ZIL: Call brt_pending_add() replaying TX_CLONE_RANGE
[zfs.git] / module / os / linux / zfs / zfs_vfsops.c
blob2792bc027213c3f31dae2dfef0034cea765b6a32
1 /*
2 * CDDL HEADER START
4 * The contents of this file are subject to the terms of the
5 * Common Development and Distribution License (the "License").
6 * You may not use this file except in compliance with the License.
8 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE
9 * or https://opensource.org/licenses/CDDL-1.0.
10 * See the License for the specific language governing permissions
11 * and limitations under the License.
13 * When distributing Covered Code, include this CDDL HEADER in each
14 * file and include the License file at usr/src/OPENSOLARIS.LICENSE.
15 * If applicable, add the following below this CDDL HEADER, with the
16 * fields enclosed by brackets "[]" replaced with your own identifying
17 * information: Portions Copyright [yyyy] [name of copyright owner]
19 * CDDL HEADER END
22 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved.
23 * Copyright (c) 2012, 2018 by Delphix. All rights reserved.
26 /* Portions Copyright 2010 Robert Milkowski */
28 #include <sys/types.h>
29 #include <sys/param.h>
30 #include <sys/sysmacros.h>
31 #include <sys/kmem.h>
32 #include <sys/pathname.h>
33 #include <sys/vnode.h>
34 #include <sys/vfs.h>
35 #include <sys/mntent.h>
36 #include <sys/cmn_err.h>
37 #include <sys/zfs_znode.h>
38 #include <sys/zfs_vnops.h>
39 #include <sys/zfs_dir.h>
40 #include <sys/zil.h>
41 #include <sys/fs/zfs.h>
42 #include <sys/dmu.h>
43 #include <sys/dsl_prop.h>
44 #include <sys/dsl_dataset.h>
45 #include <sys/dsl_deleg.h>
46 #include <sys/spa.h>
47 #include <sys/zap.h>
48 #include <sys/sa.h>
49 #include <sys/sa_impl.h>
50 #include <sys/policy.h>
51 #include <sys/atomic.h>
52 #include <sys/zfs_ioctl.h>
53 #include <sys/zfs_ctldir.h>
54 #include <sys/zfs_fuid.h>
55 #include <sys/zfs_quota.h>
56 #include <sys/sunddi.h>
57 #include <sys/dmu_objset.h>
58 #include <sys/dsl_dir.h>
59 #include <sys/objlist.h>
60 #include <sys/zpl.h>
61 #include <linux/vfs_compat.h>
62 #include "zfs_comutil.h"
64 enum {
65 TOKEN_RO,
66 TOKEN_RW,
67 TOKEN_SETUID,
68 TOKEN_NOSETUID,
69 TOKEN_EXEC,
70 TOKEN_NOEXEC,
71 TOKEN_DEVICES,
72 TOKEN_NODEVICES,
73 TOKEN_DIRXATTR,
74 TOKEN_SAXATTR,
75 TOKEN_XATTR,
76 TOKEN_NOXATTR,
77 TOKEN_ATIME,
78 TOKEN_NOATIME,
79 TOKEN_RELATIME,
80 TOKEN_NORELATIME,
81 TOKEN_NBMAND,
82 TOKEN_NONBMAND,
83 TOKEN_MNTPOINT,
84 TOKEN_LAST,
87 static const match_table_t zpl_tokens = {
88 { TOKEN_RO, MNTOPT_RO },
89 { TOKEN_RW, MNTOPT_RW },
90 { TOKEN_SETUID, MNTOPT_SETUID },
91 { TOKEN_NOSETUID, MNTOPT_NOSETUID },
92 { TOKEN_EXEC, MNTOPT_EXEC },
93 { TOKEN_NOEXEC, MNTOPT_NOEXEC },
94 { TOKEN_DEVICES, MNTOPT_DEVICES },
95 { TOKEN_NODEVICES, MNTOPT_NODEVICES },
96 { TOKEN_DIRXATTR, MNTOPT_DIRXATTR },
97 { TOKEN_SAXATTR, MNTOPT_SAXATTR },
98 { TOKEN_XATTR, MNTOPT_XATTR },
99 { TOKEN_NOXATTR, MNTOPT_NOXATTR },
100 { TOKEN_ATIME, MNTOPT_ATIME },
101 { TOKEN_NOATIME, MNTOPT_NOATIME },
102 { TOKEN_RELATIME, MNTOPT_RELATIME },
103 { TOKEN_NORELATIME, MNTOPT_NORELATIME },
104 { TOKEN_NBMAND, MNTOPT_NBMAND },
105 { TOKEN_NONBMAND, MNTOPT_NONBMAND },
106 { TOKEN_MNTPOINT, MNTOPT_MNTPOINT "=%s" },
107 { TOKEN_LAST, NULL },
110 static void
111 zfsvfs_vfs_free(vfs_t *vfsp)
113 if (vfsp != NULL) {
114 if (vfsp->vfs_mntpoint != NULL)
115 kmem_strfree(vfsp->vfs_mntpoint);
117 kmem_free(vfsp, sizeof (vfs_t));
121 static int
122 zfsvfs_parse_option(char *option, int token, substring_t *args, vfs_t *vfsp)
124 switch (token) {
125 case TOKEN_RO:
126 vfsp->vfs_readonly = B_TRUE;
127 vfsp->vfs_do_readonly = B_TRUE;
128 break;
129 case TOKEN_RW:
130 vfsp->vfs_readonly = B_FALSE;
131 vfsp->vfs_do_readonly = B_TRUE;
132 break;
133 case TOKEN_SETUID:
134 vfsp->vfs_setuid = B_TRUE;
135 vfsp->vfs_do_setuid = B_TRUE;
136 break;
137 case TOKEN_NOSETUID:
138 vfsp->vfs_setuid = B_FALSE;
139 vfsp->vfs_do_setuid = B_TRUE;
140 break;
141 case TOKEN_EXEC:
142 vfsp->vfs_exec = B_TRUE;
143 vfsp->vfs_do_exec = B_TRUE;
144 break;
145 case TOKEN_NOEXEC:
146 vfsp->vfs_exec = B_FALSE;
147 vfsp->vfs_do_exec = B_TRUE;
148 break;
149 case TOKEN_DEVICES:
150 vfsp->vfs_devices = B_TRUE;
151 vfsp->vfs_do_devices = B_TRUE;
152 break;
153 case TOKEN_NODEVICES:
154 vfsp->vfs_devices = B_FALSE;
155 vfsp->vfs_do_devices = B_TRUE;
156 break;
157 case TOKEN_DIRXATTR:
158 vfsp->vfs_xattr = ZFS_XATTR_DIR;
159 vfsp->vfs_do_xattr = B_TRUE;
160 break;
161 case TOKEN_SAXATTR:
162 vfsp->vfs_xattr = ZFS_XATTR_SA;
163 vfsp->vfs_do_xattr = B_TRUE;
164 break;
165 case TOKEN_XATTR:
166 vfsp->vfs_xattr = ZFS_XATTR_DIR;
167 vfsp->vfs_do_xattr = B_TRUE;
168 break;
169 case TOKEN_NOXATTR:
170 vfsp->vfs_xattr = ZFS_XATTR_OFF;
171 vfsp->vfs_do_xattr = B_TRUE;
172 break;
173 case TOKEN_ATIME:
174 vfsp->vfs_atime = B_TRUE;
175 vfsp->vfs_do_atime = B_TRUE;
176 break;
177 case TOKEN_NOATIME:
178 vfsp->vfs_atime = B_FALSE;
179 vfsp->vfs_do_atime = B_TRUE;
180 break;
181 case TOKEN_RELATIME:
182 vfsp->vfs_relatime = B_TRUE;
183 vfsp->vfs_do_relatime = B_TRUE;
184 break;
185 case TOKEN_NORELATIME:
186 vfsp->vfs_relatime = B_FALSE;
187 vfsp->vfs_do_relatime = B_TRUE;
188 break;
189 case TOKEN_NBMAND:
190 vfsp->vfs_nbmand = B_TRUE;
191 vfsp->vfs_do_nbmand = B_TRUE;
192 break;
193 case TOKEN_NONBMAND:
194 vfsp->vfs_nbmand = B_FALSE;
195 vfsp->vfs_do_nbmand = B_TRUE;
196 break;
197 case TOKEN_MNTPOINT:
198 vfsp->vfs_mntpoint = match_strdup(&args[0]);
199 if (vfsp->vfs_mntpoint == NULL)
200 return (SET_ERROR(ENOMEM));
202 break;
203 default:
204 break;
207 return (0);
211 * Parse the raw mntopts and return a vfs_t describing the options.
213 static int
214 zfsvfs_parse_options(char *mntopts, vfs_t **vfsp)
216 vfs_t *tmp_vfsp;
217 int error;
219 tmp_vfsp = kmem_zalloc(sizeof (vfs_t), KM_SLEEP);
221 if (mntopts != NULL) {
222 substring_t args[MAX_OPT_ARGS];
223 char *tmp_mntopts, *p, *t;
224 int token;
226 tmp_mntopts = t = kmem_strdup(mntopts);
227 if (tmp_mntopts == NULL)
228 return (SET_ERROR(ENOMEM));
230 while ((p = strsep(&t, ",")) != NULL) {
231 if (!*p)
232 continue;
234 args[0].to = args[0].from = NULL;
235 token = match_token(p, zpl_tokens, args);
236 error = zfsvfs_parse_option(p, token, args, tmp_vfsp);
237 if (error) {
238 kmem_strfree(tmp_mntopts);
239 zfsvfs_vfs_free(tmp_vfsp);
240 return (error);
244 kmem_strfree(tmp_mntopts);
247 *vfsp = tmp_vfsp;
249 return (0);
252 boolean_t
253 zfs_is_readonly(zfsvfs_t *zfsvfs)
255 return (!!(zfsvfs->z_sb->s_flags & SB_RDONLY));
259 zfs_sync(struct super_block *sb, int wait, cred_t *cr)
261 (void) cr;
262 zfsvfs_t *zfsvfs = sb->s_fs_info;
265 * Semantically, the only requirement is that the sync be initiated.
266 * The DMU syncs out txgs frequently, so there's nothing to do.
268 if (!wait)
269 return (0);
271 if (zfsvfs != NULL) {
273 * Sync a specific filesystem.
275 dsl_pool_t *dp;
276 int error;
278 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
279 return (error);
280 dp = dmu_objset_pool(zfsvfs->z_os);
283 * If the system is shutting down, then skip any
284 * filesystems which may exist on a suspended pool.
286 if (spa_suspended(dp->dp_spa)) {
287 zfs_exit(zfsvfs, FTAG);
288 return (0);
291 if (zfsvfs->z_log != NULL)
292 zil_commit(zfsvfs->z_log, 0);
294 zfs_exit(zfsvfs, FTAG);
295 } else {
297 * Sync all ZFS filesystems. This is what happens when you
298 * run sync(1). Unlike other filesystems, ZFS honors the
299 * request by waiting for all pools to commit all dirty data.
301 spa_sync_allpools();
304 return (0);
307 static void
308 atime_changed_cb(void *arg, uint64_t newval)
310 zfsvfs_t *zfsvfs = arg;
311 struct super_block *sb = zfsvfs->z_sb;
313 if (sb == NULL)
314 return;
316 * Update SB_NOATIME bit in VFS super block. Since atime update is
317 * determined by atime_needs_update(), atime_needs_update() needs to
318 * return false if atime is turned off, and not unconditionally return
319 * false if atime is turned on.
321 if (newval)
322 sb->s_flags &= ~SB_NOATIME;
323 else
324 sb->s_flags |= SB_NOATIME;
327 static void
328 relatime_changed_cb(void *arg, uint64_t newval)
330 ((zfsvfs_t *)arg)->z_relatime = newval;
333 static void
334 xattr_changed_cb(void *arg, uint64_t newval)
336 zfsvfs_t *zfsvfs = arg;
338 if (newval == ZFS_XATTR_OFF) {
339 zfsvfs->z_flags &= ~ZSB_XATTR;
340 } else {
341 zfsvfs->z_flags |= ZSB_XATTR;
343 if (newval == ZFS_XATTR_SA)
344 zfsvfs->z_xattr_sa = B_TRUE;
345 else
346 zfsvfs->z_xattr_sa = B_FALSE;
350 static void
351 acltype_changed_cb(void *arg, uint64_t newval)
353 zfsvfs_t *zfsvfs = arg;
355 switch (newval) {
356 case ZFS_ACLTYPE_NFSV4:
357 case ZFS_ACLTYPE_OFF:
358 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
359 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
360 break;
361 case ZFS_ACLTYPE_POSIX:
362 #ifdef CONFIG_FS_POSIX_ACL
363 zfsvfs->z_acl_type = ZFS_ACLTYPE_POSIX;
364 zfsvfs->z_sb->s_flags |= SB_POSIXACL;
365 #else
366 zfsvfs->z_acl_type = ZFS_ACLTYPE_OFF;
367 zfsvfs->z_sb->s_flags &= ~SB_POSIXACL;
368 #endif /* CONFIG_FS_POSIX_ACL */
369 break;
370 default:
371 break;
375 static void
376 blksz_changed_cb(void *arg, uint64_t newval)
378 zfsvfs_t *zfsvfs = arg;
379 ASSERT3U(newval, <=, spa_maxblocksize(dmu_objset_spa(zfsvfs->z_os)));
380 ASSERT3U(newval, >=, SPA_MINBLOCKSIZE);
381 ASSERT(ISP2(newval));
383 zfsvfs->z_max_blksz = newval;
386 static void
387 readonly_changed_cb(void *arg, uint64_t newval)
389 zfsvfs_t *zfsvfs = arg;
390 struct super_block *sb = zfsvfs->z_sb;
392 if (sb == NULL)
393 return;
395 if (newval)
396 sb->s_flags |= SB_RDONLY;
397 else
398 sb->s_flags &= ~SB_RDONLY;
401 static void
402 devices_changed_cb(void *arg, uint64_t newval)
406 static void
407 setuid_changed_cb(void *arg, uint64_t newval)
411 static void
412 exec_changed_cb(void *arg, uint64_t newval)
416 static void
417 nbmand_changed_cb(void *arg, uint64_t newval)
419 zfsvfs_t *zfsvfs = arg;
420 struct super_block *sb = zfsvfs->z_sb;
422 if (sb == NULL)
423 return;
425 if (newval == TRUE)
426 sb->s_flags |= SB_MANDLOCK;
427 else
428 sb->s_flags &= ~SB_MANDLOCK;
431 static void
432 snapdir_changed_cb(void *arg, uint64_t newval)
434 ((zfsvfs_t *)arg)->z_show_ctldir = newval;
437 static void
438 acl_mode_changed_cb(void *arg, uint64_t newval)
440 zfsvfs_t *zfsvfs = arg;
442 zfsvfs->z_acl_mode = newval;
445 static void
446 acl_inherit_changed_cb(void *arg, uint64_t newval)
448 ((zfsvfs_t *)arg)->z_acl_inherit = newval;
451 static int
452 zfs_register_callbacks(vfs_t *vfsp)
454 struct dsl_dataset *ds = NULL;
455 objset_t *os = NULL;
456 zfsvfs_t *zfsvfs = NULL;
457 int error = 0;
459 ASSERT(vfsp);
460 zfsvfs = vfsp->vfs_data;
461 ASSERT(zfsvfs);
462 os = zfsvfs->z_os;
465 * The act of registering our callbacks will destroy any mount
466 * options we may have. In order to enable temporary overrides
467 * of mount options, we stash away the current values and
468 * restore them after we register the callbacks.
470 if (zfs_is_readonly(zfsvfs) || !spa_writeable(dmu_objset_spa(os))) {
471 vfsp->vfs_do_readonly = B_TRUE;
472 vfsp->vfs_readonly = B_TRUE;
476 * Register property callbacks.
478 * It would probably be fine to just check for i/o error from
479 * the first prop_register(), but I guess I like to go
480 * overboard...
482 ds = dmu_objset_ds(os);
483 dsl_pool_config_enter(dmu_objset_pool(os), FTAG);
484 error = dsl_prop_register(ds,
485 zfs_prop_to_name(ZFS_PROP_ATIME), atime_changed_cb, zfsvfs);
486 error = error ? error : dsl_prop_register(ds,
487 zfs_prop_to_name(ZFS_PROP_RELATIME), relatime_changed_cb, zfsvfs);
488 error = error ? error : dsl_prop_register(ds,
489 zfs_prop_to_name(ZFS_PROP_XATTR), xattr_changed_cb, zfsvfs);
490 error = error ? error : dsl_prop_register(ds,
491 zfs_prop_to_name(ZFS_PROP_RECORDSIZE), blksz_changed_cb, zfsvfs);
492 error = error ? error : dsl_prop_register(ds,
493 zfs_prop_to_name(ZFS_PROP_READONLY), readonly_changed_cb, zfsvfs);
494 error = error ? error : dsl_prop_register(ds,
495 zfs_prop_to_name(ZFS_PROP_DEVICES), devices_changed_cb, zfsvfs);
496 error = error ? error : dsl_prop_register(ds,
497 zfs_prop_to_name(ZFS_PROP_SETUID), setuid_changed_cb, zfsvfs);
498 error = error ? error : dsl_prop_register(ds,
499 zfs_prop_to_name(ZFS_PROP_EXEC), exec_changed_cb, zfsvfs);
500 error = error ? error : dsl_prop_register(ds,
501 zfs_prop_to_name(ZFS_PROP_SNAPDIR), snapdir_changed_cb, zfsvfs);
502 error = error ? error : dsl_prop_register(ds,
503 zfs_prop_to_name(ZFS_PROP_ACLTYPE), acltype_changed_cb, zfsvfs);
504 error = error ? error : dsl_prop_register(ds,
505 zfs_prop_to_name(ZFS_PROP_ACLMODE), acl_mode_changed_cb, zfsvfs);
506 error = error ? error : dsl_prop_register(ds,
507 zfs_prop_to_name(ZFS_PROP_ACLINHERIT), acl_inherit_changed_cb,
508 zfsvfs);
509 error = error ? error : dsl_prop_register(ds,
510 zfs_prop_to_name(ZFS_PROP_NBMAND), nbmand_changed_cb, zfsvfs);
511 dsl_pool_config_exit(dmu_objset_pool(os), FTAG);
512 if (error)
513 goto unregister;
516 * Invoke our callbacks to restore temporary mount options.
518 if (vfsp->vfs_do_readonly)
519 readonly_changed_cb(zfsvfs, vfsp->vfs_readonly);
520 if (vfsp->vfs_do_setuid)
521 setuid_changed_cb(zfsvfs, vfsp->vfs_setuid);
522 if (vfsp->vfs_do_exec)
523 exec_changed_cb(zfsvfs, vfsp->vfs_exec);
524 if (vfsp->vfs_do_devices)
525 devices_changed_cb(zfsvfs, vfsp->vfs_devices);
526 if (vfsp->vfs_do_xattr)
527 xattr_changed_cb(zfsvfs, vfsp->vfs_xattr);
528 if (vfsp->vfs_do_atime)
529 atime_changed_cb(zfsvfs, vfsp->vfs_atime);
530 if (vfsp->vfs_do_relatime)
531 relatime_changed_cb(zfsvfs, vfsp->vfs_relatime);
532 if (vfsp->vfs_do_nbmand)
533 nbmand_changed_cb(zfsvfs, vfsp->vfs_nbmand);
535 return (0);
537 unregister:
538 dsl_prop_unregister_all(ds, zfsvfs);
539 return (error);
543 * Takes a dataset, a property, a value and that value's setpoint as
544 * found in the ZAP. Checks if the property has been changed in the vfs.
545 * If so, val and setpoint will be overwritten with updated content.
546 * Otherwise, they are left unchanged.
549 zfs_get_temporary_prop(dsl_dataset_t *ds, zfs_prop_t zfs_prop, uint64_t *val,
550 char *setpoint)
552 int error;
553 zfsvfs_t *zfvp;
554 vfs_t *vfsp;
555 objset_t *os;
556 uint64_t tmp = *val;
558 error = dmu_objset_from_ds(ds, &os);
559 if (error != 0)
560 return (error);
562 if (dmu_objset_type(os) != DMU_OST_ZFS)
563 return (EINVAL);
565 mutex_enter(&os->os_user_ptr_lock);
566 zfvp = dmu_objset_get_user(os);
567 mutex_exit(&os->os_user_ptr_lock);
568 if (zfvp == NULL)
569 return (ESRCH);
571 vfsp = zfvp->z_vfs;
573 switch (zfs_prop) {
574 case ZFS_PROP_ATIME:
575 if (vfsp->vfs_do_atime)
576 tmp = vfsp->vfs_atime;
577 break;
578 case ZFS_PROP_RELATIME:
579 if (vfsp->vfs_do_relatime)
580 tmp = vfsp->vfs_relatime;
581 break;
582 case ZFS_PROP_DEVICES:
583 if (vfsp->vfs_do_devices)
584 tmp = vfsp->vfs_devices;
585 break;
586 case ZFS_PROP_EXEC:
587 if (vfsp->vfs_do_exec)
588 tmp = vfsp->vfs_exec;
589 break;
590 case ZFS_PROP_SETUID:
591 if (vfsp->vfs_do_setuid)
592 tmp = vfsp->vfs_setuid;
593 break;
594 case ZFS_PROP_READONLY:
595 if (vfsp->vfs_do_readonly)
596 tmp = vfsp->vfs_readonly;
597 break;
598 case ZFS_PROP_XATTR:
599 if (vfsp->vfs_do_xattr)
600 tmp = vfsp->vfs_xattr;
601 break;
602 case ZFS_PROP_NBMAND:
603 if (vfsp->vfs_do_nbmand)
604 tmp = vfsp->vfs_nbmand;
605 break;
606 default:
607 return (ENOENT);
610 if (tmp != *val) {
611 if (setpoint)
612 (void) strcpy(setpoint, "temporary");
613 *val = tmp;
615 return (0);
619 * Associate this zfsvfs with the given objset, which must be owned.
620 * This will cache a bunch of on-disk state from the objset in the
621 * zfsvfs.
623 static int
624 zfsvfs_init(zfsvfs_t *zfsvfs, objset_t *os)
626 int error;
627 uint64_t val;
629 zfsvfs->z_max_blksz = SPA_OLD_MAXBLOCKSIZE;
630 zfsvfs->z_show_ctldir = ZFS_SNAPDIR_VISIBLE;
631 zfsvfs->z_os = os;
633 error = zfs_get_zplprop(os, ZFS_PROP_VERSION, &zfsvfs->z_version);
634 if (error != 0)
635 return (error);
636 if (zfsvfs->z_version >
637 zfs_zpl_version_map(spa_version(dmu_objset_spa(os)))) {
638 (void) printk("Can't mount a version %lld file system "
639 "on a version %lld pool\n. Pool must be upgraded to mount "
640 "this file system.\n", (u_longlong_t)zfsvfs->z_version,
641 (u_longlong_t)spa_version(dmu_objset_spa(os)));
642 return (SET_ERROR(ENOTSUP));
644 error = zfs_get_zplprop(os, ZFS_PROP_NORMALIZE, &val);
645 if (error != 0)
646 return (error);
647 zfsvfs->z_norm = (int)val;
649 error = zfs_get_zplprop(os, ZFS_PROP_UTF8ONLY, &val);
650 if (error != 0)
651 return (error);
652 zfsvfs->z_utf8 = (val != 0);
654 error = zfs_get_zplprop(os, ZFS_PROP_CASE, &val);
655 if (error != 0)
656 return (error);
657 zfsvfs->z_case = (uint_t)val;
659 if ((error = zfs_get_zplprop(os, ZFS_PROP_ACLTYPE, &val)) != 0)
660 return (error);
661 zfsvfs->z_acl_type = (uint_t)val;
664 * Fold case on file systems that are always or sometimes case
665 * insensitive.
667 if (zfsvfs->z_case == ZFS_CASE_INSENSITIVE ||
668 zfsvfs->z_case == ZFS_CASE_MIXED)
669 zfsvfs->z_norm |= U8_TEXTPREP_TOUPPER;
671 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
672 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
674 uint64_t sa_obj = 0;
675 if (zfsvfs->z_use_sa) {
676 /* should either have both of these objects or none */
677 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SA_ATTRS, 8, 1,
678 &sa_obj);
679 if (error != 0)
680 return (error);
682 error = zfs_get_zplprop(os, ZFS_PROP_XATTR, &val);
683 if ((error == 0) && (val == ZFS_XATTR_SA))
684 zfsvfs->z_xattr_sa = B_TRUE;
687 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_ROOT_OBJ, 8, 1,
688 &zfsvfs->z_root);
689 if (error != 0)
690 return (error);
691 ASSERT(zfsvfs->z_root != 0);
693 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_UNLINKED_SET, 8, 1,
694 &zfsvfs->z_unlinkedobj);
695 if (error != 0)
696 return (error);
698 error = zap_lookup(os, MASTER_NODE_OBJ,
699 zfs_userquota_prop_prefixes[ZFS_PROP_USERQUOTA],
700 8, 1, &zfsvfs->z_userquota_obj);
701 if (error == ENOENT)
702 zfsvfs->z_userquota_obj = 0;
703 else if (error != 0)
704 return (error);
706 error = zap_lookup(os, MASTER_NODE_OBJ,
707 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPQUOTA],
708 8, 1, &zfsvfs->z_groupquota_obj);
709 if (error == ENOENT)
710 zfsvfs->z_groupquota_obj = 0;
711 else if (error != 0)
712 return (error);
714 error = zap_lookup(os, MASTER_NODE_OBJ,
715 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTQUOTA],
716 8, 1, &zfsvfs->z_projectquota_obj);
717 if (error == ENOENT)
718 zfsvfs->z_projectquota_obj = 0;
719 else if (error != 0)
720 return (error);
722 error = zap_lookup(os, MASTER_NODE_OBJ,
723 zfs_userquota_prop_prefixes[ZFS_PROP_USEROBJQUOTA],
724 8, 1, &zfsvfs->z_userobjquota_obj);
725 if (error == ENOENT)
726 zfsvfs->z_userobjquota_obj = 0;
727 else if (error != 0)
728 return (error);
730 error = zap_lookup(os, MASTER_NODE_OBJ,
731 zfs_userquota_prop_prefixes[ZFS_PROP_GROUPOBJQUOTA],
732 8, 1, &zfsvfs->z_groupobjquota_obj);
733 if (error == ENOENT)
734 zfsvfs->z_groupobjquota_obj = 0;
735 else if (error != 0)
736 return (error);
738 error = zap_lookup(os, MASTER_NODE_OBJ,
739 zfs_userquota_prop_prefixes[ZFS_PROP_PROJECTOBJQUOTA],
740 8, 1, &zfsvfs->z_projectobjquota_obj);
741 if (error == ENOENT)
742 zfsvfs->z_projectobjquota_obj = 0;
743 else if (error != 0)
744 return (error);
746 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_FUID_TABLES, 8, 1,
747 &zfsvfs->z_fuid_obj);
748 if (error == ENOENT)
749 zfsvfs->z_fuid_obj = 0;
750 else if (error != 0)
751 return (error);
753 error = zap_lookup(os, MASTER_NODE_OBJ, ZFS_SHARES_DIR, 8, 1,
754 &zfsvfs->z_shares_dir);
755 if (error == ENOENT)
756 zfsvfs->z_shares_dir = 0;
757 else if (error != 0)
758 return (error);
760 error = sa_setup(os, sa_obj, zfs_attr_table, ZPL_END,
761 &zfsvfs->z_attr_table);
762 if (error != 0)
763 return (error);
765 if (zfsvfs->z_version >= ZPL_VERSION_SA)
766 sa_register_update_callback(os, zfs_sa_upgrade);
768 return (0);
772 zfsvfs_create(const char *osname, boolean_t readonly, zfsvfs_t **zfvp)
774 objset_t *os;
775 zfsvfs_t *zfsvfs;
776 int error;
777 boolean_t ro = (readonly || (strchr(osname, '@') != NULL));
779 zfsvfs = kmem_zalloc(sizeof (zfsvfs_t), KM_SLEEP);
781 error = dmu_objset_own(osname, DMU_OST_ZFS, ro, B_TRUE, zfsvfs, &os);
782 if (error != 0) {
783 kmem_free(zfsvfs, sizeof (zfsvfs_t));
784 return (error);
787 error = zfsvfs_create_impl(zfvp, zfsvfs, os);
789 return (error);
794 * Note: zfsvfs is assumed to be malloc'd, and will be freed by this function
795 * on a failure. Do not pass in a statically allocated zfsvfs.
798 zfsvfs_create_impl(zfsvfs_t **zfvp, zfsvfs_t *zfsvfs, objset_t *os)
800 int error;
802 zfsvfs->z_vfs = NULL;
803 zfsvfs->z_sb = NULL;
804 zfsvfs->z_parent = zfsvfs;
806 mutex_init(&zfsvfs->z_znodes_lock, NULL, MUTEX_DEFAULT, NULL);
807 mutex_init(&zfsvfs->z_lock, NULL, MUTEX_DEFAULT, NULL);
808 list_create(&zfsvfs->z_all_znodes, sizeof (znode_t),
809 offsetof(znode_t, z_link_node));
810 ZFS_TEARDOWN_INIT(zfsvfs);
811 rw_init(&zfsvfs->z_teardown_inactive_lock, NULL, RW_DEFAULT, NULL);
812 rw_init(&zfsvfs->z_fuid_lock, NULL, RW_DEFAULT, NULL);
814 int size = MIN(1 << (highbit64(zfs_object_mutex_size) - 1),
815 ZFS_OBJ_MTX_MAX);
816 zfsvfs->z_hold_size = size;
817 zfsvfs->z_hold_trees = vmem_zalloc(sizeof (avl_tree_t) * size,
818 KM_SLEEP);
819 zfsvfs->z_hold_locks = vmem_zalloc(sizeof (kmutex_t) * size, KM_SLEEP);
820 for (int i = 0; i != size; i++) {
821 avl_create(&zfsvfs->z_hold_trees[i], zfs_znode_hold_compare,
822 sizeof (znode_hold_t), offsetof(znode_hold_t, zh_node));
823 mutex_init(&zfsvfs->z_hold_locks[i], NULL, MUTEX_DEFAULT, NULL);
826 error = zfsvfs_init(zfsvfs, os);
827 if (error != 0) {
828 dmu_objset_disown(os, B_TRUE, zfsvfs);
829 *zfvp = NULL;
830 zfsvfs_free(zfsvfs);
831 return (error);
834 zfsvfs->z_drain_task = TASKQID_INVALID;
835 zfsvfs->z_draining = B_FALSE;
836 zfsvfs->z_drain_cancel = B_TRUE;
838 *zfvp = zfsvfs;
839 return (0);
842 static int
843 zfsvfs_setup(zfsvfs_t *zfsvfs, boolean_t mounting)
845 int error;
846 boolean_t readonly = zfs_is_readonly(zfsvfs);
848 error = zfs_register_callbacks(zfsvfs->z_vfs);
849 if (error)
850 return (error);
853 * If we are not mounting (ie: online recv), then we don't
854 * have to worry about replaying the log as we blocked all
855 * operations out since we closed the ZIL.
857 if (mounting) {
858 ASSERT3P(zfsvfs->z_kstat.dk_kstats, ==, NULL);
859 error = dataset_kstats_create(&zfsvfs->z_kstat, zfsvfs->z_os);
860 if (error)
861 return (error);
862 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
863 &zfsvfs->z_kstat.dk_zil_sums);
866 * During replay we remove the read only flag to
867 * allow replays to succeed.
869 if (readonly != 0) {
870 readonly_changed_cb(zfsvfs, B_FALSE);
871 } else {
872 zap_stats_t zs;
873 if (zap_get_stats(zfsvfs->z_os, zfsvfs->z_unlinkedobj,
874 &zs) == 0) {
875 dataset_kstats_update_nunlinks_kstat(
876 &zfsvfs->z_kstat, zs.zs_num_entries);
877 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
878 "num_entries in unlinked set: %llu",
879 zs.zs_num_entries);
881 zfs_unlinked_drain(zfsvfs);
882 dsl_dir_t *dd = zfsvfs->z_os->os_dsl_dataset->ds_dir;
883 dd->dd_activity_cancelled = B_FALSE;
887 * Parse and replay the intent log.
889 * Because of ziltest, this must be done after
890 * zfs_unlinked_drain(). (Further note: ziltest
891 * doesn't use readonly mounts, where
892 * zfs_unlinked_drain() isn't called.) This is because
893 * ziltest causes spa_sync() to think it's committed,
894 * but actually it is not, so the intent log contains
895 * many txg's worth of changes.
897 * In particular, if object N is in the unlinked set in
898 * the last txg to actually sync, then it could be
899 * actually freed in a later txg and then reallocated
900 * in a yet later txg. This would write a "create
901 * object N" record to the intent log. Normally, this
902 * would be fine because the spa_sync() would have
903 * written out the fact that object N is free, before
904 * we could write the "create object N" intent log
905 * record.
907 * But when we are in ziltest mode, we advance the "open
908 * txg" without actually spa_sync()-ing the changes to
909 * disk. So we would see that object N is still
910 * allocated and in the unlinked set, and there is an
911 * intent log record saying to allocate it.
913 if (spa_writeable(dmu_objset_spa(zfsvfs->z_os))) {
914 if (zil_replay_disable) {
915 zil_destroy(zfsvfs->z_log, B_FALSE);
916 } else {
917 zfsvfs->z_replay = B_TRUE;
918 zil_replay(zfsvfs->z_os, zfsvfs,
919 zfs_replay_vector);
920 zfsvfs->z_replay = B_FALSE;
924 /* restore readonly bit */
925 if (readonly != 0)
926 readonly_changed_cb(zfsvfs, B_TRUE);
927 } else {
928 ASSERT3P(zfsvfs->z_kstat.dk_kstats, !=, NULL);
929 zfsvfs->z_log = zil_open(zfsvfs->z_os, zfs_get_data,
930 &zfsvfs->z_kstat.dk_zil_sums);
934 * Set the objset user_ptr to track its zfsvfs.
936 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
937 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
938 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
940 return (0);
943 void
944 zfsvfs_free(zfsvfs_t *zfsvfs)
946 int i, size = zfsvfs->z_hold_size;
948 zfs_fuid_destroy(zfsvfs);
950 mutex_destroy(&zfsvfs->z_znodes_lock);
951 mutex_destroy(&zfsvfs->z_lock);
952 list_destroy(&zfsvfs->z_all_znodes);
953 ZFS_TEARDOWN_DESTROY(zfsvfs);
954 rw_destroy(&zfsvfs->z_teardown_inactive_lock);
955 rw_destroy(&zfsvfs->z_fuid_lock);
956 for (i = 0; i != size; i++) {
957 avl_destroy(&zfsvfs->z_hold_trees[i]);
958 mutex_destroy(&zfsvfs->z_hold_locks[i]);
960 vmem_free(zfsvfs->z_hold_trees, sizeof (avl_tree_t) * size);
961 vmem_free(zfsvfs->z_hold_locks, sizeof (kmutex_t) * size);
962 zfsvfs_vfs_free(zfsvfs->z_vfs);
963 dataset_kstats_destroy(&zfsvfs->z_kstat);
964 kmem_free(zfsvfs, sizeof (zfsvfs_t));
967 static void
968 zfs_set_fuid_feature(zfsvfs_t *zfsvfs)
970 zfsvfs->z_use_fuids = USE_FUIDS(zfsvfs->z_version, zfsvfs->z_os);
971 zfsvfs->z_use_sa = USE_SA(zfsvfs->z_version, zfsvfs->z_os);
974 static void
975 zfs_unregister_callbacks(zfsvfs_t *zfsvfs)
977 objset_t *os = zfsvfs->z_os;
979 if (!dmu_objset_is_snapshot(os))
980 dsl_prop_unregister_all(dmu_objset_ds(os), zfsvfs);
983 #ifdef HAVE_MLSLABEL
985 * Check that the hex label string is appropriate for the dataset being
986 * mounted into the global_zone proper.
988 * Return an error if the hex label string is not default or
989 * admin_low/admin_high. For admin_low labels, the corresponding
990 * dataset must be readonly.
993 zfs_check_global_label(const char *dsname, const char *hexsl)
995 if (strcasecmp(hexsl, ZFS_MLSLABEL_DEFAULT) == 0)
996 return (0);
997 if (strcasecmp(hexsl, ADMIN_HIGH) == 0)
998 return (0);
999 if (strcasecmp(hexsl, ADMIN_LOW) == 0) {
1000 /* must be readonly */
1001 uint64_t rdonly;
1003 if (dsl_prop_get_integer(dsname,
1004 zfs_prop_to_name(ZFS_PROP_READONLY), &rdonly, NULL))
1005 return (SET_ERROR(EACCES));
1006 return (rdonly ? 0 : SET_ERROR(EACCES));
1008 return (SET_ERROR(EACCES));
1010 #endif /* HAVE_MLSLABEL */
1012 static int
1013 zfs_statfs_project(zfsvfs_t *zfsvfs, znode_t *zp, struct kstatfs *statp,
1014 uint32_t bshift)
1016 char buf[20 + DMU_OBJACCT_PREFIX_LEN];
1017 uint64_t offset = DMU_OBJACCT_PREFIX_LEN;
1018 uint64_t quota;
1019 uint64_t used;
1020 int err;
1022 strlcpy(buf, DMU_OBJACCT_PREFIX, DMU_OBJACCT_PREFIX_LEN + 1);
1023 err = zfs_id_to_fuidstr(zfsvfs, NULL, zp->z_projid, buf + offset,
1024 sizeof (buf) - offset, B_FALSE);
1025 if (err)
1026 return (err);
1028 if (zfsvfs->z_projectquota_obj == 0)
1029 goto objs;
1031 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectquota_obj,
1032 buf + offset, 8, 1, &quota);
1033 if (err == ENOENT)
1034 goto objs;
1035 else if (err)
1036 return (err);
1038 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1039 buf + offset, 8, 1, &used);
1040 if (unlikely(err == ENOENT)) {
1041 uint32_t blksize;
1042 u_longlong_t nblocks;
1045 * Quota accounting is async, so it is possible race case.
1046 * There is at least one object with the given project ID.
1048 sa_object_size(zp->z_sa_hdl, &blksize, &nblocks);
1049 if (unlikely(zp->z_blksz == 0))
1050 blksize = zfsvfs->z_max_blksz;
1052 used = blksize * nblocks;
1053 } else if (err) {
1054 return (err);
1057 statp->f_blocks = quota >> bshift;
1058 statp->f_bfree = (quota > used) ? ((quota - used) >> bshift) : 0;
1059 statp->f_bavail = statp->f_bfree;
1061 objs:
1062 if (zfsvfs->z_projectobjquota_obj == 0)
1063 return (0);
1065 err = zap_lookup(zfsvfs->z_os, zfsvfs->z_projectobjquota_obj,
1066 buf + offset, 8, 1, &quota);
1067 if (err == ENOENT)
1068 return (0);
1069 else if (err)
1070 return (err);
1072 err = zap_lookup(zfsvfs->z_os, DMU_PROJECTUSED_OBJECT,
1073 buf, 8, 1, &used);
1074 if (unlikely(err == ENOENT)) {
1076 * Quota accounting is async, so it is possible race case.
1077 * There is at least one object with the given project ID.
1079 used = 1;
1080 } else if (err) {
1081 return (err);
1084 statp->f_files = quota;
1085 statp->f_ffree = (quota > used) ? (quota - used) : 0;
1087 return (0);
1091 zfs_statvfs(struct inode *ip, struct kstatfs *statp)
1093 zfsvfs_t *zfsvfs = ITOZSB(ip);
1094 uint64_t refdbytes, availbytes, usedobjs, availobjs;
1095 int err = 0;
1097 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1098 return (err);
1100 dmu_objset_space(zfsvfs->z_os,
1101 &refdbytes, &availbytes, &usedobjs, &availobjs);
1103 uint64_t fsid = dmu_objset_fsid_guid(zfsvfs->z_os);
1105 * The underlying storage pool actually uses multiple block
1106 * size. Under Solaris frsize (fragment size) is reported as
1107 * the smallest block size we support, and bsize (block size)
1108 * as the filesystem's maximum block size. Unfortunately,
1109 * under Linux the fragment size and block size are often used
1110 * interchangeably. Thus we are forced to report both of them
1111 * as the filesystem's maximum block size.
1113 statp->f_frsize = zfsvfs->z_max_blksz;
1114 statp->f_bsize = zfsvfs->z_max_blksz;
1115 uint32_t bshift = fls(statp->f_bsize) - 1;
1118 * The following report "total" blocks of various kinds in
1119 * the file system, but reported in terms of f_bsize - the
1120 * "preferred" size.
1123 /* Round up so we never have a filesystem using 0 blocks. */
1124 refdbytes = P2ROUNDUP(refdbytes, statp->f_bsize);
1125 statp->f_blocks = (refdbytes + availbytes) >> bshift;
1126 statp->f_bfree = availbytes >> bshift;
1127 statp->f_bavail = statp->f_bfree; /* no root reservation */
1130 * statvfs() should really be called statufs(), because it assumes
1131 * static metadata. ZFS doesn't preallocate files, so the best
1132 * we can do is report the max that could possibly fit in f_files,
1133 * and that minus the number actually used in f_ffree.
1134 * For f_ffree, report the smaller of the number of objects available
1135 * and the number of blocks (each object will take at least a block).
1137 statp->f_ffree = MIN(availobjs, availbytes >> DNODE_SHIFT);
1138 statp->f_files = statp->f_ffree + usedobjs;
1139 statp->f_fsid.val[0] = (uint32_t)fsid;
1140 statp->f_fsid.val[1] = (uint32_t)(fsid >> 32);
1141 statp->f_type = ZFS_SUPER_MAGIC;
1142 statp->f_namelen = MAXNAMELEN - 1;
1145 * We have all of 40 characters to stuff a string here.
1146 * Is there anything useful we could/should provide?
1148 memset(statp->f_spare, 0, sizeof (statp->f_spare));
1150 if (dmu_objset_projectquota_enabled(zfsvfs->z_os) &&
1151 dmu_objset_projectquota_present(zfsvfs->z_os)) {
1152 znode_t *zp = ITOZ(ip);
1154 if (zp->z_pflags & ZFS_PROJINHERIT && zp->z_projid &&
1155 zpl_is_valid_projid(zp->z_projid))
1156 err = zfs_statfs_project(zfsvfs, zp, statp, bshift);
1159 zfs_exit(zfsvfs, FTAG);
1160 return (err);
1163 static int
1164 zfs_root(zfsvfs_t *zfsvfs, struct inode **ipp)
1166 znode_t *rootzp;
1167 int error;
1169 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1170 return (error);
1172 error = zfs_zget(zfsvfs, zfsvfs->z_root, &rootzp);
1173 if (error == 0)
1174 *ipp = ZTOI(rootzp);
1176 zfs_exit(zfsvfs, FTAG);
1177 return (error);
1181 * Linux kernels older than 3.1 do not support a per-filesystem shrinker.
1182 * To accommodate this we must improvise and manually walk the list of znodes
1183 * attempting to prune dentries in order to be able to drop the inodes.
1185 * To avoid scanning the same znodes multiple times they are always rotated
1186 * to the end of the z_all_znodes list. New znodes are inserted at the
1187 * end of the list so we're always scanning the oldest znodes first.
1189 static int
1190 zfs_prune_aliases(zfsvfs_t *zfsvfs, unsigned long nr_to_scan)
1192 znode_t **zp_array, *zp;
1193 int max_array = MIN(nr_to_scan, PAGE_SIZE * 8 / sizeof (znode_t *));
1194 int objects = 0;
1195 int i = 0, j = 0;
1197 zp_array = vmem_zalloc(max_array * sizeof (znode_t *), KM_SLEEP);
1199 mutex_enter(&zfsvfs->z_znodes_lock);
1200 while ((zp = list_head(&zfsvfs->z_all_znodes)) != NULL) {
1202 if ((i++ > nr_to_scan) || (j >= max_array))
1203 break;
1205 ASSERT(list_link_active(&zp->z_link_node));
1206 list_remove(&zfsvfs->z_all_znodes, zp);
1207 list_insert_tail(&zfsvfs->z_all_znodes, zp);
1209 /* Skip active znodes and .zfs entries */
1210 if (MUTEX_HELD(&zp->z_lock) || zp->z_is_ctldir)
1211 continue;
1213 if (igrab(ZTOI(zp)) == NULL)
1214 continue;
1216 zp_array[j] = zp;
1217 j++;
1219 mutex_exit(&zfsvfs->z_znodes_lock);
1221 for (i = 0; i < j; i++) {
1222 zp = zp_array[i];
1224 ASSERT3P(zp, !=, NULL);
1225 d_prune_aliases(ZTOI(zp));
1227 if (atomic_read(&ZTOI(zp)->i_count) == 1)
1228 objects++;
1230 zrele(zp);
1233 vmem_free(zp_array, max_array * sizeof (znode_t *));
1235 return (objects);
1239 * The ARC has requested that the filesystem drop entries from the dentry
1240 * and inode caches. This can occur when the ARC needs to free meta data
1241 * blocks but can't because they are all pinned by entries in these caches.
1244 zfs_prune(struct super_block *sb, unsigned long nr_to_scan, int *objects)
1246 zfsvfs_t *zfsvfs = sb->s_fs_info;
1247 int error = 0;
1248 struct shrinker *shrinker = &sb->s_shrink;
1249 struct shrink_control sc = {
1250 .nr_to_scan = nr_to_scan,
1251 .gfp_mask = GFP_KERNEL,
1254 if ((error = zfs_enter(zfsvfs, FTAG)) != 0)
1255 return (error);
1257 #if defined(HAVE_SPLIT_SHRINKER_CALLBACK) && \
1258 defined(SHRINK_CONTROL_HAS_NID) && \
1259 defined(SHRINKER_NUMA_AWARE)
1260 if (sb->s_shrink.flags & SHRINKER_NUMA_AWARE) {
1261 *objects = 0;
1262 for_each_online_node(sc.nid) {
1263 *objects += (*shrinker->scan_objects)(shrinker, &sc);
1265 * reset sc.nr_to_scan, modified by
1266 * scan_objects == super_cache_scan
1268 sc.nr_to_scan = nr_to_scan;
1270 } else {
1271 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1274 #elif defined(HAVE_SPLIT_SHRINKER_CALLBACK)
1275 *objects = (*shrinker->scan_objects)(shrinker, &sc);
1276 #elif defined(HAVE_SINGLE_SHRINKER_CALLBACK)
1277 *objects = (*shrinker->shrink)(shrinker, &sc);
1278 #elif defined(HAVE_D_PRUNE_ALIASES)
1279 #define D_PRUNE_ALIASES_IS_DEFAULT
1280 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1281 #else
1282 #error "No available dentry and inode cache pruning mechanism."
1283 #endif
1285 #if defined(HAVE_D_PRUNE_ALIASES) && !defined(D_PRUNE_ALIASES_IS_DEFAULT)
1286 #undef D_PRUNE_ALIASES_IS_DEFAULT
1288 * Fall back to zfs_prune_aliases if the kernel's per-superblock
1289 * shrinker couldn't free anything, possibly due to the inodes being
1290 * allocated in a different memcg.
1292 if (*objects == 0)
1293 *objects = zfs_prune_aliases(zfsvfs, nr_to_scan);
1294 #endif
1296 zfs_exit(zfsvfs, FTAG);
1298 dprintf_ds(zfsvfs->z_os->os_dsl_dataset,
1299 "pruning, nr_to_scan=%lu objects=%d error=%d\n",
1300 nr_to_scan, *objects, error);
1302 return (error);
1306 * Teardown the zfsvfs_t.
1308 * Note, if 'unmounting' is FALSE, we return with the 'z_teardown_lock'
1309 * and 'z_teardown_inactive_lock' held.
1311 static int
1312 zfsvfs_teardown(zfsvfs_t *zfsvfs, boolean_t unmounting)
1314 znode_t *zp;
1316 zfs_unlinked_drain_stop_wait(zfsvfs);
1319 * If someone has not already unmounted this file system,
1320 * drain the zrele_taskq to ensure all active references to the
1321 * zfsvfs_t have been handled only then can it be safely destroyed.
1323 if (zfsvfs->z_os) {
1325 * If we're unmounting we have to wait for the list to
1326 * drain completely.
1328 * If we're not unmounting there's no guarantee the list
1329 * will drain completely, but iputs run from the taskq
1330 * may add the parents of dir-based xattrs to the taskq
1331 * so we want to wait for these.
1333 * We can safely check z_all_znodes for being empty because the
1334 * VFS has already blocked operations which add to it.
1336 int round = 0;
1337 while (!list_is_empty(&zfsvfs->z_all_znodes)) {
1338 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1339 dmu_objset_pool(zfsvfs->z_os)), 0);
1340 if (++round > 1 && !unmounting)
1341 break;
1345 ZFS_TEARDOWN_ENTER_WRITE(zfsvfs, FTAG);
1347 if (!unmounting) {
1349 * We purge the parent filesystem's super block as the
1350 * parent filesystem and all of its snapshots have their
1351 * inode's super block set to the parent's filesystem's
1352 * super block. Note, 'z_parent' is self referential
1353 * for non-snapshots.
1355 shrink_dcache_sb(zfsvfs->z_parent->z_sb);
1359 * Close the zil. NB: Can't close the zil while zfs_inactive
1360 * threads are blocked as zil_close can call zfs_inactive.
1362 if (zfsvfs->z_log) {
1363 zil_close(zfsvfs->z_log);
1364 zfsvfs->z_log = NULL;
1367 rw_enter(&zfsvfs->z_teardown_inactive_lock, RW_WRITER);
1370 * If we are not unmounting (ie: online recv) and someone already
1371 * unmounted this file system while we were doing the switcheroo,
1372 * or a reopen of z_os failed then just bail out now.
1374 if (!unmounting && (zfsvfs->z_unmounted || zfsvfs->z_os == NULL)) {
1375 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1376 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1377 return (SET_ERROR(EIO));
1381 * At this point there are no VFS ops active, and any new VFS ops
1382 * will fail with EIO since we have z_teardown_lock for writer (only
1383 * relevant for forced unmount).
1385 * Release all holds on dbufs. We also grab an extra reference to all
1386 * the remaining inodes so that the kernel does not attempt to free
1387 * any inodes of a suspended fs. This can cause deadlocks since the
1388 * zfs_resume_fs() process may involve starting threads, which might
1389 * attempt to free unreferenced inodes to free up memory for the new
1390 * thread.
1392 if (!unmounting) {
1393 mutex_enter(&zfsvfs->z_znodes_lock);
1394 for (zp = list_head(&zfsvfs->z_all_znodes); zp != NULL;
1395 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1396 if (zp->z_sa_hdl)
1397 zfs_znode_dmu_fini(zp);
1398 if (igrab(ZTOI(zp)) != NULL)
1399 zp->z_suspended = B_TRUE;
1402 mutex_exit(&zfsvfs->z_znodes_lock);
1406 * If we are unmounting, set the unmounted flag and let new VFS ops
1407 * unblock. zfs_inactive will have the unmounted behavior, and all
1408 * other VFS ops will fail with EIO.
1410 if (unmounting) {
1411 zfsvfs->z_unmounted = B_TRUE;
1412 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1413 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1417 * z_os will be NULL if there was an error in attempting to reopen
1418 * zfsvfs, so just return as the properties had already been
1420 * unregistered and cached data had been evicted before.
1422 if (zfsvfs->z_os == NULL)
1423 return (0);
1426 * Unregister properties.
1428 zfs_unregister_callbacks(zfsvfs);
1431 * Evict cached data. We must write out any dirty data before
1432 * disowning the dataset.
1434 objset_t *os = zfsvfs->z_os;
1435 boolean_t os_dirty = B_FALSE;
1436 for (int t = 0; t < TXG_SIZE; t++) {
1437 if (dmu_objset_is_dirty(os, t)) {
1438 os_dirty = B_TRUE;
1439 break;
1442 if (!zfs_is_readonly(zfsvfs) && os_dirty) {
1443 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1445 dmu_objset_evict_dbufs(zfsvfs->z_os);
1446 dsl_dir_t *dd = os->os_dsl_dataset->ds_dir;
1447 dsl_dir_cancel_waiters(dd);
1449 return (0);
1452 #if defined(HAVE_SUPER_SETUP_BDI_NAME)
1453 atomic_long_t zfs_bdi_seq = ATOMIC_LONG_INIT(0);
1454 #endif
1457 zfs_domount(struct super_block *sb, zfs_mnt_t *zm, int silent)
1459 const char *osname = zm->mnt_osname;
1460 struct inode *root_inode = NULL;
1461 uint64_t recordsize;
1462 int error = 0;
1463 zfsvfs_t *zfsvfs = NULL;
1464 vfs_t *vfs = NULL;
1465 int canwrite;
1466 int dataset_visible_zone;
1468 ASSERT(zm);
1469 ASSERT(osname);
1471 dataset_visible_zone = zone_dataset_visible(osname, &canwrite);
1474 * Refuse to mount a filesystem if we are in a namespace and the
1475 * dataset is not visible or writable in that namespace.
1477 if (!INGLOBALZONE(curproc) &&
1478 (!dataset_visible_zone || !canwrite)) {
1479 return (SET_ERROR(EPERM));
1482 error = zfsvfs_parse_options(zm->mnt_data, &vfs);
1483 if (error)
1484 return (error);
1487 * If a non-writable filesystem is being mounted without the
1488 * read-only flag, pretend it was set, as done for snapshots.
1490 if (!canwrite)
1491 vfs->vfs_readonly = B_TRUE;
1493 error = zfsvfs_create(osname, vfs->vfs_readonly, &zfsvfs);
1494 if (error) {
1495 zfsvfs_vfs_free(vfs);
1496 goto out;
1499 if ((error = dsl_prop_get_integer(osname, "recordsize",
1500 &recordsize, NULL))) {
1501 zfsvfs_vfs_free(vfs);
1502 goto out;
1505 vfs->vfs_data = zfsvfs;
1506 zfsvfs->z_vfs = vfs;
1507 zfsvfs->z_sb = sb;
1508 sb->s_fs_info = zfsvfs;
1509 sb->s_magic = ZFS_SUPER_MAGIC;
1510 sb->s_maxbytes = MAX_LFS_FILESIZE;
1511 sb->s_time_gran = 1;
1512 sb->s_blocksize = recordsize;
1513 sb->s_blocksize_bits = ilog2(recordsize);
1515 error = -zpl_bdi_setup(sb, "zfs");
1516 if (error)
1517 goto out;
1519 sb->s_bdi->ra_pages = 0;
1521 /* Set callback operations for the file system. */
1522 sb->s_op = &zpl_super_operations;
1523 sb->s_xattr = zpl_xattr_handlers;
1524 sb->s_export_op = &zpl_export_operations;
1526 /* Set features for file system. */
1527 zfs_set_fuid_feature(zfsvfs);
1529 if (dmu_objset_is_snapshot(zfsvfs->z_os)) {
1530 uint64_t pval;
1532 atime_changed_cb(zfsvfs, B_FALSE);
1533 readonly_changed_cb(zfsvfs, B_TRUE);
1534 if ((error = dsl_prop_get_integer(osname,
1535 "xattr", &pval, NULL)))
1536 goto out;
1537 xattr_changed_cb(zfsvfs, pval);
1538 if ((error = dsl_prop_get_integer(osname,
1539 "acltype", &pval, NULL)))
1540 goto out;
1541 acltype_changed_cb(zfsvfs, pval);
1542 zfsvfs->z_issnap = B_TRUE;
1543 zfsvfs->z_os->os_sync = ZFS_SYNC_DISABLED;
1544 zfsvfs->z_snap_defer_time = jiffies;
1546 mutex_enter(&zfsvfs->z_os->os_user_ptr_lock);
1547 dmu_objset_set_user(zfsvfs->z_os, zfsvfs);
1548 mutex_exit(&zfsvfs->z_os->os_user_ptr_lock);
1549 } else {
1550 if ((error = zfsvfs_setup(zfsvfs, B_TRUE)))
1551 goto out;
1554 /* Allocate a root inode for the filesystem. */
1555 error = zfs_root(zfsvfs, &root_inode);
1556 if (error) {
1557 (void) zfs_umount(sb);
1558 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1559 goto out;
1562 /* Allocate a root dentry for the filesystem */
1563 sb->s_root = d_make_root(root_inode);
1564 if (sb->s_root == NULL) {
1565 (void) zfs_umount(sb);
1566 zfsvfs = NULL; /* avoid double-free; first in zfs_umount */
1567 error = SET_ERROR(ENOMEM);
1568 goto out;
1571 if (!zfsvfs->z_issnap)
1572 zfsctl_create(zfsvfs);
1574 zfsvfs->z_arc_prune = arc_add_prune_callback(zpl_prune_sb, sb);
1575 out:
1576 if (error) {
1577 if (zfsvfs != NULL) {
1578 dmu_objset_disown(zfsvfs->z_os, B_TRUE, zfsvfs);
1579 zfsvfs_free(zfsvfs);
1582 * make sure we don't have dangling sb->s_fs_info which
1583 * zfs_preumount will use.
1585 sb->s_fs_info = NULL;
1588 return (error);
1592 * Called when an unmount is requested and certain sanity checks have
1593 * already passed. At this point no dentries or inodes have been reclaimed
1594 * from their respective caches. We drop the extra reference on the .zfs
1595 * control directory to allow everything to be reclaimed. All snapshots
1596 * must already have been unmounted to reach this point.
1598 void
1599 zfs_preumount(struct super_block *sb)
1601 zfsvfs_t *zfsvfs = sb->s_fs_info;
1603 /* zfsvfs is NULL when zfs_domount fails during mount */
1604 if (zfsvfs) {
1605 zfs_unlinked_drain_stop_wait(zfsvfs);
1606 zfsctl_destroy(sb->s_fs_info);
1608 * Wait for zrele_async before entering evict_inodes in
1609 * generic_shutdown_super. The reason we must finish before
1610 * evict_inodes is when lazytime is on, or when zfs_purgedir
1611 * calls zfs_zget, zrele would bump i_count from 0 to 1. This
1612 * would race with the i_count check in evict_inodes. This means
1613 * it could destroy the inode while we are still using it.
1615 * We wait for two passes. xattr directories in the first pass
1616 * may add xattr entries in zfs_purgedir, so in the second pass
1617 * we wait for them. We don't use taskq_wait here because it is
1618 * a pool wide taskq. Other mounted filesystems can constantly
1619 * do zrele_async and there's no guarantee when taskq will be
1620 * empty.
1622 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1623 dmu_objset_pool(zfsvfs->z_os)), 0);
1624 taskq_wait_outstanding(dsl_pool_zrele_taskq(
1625 dmu_objset_pool(zfsvfs->z_os)), 0);
1630 * Called once all other unmount released tear down has occurred.
1631 * It is our responsibility to release any remaining infrastructure.
1634 zfs_umount(struct super_block *sb)
1636 zfsvfs_t *zfsvfs = sb->s_fs_info;
1637 objset_t *os;
1639 if (zfsvfs->z_arc_prune != NULL)
1640 arc_remove_prune_callback(zfsvfs->z_arc_prune);
1641 VERIFY(zfsvfs_teardown(zfsvfs, B_TRUE) == 0);
1642 os = zfsvfs->z_os;
1643 zpl_bdi_destroy(sb);
1646 * z_os will be NULL if there was an error in
1647 * attempting to reopen zfsvfs.
1649 if (os != NULL) {
1651 * Unset the objset user_ptr.
1653 mutex_enter(&os->os_user_ptr_lock);
1654 dmu_objset_set_user(os, NULL);
1655 mutex_exit(&os->os_user_ptr_lock);
1658 * Finally release the objset
1660 dmu_objset_disown(os, B_TRUE, zfsvfs);
1663 zfsvfs_free(zfsvfs);
1664 sb->s_fs_info = NULL;
1665 return (0);
1669 zfs_remount(struct super_block *sb, int *flags, zfs_mnt_t *zm)
1671 zfsvfs_t *zfsvfs = sb->s_fs_info;
1672 vfs_t *vfsp;
1673 boolean_t issnap = dmu_objset_is_snapshot(zfsvfs->z_os);
1674 int error;
1676 if ((issnap || !spa_writeable(dmu_objset_spa(zfsvfs->z_os))) &&
1677 !(*flags & SB_RDONLY)) {
1678 *flags |= SB_RDONLY;
1679 return (EROFS);
1682 error = zfsvfs_parse_options(zm->mnt_data, &vfsp);
1683 if (error)
1684 return (error);
1686 if (!zfs_is_readonly(zfsvfs) && (*flags & SB_RDONLY))
1687 txg_wait_synced(dmu_objset_pool(zfsvfs->z_os), 0);
1689 zfs_unregister_callbacks(zfsvfs);
1690 zfsvfs_vfs_free(zfsvfs->z_vfs);
1692 vfsp->vfs_data = zfsvfs;
1693 zfsvfs->z_vfs = vfsp;
1694 if (!issnap)
1695 (void) zfs_register_callbacks(vfsp);
1697 return (error);
1701 zfs_vget(struct super_block *sb, struct inode **ipp, fid_t *fidp)
1703 zfsvfs_t *zfsvfs = sb->s_fs_info;
1704 znode_t *zp;
1705 uint64_t object = 0;
1706 uint64_t fid_gen = 0;
1707 uint64_t gen_mask;
1708 uint64_t zp_gen;
1709 int i, err;
1711 *ipp = NULL;
1713 if (fidp->fid_len == SHORT_FID_LEN || fidp->fid_len == LONG_FID_LEN) {
1714 zfid_short_t *zfid = (zfid_short_t *)fidp;
1716 for (i = 0; i < sizeof (zfid->zf_object); i++)
1717 object |= ((uint64_t)zfid->zf_object[i]) << (8 * i);
1719 for (i = 0; i < sizeof (zfid->zf_gen); i++)
1720 fid_gen |= ((uint64_t)zfid->zf_gen[i]) << (8 * i);
1721 } else {
1722 return (SET_ERROR(EINVAL));
1725 /* LONG_FID_LEN means snapdirs */
1726 if (fidp->fid_len == LONG_FID_LEN) {
1727 zfid_long_t *zlfid = (zfid_long_t *)fidp;
1728 uint64_t objsetid = 0;
1729 uint64_t setgen = 0;
1731 for (i = 0; i < sizeof (zlfid->zf_setid); i++)
1732 objsetid |= ((uint64_t)zlfid->zf_setid[i]) << (8 * i);
1734 for (i = 0; i < sizeof (zlfid->zf_setgen); i++)
1735 setgen |= ((uint64_t)zlfid->zf_setgen[i]) << (8 * i);
1737 if (objsetid != ZFSCTL_INO_SNAPDIRS - object) {
1738 dprintf("snapdir fid: objsetid (%llu) != "
1739 "ZFSCTL_INO_SNAPDIRS (%llu) - object (%llu)\n",
1740 objsetid, ZFSCTL_INO_SNAPDIRS, object);
1742 return (SET_ERROR(EINVAL));
1745 if (fid_gen > 1 || setgen != 0) {
1746 dprintf("snapdir fid: fid_gen (%llu) and setgen "
1747 "(%llu)\n", fid_gen, setgen);
1748 return (SET_ERROR(EINVAL));
1751 return (zfsctl_snapdir_vget(sb, objsetid, fid_gen, ipp));
1754 if ((err = zfs_enter(zfsvfs, FTAG)) != 0)
1755 return (err);
1756 /* A zero fid_gen means we are in the .zfs control directories */
1757 if (fid_gen == 0 &&
1758 (object == ZFSCTL_INO_ROOT || object == ZFSCTL_INO_SNAPDIR)) {
1759 *ipp = zfsvfs->z_ctldir;
1760 ASSERT(*ipp != NULL);
1761 if (object == ZFSCTL_INO_SNAPDIR) {
1762 VERIFY(zfsctl_root_lookup(*ipp, "snapshot", ipp,
1763 0, kcred, NULL, NULL) == 0);
1764 } else {
1766 * Must have an existing ref, so igrab()
1767 * cannot return NULL
1769 VERIFY3P(igrab(*ipp), !=, NULL);
1771 zfs_exit(zfsvfs, FTAG);
1772 return (0);
1775 gen_mask = -1ULL >> (64 - 8 * i);
1777 dprintf("getting %llu [%llu mask %llx]\n", object, fid_gen, gen_mask);
1778 if ((err = zfs_zget(zfsvfs, object, &zp))) {
1779 zfs_exit(zfsvfs, FTAG);
1780 return (err);
1783 /* Don't export xattr stuff */
1784 if (zp->z_pflags & ZFS_XATTR) {
1785 zrele(zp);
1786 zfs_exit(zfsvfs, FTAG);
1787 return (SET_ERROR(ENOENT));
1790 (void) sa_lookup(zp->z_sa_hdl, SA_ZPL_GEN(zfsvfs), &zp_gen,
1791 sizeof (uint64_t));
1792 zp_gen = zp_gen & gen_mask;
1793 if (zp_gen == 0)
1794 zp_gen = 1;
1795 if ((fid_gen == 0) && (zfsvfs->z_root == object))
1796 fid_gen = zp_gen;
1797 if (zp->z_unlinked || zp_gen != fid_gen) {
1798 dprintf("znode gen (%llu) != fid gen (%llu)\n", zp_gen,
1799 fid_gen);
1800 zrele(zp);
1801 zfs_exit(zfsvfs, FTAG);
1802 return (SET_ERROR(ENOENT));
1805 *ipp = ZTOI(zp);
1806 if (*ipp)
1807 zfs_znode_update_vfs(ITOZ(*ipp));
1809 zfs_exit(zfsvfs, FTAG);
1810 return (0);
1814 * Block out VFS ops and close zfsvfs_t
1816 * Note, if successful, then we return with the 'z_teardown_lock' and
1817 * 'z_teardown_inactive_lock' write held. We leave ownership of the underlying
1818 * dataset and objset intact so that they can be atomically handed off during
1819 * a subsequent rollback or recv operation and the resume thereafter.
1822 zfs_suspend_fs(zfsvfs_t *zfsvfs)
1824 int error;
1826 if ((error = zfsvfs_teardown(zfsvfs, B_FALSE)) != 0)
1827 return (error);
1829 return (0);
1833 * Rebuild SA and release VOPs. Note that ownership of the underlying dataset
1834 * is an invariant across any of the operations that can be performed while the
1835 * filesystem was suspended. Whether it succeeded or failed, the preconditions
1836 * are the same: the relevant objset and associated dataset are owned by
1837 * zfsvfs, held, and long held on entry.
1840 zfs_resume_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1842 int err, err2;
1843 znode_t *zp;
1845 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1846 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1849 * We already own this, so just update the objset_t, as the one we
1850 * had before may have been evicted.
1852 objset_t *os;
1853 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1854 VERIFY(dsl_dataset_long_held(ds));
1855 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1856 dsl_pool_config_enter(dp, FTAG);
1857 VERIFY0(dmu_objset_from_ds(ds, &os));
1858 dsl_pool_config_exit(dp, FTAG);
1860 err = zfsvfs_init(zfsvfs, os);
1861 if (err != 0)
1862 goto bail;
1864 ds->ds_dir->dd_activity_cancelled = B_FALSE;
1865 VERIFY(zfsvfs_setup(zfsvfs, B_FALSE) == 0);
1867 zfs_set_fuid_feature(zfsvfs);
1868 zfsvfs->z_rollback_time = jiffies;
1871 * Attempt to re-establish all the active inodes with their
1872 * dbufs. If a zfs_rezget() fails, then we unhash the inode
1873 * and mark it stale. This prevents a collision if a new
1874 * inode/object is created which must use the same inode
1875 * number. The stale inode will be be released when the
1876 * VFS prunes the dentry holding the remaining references
1877 * on the stale inode.
1879 mutex_enter(&zfsvfs->z_znodes_lock);
1880 for (zp = list_head(&zfsvfs->z_all_znodes); zp;
1881 zp = list_next(&zfsvfs->z_all_znodes, zp)) {
1882 err2 = zfs_rezget(zp);
1883 if (err2) {
1884 zpl_d_drop_aliases(ZTOI(zp));
1885 remove_inode_hash(ZTOI(zp));
1888 /* see comment in zfs_suspend_fs() */
1889 if (zp->z_suspended) {
1890 zfs_zrele_async(zp);
1891 zp->z_suspended = B_FALSE;
1894 mutex_exit(&zfsvfs->z_znodes_lock);
1896 if (!zfs_is_readonly(zfsvfs) && !zfsvfs->z_unmounted) {
1898 * zfs_suspend_fs() could have interrupted freeing
1899 * of dnodes. We need to restart this freeing so
1900 * that we don't "leak" the space.
1902 zfs_unlinked_drain(zfsvfs);
1906 * Most of the time zfs_suspend_fs is used for changing the contents
1907 * of the underlying dataset. ZFS rollback and receive operations
1908 * might create files for which negative dentries are present in
1909 * the cache. Since walking the dcache would require a lot of GPL-only
1910 * code duplication, it's much easier on these rather rare occasions
1911 * just to flush the whole dcache for the given dataset/filesystem.
1913 shrink_dcache_sb(zfsvfs->z_sb);
1915 bail:
1916 if (err != 0)
1917 zfsvfs->z_unmounted = B_TRUE;
1919 /* release the VFS ops */
1920 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1921 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1923 if (err != 0) {
1925 * Since we couldn't setup the sa framework, try to force
1926 * unmount this file system.
1928 if (zfsvfs->z_os)
1929 (void) zfs_umount(zfsvfs->z_sb);
1931 return (err);
1935 * Release VOPs and unmount a suspended filesystem.
1938 zfs_end_fs(zfsvfs_t *zfsvfs, dsl_dataset_t *ds)
1940 ASSERT(ZFS_TEARDOWN_WRITE_HELD(zfsvfs));
1941 ASSERT(RW_WRITE_HELD(&zfsvfs->z_teardown_inactive_lock));
1944 * We already own this, so just hold and rele it to update the
1945 * objset_t, as the one we had before may have been evicted.
1947 objset_t *os;
1948 VERIFY3P(ds->ds_owner, ==, zfsvfs);
1949 VERIFY(dsl_dataset_long_held(ds));
1950 dsl_pool_t *dp = spa_get_dsl(dsl_dataset_get_spa(ds));
1951 dsl_pool_config_enter(dp, FTAG);
1952 VERIFY0(dmu_objset_from_ds(ds, &os));
1953 dsl_pool_config_exit(dp, FTAG);
1954 zfsvfs->z_os = os;
1956 /* release the VOPs */
1957 rw_exit(&zfsvfs->z_teardown_inactive_lock);
1958 ZFS_TEARDOWN_EXIT(zfsvfs, FTAG);
1961 * Try to force unmount this file system.
1963 (void) zfs_umount(zfsvfs->z_sb);
1964 zfsvfs->z_unmounted = B_TRUE;
1965 return (0);
1969 * Automounted snapshots rely on periodic revalidation
1970 * to defer snapshots from being automatically unmounted.
1973 inline void
1974 zfs_exit_fs(zfsvfs_t *zfsvfs)
1976 if (!zfsvfs->z_issnap)
1977 return;
1979 if (time_after(jiffies, zfsvfs->z_snap_defer_time +
1980 MAX(zfs_expire_snapshot * HZ / 2, HZ))) {
1981 zfsvfs->z_snap_defer_time = jiffies;
1982 zfsctl_snapshot_unmount_delay(zfsvfs->z_os->os_spa,
1983 dmu_objset_id(zfsvfs->z_os),
1984 zfs_expire_snapshot);
1989 zfs_set_version(zfsvfs_t *zfsvfs, uint64_t newvers)
1991 int error;
1992 objset_t *os = zfsvfs->z_os;
1993 dmu_tx_t *tx;
1995 if (newvers < ZPL_VERSION_INITIAL || newvers > ZPL_VERSION)
1996 return (SET_ERROR(EINVAL));
1998 if (newvers < zfsvfs->z_version)
1999 return (SET_ERROR(EINVAL));
2001 if (zfs_spa_version_map(newvers) >
2002 spa_version(dmu_objset_spa(zfsvfs->z_os)))
2003 return (SET_ERROR(ENOTSUP));
2005 tx = dmu_tx_create(os);
2006 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_FALSE, ZPL_VERSION_STR);
2007 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2008 dmu_tx_hold_zap(tx, MASTER_NODE_OBJ, B_TRUE,
2009 ZFS_SA_ATTRS);
2010 dmu_tx_hold_zap(tx, DMU_NEW_OBJECT, FALSE, NULL);
2012 error = dmu_tx_assign(tx, TXG_WAIT);
2013 if (error) {
2014 dmu_tx_abort(tx);
2015 return (error);
2018 error = zap_update(os, MASTER_NODE_OBJ, ZPL_VERSION_STR,
2019 8, 1, &newvers, tx);
2021 if (error) {
2022 dmu_tx_commit(tx);
2023 return (error);
2026 if (newvers >= ZPL_VERSION_SA && !zfsvfs->z_use_sa) {
2027 uint64_t sa_obj;
2029 ASSERT3U(spa_version(dmu_objset_spa(zfsvfs->z_os)), >=,
2030 SPA_VERSION_SA);
2031 sa_obj = zap_create(os, DMU_OT_SA_MASTER_NODE,
2032 DMU_OT_NONE, 0, tx);
2034 error = zap_add(os, MASTER_NODE_OBJ,
2035 ZFS_SA_ATTRS, 8, 1, &sa_obj, tx);
2036 ASSERT0(error);
2038 VERIFY(0 == sa_set_sa_object(os, sa_obj));
2039 sa_register_update_callback(os, zfs_sa_upgrade);
2042 spa_history_log_internal_ds(dmu_objset_ds(os), "upgrade", tx,
2043 "from %llu to %llu", zfsvfs->z_version, newvers);
2045 dmu_tx_commit(tx);
2047 zfsvfs->z_version = newvers;
2048 os->os_version = newvers;
2050 zfs_set_fuid_feature(zfsvfs);
2052 return (0);
2056 * Return true if the corresponding vfs's unmounted flag is set.
2057 * Otherwise return false.
2058 * If this function returns true we know VFS unmount has been initiated.
2060 boolean_t
2061 zfs_get_vfs_flag_unmounted(objset_t *os)
2063 zfsvfs_t *zfvp;
2064 boolean_t unmounted = B_FALSE;
2066 ASSERT(dmu_objset_type(os) == DMU_OST_ZFS);
2068 mutex_enter(&os->os_user_ptr_lock);
2069 zfvp = dmu_objset_get_user(os);
2070 if (zfvp != NULL && zfvp->z_unmounted)
2071 unmounted = B_TRUE;
2072 mutex_exit(&os->os_user_ptr_lock);
2074 return (unmounted);
2077 void
2078 zfsvfs_update_fromname(const char *oldname, const char *newname)
2081 * We don't need to do anything here, the devname is always current by
2082 * virtue of zfsvfs->z_sb->s_op->show_devname.
2084 (void) oldname, (void) newname;
2087 void
2088 zfs_init(void)
2090 zfsctl_init();
2091 zfs_znode_init();
2092 dmu_objset_register_type(DMU_OST_ZFS, zpl_get_file_info);
2093 register_filesystem(&zpl_fs_type);
2094 #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
2095 register_fo_extend(&zpl_file_operations);
2096 #endif
2099 void
2100 zfs_fini(void)
2103 * we don't use outstanding because zpl_posix_acl_free might add more.
2105 taskq_wait(system_delay_taskq);
2106 taskq_wait(system_taskq);
2107 #ifdef HAVE_VFS_FILE_OPERATIONS_EXTEND
2108 unregister_fo_extend(&zpl_file_operations);
2109 #endif
2110 unregister_filesystem(&zpl_fs_type);
2111 zfs_znode_fini();
2112 zfsctl_fini();
2115 #if defined(_KERNEL)
2116 EXPORT_SYMBOL(zfs_suspend_fs);
2117 EXPORT_SYMBOL(zfs_resume_fs);
2118 EXPORT_SYMBOL(zfs_set_version);
2119 EXPORT_SYMBOL(zfsvfs_create);
2120 EXPORT_SYMBOL(zfsvfs_free);
2121 EXPORT_SYMBOL(zfs_is_readonly);
2122 EXPORT_SYMBOL(zfs_domount);
2123 EXPORT_SYMBOL(zfs_preumount);
2124 EXPORT_SYMBOL(zfs_umount);
2125 EXPORT_SYMBOL(zfs_remount);
2126 EXPORT_SYMBOL(zfs_statvfs);
2127 EXPORT_SYMBOL(zfs_vget);
2128 EXPORT_SYMBOL(zfs_prune);
2129 #endif