev_child
[i
];
1503 mutex_enter(&tvd
->vdev_autotrim_lock
);
1504 if (vdev_writeable(tvd
) && !tvd
->vdev_removing
&&
1505 tvd
->vdev_autotrim_thread
== NULL
&&
1506 !tvd
->vdev_rz_expanding
) {
1507 ASSERT3P(tvd
->vdev_top
, ==, tvd
);
1509 tvd
->vdev_autotrim_thread
= thread_create(NULL
, 0,
1510 vdev_autotrim_thread
, tvd
, 0, &p0
, TS_RUN
,
1512 ASSERT(tvd
->vdev_autotrim_thread
!= NULL
);
1514 mutex_exit(&tvd
->vdev_autotrim_lock
);
1519 * Wait for the vdev_autotrim_thread associated with the passed top-level
1520 * vdev to be terminated (canceled or stopped).
1523 vdev_autotrim_stop_wait(vdev_t
*tvd
)
1525 mutex_enter(&tvd
->vdev_autotrim_lock
);
1526 if (tvd
->vdev_autotrim_thread
!= NULL
) {
1527 tvd
->vdev_autotrim_exit_wanted
= B_TRUE
;
1528 cv_broadcast(&tvd
->vdev_autotrim_kick_cv
);
1529 cv_wait(&tvd
->vdev_autotrim_cv
,
1530 &tvd
->vdev_autotrim_lock
);
1532 ASSERT3P(tvd
->vdev_autotrim_thread
, ==, NULL
);
1533 tvd
->vdev_autotrim_exit_wanted
= B_FALSE
;
1535 mutex_exit(&tvd
->vdev_autotrim_lock
);
1539 vdev_autotrim_kick(spa_t
*spa
)
1541 ASSERT(spa_config_held(spa
, SCL_CONFIG
, RW_READER
));
1543 vdev_t
*root_vd
= spa
->spa_root_vdev
;
1546 for (uint64_t i
= 0; i
< root_vd
->vdev_children
; i
++) {
1547 tvd
= root_vd
->vdev_child
[i
];
1549 mutex_enter(&tvd
->vdev_autotrim_lock
);
1550 if (tvd
->vdev_autotrim_thread
!= NULL
)
1551 cv_broadcast(&tvd
->vdev_autotrim_kick_cv
);
1552 mutex_exit(&tvd
->vdev_autotrim_lock
);
1557 * Wait for all of the vdev_autotrim_thread associated with the pool to
1558 * be terminated (canceled or stopped).
1561 vdev_autotrim_stop_all(spa_t
*spa
)
1563 vdev_t
*root_vd
= spa
->spa_root_vdev
;
1565 for (uint64_t i
= 0; i
< root_vd
->vdev_children
; i
++)
1566 vdev_autotrim_stop_wait(root_vd
->vdev_child
[i
]);
1570 * Conditionally restart all of the vdev_autotrim_thread's for the pool.
1573 vdev_autotrim_restart(spa_t
*spa
)
1575 ASSERT(MUTEX_HELD(&spa_namespace_lock
) ||
1576 spa
->spa_load_thread
== curthread
);
1577 if (spa
->spa_autotrim
)
1581 static __attribute__((noreturn
)) void
1582 vdev_trim_l2arc_thread(void *arg
)
1585 spa_t
*spa
= vd
->vdev_spa
;
1586 l2arc_dev_t
*dev
= l2arc_vdev_get(vd
);
1587 trim_args_t ta
= {0};
1588 range_seg64_t physical_rs
;
1590 ASSERT(vdev_is_concrete(vd
));
1591 spa_config_enter(spa
, SCL_CONFIG
, FTAG
, RW_READER
);
1593 vd
->vdev_trim_last_offset
= 0;
1594 vd
->vdev_trim_rate
= 0;
1595 vd
->vdev_trim_partial
= 0;
1596 vd
->vdev_trim_secure
= 0;
1599 ta
.trim_tree
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
1600 ta
.trim_type
= TRIM_TYPE_MANUAL
;
1601 ta
.trim_extent_bytes_max
= zfs_trim_extent_bytes_max
;
1602 ta
.trim_extent_bytes_min
= SPA_MINBLOCKSIZE
;
1605 physical_rs
.rs_start
= vd
->vdev_trim_bytes_done
= 0;
1606 physical_rs
.rs_end
= vd
->vdev_trim_bytes_est
=
1607 vdev_get_min_asize(vd
);
1609 range_tree_add(ta
.trim_tree
, physical_rs
.rs_start
,
1610 physical_rs
.rs_end
- physical_rs
.rs_start
);
1612 mutex_enter(&vd
->vdev_trim_lock
);
1613 vdev_trim_change_state(vd
, VDEV_TRIM_ACTIVE
, 0, 0, 0);
1614 mutex_exit(&vd
->vdev_trim_lock
);
1616 (void) vdev_trim_ranges(&ta
);
1618 spa_config_exit(spa
, SCL_CONFIG
, FTAG
);
1619 mutex_enter(&vd
->vdev_trim_io_lock
);
1620 while (vd
->vdev_trim_inflight
[TRIM_TYPE_MANUAL
] > 0) {
1621 cv_wait(&vd
->vdev_trim_io_cv
, &vd
->vdev_trim_io_lock
);
1623 mutex_exit(&vd
->vdev_trim_io_lock
);
1625 range_tree_vacate(ta
.trim_tree
, NULL
, NULL
);
1626 range_tree_destroy(ta
.trim_tree
);
1628 mutex_enter(&vd
->vdev_trim_lock
);
1629 if (!vd
->vdev_trim_exit_wanted
&& vdev_writeable(vd
)) {
1630 vdev_trim_change_state(vd
, VDEV_TRIM_COMPLETE
,
1631 vd
->vdev_trim_rate
, vd
->vdev_trim_partial
,
1632 vd
->vdev_trim_secure
);
1634 ASSERT(vd
->vdev_trim_thread
!= NULL
||
1635 vd
->vdev_trim_inflight
[TRIM_TYPE_MANUAL
] == 0);
1638 * Drop the vdev_trim_lock while we sync out the txg since it's
1639 * possible that a device might be trying to come online and
1640 * must check to see if it needs to restart a trim. That thread
1641 * will be holding the spa_config_lock which would prevent the
1642 * txg_wait_synced from completing. Same strategy as in
1643 * vdev_trim_thread().
1645 mutex_exit(&vd
->vdev_trim_lock
);
1646 txg_wait_synced(spa_get_dsl(vd
->vdev_spa
), 0);
1647 mutex_enter(&vd
->vdev_trim_lock
);
1650 * Update the header of the cache device here, before
1651 * broadcasting vdev_trim_cv which may lead to the removal
1652 * of the device. The same applies for setting l2ad_trim_all to
1655 spa_config_enter(vd
->vdev_spa
, SCL_L2ARC
, vd
,
1657 memset(dev
->l2ad_dev_hdr
, 0, dev
->l2ad_dev_hdr_asize
);
1658 l2arc_dev_hdr_update(dev
);
1659 spa_config_exit(vd
->vdev_spa
, SCL_L2ARC
, vd
);
1661 vd
->vdev_trim_thread
= NULL
;
1662 if (vd
->vdev_trim_state
== VDEV_TRIM_COMPLETE
)
1663 dev
->l2ad_trim_all
= B_FALSE
;
1665 cv_broadcast(&vd
->vdev_trim_cv
);
1666 mutex_exit(&vd
->vdev_trim_lock
);
1672 * Punches out TRIM threads for the L2ARC devices in a spa and assigns them
1673 * to vd->vdev_trim_thread variable. This facilitates the management of
1674 * trimming the whole cache device using TRIM_TYPE_MANUAL upon addition
1675 * to a pool or pool creation or when the header of the device is invalid.
1678 vdev_trim_l2arc(spa_t
*spa
)
1680 ASSERT(MUTEX_HELD(&spa_namespace_lock
));
1683 * Locate the spa's l2arc devices and kick off TRIM threads.
1685 for (int i
= 0; i
< spa
->spa_l2cache
.sav_count
; i
++) {
1686 vdev_t
*vd
= spa
->spa_l2cache
.sav_vdevs
[i
];
1687 l2arc_dev_t
*dev
= l2arc_vdev_get(vd
);
1689 if (dev
== NULL
|| !dev
->l2ad_trim_all
) {
1691 * Don't attempt TRIM if the vdev is UNAVAIL or if the
1692 * cache device was not marked for whole device TRIM
1693 * (ie l2arc_trim_ahead = 0, or the L2ARC device header
1694 * is valid with trim_state = VDEV_TRIM_COMPLETE and
1695 * l2ad_log_entries > 0).
1700 mutex_enter(&vd
->vdev_trim_lock
);
1701 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1702 ASSERT(vdev_is_concrete(vd
));
1703 ASSERT3P(vd
->vdev_trim_thread
, ==, NULL
);
1704 ASSERT(!vd
->vdev_detached
);
1705 ASSERT(!vd
->vdev_trim_exit_wanted
);
1706 ASSERT(!vd
->vdev_top
->vdev_removing
);
1707 vdev_trim_change_state(vd
, VDEV_TRIM_ACTIVE
, 0, 0, 0);
1708 vd
->vdev_trim_thread
= thread_create(NULL
, 0,
1709 vdev_trim_l2arc_thread
, vd
, 0, &p0
, TS_RUN
, maxclsyspri
);
1710 mutex_exit(&vd
->vdev_trim_lock
);
1715 * A wrapper which calls vdev_trim_ranges(). It is intended to be called
1719 vdev_trim_simple(vdev_t
*vd
, uint64_t start
, uint64_t size
)
1721 trim_args_t ta
= {0};
1722 range_seg64_t physical_rs
;
1724 physical_rs
.rs_start
= start
;
1725 physical_rs
.rs_end
= start
+ size
;
1727 ASSERT(vdev_is_concrete(vd
));
1728 ASSERT(vd
->vdev_ops
->vdev_op_leaf
);
1729 ASSERT(!vd
->vdev_detached
);
1730 ASSERT(!vd
->vdev_top
->vdev_removing
);
1731 ASSERT(!vd
->vdev_top
->vdev_rz_expanding
);
1734 ta
.trim_tree
= range_tree_create(NULL
, RANGE_SEG64
, NULL
, 0, 0);
1735 ta
.trim_type
= TRIM_TYPE_SIMPLE
;
1736 ta
.trim_extent_bytes_max
= zfs_trim_extent_bytes_max
;
1737 ta
.trim_extent_bytes_min
= SPA_MINBLOCKSIZE
;
1740 ASSERT3U(physical_rs
.rs_end
, >=, physical_rs
.rs_start
);
1742 if (physical_rs
.rs_end
> physical_rs
.rs_start
) {
1743 range_tree_add(ta
.trim_tree
, physical_rs
.rs_start
,
1744 physical_rs
.rs_end
- physical_rs
.rs_start
);
1746 ASSERT3U(physical_rs
.rs_end
, ==, physical_rs
.rs_start
);
1749 error
= vdev_trim_ranges(&ta
);
1751 mutex_enter(&vd
->vdev_trim_io_lock
);
1752 while (vd
->vdev_trim_inflight
[TRIM_TYPE_SIMPLE
] > 0) {
1753 cv_wait(&vd
->vdev_trim_io_cv
, &vd
->vdev_trim_io_lock
);
1755 mutex_exit(&vd
->vdev_trim_io_lock
);
1757 range_tree_vacate(ta
.trim_tree
, NULL
, NULL
);
1758 range_tree_destroy(ta
.trim_tree
);
1763 EXPORT_SYMBOL(vdev_trim
);
1764 EXPORT_SYMBOL(vdev_trim_stop
);
1765 EXPORT_SYMBOL(vdev_trim_stop_all
);
1766 EXPORT_SYMBOL(vdev_trim_stop_wait
);
1767 EXPORT_SYMBOL(vdev_trim_restart
);
1768 EXPORT_SYMBOL(vdev_autotrim
);
1769 EXPORT_SYMBOL(vdev_autotrim_stop_all
);
1770 EXPORT_SYMBOL(vdev_autotrim_stop_wait
);
1771 EXPORT_SYMBOL(vdev_autotrim_restart
);
1772 EXPORT_SYMBOL(vdev_trim_l2arc
);
1773 EXPORT_SYMBOL(vdev_trim_simple
);
1775 ZFS_MODULE_PARAM(zfs_trim
, zfs_trim_
, extent_bytes_max
, UINT
, ZMOD_RW
,
1776 "Max size of TRIM commands, larger will be split");
1778 ZFS_MODULE_PARAM(zfs_trim
, zfs_trim_
, extent_bytes_min
, UINT
, ZMOD_RW
,
1779 "Min size of TRIM commands, smaller will be skipped");
1781 ZFS_MODULE_PARAM(zfs_trim
, zfs_trim_
, metaslab_skip
, UINT
, ZMOD_RW
,
1782 "Skip metaslabs which have never been initialized");
1784 ZFS_MODULE_PARAM(zfs_trim
, zfs_trim_
, txg_batch
, UINT
, ZMOD_RW
,
1785 "Min number of txgs to aggregate frees before issuing TRIM");
1787 ZFS_MODULE_PARAM(zfs_trim
, zfs_trim_
, queue_limit
, UINT
, ZMOD_RW
,
1788 "Max queued TRIMs outstanding per leaf vdev");