ZIL: Call brt_pending_add() replaying TX_CLONE_RANGE
[zfs.git] / module / os / linux / zfs / zfs_ctldir.c
blob94e25fa0ae8fd435b3004dc0caf38e74972cce90
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
23 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
24 * Copyright (C) 2011 Lawrence Livermore National Security, LLC.
25 * Produced at Lawrence Livermore National Laboratory (cf, DISCLAIMER).
26 * LLNL-CODE-403049.
27 * Rewritten for Linux by:
28 * Rohan Puri <rohan.puri15@gmail.com>
29 * Brian Behlendorf <behlendorf1@llnl.gov>
30 * Copyright (c) 2013 by Delphix. All rights reserved.
31 * Copyright 2015, OmniTI Computer Consulting, Inc. All rights reserved.
32 * Copyright (c) 2018 George Melikov. All Rights Reserved.
33 * Copyright (c) 2019 Datto, Inc. All rights reserved.
34 * Copyright (c) 2020 The MathWorks, Inc. All rights reserved.
38 * ZFS control directory (a.k.a. ".zfs")
40 * This directory provides a common location for all ZFS meta-objects.
41 * Currently, this is only the 'snapshot' and 'shares' directory, but this may
42 * expand in the future. The elements are built dynamically, as the hierarchy
43 * does not actually exist on disk.
45 * For 'snapshot', we don't want to have all snapshots always mounted, because
46 * this would take up a huge amount of space in /etc/mnttab. We have three
47 * types of objects:
49 * ctldir ------> snapshotdir -------> snapshot
50 * |
51 * |
52 * V
53 * mounted fs
55 * The 'snapshot' node contains just enough information to lookup '..' and act
56 * as a mountpoint for the snapshot. Whenever we lookup a specific snapshot, we
57 * perform an automount of the underlying filesystem and return the
58 * corresponding inode.
60 * All mounts are handled automatically by an user mode helper which invokes
61 * the mount procedure. Unmounts are handled by allowing the mount
62 * point to expire so the kernel may automatically unmount it.
64 * The '.zfs', '.zfs/snapshot', and all directories created under
65 * '.zfs/snapshot' (ie: '.zfs/snapshot/<snapname>') all share the same
66 * zfsvfs_t as the head filesystem (what '.zfs' lives under).
68 * File systems mounted on top of the '.zfs/snapshot/<snapname>' paths
69 * (ie: snapshots) are complete ZFS filesystems and have their own unique
70 * zfsvfs_t. However, the fsid reported by these mounts will be the same
71 * as that used by the parent zfsvfs_t to make NFS happy.
74 #include <sys/types.h>
75 #include <sys/param.h>
76 #include <sys/time.h>
77 #include <sys/sysmacros.h>
78 #include <sys/pathname.h>
79 #include <sys/vfs.h>
80 #include <sys/zfs_ctldir.h>
81 #include <sys/zfs_ioctl.h>
82 #include <sys/zfs_vfsops.h>
83 #include <sys/zfs_vnops.h>
84 #include <sys/stat.h>
85 #include <sys/dmu.h>
86 #include <sys/dmu_objset.h>
87 #include <sys/dsl_destroy.h>
88 #include <sys/dsl_deleg.h>
89 #include <sys/zpl.h>
90 #include <sys/mntent.h>
91 #include "zfs_namecheck.h"
94 * Two AVL trees are maintained which contain all currently automounted
95 * snapshots. Every automounted snapshots maps to a single zfs_snapentry_t
96 * entry which MUST:
98 * - be attached to both trees, and
99 * - be unique, no duplicate entries are allowed.
101 * The zfs_snapshots_by_name tree is indexed by the full dataset name
102 * while the zfs_snapshots_by_objsetid tree is indexed by the unique
103 * objsetid. This allows for fast lookups either by name or objsetid.
105 static avl_tree_t zfs_snapshots_by_name;
106 static avl_tree_t zfs_snapshots_by_objsetid;
107 static krwlock_t zfs_snapshot_lock;
110 * Control Directory Tunables (.zfs)
112 int zfs_expire_snapshot = ZFSCTL_EXPIRE_SNAPSHOT;
113 static int zfs_admin_snapshot = 0;
115 typedef struct {
116 char *se_name; /* full snapshot name */
117 char *se_path; /* full mount path */
118 spa_t *se_spa; /* pool spa */
119 uint64_t se_objsetid; /* snapshot objset id */
120 struct dentry *se_root_dentry; /* snapshot root dentry */
121 krwlock_t se_taskqid_lock; /* scheduled unmount taskqid lock */
122 taskqid_t se_taskqid; /* scheduled unmount taskqid */
123 avl_node_t se_node_name; /* zfs_snapshots_by_name link */
124 avl_node_t se_node_objsetid; /* zfs_snapshots_by_objsetid link */
125 zfs_refcount_t se_refcount; /* reference count */
126 } zfs_snapentry_t;
128 static void zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay);
131 * Allocate a new zfs_snapentry_t being careful to make a copy of the
132 * the snapshot name and provided mount point. No reference is taken.
134 static zfs_snapentry_t *
135 zfsctl_snapshot_alloc(const char *full_name, const char *full_path, spa_t *spa,
136 uint64_t objsetid, struct dentry *root_dentry)
138 zfs_snapentry_t *se;
140 se = kmem_zalloc(sizeof (zfs_snapentry_t), KM_SLEEP);
142 se->se_name = kmem_strdup(full_name);
143 se->se_path = kmem_strdup(full_path);
144 se->se_spa = spa;
145 se->se_objsetid = objsetid;
146 se->se_root_dentry = root_dentry;
147 se->se_taskqid = TASKQID_INVALID;
148 rw_init(&se->se_taskqid_lock, NULL, RW_DEFAULT, NULL);
150 zfs_refcount_create(&se->se_refcount);
152 return (se);
156 * Free a zfs_snapentry_t the caller must ensure there are no active
157 * references.
159 static void
160 zfsctl_snapshot_free(zfs_snapentry_t *se)
162 zfs_refcount_destroy(&se->se_refcount);
163 kmem_strfree(se->se_name);
164 kmem_strfree(se->se_path);
165 rw_destroy(&se->se_taskqid_lock);
167 kmem_free(se, sizeof (zfs_snapentry_t));
171 * Hold a reference on the zfs_snapentry_t.
173 static void
174 zfsctl_snapshot_hold(zfs_snapentry_t *se)
176 zfs_refcount_add(&se->se_refcount, NULL);
180 * Release a reference on the zfs_snapentry_t. When the number of
181 * references drops to zero the structure will be freed.
183 static void
184 zfsctl_snapshot_rele(zfs_snapentry_t *se)
186 if (zfs_refcount_remove(&se->se_refcount, NULL) == 0)
187 zfsctl_snapshot_free(se);
191 * Add a zfs_snapentry_t to both the zfs_snapshots_by_name and
192 * zfs_snapshots_by_objsetid trees. While the zfs_snapentry_t is part
193 * of the trees a reference is held.
195 static void
196 zfsctl_snapshot_add(zfs_snapentry_t *se)
198 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
199 zfsctl_snapshot_hold(se);
200 avl_add(&zfs_snapshots_by_name, se);
201 avl_add(&zfs_snapshots_by_objsetid, se);
205 * Remove a zfs_snapentry_t from both the zfs_snapshots_by_name and
206 * zfs_snapshots_by_objsetid trees. Upon removal a reference is dropped,
207 * this can result in the structure being freed if that was the last
208 * remaining reference.
210 static void
211 zfsctl_snapshot_remove(zfs_snapentry_t *se)
213 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
214 avl_remove(&zfs_snapshots_by_name, se);
215 avl_remove(&zfs_snapshots_by_objsetid, se);
216 zfsctl_snapshot_rele(se);
220 * Snapshot name comparison function for the zfs_snapshots_by_name.
222 static int
223 snapentry_compare_by_name(const void *a, const void *b)
225 const zfs_snapentry_t *se_a = a;
226 const zfs_snapentry_t *se_b = b;
227 int ret;
229 ret = strcmp(se_a->se_name, se_b->se_name);
231 if (ret < 0)
232 return (-1);
233 else if (ret > 0)
234 return (1);
235 else
236 return (0);
240 * Snapshot name comparison function for the zfs_snapshots_by_objsetid.
242 static int
243 snapentry_compare_by_objsetid(const void *a, const void *b)
245 const zfs_snapentry_t *se_a = a;
246 const zfs_snapentry_t *se_b = b;
248 if (se_a->se_spa != se_b->se_spa)
249 return ((ulong_t)se_a->se_spa < (ulong_t)se_b->se_spa ? -1 : 1);
251 if (se_a->se_objsetid < se_b->se_objsetid)
252 return (-1);
253 else if (se_a->se_objsetid > se_b->se_objsetid)
254 return (1);
255 else
256 return (0);
260 * Find a zfs_snapentry_t in zfs_snapshots_by_name. If the snapname
261 * is found a pointer to the zfs_snapentry_t is returned and a reference
262 * taken on the structure. The caller is responsible for dropping the
263 * reference with zfsctl_snapshot_rele(). If the snapname is not found
264 * NULL will be returned.
266 static zfs_snapentry_t *
267 zfsctl_snapshot_find_by_name(const char *snapname)
269 zfs_snapentry_t *se, search;
271 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
273 search.se_name = (char *)snapname;
274 se = avl_find(&zfs_snapshots_by_name, &search, NULL);
275 if (se)
276 zfsctl_snapshot_hold(se);
278 return (se);
282 * Find a zfs_snapentry_t in zfs_snapshots_by_objsetid given the objset id
283 * rather than the snapname. In all other respects it behaves the same
284 * as zfsctl_snapshot_find_by_name().
286 static zfs_snapentry_t *
287 zfsctl_snapshot_find_by_objsetid(spa_t *spa, uint64_t objsetid)
289 zfs_snapentry_t *se, search;
291 ASSERT(RW_LOCK_HELD(&zfs_snapshot_lock));
293 search.se_spa = spa;
294 search.se_objsetid = objsetid;
295 se = avl_find(&zfs_snapshots_by_objsetid, &search, NULL);
296 if (se)
297 zfsctl_snapshot_hold(se);
299 return (se);
303 * Rename a zfs_snapentry_t in the zfs_snapshots_by_name. The structure is
304 * removed, renamed, and added back to the new correct location in the tree.
306 static int
307 zfsctl_snapshot_rename(const char *old_snapname, const char *new_snapname)
309 zfs_snapentry_t *se;
311 ASSERT(RW_WRITE_HELD(&zfs_snapshot_lock));
313 se = zfsctl_snapshot_find_by_name(old_snapname);
314 if (se == NULL)
315 return (SET_ERROR(ENOENT));
317 zfsctl_snapshot_remove(se);
318 kmem_strfree(se->se_name);
319 se->se_name = kmem_strdup(new_snapname);
320 zfsctl_snapshot_add(se);
321 zfsctl_snapshot_rele(se);
323 return (0);
327 * Delayed task responsible for unmounting an expired automounted snapshot.
329 static void
330 snapentry_expire(void *data)
332 zfs_snapentry_t *se = (zfs_snapentry_t *)data;
333 spa_t *spa = se->se_spa;
334 uint64_t objsetid = se->se_objsetid;
336 if (zfs_expire_snapshot <= 0) {
337 zfsctl_snapshot_rele(se);
338 return;
341 rw_enter(&se->se_taskqid_lock, RW_WRITER);
342 se->se_taskqid = TASKQID_INVALID;
343 rw_exit(&se->se_taskqid_lock);
344 (void) zfsctl_snapshot_unmount(se->se_name, MNT_EXPIRE);
345 zfsctl_snapshot_rele(se);
348 * Reschedule the unmount if the zfs_snapentry_t wasn't removed.
349 * This can occur when the snapshot is busy.
351 rw_enter(&zfs_snapshot_lock, RW_READER);
352 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
353 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
354 zfsctl_snapshot_rele(se);
356 rw_exit(&zfs_snapshot_lock);
360 * Cancel an automatic unmount of a snapname. This callback is responsible
361 * for dropping the reference on the zfs_snapentry_t which was taken when
362 * during dispatch.
364 static void
365 zfsctl_snapshot_unmount_cancel(zfs_snapentry_t *se)
367 int err = 0;
368 rw_enter(&se->se_taskqid_lock, RW_WRITER);
369 err = taskq_cancel_id(system_delay_taskq, se->se_taskqid);
371 * if we get ENOENT, the taskq couldn't be found to be
372 * canceled, so we can just mark it as invalid because
373 * it's already gone. If we got EBUSY, then we already
374 * blocked until it was gone _anyway_, so we don't care.
376 se->se_taskqid = TASKQID_INVALID;
377 rw_exit(&se->se_taskqid_lock);
378 if (err == 0) {
379 zfsctl_snapshot_rele(se);
384 * Dispatch the unmount task for delayed handling with a hold protecting it.
386 static void
387 zfsctl_snapshot_unmount_delay_impl(zfs_snapentry_t *se, int delay)
390 if (delay <= 0)
391 return;
393 zfsctl_snapshot_hold(se);
394 rw_enter(&se->se_taskqid_lock, RW_WRITER);
396 * If this condition happens, we managed to:
397 * - dispatch once
398 * - want to dispatch _again_ before it returned
400 * So let's just return - if that task fails at unmounting,
401 * we'll eventually dispatch again, and if it succeeds,
402 * no problem.
404 if (se->se_taskqid != TASKQID_INVALID) {
405 rw_exit(&se->se_taskqid_lock);
406 zfsctl_snapshot_rele(se);
407 return;
409 se->se_taskqid = taskq_dispatch_delay(system_delay_taskq,
410 snapentry_expire, se, TQ_SLEEP, ddi_get_lbolt() + delay * HZ);
411 rw_exit(&se->se_taskqid_lock);
415 * Schedule an automatic unmount of objset id to occur in delay seconds from
416 * now. Any previous delayed unmount will be cancelled in favor of the
417 * updated deadline. A reference is taken by zfsctl_snapshot_find_by_name()
418 * and held until the outstanding task is handled or cancelled.
421 zfsctl_snapshot_unmount_delay(spa_t *spa, uint64_t objsetid, int delay)
423 zfs_snapentry_t *se;
424 int error = ENOENT;
426 rw_enter(&zfs_snapshot_lock, RW_READER);
427 if ((se = zfsctl_snapshot_find_by_objsetid(spa, objsetid)) != NULL) {
428 zfsctl_snapshot_unmount_cancel(se);
429 zfsctl_snapshot_unmount_delay_impl(se, delay);
430 zfsctl_snapshot_rele(se);
431 error = 0;
433 rw_exit(&zfs_snapshot_lock);
435 return (error);
439 * Check if snapname is currently mounted. Returned non-zero when mounted
440 * and zero when unmounted.
442 static boolean_t
443 zfsctl_snapshot_ismounted(const char *snapname)
445 zfs_snapentry_t *se;
446 boolean_t ismounted = B_FALSE;
448 rw_enter(&zfs_snapshot_lock, RW_READER);
449 if ((se = zfsctl_snapshot_find_by_name(snapname)) != NULL) {
450 zfsctl_snapshot_rele(se);
451 ismounted = B_TRUE;
453 rw_exit(&zfs_snapshot_lock);
455 return (ismounted);
459 * Check if the given inode is a part of the virtual .zfs directory.
461 boolean_t
462 zfsctl_is_node(struct inode *ip)
464 return (ITOZ(ip)->z_is_ctldir);
468 * Check if the given inode is a .zfs/snapshots/snapname directory.
470 boolean_t
471 zfsctl_is_snapdir(struct inode *ip)
473 return (zfsctl_is_node(ip) && (ip->i_ino <= ZFSCTL_INO_SNAPDIRS));
477 * Allocate a new inode with the passed id and ops.
479 static struct inode *
480 zfsctl_inode_alloc(zfsvfs_t *zfsvfs, uint64_t id,
481 const struct file_operations *fops, const struct inode_operations *ops,
482 uint64_t creation)
484 struct inode *ip;
485 znode_t *zp;
486 inode_timespec_t now = {.tv_sec = creation};
488 ip = new_inode(zfsvfs->z_sb);
489 if (ip == NULL)
490 return (NULL);
492 if (!creation)
493 now = current_time(ip);
494 zp = ITOZ(ip);
495 ASSERT3P(zp->z_dirlocks, ==, NULL);
496 ASSERT3P(zp->z_acl_cached, ==, NULL);
497 ASSERT3P(zp->z_xattr_cached, ==, NULL);
498 zp->z_id = id;
499 zp->z_unlinked = B_FALSE;
500 zp->z_atime_dirty = B_FALSE;
501 zp->z_zn_prefetch = B_FALSE;
502 zp->z_is_sa = B_FALSE;
503 #if !defined(HAVE_FILEMAP_RANGE_HAS_PAGE)
504 zp->z_is_mapped = B_FALSE;
505 #endif
506 zp->z_is_ctldir = B_TRUE;
507 zp->z_sa_hdl = NULL;
508 zp->z_blksz = 0;
509 zp->z_seq = 0;
510 zp->z_mapcnt = 0;
511 zp->z_size = 0;
512 zp->z_pflags = 0;
513 zp->z_mode = 0;
514 zp->z_sync_cnt = 0;
515 zp->z_sync_writes_cnt = 0;
516 zp->z_async_writes_cnt = 0;
517 ip->i_generation = 0;
518 ip->i_ino = id;
519 ip->i_mode = (S_IFDIR | S_IRWXUGO);
520 ip->i_uid = SUID_TO_KUID(0);
521 ip->i_gid = SGID_TO_KGID(0);
522 ip->i_blkbits = SPA_MINBLOCKSHIFT;
523 ip->i_atime = now;
524 ip->i_mtime = now;
525 zpl_inode_set_ctime_to_ts(ip, now);
526 ip->i_fop = fops;
527 ip->i_op = ops;
528 #if defined(IOP_XATTR)
529 ip->i_opflags &= ~IOP_XATTR;
530 #endif
532 if (insert_inode_locked(ip)) {
533 unlock_new_inode(ip);
534 iput(ip);
535 return (NULL);
538 mutex_enter(&zfsvfs->z_znodes_lock);
539 list_insert_tail(&zfsvfs->z_all_znodes, zp);
540 membar_producer();
541 mutex_exit(&zfsvfs->z_znodes_lock);
543 unlock_new_inode(ip);
545 return (ip);
549 * Lookup the inode with given id, it will be allocated if needed.
551 static struct inode *
552 zfsctl_inode_lookup(zfsvfs_t *zfsvfs, uint64_t id,
553 const struct file_operations *fops, const struct inode_operations *ops)
555 struct inode *ip = NULL;
556 uint64_t creation = 0;
557 dsl_dataset_t *snap_ds;
558 dsl_pool_t *pool;
560 while (ip == NULL) {
561 ip = ilookup(zfsvfs->z_sb, (unsigned long)id);
562 if (ip)
563 break;
565 if (id <= ZFSCTL_INO_SNAPDIRS && !creation) {
566 pool = dmu_objset_pool(zfsvfs->z_os);
567 dsl_pool_config_enter(pool, FTAG);
568 if (!dsl_dataset_hold_obj(pool,
569 ZFSCTL_INO_SNAPDIRS - id, FTAG, &snap_ds)) {
570 creation = dsl_get_creation(snap_ds);
571 dsl_dataset_rele(snap_ds, FTAG);
573 dsl_pool_config_exit(pool, FTAG);
576 /* May fail due to concurrent zfsctl_inode_alloc() */
577 ip = zfsctl_inode_alloc(zfsvfs, id, fops, ops, creation);
580 return (ip);
584 * Create the '.zfs' directory. This directory is cached as part of the VFS
585 * structure. This results in a hold on the zfsvfs_t. The code in zfs_umount()
586 * therefore checks against a vfs_count of 2 instead of 1. This reference
587 * is removed when the ctldir is destroyed in the unmount. All other entities
588 * under the '.zfs' directory are created dynamically as needed.
590 * Because the dynamically created '.zfs' directory entries assume the use
591 * of 64-bit inode numbers this support must be disabled on 32-bit systems.
594 zfsctl_create(zfsvfs_t *zfsvfs)
596 ASSERT(zfsvfs->z_ctldir == NULL);
598 zfsvfs->z_ctldir = zfsctl_inode_alloc(zfsvfs, ZFSCTL_INO_ROOT,
599 &zpl_fops_root, &zpl_ops_root, 0);
600 if (zfsvfs->z_ctldir == NULL)
601 return (SET_ERROR(ENOENT));
603 return (0);
607 * Destroy the '.zfs' directory or remove a snapshot from zfs_snapshots_by_name.
608 * Only called when the filesystem is unmounted.
610 void
611 zfsctl_destroy(zfsvfs_t *zfsvfs)
613 if (zfsvfs->z_issnap) {
614 zfs_snapentry_t *se;
615 spa_t *spa = zfsvfs->z_os->os_spa;
616 uint64_t objsetid = dmu_objset_id(zfsvfs->z_os);
618 rw_enter(&zfs_snapshot_lock, RW_WRITER);
619 se = zfsctl_snapshot_find_by_objsetid(spa, objsetid);
620 if (se != NULL)
621 zfsctl_snapshot_remove(se);
622 rw_exit(&zfs_snapshot_lock);
623 if (se != NULL) {
624 zfsctl_snapshot_unmount_cancel(se);
625 zfsctl_snapshot_rele(se);
627 } else if (zfsvfs->z_ctldir) {
628 iput(zfsvfs->z_ctldir);
629 zfsvfs->z_ctldir = NULL;
634 * Given a root znode, retrieve the associated .zfs directory.
635 * Add a hold to the vnode and return it.
637 struct inode *
638 zfsctl_root(znode_t *zp)
640 ASSERT(zfs_has_ctldir(zp));
641 /* Must have an existing ref, so igrab() cannot return NULL */
642 VERIFY3P(igrab(ZTOZSB(zp)->z_ctldir), !=, NULL);
643 return (ZTOZSB(zp)->z_ctldir);
647 * Generate a long fid to indicate a snapdir. We encode whether snapdir is
648 * already mounted in gen field. We do this because nfsd lookup will not
649 * trigger automount. Next time the nfsd does fh_to_dentry, we will notice
650 * this and do automount and return ESTALE to force nfsd revalidate and follow
651 * mount.
653 static int
654 zfsctl_snapdir_fid(struct inode *ip, fid_t *fidp)
656 zfid_short_t *zfid = (zfid_short_t *)fidp;
657 zfid_long_t *zlfid = (zfid_long_t *)fidp;
658 uint32_t gen = 0;
659 uint64_t object;
660 uint64_t objsetid;
661 int i;
662 struct dentry *dentry;
664 if (fidp->fid_len < LONG_FID_LEN) {
665 fidp->fid_len = LONG_FID_LEN;
666 return (SET_ERROR(ENOSPC));
669 object = ip->i_ino;
670 objsetid = ZFSCTL_INO_SNAPDIRS - ip->i_ino;
671 zfid->zf_len = LONG_FID_LEN;
673 dentry = d_obtain_alias(igrab(ip));
674 if (!IS_ERR(dentry)) {
675 gen = !!d_mountpoint(dentry);
676 dput(dentry);
679 for (i = 0; i < sizeof (zfid->zf_object); i++)
680 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
682 for (i = 0; i < sizeof (zfid->zf_gen); i++)
683 zfid->zf_gen[i] = (uint8_t)(gen >> (8 * i));
685 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
686 zlfid->zf_setid[i] = (uint8_t)(objsetid >> (8 * i));
688 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
689 zlfid->zf_setgen[i] = 0;
691 return (0);
695 * Generate an appropriate fid for an entry in the .zfs directory.
698 zfsctl_fid(struct inode *ip, fid_t *fidp)
700 znode_t *zp = ITOZ(ip);
701 zfsvfs_t *zfsvfs = ITOZSB(ip);
702 uint64_t object = zp->z_id;
703 zfid_short_t *zfid;
704 int i;
705 int error;
707 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
708 return (error);
710 if (zfsctl_is_snapdir(ip)) {
711 zfs_exit(zfsvfs, FTAG);
712 return (zfsctl_snapdir_fid(ip, fidp));
715 if (fidp->fid_len < SHORT_FID_LEN) {
716 fidp->fid_len = SHORT_FID_LEN;
717 zfs_exit(zfsvfs, FTAG);
718 return (SET_ERROR(ENOSPC));
721 zfid = (zfid_short_t *)fidp;
723 zfid->zf_len = SHORT_FID_LEN;
725 for (i = 0; i < sizeof (zfid->zf_object); i++)
726 zfid->zf_object[i] = (uint8_t)(object >> (8 * i));
728 /* .zfs znodes always have a generation number of 0 */
729 for (i = 0; i < sizeof (zfid->zf_gen); i++)
730 zfid->zf_gen[i] = 0;
732 zfs_exit(zfsvfs, FTAG);
733 return (0);
737 * Construct a full dataset name in full_name: "pool/dataset@snap_name"
739 static int
740 zfsctl_snapshot_name(zfsvfs_t *zfsvfs, const char *snap_name, int len,
741 char *full_name)
743 objset_t *os = zfsvfs->z_os;
745 if (zfs_component_namecheck(snap_name, NULL, NULL) != 0)
746 return (SET_ERROR(EILSEQ));
748 dmu_objset_name(os, full_name);
749 if ((strlen(full_name) + 1 + strlen(snap_name)) >= len)
750 return (SET_ERROR(ENAMETOOLONG));
752 (void) strcat(full_name, "@");
753 (void) strcat(full_name, snap_name);
755 return (0);
759 * Returns full path in full_path: "/pool/dataset/.zfs/snapshot/snap_name/"
761 static int
762 zfsctl_snapshot_path_objset(zfsvfs_t *zfsvfs, uint64_t objsetid,
763 int path_len, char *full_path)
765 objset_t *os = zfsvfs->z_os;
766 fstrans_cookie_t cookie;
767 char *snapname;
768 boolean_t case_conflict;
769 uint64_t id, pos = 0;
770 int error = 0;
772 if (zfsvfs->z_vfs->vfs_mntpoint == NULL)
773 return (SET_ERROR(ENOENT));
775 cookie = spl_fstrans_mark();
776 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
778 while (error == 0) {
779 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
780 error = dmu_snapshot_list_next(zfsvfs->z_os,
781 ZFS_MAX_DATASET_NAME_LEN, snapname, &id, &pos,
782 &case_conflict);
783 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
784 if (error)
785 goto out;
787 if (id == objsetid)
788 break;
791 snprintf(full_path, path_len, "%s/.zfs/snapshot/%s",
792 zfsvfs->z_vfs->vfs_mntpoint, snapname);
793 out:
794 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
795 spl_fstrans_unmark(cookie);
797 return (error);
801 * Special case the handling of "..".
804 zfsctl_root_lookup(struct inode *dip, const char *name, struct inode **ipp,
805 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
807 zfsvfs_t *zfsvfs = ITOZSB(dip);
808 int error = 0;
810 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
811 return (error);
813 if (strcmp(name, "..") == 0) {
814 *ipp = dip->i_sb->s_root->d_inode;
815 } else if (strcmp(name, ZFS_SNAPDIR_NAME) == 0) {
816 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIR,
817 &zpl_fops_snapdir, &zpl_ops_snapdir);
818 } else if (strcmp(name, ZFS_SHAREDIR_NAME) == 0) {
819 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SHARES,
820 &zpl_fops_shares, &zpl_ops_shares);
821 } else {
822 *ipp = NULL;
825 if (*ipp == NULL)
826 error = SET_ERROR(ENOENT);
828 zfs_exit(zfsvfs, FTAG);
830 return (error);
834 * Lookup entry point for the 'snapshot' directory. Try to open the
835 * snapshot if it exist, creating the pseudo filesystem inode as necessary.
838 zfsctl_snapdir_lookup(struct inode *dip, const char *name, struct inode **ipp,
839 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
841 zfsvfs_t *zfsvfs = ITOZSB(dip);
842 uint64_t id;
843 int error;
845 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
846 return (error);
848 error = dmu_snapshot_lookup(zfsvfs->z_os, name, &id);
849 if (error) {
850 zfs_exit(zfsvfs, FTAG);
851 return (error);
854 *ipp = zfsctl_inode_lookup(zfsvfs, ZFSCTL_INO_SNAPDIRS - id,
855 &simple_dir_operations, &simple_dir_inode_operations);
856 if (*ipp == NULL)
857 error = SET_ERROR(ENOENT);
859 zfs_exit(zfsvfs, FTAG);
861 return (error);
865 * Renaming a directory under '.zfs/snapshot' will automatically trigger
866 * a rename of the snapshot to the new given name. The rename is confined
867 * to the '.zfs/snapshot' directory snapshots cannot be moved elsewhere.
870 zfsctl_snapdir_rename(struct inode *sdip, const char *snm,
871 struct inode *tdip, const char *tnm, cred_t *cr, int flags)
873 zfsvfs_t *zfsvfs = ITOZSB(sdip);
874 char *to, *from, *real, *fsname;
875 int error;
877 if (!zfs_admin_snapshot)
878 return (SET_ERROR(EACCES));
880 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
881 return (error);
883 to = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
884 from = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
885 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
886 fsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
888 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
889 error = dmu_snapshot_realname(zfsvfs->z_os, snm, real,
890 ZFS_MAX_DATASET_NAME_LEN, NULL);
891 if (error == 0) {
892 snm = real;
893 } else if (error != ENOTSUP) {
894 goto out;
898 dmu_objset_name(zfsvfs->z_os, fsname);
900 error = zfsctl_snapshot_name(ITOZSB(sdip), snm,
901 ZFS_MAX_DATASET_NAME_LEN, from);
902 if (error == 0)
903 error = zfsctl_snapshot_name(ITOZSB(tdip), tnm,
904 ZFS_MAX_DATASET_NAME_LEN, to);
905 if (error == 0)
906 error = zfs_secpolicy_rename_perms(from, to, cr);
907 if (error != 0)
908 goto out;
911 * Cannot move snapshots out of the snapdir.
913 if (sdip != tdip) {
914 error = SET_ERROR(EINVAL);
915 goto out;
919 * No-op when names are identical.
921 if (strcmp(snm, tnm) == 0) {
922 error = 0;
923 goto out;
926 rw_enter(&zfs_snapshot_lock, RW_WRITER);
928 error = dsl_dataset_rename_snapshot(fsname, snm, tnm, B_FALSE);
929 if (error == 0)
930 (void) zfsctl_snapshot_rename(snm, tnm);
932 rw_exit(&zfs_snapshot_lock);
933 out:
934 kmem_free(from, ZFS_MAX_DATASET_NAME_LEN);
935 kmem_free(to, ZFS_MAX_DATASET_NAME_LEN);
936 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
937 kmem_free(fsname, ZFS_MAX_DATASET_NAME_LEN);
939 zfs_exit(zfsvfs, FTAG);
941 return (error);
945 * Removing a directory under '.zfs/snapshot' will automatically trigger
946 * the removal of the snapshot with the given name.
949 zfsctl_snapdir_remove(struct inode *dip, const char *name, cred_t *cr,
950 int flags)
952 zfsvfs_t *zfsvfs = ITOZSB(dip);
953 char *snapname, *real;
954 int error;
956 if (!zfs_admin_snapshot)
957 return (SET_ERROR(EACCES));
959 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
960 return (error);
962 snapname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
963 real = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
965 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE) {
966 error = dmu_snapshot_realname(zfsvfs->z_os, name, real,
967 ZFS_MAX_DATASET_NAME_LEN, NULL);
968 if (error == 0) {
969 name = real;
970 } else if (error != ENOTSUP) {
971 goto out;
975 error = zfsctl_snapshot_name(ITOZSB(dip), name,
976 ZFS_MAX_DATASET_NAME_LEN, snapname);
977 if (error == 0)
978 error = zfs_secpolicy_destroy_perms(snapname, cr);
979 if (error != 0)
980 goto out;
982 error = zfsctl_snapshot_unmount(snapname, MNT_FORCE);
983 if ((error == 0) || (error == ENOENT))
984 error = dsl_destroy_snapshot(snapname, B_FALSE);
985 out:
986 kmem_free(snapname, ZFS_MAX_DATASET_NAME_LEN);
987 kmem_free(real, ZFS_MAX_DATASET_NAME_LEN);
989 zfs_exit(zfsvfs, FTAG);
991 return (error);
995 * Creating a directory under '.zfs/snapshot' will automatically trigger
996 * the creation of a new snapshot with the given name.
999 zfsctl_snapdir_mkdir(struct inode *dip, const char *dirname, vattr_t *vap,
1000 struct inode **ipp, cred_t *cr, int flags)
1002 zfsvfs_t *zfsvfs = ITOZSB(dip);
1003 char *dsname;
1004 int error;
1006 if (!zfs_admin_snapshot)
1007 return (SET_ERROR(EACCES));
1009 dsname = kmem_alloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1011 if (zfs_component_namecheck(dirname, NULL, NULL) != 0) {
1012 error = SET_ERROR(EILSEQ);
1013 goto out;
1016 dmu_objset_name(zfsvfs->z_os, dsname);
1018 error = zfs_secpolicy_snapshot_perms(dsname, cr);
1019 if (error != 0)
1020 goto out;
1022 if (error == 0) {
1023 error = dmu_objset_snapshot_one(dsname, dirname);
1024 if (error != 0)
1025 goto out;
1027 error = zfsctl_snapdir_lookup(dip, dirname, ipp,
1028 0, cr, NULL, NULL);
1030 out:
1031 kmem_free(dsname, ZFS_MAX_DATASET_NAME_LEN);
1033 return (error);
1037 * Flush everything out of the kernel's export table and such.
1038 * This is needed as once the snapshot is used over NFS, its
1039 * entries in svc_export and svc_expkey caches hold reference
1040 * to the snapshot mount point. There is no known way of flushing
1041 * only the entries related to the snapshot.
1043 static void
1044 exportfs_flush(void)
1046 char *argv[] = { "/usr/sbin/exportfs", "-f", NULL };
1047 char *envp[] = { NULL };
1049 (void) call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1053 * Attempt to unmount a snapshot by making a call to user space.
1054 * There is no assurance that this can or will succeed, is just a
1055 * best effort. In the case where it does fail, perhaps because
1056 * it's in use, the unmount will fail harmlessly.
1059 zfsctl_snapshot_unmount(const char *snapname, int flags)
1061 char *argv[] = { "/usr/bin/env", "umount", "-t", "zfs", "-n", NULL,
1062 NULL };
1063 char *envp[] = { NULL };
1064 zfs_snapentry_t *se;
1065 int error;
1067 rw_enter(&zfs_snapshot_lock, RW_READER);
1068 if ((se = zfsctl_snapshot_find_by_name(snapname)) == NULL) {
1069 rw_exit(&zfs_snapshot_lock);
1070 return (SET_ERROR(ENOENT));
1072 rw_exit(&zfs_snapshot_lock);
1074 exportfs_flush();
1076 if (flags & MNT_FORCE)
1077 argv[4] = "-fn";
1078 argv[5] = se->se_path;
1079 dprintf("unmount; path=%s\n", se->se_path);
1080 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1081 zfsctl_snapshot_rele(se);
1085 * The umount system utility will return 256 on error. We must
1086 * assume this error is because the file system is busy so it is
1087 * converted to the more sensible EBUSY.
1089 if (error)
1090 error = SET_ERROR(EBUSY);
1092 return (error);
1096 zfsctl_snapshot_mount(struct path *path, int flags)
1098 struct dentry *dentry = path->dentry;
1099 struct inode *ip = dentry->d_inode;
1100 zfsvfs_t *zfsvfs;
1101 zfsvfs_t *snap_zfsvfs;
1102 zfs_snapentry_t *se;
1103 char *full_name, *full_path;
1104 char *argv[] = { "/usr/bin/env", "mount", "-t", "zfs", "-n", NULL, NULL,
1105 NULL };
1106 char *envp[] = { NULL };
1107 int error;
1108 struct path spath;
1110 if (ip == NULL)
1111 return (SET_ERROR(EISDIR));
1113 zfsvfs = ITOZSB(ip);
1114 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1115 return (error);
1117 full_name = kmem_zalloc(ZFS_MAX_DATASET_NAME_LEN, KM_SLEEP);
1118 full_path = kmem_zalloc(MAXPATHLEN, KM_SLEEP);
1120 error = zfsctl_snapshot_name(zfsvfs, dname(dentry),
1121 ZFS_MAX_DATASET_NAME_LEN, full_name);
1122 if (error)
1123 goto error;
1126 * Construct a mount point path from sb of the ctldir inode and dirent
1127 * name, instead of from d_path(), so that chroot'd process doesn't fail
1128 * on mount.zfs(8).
1130 snprintf(full_path, MAXPATHLEN, "%s/.zfs/snapshot/%s",
1131 zfsvfs->z_vfs->vfs_mntpoint ? zfsvfs->z_vfs->vfs_mntpoint : "",
1132 dname(dentry));
1135 * Multiple concurrent automounts of a snapshot are never allowed.
1136 * The snapshot may be manually mounted as many times as desired.
1138 if (zfsctl_snapshot_ismounted(full_name)) {
1139 error = 0;
1140 goto error;
1144 * Attempt to mount the snapshot from user space. Normally this
1145 * would be done using the vfs_kern_mount() function, however that
1146 * function is marked GPL-only and cannot be used. On error we
1147 * careful to log the real error to the console and return EISDIR
1148 * to safely abort the automount. This should be very rare.
1150 * If the user mode helper happens to return EBUSY, a concurrent
1151 * mount is already in progress in which case the error is ignored.
1152 * Take note that if the program was executed successfully the return
1153 * value from call_usermodehelper() will be (exitcode << 8 + signal).
1155 dprintf("mount; name=%s path=%s\n", full_name, full_path);
1156 argv[5] = full_name;
1157 argv[6] = full_path;
1158 error = call_usermodehelper(argv[0], argv, envp, UMH_WAIT_PROC);
1159 if (error) {
1160 if (!(error & MOUNT_BUSY << 8)) {
1161 zfs_dbgmsg("Unable to automount %s error=%d",
1162 full_path, error);
1163 error = SET_ERROR(EISDIR);
1164 } else {
1166 * EBUSY, this could mean a concurrent mount, or the
1167 * snapshot has already been mounted at completely
1168 * different place. We return 0 so VFS will retry. For
1169 * the latter case the VFS will retry several times
1170 * and return ELOOP, which is probably not a very good
1171 * behavior.
1173 error = 0;
1175 goto error;
1179 * Follow down in to the mounted snapshot and set MNT_SHRINKABLE
1180 * to identify this as an automounted filesystem.
1182 spath = *path;
1183 path_get(&spath);
1184 if (follow_down_one(&spath)) {
1185 snap_zfsvfs = ITOZSB(spath.dentry->d_inode);
1186 snap_zfsvfs->z_parent = zfsvfs;
1187 dentry = spath.dentry;
1188 spath.mnt->mnt_flags |= MNT_SHRINKABLE;
1190 rw_enter(&zfs_snapshot_lock, RW_WRITER);
1191 se = zfsctl_snapshot_alloc(full_name, full_path,
1192 snap_zfsvfs->z_os->os_spa, dmu_objset_id(snap_zfsvfs->z_os),
1193 dentry);
1194 zfsctl_snapshot_add(se);
1195 zfsctl_snapshot_unmount_delay_impl(se, zfs_expire_snapshot);
1196 rw_exit(&zfs_snapshot_lock);
1198 path_put(&spath);
1199 error:
1200 kmem_free(full_name, ZFS_MAX_DATASET_NAME_LEN);
1201 kmem_free(full_path, MAXPATHLEN);
1203 zfs_exit(zfsvfs, FTAG);
1205 return (error);
1209 * Get the snapdir inode from fid
1212 zfsctl_snapdir_vget(struct super_block *sb, uint64_t objsetid, int gen,
1213 struct inode **ipp)
1215 int error;
1216 struct path path;
1217 char *mnt;
1218 struct dentry *dentry;
1220 mnt = kmem_alloc(MAXPATHLEN, KM_SLEEP);
1222 error = zfsctl_snapshot_path_objset(sb->s_fs_info, objsetid,
1223 MAXPATHLEN, mnt);
1224 if (error)
1225 goto out;
1227 /* Trigger automount */
1228 error = -kern_path(mnt, LOOKUP_FOLLOW|LOOKUP_DIRECTORY, &path);
1229 if (error)
1230 goto out;
1232 path_put(&path);
1234 * Get the snapdir inode. Note, we don't want to use the above
1235 * path because it contains the root of the snapshot rather
1236 * than the snapdir.
1238 *ipp = ilookup(sb, ZFSCTL_INO_SNAPDIRS - objsetid);
1239 if (*ipp == NULL) {
1240 error = SET_ERROR(ENOENT);
1241 goto out;
1244 /* check gen, see zfsctl_snapdir_fid */
1245 dentry = d_obtain_alias(igrab(*ipp));
1246 if (gen != (!IS_ERR(dentry) && d_mountpoint(dentry))) {
1247 iput(*ipp);
1248 *ipp = NULL;
1249 error = SET_ERROR(ENOENT);
1251 if (!IS_ERR(dentry))
1252 dput(dentry);
1253 out:
1254 kmem_free(mnt, MAXPATHLEN);
1255 return (error);
1259 zfsctl_shares_lookup(struct inode *dip, char *name, struct inode **ipp,
1260 int flags, cred_t *cr, int *direntflags, pathname_t *realpnp)
1262 zfsvfs_t *zfsvfs = ITOZSB(dip);
1263 znode_t *zp;
1264 znode_t *dzp;
1265 int error;
1267 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1268 return (error);
1270 if (zfsvfs->z_shares_dir == 0) {
1271 zfs_exit(zfsvfs, FTAG);
1272 return (SET_ERROR(ENOTSUP));
1275 if ((error = zfs_zget(zfsvfs, zfsvfs->z_shares_dir, &dzp)) == 0) {
1276 error = zfs_lookup(dzp, name, &zp, 0, cr, NULL, NULL);
1277 zrele(dzp);
1280 zfs_exit(zfsvfs, FTAG);
1282 return (error);
1286 * Initialize the various pieces we'll need to create and manipulate .zfs
1287 * directories. Currently this is unused but available.
1289 void
1290 zfsctl_init(void)
1292 avl_create(&zfs_snapshots_by_name, snapentry_compare_by_name,
1293 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1294 se_node_name));
1295 avl_create(&zfs_snapshots_by_objsetid, snapentry_compare_by_objsetid,
1296 sizeof (zfs_snapentry_t), offsetof(zfs_snapentry_t,
1297 se_node_objsetid));
1298 rw_init(&zfs_snapshot_lock, NULL, RW_DEFAULT, NULL);
1302 * Cleanup the various pieces we needed for .zfs directories. In particular
1303 * ensure the expiry timer is canceled safely.
1305 void
1306 zfsctl_fini(void)
1308 avl_destroy(&zfs_snapshots_by_name);
1309 avl_destroy(&zfs_snapshots_by_objsetid);
1310 rw_destroy(&zfs_snapshot_lock);
1313 module_param(zfs_admin_snapshot, int, 0644);
1314 MODULE_PARM_DESC(zfs_admin_snapshot, "Enable mkdir/rmdir/mv in .zfs/snapshot");
1316 module_param(zfs_expire_snapshot, int, 0644);
1317 MODULE_PARM_DESC(zfs_expire_snapshot, "Seconds to expire .zfs/snapshot");